
Testing Zyzzyva
An evaluation and comparison of Byzantine Fault Tolerant algorithm testing strategies

Ishan Singh Pahwa1

Supervisor(s): Dr. Burcu Kulahcioglu Ozkan 1, João Miguel Louro Neto1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 27, 2025

Name of the student: Ishan Singh Pahwa
Final project course: CSE3000 Research Project
Thesis committee: Dr. Burcu Külahçıoğlu Özkan, João Miguel Louro Neto, Dr. Jérémie Decouchant

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Testing Byzantine Fault Tolerant (BFT) algorithms
is crucial in uncovering potential liveness and
safety violations for distributed systems. This pa-
per focuses on testing Zyzzyva with ByzzFuzz and
Twins and evaluating their performance with each
other and a baseline testing strategy. We also inves-
tigate if ByzzFuzz can uncover faults in Zyzzyva,
and how small-scope mutations compare to any-
scope mutations. We also discuss limitations with
ByzzFuzz when it comes to testing BFT protocols.
We find that ByzzFuzz is currently unable to find
known safety violations in Zyzzyva, but can find
injected violations and Twins does not find viola-
tions given our small sample size.

1 Introduction
Byzantine fault tolerant (BFT) algorithms are important
when it comes to implementing distributed systems as they
attempt to reach a consensus between different nodes in the
network, some of which may be faulty or act maliciously
against the system [5]. Many critical distributed systems
therefore rely on BFT algorithms to provide guarantees about
the systems’ behaviours, including systems such as cryp-
tocurrencies, blockchains and cloud computing. Achieving
correct implementations of Byzantine fault-tolerant systems
is challenging and implementations have been found to
violate at least one of the two guarantees that BFT algorithms
try to solve, namely liveness and safety, such as the ones
found by Winter et al. in their 2023 paper on the subject [9].

Zyzzyva [4] is a BFT algorithm that innovatively intro-
duced speculation, a technique where nodes can execute
operations optimistically by adopting the order proposed
by the primary. This technique has been shown to improve
performance by increasing throughput and decreasing latency
as it reduces replica overheads, especially cryptographic
hashes, to their theoretical minimum. Zyzzyva however was
shown to have a safety violations by Abraham et al. [1] in
2017 during its view change sub-protocol.

ByzzFuzz introduces a novel solution for the testing
of BFT algorithms using small-scope mutations, a testing
strategy that mutates the content of protocol messages by
applying small changes to their values, for example, incre-
menting or decrementing the proposed sequence number of
a request, and combining it with existing testing strategies
found in literature [9]. This approach to testing demon-
strates that ByzzFuzz has been shown to uncover previously
unknown bugs in production BFT systems [9]. Despite
its promise, ByzzFuzz has only been applied to a limited
number of algorithms, leaving its broader applicability
and performance in testing other BFT algorithms largely
unexplored.

In this paper, we focus on testing Zyzzyva using
ByzzBench, a BFT testing suite that integrates ByzzFuzz,

a baseline fault injection testing strategy as well as Twins,
a testing strategy that duplicates nodes to have the same
identity which introduces byzantine faults as the system now
has two nodes with the same credentials (for example id and
private cryptographic keys) but different behaviours [2]. Our
aim with this research is to uncover bugs in Zyzzyva as well
as study the bug detection performance of ByzzFuzz against
the baseline testing strategy and Twins as well as the efficacy
of small-scope mutations compared to any-scope mutations.

Therefore, the main questions we aim to answer with this
research are:

RQ1 Can ByzzFuzz implemented in ByzzBench find faults in
the safety and liveness guarantees that Zyzzyva claims
to provide?

RQ2 What is the difference in performance between Byzz-
Fuzz, a baseline testing method and Twins?

RQ3 How do small-scope and any-scope mutations in Byzz-
Fuzz compare in the performance of bug detection?

2 Background
2.1 Zyzzyva
Zyzzyva, introduced by Kotla et al. in 2007 [4] is a
leader-based groundbreaking algorithm that pioneered the
use of speculative execution in order to reduce the cost
and simplify the design of the system by not having an
expensive agreement protocol to establish a concrete order
but rather have the replicas accept a primary’s ordering and
eventually sync up if there are discrepancies in the history
of the nodes. Zyzzyva also places considerable responsi-
bility on the clients in order to commit the requests as well
as find discrepancies in the primary’s orderings of the request.

Zyzzyva consists of three sub-protocols, the Agreement,
View Change and Checkpoint protocols:

Agreement sub-protocol
The Agreement sub-protocol orders the request for execution
by the replicas, speculatively executes it and returns a re-
sponse to the client. The client only commits to a response
from the replicas if it receives at least 3f + 1 matching re-
sponses (considered the fast track) or at least 2f+1 acknowl-
edgements of the reception of a commit certificate (consid-
ered the two-phase commit). Since histories may diverge in
replicas, the agreement sub-protocol offers a way to fill gaps
in the history through the use of fill-hole messages when the
replica receives a larger sequence number than the one it was
expecting.

View Change sub-protocol
The View Change protocol allows the system to change pri-
maries if a primary is found to be unreliable in its ordering or
too slow for the network. Each view change allows the op-
portunity for the replicas to all start with the same history and
sync up through the reconciliation of their histories.



