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Abstract: Aerodynamic drag force and projected frontal area (A) are commonly used indicators of
aerodynamic cycling efficiency. This study investigated the accuracy of estimating these quantities
using easy-to-acquire anthropometric and pose measures. In the first part, computational fluid
dynamics (CFD) drag force calculations and A (m2) values from photogrammetry methods were
compared using predicted 3D cycling models for 10 male amateur cyclists. The shape of the 3D
models was predicted using anthropometric measures. Subsequently, the models were reposed from
a standing to a cycling pose using joint angle data from an optical motion capture (mocap) system.
In the second part, a linear regression analysis was performed to predict A using 26 anthropometric
measures combined with joint angle data from two sources (optical and inertial mocap, separately).
Drag calculations were strongly correlated with benchmark projected frontal area (coefficient of
determination R2 = 0.72). A can accurately be predicted using anthropometric data and joint angles
from optical mocap (root mean square error (RMSE) = 0.037 m2) or inertial mocap (RMSE = 0.032 m2).
This study showed that aerodynamic efficiency can be predicted using anthropometric and joint angle
data from commercially available, inexpensive posture tracking methods. The practical relevance for
cyclists is to quantify and train posture during cycling for improving aerodynamic efficiency and
hence performance.

Keywords: 3D shape modeling; aerodynamics; computational fluid dynamics; cycling; projected
frontal area; inertial sensors; joint biomechanics; motion capture system

1. Introduction

In road cycling, aerodynamic drag force (or ‘drag’) contributes to 70–90% of the resistance to
the cyclist on level ground [1]. Improving cycling performance is a priority for elite and amateur
cyclists. A wind tunnel is the gold standard for measuring aerodynamic force, drag area, and studying
air flow behavior. However, a wind tunnel is not easily accessible or affordable even for elite
athletes. Several alternative methods for measuring aerodynamic performance in athletes in controlled
environments are described in the literature including photogrammetry [2]; power meters [3]; and air
pressure and speed sensors [4,5]. The approach of computational fluid dynamics (CFD) has been used
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on models of cyclists and bicycles under various conditions to determine the optimum cyclist pose
and selection of equipment and accessories [6–10] as well as the influence of aerodynamics during
professional cycling races [11–13].

To use CFD in the field of cycling aerodynamics, two-dimensional (2D) or three-dimensional (3D)
models of the cyclist and equipment are required. A 3D scanning device provides accurate models,
but state-of-the-art scanning equipment is difficult to access for most athletes. Indirect methods to
predict the 3D shape of a given human using select anthropometric data have been described in the
literature [14–17]. If the 3D model of a cyclist is available, directly or indirectly, but not in a desirable
pose configuration, it is possible to re-pose the model using animation techniques [18,19]. In this
study, we used 3D models obtained from an algorithm [16,17] and re-posed them to various pose
configurations to investigate if the cyclist aerodynamic drag could be predicted by a combination of
anthropometric data and CFD analyses.

Aerodynamic drag force F (N) on an object moving through a fluid is given by

F = 0.5 · CD · ρ · v2
· A, (1)

where CD is the drag coefficient, a dimensionless quantity that is a function of Reynold’s number,
Mach number, the form drag and skin friction of the object (CD is generally found from experiment);
ρ is the air density at a given pressure and temperature (kg/m3); v is the velocity of air relative to the
object (m/s); and A is the projected frontal area of object (m2).

Projected frontal area of the cyclist is the biggest factor influencing drag during cycling (up to
90%) [8] where the cyclist accounts for up to 70% and the rest is accounted for by the bicycle [20].
The importance of the projected frontal area as a key metric for cycling performance has been stressed
in the literature, with several methods proposed for measurement and estimation including (digital)
photogrammetry, planimetry, wind tunnel tests, and field tests [21–25].

The projected frontal area of a cyclist depends upon the shape and pose of the cyclist. The shape
of a human can be estimated from anthropometric measures or features as described in [26]. The pose
of a human can be uniquely described by a set of joint angles. In this study, we combined the shape
and pose information to ultimately predict the projected frontal area of a cyclist. We did this by first
predicting the 3D shape of 10 participants in a standardized (standing) pose using basic body measures.
3D shapes of the participants in the cycling pose will be produced using joint angle information using
motion capture (mocap). From these final shapes, the projected frontal area can be calculated.

