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Abstract

The design of offshore and coastal infrastructures, sand nourishment and other ’soft’ coastal interventions require
the analysis of environmental variables (e.g. wind, waves, rainfall) that can potentially cause the failure of such
structures. Processes such as overtopping, beach erosion, and coastal flooding can result from a combined action
of two or more physical processes. Traditional infrastructure design practices assume the highest load previously
experienced as the design load, regardless of possible interactions between variables (or processes). This may
lead to a misrepresentation of critical design loads.

This thesis presents a methodology for defining infrastructure design loads accounting for their interdepen-
dence. The methodology is general and is based on regular vines. Vines are graphical tools for defining high
dimensional distribution functions through pair-copula construction. With this premise in mind, the main effort
was concentrated in formulating a series of steps to integrate several stages of the design: from the processing
of raw data up to the choice of design loads for any specific design purpose. The vine-based methodology was
applied to the design of a breakwater in Galveston Bay, Texas. This application showed that accounting for
the interdependence between design variables provides a more comprehensive description of the physical sys-
tem acting on the infrastructure. However, the vine-based method is computationally demanding. Hence, the
applicability of this methodology should be evaluated on a case by case basis.

In parallel, the possibility to define goodness of fit test for vine-copula based on the concept of tree-equivalent
classes is explored. The focus is on model selection strategies based on graphical and statistical properties of
the vines. The main motivation to investigate model selection strategies for vines is the considerably large
computational time needed to fit all regular vines in more than 6 nodes to the data. In this thesis, a novel
algorithm is developed to facilitate the implementation of vines in higher dimensions (vines with more than 6
nodes). This algorithm significantly reduces the computational effort to select a regular vine by allowing the user
to test only a subgroup of vines in n-nodes constructed on specific characteristics of the vines in (n −1)-nodes.
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1
Introduction

1.1. Motivation
Offshore and coastal infrastructure must be constructed to withstand intense environmental conditions, such as
large wind speeds, waves, currents and water levels. Critical loads that can cause failure usually occur when
two or more of these events simultaneously reach extreme levels, for example high waves and large storm surge.
Hence, the design of offshore and coastal infrastructure, sand nourishment and other ’soft’ coastal interventions
require the analysis of these extreme environmental variables, usually referred to as design variables.

Phenomena such as overtopping, beach erosion, wave loads on structures and coastal flooding (among others)
are the result of the combined action of two or more physical processes, which in engineering terms, is referred
to as an event. Under certain geographic and meteorological conditions there may be dependence between
these physical processes, influencing the relative frequency of occurrence for each. Furthermore, the physical
characteristics used to describe a single process may also be correlated, for example wave height and period for
ocean swell or wind waves. Hence, considering all environmental variables that drive these physical processes
and their possible interdependence is essential in the design and risk assessment of offshore and coastal structures.

The design of any structure must consider the extreme loads that may be experienced during a specified
length of time, which are used to determine the required geometry, size and material of each required com-
ponent. Historically this was accomplished using the highest loads previously experienced for a structure or
location, whereas modern design methods seek to establish a minimum specified reliability (maximum proba-
bility of failure) by taking into account the frequency of a specific loading magnitude. Although methods for
quantifying the likelihood of independent design loads are readily available, there is a lack of guidance available
for quantifying the likelihood of several dependent loads.

Probabilistic assessment of extreme environmental variables has been widely studied for univariate case,
however, this fails to provide a complete assessment for an underlying event characterized by a set of interrelated
variables [12]. Univariate extreme models have progressively been extended to bivariate and more generally
multivariate cases. Within bivariate cases, the flexibility of copulas has been exploited to investigate the joint
occurrence of combined critical sea-state conditions for coastal and ocean engineering in many studies: [15] [5]
[43] [21] [48] [71] [12] [13]. Copulas give the possibility to separately model the dependence structure among
the random variables and the univariate marginal distributions, without imposing on them any restriction. This is
one of the main reasons for the increasing popularity and recent extensive use of copulas. Despite the popularity
of univariate and bivariate statistical models, there is a growing interest among researchers and practitioners to
quantify the uncertainty associated with multivariate dependent design conditions.

In spite of the advantages copulas offer for the bivariate case, a n-copula cannot simply be used to ’couple’
another (n-1)-copula with one variable by setting them as its marginal distributions. This follows from the so-
called compatibility problem of multivariate copula constructions that was introduced in [54]. Nevertheless,
the literature offer several methods that build multivariate distributions from bivariate copulas: (1) Trivariate
setting based on conditional laws, (2) Conditional mixtures, (3) Hierarchical Archimedean copulas and (4) Vine-
copulas, among others. The first method uses the concept of conditional distributions to build a trivariate copula

1
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with bivariate copulas, some examples are presented in [10] and [19]. The second method uses similar concepts
as the first to define multivariate models with bivariate copulas. The theory and some applications of the second
approach are discussed in [66], [20], [35] and [15]. The third method is probably the most popular within
the ocean and coastal engineering community. It follows from the concepts on classical hierarchical modelling
that were firstly discussed in [29]. Theory on Hierarchical Archimedean copulas is presented in [67]. Some
applications of this method are discussed in [41], [15], [72] and more recently, in [44]. These three methods are
known by their ’supposed’ simplicity. In terms of flexibility, Vine-copulas are better suited to model complex
dependence structures [8], such as the ones present in many ocean and coastal systems and processes.

Despite multivariate frequency analysis receiving much attention in present time within the academic com-
munity, advanced statistical techniques such as Vine-copulas are slow in being taken up in engineering practice
[42]. One of the reasons might be due to the constant focus on the academic approach rather than in the ’end
user’ necessity and/or perspective. According to [23] there are currently very few applications with (regular)
vines within literature, mainly due to the size of the class of regular vines [50]. Consequently, the number of
models to choose from is very large.

The concept of return period is widely used in infrastructure design practices to indicate the lifetime of a
structure, and consequently to derive design loads. However, the very concept of return period may be confusing
and sometimes misleading, in particular, in a multivariate framework. Mainly, the one-to-one relationship be-
tween return period and design value that is established in the univariate case is not valid in higher dimensions.
For instance, Serinaldi discusses in [69] the misconceptions associated to the notion of return period.

In this research, the suitability of advanced statistical models, Vine-Copulas, to perform multivariate fre-
quency analysis of extreme events is investigated. The concept of multivariate return period is explored to
provide guidance for selecting critical design loads (i.e. design values) in a multivariate context.

1.2. Objectives and research questions
The main objective of this thesis is to develop a vine-based methodology for infrastructure design load definition.
The methodology aims to be general and applicable to any infrastructure design problem involving multiple
design variables. It seeks to integrate several stages of the design: from the processing of raw data up to the choice
of design values for any specific design purpose. Besides providing guidance for selecting design values, this
research investigates the suitability of vine-copulas to model environmental systems with complex dependence
structures. This is investigated for a coastal engineering case study.

In the interest of all these objectives, two main research questions have been prepared:

• How can we use vine-copula models in the design of infrastructure?

• What are the advantages and disadvantages of using the vine-based methodology to derive multivariate
design values when compared to the traditional approach where the variables are considered independent?

The two main research questions are directed towards an audience with an engineering background. However,
this thesis also aims to reach the statistical community. In the motivation (in 1.1), one of the main issues with
vine-copulas was introduced: only the class of regular vines is already very large. In addition, the number of
possible models to choose from increases very fast with the number of variables that are being analyzed. Hence,
it is vital to develop efficient model selection strategies [18]. In parallel to the main objective, this research
aims to investigate goodness of fit for vine-copula models. Building on the work presented in [18], we propose
to explore the possibility to define goodness of fit test for vine-copula based on the concept of tree-equivalent
classes. In interest of this objective, a secondary research question has been posed:

• Can we identify goodness of fit for vine-copula based on tree-equivalent classes?
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1.3. Thesis outline
The research questions investigated in this thesis are directed towards an audience composed of two different
backgrounds: engineering and statistics. At the same time, these might have different interests. Engineers
might want to dive into the application of vine-copula and its potential link to the actual design process. While
statisticians might prefer to focus on the characteristics of the theoretical model and the exploratory work derived
from the secondary research question. To cope with these two interests, the thesis focused on four main parts:

• Chapter 2. Literature study

• Chapter 3. A vine-based methodology for infrastructure design

• Chapter 4. Exploratory work on goodness of fit for vine-copula

• Chapter 5. Application: a case study in coastal engineering

A small story has been prepared to help explain the link between these units and to put all the work done in
this thesis into context. The story is depicted in figure 1.1.

The answer to the main research question on "How can we use vine-copula models in the design of infras-
tructure" is a methodology. The theoretical background on the set of methods and techniques that compose the
methodology is presented in Chapter 2. The developed methodology (vine-based methodology, hereinafter) is
explained step by step in Chapter 3, and it is applied to a coastal engineering case study in Chapter 5. Also in
Chapter 5, the results achieved by the developed methodology are compared with the ones achieved when using
a more traditional approach. This gives answer to the second main research question posed in 1.2. The answer
to the secondary research question on "goodness of fit for vine-copula based on TEC" is presented in Chapter 4.
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Figure 1.1: A little story that aims to explain in a simple but creative way the research methodology and the overall thesis framework. Source:
Author.



2
Literature study

The theoretical background on the set of state-of-the-art methods and techniques that compose the vine-based
methodology is presented in the current chapter. This chapter is aimed at readers who are interested in learning
more about the theoretical foundations of the methodology that is proposed. For those readers who do not wish
to dive into the statistical and mathematical details of the methodology, it is recommended to start with chapter
3.

Figure 2.1 provides an insight on the general procedure to find design loads in a multivariate context. The
approach differs depending on whether the design variables are assumed to be dependent or independent. In the
following sections, theory on state-of-the-art methods and techniques on the different stages of the procedures in
figure 2.1 is presented.

Figure 2.1: Flowchart on the general procedure to find design loads in a multivariate context. Source: Author

5
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2.1. Extreme Value Analysis
An EVA deals with the extreme deviations from the median of probability distributions. It seeks to assess, from
an ordered sample of a given random variable, the probability of events that are more extreme than any previously
observed. Traditionally, the estimation of extreme environmental events is done fitting a given probability distri-
bution on a sample of historical extreme observations, usually a temporal series of the event-describing variable.
The extreme value theory (Pickands 1975) offers a valid theoretical background.

In practice, two different approaches to select extreme observations are widely used : (1) Block Maxima
(or minima) and (2) Peak Over Threshold (POT). In block maxima, the maximum (or minimum) observations
over a particular period of time (a month or a year for example) are selected. In contrast, the POT approach
needs a predetermined threshold value. An observation is classified as an extreme observation if it exceeds (or
is exceeded in the case of minima) the given threshold. One may argue that the main difference between both
approaches is their focus. While POT focuses on events (e.g. storms), block maxima focuses on periods of time
(e.g. days, weeks, months, years). Examples of both techniques are depicted in figure 2.2. In this thesis, the POT
technique is used to sample (univariate) extreme observations.

Figure 2.2: On the right, an example of Peak Over Theshold technique. On the left, an example of Block Maxima technique. Source: Author

2.1.1. Peak Over Threshold method
According to the Balkema-de Haan-Pickands Theorem, the values exceeding a given threshold converge through
a Generalized Pareto Distribution (GPD) if the original sample is composed by independent and identically
distributed random variables [25]. The generalized Pareto distribution has a distribution function defined as [32]:

F (X ) = 1−
(
1− k

σ
(X −θ)

)1/k

,k 6= 0 (2.1)

where k, σ and θ are the parameters of the distribution and X a random variable.

In the past, the threshold for the physical selection of independent extreme events and the threshold for the
statistical sampling of extreme value asymptotically convergent toward GPD were confused [40]. Traditionally,
a single threshold was used for sampling data and for meeting the hypothesis of extreme value theory. In [7], the
authors introduce a two-step threshold selection framework for over-threshold modeling. This method aims to
identify first a ’physical threshold’ for the selection of extreme and independent events (called physical declus-
tering); and then a ’statistical threshold’ through an optimization procedure to satisfy the GPD requirements. At
the end, θ should satisfy both physical and statistical requirements.

Physical declustering aims to isolate the maximum observation recorded during a given event (i.e. a storm)
with fixed duration. The storms are characterized by a predefined duration that should be longer that the resolu-
tion of the time series. On another note, the statistical optimization step is a purely statistical problem for which
several methods have been proposed in the literature (see [7] for references).

2.1.2. Multivariate extreme value theory
Extreme value theory in more than one variable introduces additional issues that have to be addressed. In the
univariate case, it is straightforward to find the most extreme event of a set of observations simply by taking the
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maximum (or minimum) value. In the multivariate case, it is not immediately clear how to find the most extreme
pair of joint observations in (for example) a multivariate time series. Suppose that one has observed the values
(4,5) at a certain time and the values (7,2) at a later time. There is no universal answer to which of these pairs of
observations would be considered the most extreme. The fundamental problem is that there is no natural way to
order a set of vectors, as there is with a set of real-valued numbers.

One problem that arises when extending the extreme value theory to the multivariate context is that one must
specify what constitutes an extreme event. Examples on how to determine extreme events in the bivariate case are
presented in [52] and [75]. The main difference between these applications is on how the extreme observations
are sampled from the bivariate data, and hence, how extreme events are defined. In [52], the extreme observations
are sampled independently for each variable. In [75], the extreme observations are sampled for one variable
which is rendered to be the most dominant, and the corresponding concomitant values observed together with
the dominant variable are selected for the remaining variable. In this way, the dependence between the variables
is kept in what constitutes the extreme event. One must appeal to dependence modelling to capture such inter-
relations.

2.2. Bivariate dependence modelling
Before diving into the world of copulas and dependence modelling, one should be acquainted with the concept
of dependence (or independence). In statistics, two events are considered dependent if the occurrence of one
event influences the occurrence of the other event. Independence of two events may be described in a similar
way. If two events are independent the occurrence of one event does not influence the probability of occurrence
of the other. Hence, to calculate the likelihood of two independent events occurring at the same time, one should
simply multiply both individual probabilities of occurrence. When these events are dependent, one has to appeal
to the art of dependence modelling.

2.2.1. Dependence measures
One way to describe dependence between two random variables is by correlation. Nevertheless, the reader
should note that correlation and dependence refer to two different concepts. For example, two variables might be
uncorrelated, but not necessarily independent. However, two independent variables always have zero correlation.
Kendall’s correlation coefficient (τ) is adopted in this thesis as one of the main dependence measures. According
to [27], Kendall’s correlation coefficient has more attractive properties over other correlation coefficients and
seems to be better suited for smaller data sets compared to other correlation coefficients. Kendall’s (τ) is defined
as follows:

τ= C−D(
n
2

) with −1 ≤ τ≤ 1

In which:
C number of concordant pairs in a set of observations

D number of disconcordant pairs in a set of observations
n number of observations

(2.2)

For X and Y being bivariate observations, a pair is concordant if the subject ranked higher on X also ranks
higher on Y. The pair is discordant if the subject ranking higher on X ranks lower on Y. A positive value of τ
indicates a positive correlation. The closest to 1 this value is, the more correlated these variables are. Same logic
applies for negatives values of τ. Values of τ close to -1 indicate strong negative correlation.

In short, Kendall’s τ gives an indication on the strength of the correlation. However, it does not provide
information on the dependence structure between two variables. For that, one needs to appeal to bivariate dis-
tributions. Traditional statistical bivariate methods only allow for the individual behavior of the two variables
(one dimensional margins) to be characterized by the same parametric family of univariate distributions [26]. For
some engineering fields, such as coastal and offshore engineering, this is a big limitation since the variables of
interest will likely behave according to different theoretical distributions. This problem was solved with copulas.
By considering a copula approach, the dependence structure between a pair of random variables may be specified
independently to that of their one dimensional marginal distributions. Thus, copulas are considered in this study
to be the most beneficial models to describe bivariate dependence structures.
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2.2.2. Copulas
A comprehensive review of copulas is given in [33]. Here we present some of the main concepts regarding copula
modelling.

Consider the joint cumulative distribution function H of continuous random variables X and Y . H may be
written as:

H(x, y) =C (F (x),G(y)) (2.3)

for (x, y) ∈ R and where F(x) and G(y) represent the one dimensional marginal distributions of X and Y respec-
tively. The function C : [(0,1)× (0,1)] is the unique copula corresponding to H .

A non-parametric version of equation 2.3 (which strictly speaking is not a copula) is given in equation 2.4.
There, Ri stands for the rank of Xi among X1, ..., Xn , and Si stands for the rank of Yi among Y1, ...,Yn and
(u, v) ∈ (0,1)× (0,1). The empirical copula concept is an important concept in itself for example in survival
analysis [22].

Cn(u, v) = 1

n

n∑
1

(
Ri

n +1
É u,

Si

n +1
É v

)
(2.4)

2.2.3. Tail dependence
Tail dependence is another measure of dependence. In here, it is explained for the bivariate case but it can be
generalized for the multivariate case. The notion of tail dependence relates to the amount of dependence in
the upper-right quadrant tail or lower-left-quadrant tail of a bivariate distribution. Tail dependence between two
continuous random variables is a copula property and hence, the amount of tail dependence is invariant under
strictly increasing transformations of these variables [55]. The upper tail dependence coefficient λU for two
random variables (X ,Y ) can be expressed as follows:

λU = lim
u→1

P (X > F−1
X (u)|Y > F−1

Y (u)) = lim
u→1

P (U > u|V > u) (2.5)

where:
FX (u) and FY (u) are the cumulative distributions of X and Y respectively, and u and v the normalized ranks of
the aforementioned random variables.

A value of λU > 0 means that it is likely to observe values of U greater than u given that V is greater than u, for
u arbitrarily chosen close to 1. The lower tail dependence is defined similarly to equation 2.5, but for the lower
quadrant of the joint distribution. To determine whether a ranked sample is characterized by tail dependence
without having to compute the limit, the semi-correlations method can be used (refer to [36] for details).

2.3. Multivariate dependence modelling
Before diving into the world of dependence modeling with vines, we shall continue from where we left it: the
many benefits of modeling bivariate dependence with copulas. And most importantly, how to go from modeling
dependence in 2 dimensions to higher dimensions.

In spite of the advantages copulas offer for the bivariate case, a n-copula cannot simply be used to ’couple’
another (n-1)-copula with one variable by setting them as its marginal distributions. This follows from the
so-called compatibility problem of multivariate copula constructions that was discussed in [54]. Nevertheless,
the literature offer several methods that build multivariate distributions from bivariate copulas: (1) Trivariate
setting based on conditional laws, (2) Conditional mixtures, (3) Hierarchical Archimedean copulas and (4) Vine-
copulas, among others. The first method uses the concept conditional distributions to build a trivariate copula
with bivariate copulas, some examples are discussed in [10] and [19]. The second method uses similar concepts
as the first to define multivariate models with bivariate copulas. The theory and applications of this approach
are discussed in [66], [20], [35] and [15]. The third method is probably the most popular within the ocean and
coastal engineering community. It follows from the concepts on classical hierarchical modelling that was firstly
discussed in [29]. Theory on Hierarchical Archimedean copulas is presented in [67]. Some applications of this
method are discussed in [41], [15], [72] and more recently, in [44].

Appendix A elaborates on some concepts (and theory) on the first three methods presented in the previous
paragraph. These three methods (i.e. (1), (2) and (3) listed above) are known by their ’supposed’ simplicity. In
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terms of flexibility, vine-copulas are better suited to model complex dependence structures [8], such as the ones
present in many ocean and coastal systems and processes. Hence, vine-copulas are used in this thesis to model
multivariate dependence structures.