Checkpoint sub-protocol
The Checkpoint protocol truncates the state in each replica
to cut down on complexity as well as performance overhead
in the view change as the view change sub-protocol uses
the system’s history to bring the replicas up to sync. The
sub-protocol also creates a commit-certificate after receiving
enough matching responses with the same history. In our
implementation of Zyzzyva, we commit when we receive a
commit-certificate, so the checkpoint protocol also acts as one
of our times to commit to the log.

The faulty cases
In 2017, Abraham et. al showcased two safety flaws
in Zyzzyva’s view change algorithm [1]. The first sce-
nario showcases that the protocol’s prioritisation of commit-
certificates for a request in the current view over the f + 1
ORDERED-REQUEST messages during the new primary’s
computation for the new ordered request history can lead to
a safety issue causing conflicting log positions over views.
The second scenario shows that choosing the commit certifi-
cate with the longest request-log during the view change can
lead to safety violations. We shall consider the first case and
attempt to recreate it in the paper.

2.2 ByzzFuzz
ByzzFuzz, introduced in 2023 by Levin et al., gains its
inspiration for testing BFT algorithms by testing strategies
for distributed systems that introduce random faults in the
network and as a result, isolate specific nodes. Network
faults such as partitioning have been shown to be effective
at finding problems in distributed systems [6]. ByzzFuzz
uses the same approach of injecting random faults, but in
the process of the system, rather than the network, to mimic
Byzantine Faults in the system[9]. It introduces the notion
of small-scope mutations to protocol messages which mutate
fields inside the messages, for example, by incrementing
the sequence or view numbers in Zyzzyva’s ordered request
message. The motivation for this was that such small changes
in the message would be closer to what the system expects
and therefore, not ignored. They also serve as a method
of boundary testing. This is in contrast to the any-scope
mutations which have a much larger set of values to mutate
the message with and are theoretically, less likely to be
accepted by the system.

ByzzFuzz also employs fault-bounded testing, a constraint
on the number of network and process faults that are in-
troduced into the system; round-based testing, the notion
of introducing network or process faults in all messages
sent in a given round rather than individual messages; and
finally structure-aware mutations, mutations that corrupt the
messages that provide valid protocol messages that deviate
from normal protocol execution.

ByzzFuzz has managed to find and reproduce several bugs
in BFT protocols, such as a liveness violation in the PBFT
protocol and an implementation bug in Ripple, however, due
to its relative recency, it hasn’t been widely tested on different

BFT protocols. Given its promise, we expect it to uncover the
previously known safety attacks on Zyzzyva.

2.3 Twins
Twins, introduced in 2020 by Bano et al., offers a practical
approach to testing BFT algorithms by cloning a replica with
the same ID but the “twinned” replica can act maliciously by
contradicting the actions of the original replica. For example,
in the case of the safety violation mentioned by Abraham
et al., a twin could receive a commit certificate for a given
request, but the other doesn’t. During the view change, the
twin without the commit certificate sends what they believe
to be the first message in the system, which is accepted.
However, in the following view change, the twin with the
commit certificate sends their commit certificate in their view
change message and this contradicts the system, forming a
safety violation. An important difference to note between
Twins and ByzzFuzz is that Twins does not mutate the
messages of the system but rather relies on these malicious
nodes to introduce Byzantine faults.

Twins managed to find the safety violation proposed by
Abraham et al., as well as a liveness attack on FaB, a pre-
decessor to Zyzzyva, also with a fast and two-phase track.
Finally in their 2020 paper, they also reproduced a both a
liveness and safety violation on Sync HotStuff proposed by
Momose et al [8]. Given that it managed to find flaws in sev-
eral popular BFT algorithms, it would appear that Twins is
promising when it comes to uncovering violations in other
protocols.

2.4 Baseline testing strategy
Our baseline testing strategy is a network wrapper that ran-
domly creates processs and network faults by applying muta-
tions to messages sent in the network or by dropping mes-
sages altogether. It differs from ByzzFuzz in that it isn’t
aware of rounds and therefore does not create round-aware
mutations and partitions. It does, however have a distinction
between small-scope and any-scope mutations.

2.5 Other testing strategies
Around the time that the paper in which ByzzFuzz was pub-
lished, the behaviour-divergent testing model Tyr was also
published by Chen et al. [3] in which the aim of the testing
strategy was to make the nodes in the system have behaviours
that diverge as much as possible to find potential vulnerabil-
ities in blockchain BFT algorithms. Hermes is another fault-
injection testing framework introduced in 2013 that injects
random network and process faults [7].

3 Implementing Zyzzyva in ByzzBench
In order to evaluate the correctness of the safety and
liveness guarantees that Zyzzyva provides as well as to
compare performances between the testing strategies, we
use ByzzBench, a benchmarking testing suite specifically
designed to test BFT algorithms by integrating ByzzFuzz,
Twins and a baseline testing strategy that introduces random
faults into the process and network. ByzzBench provides



the ecosystem required to implement BFT protocols with
abstract implementations for clients, replicas, messages and
scenarios as well as a transport layer for messages to be
exchanged and a commit log. ByzzBench is implemented in
Java.

It’s important to note that ByzzBench sends messages to a
mailbox, meaning that a message, when sent isn’t delivered
directly to the receiver but rather held in a buffer state. This
allows messages that were sent later to be processed by repli-
cas before messages that were sent previously. ByzzBench
also has a graphical user interface and logging functionalities
to a console in order for the user to interact with the program.
Furthermore, while mutating messages using the schedulers,
ByzzBench allows access to read the state of the protocol,
allowing for the small-scope mutations ”in-time” and as
well as in value (for example sending a previous prepare
message). The rest of the logic for a Zyzzyva replica was
implemented by us.

