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SUMMARY

In this work a computational study is presented that aims at increasing the funda-
mental understanding of contact and friction. Friction is a physical phenomenon
that is present all around in every day life. Often friction is functional, but friction
is also a significant cause of energy dissipation. Mechanical energy is converted
partly into heat which often can not be harvested for good use. Therefore, it is
essential to fundamentally understand friction. However, since friction is not a
simple phenomenon that consists of a single mechanism, but instead consists
of a variety of mechanisms acting on different length and time scales, reaching
a full understanding of friction is a formidable task. In this work we will follow a
bottom-up approach and focus on contact and friction at the single asperity level.
The simulations are carried out using discrete dislocation dynamics for friction at
the meso-scale and molecular dynamics for friction at the atomic scale. Discrete
dislocation dynamics simulations incorporate the intrinsic length scale of plastic
flow, the Burgers vector, so that this method is capable of capturing size-effects in
the plastic response.

The first two chapters of this work have a general character. Chapter 1 pro-
vides a short general introduction of the topic of this work. In Chapter 2 a brief
overview of the computational methods, dislocation dynamics (DD) and molec-
ular dynamics (MD), is presented.

In Chapter 3 the plastic shear response of micron-scale single asperities is
studied for both rectangular and truncated sinusoidal shapes. A new definition
of asperity strain is introduced that allows for fair comparison of the plastic re-
sponse, since the elastic response of asperities of different size and scale are simi-
lar. It is found that the contact area is the length scale dominant in controlling the
plastic shear response of a single asperity. Smaller contact area results in a harder
shear response. This is attributed to the fact that the contact area controls the size
of the stress zone in which dislocation nucleation can occur. The height, or the
volume, of the asperity is only of influence at intermediate contact areas (depend-
ing on the material properties like source spacing). For intermediate contact area,
a larger asperity height results in a softer response, since plasticity shifts from the
sub-asperity to the asperity itself.

In Chapter 4 the ploughing response of a single asperity of sinusoidally shape
is studied and compared with the shear response of a truncated sinusoidal shaped
asperity. The contact area is very small, which results in large variation in the fric-
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tion force due to the stochastic variation in the source’s position and strength. The
friction force can be predicted from a Gaussian distribution, irrespective whether
the ploughing depth is known or not. The friction force of sheared asperities is
clearly dependent on the height of the asperity. The comparison shows that if the
asperity is small, so that basically all plasticity occurs in the sub-asperity, the fric-
tion strength for ploughing and shearing a flat contact are similar. Therefore, for
small size the ploughing model can be simplified to a flat contact shearing model.
For larger asperity size, where plasticity inside the asperity occurs, a difference is
found in the friction strength for ploughing and shearing. Shearing is more dif-
ficult, due to limited material in which slip can occur and due to pile-ups on the
contact area.

Following up on the observation made in Chapter 4 that dislocation pile-ups
on the contact area can result in a significantly harder plastic response, disloca-
tion impingement is studied using atomistic simulations in Chapter 5. A novel
definition of atomic scale contact roughness is introduced to characterize the
contact. For Al bi-crystals under compressive loading (without impingement),
it is found that the atomic scale roughness controls the normal stress at which
dislocation nucleation from the contact interface occurs, while no universal cor-
relation between nucleation stress and interface energy (commonly used to char-
acterize interfaces) is found. The absorption of a single impinging dislocation
alters the local roughness, leading to a stress concentration at the impingement
site. The stress at which nucleation occurs after impingement increases with in-
creasing roughness, since at larger roughness the stress concentration due to the
absorbed dislocation is less strong. At critical roughness the impingement of a
single dislocation no longer affects the nucleation stress, since the roughness of
the contact itself becomes responsible for nucleation. If multiple dislocations in
a pile-up impinge on the contact, the nucleation stress lowers, but only up to
a pile-up of three dislocations. At low and intermediate interface roughness, a
maximum of two dislocations can be absorbed at the same time in the contact.
Only at large roughness, atomic rearrangement allows for more dislocations to
be absorbed in the contact. It is found that the repeated process of absorption
and nucleation when multiple dislocation impinge roughens the contact locally,
which is most clear when the initial contact roughness is low.

The absorption of impinging dislocations studied in Chapter 5 results in atom-
ically stepped contacts. It is also known that crystal growth can result in atomi-
cally stepped surfaces. In Chapter 6 we study friction at room temperature of
atomically stepped Al surfaces in contact and compare the friction behavior with
that of atomically flat contacts. It is found that friction of nano-scale contacts
has a self-organized critical state, which means that sliding occurs through stress
drops with a power-law distribution. Smaller step spacing results more frequently
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in large stress drops. Interestingly, during sliding of a stepped contact, the step is
not localized, but moves in the contact plane. This leads to normal migration of
the contact. During normal migration of the contact, it is found that vacancies
are generated in the re-crystallized region, leading to a vacancy concentration
near the contact of about two orders of magnitude higher than the room temper-
ature equilibrium concentration. This finding is important since this could affect
dislocation behavior near the contact at larger scales. If the contact consists of a
step pair, i.e. two steps of opposite sign, the sliding behavior shows two sliding
states, jerky and smooth, marked by a sudden transition. Starting from a rela-
tive rough contact, the steps organize in the contact during sliding resulting in a
smooth topology which leads to smooth sliding. If the step pair height is large,
a clear gap exists between the surfaces. The initial real contact area controls the
static friction stress. It is found that atomic scale wear during sliding leads to full
gap closure, and hence an increase in friction stress. The friction behavior be-
comes similar to that of small height step pair contacts once the contact has fully
closed.

In Chapter 7 unexpected sensitivities to small changes in initial or processing
conditions are reported for low temperature MD simulations of friction. These
sensitivities can lead to very different friction behavior for step pair contacts at
low temperature for different random realizations of the initial atomic velocities
or different implementation of the parallelization scheme. It is found that at low
temperature not only step motion but also twin nucleation from the contact can
occur, which means that the friction response never reaches a steady state. This
is not observed at room temperature, where the friction response always reaches
a steady state as discussed in Chapter 6. Since it is commonly assumed that due
to the absence of thermal noise at low temperature the results of low temperature
MD simulations do not have a variation, this is a remarkable observation and re-
quires careful considerations when performing low temperature MD simulations
that involve dissipation.





SAMENVATTING

In dit werk wordt een computationele studie gepresenteerd met het doel het fun-
damentele begrip van contact en wrijving tussen oppervlakken van vaste stoffen
te vergroten. Wrijving is een fysisch fenomeen dat overal aanwezig is in het al-
lerdaagse leven. Vaak is wrijving functioneel, maar wrijving is ook een belang-
rijke oorzaak van energiedissipatie. Mechanische energie wordt deels omgezet in
warmte, die over het algemeen niet benut kan worden. Daarom is het essenti-
eel om wrijving fundamenteel te begrijpen. Echter, aangezien wrijving niet een
simpel fenomeen is dat bestaat uit een enkel mechanisme, maar bestaat uit een
verscheidenheid van mechanismes die op verschillende lengte- en tijdschalen
relevant zijn, is het krijgen van een volledig begrip van wrijving een complexe
taak. In dit werk volgen we een bottom-up benadering en ligt de focus op con-
tact en wrijving op het niveau van een enkelvoudige asperity (oneffenheid van
een oppervlak). De simulaties zijn uitgevoerd met discrete-dislocatie dynamica
voor wrijving op de meso-schaal en moleculaire dynamica voor wrijving op de
atomaire schaal. Discrete-dislocatie dynamica simulaties implementeren de in-
trinsieke lengteschaal van plastische deformatie, de Burgers vector, zo dat de me-
thode in staat is om grootte-afhankelijkheid in de plastische respons te voorspel-
len.

De eerste twee hoofdstukken van dit werk hebben een algemeen karakter.
Hoofdstuk 1 biedt een korte algemene introductie in het onderwerp van dit werk.
In Hoofdstuk 2 wordt een kort overzicht gepresenteerd van de computationele
methoden, dislocatie dynamica (DD) en moleculaire dynamica (MD).

In Hoofdstuk 3 wordt de plastische schuifrespons van micro-schaal enkelvou-
dige asperities bestudeert voor zowel rechthoekige als afgeknotte sinusoïdale vor-
men. Een nieuwe definitie van asperity-rek is geïntroduceerd ten behoeve van
een eerlijke vergelijking van de plastische respons, aangezien dit de elastische
respons van asperities van verschillende grootte vergelijkbaar maakt. De bevin-
dingen tonen aan dat het contactoppervlak de dominante lengteschaal is in de
plastische schuifrespons van een enkelvoudige asperity. Kleiner contactopper-
vlak resulteert in een hardere schuifrespons. Dit wordt toegeschreven aan het feit
dat het contactoppervlak de grootte van het spanningsgebied controleert waarin
dislocatie-nucleatie kan optreden. De hoogte, of het volume, van de asperity
is alleen van belang voor contactoppervlakken die tussen de boven- en onder-
limieten liggen (afhankelijk van materiaaleigenschappen zoals dislocatie-bron-

xiii
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dichtheid). Voor contactoppervlakken tussen de boven- en onder-limieten resul-
teert een grotere asperity-hoogte in een zachtere respons, aangezien plasticiteit
zich verplaatst van het sub-asperity-gebied naar de asperity zelf.

In Hoofdstuk 4 wordt de ploegrespons van enkelvoudige asperities van sinus-
oïdale vorm bestudeerd en vergeleken met de schuifrespons van een afgeknotte
sinusvormige asperity. Het contactoppervlak is zeer klein, wat resulteert in een
grote variatie in de wrijvingkracht veroorzaakt door de stochastische variatie in
dislocatiebron-posities en -sterkte. De wrijvingskracht kan worden voorspeld op
basis van een Gaussische distributie, ongeacht of de ploegdiepte bekend is of
niet. De wrijvingskracht voor het schuiven van asperities is afhankelijk van de
hoogte van de asperity. De vergelijking tussen de ploegrespons en de schuifres-
pons toont aan dat wanneer de asperity klein is, zodat praktisch alle plasticiteit in
de sub-asperity optreedt, de wrijvingssterktes voor ploegen of schuiven van een
vlak contact vergelijkbaar zijn. Hierom kan voor een kleine asperity het ploeg-
model gesimplificeerd worden tot een vlak-contact-schuif-model. Voor grotere
asperities, wanneer plasticiteit in de asperity zelf optreedt, wordt een verschil in
de wrijvingssterkte voor ploegen en schuiven gevonden. De schuifrespons is har-
der doordat er minder materiaal beschikbaar is waarin dislocaties kunnen glijden
en door dislocaties die opeenstapelen tegen het contact.

Volgend op de observatie in Hoofdstuk 4 dat dislocatie-opeenstapelingen te-
gen het contact kan resulteren in een significant hardere plastische respons, wordt
het botsen van dislocaties met een contact bestudeerd in Hoofdstuk 5 middels
atomistische simulaties. Een nieuwe definitie van atomaire contactruwheid wordt
geïntroduceerd ten behoeve van de karakterisatie van het contact. De studie toont
dat voor Al bi-kristallen onder compressiebelasting de atomaire ruwheid de nor-
male spanning waarbij dislocatienucleatie van het contact plaatsvindt bepaalt,
terwijl er geen universele correlatie tussen de nucleatie-spanning en de interface-
energie (gewoonlijk gebruikt om interfaces te karakteriseren) wordt gevonden.
De absorptie van een enkele botsende dislocatie verandert de lokale ruwheid,
waardoor een spanningsconcentratie ontstaat. De spanning waarbij nucleatie
na botsen plaatsvindt neemt toe met toenemende ruwheid, doordat voor gro-
tere ruwheid de spanningsconcentratie door de geabsorbeerde dislocatie minder
sterk is. Bij kritische ruwheid is er niet langer een effect in de nucleatiespan-
ning gevonden van het botsen van dislocaties, aangezien hier de ruwheid van
het contact zelf verantwoordelijk is voor nucleatie. Wanneer meerdere disloca-
ties in een opeenstapeling op het contact botsen, neemt de nucleatiespanning af,
maar slechts tot drie dislocaties. Bij lage en gemiddelde interfaceruwheid, kun-
nen er maximaal twee dislocaties tergelijkertijd in het contact geabsorbeerd zijn.
Alleen bij grote ruwheid staat atomaire herschikking toe dat meerdere dislocaties
geabsorbeerd worden in het contact. Het blijkt dat het herhaalde proces van ab-
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sorberen en nucleëren wanneer meerdere dislocaties botsen, het contact lokaal
verruwt, wat het meest duidelijk is wanneer de initiële contactruwheid laag is.