Anthropometric measures in this study were recorded manually by the researchers. Joint angles
were recorded using two mocap techniques: optical and inertial. Optical mocap systems are considered
the gold standard for human mocap [27], but it is typically restricted to indoor settings. Bike-fitting and
aerodynamic analysis usually take place in indoor environments, where several outdoor conditions are
neglected [28]. Analyzing cycling movements in realistic outdoor circumstances would be an added
value. Therefore, mocap using inertial measurement units (IMUs), which have been shown as reliable
for human mocap, can be used for this application [27]. The advantage of inertial mocap is that full
body joint angles in multiple degrees of freedom can be provided continuously and analyzed directly
in real-time or afterward.

The aim of this study was to investigate low-cost and easy-to-deploy methods to predict the
drag and projected frontal area of cyclists using rudimentary anthropometric and joint angle data.
Using information that is easy to acquire even by untrained personnel, we provide a proof of principle
that aerodynamic analyses and pose-training can be done at home, indoors, potentially outdoors,
and for various pose configurations at scale.



Appl. Sci. 2020, 10, 8635 3 of 16

2. Materials and Methods

2.1. Participants

Ten male amateur cyclists were recruited in the study (n = 10, age = 32.5 ± 6.7 years,
body height = 176.1 ± 5.8 cm and body mass = 74.6 ± 15.1 kg). Ethical approval and consent
were obtained prior to the measurements (17/21/261, Ethics Committee, University of Antwerp,
Antwerp, Belgium). Table 1 lists the anthropometric parameters collected from tape measures by one
researcher corresponding with the ISAK guidelines as well as ISO 8559 guidelines.

Table 1. List of participant data that was recorded from measurements and optical and inertial
motion capture.

Anthropometric Data (cm) 2D Joint Angles
Optical Mocap (◦)

3D Joint Angles
Inertial Mocap (◦)

Body Height Shoulder Breadth (acromion) Left Knee Left Knee
Chest Circumference Hip Breadth (standing) Left Elbow Left Shoulder

Under-Bust Circumference Chest Circumference (scye) Left Hip Left Elbow
Waist Circumference (minimum) Hip Circumference Back Right Knee
Waist Circumference (trousers) Arm Circumference (scye) Head Right Shoulder

Neck Circumference (shirt) Shoulder Breadth (bideltoid) Left Shoulder Right Elbow
Neck Circumference (tight, hull) Hip Breadth (sitting) Neck (2D)

Lower Arm Circumference (mid, Hull) Upper Arm Length Left Hip
Biceps Circumference Hull Lower Arm Length Right Hip

Spine-Shoulder Length Sternum to Femur Length Pelvis
Arm Length Upper Leg Length Left Wrist

Back Length (shirt) Lower Leg Length Right Wrist
Torso Length (shirt) Body Mass (kg) Chest

Age (years) Gender (m/f)

2.2. Optical Mocap

The camera of a smartphone (Lenovo Group Limited, Hong Kong, China) was used to record
2D angles of the participant. The camera, which could record pictures as well as videos (at 30 Hz),
was positioned on the left-hand side of the participant at a fixed distance, with the lens parallel to
the sagittal plane of the participant. The images and videos were analyzed for joint angles using an
open-source image-processing algorithm (Detectron, Facebook AI Research, Facebook Inc., Cambridge,
MA, USA) to identify the human in frame, the major joints of the skeleton, and the lines between the
joints. The joint centers were defined as (Figure 1a): ankle joint as the lateral malleolus, knee joint as
the patella, hip joint as the greater trochanter, shoulder joint as the acromion, elbow joint as the lateral
epicondyle, and wrist joint as the lunate bone. Based on the joint coordinates, flexion/extension angles
were determined (Table 1). Joint angles of the right-hand side of the participants were provided by the
algorithm, but were excluded from analyses to avoid unreliable data induced by parallax errors.

The projected frontal area of the participants was captured using an infrared depth-sensing camera
(Intel® RealSense™Depth Camera D415, Intel Corporation, Mountain View, CA, USA) with a sampling
frequency of 3 Hz placed in front of the cyclist (Figure 2). Furthermore, an average of ten iterations
was calculated to eliminate the influence of noise and different pedal position [29].



Appl. Sci. 2020, 10, 8635 4 of 16

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 16 

 

 

(a) (b) 

Figure 1. (a) A participant in the time trial position on the stationary bike. The angles obtained from 

the optical mocap are illustrated. The wearable inertial sensors on the participant can also be seen. (b) 

A single sensor unit. 

