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Abstract

Background: A lifelogs-based wellness index (LWI) is a function for calculating wellness scores based on health behavior
lifelogs (eg, daily walking steps and sleep times collected via a smartwatch). A wellness score intuitively shows the users of smart
wellness services the overall condition of their health behaviors. LWI development includes estimation (ie, estimating coefficients
in LWI with data). A panel data set comprising health behavior lifelogs allows LWI estimation to control for unobserved variables,
thereby resulting in less bias. However, these data sets typically have missing data due to events that occur in daily life (eg, smart
devices stop collecting data when batteries are depleted), which can introduce biases into LWI coefficients. Thus, the appropriate
choice of method to handle missing data is important for reducing biases in LWI estimations with panel data. However, there is
a lack of research in this area.

Objective: This study aims to identify a suitable missing-data handling method for LWI estimation with panel data.

Methods: Listwise deletion, mean imputation, expectation maximization–based multiple imputation, predictive-mean
matching–based multiple imputation, k-nearest neighbors–based imputation, and low-rank approximation–based imputation were
comparatively evaluated by simulating an existing case of LWI development. A panel data set comprising health behavior lifelogs
of 41 college students over 4 weeks was transformed into a reference data set without any missing data. Then, 200 simulated data
sets were generated by randomly introducing missing data at proportions from 1% to 80%. The missing-data handling methods
were each applied to transform the simulated data sets into complete data sets, and coefficients in a linear LWI were estimated
for each complete data set. For each proportion for each method, a bias measure was calculated by comparing the estimated
coefficient values with values estimated from the reference data set.

Results: Methods performed differently depending on the proportion of missing data. For 1% to 30% proportions, low-rank
approximation–based imputation, predictive-mean matching–based multiple imputation, and expectation maximization–based
multiple imputation were superior. For 31% to 60% proportions, low-rank approximation–based imputation and predictive-mean
matching–based multiple imputation performed best. For over 60% proportions, only low-rank approximation–based imputation
performed acceptably.

Conclusions: Low-rank approximation–based imputation was the best of the 6 data-handling methods regardless of the proportion
of missing data. This superiority is generalizable to other panel data sets comprising health behavior lifelogs given their verified
low-rank nature, for which low-rank approximation–based imputation is known to perform effectively. This result will guide
missing-data handling in reducing coefficient biases in new development cases of linear LWIs with panel data.

(JMIR Med Inform 2020;8(12):e20597) doi: 10.2196/20597
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Introduction

Background
Smart wellness services are designed to help individuals monitor
their own wellness through smart devices, including
smartphones and smartwatches [1]. Reports indicate that these
services will see exponential growth alongside continued smart
device penetration and the increasing size of the wellness market
[2]. Their popularity is further evidenced by the high number
of mobile health apps, with around 325,000 available in app
stores in 2017 [3,4].

Smart wellness services can collect various health behavior
lifelogs through the aid of smart devices [5]. For example,
smartwatches, such as Fitbit, can record daily walking steps,
total distances, and the number of sleeping hours [6], while
smart patches, such as HealthPatch, can monitor heart rate,
breathing rate, skin temperature, posture, number of walking
steps, activity patterns, and sleep habits [7]. There are also
devices for infants, such as Owlet smart socks, that send the
child’s vital signs to their parents via smartphones, including
information on heartrate, oxygen level, skin temperature, sleep
quality, and sleeping position [8].

Existing smart wellness services utilize health behavior lifelogs
to provide users with detailed records about health behaviors
[9]. Fitbit provides a smart wellness service that primarily shows
users detailed activity records (eg, daily walking steps), exercise
habits (eg, type, time, and duration), sleep information (eg, start
and end times), and dietary facts (eg, daily calorie intake). By
focusing on the details of each health behavior, existing smart
wellness services have a limitation in supporting users to easily
identify their aggregate condition from multiple health
behaviors. Users must synthesize the information, making it
difficult to monitor overall progress.

A lifelogs-based wellness index (LWI), a function that
transforms health behavior lifelogs into wellness scores for
smart wellness service users, resolves this limitation [10]. The
wellness scores quantitatively represent how well the user meets
relevant recommended health behaviors. Such information,
including a user’s current or past wellness scores, wellness score
progress over time, and comparisons of their wellness scores
[11], can be offered by smart wellness services. According to
Platt et al [12], a wellness index is a critical feature of wellness
apps for younger demographics. The utility of LWIs is thus
expected to stimulate new LWI development .

An LWI can be developed through 3 key phases: definition,
estimation, and assessment [10,11]. The definition phase refers
to the selection of the LWI function type and a model for
estimating the function that consists of behavior variables and
a proxy variable as its independent variables and dependent
variable, respectively. The behavior variables are potential
constituents of an LWI, while the proxy variable is used in place
of wellness scores, immeasurable during the development
process. The estimation phase refers to the process of estimating

the coefficients of the behavior variables in LWIs by collecting
and preprocessing data, which are then fit with the estimation
model. The assessment phase refers to the assessment of LWI
generalizability and utility for users.

LWI estimation can lead to the reduction of coefficient biases
through a panel data set of health behavior lifelogs. A panel
data set follows a given sample of participants over time, thus
providing multiple observations for each participant. Existing
panel data analysis methods (eg, 1-way random effects
regression) can only be applied to panel data sets. These methods
can reduce biases in the coefficients by controlling for
heterogeneity across participants, which is caused by unobserved
variables [13].

A panel data set comprising health behavior lifelogs will likely
contain large proportions of missing data. Such a data set is
collected based on everyday user activities and is therefore
exposed to various random events that result in missing data.
For example, users may forget to wear smart devices or to record
health behavior lifelogs, and the smart devices themselves will
no longer record health behavior lifelogs when batteries are
depleted. These random events often lead to large proportions
of missing data. For example, missing data accounted for 18%
of a panel data set in an LWI development case [10]. This rate
was considered high considering that participants received
reminders for the data collection.

Missing data can lead to 2 severe problems when attempting to
estimate LWI coefficients. First, it can introduce biases to the
coefficients [14,15]. This leads to low LWI generalizability for
users. Second, most existing data analysis methods are only
applicable to complete data sets (ie, data sets without missing
data). Thus, incomplete data sets must be modified into complete
ones [16]. A variety of missing data handling methods exist to
address these problems, the choice of which becomes
increasingly significant as the proportion of missing data
increases [17]. However, few studies have identified which
existing method is suitable for handling missing data in a panel
data set that is composed of health behavior lifelogs.