De absorptie van botsende dislocaties bestudeerd in Hoofdstuk 5 resulteert
in atomair gestapte contacten. Tevens is het bekend dat het groeien van kristal-
len kan resulteren in atomair gestapte oppervlakken. In Hoofdstuk 6 bestude-
ren we wrijving op kamertemperatuur van atomair gestapte Al oppervlakken in
contact en vergelijken het wrijvingsgedrag met dat van atomair vlakke contacten.
Het blijkt dat wrijving van nanoschaal-contacten een zelforganiserende kritische
toestand heeft, wat betekent dat glijden plaatsvindt door spanningsvallen met
een machtsfunctie-verdeling. Kleinere stapspatiëring resulteert vaker in grotere
spanningsvallen. Interessant genoeg blijkt dat tijdens het glijden van een gestapt
contact, de stap niet gelokaliseerd is maar beweegt in het contactvlak. Dit leidt
tot migratie van het contact loodrecht op het contactvlak. Tijdens de migratie
van het contact worden vacatures in het gerekristalliseerde gebied gegenereerd,
wat leidt tot een vacatureconcentratie nabij het contact die circa twee orders van
grootte hoger is dan de evenwichtsconcentratie op kamertemperatuur. Dit re-
sultaat kan belangrijk zijn, aangezien het het dislocatiegedrag nabij contacten op
grotere schaal kan beïnvloeden. Wanneer het contact bestaat uit een stappaar,
d.w.z. twee stappen met een tegengesteld teken, heeft het glijgedrag twee ver-
schillende toestanden, ongelijkmatig en vloeiend, met een plotselinge overgang.
Vanuit een aanvankelijk ruw contact kunnen de stappen in het contact zich orga-
niseren tijdens het glijden, wat resulteert in een vlakke topologie die op zijn beurt
leidt tot vloeiend glijden. Bij een grote stappaarhoogte is er een duidelijke ope-
ning tussen de oppervlakken. Atomaire slijtage leidt tijdens glijden tot het sluiten
van deze opening en verhoogt hierdoor de wrijvingsspanning. Zodra het contact
gesloten is wordt het wrijvingsgedrag hetzelfde als dat van stappaarcontacten met
kleine staphoogte.

In Hoofdstuk 7 wordt voor MD simulaties van wrijving op lage temperatu-
ren onverwachte gevoeligheid voor kleine veranderingen in initiële of procesma-
tige condities gerapporteerd. Deze gevoeligheid kan voor stappaarcontacten op
lage temperaturen leiden tot zeer verschillend wrijvingsgedrag voor verschillende
atoombeginsnelheden of een verschillende implementatie van de parallelisatie.
Het blijkt dat op lage temperaturen niet alleen stapbeweging maar tevens nucle-
atie van twins uit het contact kan plaatsvinden, waardoor de wrijvingsrespons
nooit een stabiele toestand bereikt. Dit wordt niet waargenomen bij kamertem-
peratuur, waar de wrijvingsrespons altijd een stabiele toestand bereikt, zoals be-
sproken in Hoofdstuk 6. Aangezien algemeen aangenomen wordt dat door de
afwezigheid van thermische ruis de resultaten van MD simulaties bij lage tempe-
raturen geen spreiding vertonen, is dit een zeer opmerkelijke observatie. Het geft
aan dat zeer zorgvuldige overwegingen vereist zijn wanneer lagetemperatuur-MD
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simulaties worden uitgevoerd waarbij dissipatieprocessen optreden.



1
INTRODUCTION

There is at present in the material world a universal tendency to the dissipation of
mechanical energy.

William Thomson

1
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2 1. INTRODUCTION

1.1. GENERAL INTRODUCTION
Todays world population is growing at an exponential rate. The global energy
consumption therefore also increases rapidly. With increasing global energy con-
sumption, sustainability becomes more and more relevant. Sustainability can be
approached from different perspectives. One aspect is for instance the focus on
the use of sustainable energy sources. Another important aspect is limiting en-
ergy dissipation. One of the main sources of energy dissipation is friction. Of
course friction is a physical phenomenon that is crucial in everyday life. Without
friction we would for instance not be able to pick up an object or safely drive a
car. However, friction inherently entails energy dissipation, i.e. mechanical work
is converted into heat, which in many situations can not be harvested for good
use. Hence, friction is besides beneficial, also a major obstacle for sustainability.

Regardless whether friction in a given situation is desired or detrimental, it is
of great importance to fundamentally understand it. Especially with the ongo-
ing trend of the miniaturization of mechanical devices, entailing an increase in
surface-to-volume ratio, a rigorous understanding of friction is critical [1]. Fric-
tion of plastically deforming surfaces in contact provides an elaborate topic. Over
the years different friction laws have been defined based on parameters as normal
load, real contact area and contact shear strength [2–4]. The roughness of metal
surfaces often involves different scales [5–7]. This means that asperities with dif-
ferent length scales are involved in the frictional behavior. Statistical contact the-
ories of realistic rough surfaces constituting of asperities of multiple scales take
into account the elastic interaction between these asperities and can accurately
describe the pressure distribution of contacting surfaces [8, 9]. However, these
theories predict very high local pressures, beyond the classical yield stress of the
material. Since plasticity is know to be size dependent at the (sub)micron-scale,
it is difficult to predict whether plasticity should have set in.

Friction is a phenomenon that consists of various physical mechanisms that
act on different time and length scales [10, 11]. The roughness of metal contacts
does not only involve the micro- and nano-length scales of asperities, but also
the atomic scale due to, for instance, adsorbed atoms [12] and atomic steps [13].
Since on different length scales different dissipation mechanisms can occur, the
frictional behavior is not described by simple scaling laws. It is seemingly impos-
sible to derive friction laws that hold at all scales and therefore it is quite difficult
to predict the overall behavior. Considering the interplay between various dissi-
pation mechanisms, it becomes clear that reaching a full understanding of fric-
tion is a formidable task. Continuum approaches to model contact and friction
certainly break down at the atomic scale [14], due to the discreteness of atoms. To
extend the fundamental understanding of friction, a bottom-up approach is re-
quired. This means that friction first has to be understood at the smallest scales,
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before friction of real rough surfaces in contact can be fully understood. This
is the objective of the study in this thesis: to fundamentally understand contact
and friction of metal surfaces at the nano- and micro-scales, where atomic and
dislocation-mediated processes, respectively, are dominant. Size and scale ef-
fects in the plastic response of single asperities are studied at the micron-scale
using discrete dislocation dynamics simulations [15, 16]. This method averages
over atoms while accounting for the intrinsic length scale of plastic flow, the Burg-
ers vector [17], which makes it able to capture size-effects in micro-scale systems,
while still being computationally feasible. Contact and friction at the nano-scale
are studied using atomistic simulations. In the formation of contact between
metal surfaces, dislocations generated in the bulk can impinge on contacts. This
can lead to several mechanisms, i.e. absorption, re-nucleation, transmission or
stagnation by pile-up [18–20]. In this work the interactions of edge dislocations
with Al contacts under compressive load is studied, which leads to the conclusion
that the atomic scale contact roughness is pivotal in controlling the impingement
behavior. The absorption of dislocations in a contact results in a stepped con-
tact [21–23]. Such steps can also be formed by crystal growth [13, 24]. Hence, the
contact of asperities can exhibit atomic scale roughness. The effect of such rough-
ness on the friction behavior nano-scale contacts is also studied in this work. Fric-
tion of dry-contacts can show the characteristics of self-organized criticality [25–
30]. In this work we observe also for stepped contacts that self-organization and
self-organized criticality is very important in the sliding friction response. This is
remarkable, since not only local slip is found to occur in such contacts, but also
step motion leading to local contact migration. This work extends the existing
knowledge of dissipation mechanism in sliding friction of metal contacts at the
micro- and nano-scale.

1.2. OUTLINE OF THE THESIS
This thesis is roughly divided into two parts: 1) the study of friction at the micron-
scale, where we use discrete dislocation (DD) plasticity simulations to understand
the plastic response of a single asperity, and 2) friction and plasticity at the atomic
scale. For the latter we apply molecular dynamics (MD) simulations. Both meth-
ods, discrete dislocation dynamics and molecular dynamics, will be presented in
chapter 2.

In Chapter 3 the plastic shear response of a single asperity is investigated and
the length scale that controls the plastic shear response is identified. Chapter 4
studies the ploughing response of a single asperity and a comparison is made
with the shear response of a single asperity. This leads to the conclusion that flat
contact models can be applied instead of the more elaborate ploughing model,
when the asperity is small enough so that all plasticity occurs in the sub-asperity.
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In Chapter 5 the impingement behavior of dislocation on metal contacts is
analyzed and the contact characteristic that controls the dislocation nucleation
from the contact is identified. Chapter 6 is devoted to the study of friction of
atomically stepped surfaces in contact at room temperature. In Chapter 7 the
observations of unexpected sensitivities to initial or processing conditions in low
temperature MD simulations of friction are presented.

A general conclusion will be presented in chapter 8 and the outcome of this
study will be put in broader context.
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2
COMPUTATIONAL METHODS

The purpose of computation is insight, not numbers.

Richard Hamming

Parts of this chapter have been published in Ref. [1] and Ref. [2].
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In this chapter the computational methods that are used to study contact and fric-
tion at both the micro- and nano-scale are presented. For the nano-scale, molec-
ular dynamics (MD) simulations are performed. These allow for the investigation
of processes where it is essential to capture atomic interactions, like dislocation
impingement on a contact and the friction response of atomically stepped sur-
faces in contact. For the micro-scale, discrete dislocation (DD) plasticity simula-
tions are performed. This is a method that averages over the atoms, but accounts
for the dynamics of dislocations, the carriers of plastic flow, using constitutive
rules.

2.1. ATOMISTIC SIMULATIONS

2.1.1. MOLECULAR DYNAMICS

All matter is constructed from elementary particles. The behavior of these ele-
mentary particles is quantum mechanical and described by the Schrödinger equa-
tion. However, since all constituents interact with each other, it is a (near) im-
possible task to solve the Schrödinger equation at the nano-scale due to the vast
amount of particles involved. Fortunately, at the nano-scale most processes are
classical and can therefore be treated classically. Therefore, condensed matter
systems can often be studied classically with atomic scale resolution by means of
classical molecular dynamics (MD) simulations. In this study we are interested in
the mechanical responses of metals. For fundamental processes like dislocation
impingement on metal contacts and the frictional behavior of atomically stepped
surfaces in contact, atomic interactions have to be considered, which are cap-
tured in MD simulations. The MD simulations are performed using LAMMPS [3].
Classical MD involves the integration of Newtons equations of motion:

Fi = miai = mi
d2 ri

dt2 . (2.1)

Here Fi is the force acting on atom i due to all atoms in the system, mi is the
atomic mass, ai is the acceleration and ri is the atoms position. The force is re-
lated to the potential U by

Fi =−∇∇∇iU . (2.2)

Using a Velocity Verlet algorithm, the atomic positions at each time increment are
determined. Below the Velocity Verlet scheme is given in the order in which the
calculations are performed.

vi(t +∆t/2) = vi(t )+ 1

2
ai(t )∆t (2.3)

ri(t +∆t ) = ri(t )+vi(t +∆t/2)∆t + 1

2
ai(t )∆t 2 (2.4)
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ai(t +∆t ) = Fi(t )

m
(2.5)

vi(t +∆t ) = vi(t +∆t/2)+ 1

2
ai(t +∆t )∆t (2.6)

Here vi is the velocity of atom i and ∆t is the time increment in each calculation
step.