3.1 Why Zyzzyva?
Zyzzyva broke ground on a new type of algorithm that
speculatively orders requests sent by clients, cutting down
on the prepare phase of other BFT protocols such as PBFT,
where replicas agree on the order of execution. In the fast
track commit (where a client receives 3f + 1 responses),
Zyzzyva further cuts down on the commit phase and instead
moves on to the next request, placing the responsibility of
commits onto the client. This was shown to have significant
improvements over other protocols such as PBFT in terms
of latency and cryptographic operations per request [4].
This performance gain also comes with some increased
complexity, for example when reconciling the history during
view changes.

According to available literature, ByzzFuzz has never
been tested on an algorithm that involves speculation, so the
results of the running the testing strategy are particularly
useful, especially because the speculation involves added
reliance on more state in the protocol. We give ByzzFuzz
limited access to the internal state of the replica to see if it
uncovers any additional liveness or safety violations. We
also would like to understand how ByzzFuzz compares to
different testing strategies, such as Twins and if it performs
better purely random process and network faults.

Our implementation of Zyzzyva draws from the 2007
paper in which it was introduced [4] as well as its accom-
panying extended technical report which goes into more
detail over the view-change and checkpoint sub-protocols.
We extend on ByzzBench’s pre-existing abstract replica
and leader-based-replica classes which already provide
functionalities for message transport over a network, to
and from the replica, a commit log for when a replica has
a request to commit as well as digest functionality. The
replicas each have their own internal state that are made
read-only to external parties and communicate with each
other only through the sending of messages.

3.2 An Overview of the Zyzzyva Protocol
The Agreement Sub-protocol
The agreement sub-protocol of Zyzzyva has two possible
tracks, the fast track and the two-phase track. It is respon-
sible for receiving requests, ordering them and sending back
responses with proofs that the system has done so. It also
provides ways for the system to recover from issues such as
missing requests. If the agreement sub-protocol fails due to a
faulty primary, we trigger a view change to replace the faulty
primary.

The Fast-Track
The fast track of Zyzzyva occurs when a client receives a
matching response from every replica in the system. The fast
track is the ideal case in which every node in the system acts
without faults. It does this in three steps:

1. The client sends a request r0 to what it believes is the
primary.

2. The primary receives r0, speculatively orders it and
sends a pre-prepare message (ORDER-REQ), o1 to all
other replicas in the system. The pre-prepare message
includes the current history hash and r0.

3. A replica receives o1, checks that it is well-formed and
the history is consistent with its own, executes it and
sends a reply (SPEC-RESPONSE) to the client. The
client considers the request complete once it has re-
ceived 3f + 1 responses.

Once the client receives 3f + 1 replies from the replicas
(every node in the network) it considers the request commit-
ted and its place in the system’s history irrevocably set. It’s
important to note here that the replicas do not know if the
request has been considered committed by the client as we
do not get a response from the client, we only receive the
next request.

The Two-Phase track
The two-phase track occurs when the client receives 2f +
1 responses for a request and takes several more steps for
the client to ensure that the request is irrevocably set in the
system’s history:

1. The client sends a request r0 to what it believes is the
primary

2. The primary receives r0, speculatively orders it and
sends a pre-prepare message, o1 to all other replicas in
the system. The pre-prepare message includes the cur-
rent history hash and r0.

3. A replica receives o1, checks that it is well-formed and
the history is consistent with its own, executes it and
sends a reply (SPEC-RESPONSE) to the client. In this
stage, a replica in this stage does not consider o1 valid
or does not receive the pre-prepare message.

4. The client receives between 2f + 1 and 3f responses
by the time its timer expires. It then forms a commit-
certificate with the speculative response it has received



and adds the replica’s signatures as proof that they
agreed to the values. It sends out a commit mes-
sage (COMMIT) consisting of the commit certificate it
formed.

5. A replica receives a commit message, checks that it is
valid and if it is, sends back a LOCAL-COMMIT mes-
sage to the client stating that it has committed the values
to its history. Once the client has received 2f+1 or more
matching LOCAL-COMMIT messages, it considers the
request complete.

The following parts of the protocol assist in recovery of the
system:

Fill-Hole
If a replica receives a higher than expected sequence num-
ber from the primary, it could mean that it has fallen behind.
If this happens, it will not accept any more messages in the
current view until it reconciles its history with the rest of the
system. Therefore, Zyzzyva has the fill-hole feature which
attempts to fill the holes in a replica’s history. Since the liter-
ature in which Zyzzyva was introduced lacks many details of
the implementation of this, we expand slightly on the feature.
It is implemented as follows:

1. A replica receives a sequence number that is higher than
expected. It sends out a fill-hole message (FILL-HOLE)
with the sequence number (j) that it expected and the
sequence number that it received (k). It sends the FILL-
HOLE to the primary and sets a timer.

2. If the replica receives any more pre-prepare messages
from the primary with a sequence number higher than k,
it adds them to the local history log but does not execute
them yet.

3. Upon receiving a FILL-HOLE from a replica, the pri-
mary fetches the pre-prepare messages from its history
and sends them back via a FILL-HOLE-REPLY.