This study identified a suitable method for LWI estimation with
panel data based on an examination of 6 representative
missing-data handling methods: listwise deletion, mean
imputation, expectation maximization–based multiple
imputation, predictive-mean matching–based multiple
imputation, k-nearest neighbors–based imputation, and low-rank
approximation–based imputation. These were selected from
common missing-data handling methods from previous studies,
specifically because they represented possible missing-data
handling approaches in the context of LWI estimation.

The 6 abovementioned missing-data handling methods were
comparatively evaluated for various missingness proportions
of a panel data set by simulating an LWI development case
originally presented by Kim et al [10]. The case estimated the
coefficients in a linear LWI with a panel data set composed of
health behavior lifelogs. Such cases are expected to become
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prevalent because linear functions help users understand how
changes in each behavior variable influence their overall
wellness scores [18]. This advantage of linear LWIs enables
users to obtain 2 types of valuable insights. First, users can
easily see which behavior variables substantially decrease or
increase their wellness scores, thus motivating them to manage
those variables. Second, users can create optimized plans for
improving their wellness scores based on the relative effects of
each behavior variable. Linear functions are also already
prevalent in existing wellness-related indexes (eg, [10,19,20]).

Missing-Data Handling Methods
Missing-data handling can be divided into 4 approaches,
including complete case analysis, single imputation, multiple
imputation, and joint model-based imputation (Figure 1).
Complete case analysis excludes observations with missing
values when analyzing data [21]. Single imputation produces
only one complete data set by imputing missing values [22].
Multiple imputation creates multiple imputed data sets, applies
a statistical analysis model to each one, and ultimately combines
all analysis results to create an overall result [23]. Joint

model-based imputation utilizes different distributions to model
individuals with and without incomplete observations or directly
models the relationship between the probability of a variable
being missing and its missing value [24].

When selecting these 4 approaches, previous studies have used
the missingness proportions and missingness mechanisms of
data sets as major criteria for ensuring adequate selection for
the data sets [25,26]. The missingness proportion is the ratio of
the amount of missing values to the amount of missing and
nonmissing values in the data set. The missingness mechanism
can be divided into 3 types [14], including missing completely
at random, missing at random, and missing not at random. First,
missing completely at random is not related to any nonmissing
or missing values in the data set. Second, missing at random
entails that the missingness is independent of the missing values
and is also conditional on nonmissing values. Third, the
mechanism is missing not at random when the missingness
depends on the missing values. As shown above, Figure 1
outlines the current recommendations for selecting adequate
approaches based on both the missingness proportion and
missingness mechanism.

Figure 1. Existing recommendations for missing data handling.

A panel data set of health behavior lifelogs is likely to contain
5% or more of incomplete observations with a missingness
mechanism similar to missing completely at random. This
property is attributed to a variety of random daily events that
result in missing data. For example, the LWI development case
presented by Kim et al [10] showed an 18% proportion of
incomplete observations even though participants received

interventions reminding them about the need to collect data.
Participants also reported that random daily events resulted in
missing or abnormal data, specifically including issues such as
forgetting to wear a smartwatch or not entering data via the
smartphone app, depleted smartwatch batteries, and data
transmission errors. Based on the flowchart shown in Figure 1,
3 of the missing-data handling approaches may be implemented
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for this property of a panel data set composed of health behavior
lifelogs, including the complete case analysis, single imputation,
and multiple imputation.

The 6 missing-data handling methods presented in Table 1 were
selected to represent the complete case analysis, single
imputation, and multiple imputation [21,27-31]. These methods
are known to yield similar results given low missingness
proportions (eg, less than 5% incomplete observations) [17,32].
The choice of missing-data handling method is known to become

increasingly significant as the missingness proportion increases
[17,32].

However, few previous studies have recommended which of
the 6 missing-data handling methods are suitable for reducing
coefficient biases according to the missingness proportion of a
panel data set composed of health behavior lifelogs. This study
filled that gap in the literature by comparatively evaluating the
LWI coefficient biases of the 6 missing-data handling methods
according to the missingness proportion of exactly such a panel
data set.

Table 1. Representative missing-data handling methods applicable for LWI estimation.

DescriptionApproach and method

Complete case analysis

Excludes all observations with missing values to conduct analysisListwise deletion [21]

Single imputation

Imputes each missing value of a variable with the mean of observed values of the
variable

Mean imputation [21]

Imputes each missing value of a variable based on the observed values of the k-
nearest neighbors

k-nearest neighbor–based imputation [30]

Predicts missing values as a linear combination of a small set of singular vectorsLow-rank approximation–based imputation [29]

Multiple imputation

Draws imputed values from the multivariate normal distribution of the data set esti-
mated by expectation–maximization; multiple imputed data sets are estimated by
repeating the imputation and separately analyzed; analysis results are pooled into
the final result

Expectation maximization–based multiple imputation [28]

Substitutes a missing value with a value randomly from complete observations, with
regression-predicted values that are closest to the regression-predicted value for the
missing value from the simulated regression model; multiple imputed data sets are
estimated by repeating the imputation and separately analyzed; analysis results are
pooled into the final result

Predictive-mean matching–based multiple imputation [31]

Methods

Development Case: LWI for College Students
We previously developed an LWI for college students [10]. As
a component of Onecare, a smart wellness service that supports
individual-level health behavior monitoring for Korean college
students based on their health behavior lifelogs, the index was
developed to calculate daily wellness scores from lifelogs, thus
intuitively showing users whether they were meeting
recommended daily health behaviors. Daily wellness scores
ranged from 0 to 100, indicating the worst and best conditions,
respectively. The index was defined as a linear function

consisting of 7 behavior variables (see Table 2), representing
the critical health behaviors that Korean college students needed
or wanted to manage. All such behaviors were identified based
on expert interviews, target-user group discussions, and a
literature review. As the daily wellness score was immeasurable
during the development process, its proxy variable was also
defined to estimate the index. More specifically, the proxy
variable was the perceived score described in Table 2. Previous
studies have regarded these types of perceived scores as valid
measures for representing health. For example, patient-reported
outcome measures are increasingly used in medical studies to
represent psychometric self-evaluations of patient health [33,34].
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Table 2. Variable descriptions.