The projected frontal area of the participants was captured using an infrared depth-sensing 

camera (Intel® RealSense™ Depth Camera D415, Intel Corporation, Mountain View, CA, USA) with 

a sampling frequency of 3 Hz placed in front of the cyclist (Figure 2). Furthermore, an average of ten 

iterations was calculated to eliminate the influence of noise and different pedal position [29]. 

 

Figure 2. Screenshot of projected frontal area camera capture interface. A cyclist is seen in RGB (red 

green blue) picture format and their projected area is shown as a silhouette. A calibration step is 

required to eliminate the floor from the projected frontal area calculation. The area in m2 is also 

present in the interface and is recorded at 3 Hz. 
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consisted of accelerometers, gyroscopes, and magnetometers. The accuracy of the IMUs was 2° for 

yaw, pitch, and roll rotations, whereas the accuracy of the whole system was optimized by 

considering several factors such as a correct steady pose, a tight fit of the sensors during the 
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Figure 1. (a) A participant in the time trial position on the stationary bike. The angles obtained from
the optical mocap are illustrated. The wearable inertial sensors on the participant can also be seen.
(b) A single sensor unit.
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Figure 2. Screenshot of projected frontal area camera capture interface. A cyclist is seen in RGB (red green
blue) picture format and their projected area is shown as a silhouette. A calibration step is required to
eliminate the floor from the projected frontal area calculation. The area in m2 is also present in the interface
and is recorded at 3 Hz.

2.3. Inertial Mocap

The inertial sensors comprised of a set of 11 wearable units (Figure 1b) (Notch Interfaces Inc., Brooklyn,
NY, USA) strapped to various body segments of the participant (Figure 3). The units consisted of
accelerometers, gyroscopes, and magnetometers. The accuracy of the IMUs was 2◦ for yaw, pitch, and roll
rotations, whereas the accuracy of the whole system was optimized by considering several factors such as a
correct steady pose, a tight fit of the sensors during the measurements, and avoiding magnetic interference
from the environment. They were calibrated to continuously obtain 3D joint angle measurements of knees,
hips, shoulders, elbows, wrists, neck, pelvis, and chest (full list in Table 1). Hip and pelvis joint angles were
excluded from the analysis since the hip strap moves during cycling due to unavoidable contact with the
upper legs and this induced errors in recording angles.
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Figure 3. A participant photographed in three poses as instructed in the Static protocol (a) TT, (b) Hoods,
and (c) Drops.

2.4. Protocol

Participants were asked to follow a series of instructions on a road bike (Btwin, Decathlon S.A.,
Lille, France) fixed on a stationary mount. All participants were provided with tight-fitting clothing.
The experiment consisted of:

1. Static protocol, where the instruction was to maintain three poses (Figure 3) for at least five
seconds each, with the right leg extended to the bottom of the pedal stroke:

• Time Trial (TT): race pose with arms resting horizontally on the clip-on handlebars;
• Hoods: relaxed pose with hands on the hoods of the handlebar; and
• Drops: race pose with hands on the dropped handlebars.

For each pose, a picture with the sagittal camera and a frontal camera were simultaneously recorded.

2. Dynamic protocol, which lasted roughly two minutes per participant. The cyclists were instructed
to pedal at a cadence of roughly 1 Hz and position their hands on the handlebar hoods and:

• bend their back from the highest possible to lowest possible inclination and back over 30 s;
• pronate knees from closest to farthest from top tube and back over 30 s;
• extend neck from lowest possible to highest possible angle and back over 30 s; and
• proceed to perform 30 s of comfortable cycling.

Along with a video recording at a rate of 30 frames per second from the sagittal camera, the projected
area (3 Hz) and joint angles from IMUs were registered continuously (10 Hz).

2.5. Procedure

The measurements from the static protocol were used to investigate the relation between CFD
drag force and benchmark projected frontal area. Predicted 3D models of the participants in a standing
pose were obtained using anthropometric measures. These models were re-posed to the cycling pose
using the angles from the optical mocap and were used in CFD analysis to calculate drag force.

Second, the data from the dynamic protocol were used to perform a regression analysis with the
aim to predict the projected frontal area based on anthropometric data and joint angles. Figure 4 shows
an overview of the methods.



Appl. Sci. 2020, 10, 8635 6 of 16
Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 16 

 

Figure 4. Schematic diagram of the methods evaluated in this study. 