4. Upon receiving every FILL-HOLE-REPLY from j to k
(inclusive), the replica cancels the timer, executes the
received replies as well as the pre-prepare messages in
2.

5. If the timer expires before the replica receives replies
from j to k, then it repeats parts 1 to 4 again but sends
the FILL-HOLE to all replicas instead.

6. If the timer expires again, the replica sends a message
that the replica is unhappy with the current primary (I-
HATE-THE-PRIMARY).

7. The replica also checks if there are any holes from k
onwards as this is a possibility. If so, it repeats the fill-
hole algorithm.

Forward to Primary
The forward to primary feature forwards an unseen client re-
quest from a non-primary replica to the primary. This occurs
either when the client doesn’t know that the system has gone
through a view change and elected a new primary, or when
the client resends its request to all replicas after it receives

less than 2f responses for a given request. It is implemented
as follows:

1. The client sends r0 to a non-primary replica.
2. If the replica already has the request in its cache, it sends

the cached speculative response back to the client.
3. If the replica doesn’t have the request in its cache, it

sends a CONFIRM-REQ message to the primary with
the message in order for the primary to order it. It sets
a timer and if it doesn’t receive back a corresponding
ORDER-REQ for the request, it sends an I-HATE-THE-
PRIMARY.

4. If the replica receives the ORDER-REQ, it cancels its
timer and executes it like normal.

The View Change Protocol
The view change sub-protocol is the sub-protocol that allows
the system to elect a new primary once it has deemed the old
one faulty. It is as follows:

1. Once a replica has received f + 1 accusations that the
primary is faulty (I-HATE-THE-PRIMARY’s) it com-
mits to a view change by sending a message that it has
committed to a view change (VIEW-CHANGE) with its
current history.

2. Upon receiving 2f + 1 VIEW-CHANGE messages, the
future primary then constructs a NEW-VIEW message
consisting of a stable version of the system’s history. We
defer the algorithm for the construction of the history to
the technical report accompanying Kotla et al.’s paper.

3. After receiving a NEW-VIEW message, a replica sets its
history to the one calculated in the NEW-VIEW message
and sends out a VIEW-CONFIRM message.

4. After receiving 2f + 1 VIEW-CONFIRM messages, a
replica begins the new view.

It is important to note that after a replica commits to a view
change, it does not receive most messages until the new view
has begun [4]. We only allow CHECKPOINT messages as
well as messages related to the view change to be received
while the replica is undergoing the view-change process. We
also allow VIEW-CHANGE messages to be received but not
processed and instead we send the cached NEW-VIEW mes-
sage as this would not alter the state of the history in the view
change but does allow replicas who missed the first NEW-
VIEW message to receive one.



Message Mutation

⟨⟨ORDER-REQ, v, n, hn, d⟩σp,m⟩ ⟨⟨ORDER-REQ,v′, n, hn, d⟩σp,m⟩
⟨⟨ORDER-REQ, v,n′, hn, d⟩σp,m⟩
⟨⟨ORDER-REQ, v, n, hn′ , d⟩σp,m⟩

⟨NEW-VIEW, v + 1, P ⟩σp ⟨NEW-VIEW,v′, P ⟩σp
⟨⟨SPEC-RESPONSE, v, n, hn, H(r), c, t⟩σi, i, r,OR⟩ ⟨⟨SPEC-RESPONSE,v′, n, hn, H(r), c, t⟩σi, i, r,OR⟩

⟨⟨SPEC-RESPONSE, v,n′, hn, H(r), c, t⟩σi, i, r,OR⟩
⟨⟨SPEC-RESPONSE, v, n, hn′ , H(r), c, t⟩σi, i, r,OR⟩
⟨⟨SPEC-RESPONSE, v, n, hn, H(r), c, t⟩σi, i, r′,OR⟩
⟨⟨SPEC-RESPONSE, v, n,h(d)′, H(r), c, t⟩σi, i, r,OR⟩

⟨VIEW-CONFIRM, v + 1, n, hn, i⟩σi ⟨VIEW-CONFIRM,v′, n, hn, i⟩σi
⟨VIEW-CONFIRM, v,n′, hn, i⟩σi

⟨VIEW-CHANGE, v + 1, s, [⟨CHECKPOINT⟩], CC,O, i⟩σi ⟨VIEW-CHANGE,v′, s, [⟨CHECKPOINT⟩], CC,O, i⟩σi
⟨VIEW-CHANGE, v, s′, [⟨CHECKPOINT⟩], CC,O, i⟩σi
⟨VIEW-CHANGE, v, s, [⟨CHECKPOINT⟩],CC′, O, i⟩σi
⟨VIEW-CHANGE, v, s, [⟨CHECKPOINT⟩], CC,O′, i⟩σi

Table 1: Structure aware mutations that we introduce for Zyzzyva. The mutated values are in bold and primed.

Algorithm 1 The Checkpoint sub-protocol

1: if currSeqNum%CP INTERV AL == 0 then
broadcast(speculativeResponse)

2: end if
3: if numSpecResponses ≥ 2f + 1 then
4: checkpointCC ← createCommitCertificate()
5: handleCommitCertificate(checkpointCC)
6: end if
7: broadcast(checkpointMessage)
8: if numCheckpointMessages() ≥ f + 1 then
9: setCheckpoint(currSeqNum)

10: truncateState()
11: end if

The Checkpoint Protocol
The checkpoint protocol is relatively simple, a replica simply
sends out a speculative response every CP INTERV AL
requests. Upon receiving 2f+1 matching SPEC-RESPONSE
messages, it commits it to its log and sends out a CHECK-
POINT message with the current sequence number and his-
tory. Upon receiving f +1 matching checkpoint messages, it
considers the checkpoint stable.