2.3.1. Vines
Multivariate statistical models can be challenging for routine engineering applications, because they tend to
require higher modelling complexity. And vines are no exception. Hence, for those readers who are not interested
in the mathematical background, it is recommended to start with the application in chapter 5.

Vines are graphical tools for defining high dimensional distribution functions with complex dependence
structure between variables. They where first introduced by [62], [6] and [39]. The graphical representation
of this statistical model resembles grape vines, hence its name.

As the grape vine, the statistical model is composed by a series of nested trees. A tree is defined as an
undirected acyclic graph. A tree is acyclic because it can begin in a node and end in another different node.
And because there is not a fixed direction, it is also called undirected graph. These trees contain information
on the dependence structure and this information is kept in the nodes and edges of each tree. The first tree of
the vine contains as many nodes as variables in the analysis. Each variable is associated to a node. Hence, the
dependence structure between 6 variables can be analyzed with a vine in 6 nodes. The nodes are linked via edges,
which are represented by bivariate copulas. An edge can only link two nodes at a time. In higher trees, the edges
are represented by conditional bivariate copulas and hence, these trees represent conditional dependencies. For
example, the nodes of the second tree contain the same information as the edges in the first tree. And the edges
of the second tree represent the conditional dependence between two nodes. The same logic applies for the rest
of the trees. This is how vines use (conditional) copulas as building blocks of higher dimensionality dependence.

Formally, a Vine, V , with n-dimensionality is a nested set of connected trees V = [T1, . . . , Tn−1] where the
edges of tree j are the nodes of tree j +1, j = 1, . . . , n - 2. A vine in n-nodes is regular if all pairs of edges
that share a common node in tree j are joined by an edge in tree j +1, with j = 1,..., n - 2. When this condition
is violated, the vine is referred to as non-regular vine. An example of regular and irregular vine is presented in
figure 2.3.

Figure 2.3: A regular vine on the left and a non-regular vine on the right, on four variables. Source: [37]

2.3.2. Regular vines
Regular vines have found application in probability theory and uncertainty analysis [50]. The first regular vine
was introduced in [34], with the objective to extend the bivariate extreme-value copula to higher dimensions.
Two main ways of constructing regular vines have been treated in the literature [37], being vine-copulas and
partial correlation vine representations. Vine-copula constructions are obtained by assigning a bivariate copula
to each edge in the vine. All copulas can be of different type and their parameters can be specified independently
from each other. However, copulas will influence each other because the ones specified in a tree will affect the
later trees choice of copulas [23]. Similarly, a partial correlation vine representation of a correlation matrix is
obtained by assigning a partial correlation coefficient to each edge in the vine. The focus in this thesis is on
vine-copulas.

Aas et al. [2] presented two sub-classes of regular vines: canonical vines, C-Vines, and drawable vines, D-
vines. D-Vine based model are used in many applications on the contrary to C-Vines, which are less commonly
used within literature [23]. C-Vines posse "star" structures in their tree sequence, while D-Vines are represented
by "path" structures. Together, they represent the boundaries of all tree-equivalent classes (TEC) of regular
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vines. The concept of TEC provides a way of classifying regular vines. According to Definition 2.3.2. in
[49], two regular vines are tree-equivalent if they share the same unlabeled trees. A tree is labeled when the
nodes are associated to variables or to a conditionalized combination of these in the higher order trees of the
regular vine. Figure 2.4a depicts two labeled tress. On the contrary, figure 2.4a depicts two unlabeled trees.
Hence, a TEC comprises different permutations of the same trees structures. An example of two tree-equivalent
vines is presented in figure 2.4a. An example of two non-equivalent trees is depicted in figure 2.4b. Finally,
figure 2.5 presents a general classification of vine models. This research focuses on regular vines and their TEC
classification.

(a) An example of tree-equivalent regular vines (b) An example of two non-equivalent trees

Figure 2.5: A general classification of Vines, with focus on tree-equivalent regular vines. Source: Author. Figures source: [37]

2.3.3. Properties of regular vines
In this subsection, some properties of regular vines are presented. The structure of a regular vine (or a vine in
general) is build from edges and nodes. An edge links two consecutive nodes. In vine-copulas, the edges are
represented by unconditional copulas or conditional copulas. Edges that embody bivariate copulas are named
with only two indices that are the abbreviation of the two variables. The edges that embody conditional bivariate
copulas are represented by a set of indices with the two conditioned variables and the conditioning variables.

In a regular vine, the nodes connected by a given edge in tree T j are named the constraint set of that edge.
When 2 edges are joined by an edge in tree T j+1 the intersection of the respective constraint sets forms the
conditioning set, and the symmetric difference of the constraint sets forms the conditioned set. The label of each
edge denotes the conditioned and conditioning sets. In tree T1 the relation between the variables is defined by the
rank correlation, and in the subsequent trees this relation is given by the partial correlation between the variables
in the conditioned set, given the elements of the conditioning set. Formally, the complete union of an edge is a set
of all indices that the edge contains. If two nodes a and b are joined by an edge, the conditioned and conditioning
sets of this edge are the symmetric difference and the intersection of the previously define complete unions of a
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and b, respectively. The conditioned and conditioning sets of all edges of a vine (V ) are collected in a so-called
constraint set, CV , defined as follows:

CV = [(
(Ce,a ,Ce,b),De

) |e ∈ Ei ,e = (a,b), i = 1, ...,n −1
]

(2.6)

In this thesis, the enumeration of nodes of trees in an regular vine is done using their conditioned and condi-
tioning sets, printed before and after ’|’, respectively. An example on such notation in a 7-nodes regular vine is
presented in figure 2.6.

Figure 2.6: An example of regular vine on seven variables. Source: [23].

According to [23], there are currently very few applications of regular vines within literature. The very first
application of vines is discussed in [2]. Mainly, the issue with regular vines is the enormous number of possible
models to choose from that make them less appealing to practitioners. In view of this issue, Morales-Nápoles
proposed in [49] a novel approach in the form of three algorithms for producing and enumerating regular vines.
Later on, the importance of a good selection strategy continued to be discussed. Two examples are the papers:
[4] and [18].

Formally, the number of regular vines increases very fast with the number (n) of nodes [51]:

(
n
2

)
× (n −2)!×2

(
n −2

2

)
(2.7)

As for the number of labeled trees on n nodes:

Theorem 1 The number of labeled trees on n nodes is nn−2.

Morales-Nápoles presents in 2.1 the number of unlabeled and labeled trees, vines, regular vines and tree-
equivalent vines in 3, 4, 5, 6, 7 and 8 nodes. These quantification are presented in table 2.1.

Nodes
Tree-equivalent

classes Regular Vines

3 1 3
4 2 24
5 5 480
6 22 23040
7 136 2580480

Table 2.1: Number of unlabeled regular vines and tree-equivalent vines in 3, 4, 5, 6 and 7 nodes [51].
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According to [6], the density of a regular vine-copula is equal to the product of the conditional and uncondi-
tional copulas assigned to the edges.

Theorem 2 Let V = (T1, ...,Tn−1) be a regular vine on n elements. For an edge e ∈ E(V ) with conditioned
elements e1, e2 and conditioning set De , let the conditional copula and copula density be Ce1,e2|De and Ce1,e2|De ,
respectively. Let the marginal distributions Fi with densities fi , i = 1, ...,n be given. Then the vine-dependent
distribution is uniquely determined, and has a density given by

f1···n = f1 · · · fn
∏

e∈E(V )
ce1,e2|De

(
Fe1|De ,Fe2|De

)
(2.8)

The cumulative probability function of a vine is computed by integrating its density. The reader should note
that is not an easy task. Analytically, this task is very challenging. Numerically, might be easier. This issue is
treated in section 3.4 and in the application in chapter 5.

2.3.4. Array representation of regular vines
Considering the numerous amount of regular vines in 6 and 7 nodes, storing their nested set of trees is too
expensive. Dissman et al. discuss introduced in [23] a convenient way of representing an regular vine that makes
statistical inference algorithms less computationally expensive. His work is based on the research of Morales-
Nápoles in [53]. Morales-Nápoles used a lower triangular array to store a regular vine for counting the number
of different regular vines. The idea is to store the constraint set of a regular vine in columns of an n-dimensional
lower triangular array. By means of a constraint set for the array, the information on the lower triangular array
can be read more easily.

Definition 1 (Array constraint set). Let M=(mi , j )i , j=1,...n be a lower triangular array. The i-th constraint set
for M is

CM (i ) = (
(mi ,i ,mk,i ,D)|k = i +1, ...,n,D = (mk+1,i , ...,mn,i )

)
(2.9)

for i = 1, ...,n −1. If k = n we set D=;. The constraint set for array M is the union C M = C M(1)∪ ...∪
C M(n−1). For the elements of the constraint set ((mi ,i ,mk,i ),D) ∈C M , (mi ,i ,mk,i ) is called the conditioned set
and D the conditioning set.

Every element of the constraint set is made up of a diagonal entry mi ,i , an entry in the same column below
the diagonal mi ,i , and all the elements following in that column (mk+1,i , ...,mn,i ),k = i +1, ...,n, i = 1, ...,n. To
illustrate this concept, we build an example, array (A*), with the constraint sets of the regular vine in seven
nodes presented in figure 2.6. Focusing on the first column in 2.10, one can visualize the 6-th tree (T6) edge in
figure 2.6 by taking the element mi ,i = 7 and the element mi+1,i = 4 (which become the ’conditioned set’) and
subsequently, the rest of the elements in that column (5,1,2,3,6) become the conditioning set. According to the
definition above, this gives ((7,4), (5,1,2,3,6)) ∈C M which corresponds to the constraint set of the edge in T6.

A∗=



7 0 0 0 0 0 0
4 4 0 0 0 0 0
5 6 6 0 0 0 0
1 5 5 5 0 0 0
2 1 1 1 1 0 0
3 2 2 3 3 3 0
6 3 3 2 2 2 2


(2.10)

2.3.5. Goodness of fit measure
The Akaike Information Criterion (AIC) is a relative goodness of fit measure and it is used in this thesis to select
marginal distributions and bivariate copula families in the vines. The AIC is formulated as:

AIC = 2k −2logL (2.11)

where k is the number of parameters and L is the likelihood function estimate of interest.
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The advantages of the AIC are its ability to account for both the complexity (number of parameters) and the
plausibility (likelihood) of the model. This means that simpler models (with fewer parameters) will be favored.
However, AIC provides a goodness of fit measure of one model relative to the others tested without providing
information about the absolute quality of the fitting. For this reason it is advised to performed in parallel other
goodness of fit tests (e.g, root mean squared error).

2.4. The concept of return period in the derivation of design values
One objective of this thesis is to derive design values accounting for the interdependence between infrastructure
loads, hereafter multivariate design values.

The concept of return period is widely used in infrastructure design practices to indicate the lifetime of a
structure, and consequently to derive design values. Considering X as the infrastructure load of interest and
being X independent from other loads (univariate case), there is a one-to-one relationship between the critical
design value, XDV , and return period T:

XDV = F−1(
1

T
) (2.12)

where:

T = 1

P (X > XDV )
= 1

1−P (X É XDV )
(2.13)

T is expressed in unit of time, usually years. Hence, P(X>XDV ) is the chance that the critical design value is
exceeded in the unit time, for example in one year, causing the failure of the infrastructure.

However, climatic variables, which act as loads on infrastructures, are often interdependent. Neglecting this
can lead to an over- or an under-estimation of infrastructure loads. For this reason, there is an increasing interest
in methods for deriving design values that accounts for dependence. In the following sections, the concept of
return period and design values in the multivariate case will be introduced and discussed.

2.4.1. Conditional return period
The concept of conditional return period is often used to define design values of two (or even more) infrastructure
loads which are interdependent. Given two loads X and Y and their joint cumulative distribution function Fx y (),
the conditional distribution function Fy |x () can be implemented to define the critical design value Y accounting
for the information available on the other variable X. The conditional return period is then defined as:

T = 1

(1−F y |x)
(2.14)

where x is the conditioning design variable of choice corresponding to a given univariate return period T and
y is the design value corresponding to the conditioning return period Ty |x .

It should be noted that this approach does not result in a real bivariate design event with a joint return period,
in the strict sense. An example on the conditional approach is discussed by Xu et al. in [73] for the bivariate and
trivariate setting.

2.4.2. Bivariate return period
Let us consider the two dependent loads X and Y introduced before and their joint cumulative distribution func-
tion Fx y (). As introduced in section 2.2.2, the joint probability Fx y can be expressed in terms of copula function:
Fx y =C (Fx ,Fy ), where Fx and Fy are the marginal distributions of the loads X and Y, respectively.

Following the definition of the univariate return period (equation 2.13), the bivariate return period can be
defined depending on the system’s (infrastructure) failure mode [65]:

Tand = 1

P{X > x,Y > y}
= 1

1−FX (x)−FY (y)+C
(
FX (x),FY (y)

) (2.15)

Tor = 1

P{X > xor Y > y}
= 1

1−C
(
FX (x),FY (y)

) (2.16)
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Tand , And-return period, considers hazardous the condition in which both variables exceed their design value
(failure in parallel) while Tor , Or-return period, considers hazardous the condition in which at least one of the
variables exceeds its design value (failure in series).

However, in a bivariate (and more in general multivariate) context, the one-to-one relationship between return
period and design value does not hold anymore. Fx y is indeed a surface, which means that there are infinite events,
i.e. pairs of (x,y), associated to the same probability (probability isolines or quantile curves), and so to the same
return period. Different approaches has been suggested to overcome this limitation [11], [28], [61] and [47].
However, this issue becomes even more difficult in dimensions higher than 2.

2.4.3. Multivariate return period
Salvadori et al. proposes in [64] the theoretical background to extend the bivariate quantile curves to a higher
dimensions. However, the multivariate version of a curve is a hyperplane. Solving the equations of a hyperplane
and backtracking the sets of design values associated with a certain risk level might become challenging and
computationally demanding. Thus, we suggest to predefine the design values based on the univariate case and
then, calculate their associated multivariate return period (or probability of exceedance) based on a risk scenario
that represents the system dynamics. These scenarios have been presented in the previous section, 2.4.2.

Following the definition of the bivariate return period (equation 2.13), the multivariate return period can be
defined depending on the system’s (infrastructure) failure mode [65]:

Tand = 1

P{F1(x1) ≥ 1/T1,F2(x2) ≥ 1/T2, ...,FN (xN ) ≥ 1/TN }
(2.17)

Tor = 1

P{F1(x1) ≥ 1/T1 or F2(x2) ≥ 1/T2 or ... or FN (xN ) ≥ 1/TN }
(2.18)

where {x1, x2, ..., xN } represent the N-design values, {T1,T2, ...,TN } the univariate return periods
and {F (X1),F (X2), ...,F (XN )} the marginal distributions associated to the N- random variables in the analysis.

In the same way as in the bivariate case, these risk scenarios should not be compared as they represent two
different system dynamics.



3
A vine-based methodology for infrastructure

design

The current chapter gives an answer to the main research question on "How can we use vine-copula models in
the design of infrastructure" from an academic perspective. The answer is in the form of a methodology. The
methodology consists of a sequence of steps that address in an integrated manner several parts of the engineering
design process. The steps are described individually within the sections of the chapter, with the exception of step
0. Step 0 is the input to the methodology and is not treated in this thesis. The input is a multivariate time series
that contains joint observations of all variables of interest.

3.0.1. Visualization and generic application of the vine-based methodology for infras-
tructure design

Before going into the details of each step, a generic example on the application of the vine-based methodology
is depicted in figure 3.1. This figure presents in a generic manner the main elements needed to define critical
design loads (i.e. design values) accounting for their interdependence. The process is summarized below.

1. The analysis starts with the collection of data. The data must be a good representation of the system that the
practitioner aims to model and it comes in the form of a multivariate time series. The variables describing
this system are part of the physical processes that trigger damage or failure of the structure. Depending on
the application, the data might need further processing.

2. When the data is ready, the practitioner might want to analyze the extremes. Normally, infrastructure is
designed to withstand extreme conditions. To find these, the practitioner should sample the extreme joint
observations from the multivariate data set to have a good representation of the multivariate extremes. In
parallel, a distribution is fitted to the dominant and concomitant variables in the extreme sample. This task
is depicted with a doted line on the bottom of figure 3.1.

3. The next step is to select a vine-copula to model the extreme sample. In this methodology, all existing
regular vine-copulas are fitted to the data. So the best regular vine-copula is selected according to a certain
goodness of fit measure.

4. The selected regular vine-copula is used to calculate probabilities of exceedance of extreme scenarios that
are of interest to the practitioner. To do so, the practitioner should sample from the regular vine and the
size of the resulting sample should be considerably larger than the size of the extreme sample. In addition,
the practitioner needs the results of the EVA to make the connection between univariate return period and
design values. This link is established via the univariate distributions of the variables. The practitioner
should note that these marginal distributions are fitted to the extreme sample and not to the initial time
series. Finally, the practitioner can calculate the required multivariate return period or probability of ex-
ceedance with the modeled joint observations. The multivariate return period gives information on the
overall risk.

15
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Within offshore and coastal engineering, the basic idea is to decompose the time series of the wave climate in
sea states. So one can consider each state independently. In engineering terms, this analysis is called metocean
study and the decomposing procedure is named wave splitting. In this thesis, these analyses are assumed to be
included in step 0. Here, we start from step 1 onward. Nevertheless, for the readers interest in wave splitting
theory and applications the following papers are recommended: [30], [74], [56] and [57].

3.1. STEP 1. Extreme Value Analysis
One of the goals of this step is to sample multivariate extreme observations from a certain multivariate time series.
But usually, the largest values (or extremes) achieved by the variables do not occur together in time. Sampling all
the extremes independently will probably result in a meteorological event never experienced. Furthermore, the
resulting sample of extreme observations would not be strictly representative of the concept of joint observations.
This would be consequence of sampling the extremes from different moments in time. This issue is solved by
introducing the concept of extreme event. By introducing the concept of extreme event, the practitioner can
impose the sample to be representative of a set of joint observations and thus, preserve the dependence behavior
in the extreme sample.

In literature there is no real consensus on how to define and sample extreme events from multivariate data. In
this methodology, we adopt the sampling approach presented in [75] (see section 2.1.2) to define extreme events
in the multivariate case. We thus perform POT on one of the variables that is rendered most relevant to the design
according to some criteria. We call this variable the dominant variable. The variables that are observed together
with the dominant variable, during an extreme event, we call the concomitants. Consequently, the resulting
extreme sample is composed of a set of joint observations that contain extreme values from the dominant variable
and the maximum values achieved by the concomitant variables during a time window equal to the pre-defined
extreme event. The concomitant values are sampled using the block maxima technique with a time-window equal
to the duration of an average extreme event. The theory on block maxima is presented in section 2.1).

The next task is to fit a distribution to the dominant and concomitant variables in the extreme sample. The
reader should note that the marginal distribution of the concomitant variable might not comply with the asymp-
totic properties of extreme observations.

3.2. STEP 2. Bivariate dependence modelling
The goal of this step is to gain insight into the physical behavior of the system. Strictly, performing this step is
not essential for deriving multivariate design values. That is why it is not depicted in figure 3.1. By performing
this step one can ensure that the statistical results are in accordance with what is expected from a physical point
of view. If the results of step 2 are not satisfactory, the practitioner can go back to step 0 and start the analysis
again.