2.5.1. 3D Models 

The models were generated using a statistical shape model using the methodology described in 

the literature [17]. The method utilizes a partial least square regression between body measurements 

and principal component analysis (PCA) components. Using this method, given a set of 

measurements (in this study: age, gender, body height, body mass, chest circumference, hip 

circumference maximum, and arm length), we can obtain PCA components that can be used to 

predict a 3D shape of a human body. The database and body measurements are described in [16]. 

Each model is a combination of 100 (PCA) components with a corresponding weight (or ‘score’) 

attached to each component. The model provides the best-fit human shape for the given inputs. The 

physical meaning of individual components is not readily apparent, but the relevant modes will be 

discussed in the Results section. 

The 3D models were obtained in a standardized standing ‘A-pose’ (Figure 5). Since all models 

in the statistical shape model were registered to match certain body landmarks (i.e., joints), it was 

easy to rig a skeleton in the 3D models (Figure 6a). The skeleton was based on the models proposed 

by the International Society of Biomechanics and was optimized using large datasets of 3D human 

scans in different poses. 

 

Figure 5. A front-view of the standing 3D models generated of the 10 participants. 

Figure 4. Schematic diagram of the methods evaluated in this study.

2.5.1. 3D Models

The models were generated using a statistical shape model using the methodology described in
the literature [17]. The method utilizes a partial least square regression between body measurements
and principal component analysis (PCA) components. Using this method, given a set of measurements
(in this study: age, gender, body height, body mass, chest circumference, hip circumference maximum,
and arm length), we can obtain PCA components that can be used to predict a 3D shape of a human
body. The database and body measurements are described in [16]. Each model is a combination
of 100 (PCA) components with a corresponding weight (or ‘score’) attached to each component.
The model provides the best-fit human shape for the given inputs. The physical meaning of individual
components is not readily apparent, but the relevant modes will be discussed in the Results section.

The 3D models were obtained in a standardized standing ‘A-pose’ (Figure 5). Since all models in
the statistical shape model were registered to match certain body landmarks (i.e., joints), it was easy to
rig a skeleton in the 3D models (Figure 6a). The skeleton was based on the models proposed by the
International Society of Biomechanics and was optimized using large datasets of 3D human scans in
different poses.

Using joint angles from the optical mocap, the standing models were re-posed to TT, Hoods,
and Drops poses (Figure 6b,c) using animation software (Blender, Blender Foundation, Amsterdam,
The Netherlands). The skeleton in the optical mocap method had fewer bones compared to the skeleton
of the predicted 3D models. The angles from the optical mocap were accordingly adjusted to fit the 3D
model skeleton (e.g., the back was modeled as one straight bone as a simplification). We assumed
that the upper body of the 3D models were symmetric, as instructed to the participants. Hence,
the left-hand side upper body angles were sufficient for re-posing these models to the unique pose of
every participant. The pictures were used as a reference when required.

Projected frontal area of the 3D models was calculated using drawing software (PTC Creo, PTC Inc.,
Boston, MA, USA). This data will be compared to the benchmark projected frontal area obtained from
the depth sensing camera.
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Figure 6. (a) (Left) The body joints used to define the rig/skeleton are listed. (Right) The rig in the
standing model of one participant and the rig adapted to the Drops pose of the same participant.
(b) 3D shapes of the participant in TT, Hoods, and Drops poses. (c) Front view of the 3D models of one
participant in the same poses as above.
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2.5.2. Computational Fluid Dynamics (CFD) Analysis

CFD calculations on the 3D models were conducted (Star CCM+, Siemens Industry Software Inc.,
Plano, TX, USA) in a domain that consisted of a wind tunnel of 6.5 m × 2.5 m × 2.5 m (L × B × H),
modeled after a wind tunnel facility [30]. Cyclist models were positioned at 2 m from the inlet of the
test section, with the models ‘facing’ the opposite direction of the wind. The surface of the objects was
assumed to be uniform and smooth. The bicycle was not included in the CFD domain. We adopted
parameters based on previous literature [1], which are summarized in Table 2.

Table 2. List of parameters for computational fluid dynamics (CFD) analysis.