3.3 Message Mutators
In order for ByzzFuzz and our baseline testing strategy to
test Zyzzyva, we must also implement mutations for the
message which then get applied upon messages that the
replica sends. All of our mutations except for the modified
history in the VIEW-CHANGE message have small-scope
and any-scope variants. We also include increments and
decrements for each change in value. For example, the small
scope variations for a view number v are v+1, v− 1 and the
any-scope mutations are v+ r and v− r where r is a random

long between 1 and Long.MAX V ALUE in Java. When
mutating values of strings, we generate a random string, such
as in the reply of the SPEC-RESPONSE message.

Since the purpose is to test liveness and safety vio-
lations in Zyzzyva and not an implementation complete
with cryptographic hashes, the hash function we used for
the history is XOR. Therefore the way we compute our
history is hn ← hn−1 ⊕ d where d is the digest of the
message. This has the advantage of being able to compute
a previous history from a given history and a message
digest, so we can mutate our messages to get the previous
history, using the logic hn−1 = hn ⊕ d where d is the cur-
rent digest of the message as this reverses the XOR operation.

We also have read-only access to the replica’s state mean-
ing that we can get previous commit-certificates as well as
random previous histories, however these are bounded by the
history in the log as they get truncated during checkpoints.
Finally, we add one extra mutation that is useful in the
scenario presented by Abraham et al., the ability to swap
the first and last ordered request in the history log during
a VIEW-CHANGE message. We consider this to be a
small-scope mutation but use it in the testing of any-scope
mutations.

A limitation that we encounter here is that ByzzFuzz
cannot undo a cryptographic hash function. If we use a
cryptographic hash function to calculate the history hash in
the ORD-REQUEST and start from an arbitrary previous
history (effectively a nonce), it would be nearly impos-
sible to allow the mutators to change the position of the
ORDER-REQ’s in the local log in the VIEW-CHANGE
messages due to the histories not matching up, provided



that the 3 criteria of the implementation of ByzzFuzz are
met, namely ”The implementation of ByzzFuzz requires
(i) intercepting the protocol messages exchanged between
the processes of the system, (ii) implementing the fault
injection algorithm to run on the intercepted messages, and
(iii) implementing a set of possible mutations on the protocol
messages.” according to Winter et al. [9]. If just these criteria
are met, ByzzFuzz only has access to hn in a message and
cannot change the values of the history without a replica
deeming it invalid. However, in the version of ByzzFuzz
implemented on ByzzBench, we have read-only access to the
state of the replica and therefore are able to calculate the hash.

4 Experimental Setup and Results
ByzzBench executes the schedules with a given number of
network and process faults and records the number of suc-
cessful scenarios, unsuccessful scenarios and scenarios with
errors. We add the test configurations for ByzzBench in the
appendix. We run tests with differing levels of process and
network faults for a minimum of 400 events (messages sent
and timeouts triggered in ByzzBench) as well as a minimum
of 100 rounds (each sub-phase in the execution of a request is
considered a round). We will give the assignment of the round
numbers for each message in the appendix. For reference,
while recreating the Abraham safety attack on ByzzBench
with ByzzFuzz, it took 86 events, so we expect our tests to
be able to capture the attack.

4.1 Baseline
We ran our baseline testing method for 1000 runs on each of
the parameters below. We first run it in the case where there
are no process faults, and therefore no mutations in the mes-
sages in order to establish what number of errors the network
faults contribute to. As you can see our implementation of
Zyzzyva isn’t perfect and has errors in it due to the replica
trying to access a position that doesn’t exist in the history
after failing a validation after a view change. It finds this one
error in the 6000 scenarios that were tested.

Due to the limited number of errors and the rarity, we
cannot draw concrete conclusions based on which type of
scope is better as neither of them found violations in the
protocol.

We also created a flawed version of Zyzzyva in which we
allow the replica to accept all messages during the view-
change process. This means that messages received can in-
terfere with its internal state and lead to safety violations [4].
We do this by not setting the view-change flag (participat-
ing in the code) to false when a replica has committed to the
view change. We find that the baseline manages to find occa-
sional safety violations. It’s interesting to note that the high-
est number of safety violations were found with no process or
network faults. This is presumably due to mutated messages
not being considered valid by the system and rejected. Fur-
thermore, there is the case where all replicas receive a cor-
rect pre-prepare message from the previous primary, as we

Scope Faults Safety Liveness Error

- p = 0, n = 0 0 0 0
- p = 0, n = 7 0 0 1

Small p = 7, n = 0 0 0 0
Small p = 15, n = 15 0 0 0
Small p = 30, n = 30 0 0 0
Any p = 7 n = 0 0 0 0
Any p = 15, n = 15 0 0 0
Any p = 30, n = 30 0 0 0

Table 2: The test results for the baseline testing strategy on our work-
ing version of Zyzzyva where p is the number of process faults and
n is the number of network faults

Scope Faults Safety Liveness Error

- p = 0, n = 0 4 0 92
- p = 0, n = 7 2 0 8

Small p = 7, n = 0 2 0 82
Small p = 15, n = 15 0 0 4
Small p = 30, n = 30 0 0 5
Any p = 7 n = 0 0 0 77
Any p = 15, n = 15 4 0 7
Any p = 30, n = 30 1 0 6

Table 3: The test results for the baseline testing strategy on the faulty
implementation of Zyzzyva which potentially violates safety where
p is the number of process faults and n is the number of network
faults

haven’t changed the view number yet, and a client receives
3f+1 responses for that request. However, since that request
is not in the history logs sent in the VIEW-CHANGE mes-
sage, it’s rolled back and another request takes its position,
leading to a safety violation. However, ByzzBench doesn’t
have the functionality to check application state for a safety
violation so we can’t test for that.