The bivariate dependence is studied in two manners:

1. Analyzing correlation coefficients. All pairwise Kendall’s τ estimates are computed from the extreme
sample. These estimates give an indication on the correlation strength between each pair. In practice,
the correlation coefficient is a measure that quantifies the influence that the underlying physical process
exert on each other. For instance, wind generated waves and wind speed should be strongly and positively
correlated, and hence, should achieve a large τ estimate (closer to 1 than to 0). On the contrary, swell waves
should have a weak dependence with wind speed, and thus, should achieve a low Kendall’s τ estimate
(closer to 0 than to ±1). By comparing the statistical results and what would be expected from a physical
perspective, the practitioner can gain insight into the quality of the data. If the results are not satisfactory,
the practitioner can go back to step 0 and re-do the analysis to obtain better results.

2. Analyzing the dependency structure with a bivariate distribution. In here, copulas are selected to model
dependency structures for all possible pairs of variables. By looking at the copula’s density structure, the
practitioner can gain insight into the bivariate behavior of variables. For example, one can analyze tail
dependencies. Again, if the practitioner is not satisfied with the statistical results, he/she can go back to
step 0 and re-do the analysis to obtain better results.
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3.3. STEP 3. Multivariate dependence modelling
The goal of step 3 is to choose a regular vine-copula to model the joint behavior between the variables of interest.
In this methodology, all existing regular vine-copulas are fitted to the data. This might become computation-
ally demanding in analyses with more than 6 variables. This issue aims to be solved with the novel algorithm
presented in the following chapter (refer to 1).

The software R is recommended for its extensive library VineCopula [68]. R has the advantage of being an
open source, which makes the use of this methodology available to everyone with access to a computer. The code
used to perform the analyses is presented in Appendix C. Nevertheless, one must have, know, or be provided with
the array representation of all regular vines (i.e. their matrix representation) to perform such analyses. Moreover,
these matrices must be in the same format as the one software R requires, which details are explained in section
2.3.4. These matrices were all first calculated in [3].

The fitting of the regular vine-copula to the data is done with the command RVineCopSelect(). The AIC value
is provided as output of the aforementioned command. This measure of goodness fit can be used to determine the
best regular vine which would correspond to model with the lowest AIC. Other goodness of fit tests or selection
criteria might also be appropriate. It is important to note that despite the choice of goodness of fit, the true model
for the data would probably remain unknown. Thus, the choice of best fit is up to the user.

The selected regular vine must be validated. A simple but effective validation test is to compare a sample
drawn from the theoretical model with the original extreme sample. This can be done qualitatively using the
command pairs(). Another test can be performed by comparing the sum of the pseudo-observation from the
theoretical model and the original extreme sample. The sum of the pseudo-observations gives an indication on
the density and how spread the observations are. Finally, the practitioner can compare the correlation coefficients
computed from modeled observations with the ones computed from the original observations.

3.4. STEP 4. Derivation of multivariate design values
This step is meant to be the link between the pure statistical analysis and the engineering design process, and
it is one of the main contributions of this thesis. The objective of this step is to derive the multivariate design
values using the results in step 1 (Extreme Value Analysis) and step 3 (multivariate dependence modelling with
vine-copulas).

One-to-one relationship between return period (risk level) and design value as it is established in the univariate
case is not valid in higher dimensions. It is quite challenging to fix a desired level of risk (or return period) in
the multivariate case and back track the sets of design variables associated to that level of risk. This is due
to the fact that these sets of design values that result in the exceedance of the risk level form a hyperplane in
the multivariate setting. So instead of working with this hyperplane, we suggest to impose the design values
based on their univariate return periods and calculate their corresponding multivariate return period (Tand or
Tor ) according to a certain risk scenario. The choice of which scenario to use should be done a priori, based
on physical knowledge of the system analyzed. The probability of exceedance associated with the multivariate
return period is calculated with the vine-copula. A simplified visualization of the proposed approach is depicted
in figure 3.2. The engineer can adjust the design values to fulfill the requirements of an overall risk profile
(depicted with a dashed line in figure 3.2). The information on the risk is given by the multivariate return period,
or corresponding probability of exceedance.

Figure 3.2: Visualization of the main steps to derive design values and determine their multivariate return period. Source: Author
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The design values are determined with the univariate distributions (F (X )) resulting from step 1. This is
depicted in figure 3.2. Given a risk level (p), the practitioner can calculate the design values as follows:

XDV = F−1(p)
being XDV the design value for the random variable X that corresponds to the risk level p (3.1)

The reader should note that F (X ) might not be an extreme distribution if X is one of the concomitant variables.
Hence, the risk level (p) in equation 3.1 does not strictly represent a return period (T ), as it is understood in
engineering practices.

The multivariate return period (Tand or Tor ) in equations 2.17 and 2.18 is associated to an exceedance prob-
ability of a certain extreme event. The extreme event is the response of the combined action of the design values
and it is critical to the structure of interest. The probability of a set of variables exceeding a certain thresholds is
usually calculated with the cumulative distribution function (cdf). When using vines, the cdf can be calculated by
integrating the density of the vine. The formula of the density is presented in equation 2.8. Solving this integral
analytically might become too challenging and not practical. Solving the integral numerically, for analysis with
more than 4 or 5 variables, might become computationally demanding.

Instead of solving the integral to calculate the joint probabilities, these are calculated by stochastic simulation.
A large-enough sample formed by M-sets of joint pseudo-observations is drawn from the selected regular vine
(see figure 3.1). The AND-exceedance probability results from counting how many of these sets exceed all their
individual risk levels and dividing that number by "M", the total amount of sets. The OR-exceedance probability
results from counting how many of these sets exceed at least one of their individual risk levels and dividing that
number by "M", the total amount of sets. The individual risk levels, p1, p2, ..., pN , represent the p in equation
3.1.





4
Exploratory work on goodness of fit for

vine-copula

The content of this chapter is more statistically oriented. In this chapter, we explore the possibility to define
goodness of fit test for vine-copula based on the concept of tree-equivalent classes (TEC, see section 2.3.2). The
reader should note that the objective of this chapter is to provide some indications on how the concept of TEC
could be used to define goodness of fit test for vine-copula in further research. Consequently, we focus on model
selection strategies based on graphical and statistical properties of the vines.

Before diving into the world of vine-copulas and their graphical and statistical properties, a small story has
been prepared to put the work in this chapter into context. The story in figure 4.1 is specially recommended for
readers whose background is not statistics (or mathematics) but still remain curious about the innovative work
presented in this chapter.

The main motivation to investigate model selection strategies for vines is the considerably large computa-
tional time needed to fit all regular vines in more than 6 nodes to the data. For example, the computational time
needed for a regular laptop to fit all regular vines in 7 nodes (i.e. 2580480) would be around 4 months. This
happens because the number of regular vine structures increases very fast with the number of variables or nodes
(see equation 2.7).

In this thesis, a novel algorithm is developed to facilitate the implementation of vines in higher dimensions
(vines with more than 6 nodes). This algorithm significantly reduces the computational effort to select a regular
vine by allowing the user to test only a subgroup of vines in n-nodes constructed on specific characteristics of
the vines in (n −1)-nodes. However, the choice of the subset is not straightforward.

At the beginning of this chapter, some literature on the state-of-the-art selection strategies for vine-copula is
discussed. Following from this work, the algorithm is proposed in the following section. The algorithm is based
on a hypothesis (see below) that was discussed in [53]. The approach on how to test the hypothesis is explained
next within the chapter. And finally, the results are presented and validated.

4.1. Literature study on selection strategies
The number of regular vines is very large and it increases very fast with the number of nodes (see 2.3.3). Hence,
the use of efficient selection strategies has become necessary for all components of a vine specification. The se-
lection strategies are usually presented in the form of sequential algorithms. Sequential selection procedures were
developed to mimic the way in which vine models are constructed: using a set of sequential linked trees. These
algorithms select a vine-copula model based on some pre-defined criteria. Hence, these are computationally fast
because they only fit a subset of vines or even only one vine model that fulfills the criteria.

Two different sequential model selection algorithms for regular vine-copulas are popular in literature: (1)
the algorithm by Dissmann et al. in [23] and (2) the algorithm by Kurowicka in [38]. The selection procedure
developed in [23] is a top down strategy. Since higher trees capture conditional dependencies, the order of
the nodes in the first tree is such so that the strongest pairwise dependencies are well captured. The algorithm

21
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Figure 4.1: A little story that aims to explain in a simple but creative way the work done in this chapter. Source: Author.

presented in [23] calculates for the first tree all pairwise Kendall’s τ estimates. Their absolute value is used as
edge weight to find a tree that maximizes the sum of edge weights among all possible trees. This is accomplished
by applying a maximal spanning tree (MST) algorithm. An example of such is presented in [16]. In the next step,
copula families and their parameters are selected for the edges of the top tree by using the smallest AIC. With
this information, all pairwise Kendall’s τ estimates are computed for edges (in the second tree) that maintain
the proximity condition necessary for a regular vine structure. And again, by applying a MST algorithm the
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second tree is defined. The corresponding copula families and parameters are chosen again by the smallest AIC
approach. These steps are repeated to build the higher trees. According to [18], this approach uses the strongest
pairwise conditional dependencies first to specify the complete regular vine.

In contrast, the selection procedure in [38] uses a bottom up approach. It selects the weakest conditional
dependencies for the highest trees first. Instead of Kendall’s τ estimates, here partial correlations as dependency
measure are used. The idea is to select Tree n −1 first and then selecting Trees n − i for i ≥ 2 sequentially and n
as the number of variables. Furthermore, if there are several choices for an edge in Tree i , the one with the lowest
absolute partial correlation is chosen. This strategy chooses only the tree structure of the vine distribution. The
complete algorithm is presented in [38].

In this thesis, the focus is on top-down selection strategies. A basic algorithm that underlies the top-down
strategies for regular vines is presented in [18]. The backbone of such algorithm is the availability of appropriate
weights that represent a certain characteristic that is important for the user when selecting the regular vine struc-
ture. However, the authors do not expect in [18] to identify the best or true regular vine tree structure in general,
but rather a reasonable candidate. Mainly because once an edge is selected for a tree, the algorithm does not
allow for it to be dropped in a further step.

The choice of weights is usually up to the user. Czado et al. discuss in [18] four different choices. These
represent different traits of the bivariate conditional distributions that build up the regular vine distribution. The
choices are summarized below:

1. Absolute Kendall’s τ. The weights chosen in this approach are a measure of dependence. By choosing
such weights, the user aims to capture the strongest pairwise dependencies in the data. Kendall’s τ is a
measure of dependence that captures non linear dependencies and is invariant to monotone transformations
of the margins (see section 2.2.1). Because the aim is to select the strongest pairwise dependencies, a tree
is defined in such a way that maximizes the sum of the absolute value of τ among all pairs that form the
tree.

2. Akaike Information Criterion. The weights in here choose edges where the pseudo data are fitted well by
the class of pair copula families considered. In Tree 1, the weights represent the lowest AIC values resulted
from the fitting of each pair of variables to the chosen copula families and their parameters. In this case,
the tree minimizes the sum of AIC. A similar interpretation can be made for higher trees.

3. Copula goodness of fit p-value. This approach is very similar to the Akaike Information Criterion. It was
proposed in [18] to cope with the drawbacks of AIC which mainly, do not allow a quantitative assessment
of goodness-of-fit. According to [18], the performance of this method relies on the selection of a pair
copula term for the corresponding pair of pseudo-data values.

4. Copula goodness of fit p-value times absolute Kendall’s τ values. The weights in this approach represent
a combination of dependency strength and goodness of fit measure. They are calculated with the product
between the Absolute Kendall’s τ and the Copula goodness of fit p-value. According to the authors in
[18], by applying these weights the effect of parameter estimation error is mitigated while still allowing
for copula families that fit the data best.

The VineCopula package (in R) provides a function to select a reasonable candidate for the user’s data. This
function is called: RVineStructureSelect(). This function contains in fact the selection strategy that is discussed
in the second paragraph of the current section. This allows the user to choose one of the four weight types
listed above to select the tree structure and another selection criteria (or goodness of fit) to select pair-copula
specifications (i.e. family type and parameters) for the edges of each tree.

These sequential algorithms present reasonable candidates. However, one is never completely sure which
model is the true best model for the data without fitting all possible models.

In parallel, Morales-Nápoles briefly discussed another potential selection strategy in [49]. This would also
use the graphical and statistical properties of regular vines, and more specifically, the use of the concept of TEC
to generate a goodness of fit.
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4.2. A novel algorithm for vines selection
Following the work done by Morales-Nápoles in [49], we explore the validity of the following hypothesis to
define a model selection strategy in the form of an algorithm. The algorithm aims to facilitate the implementation
of vines in higher dimensions (vines with more than 6 nodes).

• The best fit for a ’n+1’ variables regular vine would be an extension of the best fit of ’n’ variables regular
vine

The concept of TEC is used to extend the vine’s tree structure in n nodes to n +1 nodes. It is assumed that
the best regular vine in n +1 belongs to a TEC that is an extension of the TEC to which the best regular vine
in n nodes belongs to. Thus, the (n −1) unlabeled trees of the best regular vine in n nodes are the same as the
last (n −1) unlabeled trees of the best regular vine in n +1 nodes. The best fit is selected according to the AIC
goodness of fit measure.

The AIC is a popular goodness of fit measure and is dependent on the log-likelihood function estimate of
interest (see equation 2.11). Similarly, the log-likelihood function is computed with the density of the vine-
copula. Theorem 2 in section 2.3.3 presents the density of a regular vine-copula. The reader may observe that the
density of the vine-copula is a product of the bivariate (conditional) copulas attached to the edges of each tree in
the regular vine. For this reason, it is hypothesized that the TEC (or perhaps some other graphical property of the
vine) will play a role when assessing goodness of fit when a measure similar to AIC. Intuitively, one may think
that the different copulas attached to the edges of regular-vines in the same tree-equivalent class will be ‘closer’
in some sense than those attached to regular vines in different TEC. The purpose of section 4.2.1 is to initiate
exploratory work regarding this hypothesis.

When extending the analysis from n-variables to (n+1)-variables, one is actually adding a tree to the regular
vine. This tree has one more node than the previous first tree (T1) and hence, this newly added tree must become
the new T1 of the regular vine in (n +1)-nodes. Extending the TEC might not be enough because the number
of labeled trees also increases very fast with the number of nodes (see section 2.3.3). Consequently, testing a
subgroup of regular vines (belonging to the extended TEC) without any information on the added tree (T1) is
still computationally demanding. Subsequently, we will assume the first labeled tree (T1) of the potential best
regular vine in n +1 nodes is an extension of T1 of the best regular vine in n nodes.

The extension procedures are explored separately in sections 4.2.1 and 4.2.3.

4.2.1. Extension of the TEC
In here, we explore whether the TEC to which the best regular vine in n+1 belongs to is an extension of the TEC
to which the best regular vine in n nodes belongs to. Due to computational constraints, we can only test whether
the TEC of the best fit in 6 nodes is an extension of the TEC of the best fits in 4 and 5 nodes. To do so, all the
regular vines that exist in 4, 5 and 6 nodes are fitted to a data set and classified by TEC. This data set is the one
used in chapter 5. For this task, we assume that the best fit within all the regular vine class is the regular vine
with the lowest AIC.

The AIC values are computed for each regular vine in 4, 5 and 6 nodes and presented in figures: 4.2 for 4
nodes, 4.3 for 5 nodes and 4.4 for 6 nodes. The notation on the tree-equivalent classes (TEC) remains the same
as in [49]. With these graphs, one can determine the TEC to which the best regular vine belongs to and also, how
each TEC generally performs. The results in figures 4.2, 4.3 and 4.4 suggest that none of the TEC outperforms
the rest. The average performance is actually very similar for all TEC in 4, 5 and 6 nodes. The best 10 fits in
4, 5, and 6 nodes are presented in table 4.1. The results in table 4.1 suggest that more than one TEC contain
reasonable model candidates for our data.

The best fit in 6 nodes belongs to the TEC V14 (see table 4.1). According to [49], V14 can be decomposed
as a sum of the trees T13, T7 and T5. The best fit in 5 nodes belongs to the TEC V8 (see table 4.1). According
to [49], V8 can be decomposed as a sum of the trees T7 and T5. Finally, the best fit in 4 nodes belongs to the
TEC V5 (see table 4.1). According to [49], V5 can be decomposed as the tree T5. These results suggest the best
regular vine in 6 nodes belongs to a TEC that is an extension of the TEC to which the best regular vine in 5 nodes
belongs to. And the last, is an extension of the TEC to which the best regular vine in 4 nodes belongs to.
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Figure 4.2: Box plot with the AIC values that result from the fitting of each regular vine in 4 nodes, categorized by TEC

Figure 4.3: Box plot with the AIC values that result from the fitting of each regular vine in 5 nodes, categorized by TEC

Figure 4.4: Box plot with the AIC values that result from the fitting of each regular vine in 6 nodes, categorized by TEC
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General Ranking:
10 BEST REGULAR VINES #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

TEC to which 10 best regular
vines in 4 nodes belong to V5 V4 V4 V4 V5 V5 V5 V5 V4 V4

TEC to which 10 best regular
vines in 5 nodes belong to V8 V7 V7 V10 V10 V7 V8 V10 V8 V8

TEC to which 10 best regular
vines in 6 nodes belong to V14 V27 V26 V20 V24 V14 V27 V19 V25 V17

Table 4.1: The table presents an overview of the best 10 fits (regular vines) in 4, 5 and 6 nodes. For each position within the general ranking
the vine-copula’s TEC is presented.

4.2.2. Ordering approach
The ordering of the variables in the data set (column wise) plays an important role on the extension concept. The
most dominant variables (i.e with the strongest pairwise correlations) should be placed in the first columns of the
data set and should be the first to be analyzed and fitted to all regular vines. The less dependent variables (i.e
with the weakest pairwise correlations) should be included following a certain order and should be added one at
a time when extending the analysis to higher dimensions.

The order is established using a similar approach to the Kendall’s τ weight method in section 4.1. For the
6-variate data in chapter 5, we calculate all pairwise Kendall’s τ estimates. Each variable has 5 associated τ

with the 5 remaining variables that form the data set. By summing in absolute value the 5 τ values for the each
variable, the Sum of absolute taus (see table 4.2) is obtained. The 6 resulting values are ordered in a decreasing
manner to obtain the actual order of the variables in the fitting analyses.

Following the order specified in table 4.3, the fitting of the vines was performed in 4 dimensions with the
first 4 (most dependent) variables (see notation in section 5.2.3): Tmw w , W s, Tmt s and H st s . For the analysis
in 5 dimensions the next (most dependent) variable was added: H sw w and finally, in 6 dimensions, the least
dependent variable, the W L, was added. This is what it is meant by adding the variables by following a certain
order.

Kendall’s tau Hs_ww WL Ws Hs_ts Tm_ww Tm_ts

tau1 -0.12 -0.12 0.13 0.05 0.09 0.06
tau2 0.13 0.06 0.06 0.04 0.05 0.02
tau3 0.05 0.04 0.2 0.2 0.62 0.33
tau4 0.09 0.05 0.62 0.25 0.25 0.43
tau5 0.06 0.02 0.33 0.43 0.4 0.4

Absolute sum 0.45 0.29 1.34 0.97 1.41 1.24

Table 4.2: Results of the application of the ordering procedure to the variables in the data. The last row of the table contains the Sum of
absolute taus. t au1 represents the correlation between the variable in question and the first variable (H sw w , in the second column). For
H sw w , t au1 represents the correlation between variable 2 (W L) and itself, H sw w . Same logic is applied to the remaining taus. Note that
the correlations between equal variables (e.g. H sw w and H sw w ) are not presented in this table.