Parameter Value

Air Viscosity 1.81 × 10−5 Pa·s
Inlet Velocity/ Air Speed U∞ (free stream) 16.7 m/s = 60 km/h

Outlet Pressure 0 Pa (static)
Temperature 295.3 K

Relative Humidity 39.9 %
Atmospheric Pressure 100,480 Pa

Saturation Vapor Pressure 269,225.2 Pa
Air Density 1.181 kg/m3

Turbulence Model Shear Stress Transport (SST) k-ω

Meshers
Polyhedral

Surface Remesher
Prism Layer Mesher

Base Cell Size 0.15 m
Prism Layers 5

Reynolds number Re 1.33 × 106

L (dimension of object) <1 m
C, f (skin friction coefficient) 3.46 × 10−3

Wall Shear Stress τ 2.84 × 10−1 m/s
U* (dimensionless velocity) 4.91 × 10−1 m/s

Y (first layer cell height) 0.00281304 m
Y+ 90

δ (prism layer height) 0.039 m

The size of individual cells in the domain determines total cell count, accuracy, and computation
time. For a given domain, a lower base cell size implies higher mesh resolution and accuracy, but implies
longer computational time. To obtain the least base cell size for which reliable drag values can be
calculated, a mesh convergence study was conducted. We investigated drag for one cyclist model
in the domain over 700 iterations each with base cell sizes of 0.1500 m, 0.1000 m, 0.080 m, 0.060 m,
0.050 m, and 0.0039 m. The results of the mesh convergence study revealed that the average drag for
the last 50 iterations for the model in each of these domains was 32.75 N, 33.53 N, 31.96 N, 32.23 N,
33.97 N, and 32.35 N. It was concluded that the drag force obtained from the calculations at a base cell
size of 0.15 m (~200,000 cells) can provide reliable results for the sake of obtaining trends in drag area
at a significantly lower computational time (an average duration of 90 min per simulation, which is
roughly 70% faster than the same for the finest mesh). To obtain a high degree of absolute accuracy
of modeling the air flow (e.g., a detailed visualization of the wake of the cyclist), we recommend a
higher resolution in the domain. However, the aim of the present study was to estimate drag area and
compare trends therein with values reported in the literature.

2.5.3. Regression Analyses

The regression between the drag force of the 3D models and the projected area from the frontal
camera is a simple least squares method to fit the data.
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For the second part, the projected frontal area and joint angles data were first synchronized using
a hand raise at the beginning of the dynamic protocol. At this point, the projected frontal area reached
a maximum, which was matched with a maximal back/chest and elbow flexion angle. Furthermore,
the projected frontal area had a sample rate of 3 Hz, whereas it was 30 Hz for the optical mocap and
10 Hz for the inertial mocap. To align the data, average values of one-second intervals were used.
One subject was excluded due to an error in projected frontal area calculation, resulting in a total of
914 data points in the final regression analyses.

Two linear regression models were generated to predict the projected frontal area based on
different input data, consisting of

(1) anthropometric data (Table 1), 2D joint angles from the optical mocap system (Table 1), and the
weights of the first 20 principal components of body shape; and

(2) anthropometric data and joint angles from the inertial mocap system (Table 1).

The stepwise linear regression method (SPSS Statistics 27, IBM, Armonk, NY, USA) was used to
define the optimal model. From the optimal model, the importance of each included variable in the
equation was analyzed using standardized beta coefficients.

To determine the accuracy of both regression models, the equation was cross-validated by
subsequently leaving the data of one subject out to form a linear regression equation and applying these
results to the excluded subject, repeating this procedure for each subject. The cross-validated prediction
values were compared with the actual projected frontal area to determine the intraclass correlation
coefficient (ICC) [31,32]. The two-way-random ICC-model, type absolute agreement, was calculated
for the entire dataset. Furthermore, the root mean square error (RMSE) (m2) projected frontal area
between the prediction and actual values was calculated as well as the relative error of the predicted
value compared to the actual projected frontal area.

3. Results

3.1. Drag Force versus Projected Frontal Area

Aerodynamic drag force from the CFD simulations of the 3D models of all 10 participants is
shown in Table 3. Using these and the corresponding projected frontal area, drag coefficients CD

can be obtained from Equation (1) as air density and wind velocity are known and are constant
(Table 2). These CD values are also listed in Table 3. Drag force is plotted with projected frontal
area in Figure 7. This area was compared with area from the depth camera and the comparison
per pose is shown in Figure 8. The regression analysis of drag and corresponding area for all poses
(3 poses × 10 participants = 30 data points) yielded a coefficient of determination of R2 of 0.72.

Table 3. Drag force of the 3D models from the Static protocol. CD was obtained by using Equation (1)
and the area from the projected frontal area camera.