Description (value meaning)Category and variable

Behavior variable

Student’s self-rating of the day’s breakfast (or lunch or dinner) based on nutrition (0: skip, 33: low, 66: medium,
100: high)

Breakfast (or Lunch or Dinner)

Whether the student exercises or works out for more than 30 minutes during the day (0: no exercising, 100:
exercising)

Exercise

Percentage indicating a ratio that the total number of walking steps in the day reached 10,000Step achievement

Percentage that the student’s sleep duration reached 7 hours between 6 PM of the previous day and 6 PM of the
current day

Sleep duration achievement

Percentage that the student slept during the golden time, which is 10 PM of the previous day to 2 AM of the
current day

Golden time achievement

Proxy variable

Score that the student determines by evaluating overall condition of their critical health behaviors over the dayPerceived score

To establish an intuitive scoring system, all behavior variables
and the proxy variable were set to range from 0 (worst) to 100
(best) [35]. Each variable was defined to minimize user
participation in the data collection process. From this
perspective, data on the 3 behavior variables (ie, golden time
achievement, sleep duration achievement, and step achievement)
were automatically collected by smartwatches worn by students.
Students also could easily record data on the remaining 5
variables through a smartphone app.

A 1-way random effects regression model was used to estimate
the index coefficients:

where i, t, and k denote the ith student, day t, and kth behavior
variable, respectively; yit is the perceived score of the ith student
on day t; β0 and βk are unknown coefficients; xk,it is the value
of the kth behavior variable observed for the ith student on day
t; μi the unobserved student-specific random effect of the ith

student, is independent and identically distributed, N(0, σμ
2),

and is independent of xk,it; μi controls for the effects of
student-specific heterogeneity on yit and uit, the error term, is

independent and identically distributed, N(0, σu
2).

This regression model was selected for 2 reasons. First, the
index is a linear function. Second, the regression model was set
to control for the unobserved student-specific random effects
on the perceived score. Unobserved (or unmeasured)
student-specific heterogeneity could exist in the regression
model and thus influence the perceived score. For example,
students may have different levels of interest in wellness, but
these are unobserved in the regression model. However, those
who are more interested in wellness may have higher standards
for health behaviors, thus resulting in lower perceived scores.
As the failure to control for such unobserved student-specific
effects may produce misleading results [36], this was addressed
by adding the effects to the regression model as μi.

The data set used to estimate the regression model was compiled
by collecting data on the daily life activities of 41 students
including 21 undergraduate (15 males and 6 females) and 20
graduate students (15 males and 5 females), all of whom were

attending a university in Korea. Their age statistics were as
follows: average of 24.7, maximum of 30, minimum of 19, and
a standard deviation of 2.8. A total of 1148 observations were
thus collected over a 28-day period (November 3-30, 2015). An
observation consisted of 1 student’s 1-day data for the 8
variables in the regression model.

Data preprocessing excluded the 264 observations including
missing or abnormal values. Notably, students reported that
these observations went through data collection problems (eg,
forgetting to wear smartwatches, neglecting to enter data through
the smartphone app, or depleting their smartwatch batteries).
In this regard, they did not accurately reflect actual daily health
behaviors of students. By excluding these observations, a panel
data set comprised 884 complete observations from 41 students.

The LWI coefficients were estimated by fitting Eq (1) to the
data set. Based on the estimated coefficients, the LWI was
defined as a linear function consisting of the 7 following
behavior variables: 0.151 × Breakfast + 0.163 × Lunch + 0.135
× Dinner + 0.135 × Exercise + 0.095 × Step achievement +
0.219 × Sleep duration achievement + 0.102 × Golden time
achievement.

This study simulated the aforementioned LWI development
case to evaluate biases regarding the regression coefficients that
each of the 6 missing-data handling methods led to, as follows:
the data set of the LWI development case was transformed into
a reference data set that did not include any missing data;
incomplete data sets were simulated by introducing missing
data to the reference data set at various missingness proportions;
the missing-data handling method changed all simulated data
sets into complete data sets by handling their missing data;
regression coefficients were estimated by fitting Eq (1) to the
complete data sets; a bias measure of the missing-data handling
method was calculated by comparing the estimated coefficient
values with coefficient reference values. The coefficient
reference values were estimated by fitting Eq (1) to the reference
data set.

Overview
In this study, we conducted a simulation to calculate a bias
measure for incremental missingness proportions for each of
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the 6 methods. The bias measure was referred to as the
grand-mean of absolute biases (GAB). For each missingness
proportion, GAB was used to compare the coefficient biases,
thus determining which missing-data handling methods was
superior.

Simulation steps are shown in Figure 2. In step 0, a reference
data set was generated by transforming the data set from the
development case. Steps 1 through 6 were then repeated for
each missingness proportion, with each repetition calculating
GAB for the 6 missing-data handling methods.

Figure 2. Research process.
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Step 0: Generating the Reference Data Set
Step 0 was performed to generate a reference data set from the
data set used in [10]. The reference data set included 884
observations of 41 students for 7 behavior variables and a
perceived score variable. The descriptive statistics are provided
in Table 3. Ranges of the variables were transformed from [xmin,

xmax] to [zmin=0, zmax=1] using minimum-maximum
normalization [37]:

This normalization is generally recommended as preprocessing
for data-mining algorithms, including missing-data handling
methods [38].

Table 3. Descriptive statistics of the data set for developing the LWI for college students and regression results for the reference data set.

Regression resultsDescriptive statisticsVariable

P valueEstimate (SE)RangeMean (SD)

N/AN/Aa0-10063.4 (15.9)Perceived score

<.0010.097 (0.014)0-10024.2 (36.2)Breakfast

<.0010.105 (0.013)0-10063.5 (32.3)Lunch

<.0010.088 (0.015)0-10075.5 (27.5)Dinner

<.0010.087 (0.019)0-1005.3 (22.4)Exercise

<.0010.061 (0.015)0-10074.6 (28.6)Step achievement

<.0010.131 (0.021)6.7-10086.0 (19.3)Sleep duration achievement

<.0010.066 (0.018)0-10014.2 (25.1)Golden time achievement

<.0010.305 (0.029)N/AN/A(Intercept)

aN/A: not applicable.

The reference data set also included 40 dummy variables and
a time variable. Here, the dummy variables coded the 41
students, while the value of time variable was determined based
on the dates the data were collected, that is, between the first
and last days of the data collection period (November 3-30,
2015):

The resulting reference data set was 884×49 in dimension, as
it contained all 884 observations mentioned above. Each
observation included values for the 40 dummy variables, time
variable, 7 behavior variables, and perceived score variable for
a particular student on a given day. All variables ranged from
0 to 1.

Step 1: Determining the Missingness Proportion
In Step 1, the missingness proportion was selected to evaluate
the 6 missing-data handling methods. The missingness
proportion increased from 1% to 80% by 1%. An increment of
1% was sufficiently small to observe how the performance of
each method changed according to the missingness proportion.
Previous studies [39-41] have used larger increments, for
example, Hasan et al [39] used 4 levels (10%, 20%, 30%, and
40%), Marshall et al [40] used 5 levels (5%, 10%, 25%, 50%,
and 75%), and Song et al [41] used 4 levels (10%, 15%, 20%,
and 30%) of missingness proportion for simulations to evaluate
method performance.