Order Variables
1st Tm_ww
2nd Ws
3rd Tm_ts
4th Hs_ts
5th Hs_ww
6th WL

Table 4.3: Table presenting the final order of the variables in the columns of the data set (i.e. the first variable is placed in the first column
etc.).
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4.2.3. Extension of the first tree
The second part of the extension procedure refers to the extension of the first labeled tree. A tree is labeled when
variables and copulas are associated to the nodes and edges of the vine, respectively. To explore the second part
of the extension, we study whether the labeled trees of the best vine in 6 nodes are an extension of the labeled
trees of the best vines in 4 and 5 nodes. If that were true, this concept could be used to extend T1 of the best vine
in n-nodes to find T1 of the potential best fit in a higher dimension. For example, let’s assume that a hypothetical
Variable 7 has the strongest correlation with a hypothetical Variable 3. Then, one could extend T1 of the best
regular vine in 6 nodes by drawing an edge from Variable 3 to Variable 7. The resulting tree would become T1
of the potential best fit in 7 nodes. This example is depicted in figure 4.5.

Figure 4.5: Example on the extension of the first labeled tree (T1)

The regular vines in 4, 5 and 6 nodes achieving the lowest AIC were selected in section 4.2.1 as the best
models for the data. These vines are depicted in figure 4.6. In this figure, the reader may notice the application
of the ordering procedure in table 4.3: the regular vine in 4 nodes contains the 4 most dominant variables, the
regular vine in 5 nodes contains these variables plus the following most dominant and finally, the regular vine in
6 nodes contains all the variables and includes the least dominant variable.

Figure 4.6: Best fits of all regular vines in 4, 5 and 6 nodes for our data according to overall AIC

The tree structures from the best vines in 4, 5 and 6 nodes that conserve in all three vines are depicted in
continuous red circles in figure 4.6. The results suggest that the best fits according to the AIC do not preserve
the same labeled trees when extending the analysis to higher dimensions. Nevertheless, the ordering procedure
in section 4.2.2 does not take into account the goodness of fit of all the pairs of variables to the bivariate copulas.
This might be a plausible reason explaining why these results do not support the presented hypothesis.
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Instead of choosing the best fit as the regular vine with the lowest AIC, we choose the regular vine with
the strongest correlations in its trees as the best fit. This choice is more in line with the ordering procedure
established in section 4.2.2. In figure 4.7, the regular vines in 4, 5 and 6 nodes with the strongest correlations in
its trees are presented. These regular vines achieve an average AIC when compared to the rest of regular vines.
One can see in figure 4.7 that the best vine in 6 nodes is an extension of the labeled trees of the best regular vines
in 4 and 5 nodes. In this case, the hypothesis presented at the beginning of this section seems to be valid.

Figure 4.7: Regular vines in 4, 5 and 6 nodes fitted to the data with the strongest correlations in its trees.

The best vine according to the AIC selection criterion differs from the best fit according to strongest cor-
relations’ selection criterion. In an engineering application (such as the one in chapter 5), the most important
characteristics to model probably are the correlations between the variables of interest. Thus, the best regular vine
should be the one that simulates data that is correlated as close to the original data as possible. Subsequently, it
is of our interest to determine which of the two regular vines represents best the original correlation coefficients.
10 million samples are simulated from (1) the regular vine in 6 nodes in figure 4.6 and (2) the regular vine in 6
nodes in figure 4.7. The Kendall’s τ estimates are calculated for both samples. The absolute error is computed
by subtracting the resulting τ’s to the ’originally observed’ correlation coefficients. The results are depicted in
figure 4.8.

The absolute error achieved by the regular vine with lowest AIC is overall the largest. Hence, an engineer
might feel more comfortable selecting the regular vines in figure 4.7 as the bests fits rather than the ones with
lowest AIC. On the contrary, an statistician might feel more comfortable selecting the regular vine with the lowest
AIC. A discussion on what the "best" choice from these two possibilities is, is out of the scope of this thesis.

Figure 4.8: Comparison of absolute errors in the prediction of Kendall’s τ between regular vine with the lowest AIC of all regular vines and
the regular vineselected with the strongest correlations in its tree structures.
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4.2.4. Final product
The exploratory work done in the current chapter led to the development of a (sequential) top-down algorithm
(presented in 1). The backbone of the algorithm is the hypothesis tested in this chapter: The best fit for a ’n +1’
variables regular vine would be an extension of the best fit for a ’n’ variables regular vine.

The algorithm makes use of the two parts of the extension procedure explained in sections 4.2.1 and 4.2.3. It
allows the user to test a subgroup of vines with certainty that a good candidate (regular vine structure) would be
among them. Due to the foundations of this algorithm, the selected best fit would probable not have the lowest
AIC of all the regular vines class. And probably, the selected best fit would not be the model representing best
the correlation coefficients. What the algorithm provides as best model (within all the regular vine class) should
be a balance between these two aforementioned criteria. This is elaborated in more detail in section 4.3.

The reader should note that fitting all regular vines with less than 7 nodes to a data set is computationally
feasible. Hence, the algorithm is thought for analysis with more than 6 variables.

Data: Data set of N variales with dimension n, i.e. Md
Result: Regular vine-copula specification
initialization
begin

1: Compute the correlation matrix (“C”) for Md
2: Sum in absolute value all non-diagonal elements in “C(:,i)”, for i=1,...,N
3: Order the N resulting values from 2: in a decreasing manner. Keep the old column indices, i
4: Re-order the columns in Md according to the resulting order in 3:
5: Fit all regular vines in 6 nodes to Md(:,1:6)
6: Determine the best fit, RV , according to AIC goodness of fit test
for N= 6:N do

if N=6 then
a.1: Determine the TEC to which RV belongs to and set it to be VN

a.2: Take the unlabeled tree-structure in T1 from RV and label it by selecting the
combination of variables that maximizes the absolute sum of correlation coefficients in all
edges of the pre-defined tree structure

else
b: Decompose VN in its tree sequence, e.g. VN = Ta + Tb + Tc (...)
c: Extend T1 in RV with node N to create a new labeled tree, T 1N :
Link node N to node j, where node j represents the variable to which variable N has the
strongest correlation with

d: Determine the TEC to which the following set of trees belong to: T 1N and the tree
sequence resulting in b:

e: Rewrite VN with the TEC resulting from d:
f: Fit a subgroup of regular vines in N nodes that have their first tree equal to T 1N and
belong to the VN

g: Determine the best fit from the results in f: according to AIC goodness of fit test
h: Set RV to be the output in g:

end
end
Print(RV )

end
Algorithm 1: Sequential method to select a regular vine model based on the concept of Tree-equivalent
classes (TEC)
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4.3. Validation test

A mathematical validation of the hypothesis is out of the scope of this thesis. Nevertheless, we propose a test to
validate the algorithm 1 presented in section 4.2.4 for our data set. The validation test proposed in here has two
parts:

1. Use the algorithm to test a subgroup of regular vines in 6 nodes and to select the potential best fit

2. Compare the performance of the selected regular vine in 1) with the performance of the regular vine with
lowest AIC (figure 4.6) and the performance of the regular vine with the strongest correlations in its tree-
structures (figure 4.7)

The regular vine in 6 nodes selected using the novel algorithm belongs to the TEC V17 and is depicted in
figure 4.9. The TEC V17 is an extension of the TEC V8 and V5. These are the TEC to which the regular vines in
5 and 4 nodes respectively with the lowest AIC belong to. The order of the nodes in the first tree of the selected
regular vine maximizes the absolute sum of the correlation coefficients in all edges of T1. The values of these
correlation coefficients are depicted in figure 4.9. The algorithm selected a subgroup of 36 regular vines that
belong to V17 and comply with the aforementioned criteria in their first tree. Their AIC’s are plotted in figure
4.10.

Figure 4.9: Regular vine selected with the developed algorithm for the data set used in chapter 5

The performance of the three regular vines is compared via their AIC values and the sum of the absolute
difference between the modeled and original correlation coefficients (for all pairs of variables). The sum of
absolute differences gives an indication on how well the dependence structures are represented in the model.
These values are presented in table 4.4 for the three regular vines. The absolute difference between simulated
and original correlation coefficients is calculated for each pair of variables and the resulting values are depicted in
figure 4.11 for the three regular vines. The model achieving the lowest value for the sum of absolute differences
predicts the correlation coefficients with the highest accuracy of the three. And the model achieving the lowest
AIC is in theory, the model that "looses" the least information from the data. A discussion on what the "best"
choice from these three possibilities is, is out of the scope of this thesis.
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Figure 4.10: Box plot containing all the AIC values that results from the fitting of the chosen subgroup of regular vines to our data

AIC
Sum of absolute
differences of all

correlation coefficients

Regular vine with lowest AIC -290 0.3787
Regular vine with strongest

correlations in its tree structures -255 0.2612

Regular vine selected using
novel algortihm -274 0.3154

Table 4.4: Table presenting the performance of each regular vine according to the AIC goodness of fit and sum of absolute differences of all
pairs’s correlation coefficients.

Figure 4.11: Comparison of absolute differences in the prediction of Kendall’s τ for regular vine with the lowest AIC (lowest AIC), regular
vine with the strongest correlations in its trees (Absolute tau) and regular vine selected by the novel algorithm (Developed algorithm).

In short, the algorithm presented in this chapter seems to select a reasonably good candidate to model the
6-variate data, constructed on specific characteristics of the regular vine in 5 nodes that achieves the lowest AIC.
Despite the positive results, the regular vine in 6 nodes that represents best the correlation coefficients pf the
design variables is chosen in the following chapter as best fit (see section 5.6). The results presented in this
chapter are further discussed in chapter 6 and some conclusions are drawn in chapter 7.





5
Application: a case study in coastal

engineering

The current chapter gives an answer to the main research question on "How can we use vine-copula models in the
design of infrastructure" from a practical perspective. In here, the set of methods and techniques that compose
the vine-based methodology for infrastructure design (vine-based methodology, hereinafter) are applied to a case
study. This chapter aims to bring the work done in this thesis closer to the engineering community’s interests.

To show the potential of this methodology, a hypothetical engineering application was presented: the design
of a breakwater at the entrance of Galveston Bay, Texas. It is important to point out that the application is
meant to be illustrative and it relies on arbitrary design assumptions. By applying the methodology in a potential
day-to-day project, we aim to highlight the advantages that this methodology provides when compared to more
traditional methods. Not only advantages that have the potential to make the design more economical, but also
advantages that provide the engineer with more information on the risk of the overall design. The last point gives
the engineer the opportunity to create the optimal design for the situation.

5.0.1. Summary of the vine-based methodology for infrastructure design
Before diving into the application, a short summary of the vine-based methodology is presented below. The main
steps and structure of the developed methodology are depicted in figure 5.1.

1. STEP 1: Extreme Value Analysis. Normally, infrastructure is designed to withstand extreme conditions.
To find these, the practitioner should perform a Peak Over Threshold (POT) on the dominant variable
that is assumed most relevant to the design according to some criteria. The variables that are observed
together with the dominant variable during an extreme event, the concomitants, are sampled using block
maxima technique. These sampling procedures lead to the so-called extreme sample. The next task is to fit
a distribution to the dominant and concomitant variables in the extreme sample.

2. STEP 2: Bivariate dependence modelling. The goal of this step is to gain insight into the physical behavior
of the system. By performing this step one can ensure that the statistical results are in accordance with
what is expected from a physical point of view. The bivariate dependence is studied in two manners: (1) by
analyzing correlation coefficients, and (2) by analyzing the dependency structure with bivariate copulas.

3. STEP 3: Multivariate dependence modelling. The goal of step 3 is to choose a regular vine-copula to
model the joint behavior between the design variables.

4. STEP 4: Derivation of Multivariate design values. This step is meant to be the link between the pure
statistical analysis and the engineering design process. The objective of this step is to derive the design
values using the results in steps 1 and 3. The design variables are imposed based on their univariate
return periods and their corresponding multivariate return period or associated probability of exceedance
are calculated with the vine-copula selected in step 3. To do so, one needs to select a risk scenario that
represents the system dynamics.

33
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Figure 5.1: Main steps comprising the vine-based methodology. Source: Author

5.1. Case study

Two locations were of interest as case study in this research: (1) Tabasco, México, and (2) Texas, the US. The
initial proposal was to perform the multivariate analysis in Tabasco’s coastal waters and the Grijalva’s river.
However, the lack of available data seemed to make it difficult to fulfill some of the research objectives. There-
fore, the preferred location is (2) in the area around the Galveston Bay, which is connected to the Gulf of Mexico.
Galveston Bay (in figure 5.2) is the second largest estuary in the Gulf of Mexico. It has a surface area of 1600
km2, is 50 km long, and is 27 km wide. The bathymetry is relatively flat with a mean depth of 3 m, except in the
northern entrance (Houston Ship Channel), where a 12 m deep channel is located [24]. The bay has an intertidal
range of 0.5 m. The connection to the Gulf of Mexico is via two inlets (southern entrance and northern entrance)
and has two major freshwater sources, the San Jacinto and Trinity rivers.

The data that was available for each of the variables of interest is presented in tables B.1 and B.2 in Appendix
B, for Tabasco and Texas respectively.

5.1.1. Description of the engineering project

At the area of interest (illustrated in figure 5.3), a considerably long breakwater is located along each side of
the shipping channel that provides an access to the Galveston Bay. Supposedly, the breakwater was constructed
several years ago and the respective client requested a re-design and possible maintenance of both breakwaters.
In order to fulfill the client’s requests, the design conditions at the breakwaters location must be determined.

According to [17], the location and characteristics of the Galveston Bay make it prone to the co-occurrence
of riverine and coastal floods. The area is exposed to intense rainfall events from local convective storms, large-
scale frontal systems, and torrential rainfall brought by tropical cyclones. These meteorological events also have
an effect on the sea-variables. Meaning, the coast of interest is exposed to considerably high energetic sea states
[63]. The breakwaters are exposed to extreme water levels triggered by the compound effect of riverine and sea
variables. Thus, the design conditions must be of multivariate nature and hence, a multivariate frequency analysis
is required.

Usually, the design values are thought for specific design criteria. In this application, it is assumed that
large wave heights that occur together with large water levels are critical to the stability of the breakwater and
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Figure 5.2: Galveston bay, area of interest within Texas and the Gulf of México. Encircled in red, the location of the case study. Source: [63]

Figure 5.3: This figure illustrates the engineering project accounted for in section 5.1.1. It also presents the distances between the two points
of data. Source: Google Earth

to the maximum allowed overtopping discharge. Thus, we render the significant wave height of wind waves
the most relevant to the design. It is also in our interest to determine what wind speeds occur simultaneously
with combinations of large waves and water levels. At the end of the current chapter, we introduce a simplified
application on the design of the breakwater’s crest level to illustrate some of the advantages of the vine-based
methodology.

5.2. Data collection
5.2.1. Background
Characterization of wave climate at a local scale for offshore and coastal design requires reliable data which is
usually not available. Depending on the available budget and richness of wave data in the location, a range of
approaches exist for obtaining such data. These include long term and/or short term deployment of wave buoys
and subsequent hindcasting to give a sufficiently long record of the local wave climate. Most of the times, wave
data must be reconstructed from different sources of information. Generally, one could classify data in base of
the source and perceive two groups:

1. Measurements

• Insitu techniques: the most common in situ instruments are wave buoys and wave poles [31]. Other
in situ instruments are inverted echo-sounders, pressure transducers and current meters. These in-
struments require to be mounted on some structure at the sea location.



36 5. Application: a case study in coastal engineering

• Remote-sensing techniques: The most common remote-sensing technique is radar [31], which is
based on actively irradiating the sea surface with electro-magnetic energy and detecting the corre-
sponding reflection.

2. Numerical modeled data

• Numerical models provide data that is continuous in space and time. Normally, complete information
(i.e. wave spectrum) is provided, but often, results in underestimation of wave conditions in enclosed
basins [9].

Nowadays, there are several global (atmospheric, among others) reanalysis databases. One of them is ERA5
[14], which is being developed through the Copernicus Climate Change Service (C3S). The ERA5 database is
freely available for scientific purposes and includes a wide range of variables. ERA5 data is available through
the Climate Data Store (CDS). However some ERA5 datasets do not appear in CDS but are accessible through
CDS API (refer to [14]). For example, the ERA5 wave spectra data. The entire data base is separated in ’levels’.
The ’level’ of interest for this thesis is "ERA5 hourly data on single levels from 1979 to present". The atmo-
spheric reanalysis has a spatial coverage of 0.25°x0.25°, the reanalysis of ocean waves has double the resolution,
0.5°x0.5°. These resolutions represent approximately 27 and 55 kilometers, respectively.

Another public source of simulated data is the eartH2Observe Water Cycle Integrator (WCI) [1]. The WCI
portal is an open source project built by Plymouth Marine Laboratory’s (PML) Remote Sensing Group. The portal
builds on the development of several other EU funded projects, past and present, that PML have involvement in.
The WCI data set can be used to obtain river discharge data, with CSIRO model. Unfortunately, the temporal
resolution of the measurements (i.e. monthly) is coarser than the rest of the sources and hence, this source is not
used in this thesis. For more information, the reader is referred to [1].

On another note, measurements for atmospheric and oceanic variables are being collected world wide by
the National Oceanic and Atmospheric Administration (NOAA). This source provides quasi-2D wave spectrum,
wind data, atmospheric data and water levels. Some of these have been used in this thesis (refer to section 5.2.2).

5.2.2. Data sources
Hourly water levels were downloaded from the National Oceanic and Atmospheric Administration (NOAA) web-
site (https://tidesandcurrents.noaa.gov) for station IDs 8771450 (Galveston Pier, GP hereinafter) and 8771341
(Galveston Bay Entrance, GBE hereinafter). At both stations, one can calculate hourly non-tidal residuals by
subtracting the measured water level from the predicted astronomical tide. Usually, non-tidal residuals (water
levels) are called ’storm surge’ within the coastal engineering community. Regardless, the interest within this
thesis is in ’total’ still water levels (W L), including the tide and the surge but without waves. One could discuss
whether is statistically correct to sample from the ’total’ still water level population, including the deterministic
component that is the tide. However, the storm surge is a random variable that is summed on top of the tide.
Thus, W L can be characterized as a random variable.

The GBE tide station has a limited record length: about 16 years worth of data scattered between 2001 and
2018 excluding 2009 and 2010. The GP location has 113 years of data from 1904 to 2018. In order to obtain the
water level at Galveston Entrance Channel (W LGP ) site from Galveston Pier 21 (W LGBE ) location, the following
linear regression model was used:

W LGBE = 1.0029×W LGP +0.0038856 (5.1)

The linear regression was fitted based on the joint observations (R2 = 0.91) of the simultaneous hourly water
levels, the equivalent of 16 years. According to the Two-sample Kolmogorov-Smirnov test discussed in [45]
(performed with kstest2() function in MATLAB), the two population samples belong to the same continuous
distribution. On another note, there is a (water level) data gap between April 1984 and October 1984. These time
period is excluded from the analysis, and hence is not be considered for the remaining variables.