Participant 1 2 3 4 5 6 7 8 9 10

TT
Drag (N) 28.79 26.81 27.49 26.94 26.84 29.59 31.30 28.71 29.86 35.71

CD 0.70 0.58 0.64 0.63 0.69 0.72 0.69 0.63 0.76 0.76

Hoods
Drag (N) 37.43 35.99 37.31 44.23 31.80 39.07 45.03 36.13 35.97 41.67

CD 0.74 0.66 0.70 0.81 0.70 0.79 0.78 0.66 0.73 0.75

Drops Drag (N) 32.29 33.15 32.40 32.56 30.07 33.99 35.08 31.32 25.99 40.01
CD 0.66 0.66 0.69 0.65 0.72 0.76 0.69 0.64 0.63 0.76
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Figure 8. Area obtained from the projected frontal area camera (orange) and 3D models (black) are
compared in this figure for (a) TT, (b) Hoods, and (c) Drops. The area is plotted on the y-axis, with units
m2 against the participant numbers on thee x-axis.

3.2. Projected Frontal Area Prediction Based on Anthropometrics and Joint Angles

The regression model to predict the projected frontal area (m2) using anthropometric data (cm),
2D joint angles (◦) from the optical mocap, and the scores associated with the 20 principal components
of the 3D body shape is shown in Equation (2). The regression model based on inertial joint angles is
shown in Equation (3). The adjusted R2 value corresponding to Equation (2) is 0.78 (p < 0.001) and 0.81
(p < 0.001) for Equation (3).

Projected Frontal Area (Optical) = 0.166678 + 0.000505× Back Flexion + 0.000075×
Score6 + 0.005565×Upper Arm Length + 0.000326× Left Elbow Flexion+

0.001023×Neck Circumference (tight)− 0.000188×Head Flexion− 0.00335×Hip
Breadth (sitting) + 0.000805× Left Hip Flexion + 0.000393× Left Knee Flexion−

0.002276× Lower Arm Length + 0.000176× Left Shoulder Flexion,

(2)

Projected Frontal Area (Inertial) = −0.322372 + 0.006888 × Neck Circumference (tight)
−0.000998× Chest Anterior Tilt− 0.00027 × Neck Flexion + 0.002636 × Shoulder

Breadth (Acromion) + 0.005635 × Lower Arm Length + 0.000704 × Chest Lateral Tilt
+0.012827 × Upper Leg Length + 0.000426 × Left Elbow Flexion− 0.00047 × Right

Knee Flexion− 0.000388 × Left Knee Flexion− 0.005606 × Back Length + 0.000708 ×
Chest Rotation− 0.000349 × Right Shoulder Flexion + 0.000296 × Right Elbow

Supination + 0.001107 × Neck Circumference (Shirt) + 0.000187 × Left Shoulder
Internal Rotation + 0.000072 × Right Shoulder Internal Rotation,

(3)

Table 4 shows the beta coefficients for each included variable for both the optical and inertial
regression model. Table 5 shows the accuracy of the regression models after cross validation in terms
of ICC, RMSE, and relative error.
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Table 4. Standardized beta coefficients for the included variables in the regression model based on the
optical and inertial mocap data.

Optical Regression Inertial Regression

Variable Beta coefficient Variable Beta coefficient
Back angle 0.19 Neck circumference (tight) 0.79

Score 6 0.49 Chest anterior tilt −0.80
Upper arm length 0.31 Neck flexion −0.31
Left elbow flexion 0.23 shoulder breadth (acromion) 0.18

Neck circumference
(tight) 0.12 Lower arm length 0.31

Head flexion −0.12 Chest lateral tilt 0.44
Hip Breadth (while

sitting) −0.31 Upper leg length 0.66

Left hip flexion 0.36 Left elbow flexion 0.32
Left knee flexion 0.17 Right knee flexion −0.20

Lower arm length −0.13 Left knee flexion −0.30
Left shoulder flexion 0.09 Back length −0.52

Chest rotation 0.35
Right shoulder flexion −0.27
Right elbow supination 0.34

Neck circumference (shirt) 0.13
Left shoulder internal rotation 0.16

Right shoulder internal rotation 0.09

Table 5. The accuracy of both regression models in terms of ICC, RMSE, and relative error.

Optical Regression Inertial Regression

ICC 0.43 (p < 0.001) 0.51 (p < 0.001)
RMSE (m2) 0.037 0.032

Relative error (%) −0.18 ± 9.98 1.70 ± 8.72

4. Discussion

The results show that the projected frontal area is an indicator of drag force and can be considered
the benchmark for practical purposes in the analysis in this study. Furthermore, the linear regression
analysis indicates that the projected frontal area can be predicted using anthropometric data combined
with joint angle data, providing several practical applications in cycling.