The MD simulations in this study are performed using the embedded atom
method [4]. In the embedded atom method the total energy of the system is given
by

U = 1

2

∑
i , j ( j 6=i )

Vsi si (ri j )+∑
i

Fsi (ρ̄i ), (2.7)

where the first term represents pair interactions between atom i and j of species
si and s j , and the second term represents the embedding energies of atom i in an
electron density ρ̄i due to the other atoms. The electron density is given by

ρ̄i =
∑
j 6=i

ρs j (ri j ), (2.8)

representing the contributions from all neighboring atoms j . This method is es-
pecially useful for metals, as the embedding form using the electron density is
capable of mimicking the metallic bond that arises from the collective wavefunc-
tion of the free electrons.

Temperature control is applied through a Nosé-Hoover thermostat. This ther-
mostat uses one imaginary particle to mimic an infinite heat bath. Using a spe-
cific damping coefficient the velocities of the atoms are scaled at every time in-
crement to reach or maintain a certain temperature in the system. Heat conduc-
tion in a metal is in reality dominated by free electrons. However, classical MD
simulation can not account for this. To compensate for the much too low heat
conduction, the whole system is thermalized to the desired temperature [5].

The material of choice in this work is aluminum. The choice for this mate-
rial is mainly driven by the high stacking fault energy in Al. It is often favorable
for dislocations in FCC metals to split into two partial dislocations separated by
a stacking fault ribbon. Due to the high stacking fault energy, the separation dis-
tance between the partials is small in Al, which limits the necessary dimensions of
the simulation box. A potential developed by Purja Pun and Mishin [6–8] is used,
which has shown to give accurate stacking fault energies and which is especially
suitable for studying mechanical behavior of interfaces.

2.1.2. ATOMIC STRUCTURE ANALYSIS

In the identification and analysis of dislocations and interfaces we mainly make
use of the Common Neighbor Analysis (CNA) [9–11]. A cutoff distance is used to
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analyze the topology of the bonds in the neighborhood of an atom. For FCC and
HCP structure type this is the half distance between the first and second neighbor
shell, which is for FCC structure type given by:

r fcc
cut =

1

2

(p
1/2+1

)
afcc. (2.9)

Here afcc is the lattice constant of the FCC lattice structure. For BCC structure
type the cutoff distance is given by:

r bcc
cut = 1

2

(p
2+1

)
abcc. (2.10)

Here abcc is the lattice constant of the BCC lattice structure. For each of the neigh-
bor bonds of the central atoms, three characteristic numbers are computed. First
is the number of neighboring atoms that the central and the bonded neighbor
have in common. Second is the total number of bonds between these common
neighbors. The third is the number of bonds in the longest chain of bonds con-
necting the common neighbors. The set of these numbers is compared to the
characteristic set of numbers for FCC, BCC, HCP or cubic diamond structure. If it
does not match any set of these numbers, then it is unclassified.

2.2. DISCRETE DISLOCATION PLASTICITY SIMULATIONS
At the micro-meter scale it becomes computationally too expensive to apply MD
simulations to analyze the mechanical response of metal systems. Therefore, DD
simulations are applied, which entails a method that averages over the atoms,
but accounts for the dynamics of dislocations, the carriers of plastic flow, using
constitutive rules. As mentioned in the previous section, the material of interest
is Al. The FCC crystal is represented in the two-dimensional model by three sets
of parallel slip planes [12]. The three sets of parallel slip planes are inclined by
φ = 60o with respect to each other. One set of slip planes forms an angle θ = 15o

with the shearing direction as shown in Fig. 2.1. This choice ensures that there is
no slip system with slip planes that are aligned with the loading direction, since
in reality it is not very likely to encounter this. Such a loading would also lead to
exaggerated preference of that slip system due to the two-dimensional problem
at hand.

The mechanical response of the asperity is modelled using discrete disloca-
tion plasticity [13]. This is a numerical method that combines the solution of
a boundary value problem with the dynamics of discrete dislocations. At every
time increment during the simulation, the displacement, strain and stress fields
in the crystal are obtained by superposition of the fields that arise from individ-
ual dislocations (̃ ) and the fields that correct for the actual boundary conditions
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Figure 2.1: Schematic representation the slip systems.

of the problem (̂ ),

u = û + ũ, ε= ε̂+ ε̃, σ= σ̂+ σ̃. (2.11)

The image fields (̂ ) are smooth allowing the finite element method to solve the
boundary value problem.

All dislocations are of edge character, consistent with the plane strain con-
dition imposed on the direction normal to the plane of analysis. The dynamics
of the dislocations is treated in an incremental manner. At each time step, the
Peach-Koehler force acting on dislocation I is calculated as

f I = n I ·
(
σ̂+ ∑

J 6=I
σ̃J

)
·b I , (2.12)

where b I is the Burgers vector of dislocation I . With this as the driving force, the
dislocation structure is updated by accounting for nucleation, motion, annihila-
tion and pinning of dislocations at point obstacles.

The nucleation criterion is based on the strength of the Frank-Read sources
that are randomly distributed in the material, and on their nucleation time. When
the stress on a source exceeds the source strength τnuc during a time larger than
the nucleation time tnuc a dislocation dipole with Burgers vector ±b is nucleated.
The dislocation dipole represents a dislocation loop in two dimensions. The dis-
tance between the two constituents of the dipole is therefore taken to be

Lnuc = µ

2π(1−ν)

|b|
τnuc

, (2.13)

where µ is the shear modulus and ν is Poisson’s ratio of the elastically isotropic
crystal. Annihilation occurs when the dislocations of the dipole come very close
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to each other; if their distance is smaller than 6|b| they are removed from the
simulation.

The Peach-Koehler force f I causes dislocation I to move with velocity

v I = f I

B
. (2.14)

Here B is the drag coefficient arising from the interaction of dislocations with
electrons and phonons. The motion of a dislocation is obstructed when it runs
into an obstacle. These obstacles represent precipitates or forest dislocations,
and are randomly distributed on potentially active slip planes. Obstacles have
a shear strength τobs; when f I > bτobs for pinned dislocation I , the dislocation
is released. When the new dislocation structure is established after each time in-
crement, the new stress and strain state in the updated dislocation structure is
calculated.

We take the Burgers vector to have length 2.5 Å, typical for FCC metals. The
dislocation source density and the obstacle density are chosen to be 60 µm−2 and
30 µm−2, respectively. The source strength τnuc of each source is randomly se-
lected from a Gaussian distribution with an average strength τs = 50 MPa and a
standard deviation of 20%. The obstacle strength is taken to be τobs = 150 MPa
(no variation). These specific material properties provide the flow strength of Al
in a tensile test. A specific configuration of the system with random positions of
sources and obstacles is called a realization. Each case is repeated for six realiza-
tions in order to average out statistical variations originating from the statistical
nature of the source and obstacle positions and from the source strength distri-
bution [14, 15].

As the platen that shears the crystal is assumed to be perfectly rigid, disloca-
tions that impinge on the contact are not allowed to penetrate the platen. To es-
tablish this condition, impenetrable obstacles are placed at the end of slip planes
ending in the contact just below the contact region. This means that the assump-
tion of a rigid platen in perfect sticking contact with the crystal may lead to dislo-
cation pile-ups below the contact.
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3
PLASTIC SHEAR RESPONSE OF A

SINGLE ASPERITY

Many people believe that the friction to be overcome to get something started
(static friction) exceeds the force required to keep it sliding (sliding friction), but

with dry metals it is very hard to show any difference.

Richard P. Feynman

Parts of this chapter have been published in Ref. [1].
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3.1. INTRODUCTION
As the miniaturization of mechanical devices continues, the need for a funda-
mental understanding of friction and plasticity increases [2] since the statistical
averages that describe these phenomena at the macroscopic scale are no longer
valid [3]. Over the years different friction laws have been defined based on pa-
rameters as normal load, real contact area and contact shear strength [4–6]. Nev-
ertheless, there still is a debate about whether describing friction in a rigorous
manner is possible, since the aforementioned laws do not hold at small size scales
for various reasons [7]. For instance, in the case of metal surfaces with contacts
at the (sub-)micron scale, classical local continuum plasticity theories cannot be
applied, since they lack a length scale that is necessary to capture size effects [8].
A plasticity size effect in metals occurs when the loaded specimen, or the region
subjected to a strain gradient, is comparable in size to a characteristic length as-
sociated to the discrete nature of the carriers of plasticity, the dislocations. Var-
ious non-local plasticity models [9–12] have been developed in recent years to
incorporate the effect of dislocations in a continuum setting. While dislocation
flow can be described through mean fields, effects caused by discreteness cannot,
think of source limitation effects but also of the highly localized contact pressure
profiles, characteristic of discrete dislocation plasticity. At present, statistical con-
tact theories describing the pressure distribution of contacting surfaces with ar-
bitrary roughness [13, 14] provide the most accurate description of contact, since
they account for a statistical asperity distribution and the elastic interactions of
the asperities. However, these statistical contact theories predict relatively high
pressures suggesting that yield takes place locally. Because plasticity is size de-
pendent at small scales it is difficult to predict at which contact pressure plastic
deformation sets in.

Friction of real rough surfaces is the outcome of multiple asperities being
flattened and sheared. Numerical analyses of multi-asperity contacts were per-
formed, which show that interactions between neighboring asperity contacts play
a critical role in determining the true area of contact between the surfaces [15–17].
The present work extends those contact studies by looking at friction. However,
we will here neglect asperity interaction and focus on a unit event: the frictional
behavior of a single asperity. The problem is analyzed using discrete dislocation
plasticity simulations. The choice for this method is related to the scale of the
single asperity under consideration which is in the micron regime. This length
scale addresses an intermediate regime where molecular dynamics [18, 19] is too
computationally expensive but local continuum theories are not suitable [20–22].
Dislocation dynamics fills the gap since it averages over the atoms, but accounts
for the nucleation and glide of individual dislocations.

The assumption is made that an asperity protruding from a metal single crys-
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tal is in static frictional contact with a rigid platen. As the rigid platen is displaced
tangentially, the asperity is sheared. The displacement imposed at the top of the
asperity induces a load on the underlying crystal that leads to strain gradients
as well as to a geometry-dependent plastic zone. Therefore, identification of the
length scale that controls a possible size dependent plastic behavior of the asper-
ity is not trivial. Only in the absence of strain gradients, the characteristic length
scale is dislocation spacing. For problems that involve strain gradients, like bend-
ing, shearing and indentation, the controlling length scale is much more difficult
to identify.

In this chapter we will elucidate the plastic shear behavior of single asperities
of various sizes and shapes, and search for the length scale that controls the plas-
tic behavior. Also the occurrence of plasticity inside and underneath the asperity
is analyzed. For certain asperity sizes and shapes, plastic deformation of the as-
perity itself can be ignored. However, if the plastic zone underneath the asperity
is large, it can be of significance for real multi-asperity surfaces.

A discrete dislocation analysis of static friction between a flat single crystal
and a rigid single asperity performed by Deshpande et al. [23] showed a clear de-
pendence on contact size of the contact shear stress. Building on these findings,
the shearing of a metallic single asperity by a rigid platen in this study introduces
a higher level of complexity since the geometry of the asperity comes into play.
Here, single asperities of rectangular and truncated sinusoidal shapes are inves-
tigated. For the rectangular asperity, the width is also the contact area, but for
a sinusoidal asperity the initial contact area is an extra geometrical parameter
which increases the level of complexity, but is more likely to occur in reality.