Wave data was downloaded from ERA5 reanalysis database (see section 5.2.1). The temporal resolution of
the wave data is hourly for the period 1979 to 2018. ERA5 provides wave data that has already been ’splitted’
into the two main wave components, total swell and wind generated waves. The term total includes all the
swell partitions that occur at the specific location. The variables of interest (which data was downloaded) are the
significant wave height, the mean wave period and the wave direction for the total swell and the wind generated
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waves, separately. The model is of spectral nature, meaning the variables’ values have been calculated from the
total sea spectrum.

Atmospheric data (i.e. wind speed) and direction, has also been collected from ERA5 database. Hence, this
data has similar properties than the wave data. The only difference is the spatial resolution of these: the grid for
wave model double is coarser than for the atmospheric model (see table B.2 in appendix B).

The chosen ERA5 grid point is located approximately 42 kilometers away from the location of interest (see
the project location in figure 5.3). The coordinates of the aforementioned data point are 29.0 degrees North and
265.5 degrees East. The bathymetry that surrounds this point is considered to be fairly uniform (refer to figure
5.4). The location has a water depth of around 20 meters and is considered to be transitional (shallow) waters.
This assumption is necessary to support the performance of the Extreme Value Anaysis (EVA) at that location.
The ’extreme’ waves there must not have reached their breaking point in order to capture them while performing
the EVA. If the waves were already broken, the results of the EVA would be underestimating the extreme wave
climate at the location of interest. This would result in an underestimation of the design values.

Figure 5.4: Bathymetry of the Galveston bay, the area of interest for this thesis within Texas at the Gulf of México. Source: [70]

5.2.3. Multivariate data set
In this application, the multivariate data set comprises hourly observations of the variables: water level, signif-
icant wave height of swell and wind waves, mean wave period of swell and wind waves and wind speed (see
figure 5.5). The aforementioned variables are understood as explained in the following list. The variable water
level (W L) has already been defined in section 5.2.2.

Figure 5.5: This figure presents the used multivariate data set and the variables sources. Source: Author

• Mean wave period (Tm). This variable is defined as the average time it takes for two consecutive wave
crests, on the surface of the ocean/sea, to pass through a fixed point. The ocean/sea surface wave field
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consists of a combination of waves with different heights, lengths and directions (known as the two-
dimensional wave spectrum). The mean period is a mean over all frequencies and directions of the two-
dimensional wave spectrum for wind waves (Tmw w ) and for total swell waves (Tmt s).

• Significant wave height (H s). For wind generated waves, the significant wave height (H sw w ) is defined as
four times the square root of the integral over all directions and all frequencies of the wind waves spectrum.
The wind waves spectrum is obtained by only considering the components of the two-dimensional wave
spectrum that are still under the influence of the local wind. For swell waves, the significant wave height
(H st s) is four times the square root of the integral over all directions and all frequencies of the total swell
spectrum. The total swell spectrum is obtained by only considering the components of the two-dimensional
wave spectrum that are not under the influence of the local wind.

• Wind speed (W s). The wind speed is defined as the 10 meters neutral wind speed from the atmospheric
model of ERA5, which at the same time is determined from the atmospheric surface stress.

5.3. STEP 0. Data Processing
Step 0 is the input to the methodology and is not extensively treated in here. Mainly because the level of data
processing differs per application. In here, the wave components are already decomposed in sea states: swell
and wind generated waves (wind waves). The output of step 0 is a multivariate time series that contains joint
observations of all variables of interest. An example on the format is presented in figure 5.6 for our application.

Figure 5.6: Example showing part of the multivariate data set analyzed in this application

5.4. STEP 1. Extreme Value Analysis
The significant wave height of wind waves was set to be the dominant variable in section 5.1.1. Thus, a POT
is performed on the H sw w . The choice of threshold (or thresholds) is based on the theory presented in section
2.1.1. Subsequently, the physical and statistical thresholds are defined as follows:

• The physical declustering procedure has been performed so as to obtain a sample of 3 (extreme) storms
per year in average, which is a physically sounding number of extreme events per year. The ’physical
threshold’ (or duration of the event) has been set to 4 days to achieve approximately an average of 3
(extreme) storms per year.

• The statistical threshold has been defined by studying the shape parameter k (see equation 2.1), aiming the
sample to converge to a GPD. It has been observed that the best results are achieved with k being negative
and as close to zero as possible. Statistically, this value of k implies the distribution to be shaped (slightly)
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convexly. Physically, this implies a steady increase rate that converges in a physical boundary. The choice
of threshold is 2.45 meters, which together with the ’physical’ threshold above, leads to a sample of 128
extreme observations.

Next, a General Pareto Distribution (GPD) is fitted to the resulting sample of extreme wave heights. The
fitting results are presented in figure 5.7a. In this figure, the reader can notice something odd in the fitting: it
seems there are two different wave systems present in the data and one of these with considerably large extreme
waves. These waves are caused by hurricanes and, for the sake of simplicity, the hurricane generated waves are
removed from the data. These are assumed to reach wave heights larger than 3.5 meters. The EVA has been
performed again for the data without the presence of hurricanes. The resulting wave data without hurricanes is
used in the analysis. If the practitioner would prefer to include hurricane data, he/she should treat these values
as a separate variable. Such as is done with swell and wind generated waves. In this way, the resulting sample
would contain independent data from only one ’type’ of meteorological phenomenon.

The results on the POT on H sw w are presented in figure 5.8. The GPD fit is plotted in figure 5.7b. The fitting
results in figure 5.7b are considerably better that the fitting results in figure 5.7a.

(a) GPD representing the best fit for the extreme wave heights in the location
of interest including hurricanes. The plot also presents some return values
and their 95% confident bounds.

(b) GPD representing the best fit for the extreme wave heights in the location
of interest excluding hurricanes. The plot also presents some return values
and their 95% confident bounds.

Figure 5.8: POT results on the significant have height of wind waves

The concomitant values are sampled with the block maxima method for a time window (extreme event) of 1
day. This means these concomitant values occur within maximum 1 day from when the extreme wave height of
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wind waves occurred. This choice was made so the correlation coefficient values between the dominant variable
and the concomitants were maximized. This is further explained in step 2 in section 5.5. The concomitant values
have been fitted to several popular distributions. The best fit is considered to be the distribution with the lowest
AIC. The fitting results for the concomitant variables are presented in the third column of table 5.1. Two of the
concomitant distributions in table 5.1 are extreme value distributions. The samples from the variables W L and
Tmt s seem to comply with the asymptotic properties of extreme observations. However, this does not necessarily
mean that extreme values from these two variables occur together with extreme wave heights of wind waves. This
is further explored in step 2.

In parallel, we perform an EVA to all the variables to determine their extreme distributions. The POT method
is applied to the variables, and then, the extreme value distribution is computed. The results of this task are
important for step 4 when determining the design values for the traditional approach, where the variables are
assumed to be independent. The second column in table 5.1 presents the results of EVA performed individually
to all variables. That is why the heading of this column refers to Extreme distribution.

Variable Extreme distribution Concomitant distribution

Hs_ww (m)

Generalized Pareto
k= -0.049

sigma= 0.24
theta= 2.45

(Extreme)

WL (m)

Generalized Pareto
k= 0.1581

sigma= 0.985
theta= 0.6530

Generalized Pareto
k= 0.1413

sigma= 0.1018
theta= 0.6260

WS (m/s)

Generalized Pareto
k= 0.2141

sigma= 0.8207
theta= 15.0068

Logistic
mu= 10.9638

sigma= 1.3871

Hs_ts (m)

Generalized Pareto
k= -0.0241

sigma= 0.2464
theta= 1.7758

Lognormal
mu= -0.0204

lambda= 0.3285

Tm_ww (s)

Generalized Pareto
k= -0.0431

sigma= 0.5413
theta= 6.1505

Logistic
mu= 4.7088
sigma= 0.4

Tm_ts (s)

Generalized Pareto
k= -0.1418

sigma= 1.4408
theta= 9.0264

Generalized Extreme Value
k= 0.0303

sigma= 0.8521
nu= 6.1379

Table 5.1: This table presents the distributions that were determined to be the best fits to the univariate data. The second column presents
the results of EVA performed individually to all variables. The third column presents the best univariate distribution for the concomitant
variables.

5.5. STEP 2. Bivariate dependence modelling

In this step, we aim to gain insight into the physical behavior and associated dependencies between variables
with Kendall’s τ (see section 2.2.1) and bivariate copulas (see section 2.2.2). If the results of step 2 are not
satisfactory, the practitioner can go back to step 0 and start the analysis again. This is depicted in figure 5.1. By
performing this step one can ensure that the statistical results are in accordance with what is expected from a
physical point of view.
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5.5.1. Analyzing correlation coefficients
From the extreme data set resulting from step 1, the correlation matrix is calculated. This can be done in R with
the command cor(DATA, method= "kendall"). The correlation coefficients for our data are presented in figure
5.9. The size of the circles indicate the strength of the correlation. The blue circles represent positive correlation
and the red ones negative correlation. This plot gives the practitioner a practical tool to quickly spot the type of
correlations present in the system together with their strength.

In the previous step (in section 5.4), we stated that extreme values of W L and Tmt s might not occur together
with extreme values of H sw w . The correlation results in figure 5.9 seem to support that assumption. Specially
for W L, because the correlation between W L and H sw w is slightly negative. Physically, this negative correlation
can be explained with the shoaling effect of waves when propagating to shallower waters. The data location has
an average depth of around 20 meters and hence, it is considered to be in transitional waters where the largest
waves are already shoaling. The shoaling process is related to the water depth: the shallower it is, the more
shoaling occurs until the waves break. So in our area of interest, the waves heights are the largest when the water
depth is the smallest. Hence, the negative correlation.

Figure 5.9: Correlation matrix for the dominant and concomitant variables

It is also interesting to plot the bivariate observations, in a scatter plot, to further analyze the dependence
structures. These joint observations can be plotted conserving the physical units, or can be transformed to ’prob-
ability’ units and become pseudo-observations. Traditional bivariate distributions only allow two random vari-
ables that behave according to the same theoretical distribution. Normally, ocean variables behave accordingly
to different theoretical distributions. An example of this is presented in the fitting results in table 5.1. By using
copulas (and vine-copulas), the dependence structure between a pair of random variables may be specified in-
dependently to that of their one dimensional marginal distributions. This is achieved with the transformation to
pseudo-observations. The transformation can be done empirically via a ranking procedure (see section 2.2.2) and
then, the values are normalized from 0 to 1. Or it can be done theoretically by fitting a univariate distribution. The
pseudo-observations resulting from the ranking procedure are always distributed uniformly. These are needed
as input to the copula and vine-copula models. The dependency structure is more easily spotted with pseudo-
observations than real observations. This can be seen when comparing figure 5.10 for pseudo-observations and
figure 5.11 for real observations. In these figures the univariate histograms and the Kendall’s correlation coeffi-
cients are also plotted.
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Figure 5.10: Scatter matrix with plotted pseudo-observations for all possible pairs of variables, in the lower triangle. The red lines provide
an estimation of the trend and the ellipse depicts areas with the largest mass concentration. The diagonal contains the univariate histograms
which for pseudo-observations are uniform. The upper triangle depicts the Kendall’s τ for each pair of variables.

Figure 5.11: Scatter matrix with plotted pseudo-observations for all possible pairs of variables, in the lower triangle. The red lines provide
an estimation of the trend and the ellipse depicts areas with the largest mass concentration. The diagonal contains the univariate histograms.
The upper triangle depicts the Kendall’s τ for each pair of variables.
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The largest correlation is achieved between Tmw w and W s. This statistical result also makes sense from a
physical perspective: the wind generates the wind waves. On the contrary, the correlation between Tmt s and
W s and Tmt s is lower than the previous. From a physical perspective, swell waves are not generated by local
winds and hence, the relatively low correlation value. However, it is still considerably high considering that
this system should be independent from the wind waves. This might suggest that the wave data might not have
been splitted completely. Nevertheless, the Gulf of México can be considered an enclosed sea, which means that
the swell might be generated from the same meteorological phenomena. In this kind of cases, the practitioner
should decide if the statistical results are consistent enough with what the practitioner expects from a physical
perspective. If that is not the case, the practitioner should go back to step 0 (data processing) to achieve better
final results. For this application, it is assumed the data has been splitted good enough.

5.5.2. Analyzing bivariate dependence structures
The bivariate observations from all pairs of variables are fitted to theoretical bivariate copulas. The fitting has
been performed in R with the command BiCopSelect(). By plotting the densities of the resulting theoretical
copulas (depicted in figure 5.12), the practitioner can identify dependency structures that might be of interest
in the analysis. For example, the practitioner can study whether the variables present tail dependence (refer to
section 2.2.3).

Figure 5.12: Theoretical copula densities for all pairs of observations in the extreme sample. The pseudo-observations are presented in
standard normal units.
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The dependency structure of copula C) (in figure 5.12) presents some asymmetries when values of H sw w and
H st s are large. The same occurs with copula G), for W L and H st s . This would not have been considered and
neither included in a univariate analysis.

The densities of the copulas that in standard normal units resemble circles present variables that have very
low correlation values. Examples of such are copulas H) and I). These model the density between W L and the
wave periods for swell and wind waves, Tmw w and Tmt s . Physically, these variables are not related directly.

On another note, copulas J), L) and O) (in figure 5.12) present some tail dependence. It is most interesting
for copula J) which seems to present an upper tail dependence, thus when both variables H st s and W s achieve
large values. In the previous section, we detected some anomalies in the correlation results from W s and Tmt s .
However, we assumed the wave data was splitted good enough in swell and wind waves sea states. If the larger
waves in H st s were wind waves, the spotted upper tail dependence between H st s and W s would make sense
from a physical perspective, as large (local) wind speeds generate large wind waves. Thus, these results would
mean the largest swell waves are indeed wind waves and would imply the data has not been splitted well enough.
Regardless of this results and for the sake of simplicity, we continue to assume the data is splitted well enough
for this fictional analysis.

The results presented in this section provide the reader with practical examples on the use of step 2 to check
the quality of the data.

5.6. STEP 3. Multivariate dependence modelling
In step 3, we choose a regular vine-copula to model the joint behavior between the variables of interest. In this
application, all existing regular vines in 6 nodes are fitted to the data. The approach to do so is explained in
section 3.3 and theory on regular vine-copula models is presented in section 2.3.

In section 4.2.4 we present a discussion on which regular vine would be the best to model our data. We
present two reasonable choices (depicted in figure 5.13): (1)the regular vine in 6 nodes with the lowest AIC and
(2)the regular vine in 6 nodes with the strongest pair-wise correlations in its trees. The latter seemed to predict
the correlation coefficients more accurately (refer to figure 4.8), despite achieving a larger AIC. The Kendall’s
correlation coefficients (τ) are presented for the first tree (T1) in both regular vines. One can see in figure 5.13
that the absolute sum of all τ in T1 is the smallest in the regular vine with the lowest AIC.

Figure 5.13: On the left, the regular vine (RV) in 6 nodes with the lowest AIC is presented. On the right, the regular vine (RV) in 6 nodes
with the strongest pair-wise correlations in its trees is presented. The Kendall’s correlation coefficients (τ) are presented for the first tree (T1)
in both regular vines.

From a physical perspective, the variable’s order in T1 of the regular vine with the strongest correlations (on
the right in figure 5.13) seems more logical than the one of the regular vine with the lowest AIC (on the left in
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figure 5.13). For example, one might expect that the W s is directly connected with H sw w rather than with H st s .
Moreover, paring H sw w with W L seems to be physically more logical than paring H sw w with Tmt s . Specially
since the correlation between the first two variables is stronger than for the last pair. Hence, an engineer might
feel more comfortable selecting the regular vine with the strongest pair-wise correlations in its trees. On the
contrary, an statistician might feel more comfortable selecting the regular vine with the lowest AIC. The real and
true best model for the data remains unknown.

For this application, we choose to model our data with the regular vine in 6 nodes with the strongest pair-wise
correlations in its trees. This regular vine belongs to the tree-equivalent class V11 and it is a D-Vine. The model
is validated according to three tests proposed at the end of section 3.3 and the results are presented in appendix
D.

One of the main disadvantages of the methodology is most probably the large computational effort when
fitting all the regular vines to the data in order to choose the best model. The computational time needed to fit all
existing regular vines in 4,5 and 6 nodes to our data set for a regular laptop is presented in table 5.2. The analyses
with 5 and 4 variables are an essential part of chapter 4, hence the resulting best models are presented in there
and not in here.

Number of variables Computational time [s]

4 50.13
5 1541.42
6 186780.44

Table 5.2: This table presents the computational time in seconds that a regular laptop took to fit all the existing regular vines in 4,5 and 6
nodes to the data.

5.7. STEP 4. Derivation of multivariate design values
Step 4 is meant to be the link between the pure statistical analysis and the engineering design process, and it
is one of the main contributions of this thesis. The objective of this step is to derive the multivariate design
values using the results in step 1 (Extreme Value Analysis) and step 3 (multivariate dependence modelling with
vine-copulas). The description of this step is presented in section 3.4 and the underlying theory in section 2.4. In
the current section, we focus on applying these concepts to derive the 6 design values for H sw w , H st s , Tmw w ,
Tmt s , W s and W L.

The univariate return periods (Ti ) of interest are the following: 10, 50, 100, 500 and 1000 years. The reader
should note that in practice, these are usually pre-defined by the client. The aforementioned return periods define
individual risk levels that are associated with probabilities of exceedance (1/Ti ): 0.1, 0.02, 0.01, 0.002 and 0.001.
The practitioner can calculate the (univariate) design values with equation 3.1. In this equation, we see that the
design values depend on the selected marginal distributions. The choice of marginal distribution depends on
whether one is designing for independent or dependent variables.

The probabilities of exceedance are computed based on a risk scenario that represents the system dynamics.
The choice of which scenario to use should be done a priori, based on physical knowledge of the system analyzed.
In this application, we calculate probabilities associated to AND and OR scenarios as an example. Engineers
might be interested in one or the other, or a mixed scenario. These risk scenarios should not be compared as they
represent different system dynamics.

Assuming independence between design variables is a common practice in the ocean and coastal engineering
fields. Thus, an approach in which the variables are considered independent is referred in here as traditional ap-
proach. This approach is depicted in the ’left vertical flow-path’ in figure 2.1. On the contrary, the methodology
developed in this thesis assumes multivariate dependence and it is referred in here as vine-based methodology.
This novel approach is depicted in the ’right vertical flow-path’ in figure 2.1. To highlight the advantages that
the vine-based methodology provides when compared to the traditional method, the design values are derived
using the traditional approach and the vine-based methodology. The first is treated in section 5.7.1 and the last in
section 5.7.2. A comparison between both approaches is presented in section 5.8. First, the design values derived
by both methods are briefly compared. Then, the results of both approaches are applied in a simplified example
on probabilistic design of a breakwater’s crest level.
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5.7.1. Traditional approach
The traditional approach is mainly composed of two steps: (1) EVA and (2) Univariate derivation of design
values. The first step is similar to step 1 of the vine-based methodology. However, instead of treating the variables
as a system, these are treated separately because are assumed to be independent. Thus, an EVA is performed to
each variable individually, and there is no need to define a dominant variable and its concomitants. Coming back
to our application, 6 EVA are performed individually to each variable. The resulting extreme distributions are
presented in the second column of table 5.1.