We receive several errors due to incorrect states of the
replica due to the protocol not expecting messages during the
view-change and thus creating errors when trying to access
something that doesn’t exist for example.

4.2 ByzzFuzz
We ran ByzzFuzz on ByzzBench for 1000 runs on each of the
parameters below. We were unable to find if we recreated the
safety violation presented in Abraham et al. using automated
testing due to the way that ByzzBench checks for safety
issues. At the end of the safety violation, the commit logs for
the replicas have a at position 1, but b has been committed to
the application state by c2, leading to a safety violation but
ByzzBench checks only if the replica’s commit logs differ, so
ByzzBench does not consider it a safety violation, especially
given the history of the system is uniform after the second
view change that the system goes through.



However, we find that it is possible to recreate it and check
manually, the ByzzBench scenario can be found in the code
published with this paper. The safety attack requires several
precise mutations applied in the right order to messages sent
so we further do not expect to find the violation with a small
number of scenarios. Here we give a the order of mutations
that we applied corresponding to the steps in the safety viola-
tion in the paper by Abraham et al [1].

• View 1.2 - Create partition [i1, i2, i3] [i4]

• View 1.3 - Create partition [i1, i2] [i3, i4], decrement
proposed sequence number for ORDER-REQb. Change
history for ORDER-REQb. Decrement sequence num-
ber for SPEC-RESPONSEi1,b. Set first history for
SPEC-RESPONSEi1,b.

• View 2.2 - Create partition [i1, i2, i4] [i3], swap ordered
requests in history for VIEW-CHANGEi1 , set previous
commit certificate for VIEW-CHANGEi1

We consider a case such as this rare to occur in the Byzz-
Fuzz scheduler on ByzzBench and therefore would recom-
mend testing with more scenarios and using an agreement
predicate that relies also on the application state.

Scope Faults Safety Liveness Error

- p = 0, n = 0 0 0 0
- p = 0, n = 7 0 0 0

Small p = 7, n = 0 0 0 0
Small p = 15, n = 15 0 0 0
Small p = 30, n = 30 0 0 0
Any p = 7, n = 0 0 0 2
Any p = 15, n = 15 0 0 0
Any p = 30, n = 30 0 0 0

Table 4: The test results for the ByzzFuzz testing strategy on our
working implementation of Zyzzyva where p is the number of pro-
cess faults and n is the number of network faults

ByzzFuzz does not manage to catch any new liveness or
safety violations in Zyzzyva, however this could be due to
ByzzBench’s safety predicate not being able to handle the
application state, however in Zyzzyva, safety is partially ob-
served by the client so we do not find safety violations that
occur there.

Scope Faults Safety Liveness Error

- p = 0, n = 0 6 0 112
- p = 0, n = 7 4 0 34

Small p = 7, n = 0 2 0 103
Small p = 15, n = 15 1 0 22
Small p = 30, n = 30 0 0 14
Any p = 7 n = 0 2 0 101
Any p = 15, n = 15 0 0 128
Any p = 30, n = 30 0 0 133

Table 5: The test results for the ByzzFuzz testing strategy on the
faulty implementation of Zyzzyva where p is the number of process
faults and n is the number of network faults

We find that the results for ByzzFuzz for the faulty case
look similar to that of the baseline. Comparing the p=0, n=7
entry, we see that round-aware faults are potentially better
than purely random network faults. We again find that poten-
tially adding mutations can cause the message to be consid-
ered invalid and therefore rejected by the system. Across the
values that we chose, we find that ByzzFuzz performs better
and small-scope mutations are less likely to have errored exe-
cutions due to the state, perhaps because they’re more readily
accepted by the system and therefore less likely cause faults.

4.3 Twins
We ran Twins, implemented on ByzzBench for 5000 scenar-
ios and found no errors or violations in our implementation of
Zyzzyva. In order for Twins to recreate the attack, it requires
a specific set of partitions which do not surface easily while
testing on ByzzBench. This is due to the fact that the parti-
tions change every round, which is far more frequent than the
partitions created in the Twins paper where they change par-
titions once or twice per view [2]. Because of the frequency
of changing rounds, we mostly end up stuck with the replicas
unable to communicate. Furthermore, 5000 scenarios might
not be enough for Twins to catch the safety flaw in Zyzzyva
that it was able to in the Bano et al. paper, however, we think
this is a suitable amount for our research given the limited
resources and that ByzzFuzz and the baseline method man-
age to find the safety violation several times with a similar
number of scenarios.