3.2. PROBLEM FORMULATION
Figure 3.1 shows the two dimensional model of a FCC metal single crystal with an
isolated asperity protruding from the flat surface. Two asperity shapes are ana-
lyzed: (1) a rectangular shape with height hasp and width w , and (2) a truncated
sinusoidal shape with amplitude A, wavelength w and contact area C . For the
rectangular asperity C = w . In case of a sinusoidal asperity, a flat contact area is
artificially created by truncating its apex before loading. The height, h = 50µm,
and width, λ= 1000µm, of the crystal are significantly larger than the dimensions
of the asperity, so as not to affect the results.

The mean tangential contact shear stress is given by

τ= 1

C

∫
x1∈C

σ12d x1 (3.1)

with the coordinates (x1, x2) being parallel and normal to the crystal, respectively.
The asperity is sheared by means of a rigid platen that is displaced in the x1-
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(a) (b)

Figure 3.1: Schematic representation of the shearing problem with (a) a rectangular shaped single
asperity, and (b) a truncated sinusoidal shaped single asperity.

direction by applying the following boundary conditions at the contact area:

uc
1 =

∫
u̇d t , uc

2 = 0 x1 ∈C . (3.2)

The surface not in contact is traction free, i.e. T1|x1∉C = 0 and T2|x1∉C = 0. The
lateral sides of the crystal are traction free and the bottom of the crystal is fixed
u1|x2=0 = 0 and u2|x2=0 = 0.

3.3. SIZE EFFECT FOR SELF-SIMILAR ASPERITIES
Rectangular asperities provide an ideal tool to investigate size and shape effects
on the shearing response, since the geometry is defined by only two parameters,
i.e. the asperity width and height. Therefore, before investigating truncated si-
nusoidal asperities, discrete dislocation dynamics simulations are performed for
rectangular asperities having a width between w = 1 µm and w = 4 µm at con-
stant aspect ratio w/hasp. The asperity is sheared at a constant rate up to a lateral
displacement uc

1 = 0.04 µm at the contact.
Plasticity size effects are most clearly shown when the elastic response is iden-

tical. To this end we introduce the asperity shear strain, defined for the two as-
perity shapes as follows:

rectangular : γ= uc
1 −ub

1

hasp
, (3.3)

sinusoidal : γ= uc
1 −ub

1

A
. (3.4)
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Here ub
1 is the mean displacement along the asperity base, which is defined as

the interface between asperity and crystal bulk (see Fig. 3.2). These definitions
of asperity strain guarantee identical elastic response for self-similar asperities,
and also limit the difference in elastic response between different asperity shapes
used in this study. Figure 3.2b shows that for a few asperity geometries, both rect-
angular and truncated sinusoidal, the elastic response differs no more than 5 %.
This allows for fair comparison of the shear strength of asperities with different
geometries.
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Figure 3.2: a) Schematic representation of the geometrical parameters used to calculate asperity
shear strain, and b) the elastic response for a few asperity geometries used in this study.

Figure 3.3a shows the mean contact shear stress τ as a function of asperity
shear strain for two groups of self-similar rectangular asperities with aspect ratio
w/hasp = 10 and w/hasp = 40 given by the solid and dashed lines, respectively. An
evident size effect is observed with small asperities giving a higher contact shear
stress. Figure 3.3b shows the shear stress profiles along the contact for a small
and a large asperity. A stochastic distribution of stress levels is observed, where
the highest peaks in the contact shear stress profile are caused by dislocations
piling up against the contact. The stress peaks are high, more than an order of
magnitude larger than the nucleation strength of 50 MPa, which was also found
in [24] for flattening of multiple asperity systems.

The lower mean contact shear stress in larger asperities observed in Fig. 3.3a
reflects more plastic activity. This is exemplified by the dislocation structure and
the shear stress (σ12) distribution normalized by the average source strength (τs =
50 MPa) shown in Fig. 3.4 for two asperities at γ= 0.015. Figure 3.4a for w = 1 µm
is scaled up to have the same size as Fig. 3.4b for w = 4 µm for better comparison.
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Figure 3.3: a) Mean contact shear stress as a function of asperity shear strain for rectangular shaped
asperities (the gray line indicates the 0.1% offset strain, while the colored dots indicate the data at
0.01 µm offset displacement as reported in Fig. 3.10). b) Comparison of the normalized shear stress
profile for a large asperity and a small asperity with the same aspect ratio at shear strain γ= 0.015.
The black curves indicate the corresponding elastic solution (dashed and solid for w = 1 and 4 µm,
respectively).

(a) (b)

Figure 3.4: Normalized shear stress distribution and dislocation structure at an asperity shear strain
of 0.015 in a rectangular asperity a) of width w = 1 µm and height hasp = 0.1 µm, and b) of width
w = 4 µm and height hasp = 0.4 µm.

The larger asperity in Fig. 3.4b is characterized by a lower stress, on average, both
inside and below the asperity. Also it contains a visibly larger number of disloca-
tions than the small asperity in Fig. 3.4a, consistent with the fact that there has
been more plastic activity in the body with the largest asperity. Since the contact
is impenetrable, the number of dislocations that can escape the asperity is small,
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because they can leave the body only through free surfaces. Figure 3.4a and 3.4b
also show that dislocations are present outside the area of the asperity itself, yet
remain contained in a region that is small compared to the crystal. In the follow-
ing we shall refer to the region underneath the asperity as the sub-asperity.

In conclusion of this section, it is found that the plastic shear response de-
pends on the asperity size. This is firstly because the size of the asperity poses
a constraint on the plastic activity in the asperity itself. Secondly, the size of the
asperity also determines the size of the sub-asperity region affected by a strain
gradient, and where dislocations can nucleate, provided that there are nucleation
sources.

3.4. DEPENDENCE ON ASPECT RATIO FOR A RECTANGULAR AS-
PERITY

In this section the separate effects of asperity height and asperity width on the
plastic response of the system are investigated. Figure 3.5 shows the contact shear
strength taken at 0.1% offset strain as a function of asperity height for various val-
ues of the width. It becomes clear from these results that the size dependence
observed in the previous section is mainly caused by the asperity width (=contact
area); the dependence on asperity height is weaker. For large asperity width, the
contact shear strength is about 45 MPa and insensitive to height. When the asper-
ity width is small, i.e. w = 0.5 µm, the mean contact shear stress is much larger,
ranging from 149 MPa to 168 MPa depending slightly on height. Only for inter-
mediate width, e.g. w = 1 µm, the effect of height is significant, with the most
shallow asperity (hasp = 0.025µm) being more than a factor two stronger than the
tallest (hasp = 0.4µm).

h
asp

(µm)

τ
(0

.1
%

o
ff

s
e
t
s
tr

a
in

)
(M

P
a
)

0 0.1 0.2 0.3 0.4

50

100

150

200

250 w=4 µm

w=2 µm

w=1 µm

w=0.5 µm

Figure 3.5: Effect of asperity height and width on the onset of plasticity.
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Figure 3.6: Effect of source density for two different rectangular asperity geometries.

The simulations performed so far used a dislocation source spacing corre-
sponding to the default source density of 60µm−2. The average source spacing
in these two-dimensional simulations is assumed to be a constant length, which
is characteristic of the material, the processing and the loading history that the
material has undergone. The ratio between source spacing and contact size de-
termines how many sources are available to nucleate dislocations. It is therefore
to be expected that the source spacing will affect the results. To investigate this,
the mean contact shear stress is presented in Fig 3.6 for a relatively large (w = 4
µm) and relatively small (w = 0.4 µm) asperity each having two different source
densities. For both asperities, a decrease of the source density by a factor two
leads to an increase in the contact shear strength as well as to an increase in hard-
ening slope. Reduction of the source density has a larger impact on the plastic
behavior of the small asperity: the hardening slope increases by a factor of ap-
proximately 1.7, while it is negligible for the large asperity. This indicates that the
plastic response becomes source limited for small asperities. For a small asper-
ity, a low source density cannot guarantee on average the same amount of plastic
deformation that is achieved with a higher source density.

To conclude this section, the asperity width, which coincides with the contact
area, is the dominant length in the plastic shearing of rectangular asperities: it
controls the contact shear stress and hardening. The height of the asperity, and
therefore its volume is relevant only at intermediate values of the contact area, for
the material parameters in this work around w = 1 µm. In a subsequent section,
we will show that this is attributed to the relevance of asperity plasticity relative
to sub-asperity plasticity.
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3.5. ASPERITY GEOMETRY AND CONTACT AREA
To study the plastic shear response of a more realistic asperity geometry, we now
consider a truncated sinusoidal shape (see Fig. 3.1b and Fig. 3.7a). The width
of the asperities is varied from w = 1 µm to w = 4 µm, the amplitude from A =
0.05 µm to A = 0.2 µm and the contact area from C = 0.1 µm to C = 2 µm. The
corresponding height of the asperity is given by

hasp = A+ A cos

(
πC

w

)
. (3.5)

The ratios w/A and C /hasp have to be constant in order to preserve asperity shape.
Figure 3.7 shows the contact shear stress as a function of asperity shear strain
for two scaled asperity geometries characterized by aspect ratios C /hasp = 1.025
and 10, plotted by the solid and dashed lines, respectively. The curves with the
same color represent sinusoidal asperities cut at different heights: the dashed
curve is for a sinusoidal asperity with the same base width (w = 4,2 and 1 µm)
as that represented by the solid curve, but with smaller height and larger contact
area. Similar to the response of rectangular shaped asperities, a size dependence
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Figure 3.7: a) Schematic representation of the geometry of a truncated sinusoidal asperity, and
b) size effect in the contact shear stress as a function of asperity strain for two different scaled
truncated sinusoidal asperity geometries.

is found in Fig. 3.7b where smaller asperities show a harder response than self-
similar larger asperities. However, by comparing each dashed line with the solid
line with the same color, we also see a distinctly different feature of sinusoidal as-
perities in Fig. 3.7b. An increase in height, and thus in volume, leads to a larger
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shear stress, in contrast to what was observed in Fig. 3.3a and Fig. 3.5 for rect-
angular asperities. The reason for this is that when a sinusoid is truncated at a
smaller height, it has a larger contact area.

These observations hint that contact area plays a key role. This is investigated
in Fig. 3.8 by plotting the shear strength of rectangular and truncated sinusoidal
asperities (from Figs. 3.3a and 3.7b) versus asperity width w and versus contact
area C . The error bars show the statistical variation among realizations. A sig-
nificant variation in the shear strength is found in Fig. 3.8a for each width, and
there is no correlation between shear strength and width. On the other hand,
when the same data is presented as a function of contact area C in Fig. 3.8b, a
consistent trend for both types of asperities is observed, showing a larger shear
strength at smaller contact area. The reason is that the contact area determines
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Figure 3.8: a) The shear strength as a function of width and, b) the shear strength as a function of
contact area for rectangular and truncated sinusoidal shape.

the size of the stressed region in which dislocation nucleation occurs. Whether or
not this region is confined to the asperity or resides mainly outside of the asperity
is less relevant. Figure 3.9a and 3.9b show the shear stress (σ12) distribution and
the dislocation structure for a rectangular and a truncated sinusoidal asperity, re-
spectively, both with a contact area C = 1 µm. The same contact area results in a
shear stress distribution and a dislocation structure (average dislocation density)
that are quite similar, although the width and the volume of the truncated sinu-
soidal asperity are respectively 4 and approximately 7.6 times larger than that of
the rectangular asperity.