For the second step, we go back to equation 3.1 in section 3.4. We already stated that the resulting design
values depend on the selected marginal distributions. In this case, these are extreme distributions. With the
univariate return periods and the extreme distributions, the univariate design values are easily calculated with
equation 3.1.

The five sets of 6 (univariate) design values in tables 5.3 and 5.4 represent extreme events. For a chosen
AND-risk scenario, the multivariate return period, Tand (see definition in equation 2.17), and the corresponding
AND-probability of exceedance of the aforementioned 5 extreme events are presented in table 5.3. For a chosen
OR-risk scenario, the multivariate return period, Tor (see definition in equation 2.18), and the corresponding
OR-probability of exceedance of the aforementioned 5 extreme events are presented in table 5.4.

Return
Period
(years)

Univariate
Exceedance
Probability

Hs_ww
(m)

WL
(m)

Ws
(m/s)

Hs_ts
(m)

Tm_ww
(s)

Tm_ts
(s)

AND
Exceedance
Probability

AND
Return Period

(years)

10 0.100 3.22 0.93 17.45 2.33 7.337 11.86 1.00E-06 1.00E06
50 0.020 3.54 1.19 20.03 2.70 8.0992 13.35 6.40E-11 1.563E10

100 0.010 3.67 1.32 21.45 2.85 8.4115 13.90 1.00E-12 1.00E12
500 0.002 3.84 1.69 25.68 3.20 9.1016 14.98 6.40E-17 1.563E16
1000 0.001 3.97 1.89 28.00 3.34 9.3844 15.37 1.00E-18 1.00E18

Table 5.3: Table presenting the (univariate) design values for the AND-risk scenario when all variables are considered to be independent
and extreme. The five sets of 6 univariate design values represent extreme events and the corresponding Tand of these extreme events is
presented in the last column.

Return
Period
(years)

Univariate
Exceedance
Probability

Hs_ww
(m)

WL
(m)

Ws
(m/s)

Hs_ts
(m)

Tm_ww
(s)

Tm_ts
(s)

OR
Exceedance
Probability

OR
Return Period

(years)

10 0.100 3.22 0.93 17.45 2.33 7.337 11.86 4.69E-01 2.13
50 0.020 3.54 1.19 20.03 2.70 8.0992 13.35 1.14E-01 8.76

100 0.010 3.67 1.32 21.45 2.85 8.4115 13.90 5.85E-02 17.1
500 0.002 3.84 1.69 25.68 3.20 9.1016 14.98 1.19E-02 83.76
1000 0.001 3.97 1.89 28.00 3.34 9.3844 15.37 5.99E-03 167.08

Table 5.4: Table presenting the (univariate) design values for the OR-risk scenario when all variables are considered to be independent and
extreme. The five sets of 6 univariate design values represent extreme events and the corresponding Tor of these extreme events is presented
in the last column.

Calculating mutivariate probabilities of exceedance is "easy" when the variables are independent. The AND
probability of exceedance is the multiplication of the univariate probabilities of exceedance. The OR probability
of exceedance is the sum of the univariate probabilities of exceedance minus their respective intersections, which
is equal to 1 minus the AND multivariate cumulative probability. The two scenarios should not be compared
because they represent two different system dynamics.

5.7.2. Vine-based methodology
To derive the design values using the vine-based approach, we need the results obtained in steps 1 and 3 of the
current chapter. From step 1, we need the marginal distributions of the extreme variable and its concomitants.
These are presented in the third column of table 5.1. With the univariate probabilities of exceedance and the
marginal distributions, the univariate design values are calculated with equation 3.1.
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Calculating multivariate probabilities of exceedance is not an easy task when the variables are dependent.
Section 3.4 explains how multivariate probabilities of exceedance are calculated when using the vine-based
methodology. Mainly, one needs to sample (as many times as is computationally feasible) from the regular vine
chosen in step 3. Then, it becomes a simple counting task. For the AND exceedance probability, for example,
one should count how many times all the variables exceed together (at the same time) their individual thresholds,
which are equal to the univariate exceedance probabilities. And the resulting number should be divided by the
total number of observations sampled from the vine. A similar logic is applied for the OR exceedance probability.

The five sets of 6 (univariate) design values in tables 5.5 and 5.6 represent extreme events. The reader should
note only the design values from H sw w , the dominant variable, are associated with actual return periods (or
at least how these are understood within the engineering community). The remaining variables are H sw w ’s
concomitants and hence might not comply with the properties of extreme observations.

For a chosen AND-risk scenario, the multivariate return period, Tand (see definition in equation 2.17), and
the corresponding AND-probability of exceedance of the aforementioned 5 extreme events are presented in table
5.5. For a chosen OR-risk scenario, the multivariate return period, Tor (see definition in equation 2.18), and the
corresponding OR-probability of exceedance of the aforementioned 5 extreme events are presented in table 5.6.

Univariate
Exceedance
Probability

Hs_ww (m) WL (m) Ws (m/s) Hs_ts (m) Tm_ww (s) Tm_ts (s)
AND

Exceedance
Probability

AND
Return Period

(years)

0.100 3.22 0.90 14.01 1.49 5.59 8.12 1.39E-04 7194
0.020 3.54 1.16 16.36 1.92 6.27 9.67 3.00E-07 3333333
0.010 3.67 1.29 17.34 2.10 6.55 10.34 <1.00E-08 >1.00E08
0.002 3.84 1.64 19.58 2.52 7.19 11.96 <1.00E-08 >1.00E08
0.001 3.97 1.82 20.54 2.70 7.47 12.68 <1.00E-08 >1.00E08

Table 5.5: Table presenting the (univariate) design values when all variables are considered to be dependent, and only H sw w extreme. The
remaining variables are its concomitants. The five sets of 6 univariate design values represent extreme events and the corresponding Tand of
these extreme events is presented in the last column.

Univariate
Exceedance
Probability

Hs_ww (m) WL (m) Ws (m/s) Hs_ts (m) Tm_ww (s) Tm_ts (s)
OR

Exceedance
Probability

OR
Return Period

(years)

0.100 3.22 0.90 14.01 1.49 5.59 8.12 3.90E-01 2.56
0.020 3.54 1.16 16.36 1.92 6.27 9.67 9.99E-02 10
0.010 3.67 1.29 17.34 2.10 6.55 10.34 5.22E-02 19.16
0.002 3.84 1.64 19.58 2.52 7.19 11.96 1.10E-02 90.91
0.001 3.97 1.82 20.54 2.70 7.47 12.68 5.50E-03 181.82

Table 5.6: Table presenting the (univariate) design values when all variables are considered to be dependent, and only H sw w extreme. The
remaining variables are its concomitants. The five sets of 6 univariate design values represent extreme events and the corresponding Tor of
these extreme events is presented in the last column.

In the two last columns of table 5.5, the reader may notice that 10 million samples are not enough to quan-
tify the exceedance probabilities (and the AND return period) of such large design values. One could roughly
estimate the amount of samples needed with the AND-return period in table 5.5, which gives an indication on
the frequency of occurrence of these extreme events resulting from the traditional approach. For example, to cal-
culate AND exceedance probabilities when all 6 variables exceed its associated 0.01 percentile, one would need
around 1012 samples. Sampling such amount of data from a high dimensional regular vine is computationally
demanding.

In appendix E, we discuss the magnitude of the error in the probabilities of exceedance when calculating
these with the sampling method instead of integrating numerically the regular vine’s density.
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5.8. Comparison between the outcome of the traditional and the vine-
based approaches

5.8.1. Design values
In this section, we compare the outcome of the traditional and the vine-based approaches to highlight some
advantages of the last. Firstly, we focus on the already presented design values.

The design values derived with the traditional approach are presented in tables 5.3 and 5.4. The design values
derived with the vine-based approach are presented in tables 5.5 and 5.6. The reader may notice the design values
resulting from the traditional approach are larger than the ones resulting from the vine-based approach. This is a
direct consequence of the difference in the sampling of extreme observations between both approaches.

On another note, the AND exceedance probabilities of the extremes events (i.e. combination of design
values) resulting from the traditional approach are smaller than the AND exceedance probabilities resulting from
the vine-based approach. For equal AND-Return periods, the set of design values resulting from the traditional
approach would be more conservative than the set of design values resulting from the vine-based approach. This
might lead to more conservative and possibly, more expensive traditionally-based designs.

In contrast, the OR exceedance probabilities are smaller for the sets of design values obtained with the vine-
based approach. This is a direct consequence of taking into account the dependence (or intersection) between the
design variables.

5.8.2. Breakwater’s crest level application
To characterize all the loads on a breakwater, the engineer focus on several design criteria: maximum overtop-
ping discharge, toe and core stability and maximum wave transmission (among others). These criteria mainly
depend on the following environmental variables: wave height, wave period, water level and currents. Thus,
it seems essential to study the interdependence between all the design variables despite the fact that not all of
them appear together in the same design formulas (or criteria). To illustrate the advantages of accounting for
the aforementioned interdependence, we introduce in this section a simplified application linked to the coastal
engineering case study: the design of the breakwater’s crest level. The remaining design criteria can be addressed
in further studies.

The typical design formula to calculate the crest level is a function of three of the analyzed design variables:
H sw w , H st s and W L. The crest level is calculated in here in two ways: (1) assuming the aforementioned vari-
ables are independent (traditional approach) and (2) assuming that these are dependent (vine-based approach).
Despite the fact that the application in here only requires the analysis of 3 random variables, we randomly gen-
erate combinations of these variables from the vine-copula in step 3 to calculate the crest level for the dependent
case.

Let’s assume the main design requirement for the crest level is a maximum overtopping discharge of 50 L/s
per meter for the Ultimate Limit State (ULS). Wave-overtopping takes place when waves meet a structure lower
than the approximate wave height. During over-topping, water can pass over the structure and the volume of
water that passes is usually called overtopping discharge (Q). In figure 5.14, wave-overtopping is depicted.

Figure 5.14: Visualization of wave-overtopping and a breakwater’s crest level

The crest level is the result of the sum of the the still water level (h) and the free-board (Rc ) (see figure 5.14).
The still water level is considered a random variable itself and the same variable as W L (which was part of the
main analysis performed in this chapter). The free board is the height of the breakwater above the still water
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level and hence, the part that is not underwater all the time. To calculate Rc , the EurOtop (European Overtopping
manual [59]) recommends the use of the following formula:

q√
g H 3

m0

= 0.1035exp

[(
−1.35

Rc

Hm0γ f γβ

)1.3]
(5.2)

where:
Hm0 = (H sw w +H st s )0.5 is the total significant wave height and is a random variable, q is the wave-overtopping
discharge and is equal to 50 L/s/m, g is the gravitational acceleration and is equal to 9.81, γ f is a roughness
factor which is equal to 0.4 and γβ is a berm factor which is equal to 1 as we assume the breakwater has no berm.

Manipulating equation 5.2, we obtain an equation for Rc that depends on the significant wave height of wind
waves (H sw w ) and swell waves, (H st s).

In section 5.7.2, we randomly generated 10 million samples of the design variables from the vine-copula
(which included observations for H sw w , H st s and W L). We used these samples to calculate the AND and OR
probabilities of exceedance. In here, we calculate the corresponding 10 million outcomes of the Crest level
with the 10 million modeled observations of H sw w , H st s and W L. Then, we compute the empirical cdf of the
breakwater’s crest height (i.e. crest level). This procedure is similar to a Monte-Carlo analysis.

To calculate the empirical cdf wit the traditional approach, the 10 million random samples are drawn individ-
ually from the univariate distributions of H sw w , H st s and W L resulting from the EVA in step 1 (see table 5.1).
With these samples, we calculate the corresponding 10 million outcomes of the Crest level and next, we compute
the corresponding empirical cdf of the Crest level for the independence case.

The aforementioned two cumulative distributions of the Crest level are plotted in figure 5.15. This figure
presents return periods instead of probabilities of exceedance. The relation between return period and probabil-
ity of exceedance is presented in equation 2.13. When comparing the two curves in figure 5.15, the traditional
approach seems to over-predict the crest height. For the same values of the crest height the exceedance proba-
bilities are smaller, and hence the return periods are larger for the independence case than for the dependence
case. These can also be seen with the results presented in table 5.7. Table 5.7 presents a comparison between
exceedance probabilities and return periods for crest heights of 9, 10 and 11 meters for the dependence and
independence cases.

Figure 5.15: Empirical cumulative distribution functions for the breakwater crest height with return periods for (1) assuming the aforemen-
tioned variables are independent (traditional approach) and (2) assuming that these variables are dependent (vine-based approach).
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Breakwater’s Crest Height Exceedance probability Return period (years)

(m) INDEPENDENT DEPENDENT INDEPENDENT DEPENDENT
9 2.80E-03 1.83E-03 357 548

10 1.24E-04 8.32E-05 8039 12019
11 1.57E-05 1.08E-05 63694 92593

Table 5.7: Breakwater’s crest height values and their respective exceedance probabilities and return periods for the dependent and independent
case.

Let’s assume that the practitioner is designing for a risk level of 0.0001, equivalent to a return period of
10000 years. Considering the results for the dependence case in table 5.7, the practitioner would probably design
the crest height smaller than 10 meters. However, if the practitioner would only look at the results achieved
by the traditional approach (independent case), he/she would probably pick a value larger than 10 meters. The
difference in height might translate to thousand of euros if the breakwater is long enough.



6
Discussion

6.1. Discussion on the vine-based methodology
One objective of the thesis is to define design values in a multivariate case. One problem that arises when
extending the extreme value theory to the multivariate context is that one must specify what constitutes an extreme
event. In the univariate case, this is defined as the most extreme value. Next, the concept of return period
is used to define design values. Extending this procedure to find design values in the multivariate case is not
straightforward. Two main issues arise:

1. It is not immediately clear how to find the most extreme set of joint observations from a multivariate time
series

2. It is quite challenging to fix a desired level of risk in the multivariate case and back track the sets of design
variables associated with that level of risk

Regarding the first issue, the fundamental problem is that there is no natural way to order a set of vectors,
as there is with a set of real-valued numbers. In this thesis we suggest to define an extreme event following the
approach in [75]. The extreme observations are sampled for the most dominant variable and the corresponding
concomitant values (observed together with the dominant variable) are selected for the remaining variables.
In this way, the dependence between the variables is kept in what constitutes the extreme event. A different
approach would be to sample the extreme observations independently for each variable. However, sampling all
the extremes independently will probably result in a meteorological event never experienced. This issue is treated
in more detail in section 6.2.

The essence of return period in current industry-related practices is univariate. In literature, there is no
consensus on how to extend this concept to the multivariate framework. The one-to-one relationship between
return period – return level in the univariate case is not valid in higher dimensions. The second issue listed above
makes reference to this. For this reason, we opted to predefine the design values based on the univariate case.
This is a legitimate but simplified way to approach the problem.

The occurrence of environmental extreme event scenarios in a multivariate framework has been addressed
trying to determine the probability corresponding to a failure region, considering failure modes with elements
in series and in parallel both under independent and dependent circumstances. This probability is associated to
what is defined as multivariate return period. By adopting a risk scenario, we linked the set of design values to
a probability of exceedance and thus, a multivariate return period. Figure 6.1 illustrates the traditional procedure
to find design values in the univariate case and the procedure suggested in this thesis to find design values in the
multivariate case.

From an engineer’s perspective, one could argue what the advantages of imposing the univariate design
values are. The main advantage is the benefit of having a one-to-one relationship between the (univariate) return
period and design value. Making use of this relationship makes the approach simpler and closer to current
industry practices. The added value of this approach when compared to the traditional univariate approach is
the computation of the multivariate return period associated to the set of univariate design values. Assuming the
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Figure 6.1: Visualization of the proposed extension of design load definition from the univariate to the multivariate case. Source: Author

selected risk scenario represents the failure (or damage) mode of the structure, the information on the overall risk
of failure is then given by the multivariate return period. The reader should note that the multivariate return period
and probability of exceedance are interchangeable. With this method, the practitioner has more information on
the behavior of the system. Thus, it becomes a matter of choice whether it is possible (or not) to modify the
design based on experience and knowledge on the structure’s behavior.

6.2. Discussion on the case study
In this thesis, a vine-based methodology for infrastructure design load definition is presented. The methodology is
general and can be implemented in any design problem involving multiple design variables. To show the potential
of this methodology, a hypothetical engineering application was presented: the design of two breakwaters at the
entrance of Galveston Bay, Texas. It is important to point out that the application is meant to be illustrative and
it relies on arbitrary design assumptions.

The wind and wave data was downloaded from ERA 5 (a global model) at a point 42 Km away from the
breakwaters’ location. It was assumed that despite the distance the environmental data is representative of the
environmental conditions at the breakwater location. One can argue that this is too big of an assumption to make.
To solve this issue, the practitioner can transform the resulting design values to the ones that are representative
of the extreme environmental conditions at the breakwater location. For example, this can be done with wave-
propagation models such as SWAN for wave variables.

Step 0 (data processing) is considered the input to the methodology and has not been treated extensively
in this thesis. Mainly because the level of data processing differs per application. Within offshore and coastal
engineering, the basic idea is to decompose the time series of the wave climate in sea states, so one can consider
each state independently. This analysis is called metocean study. In our application, the wave components are
already decomposed in sea states: swell and wind generated waves (wind waves). We then assumed the data
is already processed and satisfies the requirement for the specific design situation. Nevertheless, an important
part of the aforementioned metocean study is to determine the principal and mean wind and wave directions.
This has not been treated in this thesis for the sake of simplicity. Nevertheless, the practitioner can select the
wind and waves from the principal direction of interest and perform the analysis only with the resulting data.
Another option is to split the wind and wave data in directions and perform a frequency analysis per direction.
The resulting sets of wind and wave data are called partitions, in engineering terms. These ’partitions’ should be
independent and hence, one should treat them in separate analyses.

The data location has a water depth of around 20 meters and was considered to be transitional (shallow)
waters. This was necessary to support the performance of the Extreme Value Anaysis (EVA) at that location. To
correctly infer extreme waves characteristics, the EVA should be performed using a dataset containing observed
(or simulated) waves before they reach their breaking point. In this study, it has been assumed that the wave
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dataset contains unbroken waves, without performing any additional check. However, it is advised to verify this
condition. To avoid this issue, an alternative option could be using wave information from an offshore location.

The multivariate frequency analysis in chapter 5 is performed for extreme events resulting from the combina-
tion of extreme wind generating wave heights and its maximum concomitants: wind speed, still water level, swell
wave heights, wind waves periods and swell wave periods. Consequently, the wave height of wind waves was as-
sumed the most relevant to the design. The choice of dominant variable is up to the practitioner. One could argue
that by choosing one dominant variable could lead to a misrepresentation of the concomitant variables. However,
by sampling all the extremes independently will probably result in a meteorological event never experienced.
Also, the resulting sample of extreme observations would not be strictly representative of joint observations,
because the extremes would be sampled from different moments in time. Unless, the practitioner is interested
in what happens yearly. This scale might be relevant from a geological point of view where 10’s of thousands
of years are of interest. To illustrate this issue, we re-sampled the extremes of the 6 analyzed variables inde-
pendently with the POT technique and we calculated their correlation coefficients. These are illustrated in figure
6.2. In this figure, one can see that some of the correlation coefficients might not make sense from a physical
perspective. For instance, the wind speed is negatively correlated with wind wave’s height and period. Another
example is the considerably large and negative correlation between the water level and the wind wave’s period.
In addition, the magnitudes of all these correlations are considerably low (close to 0) when compared to the
correlation coefficients representing extreme events in figure 6.3. These results support the previous statement:
the individually sampled observations are independent.