Safety Liveness Error

0 0 0

Table 6: The test results for the Twins testing strategy on our work-
ing implementation of Zyzzyva

Safety Liveness Error

0 0 1022

Table 7: The test results for the Twins testing strategy on our faulty
implementation of Zyzzyva



5 Responsible Research

5.1 Reproducibility

One of the aims of this research is to be reproducible. We
will do this by making the following resources available for
the results to be reproduced:

1. Implementation details – The code used for the Zyzzyva
algorithm with sufficient documentation shall be made
publicly available for setup and use.

2. Experimental parameters - The configuration and pa-
rameters used in ByzzBench for each one of the testing
strategies shall be made available for users to reproduce
the results in this paper, this includes for example the
ways that messages were mutated in ByzzFuzz as well
as general parameters such as the number of messages
mutated and dropped, termination criteria and the num-
ber of actions per scenario.

3. The scenarios on ByzzBench that result in a liveness or
safety violation shall be made available for users to un-
derstand and reproduce the issues that Zyzzyva has.

The experiments shall be run on specified hardware and OS
configurations which have been detailed in the results section.
We attempted to use open source dependencies for the code
to make the testing as widely accessible as possible.

5.2 Ethical considerations

Our research aims to try to advance the world of BFT algo-
rithms by providing an evaluation of the detection of Live-
ness and Safety violations in the algorithms. Since BFT al-
gorithms are used to safeguard against Byzantine faults in
distributed systems, which are widely in critical applications,
such as cryptocurrencies, it is important to account for the
ethical considerations when publishing the results of the ex-
periment.

Potential safety and liveness violations could be exploited
by malicious actors to compromise distributed systems, there-
fore, we follow the practice of Coordinated Vulnerability Dis-
closure (CVD), the disclosure model in which a vulnerability
in a system is only published to the public after relevant par-
ties have had sufficient time to fix the vulnerabilities in their
systems. By doing this, we ensure that critical systems have
time to be fixed before the results from this experiment can
be used to attack them.

6 Discussion
Our results show that there is some difference between Byz-
zFuzz and the baseline testing method with the former being
superior, possibly due to its round-aware fault injection, how-
ever the rarity of safety violations makes this difficult to com-
pare given the relatively small sample size of the data. We
also find that mutations could also potentially decrease the
discovery of some types of violations where incorrect mes-
sages are rejected by the system, including small-scope mu-
tations.

6.1 Limitations of ByzzFuzz
While ByzzFuzz’s three criteria mentioned before are effec-
tive in many cases, we highlight a possible scenario where
these criteria prove insufficient for uncovering specific viola-
tions. We assume a network wrapper that can does the fol-
lowing:

1. Intercept messages transmitted in the network layer of
the test suite.

2. Inject the faults from the fault injection algorithm.
3. Implements a set of mutations for the protocol messages
As part of this definition, the network wrapper does not

have access to the actual replicas nor their internal state.
In view 1, part 5, of the first scenario in the Abraham violation
c1 sends a commit-request (COMMIT) to i1 with a commit
certificate for request a. There are three possible scenarios
for when i1 processes the commit certificate in ByzzFuzz:
before the view change, during the view change and after the
view change. We shall consider each case below:

1. i1 receives the commit certificate before the view change
- If i1 receives the commit certificate before the view
change, it commits a to its commit log and sends a
view-change message (VIEW-CHANGE) with the com-
mit certificate denoting a as the first request. This means
that i1 cannot send b as the first request in its log since
the history for the commit certificate and b do not match
and the view-change message is not considered valid.
While computing the ordered request history (G), i2 ac-
cepts a as the first request and a is committed, leading
to no safety issues. In order for i1 to process the com-
mit certificate before the view change and still send a
view change with b as the first position in its log, we
require the swap first-and-last-histories mutation as pre-
viously mentioned as well as a mutation that changes
the commit certificate to the previous one (in this case
the null commit certificate that the replica is initialized
with). However, since the message mutators don’t have
access to the replica state, it would be nearly impossible
for it to generate the previous commit certificate as the
mutator has to correctly guess the fields for the certifi-
cate which includes a hash for the history.

2. i1 receives the commit certificate during the view change
- after i1 has sent its commitment to the view change
(VIEW-CHANGE), i1 stops receiving requests until af-
ter the new view has been established with a quorum of
2f + 1 replicas agreeing on the last history hash and se-
quence number. Therefore, we cannot receive the com-
mit certificate during this time as accepting other mes-
sages is considered a safety flaw in Zyzzyva.

3. i1 receives the commit certificate after the view change
- after i1 receives the new-view message (NEW-VIEW)
from i2, the system, including i1, agrees that r2 is the
first request in the system’s history at sequence number
1. Therefore when i1 receives the commit certificate for
sequence number 1 with the history hash of a, it deems
the certificate invalid and doesn’t commit a, leading to
no safety violations. c1 continuously resends the COM-
MIT message to the system until it gets a response, but



since the system doesn’t consider its commit certificate
valid so it doesn’t receive a LOCAL-COMMIT message
from the system, forming a potential liveness issue de-
pending on the criteria for liveness.

For an explanation about how Twins overcomes the inabil-
ity to access state, we defer to paper by Bano et al. in which
they introduce twins [2].

7 Conclusions and Future Work

The aim of this research was to evaluate and compare
different BFT algorithm testing strategies. There has been
groundbreaking work over the past few years with the au-
tomation of BFT testing strategies but there is relatively little
literature when it comes to the evaluation of these strategies
as well as a limited number of BFT protocols tested on
them. We evaluated ByzzFuzz, Twins and a baseline testing
strategy which randomly injects faults into the network and
process in order to see how they would perform with our
implementation of Zyzzyva.