To further explore the importance of contact area, we compare the present
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(a) (b)

Figure 3.9: The shear stress (σ12) distribution and the dislocation structure at 0.1% offset strain in
a) a rectangular asperity (w = 1 µm, hasp = 0.1 µm) and, b) a truncated sinusoidal asperity (w = 4
µm, A = 0.2 µm, hasp = 0.34) having the same contact area C = 1 µm.

data for rectangular and truncated sinusoidal asperities with results for a zero-
height asperity with contact area C , similar to Ref. [23], in Fig. 3.10. For a zero-
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Figure 3.10: The contact shear stress at 0.01 µm offset displacement as a function of contact area
C for rectangular and truncated sinusoidal asperities compared with results for zero-height asper-
ities.

height asperity we cannot define asperity strain and therefore we here work with
the asperity strength defined at an offset displacement of 0.01 µm (these data
points are indicated with symbols in Fig. 3.3a). Error bars are included in Fig.
3.10 to show the variation among different realizations. As expected, both the ge-
ometry dependence (especially at intermediate contact size) and the statistical
variations become increasingly important as contact size decreases. The strength
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of the zero-height asperities depends on C following a power law with an expo-
nent of roughly −0.7. The power law does not extend further to larger contact
areas, since already for C = 4 µm the continuum limit (≈ 40 MPa) is almost ap-
proached. The powerfit of the shear stress of zero-height asperities is in good
agreement with the shear stress of rectangular and truncated sinusoidal asperi-
ties for large and small values of C , i.e. approximately C < 0.5µm and C > 3 µm
for the source density used in this study. This means that the geometry of the as-
perity barely affects the results at large and small contact area. This is because
underneath large contacts the number of available sources is sufficient to ensure
that the shear strength is reached. Therefore, an increase in height, even if accom-
panied by significant plasticity in the asperity, would not affect the shear strength.
Underneath small contacts there are insufficient sources to sustain plastic defor-
mation. Increasing the height would also not lead to much more plasticity, since
the narrow asperity is source limited. The shape and size of the asperity are in-
stead relevant for intermediate contact size, i.e. 0.5µm<C < 3 µm. In this range,
taller asperities show a softer response due to significant asperity plasticity rela-
tive to the sub-asperity plasticity, as will be shown in the next section.

In conclusion, the problem of the shearing of a protruding asperity can be
simplified to the problem of a zero-height asperity if the contact area is either
larger than about 3 µm or smaller than 0.5 µm, for the specific source density
used in these simulations.

3.6. ASPERITY VERSUS SUB-ASPERITY PLASTICITY
We have already observed that plastic activity takes place not only inside but also
outside the asperity, in the sub-asperity. In the previous section we have postu-
lated that plasticity inside the asperity can contribute significantly to the shear-
ing response of asperities with intermediate contact size. Here, we will provide
evidence for this. Furthermore, sub-asperity plasticity is not only important in
determining the shearing behavior of single asperities, but is also likely to play an
important role in surfaces with multiple asperities where the sub-asperity region
is shared by neighboring asperities. Therefore, we here aim to give an estimate of
the relative contribution of asperity plasticity compared to sub-asperity plasticity.

Slip in the material is a result of gliding dislocations and is therefore a mea-
sure of plastic activity. The slip is calculated by subtracting the elastic shear strain
from the total shear strain resolved on each slip system. The total slip Γtot is then
computed by integrating the sum of the magnitude of plastic slip on the three slip
systems in the volume of the crystal as well as inside the asperity. The slip in the
asperity Γasp as a fraction of the total slip in the crystal is given in Fig. 3.11a as
a function of asperity height for all rectangular asperities presented in the work.
Results are presented for the default source density ρs = 60 µm−2 as well as for a
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lower source density, ρs = 30µm−2, cf. Fig. 3.6. The size of the error bars indicates
the variation in Γasp/Γtot for different asperity width at the given height. For both
source densities the relative slip in the asperity increases with increasing height.
If the asperity is shallow, i.e. hasp < 0.125 µm, less than 25% of slip occurs in the
asperity. When the asperity is taller, slip in the asperity becomes dominant, espe-
cially if the width of the asperity is also large. The lower source density results in a
lower plastic activity in the asperity at all heights and thus, as expected, the plastic
behavior of the asperity becomes less important as source density decreases.

Figure 3.11b shows the relative slip in the asperity as a function of contact area
C . When the contact area is large, the slip in the asperity increases significantly
with asperity height. However, when the contact area is significantly smaller than
1 µm, an increase in height gives rise to little additional slip in the asperity.

We know from the previous sections (see Fig. 3.5, Fig. 3.8b and Fig. 3.10) that
the contact shear strength of a large contact is insensitive to height. Thus, for large
contact areas, a larger asperity height gives more plasticity inside the asperity,
but has no effect on the shear strength. On the contrary for small contact areas
the shear strength is large, and neither the height nor the volume contribute to a
reduction of the shear strength since plastic activity in thin and tall asperities is
source limited. Only for intermediate contact areas an increase in asperity height
leads to additional asperity plasticity and, as a consequence, to a softer shearing
response.
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Figure 3.11: a) Relative slip in rectangular asperities for two source densities 0.01 µm offset dis-
placement averaged over different width as a function of height. The dependence on asperity width
is contained in the ‘error bar’ for each hasp. b) Relative slip as a function of contact area for a source
density of ρs = 60 µm−2.
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3.7. CONCLUSIONS
In this work the plastic shear response of a single asperity protruding from a large
metal crystal is investigated by means of discrete dislocation plasticity simula-
tions. Three asperity shapes are considered: 1) rectangular shape, 2) truncated
sinusoidal shape, and 3) zero-height. This study leads to the following conclu-
sions.

• Self-similar asperities with reduced size have a higher contact shear strength
than large asperities, even though the elastic behavior measured in terms
of asperity shear strain is identical.

• Contact area and spacing between dislocation sources are the length scales
that control the plastic behavior of the asperities: the contact area deter-
mines the size of the stressed region, inside and below the asperity, where
dislocation nucleation can occur. Source spacing controls how many sources
can be activated in the stressed region and thus give rise to plastic deforma-
tion.

• For small and large contact area, the asperity can be idealized to have zero-
volume. Only for intermediate contact area, i.e. 0.5 < C < 3µm for the dis-
location source density used in this study, the shape and size of the asperity
are relevant. The taller the asperity, the more plasticity inside of it, the softer
its shearing response.
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4.1. INTRODUCTION
Classically, the friction force is defined by Amontons law as being proportional
to the normal load, Ff = µL. Tabor and Bowden realized that the reason for the
relation between normal load and friction force was in the fact that the apparent
contact area and the true contact area differ [2], and that upon increasing the nor-
mal load the real contact area also increases. They posed that the friction force
should be given by a critical shear strength of the asperities of a rough surface
and the true contact area: Ff = τcs Ac. So to be able to predict the friction force,
one has to know the evolving surface morphology to know the true contact area.
Greenwood and Williamson developed a framework in which a rough surface is
constructed as a collection of asperities with heights that are given by a Gaussian
or exponential statistical distribution [3]. This means that also the contact be-
tween surfaces is given by a statistical distribution, as shown by [4, 5]. Studies on
contact between rough surfaces have applied macroscopic plasticity models [6]
[7]. However, plasticity is known to be size-dependent at the micron-scale, which
in general entails that smaller systems are harder to plastically deform. Like al-
ready mentioned in the previous chapter, molecular dynamics contact studies [8]
[9] are computationally expensive and therefore restricted to the nano-scale. Dis-
crete dislocation (DD) plasticity is an intermediate method, that averages over
atoms but accounts for the discreteness of dislocations by applying constitutive
rules, and therefore is capable of capturing size-effects.

In the previous chapter the plastic shear response of rectangular and trun-
cated sinusoidal single asperities with a perfectly adhesive contact is extensively
analyzed. It is concluded that the contact area is dominant in controlling the plas-
tic response. However, for real rough surfaces contact occurs not only by flat con-
tact between asperities, but also by interlocking asperities as shown in Fig. 4.1.
So the total friction force is a construct of the force caused by shearing adhesive
contacts and interlocking asperities.

Figure 4.1: Example of contact between two rough surfaces. The red circle shows flat contact and
the blue circle shows interlocking asperities.

When two bodies in contact are sheared, there is a critical shear strength at
which the relative motion between the two surfaces occurs. For a flat contact
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this can either be due to the breaking of adhesive bonds in the contact or due to
plastic deformation of the asperity and sub-asperity, like in the previous chapter.
The contact shear stress determines which mechanism is dominant in sliding. For
ploughing, loss of adhesion is less likely to be the reason of sliding friction due to
the interlocking of the asperities. This means that also for very high contact stress,
plasticity is likely still the dominant relaxation mechanism.

In this chapter the plastic ploughing response of a single asperity is studied
and compared to the plastic shearing response of a single asperity with a flat con-
tact. Ploughing occurs by a rigid sinusoidal asperity in contact with a deformable
asperity of similar shape. This chapter aims at obtaining an understanding on
the possible differences between shearing and ploughing and whether the more
complicated ploughing model can be replaced by simpler contact models in some
cases.

4.2. PROBLEM FORMULATION
The computational method applied to study the plastic response of a single as-
perity, DD plasticity, is described in Chapter 2. The shearing model that forms
the basis of Chapter 3 and is also used here is extensively discussed in Chapter
3. Here we focus mainly on the ploughing model. Figure 4.2 shows a schematic

2A

w

source

obstacle

2A

U

x1

x2

L

h

Figure 4.2: Schematic representation of the ploughing model.

representation of the ploughing model. A sinusoidal asperity of width w and am-
plitude A protrudes from a large single FCC metal crystal of height h = 50 µm and
width L = 1000 µm. A rigid asperity of the same shape and size is responsible for
the ploughing by lateral displacement. The contact between the two asperities
can be formed at different depth and is defined by ∆ as shown in Fig. 4.2. The
initial contact area is zero and evolves depending on the size and shape of the
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asperity. As for shearing, a perfectly sticking contact is assumed, so that no rel-
ative slip between the asperities occurs. The distribution of horizontal tractions
t1 = σ1jnj in the contact C results in a ploughing force Fp. Since now the contact
is not flat (i.e. aligned with the x1-direction) anymore, as it was for shearing, the
force becomes:

Fp =
∫

x1,x2∈C
(σ11 d x2 +σ12 d x1) (4.1)

For the non-contact parts of the systems the boundary conditions that are im-
posed are identical to the boundary conditions used for the shearing problem
described in Chapter 3.

4.3. PLOUGHING DEPTH VERSUS SHEARING HEIGHT
Figure 4.3a shows the ploughing force as a function of applied displacement for
an asperity of width w = 4 µm and amplitude A = 0.4 µm at a ploughing depth of
∆= 0.4 µm for ten different realizations where the thick red curve represents the
average ploughing force. A large variation is observed between the different real-

U (µm)

F
p 

(N
/µ

m
)

0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

*10-4

(a)

498 500 502

1.0
0.7
0.4
0.1

-0.1
-0.4
-0.7
-1.0

σ12

τnuc

(b)

Figure 4.3: a) Ploughing force as a function of applied displacement for an asperity of width w = 4
µm and amplitude A = 0.4 µm, and b) the normalized shear stress in the elastic regime.

izations. The reason for this large variation is found by looking at the shear stress
in the elastic regime before the onset of plasticity shown in Fig. 4.3b. The shear
stress is highly localized. Since the dislocation sources are randomly distributed
throughout the material, the likelihood of finding a source in the local stress zone
controls plasticity and thereby makes the plastic response highly probabilistic.
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This is in line with the observation in Chapter 3 that a smaller contact area results
in a larger variation in the contact shear strength.