Figure 6.2: Correlation matrix for all variables being dominant, and hence extreme
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Figure 6.3: Correlation matrix for the dominant and concomitant variables

In step 3, the best regular vine is selected from all the existing regular vines according to a certain criterion.
It is logical to believe that the best regular vine might differ depending on the chosen criterion. In this thesis we
propose two selection criteria: (1) lowest AIC and (2) largest correlations represented in the trees structures of
the regular vine. In theory, the regular vine selected with (1) contains more information from the data than the
rest of the fitted models. However, the results in figure 4.8 suggest that the correlations between variables are
better represented by the best vine according to (2). The practitioner should choose the selection criteria with
which he/she feels comfortable with.

In step 4, the joint probabilities of exceedance are calculated using a sampling procedure instead of integrat-
ing the density function of the regular vine. This saves computational time. Nevertheless, the main drawback
might be that probabilities of simultaneous exceedance of several large values are not well represented. This
does not apply to the OR exceedance probabilities. 1008 samples were not enough to quantify the AND ex-
ceedance probabilities of design values associated to percentiles larger than 0.99. We could only estimate that
this exceedance probability is lower than 10−08.

6.3. Discussion on the exploratory work on goodness of fit for vine-copula
In this thesis, the possibility to define goodness of fit test for vine-copula based on the concept of tree-equivalent
classes (TEC, see section 2.3.2) was explored. The reader should note that the objective was to provide some
indications on how the concept of TEC could be used to define goodness of fit test for vine-copula in further
research. Consequently, we focused on model selection strategies based on graphical and statistical properties of
the vines.

Following the work done by Morales-Nápoles in [49], we explored the validity of the following hypothesis
to define a model selection strategy in the form of an algorithm: The best fit for a ’n + 1’ variables regular
vine would be an extension of the best fit of ’n’ variables regular vine. The algorithm aims to facilitate the
implementation of vines in higher dimensions (vines with more than 6 nodes).
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The concept of TEC is used to extend the vine’s tree structure in n nodes to n+1 nodes: the best regular vine
in n +1 belongs to a TEC that is an extension of the TEC to which the best regular vine in n nodes belongs to.
The selection reference (for the best fit) is based on the AIC which requires the trees to be labeled and copulas
assigned to each edge in the regular vine. There is no way that one could argue that the AIC is independent from
the order of the nodes. A better approach would be to select the best vine according to a more general criteria (or
goodness of fit) that involves unlabeled tree structures.

When adding a dimension, one is actually adding another tree to the regular vine. Thus, extending the TEC
did not seem enough to extend the regular vine to higher dimensions. Subsequently, we studied whether the first
labeled tree (T1) of the potential best regular vine in n +1 nodes could be an extension of T1 of the best regular
vine in n nodes. We saw that the regular vine achieving the lowest AIC was not an extension of the labeled trees
of the best vines in 4 and 5 nodes. The way in which we ordered (i.e. column-wise) the design variables in the
data set might be a plausible reason to explain why these results do not support the presented hypothesis. The
ordering procedure in section 4.2.2 does not take into account the goodness of fit of all the pairs of variables
to the bivariate copulas. This was investigated selecting the best fit as the the regular vine with the strongest
correlations in its trees. In this case, the hypothesis presented at the beginning of this section seems to be valid.

The algorithm was used to select the best regular vine in 6 nodes for our data set. To validate the results of
the algorithm, we determined which of the three regular vines (i.e. (1) Lowest AIC, (2) Strongest correlation
coefficients in its trees and (3) Algorithm 1) represented best the original correlation coefficients. The results
suggested that the regular vine with the lowest AIC represented the original correlations worst. The regular vine
selected with the novel algorithm achieved a lower AIC than the regular vine with the strongest correlations in its
trees. However, the last vine represented the original correlations best. In theory, the model achieving the lowest
AIC is the model that "loses" the least information from the data. The results of this analysis do not seem to fully
support the aforementioned statement.





7
Conclusions and further research

7.1. Conclusions on the vine-based methodology
The main objective of this thesis was to develop a vine-based methodology for infrastructure design load defi-
nition. The methodology aims to be general: it can be applied to any infrastructure design problem involving
multiple design variables. With this premise in mind, the main effort was concentrated in formulating a series of
steps to integrate several stages of the design: from the processing of raw data up to the choice of design values
for any specific design purpose. The statistical dependence between random variables was taken into account
using a regular vine-copula, where the multivariate dependence structure is modeled using bivariate copulas as
building blocks.

The methodology starts with step 0: the collection and processing of data. The data comes in the form of a
multivariate time series, which needs to be representative of the system that one aims to model. The variables
describing this system are part of the physical processes that trigger damage or failure of the structure.

When the data is ready, one should proceed to step 1: Extreme Value Analysis. Normally, infrastructure is
designed to withstand extreme conditions. To find these, the practitioner should perform a Peak Over Threshold
(POT) on the dominant variable that is assumed most relevant to the design according to some criteria. The
variables that are observed together with the dominant variable during an extreme event, the concomitants, are
sampled using block maxima technique. These sampling procedures lead to the so-called extreme sample. The
next task is to fit a distribution to the dominant and concomitant variables in the extreme sample.

The next step is step 2: Bivariate dependence modelling. The goal of this step is to gain insight into the phys-
ical behavior of the system. By performing this step one can ensure that the statistical results are in accordance
with what is expected from a physical point of view. The bivariate dependence is studied in two manners: (1) by
analyzing correlation coefficients, and (2) by analyzing the dependency structure with bivariate copulas.

If the results of step 2 are satisfactory, the practitioner can proceed with step 3: Multivariate dependence
modelling. The goal of this step is to select a regular vine-copula to model the extreme sample derived from step
1. In this methodology, all existing regular vine-copulas are fitted to the data. The best regular vine is selected
according to a specified criteria, and then, the model is validated by stochastic simulation.

The last step in this methodology is step 4: Derivation of multivariate design values. This is meant to
be the link between the pure statistical analysis and the engineering design process, and it is one of the main
contributions of this thesis. The design values are imposed based on their univariate return periods and their
corresponding multivariate return period or associated probability of exceedance are calculated with the vine-
copula selected in step 3. To do so, one needs to select a risk scenario that represents the system dynamics.
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From the work carried out at this point, the research questions can be addressed:

• How can we use vine-copula models in the design of infrastructure?

Vine-copulas are implemented in the vine-based methodology for infrastructure design (vine-based method-
ology, hereinafter) to model the statistical dependence between design variables. More specifically, they are used
to calculate the multivariate exceedance probabilities of certain extreme events, which are defined as a combina-
tion of (univariate) design values. These multivariate probabilities of exceedance are calculated by imposing a
risk scenario and are interchangeable with their associated multivariate return period. Assuming the selected risk
scenario represents the failure (or damage) mode of the structure, the information on the overall risk of failure is
then given by the multivariate return period.

The vine-based methodology was tested for a case study in coastal engineering and the results suggested
that it is suitable to perform multivariate frequency analysis of extreme events. In the application, the selected
regular vine-copula seems to represent the original correlation coefficients varying in the range ±1%. The tails
and overall mass concentration of the original extreme data set seem to be well represented by the selected model.

In the vine-based methodology, the design values are imposed based on their univariate return periods, and
their probability of exceedance (based on a predefined risk scenario) is computed with a sampling procedure
instead of solving a 6-dimensional integral to determine cumulative distribution function of the vine-copula.
This choice reduces the computational effort considerably. Nevertheless, 10 million samples were not enough
to quantify the AND exceedance probabilities of design values associated to percentiles larger than 0.99. It is
estimated that around 1012 samples are needed to achieve at least one observation where all variables exceed
simultaneously values associated to percentiles larger than 0.99. Sampling such amount of data from a high
dimensional regular vine is computationally demanding.

• What are the advantages and disadvantages of using the vine-based methodology to derive multivariate
design values when compared to the traditional approach where the ariables are considered independent?

Performing a multivariate frequency analysis with the vine-based methodology is theoretically and practically
more challenging than performing several univariate frequency analysis under the assumption of independence
between design variables.

In our application, the design values derived with the traditional approach are larger than the ones derived
with the vine-based approach. For equal exceedance probabilities, the design values of the traditional are more
conservative than the ones of the vine-based approach. Consequently, this might translate to more conservative
and possibly, more expensive designs when designing with the traditional approach. To illustrate this fact, the
results of both approaches are applied in a simplified example on probabilistic design of a breakwater’s crest
level. The results of the aforementioned application suggest that for equal probabilities of exceedance (or equal
return periods), the crest level derived with the traditional approach is more conservative that the one derived
with the vine-based approach. In quantitative terms, for the same crest level the return period computed with the
traditional approach is at least 1.5 times larger than the one computed with the vine-based approach. This would
lead to larger breakwater crest’s height for the traditional design than for the vine-based design.

These applications showed that accounting for the interdependence between design variable provides a more
comprehensive description of the physical system acting on the infrastructure. This information enables the
practitioner to make educated choices when performing the statistical analysis. Thus, it becomes a matter of
choice whether it is possible (or not) to modify the design based on experience and knowledge on the struc-
ture’s behavior. However, the vine-based method is computationally demanding. Hence, the applicability of this
methodology should be evaluated on a case by case basis.

7.2. Conclusions on the exploratory work on goodness of fit for vine-copula
The research done in this thesis is exploratory and aims to establish the foundations for further research on
goodness of fit for vine-copulas based on the concept of Tree-equivalent classes (TEC). From the work done in
this thesis the secondary research question can be addressed:

• Can we identify goodness of fit for vine-copula based on tree-equivalent classes?
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Despite the answer not being a resounding yes, some advances have been made that bring the community a
step closer to answering this question. For instance, it is the first time that all regular vines up to 6 nodes are
fitted to a data set and classified by TEC.

In this thesis, the focus was set on model selection strategies based on graphical and statistical properties
of the vines. The main motivation to investigate model selection strategies for vines is the considerably large
computational time needed to fit all regular vines in more than 6 nodes to the data.

A new algorithm was developed to facilitate the implementation of vines in higher dimensions (vines with
more than 6 nodes). This algorithm significantly reduces the computational effort to select a regular vine by
allowing the user to test only a subgroup of vines in n-nodes constructed on specific characteristics of the vines
in (n −1)-nodes. The concept of TEC was used to extend the vine’s tree structure in (n −1)-nodes to n-nodes.

7.3. Further research
Two different branches for further research are proposed: improving the vine-based methodology and continuing
the work on goodness of fit for vine-copula based on tree-equivalent classes.

Regarding the first branch, the methodology presented in this thesis could be improved addressing the fol-
lowing topics:

• Tackling the issue of defining design values based on the multivariate return period. Solving this issue
would imply finding a way to solve the equations of a hyperplane to backtrack the sets of design values
that are associated to a certain risk level (i.e. multivariate return period). The main issue is that there is no
unique solution to this problem. In fact, the space of solutions is infinite.

• Making the methodology more practical so it can be used in the industry. This could be achieved by
developing a tool box. This tool box would automatically perform the analysis and produce graphs and/or
tables that are easier to interpret than the ones presented in this thesis. One could make use of the coding
scripts presented in this report to develop such tool. Another recommendation to make it more practical
would be to explore ways to plot multivariate densities and cumulative distributions in 2D. An idea to do
so is presented in Appendix F. In short, the entire product would be tied to creativity and originality.

• Quantifying the impact of the vine-based methodology in the design of coastal structures (or other type
of infrastructure). In this thesis, the methodology is tested and validated for a case study in coastal engi-
neering. Hence, it is shown how it can be applied in a typical engineering project. Nevertheless, the only
step towards quantification was made when the breakwater’s crest level was calculated with independent
and dependent variables. To study the impact in a broader manner, it is recommended that the vine-based
methodology is applied to a range of case studies and for a range of failure mechanisms (or limit state
functions). The impact could be quantified in terms of volume of material saved (rock, in the case of a
breakwater). The different outcomes could be categorized per design criteria and presented in the form
of an Atlas. The Atlas would be a tool for engineers to decide whether the increase in quality and the
added opportunities for design optimization provided by the vine-based methodology are worth the extra
computational time.

Regarding the second branch, the work on goodness of fit for vine-copula based on tree-equivalent classes
could be improved addressing the following topics:

• Fitting all regular vines up to the maximum number of nodes possible and categorize them by TEC. This
analysis could be done for several data sets. It is recommended that a different and more general goodness
of fit measure than the AIC is used to assess the general and individual performance of all TEC.

• Testing the validity of the new algorithm in analysis with different data sets. Compare the performance of
the regular vine selected by the algorithm with the regular vine with the lowest AIC and the regular vine
with the strongest correlations in its tree-structures. It is recommended that the performance of these is
assessed mathematically using the regular vine’s density, to aim to provide a more formal conclusion than
the one provided in this thesis.





A
Some multivariate models build with copulas

A.1. Trivariate setting based on conditional laws
Chakak and Koehler presented in [10] one of the very first and simplest approaches to develop a trivariate cop-
ula by using conditional distributions. The latter technique is based on conditional laws. More specifically, a
conditional distribution is used in [10] to describe the probability of observing a variate given that the associate
variate is already known. So FX |Y would be the probability of observing X given a known value of Y . Formally,
the conditional distribution function and calculation of conditional probabilities of a bivariate copula C (u, v) is
defined as [54] [19]:

P (U ≤ u|V = v) = ∂

∂v
C (u, v) (A.1)

P (U ≤ u|V ≤ v) = C (u, v)

v
(A.2)

P (U ≥ u|V ≥ v) = 1− u −C (u, v)

1− v
(A.3)

and analogous expressions hold for the conditional laws of V given U . Consequently, computing conditional
probabilities simply reduces to partial derivatives of suitable copulas. Nevertheless, the resulting trivariate-copula
is not uniquely determined and is dependent on the order of which the copulas are combined [15].

A.2. Conditional mixtures
A well established method that uses a similar concept as in [10] to define multivariate models with copulas is
the conditional mixtures. This approach is discussed and applied in [66], [20], [35] and [15]. An example of a
3-dimensional family is given in [20] by:

FX Y Z (x, y, z) =
∫ y

−∞
CX Z (FX |Y (x|t ),FZ |Y (z|t ))(d t ) (A.4)

The arguments of the integrand (namely, FX |Y and FZ |Y ) are conditional distributions and can be written as
in equation A.1, in terms of copulas.

A.3. Hierarchical Archimedean copulas
Hierarchical Archimedean copulas are another popular method to construct multivariate structures with copulas.
They joint two or more bivariates or higher order copulas by another Archimedean copula. However, the major
limitation of hierarchical Archimedean copulas is that not all combinations of joint distribution are modelled
uniquely [15]. Archimedean copulas are formally defined in [41] as:
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C (x1, ..., xn) =φ−1

(
d∑

i=1
φ(Fi (xi ))

)
(A.5)

if
∑d

i=1φ(Fi (xi ))) ≤φ(0) otherwise, the copula is equal to zero. φ(x) is the generator function and φ(x)−1 the
inverse function.

Three classical generator functions are the ones corresponding to the Clayton, Gumbel and Frank copula. The
conditional probability property that Archimedean copulas share makes them practical for higher dimensional
variables. The reader is referred to [67] for further information on hierarchical Archimedean copulas. These
type of multivariate dependence structures are commonly applied in ocean and coastal engineering applications.
Some examples are discussed in [41], [15], [72] and more recently, in [44]. Within the trivariate setting, el-
liptical copulas, in particular the Student t-copula, have proven themselves more than capable of capturing the
dependence structure between a set of random variables [58] [60].



B
Data sources

In this Appendix, the sources of data are described in tables B.1 and B.2, for México and U.S respectively.
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C
R code for STEP 3

In this Appendix the code that has been used in STEP 3 is presented. The script is build specifically for mul-
tivariate probability analysis with vine-copulas in 6 variables. Nevertheless, the code is proposed as general
and it can be used for any amount of variables. For example, when loading the matrices (matrices-6vines <-
read.table("RVine6-clean.txt")) and the catalog of tree equivalent classes (catalog-6vines), the files should be
changed before its use.

5pt
# ######################### C A L C U L A T I N G V I N E S #############
setwd ( "C : / / 00THESIS / 01 Outpu t R" )

## 0 . DATA ##

EXTREMES_HS <− readMat ( "EXTREMES_HS . mat " )
a <− EXTREMES_HS [ 1 : 2 7 , 1 : 7 ]
b <− EXTREMES_HS [ 3 0 : 5 7 , 1 : 7 ]
c <− EXTREMES_HS [ 5 9 : 1 1 9 , 1 : 7 ]
EXTREMES_HS2 <− rbind ( a , b , c )

r ank1 <− rank (EXTREMES_HS [ [ "EXTREMES. HS" ] ] [ , 1 ] , na . l a s t = TRUE, t i e s .
method = " a v e r a g e " )

rank_1 <− r ank1 / 120
rank2 <− rank (EXTREMES_HS [ [ "EXTREMES. HS" ] ] [ , 2 ] , na . l a s t = TRUE, t i e s .

method = " a v e r a g e " )
rank_2 <− r ank2 / 120
rank3 <− rank (EXTREMES_HS [ [ "EXTREMES. HS" ] ] [ , 3 ] , na . l a s t = TRUE, t i e s .

method = " a v e r a g e " )
rank_3 <− r ank3 / 120
rank4 <− rank (EXTREMES_HS [ [ "EXTREMES. HS" ] ] [ , 4 ] , na . l a s t = TRUE, t i e s .

method = " a v e r a g e " )
rank_4 <− r ank4 / 120
rank5 <− rank (EXTREMES_HS [ [ "EXTREMES. HS" ] ] [ , 5 ] , na . l a s t = TRUE, t i e s .

method = " a v e r a g e " )
rank_5 <− r ank5 / 120
rank6 <− rank (EXTREMES_HS [ [ "EXTREMES. HS" ] ] [ , 6 ] , na . l a s t = TRUE, t i e s .

method = " a v e r a g e " )
rank_6 <− r ank6 / 120
rank7 <− rank (EXTREMES_HS [ [ "EXTREMES. HS" ] ] [ , 7 ] , na . l a s t = TRUE, t i e s .

method = " a v e r a g e " )
rank_7 <− r ank7 / 120

67
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EXTREMES_HS_ r a n k s <− cbind ( Hs_ww = rank_ 1 , WL = rank_ 2 , Ws = rank_ 3 , Hs_ t s
= rank_ 4 , Tm_ww = rank_ 5 , Tm_ t s = rank_ 6 , Ro = rank_ 7)

d a t a 6 _HS_ good2 <− cbind (Tm_ww = rank_ 5 , Ws = rank_ 3 , Tm_ t s = rank_ 6 , Hs_ t s
= rank_ 4 , Hs_ww = rank_ 1 , WL = rank_ 2)

## 1 . C o r r e l a t i o n s t o have t h e c o r r e c t o r d e r

EXTREMES_HS_ c o r r e l a t i o n = cor (EXTREMES_HS_ r a n k s [ , 1 : 6 ] , method = c ( " k e n d a l l
" ) )

c o r r p l o t (EXTREMES_HS_ c o r r e l a t i o n )

d a t a 6 _HS_ r a n k s <− cbind (EXTREMES_HS_ r a n k s [ , 1 ] , EXTREMES_HS_ r a n k s [ , 3 : 7 ] )
d a t a 6 _HS_ r a n k s <− EXTREMES_HS_ r a n k s [ , 1 : 6 ]
d a t a 6 _HS_ r a n k s 2<− EXTREMES_HS_ r a n k s 2 [ , 1 : 6 ]
## B I V A R I A T E W I T H C O P U L A S ##