We used a range up to 80% because one method continued to
show outstanding performance for proportion above 60% and
a missingness proportion of 80% was too high to estimate
coefficients with low biases. If a data set had such a high

missingness proportion in practice, then it may be preferable to
collect another data set instead of using data from the initial
data set.

Step 2: Generating the Simulated Data Sets
As shown in Figure 2, Step 2 generated 200 simulated data sets
by randomly deleting the variable values from the reference
data set according to missingness proportion p%. The random
deletion implemented missing completely at random into the
simulated data sets to reflect the missingness mechanism of a
panel data set composed of health behavior lifelogs.

For proportion p%, there were many ways that missing data
could be distributed across variables within the data set. Such
a wide and varied distribution could affect missing-data handling
method performance. However, there were too many possible
missing data distributions to simulate all of them. Thus, this
study randomly generated 200 simulated data sets for the
missingness proportion, and then calculated the average of
regression coefficient biases that each missing-data handling
method produced across the 200 data sets. The average of each
missing-data handling method was its performance measure (ie,
GAB) for the missingness proportion. Similarly, Young and
Johnson [42] had also calculated GABs of different missing-data
handling methods across 200 simulated panel data sets in order
to compare performance, although their work focused on
multiple imputation and panel data sets related to family
research.

Step 3: Handling Missing Data
In Step 3, each of the 6 missing-data handling methods were
applied to each of the 200 simulated data sets using R software
(version 3.6.0). Listwise deletion and mean imputation were
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implemented by several lines of R code to automatically delete
incomplete observations and substitute a missing value for a
variable with the mean of its observed values, respectively.
k-nearest neighbor–based imputation used the knnImputation
function in the DMwR package [30]. The number of nearest
neighbors was the odd value close to the squared root of
complete observations in each simulated data set [43]. The
package softImpute [29] was utilized as a low-rank
approximation–based imputation. Its maximum rank and lambda
were determined based on “warm starts [29].” Expectation
maximization–based multiple imputation and predictive-mean
matching–based multiple imputation used Amelia II [28] and
MICE [31] packages, respectively. The number of multiple
imputations was set to 5, based on published recommendations
[44].

As a result of this step, each of the listwise deletion, mean
imputation, k-nearest neighbor–based imputation, and low-rank
approximation–based imputation methods resulted in a complete
data set. For expectation maximization–based and
predictive-mean matching–based multiple imputations, there
were 5 complete data sets.

Step 4: Estimating the Regression Coefficients
Eq (1) was fitted to each complete data set resulting from Step
3 using the plm package [45]. As a result, 8 coefficients (ie, βk)
were estimated for each complete data set. Each listwise
deletion, mean imputation, k-nearest neighbor–based imputation,
and low-rank approximation–based imputation contained a set
of the 8 coefficient values for a simulated data set because each
one resulted in a compete data set for the simulated data set in
Step 3. Each expectation maximization–based and
predictive-mean matching–based multiple imputation contained
5 sets of the 8 coefficient values for a simulated data set, which
were pooled into a single set each, following rules established
by Rubin [14]. For each method, the set of 8 coefficient values

was defined as coefficient value set (CVSp,s,m)={ p,s,m,0,...,

p,s,m,7}, where CVSp,s,m is the set of the 8 coefficient values
that originated from the application of mth missing-data handling
method to sth simulated data set of missing proportion p%;

p,s,m,k is kth coefficient value in CVSp,s,m; p ∈ {1%, 2%,...,
80%}; s ∈ {1, 2,…, 200}; and m ∈ {listwise deletion,...,
predictive-mean matching–based multiple imputation}.

Step 5: Calculating the Mean of Absolute Biases
Step 5 was performed to calculate a bias measure for each
coefficient value set. Because a coefficient could have a certain
amount of bias, each coefficient value set contained a total of
8 coefficient biases. The mean of absolute biases (MAB) was
defined as a bias measure to calculate the average amount of
the 8 coefficient biases for a given coefficient value set:

where p,s,m,k ∈ CVSp,s,m; âk is the reference value of k; âk

was estimated by fitting Eq (1) to the reference data set, as all
simulated data sets were generated by deleting the missingness
proportion p% of the reference data set. The estimate column
in Table 3 provides the estimated values of âk. For missingness
proportion p%, this step resulted in the 200 MABs of each
missing-data handling method.

Step 6: Calculating the GAB
We combined the 200 MABs for each method to create a bias
measure that represented the average of its coefficient biases
over the 200 simulated data sets of missingness proportion p%.
By following Young and Johnson [42], the bias measure was
defined as the GAB:

A low GAB indicated that the missing-data handling method
led to small coefficient biases across the 200 simulated data
sets of the missingness proportion. The GAB was used as the
criterion for evaluating method performance.

Results

Figure 3 shows GABs for each missingness proportion. The
listwise deletion, k-nearest neighbor–based imputation, and
expectation maximization–based multiple imputation did not
have GABs over missingness proportions of 24%, 44%, and
67%, respectively. Listwise deletion left too small number of
complete observations to estimate the regression coefficients
over missingness proportions of 24%. Both the k-nearest
neighbor–based imputation and expectation maximization–based
multiple imputation also failed to impute missing values over
missingness proportions of 44% and 67%, respectively. The
simulated data sets for these missingness proportions contained
smaller numbers of complete observations than the minimum
required for them to impute missing values.
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Figure 3. GAB results.

Pairwise multiple comparison tests were conducted to
statistically compare relative superiority among the 6
missing-data handling methods for each missingness proportion.
The tests were conducted using Dunnett modified Tukey-Kramer
pairwise multiple comparison at the .05 significance level [46].
Results provided the number of pairwise comparisons in which
each missing-data handling method had statistically small GAB
compared with all other missing-data handling methods for each

missingness proportion. For interpretation purposes, a superior
missing-data handling method will show the maximum number
of pairwise comparisons with statistically small GAB (Figure
4). For example, the low-rank approximation–based imputation,
predictive-mean matching–based multiple imputation, and
expectation maximization–based multiple imputation were
shown to be superior at a 1% missingness proportion (Figure
4).

Figure 4. Number of pairwise comparisons with statistically small GAB differences.