Contact can be established at different ploughing depth. Figure 4.4a shows
for an asperity of width w = 4 µm and amplitude A = 0.4 µm the ploughing force
as a function of applied displacement at different ploughing depth including er-
ror bars showing the standard deviation. Although a difference is found in the
average ploughing force where larger ploughing depth results in a slightly larger
ploughing force, the standard deviation has such a large magnitude that the re-
sults overlap. This entails that the ploughing force is not significantly sensitive
to the ploughing depth. The results can be converted into a statistical distribu-
tion that gives the probability of the ploughing force that is found during friction,
shown in Fig. 4.4b. To show that the behavior shown in Fig. 4.4 is not specific for
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Figure 4.4: a) Ploughing force as a function of applied displacement at different ploughing depth,
and b) the statistical distribution of ploughing force for an asperity of width w = 4 µm and ampli-
tude A = 0.4 µm.

this particular asperity geometry, a similar analysis is performed for a less pro-
truding asperity of width w = 4 µm and amplitude A = 0.2 µm. The ploughing
force and the associated statistical distribution are shown in Fig. 4.5. For both
asperity geometries it is found that the ploughing forces at different ploughing
depth are statistically indistinguishable and the ploughing force is described by a
Gaussian distribution. However, the parameters describing the statistics are not
similar but dependent on the asperity geometry. The expected ploughing force
for an asperity of width w = 4 µm and amplitude A = 0.4 µm is 0.75x10−4 N/µm,
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Figure 4.5: a) Ploughing force as a function of applied displacement at different ploughing depth,
and b) the statistical distribution of ploughing force for an asperity of width w = 4 µm and ampli-
tude A = 0.2 µm.

while the expected ploughing force for an asperity of width w = 4 µm and am-
plitude A = 0.2 µm is with 1.267x10−4 N/µm significantly larger because the rel-
ative contribution of plasticity in the asperity with smaller amplitude is smaller
compared to the asperity with larger amplitude. The standard deviation however,
is similar: 0.12x10−4 N/µm for width w = 4 µm and amplitude A = 0.4 µm and
0.145x10−4 N/µm for width w = 4 µm and amplitude A = 0.2 µm. Additional sim-
ulations with half the source and obstacle density show that the standard devia-
tion increases to 0.26x10−4 N/µm, so that the standard deviation seems to scale
approximately inversely with the source density in the range considered here1.

Contrary to ploughing at different depth, shearing of a truncated sinusoidal
asperity depends on asperity height. Figure 4.6a shows the shear force as a func-
tion of applied displacement for an asperity of width w = 4µm, amplitude A = 0.2
µm and contact area C = 2 µm (resulting in an asperity height hasp = 0.2 µm) for
ten different realizations. Similar to the ploughing force a relative large varia-
tion is found in the shearing force. However, both the average shearing force and
standard deviation of the shearing force depend heavily on the shearing height
as shown in Fig. 4.6b, where the friction force at final displacement and the stan-
dard deviation are shown for two asperity geometries. Shearing at different asper-
ity height entails different contact area. In Chapter 3 it is shown that the contact

1When increasing the source density towards the continuum limit, this relation is expected to break
down at some point.
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area is the controlling length scale of the plastic shear response of a single asper-
ity. Figure 4.7a shows the friction force as a function of contact area for the same
two asperity amplitudes. At small contact size the friction force is approximately
constant, in agreement with the ploughing case for which the contact area is even
smaller. Here we have to note that for small contact size, the contact shear stress
is high, about 1 GPa, however the simulations do not account for the possibility
of de-adhesion. At larger contact size, the friction force increases. However, the
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Figure 4.6: a) The shear force as a function of applied displacement for an asperity of width w = 4
µm, amplitude A = 0.2 µm, C = 2 µm and height hasp = 0.2 µm, and b) the friction force as a
function of asperity height.

linear dependence is not a classical dependence (Amontons law) that states that
if the contact area increases by a factor of 2 the friction force would also increase
by a factor of two. Instead, the slope of the linear part at larger contact area is
approximately 0.45x10−4 N/µm2. Because the friction force is significantly differ-
ent for different contact size, it is not fair to make a comparison of the standard
deviation. Therefore we analyze the standard deviation relative to the average
friction force. As shown in Fig. 4.7b the relative statistical uncertainty decreases
with increasing contact area. At large contact size the statistical dependence in
the friction force is only about 5% of the friction force, while at small contact size
it can be up to 19%.

In conclusion, although the ploughing response is independent of plough-
ing depth, the shearing response is dependent on asperity height, due to the sig-
nificant difference in contact area. Additionally, the variation in the response is
clearly affected by the contact size, being significantly larger at small contact area,
both for shearing and ploughing.
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Figure 4.7: a) The friction force, and b) the relative standard deviation as a function of contact area
for shearing of a truncated sinusoidal asperity.

4.4. SIZE-DEPENDENCE OF SELF-SIMILAR ASPERITIES
In this section the ploughing and shearing of asperities of the same shape (A/w =
0.05) but different size are investigated. For shearing two different cases are in-
vestigated. The first is where an asperity protrudes from the crystal and has a
constant contact area. The second case has only a contact area: rigid asperity
is sheared on top of a flat crystal. Figure 4.8 shows for clarity the three different
models. The size-dependence is analyzed in terms of friction stress. For the two
shearing models it is clear what to define as the friction stress, since it is simply the
friction force divided by the contact area F /C . However, for the ploughing model
there is no obvious definition of friction stress. The only geometrical length scale
that the three models have in common is the asperity width. Therefore we define
the friction stress for all cases as the friction force divided by the asperity width,
F /w , which is shown in Fig. 4.9. It is found that for w ≤ 1 µm, the is no significant
difference in the response of the three models. However, for w > 1 µm the curves
differ clearly. For ploughing an approximated slope of −1 is found. This entails
that there is no size-dependence in the force, contrary to the behavior found for
the two contact models, where a clear size-dependence is observed. The reason
why the ploughing model does not show a size-dependence and the shear mod-
els do show a size-dependence is found in the contact area. For shearing it is
already known from the previous chapter that the contact area is the dominant
length scale controlling plasticity. However, for ploughing the contact area is very
small, close to a point. Therefore the size of the asperity does not matter, since
the contact stress field is like a point contact stress field. A similar behavior is
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encountered in the indentation simulations using a circular indenter [10] where
also a concentrated stress field is controlling the plastic response. To further ex-
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Figure 4.8: Different models: zero-height, shearing and ploughing.
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Figure 4.9: Friction stress as a function of asperity width for self-similar asperities for zero-height,
shearing and ploughing.

plain the difference between the shearing and the ploughing asperity models we
uncover three main differences:

• The displacement is for the shearing model prescribed along a relatively
large contact. This leads to a larger force during elastic deformation and
smaller fluctuations during plastic deformation.

• The ploughing model considers a larger asperity volume, since for shear-
ing the asperity is truncated to be able to prescribe the displacement. This
entails that the ploughing model has a larger amount of sources in the as-
perity.

• For shearing a perfectly adhesive contact is assumed. Therefore dislocation
are prohibited to escape the material through the contact. To establish this
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condition impenetrable obstacles are placed at the ends of the slip planes
ending in the contact.

The second and third point are conditions that can be mimicked in the ploughing
model. All sources in the ploughing model above the contact height in the shear-
ing model are removed. As shown in Fig. 4.10 the ploughing response becomes
closer to the shearing response. Now if also impenetrable obstacles are placed at
the position where for shearing the contact would be, the results are even closer.
Therefore it can be concluded that the kinematic constraints at the contact result
in harder responses.
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Figure 4.10: Applying constraints to the ploughing model make the ploughing response approach
the shearing response.

4.5. CONTACT SIZE-DEPENDENCE IN PLOUGHING OF SELF-
SIMILAR ASPERITIES

The previous section shows that for a contact area C > 0.1 µm the ploughing be-
havior is no longer size-independent, but clearly linearly dependent on contact
area. In this section we make a comparison between ploughing with an evolving
and a constant contact area. Fig. 4.11 shows the friction stress F /w as a function
of the width w for three cases: 1) ploughing with evolving contact area (depend-
ing on size and shape) as in Section 4.4, 2) ploughing with constant contact area,
C = 25 nm for all w , and 3) ploughing with contact area which scales with w . It is
found in Fig. 4.11 that within statistical variation for all cases the friction strength
scales with w−1, and hence the behavior is similar irrespective on the contact def-
inition itself, as long as the contact area is small.
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Figure 4.11: Comparison of the friction stress due to plastic ploughing for ploughing with evolving,
constant and scaled contact area.

4.6. CONCLUSIONS
In this chapter the plastic ploughing response of a single asperity is studied and
compared to the plastic shearing response of a single asperity with a flat contact.
This leads to the following conclusions.

• The friction force, defined as the ploughing force at final displacement, is
insensitive to the ploughing depth and follows a distribution that is almost
Gaussian with a depth-independent standard deviation.

• Although ploughing is insensitive to the ploughing depth, shearing is very
much sensitive to the shearing height, because of the associated change in
contact area. It is found that a larger contact area results in a larger fric-
tion force. The relative standard deviation increases with decreasing con-
tact area (or increasing height).

• For shearing of self-similar asperities and zero-height asperities a size-dependent
response is found. However, the friction force for ploughing of self-similar
asperities is size-independent.

• For small asperity size the friction strength measured in the asperity base
is identical for ploughing and shearing, so that at small asperity size the
more complex ploughing model can be replaced with the simpler flat con-
tact shearing model.
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5
IMPINGEMENT OF EDGE

DISLOCATIONS ON ATOMICALLY

ROUGH CONTACTS

... what statement would contain the most information in the fewest words? I
believe it is the atomic hypothesis that all things are made of atoms—little

particles that move around in perpetual motion, attracting each other when they
are a little distance apart, but repelling upon being squeezed into one another. In

that one sentence, you will see, there is an enormous amount of information about
the world, if just a little imagination and thinking are applied.

Richard P. Feynman

Parts of this chapter have been published in Ref. [1].
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5.1. INTRODUCTION
When dislocations impinge on two-dimensional defects like interfaces, grain bound-
aries (GBs), or contact areas between crystals, several mechanisms can occur, i.e.
absorption, re-nucleation, transmission, or stagnation by pile-up [2–4]. Which of
these mechanisms will prevail depends on a large number of variables, e.g. dis-
location type, crystal structure, (relative) crystal orientations, loading and tem-
perature. There is both experimental [5] and computational [6–10] evidence that
a critical role is played by the atomic structure of the two-dimensional interface.
While specific interfaces favor dislocation absorption through local atomic rear-
rangement [11], others favor dislocation nucleation into one of the two adjacent
crystals [12]. Also, depending on the atomic interface structure, nucleation of new
dislocations was measured to occur at a wide range of critical nucleation stresses
[5].

The molecular dynamics studies that have been performed so far have fo-
cused on perfect interfaces [11–14]. However, real GBs are not perfect and con-
tacts, formed by pressing two crystals together, are even less perfect, because of
the presence of adatoms on each of the surfaces [15].

The main aim of this study is to identify, by means of molecular dynamics
simulations, the effect of atomic scale roughness on the impingement behav-
ior of dislocations on Al contacts between clean surfaces without native oxide
layer. To this end, we characterize two dimensional contacts, also perfect ones
(i.e. without adatoms), by their average atomic scale roughness. Interestingly,
we find that there is a direct correlation between atomic scale roughness and the
applied load required to nucleate a new dislocation from the contact after im-
pingement. Notice that in previous studies, interfaces were characterized by their
energy, but no universal correlation was found between interface energy and nu-
cleation stress [14].

An additional question that we intend to answer is: what is the limit to the
number of dislocations that can pile up on the same slip plane against an atom-
ically rough contact? This is of interest to us because of the impact that pile-up
length has on the plastic behavior of metal contacts at larger scales. Micro-scale
models of the type of discrete dislocation plasticity are used to study the plastic
behavior of micro-scale contacts [16–18], but details of the contact and of disloca-
tion nucleation and absorption are below the resolution of the method. The con-
tact is simply described as an impenetrable boundary for dislocations, where dis-
locations therefore form unbounded pile-ups. Interfaces can certainly be strong
barriers for dislocation glide. It is shown, for instance, by Tsure et al. [19] that
the interaction energy of an edge dislocation with an energetically stable Al grain
boundary is 104 times higher than the Peierls potential. This could lead to dislo-
cation pile-up, as for instance experimentally observed in Ref. [20]. Nevertheless,
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absorption and re-nucleation are phenomena that limit the length of pile-ups
on many interfaces, as supported by the experimental observations in Ref. [21]
where at certain critical strain a sudden change in the dislocation distribution of
the pile-up was found. Our goal in this respect is to extract information from the
molecular dynamics simulations to determine what are the conditions that limit
the length of a pile-up, and trigger re-nucleation. This information can be used
in future discrete dislocation plasticity simulations of contact.