4.1. Drag Force versus Projected Frontal Area

The instructed poses ranged from least aerodynamic to most aerodynamic (i.e., TT is more
aerodynamically efficient than Drops, which is more efficient than Hoods) [33]. From Table 3, the drag
values follow this order. The CD values of the participants agree with those found in the literature [21].
Considering that drag force was predicted from the input parameters that contained very simple
anthropometric data (i.e., age, gender, height, weight, chest girth, hip circumference maximum,
and arm length), the R2 value of 0.72 is promising. The angles were also obtained from a low-cost, basic
smartphone camera using an open source algorithm. When compared to the cost of state-of-the-art wind
tunnel measurements or 3D scanners, these results are affordable for the amateur cyclist. The predicted
drag force can, for instance, be compared across poses for evaluating the relative ranking of these
on-bike poses. In this way, the notion of a ‘virtual wind tunnel’ that enables aerodynamic bike fitting,
pose evaluation, and on-bike posture training can be introduced to amateur cyclists.

The 3D models were not identical replicas of the shapes of the participants. The other
anthropometric data (up to 15) of the participants in Table 1 were not always an exact match with those
of the 3D models (for instance, forearm length was different for all participants). The models were
generated considering the shape data of thousands of human shapes. Hence, individual differences are
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expected. For future research, we recommend evaluating the methods proposed in this study with 3D
shapes obtained from other algorithms to predict human shape in motion [34–37]. For instance, these
state-of-the-art algorithms can also accurately model the soft tissue deformation, especially around
joints with extreme flexion.

The image-processing algorithm Detectron can capture 2D angles reliably. Hence, we considered
the left-hand side angles in our methods and we assumed that the left and right upper body were
symmetric. However, there is the chance of parallax error despite the best efforts from researchers and
participants to align with the camera. Additionally, the method of modeling the head angle was not
the same in the skeleton of the 3D model (Figure 6a). In cycling aerodynamics, the head (and helmet)
is one of the most important factors of a cyclist’s aerodynamic posture. The sensitivity of the head is
suspected to be a contributing factor for the discrepancies in the drag values in the TT pose, which
did not have as good a correlation with the projected frontal area as the other poses. Whether the
discrepancies in the drag of the models in the TT pose are due to the soft tissue deformations or due to
the sensitivity of the various body segments in the extreme position are to be investigated.

The area obtained from the projection of 3D models did not include the bicycle, but the projected
frontal area camera recorded total projected area of the bike and cyclist combination. The bicycle alone
was found to be 0.15 m2. Hence, the area from 3D models was expected to be lower than the camera
values by around 0.15 m2. However, the area from 3D models was consistently higher. However,
the error seemed to be systematic, as observed in Figure 8. This leads us to believe that this could be
due to an offset error in the camera calibration.

Area is a strong indicator of drag and can be considered the benchmark for practical purposes
in the analysis in this study. For future research, we recommend comparison of CFD drag with gold
standard wind tunnel drag to validate the methods described in this study. As mentioned in the
Materials and Methods, the CFD predictions can become closer to ground truth drag with a more
detailed mesh, longer domain, and accurate modeling of surface roughness (bike, clothes, helmets,
accessories, etc.).

4.2. Projected Frontal Area Prediction Based on Anthropometrics and Joint Angles

Furthermore, this study investigated the opportunities to predict the projected frontal area as an
indicator of aerodynamic drag using several body dimensions and joint angles. Previous research
showed the correlation between projected frontal area and several joint angles [38], which indicates
the opportunities to link aerodynamic efficiency and mocap. The optical regression method uses 2D
joint angles from pictures, added with scores of the parametric 3D body shapes and anthropometric
measurements. The inertial regression method provides the same anthropometric data, added with
more extensive 3D joint angles data from IMUs.

The optical model uses 11 variables to predict the projected frontal area, where the inertial mocap
model includes 17 variables. Regarding anthropometric data, the tight neck circumference and lower
arm length are included in both regression models, whereas the upper arm length (optical model)
and the neck circumference (inertial model) have the biggest influence on the projected frontal area.
The change in body shape corresponding with principal component (or ‘mode’) #6 has the biggest
influence on predicting projected frontal area (beta coefficient 0.49), where other components were not
included in the regression model. From Figure 9, mode 6 appears to be linked with the upper body
girth and the width of the upper legs.
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Figure 9. The weight associated with mode #6 of the statistical shape model had the highest influence
in Equation (2). From visual inspection, mode #6 appears to be linked with the upper body girth and
the width of the upper legs. This figure shows the +3σ (left) and −3σ (right) of mode #6.