Different missing-data handling methods were shown to be
superior depending on the missingness proportion. As shown
in Figure 4, this included the low-rank approximation–based
imputation, predictive-mean matching–based multiple

imputation, and expectation maximization–based multiple
imputation for the 1% to 30% missingness proportions, while
the low-rank approximation–based imputation and
predictive-mean matching–based multiple imputation were
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superior for the 31% to 60% proportion, and only the low-rank
approximation–based imputation was superior for proportions
over 60%. These results are also shown in Table 4, which shows
the sum of the pairwise comparison times with statistically small
GAB for each missing-data handling method and missingness
proportion. Listwise deletion, mean imputation, k-nearest
neighbor–based imputation, expectation maximization–based
multiple imputation, predictive-mean matching–based
imputation, and low-rank approximation–based imputation
achieved 15, 53, 2, 84, 91, and 99 as sums for the pairwise
comparison times with statistically small GAB for 1% to 30%
missingness proportions, respectively. The low-rank
approximation–based imputation, predictive-mean

matching–based multiple imputation, and expectation
maximization–based multiple imputation were shown to be
superior for these missingness proportions, with the low-rank
approximation–based imputation revealing the maximum
number (the predictive-mean matching–based and expectation
maximization–based multiple imputations were also close to
the maximum). The second and third rows of Table 4 show that
the low-rank approximation–based imputation and
predictive-mean matching–based multiple imputation were
superior for the 30% to 60% missingness proportions, while
only the low-rank approximation–based imputation was superior
for over 60%.

Table 4. Sum of pairwise comparison times with statistically small GAB for each missing-data handling method and missingness proportion range.

Low-rank approxi-
mation

Predictive-mean
matching

Expectation–maxi-
mization

k-nearest neighborMean imputationListwise deletionMissingness propor-
tion range

99a91a84a253151%-30%

75a74a3409031%-60%

46a24007061%-80%

aThese methods had the best performance for the missingness proportion range.

Discussion

Principal Findings
The low-rank approximation–based imputation showed superior
performance for 1% to 80% missingness proportions and has
previously shown excellent performance with low-rank data
sets [47]. In this context, low rank indicates that a data set can
be approximated by a small subset of its singular vectors. Early
studies [48,49] established strong theoretical guarantees about
the perfect performance of low-rank approximation–based
imputation for low-rank data sets without noise, with extensive
research later supporting its superiority for low-rank data sets
with noise [50-52]. These studies [48-52] suggest that the
low-rank nature of the simulated data sets may be the primary
reason that low-rank approximation–based imputation was
shown to be superior in this study. In this regard, the low-rank
property of the simulated data sets was investigated based on
the chosen ranks for the low-rank approximation–based
imputation to impute them. The rank of 13 was the maximum
among the chosen ranks to impute all simulated data sets, while
the maximum rank was much lower than the dimensions of the
simulated data sets (ie, 884 × 49). It is therefore reasonable to
assume that the low-rank nature of the simulated data sets is
the primary reason that low-rank approximation–based
imputation was shown to be superior.

Low-rank approximation–based imputation is also expected to
perform well with other panel data sets comprising health
behavior lifelogs, as previous studies [53,54] have verified that
such data sets are generally low-rank. For instance, Eagle and
Pentland [53] found that panel data sets comprising human
behaviors were low-rank. They specifically proposed
eigenbehaviors as principal components for panel data sets on
human behaviors. The weighted sums of only 6 eigenbehaviors
achieved more than 90% accuracy in reconstruction of a data

set on the daily behaviors of 100 individuals for 400,000 hours.
Furthermore, Saint Onge and Kreuger [54] found 7 distinct
health lifestyle typologies for US adults in terms of 8 health
behaviors, including sleep, physical activity, and alcohol intake.
This result implied that panel data sets comprising health
behaviors can be approximated by several typologies and are
thus of a low-rank nature.

Both the expectation maximization–based and predictive-mean
matching–based multiple imputations showed larger biases than
the low-rank approximation–based imputation as the
missingness proportion increased. Larger proportions increased
the loss of information with missing values, which then increases
uncertainty. Multiple imputation reflects such uncertainty in
the standard errors of the estimates [14], with greater uncertainty
resulting in larger standard errors for the estimates and larger
coefficient biases [55].

In summary, the low-rank approximation–based imputation was
the superior missing-data handling method for handling missing
data when estimating a linear LWI with a panel data set
comprising health behavior lifelogs, regardless of the
missingness proportion.

Future Research
Three future research issues can improve and expand on this
research. The first involves validating generalizability of the
current research to nonlinear LWIs (eg, functions with
polynomial or interaction variables and logistic functions). New
LWI development cases can aim to develop nonlinear LWIs
that this study did not cover. Thus, additional research is needed
to establish the validity of our findings in regard to nonlinear
LWIs.

The second issue involves the need to identify which health
behavior-related covariates (eg, age, gender, and BMI) can
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enhance the performance of missing-data handling for LWI
estimation. While previous studies have already suggested
several such covariates [56-58], additional covariates can
enhance missing-data handling method performance. However,
this study did not investigate these elements. Furthermore, few
studies have identified covariates that can improve missing-data
handling for panel data sets comprising health behavior lifelogs.

The third issue concerns the need to develop guidelines for
predicting the size of bias in LWI coefficients for a certain
missingness proportion of a given panel data set. In Figure 3,
all missing-data handling methods showed increased coefficient
biases as the missingness proportion increases. This suggests
that missing-data handling methods can lead to large biases in
LWI coefficients when missingness proportions are excessively
large. Thus, a panel data set with a remarkably large missingness
proportion requires careful attention to prevent excessively
biased LWI coefficients. However, few previous studies have
provided guidelines for predicting such biases according to the
given missingness proportion. As shown in Figure 3, the
low-rank approximation–based imputation exhibited linear
growth in GAB as the missingness proportion increased. The
slope of linear growth can be estimated through an experiment
in which the change in GAB is calculated according to the unit

change in the missingness proportion. The slope enables the
prediction of GAB at a given missingness proportion. Such a
guideline will help investigators decide whether the missingness
proportion is acceptable for preventing highly biased coefficients
of LWI. This requires additional research aimed at identifying
relationships between biases and missingness proportions.
Efforts are also needed to validate the generalizability of any
guidelines.

Conclusion
A panel data set comprising health behavior lifelogs will likely
contain a large amount of missing data due to various events.
These missing data can result in LWI coefficient biases. While
there are various methods for handling missing data, few
previous studies have set out to determine which are the most
effective for reducing LWI coefficient biases. This study
comparatively evaluated 6 representative missing-data handling
methods by simulating an existing LWI development case.
Results suggested that low-rank approximation–based
imputation was superior for reducing biases when estimating a
linear LWI with a panel data set composed of health behavior
lifelogs. This finding is expected to contribute to the reduction
of coefficient biases in new development cases where linear
LWIs are estimated with panel data.