In this work two aluminum crystals with different orientation are pressed into
contact. Dislocations are introduced in one of the crystals and their glide towards
the contact is enforced by applying a normal load to the bi-crystal. The surface of
each crystal is either perfect or contains adatoms.

The chapter is organized as follows: in Section 5.2 the method and problem
formulation are presented. In Section 5.3 the contact is characterized and the
atomic scale contact roughness is defined. In Section 5.4 the effect of atomic
roughness on the impingement of single dislocations is investigated, while Sec-
tion 5.5 is devoted to the impingement of multiple dislocations (up to 4) on con-
tacts of various roughness. The roughening due to impingement and roughness
dependent ability to absorb dislocations is studied in Section 5.6. Section 5.7 pro-
vides a discussion and guidelines for the implementation of constitutive rules in
larger scale models.

5.2. COMPUTATIONAL APPROACH
The MD simulations are performed using LAMMPS [22] with a potential devel-
oped by Purja Pun and Mishin [23–25] which has shown to give accurate surface
and stacking fault energies and is especially suitable for studying mechanical be-
havior of contacts, interfaces and dislocations.

Material choice and problem description

In the present study the impingement of edge dislocations on contacts is in-
vestigated. In FCC metals it is often energetically favorable for dislocations to
exist as partial dislocations separated by a stacking fault ribbon. The width of the
stacking fault ribbon dSF is inversely related to the stacking fault energy γ

dSF ≈ Gb2

4πγ
, (5.1)

where G is the shear modulus and b is the magnitude of the Burgers vector [26].
The material chosen in this study is aluminum because it has a small stacking
fault ribbon, and therefore allows for a relatively small simulation box. The stack-
ing fault ribbon width that results from the potential used in this study is dSF = 1.3
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nm, which is in close agreement with the experimental value, ranging from 1.1-
1.6 nm [24].

The contact is established between two Al crystals with different orientation,
constituting a bi-crystal. Figure 5.1 shows a schematic representation of the model.
Two bi-crystals, A and B, are chosen with slip plane orientations that are either fa-
vorable or unfavorable for dislocation transmission. The difference between the
two bi-crystals is only in the orientation of the upper crystal. The lower crystal
is chosen such that the [110]-direction aligns with the x-axis, the [1̄10]-direction
aligns with y-axis and the [001]-direction aligns with the z-axis. For this orienta-
tion we have slip planes for which the dislocation line lies along the y-axis. The
angle of the slip planes of two slip systems with the x-axis is ±54.7o.

Figure 5.1: Schematic representation of the model showing bi-crystal A and B.

For the upper half of the bi-crystal, two orientations are used: for bi-crystal
A, the [100]-direction aligns with the x-axis, the [010]-direction aligns with the
y-axis and [001]-direction aligns with the z-axis. Dislocation transmission is not
expected to occur, because this crystal has no slip planes for which the dislocation
line lies along the y-axis.

For bi-crystal B, the [001]-direction aligns with the x-axis, the [11̄0]-directions
aligns with the y-axis and the [110]-direction aligns with the z-axis. This crystal
has, like the lower half of the bi-crystal, slip planes for which the dislocation line
lies along the y-axis. The crystal is a 90o rotation of the first crystal, which means
that the angle of the slip planes of two slip systems with the x-axis is ±35.3o. This
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means that for bi-crystal B, dislocation transmission is possible.
The dimension in the y-direction is taken to be small, only five times the lat-

tice constant, so that the dislocations are of edge character. Because the periodic
box is small in this direction, the dislocation line can not bow out, so that spurious
image forces due to line bowing are avoided [27].

Figure 5.2: Schematic representation of the dislocation insertion in the lower part of the bi-crystal.
Displacement is applied to the dark grey (hatched) domain, where the maximum displacement b
is applied throughout the slip plane up to the location where the dislocation is inserted and zero
displacement is applied at the opposite end of this location. After relaxation this results in a dislo-
cation in the crystal and a surface step at the bottom.

The simulation box contains the bi-crystal and is periodic in the x- and y-
direction. The box size is chosen large enough to not influence the dislocation
behavior in terms of the onset of dislocation motion and the stress at which nucle-
ation occurs from the contact. For the material studied here the size is Lx = 445 Å,
Ly = 20 Å and Lz = 810 Å. Dislocations are inserted in the bottom crystal by pre-
scribing displacement to the atoms in the dark grey (hatched) domain in Fig. 5.2,
where the insertion of the dislocation is schematically depicted. The displace-
ment applied ranges from zero for the atom at the bottom left hand side of the
hatched region to b for the atoms at the right hand side of the hatched region.
This creates a displacement step of size b at the bottom of the crystal. A relax-
ation run is then performed. During relaxation, a dislocation emerges at the top
corner of the hatched region (see Fig. 5.3). If the dislocation is inserted close to the
contact, the dislocation moves by itself into the contact during relaxation. This is
referred to as ‘directly inserting the dislocation into the contact’ later in this work.
Figure 5.4 shows theσzz stress state of the contacting crystals with the dislocation
in the lower crystal, before loading is applied.

To induce motion of the dislocation towards the contact, eight atomic (x,y)
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Figure 5.3: Two partial dislocation (grey) separated by a stacking fault (red) resulting from the pro-
cedure presented in Fig. 5.2. Atoms of FCC structure type are represented with green. The atomic
structure is determined according to a Common Neighbor Analysis (CNA) [28].

Figure 5.4: Normal stress, σzz , in the vicinity of the dislocation and the contact before the load is
applied.

planes at the top of the upper crystal are displaced in the negative z-direction,
while the positions of eight atomic (x,y) planes at the bottom of the lower crystal
are fixed in the z-direction (see Fig. 5.1), but free in the periodic x- and y-direction.
The number of (x,y) planes on which the load is applied is chosen such that load is
uniform, not affected by the surface step at the bottom crystal. The displacement
at the top is applied at a constant velocity u̇N = 4 m/s, three orders of magnitude
lower than the speed of sound in Al, not only sufficiently low to avoid setting of
shock waves, but also to model quasi-static loading at 5 ·107 s−1 strain rate1.

An NPT ensemble in LAMMPS is used to maintain constant temperature and
to keep the pressure on the periodic boundaries zero. The temperature is kept at
100 mK using a Nosé-Hoover thermostat.

1A strain rate of 1 ·107 s−1 shows identical results.
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5.3. CHARACTERIZATION OF THE CONTACT

5.3.1. ATOMIC SCALE ROUGHNESS

Contacts between crystals with different orientation have different atomic struc-
ture and roughness. For the two bi-crystals considered here, Fig. 5.5 shows the
atoms at the interface: these are atoms that do not have an FCC structure ac-
cording to a Common Neighbor Analysis (CNA) [28]. To characterize the different
contacts in this study we introduce a dimensionless atomic scale contact rough-
ness R:

R =
1− Nc

Nint
, if Nc < Nint

0, if Nint = 0.
(5.2)

Here Nc is the number of contact atoms and Nint is the total number of interface
atoms. An atom is defined as a contact atom if it belongs to the interface and is
in compressive mode when a global infinitesimal compressive load is applied to
the bi-crystal [29]. The interface atoms are all atoms that, based on a CNA do not
have FCC structure, and therefore do not belong to either of the two perfect crys-
tals in contact. The number of contact atoms relative to the interface atoms gives
a measure of the freedom that the interface has for atomic rearrangement during
impingement. Therefore this new definition of atomic scale contact roughness
will prove to be pivotal in the description of the dislocation-interface interaction.
The limit R = 0 is defined as the perfect contact between two single crystals with
the same crystallographic structure and orientation, which in contact form noth-
ing but a larger single crystal. With increasing R, the contact becomes progres-
sively rougher and the stress state less uniform.

(a)

(b)

Figure 5.5: Interface atoms, with contact atoms shown in blue, for perfect bi-crystals: a) bi-crystal
A with low contact roughness (R = 0.26), and b) bi-crystal B with high contact roughness (R = 0.45).
The atoms that have an FCC structure type, i.e. atoms that do not belong to the interface, are
excluded. Only a part of the interface is shown.

The interfaces of the bi-crystals previously described are here called perfect
contacts, as they are simply the interface between crystals with different orien-
tation. In this study we will investigate both perfect contacts and contacts with
Nad adatoms. A total of Nad atoms are randomly distributed on the two surfaces
before they are put into contact. This is done as follows. The two surfaces are
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(a)

(b)

Figure 5.6: Interface atoms, with contact atoms shown in blue, for bi-crystals with 300 added
adatoms: a) bi-crystal A with contact roughness R = 0.55, and b) bi-crystal B with contact rough-
ness R = 0.51 if 300 adatoms are present. Only part of the interface is shown.

initially separated by 3a. Adatom coordinates are randomly generated within the
region between the two surfaces. After a relaxation run of 100 ps, necessary for the
adatoms to find their equilibrium positions, the two crystals are brought together
down to a separation distance of one lattice constant. Then in a second relaxation
run, the contact is formed. Figure 5.6 shows two examples of contacts with 300
adsorbed atoms on the surfaces of the crystals shown in Fig. 5.5. Table 5.1 shows
an overview of the atomic scale roughness of all the contacts studied in this work.

Nad 0 50 100 200 300
R bi-crystal A 0.26 0.35 0.40 0.50 0.55
R bi-crystal B 0.45 0.46 0.48 0.49 0.51

Table 5.1: Atomic scale roughness R of the different contacts studied in this work. Contacts without
adatoms are called perfect contacts.

5.3.2. ATOMIC SCALE ROUGHNESS COMPARED WITH CONTACT ENERGY

When a compressive load is applied to dislocation-free bi-crystals, the response
is elastic up to a large applied load, until dislocation nucleation occurs from the
contact. As an example of this, the stress-strain (σN–ε) response for three bi-
crystals with different numbers of adatoms is shown in Fig. 5.7. The stress–strain
curve of the crystals show a slight softening behavior at small strain, due to atomic
rearrangement of the interface atoms, similarly to what is observed in [30, 31].
We will call the stress σN at which nucleation occurs nucleation stress and we will
indicate it as σnuc also in the following. The three crystals in Fig. 5.7 differ by ori-
entation (A or B), contact roughness and contact energy. The contact energy is
defined as

γ= 1

S

∑
i∈V

(Ei −E0) , (5.3)



5.3. CHARACTERIZATION OF THE CONTACT

5

51

ε

σ
N

(G
P

a
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

1

2

3

4

5

6

bicrystal A, R=0.50, γ=674 mJ/m
2

bicrystal B, R=0.51, γ=434 mJ/m
2

bicrystal A, R=0.40, γ=563 mJ/m
2

nucleation, σ
nuc

Figure 5.7: Stress-strain curves for bi-crystals with different interface energy γ and contact rough-
ness R.

where S is the area of the contact interface (S = Lx Ly ), Ei is the potential energy of
atom i in the domain V , and E0 is the atomic bulk potential energy. The domain
V is chosen as 2/3 of the simulation box including the contact interface, such to
exclude the free surfaces at the top and bottom of the bi-crystal. It is important to
observe in Fig. 5.7 that the bi-crystals with the same contact roughness have the
same nucleation stress, despite having different crystal orientations and different
contact energy. This is not incidental, but a characteristic of all contacts studied
in this work. This can be seen in Fig. 5.8, where the nucleation stress obtained
for the bi-crystals with R given in Table 5.1, is presented as a function of rough-
ness, R, and contact energy, γ. With increasing roughness the nucleation stress
decreases linearly, since local stress concentrations become more pronounced.
The increase is almost linear, as indicated by the red line, which intersects the
vertical axis at about 11.2 GPa, in close agreement with the ideal strength of Al
at zero-temperature of 11.7 GPa calculated in Ref. [32]. This is because a contact
with zero contact roughness is a perfect crystal, made of two perfect single crys-
tals with the same orientation being in contact. The stress state in such a crys-
tal is uniform, and therefore the nucleation stress should correspond to the ideal
strength of the material. The results demonstrate that the nucleation stress de-
pends on the atomic scale roughness of the contact, while it is independent of its
energy and of crystal orientation. A similar lack of universal correlation between
the interface energy and the nucleation stress was already reported by Warner et
al. [14].
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Figure 5.8: Stress at which nucleation occurs from the contact without impingement as functions
of both interface energy γ (diamonds) and atomic scale contact roughness R (circles). The open
and closed diamond symbols represent the interface energy for bi-crystal A and B, respectively.