One of the aims with the research was to find if ByzzFuzz
can uncover faults in the liveness and safety guarantees that
Zyzzyva provides. We found that ByzzFuzz does not find
the safety violation presented by Abraham et al. in their
2017 paper [1], however it does manage to uncover a safety
violation that exists in our faulty implementation of the
Zyzzyva. Therefore, we find it has potential to uncover bugs,
especially given the relatively small number of simulations
that it ran for and the number of times that it found the
violation. We would require more testing and a modified
agreement predicate to capture the violation presented by
Abraham et al. due to the precise nature of mutations and
network faults.

We found that ByzzFuzz manages to find more flaws in our
implementation of Zyzzyva than the baseline method testing
method, presumably due to its round-aware mutations which
can possibly simulate byzantine behaviours better, although
more research is required into this area. Furthermore, our
sample size for testing was on the smaller side (around 6000
simulations) so we cannot draw a conclusive result, however,
the results do look promising with the amount of tests run so
far. We would recommend that more tests be run with more
parameters. We find that ByzzFuzz performs better than
Twins when finding the safety violation in the faulty case.

Finally, we wanted to assess the difference between the
performance of small-scope and any-scope mutations, for
which we cannot draw conclusive results, but it seems that
small-scope mutations perform slightly better since they have
more cases where the mutations are accepted by the system,
however more testing is required to truly understand the im-
plications of small-scope mutations because some violations
might require fewer process faults in order to be discovered
as shown in our results.

A Appendix
A.1 Testing configurations

Parameter Value

deliverTimeoutWeight 1
deliverMessageWeight 99

deliverClientRequestWeight 99
dropMessageWeight 15

mutateMessageWeight 15

Table 8: The application.yml test parameters for the baseline testing
method

A.2 Round calculations

ORD-REQ SPEC-RESPONSE
(s− 1) · 10 + 1 (s− 1) · 10 + 2

Table 9: Round calculations for the ORDER-REQUEST and SPEC-
RESPONSE. s is the current sequence number.

COMMIT LOCAL-COMMIT CHECKPOINT
(s− 1) · 10 + 3 v (s− 1) · 10 + 6

Table 10: Round calculations for the COMMIT, LOCAL-COMMIT
and CHECKPOINT. s is the current sequence number and v is the
current view number.

IHTP VIEW-CHANGE NEW-VIEW VIEW-CONFIRM
v v v v

Table 11: Round calculations for the I-HATE-THE-PRIMARY,
VIEW-CHANGE, NEW-VIEW and VIEW-CONFIRM messages. v
is the current view number.

References
[1] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo

Alvisi, Rama Kotla, and Jean-Philippe Martin. Revisit-
ing Fast Practical Byzantine Fault Tolerance. December
2017. arXiv:1712.01367 [cs].

[2] Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri
Perelman, and Dahlia Malkhi. Twins: White-glove ap-
proach for BFT testing. CoRR, abs/2004.10617, 2020.

[3] Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Yu Jiang,
Ting Chen, and Jiaguang Sun. Tyr: Finding consensus
failure bugs in blockchain system with behaviour diver-
gent model. In 2023 IEEE Symposium on Security and
Privacy (SP), pages 2517–2532, 2023.

[4] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: Speculative
Byzantine Fault Tolerance.



[5] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine Generals Problem. ACM Transactions on
Programming Languages and Systems, 4(3).

[6] Rupak Majumdar and Filip Niksic. Why is random test-
ing effective for partition tolerance bugs? Proceedings
of the ACM on Programming Languages, 2(POPL):1–24,
January 2018.

[7] Rolando Martins, Rajeev Gandhi, Priya Narasimhan,
Soila Pertet, António Casimiro, Diego Kreutz, and Paulo
Verı́ssimo. Experiences with Fault-Injection in a Byzan-
tine Fault-Tolerant Protocol. In David Eyers and Karsten
Schwan, editors, Middleware 2013, pages 41–61, Berlin,
Heidelberg, 2013. Springer.

[8] Atsuki Momose and Jason Paul Cruz. Force-locking at-
tack on sync hotstuff. Cryptology ePrint Archive, Paper
2019/1484, 2019.

[9] Levin N. Winter, Florena Buse, Daan De Graaf, Klaus
Von Gleissenthall, and Burcu Kulahcioglu Ozkan. Ran-
domized Testing of Byzantine Fault Tolerant Algorithms.
Proceedings of the ACM on Programming Languages,
7(OOPSLA1):757–788, April 2023.


	Introduction
	Background
	Zyzzyva
	Checkpoint sub-protocol
	The faulty cases

	ByzzFuzz
	Twins
	Baseline testing strategy
	Other testing strategies

	Implementing Zyzzyva in ByzzBench
	Why Zyzzyva?
	An Overview of the Zyzzyva Protocol
	The Agreement Sub-protocol
	The Fast-Track
	The Two-Phase track
	Fill-Hole
	Forward to Primary
	The View Change Protocol
	The Checkpoint Protocol

	Message Mutators

	Experimental Setup and Results
	Baseline
	ByzzFuzz
	Twins

	Responsible Research
	Reproducibility
	Ethical considerations

	Discussion
	Limitations of ByzzFuzz

	Conclusions and Future Work
	Appendix
	Testing configurations
	Round calculations