Acknowledgments
This work was supported by the National Research Foundation of Korea grant funded by the Korean government (Ministry of
Science and ICT; no. 2020R1C1C1014312).

Conflicts of Interest
None declared.

References

1. Market Research Future. Smart Wellness Market Research Report - Global Forecast 2023. Maharashtra, India: Market
Research Future; 2018.

2. Grand View Research. mHealth App Market by Type (Fitness, Lifestyle Management, Nutrition & Diet, Women’s Health,
Healthcare Providers, Disease Management) and Segment Forecasts, 2014 – 2025. San Francisco, CA, USA: Grand View
Research; 2017.

3. mHealth App Developer Economics 2016. Research2guidance. Berlin, Germany; 2016. URL: http://research2guidance.
com/product/mhealth-app-developer-economics-2016/ [accessed 2020-08-06] [WebCite Cache ID 6lY0vJ78i]

4. 325,000 mobile health apps available in 2017 – android now the leading mHealth platform. Research2guidance. Berlin,
Germany; 2017. URL: https://research2guidance.com/325000-mobile-health-apps-available-in-2017/ [accessed 2020-08-06]
[WebCite Cache ID 71ZIAzZe7]

5. Luxton DD, June JD, Sano A, Bickmore T. Intelligent mobile, wearable, and ambient technologies for behavioral health
care. In: Luxton DD, editor. Artificial Intelligence in Behavioral and Mental Healthcare. New York, NY, USA: Academic
Press; 2015:137-162.

6. H-Jennings F, Clément M, Brown M, Leong B, Shen L, Dong C. Promote students’ healthy behavior through sensor and
game: a randomized controlled trial. Med Sci Educ 2016 May 3;26(3):349-355 [FREE Full text] [doi:
10.1007/s40670-016-0253-8]

7. Rodgers MM, Pai VM, Conroy RS. Recent advances in wearable sensors for health monitoring. IEEE Sensors J
2015;15(6):3119-3126. [doi: 10.1109/jsen.2014.2357257]

8. Ajami S, Teimouri F. Features and application of wearable biosensors in medical care. J Res Med Sci 2015;20(12):1208-1215
[FREE Full text] [doi: 10.4103/1735-1995.172991] [Medline: 26958058]

9. Lee J, Kim D, Ryoo HY, Shin BS. Sustainable wearables: wearable technology for enhancing the quality of human life.
Sustainability 2016 May 11;8(5):466 [FREE Full text] [doi: 10.3390/su8050466]

10. Kim K, Kim K, Lim C, Heo J. Development of a lifelogs-based daily wellness score to advance a smart wellness service.
Serv Sci 2018;10(4):408-422 [FREE Full text] [doi: 10.1287/serv.2018.0216]

JMIR Med Inform 2020 | vol. 8 | iss. 12 | e20597 | p. 11http://medinform.jmir.org/2020/12/e20597/
(page number not for citation purposes)

Kim & KimJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://research2guidance.com/product/mhealth-app-developer-economics-2016/
http://research2guidance.com/product/mhealth-app-developer-economics-2016/
http://www.webcitation.org/

                                            6lY0vJ78i
https://research2guidance.com/325000-mobile-health-apps-available-in-2017/
http://www.webcitation.org/

                                            71ZIAzZe7
https://doi.org/10.1007/s40670-016-0253-8
http://dx.doi.org/10.1007/s40670-016-0253-8
http://dx.doi.org/10.1109/jsen.2014.2357257
http://www.jmsjournal.net/article.asp?issn=1735-1995;year=2015;volume=20;issue=12;spage=1208;epage=1215;aulast=Ajami
http://dx.doi.org/10.4103/1735-1995.172991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26958058&dopt=Abstract
https://doi.org/10.3390/su8050466
http://dx.doi.org/10.3390/su8050466
https://doi.org/10.1287/serv.2018.0216
http://dx.doi.org/10.1287/serv.2018.0216
http://www.w3.org/Style/XSL
http://www.renderx.com/


11. Nardo M, Saisana M, Saltelli A, Tarantola S, Hoffman A, Giovannini E. Handbook On Constructing Composite Indicators:
Methodology and User Guide. Paris, France: OECD Publishing; 2008.

12. Platt A, Outlay C, Sarkar P, Karnes S. Evaluating user needs in wellness apps. Int J Hum Comput Int 2016;32(2):119-131
[FREE Full text] [doi: 10.1080/10447318.2015.1099803]

13. Hsiao C. Panel data analysis—advantages and challenges. TEST 2007;16(1):1-22. [doi: 10.1007/s11749-007-0046-x]
14. Rubin DB. Multiple Imputation for Nonresponse In Surveys. New York, NY, USA: Wiley; 1987.
15. Schafer JL. Analysis of Incomplete Multivariate Data. London, UK: Chapman & Hall/CRC; 1997.
16. Dong Y, Peng CYJ. Principled missing data methods for researchers. Springerplus 2013;2(1):222 [FREE Full text] [doi:

10.1186/2193-1801-2-222] [Medline: 23853744]
17. Croninger RG, Douglas KM. Missing data and institutional research. In: Umbach PD, editor. Survey Research. Emerging

Issues. New Directions for Institutional Research #127. San Fransisco, CA, USA: Jossey-Bass; 2005:33-50.
18. Belton V, Stewart T. Multiple Criteria Decision Analysis. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2002.
19. Gallup. Gallup-Healthways Well-being Index: Methodology Report for Indexes. Washington, DC: Gallup; 2009.
20. Jung YS, Chae HG, Kim YW, Cho WD, Park RW, Han TH. Method for producing wellbeing life care index model in

ubiquitous environment patent 1015555410000. Korean Intellectual Property Office. 2015 Sep 18. URL: http://engpat.
kipris.or.kr/engpat/searchLogina.do?next=MainSearch#page1 [accessed 2020-11-30]

21. Little RJA, Rubin DB. Statistical Analysis with Missing Data. New York, NY, USA: John Wiley & Sons; 1987.
22. Nakagawa S. Missing data: mechanisms, methods, and messages. In: Fox GA, Negrete-Yankelevich S, Sosa VJ, editors.