Regarding joint angles, previous studies indicated that torso, shoulder, head, and elbow angle
have the most considerable influence on aerodynamics [39,40], which were all included in our models.
The hip flexion angle had the highest beta coefficient for the optical model. However, the hip angle
was excluded in the inertial mocap analysis due to moving of the strap during cycling, which causes
unreliable data. This issue can be solved by using double-sided tape to attach the inertial sensor directly
on the hip-joint level or using the sensor at the rear rather than front of the participant. It could be an
improvement to use a similar method for the legs as well, since the straps should be really tightened to
prevent from coming loose, which can be impeding or annoying for the participant during cycling.

Including the back/chest angle, elbow flexion angle, and shoulder flexion angle in the regression
models is obvious since these angles determine the position of the upper body. The higher these angles,
the more upright the position and the higher the projected frontal area. In both regression models,
joint angles are more used to predict the aerodynamics compared to anthropometric data, since they
also consider the movement during cycling, where anthropometric data can only be used to predict the
general influence on the projected frontal area independent of the cycling pose.

The inertial regression model includes 3D joint angles, but the added value in predicting the
projected frontal area is limited, since only the lateral tilt and rotation of the chest and rotation of
the elbow and shoulder are included. To improve the accuracy of both models, analyzing regression
models using relative values compared to the pose with the minimal projected frontal area as a
reference pose was considered, but did not result in improved accuracy. Furthermore, logarithmic and
exponential models can be used in future studies to optimize accuracy. Finally, combined effects of
anthropometric data can be worth considering (e.g., multiplication of body height and weight can be
an approach of the shape of the body).

The accuracy of both models is equivalent, where the inertial mocap model has a slightly higher
accuracy in general. The results of the cross-validation showed an RMSE of 0.037 m2 for the optical
model and 0.032 m2 for the inertial mocap model. Each step in the process of predicting the projected
frontal area induces possible errors. Anthropometric data are obtained by hand measurements by one
researcher, which means that the error in this step is negligible. The accuracy of the pictures and videos
from the side camera is dependent on the visibility of joints that are used to calculate 2D angles and
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can be neglected in this study design since the correctness of joint angles is checked by the researchers.
The highest inaccuracy occurred for the IMUs, with a possible error of 1 to 2◦ for an individual sensor.
The calibration, placing of sensors, and magnetic interference can cause even more considerable errors
for full body 3D joint angles.

However, the accuracy of the regression models indicates that both models can have advantageous
applications. The inertial mocap model can provide an estimation of the projected frontal area without
the use of any software or postprocessing method, which means that it can be used for real-time
outdoor estimating of the aerodynamic quality of a certain cycling pose.

5. Conclusions

Drag force and projected frontal area are two commonly used metrics in evaluating the aerodynamic
efficiency of a cyclist. This study investigated low-cost methods to estimate these two quantities
using easy to acquire anthropometric measures, CFD analyses, a smartphone camera in combination
with open-source optical mocap, and inertial mocap from commercially available plug-and-play
wearable sensors. Drag calculations were strongly correlated with benchmark projected frontal area
measurements (R2 = 0.72). Projected frontal area can accurately be predicted using anthropometric
data and joint angles from optical motion capture (RMSE = 0.037 m2) and inertial measurement units
(RMSE = 0.032 m2). These methods have practical relevance for amateur as well as elite cyclists:
crucially, the training toward an optimized aerodynamic posture with the goal to improve performance.
An individual cyclist can compare several poses to determine the relative aerodynamic efficiency of a
given pose without accessing expensive wind tunnel facilities or expensive 3D scanners. The methods
can be implemented in indoor cycling as an addition to indoor training platforms to provide real-life
effects of posture and movement changes of the cyclist with the aim to enable real-time analysis of the
biomechanical and aerodynamic effects and hence has added value over some current commercial
offerings [41,42]. Furthermore, this method can potentially be employed in outdoor cycling settings
given the portability of the inertial mocap system, where real-time estimations of the aerodynamic
efficiency can be provided during training or for analysis afterward. This can be interesting for
professional riders to observe how accurately they can retain their optimal aerodynamic pose for long
durations or for amateurs to provide an indication of the effect of different cycling poses.
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