# m a t r i x o f c o r r e l a t i o n s w i t h h i s t o g r a m s i n s t a n d a r d normal

d a t a 6 _HS_ s t n <− qnorm ( d a t a 6 _HS_ r a n k s )
p a i r s . p a n e l s ( d a t a 6 _HS_ s t n , method = " k e n d a l l " )
p a i r s . p a n e l s ( d a t a 6 _HS_ r anks2 , method = " k e n d a l l " )

EXTREMES_HS = EXTREMES_HS [ [ "EXTREMES. HS" ] ]
EXTREMES_HS <− cbind ( Hs_ww = EXTREMES_HS [ , 1 ] , WL = EXTREMES_HS [ , 2 ] , Ws =

EXTREMES_HS [ , 3 ] , Hs_ t s = EXTREMES_HS [ , 4 ] , Tm_ww = EXTREMES_HS [ , 5 ] , Tm_
t s = EXTREMES_HS [ , 6 ] , Ro = EXTREMES_HS [ , 7 ] )

p a i r s . p a n e l s (EXTREMES_HS2 [ , 1 : 6 ] , method = " k e n d a l l " )

t i c ( )
c o u n t i n g = 0
l i s t _ of _ c o p u l a s <− l i s t ( )

n = 0
f o r ( i 2 i n 1 : 6 ) {

f o r ( i 3 i n i 2 : 6 ) {

i f ( i 2 ! = i 3 ) {
n = n + 1

c o u n t i n g = c o u n t i n g + 1
p r i n t ( c o u n t i n g )

t i c ( )
cop <− B i C o p S e l e c t ( d a t a 6 _HS_ r a n k s [ , i 2 ] , d a t a 6 _HS_ r a n k s [ , i 3 ] ,

f a m i l y s e t = NA, s e l e c t i o n c r i t = "AIC" ,
i n d e p t e s t = FALSE , l e v e l = 0 . 0 5 , weight s = NA,

r o t a t i o n s = TRUE,
se = FALSE , p r e s e l = TRUE, method = " mle " )

t o c ( )

l i s t _ of _ c o p u l a s [ n ] <− l i s t ( cop )

}
e l s e {}
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}
}

t o c ( )

# p l o t s o f c o p u l a s and pseudo o b s e r v a t i o n s

f i l e n a m e <− p a s t e ( " Copula _ 1 5 . j p g " , sep =" " )
j p e g ( f i l e n a m e )
contour ( l i s t _ of _ c o p u l a s [ [ 1 5 ] ] , x l a b ="Tm_ww" , y l a b ="Tm_ t s " )
p o i n t s ( qnorm ( d a t a 6 _HS_ r a n k s [ , 5 ] ) , qnorm ( d a t a 6 _HS_ r a n k s [ , 6 ] ) )
dev . o f f ( )

## M U L T I V A R I A T E W I T H V I N E S ##

# a n a l y s i s w i t h 6 v a r i a b l e s
t i c ( )

Rvine _6_HS<− l i s t ( )
Aka ikes _6_HS <− l i s t ( )
t a t a = 0
n= 0
f o r ( i i n 1 : 2 ) {

# y = i + 10

n = n + 1
a k a i k e s _ s i x <− l i s t ( )
s s v = 9999
Good_RV <− l i s t ( )
nv=0

# T h i s f o r i s t o o r d e r t h e t r e e − e q u i v a l e n t c l a s s e s and 23040 are t h e
number o f R v i n e s f o r 6 nodes

f o r ( j i n 1 : 2 3 0 4 0 ) {

#3
i f ( c a t a l o g _6 v i n e s [ j , 2 ] == y ) {

p<− 6* j
q<− p − 5

mrv<− as . matrix ( m a t r i c e s _6 v i n e s [ q : p , 1 : 6 ] )

# 2 . 1 S t a r t i n g t o s e l e c t t h e b e s t V i n e s
nv = nv + 1
t a t a = t a t a + 1
p r i n t ( t a t a )

t i c ( )
RV<− RVineCopSelec t ( d a t a 6 _HS_ r anks , f a m i l y s e t = NA, mrv ,
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s e l e c t i o n c r i t = "AIC" ,
i n d e p t e s t = FALSE , l e v e l = 0 . 0 5 , t r u n c l e v e l = NA

, se = FALSE ,
r o t a t i o n s = TRUE, method = " mle " , c o r e s = 4)

t o c ( )

# here I save t h e a k a i k e o f EVERY VINE

a k a i k e s _ s i x [ [ nv ] ] <− RV[ [ "AIC" ] ]

# T h i s i f i s t o save ONLY t h e b e s t RVine o f each c l a s s

i f ( s s v > RV[ [ "AIC" ] ] ) {

s s v = RV[ [ "AIC" ] ]
Good_RV <− RV

}
e l s e {}

} #3
e l s e {}

#2
}

# I s t o r e t h e b e s t v i n e o f each c l a s s and a l l a k a i k e s f o r each c l a s s ;

#GRV_ s <− summary ( Good_RV )
# f i l e n a m e <− p a s t e ( " RvINE_6_HS_ b e s t _V " , as . c h a r a c t e r ( y ) , " BEST_FIT _ p e r t r e e

. e q u i v . c l a s s . t x t " , sep ="")
# c a p t u r e . o u t p u t (GRV_ s , f i l e = f i l e n a m e )

# OUTPUT #

Akaikes _6_HS [ [ i ] ] <− a k a i k e s _ s i x
Rvine _6_HS [ [ i ] ] <− l i s t ( Good_RV)

#1
}
t o c ( )

# b e s t v i n e

d a t a 6 _HS_ r a n k s 2 = cbind (Tm_ww= d a t a 6 _HS_ r a n k s [ , 5 ] , Ws= d a t a 6 _HS_ r a n k s [ , 3 ] ,
Tm_ t s = d a t a 6 _HS_ r a n k s [ , 6 ] , Hs_ t s = d a t a 6 _HS_ r a n k s [ , 4 ] , Hs_ww= d a t a 6 _HS_

r a n k s [ , 1 ] , WL= d a t a 6 _HS_ r a n k s [ , 2 ] )
names ( d a t a 6 _HS_ r a n k s ) = c ( "Tm_ww" , "Ws" , "Tm_ t s " , " Hs_ t s " , " Hs_ww" , "WL" )

mrv_ hs2 <− matrix ( c ( 6 , 0 , 0 , 0 , 0 , 0 ,
1 , 1 , 0 , 0 , 0 , 0 ,
5 , 5 , 5 , 0 , 0 , 0 ,
4 , 4 , 4 , 2 , 0 , 0 ,
3 , 3 , 3 , 4 , 4 , 0 ,
2 , 2 , 2 , 3 , 3 , 3 ) , 6 , 6 , byrow = TRUE)
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Bes t _RV6_AIC<− RVineCopSelec t ( d a t a 6 _HS_ good2 [ , 1 : 6 ] , f a m i l y s e t = NA, mrv_
hs2 , s e l e c t i o n c r i t = "AIC" ,

i n d e p t e s t = FALSE , l e v e l = 0 . 0 5 , t r u n c l e v e l = NA, se =
FALSE ,

r o t a t i o n s = TRUE, method = " mle " , c o r e s = 4)

t i c ( )
Bes t _RV6_ a i c _ a i c <− R V i n e S t r u c t u r e S e l e c t ( d a t a 6 _HS_ good2 [ , 1 : 6 ] , f a m i l y s e t =

NA, t y p e = 0 ,
s e l e c t i o n c r i t = "AIC" , i n d e p t e s t =

FALSE , l e v e l = 0 . 0 5 ,
t r u n c l e v e l = NA, p r o g r e s s = FALSE ,

weight s = NA,
t r e e c r i t = "AIC" , r o t a t i o n s = TRUE, se

= FALSE ,
method = " mle " , c o r e s = 4)

p l o t t o c ( )

t i c ( )
Bes t _RV4<− R V i n e S t r u c t u r e S e l e c t ( d a t a 6 _HS_ good2 [ , 1 : 4 ] , f a m i l y s e t = NA, t y p e

= 0 ,
s e l e c t i o n c r i t = "AIC" , i n d e p t e s t = FALSE ,

l e v e l = 0 . 0 5 ,
t r u n c l e v e l = NA, p r o g r e s s = FALSE , weight s

= NA,
t r e e c r i t = " t a u " , r o t a t i o n s = TRUE, se =

FALSE ,
method = " mle " , c o r e s = 4)

t o c ( )

summary ( Bes t _RV5)

## 0 0 . F i r s t I need t o t r a n s f o r t h e l i s t i n t o a v e c t o r v i a an easy code

l l <− l e n g t h s ( Aka ikes _6_HS)
Akaikes _6newHS<− l i s t ( )

f o r ( u i n 1 : 2 2 ) {
v <− c ( )
f o r ( r r i n 1 : l l [ u ] ) {

v [ r r ]= Aka ikes _6_HS [ [ u ] ] [ [ r r ] ]
}

Aka ikes _6newHS [ [ u ] ] <− v

}

x<− c ( "V11" , "V12" , "V13" , "V14" , "V15" , "V16" , "V17" , "V18" , "V19" , "V20"
, "V21" , "V22" , "V23" , "V24" ,

"V25" , "V26" , "V27" , "V28" , "V29" , "V30" , "V31" , "V32" )
names ( Aka ikes _6newHS )<− x
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boxp lo t ( Aka ikes _6newHS , x l a b = " Tree− e q u i v a l e n t R e g u l a r Vines " ,
y l a b = "AIC" )

# #######################################################

# ######################## P R E P A R E C L A S I F I C A T I O N
##########

vec <− c ( )
mec <− c ( )
t = 0

f o r ( i i n 1 : l e n g t h ( Akaikes5 _HS) ) {
y = 5 + i
t e t e = 0
f o r ( j i n 1 : l e n g t h ( Akaikes5 _HS [ [ i ] ] ) ) {

t = t + 1
t e t e = t e t e + 1

vec [ t ] = Akaikes5 _HS [ [ i ] ] [ [ j ] ]
mec [ t ] = p a s t e ( " G e n e r a l _ " , as . c h a r a c t e r ( t ) , " _V" , as . c h a r a c t e r ( y ) , " _num

_ " , as . c h a r a c t e r ( t e t e ) , sep = " " )

}

}

r a n k i n g _ Akaikes5 _HS<− cbind ( mec , vec )
r a n k i n g _ Akaikes5 _HS <− r a n k i n g _ Akaikes5 _HS[ order ( r a n k i n g _ Akaikes5 _HS [ , 2 ] ,

d e c r e a s i n g = TRUE) ]
c a p t u r e . o u t p u t ( r a n k i n g _ Akaikes5 _HS , f i l e = " Akaikes5 _HS . t x t " )
save ( r a n k i n g _ Akaikes5 _HS , f i l e = "RANKED_ Akaikes5 _HS . RData " )

# #######################################################

# ##### SAMPLING FOR MULTIVARIATE DESIGN VALUES ######

# b e s t AIC
sample s _RV6_AIC <−RVineSim (10000000 , Bes t _RV6_AIC , U = NULL)
w r i t e M a t ( " samples _RV6_AIC . mat " , s amples _RV6_AIC = samples _RV6_AIC )
# MY BEST
t i c ( )
s ample s _RV6_MYBEST <−RVineSim (20000000 , Bes t _RV6 , U = NULL)
w r i t e M a t ( " samples _RV6_MYBEST2 . mat " , s amples _RV6_MYBEST = samples _RV6_

MYBEST)
t o c ( )
# check wich one i s b e s t

BEST_AIC_ c o r r e l a t i o n = cor ( s amples _RV6_AIC , method = c ( " k e n d a l l " ) )
BEST_my_ c o r r e l a t i o n = cor ( s amples _RV6_MYBEST, method = c ( " k e n d a l l " ) )
data _ c o r r e l a t i o n = cor ( d a t a 6 _HS_good2 , method = c ( " k e n d a l l " ) )

d i f f e r e n c e s _AIC = abs (BEST_AIC_ c o r r e l a t i o n − data _ c o r r e l a t i o n )
d i f f e r e n c e s _my = abs (BEST_my_ c o r r e l a t i o n − data _ c o r r e l a t i o n )
A = EXTREMES_HS_ c o r r e l a t i o n [ , 1 : 6 ]
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c o r r p l o t . mixed ( data _ c o r r e l a t i o n , lower . c o l = " b l a c k " , number . cex = . 7 )
c o r r p l o t . mixed (BEST_my_ c o r r e l a t i o n , lower . c o l = " b l a c k " , number . cex = . 7 )
c o r r p l o t . mixed (BEST_AIC_ c o r r e l a t i o n , lower . c o l = " b l a c k " , number . cex = . 7 )
c o r r p l o t . mixed (EXTREMES_HS_ c o r r e l a t i o n , lower . c o l = " b l a c k " , number . cex =

. 7 )





D
Validation tests for the chosen regular vine

In this appendix, three qualitative tests are performed to validate the selected regular vine-copula model in section
5.6. These are listed below. The results are presented for each test in sections D.1, D.2 and D.3.

• Mass cocentration. The sum of the 6 joint pseudo-observations is compared for observed and modeled
data. The sum provides a value between 0 and 6. If the value is close to 6, all the pseudo-observations
achieve large values. The opposite happens if the sum is close to 0. With this test, we aim to qualitatively
compare the original and the modeled mass concentration.

• Tail dependence. The joint behaviour between the maximum and the minimum pseudo-observation occur-
ring together are compared for the original and the modeled data. The joint behaviour of the maximum
and minimum pseudo-observations gives information on the concept of tail dependence.

• Bivariate observations. Qualitative comparison between the behavior of the pairs of variables which were
explicitly and not explicitly modeled in the vine copula.

D.1. Mass concentration
Despite the difference in size between the original and modeled samples, the results in figure D.1 suggest that
the selected vine-copula model provides a good representation of the original mass concentration. We can see
for example, that the largest concentration occurs for values of between 2.5 and 4.5 for both the original and
modeled data. On another note, the upper tail seems to be well represented by the model. The upper tail is the
most interesting part for the analysis in chapter 5.

D.2. Tail dependence
The results in figure D.2 suggest that neither of the 2 samples exhibit lower or upper tail dependence. Conse-
quently, the model seems to represent the tails of the original data good enough.

D.3. Bivariate observations
Figures D.3a and D.3b present all bivariate observations for all pairs of variables for modeled data and original
data, respectively. In the selected vine-copula model, only 5 of all these pairs are directly present in the first tree
of the regular vine. Hence, with this test we aim to check whether the selected model represents the remaining
pairs good enough. Comparing figures D.3a and D.3b, one can conclude that the modeled data represents well
enough the original data. This might be easier to see in the pairs with the largest correlations which are presented
in the 4 firsts columns for Tmw w , W s, Tmt s and H st s .
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Figure D.1: Figure presenting mass concentration for the sampled data (on the top plot) and original data (on the bottom plot)

Figure D.2: Figure presenting minimum and maximum pseudo-observation that occur together for the sampled data (on the top plot) and
original data (on the bottom plot)



D.3. Bivariate observations 77

(a) Figure presenting all bivariate pseudo-observations for all pairs of vari-
ables for the modeled data

(b) Figure presenting all bivariate pseudo-observations for all pairs of vari-
ables for the original data





E
Error estimation in the probabilities of

exceedance

As mentioned in section 3.4, the true exceedance probabilities are computed with cumulative distributions func-
tions (cdf) rather than from large modeled samples. In the case of regular vine models, the cdf is obtained by
integrating a challenging probability density function (see equation 2.8), which can become computationally
demanding when integrating the density numerically and challenging when integrating it analytically.

In here, we propose a hypothetical case with a regular vine only build with Clayton copulas to provide
an estimation of the error of the multivariate probabilities presented in tables 5.5 and 5.6. The regular vine
tree-structure is the same as for the chosen best vine in section 5.6. This error is provided for analysis with
4, 5 and 6 variables, and consequently, samples from regular vines in 4, 5 and 6 nodes. The AND and OR
probabilities obtained by integrating numerically in 6 dimensions are compared to the ones obtained with the
sampling procedure for the aforementioned hypothetical case, and the maximum absolute error is calculated.
The comparison is made for different number of samples.

Figure E.1: Maximum absolute error of the multivariate probabilities achieved when using the sample method compared to integrating
numerically. The error is presented for different sample sizes (see them in the horizontal axis)

The results in figure E.1 suggest the error is curiously the lowest for all sample sizes in the 5-variate analysis.
The maximum error is achieved in the 4-variate analysis with a sample size of 103. In our application, the
probabilities are calculated with 107 samples. The results in figure E.1 suggest that the maximum error in the
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exceedance probabilities is of 2.00E-04. This is assumed to be acceptable as we are considering univariate
probabilities of 0.001 at the lowest.



F
An approach to plot multivariate distribution

functions in 2D

In this appendix, we explore a way to plot multivariate densities and cumulative distributions in 2D or 3D. The
reader should note that this appendix is part of the recommendations for further research presented in section 7.3.
One of the reasons why advance statistical models are not taken up by the industry is due to their complexity
and abstractism. This might be solved by providing graphical tools to illustrate concepts such as multivariate
distribution functions, which are difficult to imagine.

The main idea would be to portray all the margins of the variables (i.e. axis) in 2D and use the third dimension
to depict the density or the cumulative probability. The most challenging part in this task is to find a way to plot
the n-variate (joint) observations in 2D. Because in reality, these 6 values that compose such joint observation
would intersect in a hyperplane. In here, we propose to plot these (pseudo-)observations in concentric axes that
together would form a semi-circle. This approach is thought to illustrate univariate margins in hypercube units,
such as the ones required by copulas and vine-copulas. At the center of the semicircle one would place the value
0. In the radius of the semicircle, one would place the maximum value which in our case is 1. The axes should
be uniformly spaced in the semi-circle. Then, one would have to unite the axes by the pseudo-observations to
form an area. This method we call the semi-circle approach. An example of this is depicted in figure F.1 for 5
variables (i.e. 5 margins). In this figure we show how can one plot 5-variate pseudo-observations. This example
can be extended to higher dimensions easily.

Figure F.1: Example on how to plot 5-variate pseudo-observations in 2D using concentric axes inscribed in a semicircle

Continuing with the example in 5 dimensions, one can calculate the empirical cumulative distribution with
a (large enough) sample of modeled data. With the approach proposed in here, this could be done using the
area inscribed in the semi-circle by the 5 pseudo-observations. This area should go from 0 to π/2. So when
all pseudo-observations are 0, the area should be 0 and the associated cumulative probability also 0. When all
pseudo-observations are 1, the area should be π/2 and the associated cumulative probability should be 1. The
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axis associated with the cumulative probability is then transformed to a scale from 0 to π/2, or it can also work
vice versa. This area allows one to treat the sets of 5 pseudo-observations as one unit. Using this approach, the
multivariate cumulative function can be plotted in 3D. For example, if all 5 variables would increase with the
same phase and magnitude, their cumulative distribution function plotted using the semi-circle approach would
look similar to the one depicted in figure F.2.

Figure F.2: Example on how a 5-variate cumulative distribution function would look like using concentric axes inscribed in a semicircle
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