Ecological Statistics: Contemporary Theory and Application. Oxford, UK: Oxford University Press; 2015:81-105.
23. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in

epidemiological and clinical research: potential and pitfalls. BMJ 2009 Jun 29;338:b2393 [FREE Full text] [doi:
10.1136/bmj.b2393] [Medline: 19564179]

24. Galimard JE, Chevret S, Curis E, Resche-Rigon M. Heckman imputation models for binary or continuous MNAR outcomes
and MAR predictors. BMC Med Res Methodol 2018 Aug 31;18(1):90 [FREE Full text] [doi: 10.1186/s12874-018-0547-1]
[Medline: 30170561]

25. Adèr HJ, Mellenbergh GJ, Hand DJ. Advising on Research Methods: A Consultant's Companion. Huizen, The Netherlands:
Johannes van Kessel Publishing; 2008.

26. Lodder P. To Impute or Not Impute: That's the Question. In: Mellenbergh JG, Adèr HJ. editors. Advising on Research
Methods: Selected Topics. Huizen, The Netherlands: Johannes van Kessel Publishing; 2013.

27. Bertsimas D, Pawlowski C, Zhuo YD. From predictive methods to missing data imputation: an optimization approach. J
Mach Learn Res 2017;18(1):7133-7171 [FREE Full text]

28. Honaker J, King G, Blackwell M. Amelia II: a program for missing data. J Stat Softw 2011;45(7):1-47. [doi:
10.18637/jss.v045.i07]

29. Mazumder R, Hastie T, Tibshirani R. Spectral regularization algorithms for learning large incomplete matrices. J Mach
Learn Res 2010 Mar 01;11:2287-2322 [FREE Full text] [Medline: 21552465]

30. Torgo L. Data Mining Using R: Learning with Case Studies. Boca Raton, FL, USA: CRC Press; 2010.
31. van Buuren S, Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R. J Stat Soft 2011;45(3):1-67.

[doi: 10.18637/jss.v045.i03]
32. Dettori JR, Norvell DC, Chapman JR. The sin of missing data: is all forgiven by way of imputation? Global Spine J 2018

Dec;8(8):892-894 [FREE Full text] [doi: 10.1177/2192568218811922] [Medline: 30560043]
33. Anthoine E, Moret L, Regnault A, Sébille V, Hardouin JB. Sample size used to validate a scale: a review of publications

on newly-developed patient reported outcomes measures. Health Qual Life Outcomes 2014;12(126):1-10 [FREE Full text]
[doi: 10.1186/s12955-014-0176-2] [Medline: 25492701]

34. Garrard L, Price LR, Bott MJ, Gajewski BJ. A novel method for expediting the development of patient-reported outcome
measures and an evaluation of its performance via simulation. BMC Med Res Methodol 2015;15:77 [FREE Full text] [doi:
10.1186/s12874-015-0071-5] [Medline: 26419748]

35. Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: adding an adjective rating scale. J Usability
Stud 2009;4(3):114-123.

36. Hospido L. Modelling heterogeneity and dynamics in the volatility of individual wages. J Appl Econ 2012;27(3):386-414
[FREE Full text] [doi: 10.1002/jae.1204]

37. Han J, Kamber M, Pei J. Data Mining Concepts and Techniques. San Francisco, CA, USA: Elsvier; 2006.
38. Al Shalabi L, Shaaban Z. Normalization as a preprocessing engine for data mining and the approach of preference matrix.

2006 Presented at: DepCos-RELCOMEX '06; 24-28 May 2006; Szklarska Poreba, Poland p. 207-214. [doi:
10.1109/depcos-relcomex.2006.38]

39. Hasan H, Ahmad S, Osman BM, Sapri S, Othman N. A comparison of model-based imputation methods for handling
missing predictor values in a linear regression model: a simulation study. A comparison of model-based imputation methods
for handling missing predictor values in a linear regression model: American Institute of Physics; 2017 Presented at: 24th
National Symposium on Mathematical Sciences; 27-29 September 2016; Kuala Terengganu, Malaysia p. 060003-1-060003-8.
[doi: 10.1063/1.4995930]

JMIR Med Inform 2020 | vol. 8 | iss. 12 | e20597 | p. 12http://medinform.jmir.org/2020/12/e20597/
(page number not for citation purposes)

Kim & KimJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://doi.org/10.1080/10447318.2015.1099803
http://dx.doi.org/10.1080/10447318.2015.1099803
http://dx.doi.org/10.1007/s11749-007-0046-x
http://europepmc.org/abstract/MED/23853744
http://dx.doi.org/10.1186/2193-1801-2-222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23853744&dopt=Abstract
http://engpat.kipris.or.kr/engpat/searchLogina.do?next=MainSearch#page1
http://engpat.kipris.or.kr/engpat/searchLogina.do?next=MainSearch#page1
http://europepmc.org/abstract/MED/19564179
http://dx.doi.org/10.1136/bmj.b2393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19564179&dopt=Abstract
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-018-0547-1
http://dx.doi.org/10.1186/s12874-018-0547-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30170561&dopt=Abstract
https://pdfs.semanticscholar.org/5843/6ce9bb60f36d8ea7ca4e6ef3d043eeb8ef4f.pdf?_ga=2.258538185.231564720.1606781715-2069843924.1605493735
http://dx.doi.org/10.18637/jss.v045.i07
http://europepmc.org/abstract/MED/21552465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21552465&dopt=Abstract
http://dx.doi.org/10.18637/jss.v045.i03
https://journals.sagepub.com/doi/10.1177/2192568218811922?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/2192568218811922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30560043&dopt=Abstract
https://hqlo.biomedcentral.com/articles/10.1186/s12955-014-0176-2
http://dx.doi.org/10.1186/s12955-014-0176-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25492701&dopt=Abstract
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-015-0071-5
http://dx.doi.org/10.1186/s12874-015-0071-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26419748&dopt=Abstract
https://doi.org/10.1002/jae.1204
http://dx.doi.org/10.1002/jae.1204
http://dx.doi.org/10.1109/depcos-relcomex.2006.38
http://dx.doi.org/10.1063/1.4995930
http://www.w3.org/Style/XSL
http://www.renderx.com/


40. Marshall A, Altman DG, Royston P, Holder RL. Comparison of techniques for handling missing covariate data within
prognostic modelling studies: a simulation study. BMC Med Res Methodol 2010 Jan 19;10:7 [FREE Full text] [doi:
10.1186/1471-2288-10-7] [Medline: 20085642]

41. Song Q, Shepperd M, Cartwright M. A short note on safest default missingness mechanism assumptions. Empir Softw Eng
2005;10(2):235-243. [doi: 10.1007/s10664-004-6193-8]

42. Young R, Johnson DR. Handling missing values in longitudinal panel data with multiple imputation. J Marriage Fam 2015
Mar;77(1):277-294 [FREE Full text] [doi: 10.1111/jomf.12144] [Medline: 26113748]

43. Jonsson P, Wohlin C. An evaluation of k-nearest neighbour imputation using Likert data. : IEEE Computer Society; 2004
Presented at: 10th International Symposium on Software Metrics; 11-17 September 2004; Chicago, IL, USA p. 108-118.
[doi: 10.1109/metric.2004.1357895]

44. Schafer JL, Olsen MK. Multiple imputation for multivariate missing data problems: a data analyst's perspective. Multivariate
Behav Res 1998;33:545-571 [FREE Full text] [doi: 10.1207/s15327906mbr3304_5]

45. Croissant Y, Millo G. Panel data econometrics in R: the plm package. J Stat Softw 2008;27(2):1-43. [doi:
10.18637/jss.v027.i02]

46. Dunnett CW. Pairwise multiple comparisons in the unequal variance case. J Am Stat Assoc 1980;75(372):796-800. [doi:
10.1080/01621459.1980.10477552]

47. Mao X, Chen SX, Wong RKW. Matrix completion with covariate information. J Am Stat Assoc 2019;114(525):198-210
[FREE Full text] [doi: 10.1080/01621459.2017.1389740]

48. Candès EJ, Recht B. Exact matrix completion via convex optimization. Found Comput Math 2009;9(6):717-772. [doi:
10.1007/s10208-009-9045-5]

49. Recht B. A simpler approach to matrix completion. J Mach Learn Res 2011;12:3413-3430 [FREE Full text]
50. Candes EJ, Plan Y. Matrix completion with noise. Proc IEEE 2010 Jun;98(6):925-936. [doi: 10.1109/jproc.2009.2035722]
51. Koltchinskii V, Lounici K, Tsybakov AB. Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion.

Ann Stat 2011;39(5):2302-2329. [doi: 10.1214/11-aos894]
52. Rohde A, Tsybakov AB. Estimation of high-dimensional low-rank matrices. Ann Stat 2011;39(2):887-930. [doi:

10.1214/10-aos860]
53. Eagle N, Pentland AS. Eigenbehaviors: identifying structure in routine. Behav Ecol Sociobiol 2009;63(7):1057-1066. [doi:

10.1007/s00265-009-0739-0]
54. Saint Onge JM, Krueger PM. Health lifestyle behaviors among U.S. adults. SSM Popul Health 2017 Dec;3:89-98 [FREE

Full text] [doi: 10.1016/j.ssmph.2016.12.009] [Medline: 28785602]
55. Hughes RA, Heron J, Sterne JAC, Tilling K. Accounting for missing data in statistical analyses: multiple imputation is not

always the answer. Int J Epidemiol 2019;48(4):1294-1304 [FREE Full text] [doi: 10.1093/ije/dyz032] [Medline: 30879056]
56. Greene GW, Schembre SM, White AA, Hoerr SL, Lohse B, Shoff S, et al. Identifying clusters of college students at elevated

health risk based on eating and exercise behaviors and psychosocial determinants of body weight. J Am Diet Assoc
2011;111(3):394-400. [doi: 10.1016/j.jada.2010.11.011] [Medline: 21338738]

57. Olson JS, Hummer RA, Harris KM. Gender and health behavior clustering among U.S. young adults. Biodemography Soc
Biol 2017;63(1):3-20 [FREE Full text] [doi: 10.1080/19485565.2016.1262238] [Medline: 28287308]

58. Ruiz-Palomino E, Giménez-García C, Ballester-Arnal R, Gil-Llario MD. Health promotion in young people: identifying
the predisposing factors of self-care health habits. J Health Psychol 2020;25(10-11):1410-1424. [doi:
10.1177/1359105318758858] [Medline: 29468900]

Abbreviations
CVS: coefficient value set
GAB: grand-mean of absolute biases
LWI: lifelogs-based wellness index
MAB: mean of absolute biases

Edited by C Lovis; submitted 22.05.20; peer-reviewed by A Benis, B Loo Gee, C Reis; comments to author 19.08.20; revised version
received 10.10.20; accepted 18.10.20; published 17.12.20

Please cite as:
Kim KH, Kim KJ
Missing-Data Handling Methods for Lifelogs-Based Wellness Index Estimation: Comparative Analysis With Panel Data
JMIR Med Inform 2020;8(12):e20597
URL: http://medinform.jmir.org/2020/12/e20597/
doi: 10.2196/20597
PMID:

JMIR Med Inform 2020 | vol. 8 | iss. 12 | e20597 | p. 13http://medinform.jmir.org/2020/12/e20597/
(page number not for citation purposes)

Kim & KimJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-10-7
http://dx.doi.org/10.1186/1471-2288-10-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20085642&dopt=Abstract
http://dx.doi.org/10.1007/s10664-004-6193-8
http://europepmc.org/abstract/MED/26113748
http://dx.doi.org/10.1111/jomf.12144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26113748&dopt=Abstract
http://dx.doi.org/10.1109/metric.2004.1357895
https://doi.org/10.1207/s15327906mbr3304_5
http://dx.doi.org/10.1207/s15327906mbr3304_5
http://dx.doi.org/10.18637/jss.v027.i02
http://dx.doi.org/10.1080/01621459.1980.10477552
https://doi.org/10.1080/01621459.2017.1389740
http://dx.doi.org/10.1080/01621459.2017.1389740
http://dx.doi.org/10.1007/s10208-009-9045-5
https://www.jmlr.org/papers/volume12/recht11a/recht11a.pdf
http://dx.doi.org/10.1109/jproc.2009.2035722
http://dx.doi.org/10.1214/11-aos894
http://dx.doi.org/10.1214/10-aos860
http://dx.doi.org/10.1007/s00265-009-0739-0
http://europepmc.org/abstract/MED/28785602
http://europepmc.org/abstract/MED/28785602
http://dx.doi.org/10.1016/j.ssmph.2016.12.009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28785602&dopt=Abstract
http://europepmc.org/abstract/MED/30879056
http://dx.doi.org/10.1093/ije/dyz032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30879056&dopt=Abstract
http://dx.doi.org/10.1016/j.jada.2010.11.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21338738&dopt=Abstract
http://europepmc.org/abstract/MED/28287308
http://dx.doi.org/10.1080/19485565.2016.1262238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28287308&dopt=Abstract
http://dx.doi.org/10.1177/1359105318758858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29468900&dopt=Abstract
http://medinform.jmir.org/2020/12/e20597/
http://dx.doi.org/10.2196/20597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Ki-Hun Kim, Kwang-Jae Kim. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.12.2020.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information,
a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2020 | vol. 8 | iss. 12 | e20597 | p. 14http://medinform.jmir.org/2020/12/e20597/
(page number not for citation purposes)

Kim & KimJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