5.4. IMPINGEMENT OF A SINGLE EDGE DISLOCATION

5.4.1. IMPINGEMENT ON PERFECT CONTACTS

A dislocation is introduced in bi-crystal A and, after relaxation, the bi-crystal is
loaded in compression by normally displacing the top atoms of the upper crystal.
The corresponding stress–strain (σN–ε) response is shown in Fig. 5.9 and com-
pared to the response of a dislocation-free bi-crystal.

The applied displacement induces a shear stress on the dislocation which
then glides towards the contact. The resolved shear stress at which the disloca-
tion motion is initiated is 56 MPa (the point is indicated as 1 in Fig. 5.9), which
is almost twice as large as the Peierls stress in aluminum (ca. 36 MPa). An over-
estimation of the Peierls stress is to be expected, since classical MD simulations
conducted well below the Debye temperature do not account for zero-point fluc-
tuations [33]. At σN = 0.53 GPa the dislocation is absorbed in the contact (point
2) and at σN = 2.3 GPa a new dislocation is nucleated from the interface. The
stress-strain curve for the dislocation–free bi–crystal undergoes a sudden drop
at a much larger loading, i.e. σN ' 8 GPa (not shown in the figure), when an
avalanche of dislocations is nucleated, similarly to what is observed in [34]. Thus,
impingement results in nucleation occurring at a significantly lower normal stress,
almost 6 GPa lower than in a dislocation–free crystal.
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Figure 5.9: Stress-strain curve with and without impingement (initially dislocation-free) for bi-
crystal A with contact roughness R = 0.26. Numbers indicate (1) the onset of dislocation motion,
(2) dislocation absorption and (3) dislocation nucleation.

(a) (b) (c)

Figure 5.10: a) Surface step in the contact created by the impingement of a dislocation at a normal
stress σN = 0.53 GPa, b) nucleation of a leading partial dislocation from the surface step, and c) the
dislocation moving away from the contact (bi-crystal A, R = 0.26).

Since the contact is rather flat, the dislocation creates, upon absorption, a
localized surface step with magnitude b, as shown in Fig. 5.10a. Even without ap-
plied load, a single dislocation would be absorbed during relaxation when placed
close to the contact. It is this surface step that later on acts as dislocation nucle-
ation site. As the leading partial dislocation is nucleated, it moves away from the
contact, thereby increasing the stacking fault ribbon length, as shown in Fig. 5.10b.
Once the trailing partial dislocation is nucleated the stacking fault ribbon length
decreases as the dislocation moves away from the contact as shown in Fig. 5.10c.

Next we study impingement of a dislocation on the interface of bi-crystal B,
which has a rougher interface than A, R = 0.45 (see Fig. 5.5b). There are three
unique impingement sites as shown in Fig. 5.11, contrary to the previous case
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Figure 5.11: Interface of bi-crystal B (R = 0.45) with three different impingement sites.

where all impingement sites are equivalent.
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Figure 5.12: Stress-strain curves for dislocation impingement site 1, 2 and 3 (solid curves) in the
interface of bi-crystal B and without dislocation impingement (dashed curve).

Figure 5.12 shows the normal stress-strain relation for the three impingement
sites and for the dislocation-free bi-crystal shown by the black dashed curve. For
a dislocation–free bi-crystal nucleation occurs at σN =5.9 GPa, a lower value than
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for bi-crystal A (σN =8 GPa). As shown in Section 5.3, the reason for this is that
the interface is rougher. The nucleation stress when there is dislocation impinge-
ment, is only moderately lower than the dislocation-free case, for all impinge-
ment sites, with σnuc ranging from 4.8 GPa to 5.5 GPa. It is found that, following
the nucleation of the leading partial dislocation, twinning partial dislocations are
nucleated in all cases, instead of a trailing partial dislocation (see Fig. 5.13). The
nucleation of twinning partials occurs either into the lower or upper crystal. The
absorption of a single dislocation in an intrinsically rough contact does not alter
the local roughness significantly. Therefore, while the impingement site is suffi-
ciently affected to act as nucleation site, nearby locations are also characterized
by high stress concentrations. Once the leading partial dislocation is nucleated, it
is followed by the nucleation of a twinning partial from an adjacent site, similarly
to what has been observed by Dewald et al. [8] and Yamakov et al. [35].

Figure 5.13: Nucleation of twinning partial dislocations from impingement site 3 of the interface of
bi-crystal B with R = 0.45.

The nucleation stress after impingement for bi-crystal B is significantly larger
than for bi-crystal A. This is rationalized considering that the effect of the induced
roughness by the absorption of the dislocation on a flatter contact is significant,
leading to high local stresses. For a contact that is already rather rough, as for bi-
crystal B, the absorbed dislocation is accommodated more easily and gives rise to
smaller local stress. This can be seen by contrasting Fig. 5.14a and b, where the
stress state surrounding the impingement site after absorption is presented, after
removal of the load.

5.4.2. IMPINGEMENT ON CONTACTS WITH ADATOMS

As mentioned earlier, rough contacts are constructed by placing randomly 0 <
Nad < 300 aluminum atoms on the surfaces, which is up to approximately 20% of
the number of atoms in one atomic plane. The bi-crystal is relaxed to ensure that
the adatoms find their equilibrium positions.

We look at the effect of roughness R on the nucleation stress after dislocation
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(a) (b)

Figure 5.14: Normal σzz stress near the impingement site for a) bi-crystal A and, b) bi-crystal B.

(a) (b)

Figure 5.15: Normal σzz stress near the impingement site for bi-crystal A with contact roughness a)
R = 0.35 and, b) R = 0.55, resulting from the adsorbed atoms in the contact.

impingement. Five different simulations are performed for each contact inter-
face to collect statistics for different impingement locations in the contact. It is
found that once the dislocation impinges, it is directly absorbed in the contact,
similar to the behavior for impingement on perfect contacts. Figure 5.15 shows
σzz around the impingement site for small and large roughness. The arrow in-
dicates the impingement site. At low roughness, the stress concentration caused
by the impinging dislocation is clearly visible. On the contrary, large roughness
accommodates the dislocation Burgers vector easily and the location where the
dislocation was absorbed is more difficult to detect, similar to what is observed
for perfects contacts in Fig. 5.14.

For both bi-crystals with contact roughness R ≥ 0.35, impingement can either
result in nucleation of a dislocation or a twin, depending on the local roughness,
i.e. local contact structure.

Figure 5.16 shows the average nucleation stress σnuc as a function of rough-
ness R with and without impingement. As already shown in Fig. 5.8, if there is no
dislocation impingement, the nucleation stress decreases approximately linearly
with increasing contact roughness, irrespectively of crystal orientation (see red
line). On the contrary, if there is dislocation impingement, for small R the nucle-
ation stress is much lower than for dislocation-free crystals, and increases up to
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Figure 5.16: Nucleation stress as a function of roughness for bi-crystals A and B with varying num-
bers of adatoms at the interface. The data represented by square symbols is the same as in Fig. 5.8.
The red and green lines are the linear fit of the red data point and green data points up to R=0.5,
respectively.

R ' 0.5, because the stress concentration at the contact due to the absorbed dislo-
cation is much more pronounced for low R (see Figs. 5.14 and 5.15). Above R ' 0.5
dislocation-free crystals have the same σnuc as crystals with impingement. This
is because above a certain contact roughness, an impinging dislocation does not
additionally contribute to the the contact roughness, which is by itself sufficient
to trigger dislocation nucleation.

5.5. IMPINGEMENT OF MULTIPLE DISLOCATIONS
In this section the impingement of a train of dislocations (up to four) on various
contacts is investigated. First we focus on perfect contacts, i.e. without adatoms.
The dislocations are inserted consecutively at approximately 13 nm distance from
each other. After each insertion a relaxation run is performed. To reduce the
required size of the simulation box, the first dislocation is inserted directly in the
contact, see Fig. 5.17.

If multiple dislocations impinge, we find that the first nucleation event is al-
ways a dislocation, never a twin. As previously discussed, the absorption of a
single dislocation in an intrinsically rough contact does not alter the local rough-
ness significantly, so that nucleation can also occur from adjacent sites, leading to
the nucleation of a twin. However, when a dislocation impinges at a site where a
dislocation is already absorbed, the local roughness caused by the impingement
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Figure 5.17: Initial state of bi-crystal A with Nd = 4, three dislocation in the lower crystal and one
inserted directly in the contact.
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Figure 5.18: Nucleation stress as a function of the number of dislocations in a pile-up for both bi-
crystals A and B without adatoms.

is noticeably different with respect to the rest of the contact. The large stress con-
centration at the site facilitates nucleation of a dislocation. Since dislocations in
the pile-up push onto the dislocation step in the contact and for the next dislo-
cation to be absorbed in the contact, a dislocation has to be re-nucleated from
the impingement site. Figure 5.18 shows σnuc as a function of the number of dis-
locations in the pile-up Nd for bi-crystal A and B. It is shown that initially σnuc

decreases fast with increasing Nd, since the local stress at the impingement site is
significantly higher due to the second dislocation in the pile-up. For Nd ≥ 3 the
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nucleation stress becomes approximately constant, at about 0.9 and 1.4 GPa for
bi-crystal A and B, respectively, since the dislocations further away from the con-
tact do not contribute much to the contact stress field. The error bar for the curve
of bi-crystal B gives the variation between the different impingement sites and
is about 0.31 GPa. So for a relative small pile-up of only three dislocations, the
behavior is already negligibly affected by increasing the number of dislocations
further.
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Figure 5.19: Nucleation stress as a function of the number of dislocations in the pile-up for bi-
crystal A with different number of adatoms and therefore different R.

Next we study the impingement of multiple dislocations on a contact con-
taining adsorbed atoms. We choose to focus on bi-crystal A with adatoms, since
for this bi-crystal the addition of adatoms on the surfaces changes R significantly
as shown in Table 5.1. Figure 5.19 shows σnuc as a function of Nd for contacts
with different roughness. Consistently with the results in Fig. 5.16, the nucleation
stress with dislocation impingement for all Nd increases with increasing rough-
ness up to approximately R = 0.5, where the influence of R appears to vanish.
Also, the nucleation stress decreases with increasing number of dislocations in
the pile-up up to Nd = 3. Note that, for all R, σnuc at Nd = 4 is significantly lower
than the stress at nucleation without impingement in Fig. 5.8.

5.6. CONTACT ROUGHENING DUE TO IMPINGEMENT
In this section we study the effect that the impingement of a train of four disloca-
tions has on local roughness. We take as example the case of bi-crystal A.



5

60 5. IMPINGEMENT OF EDGE DISLOCATIONS ON ATOMICALLY ROUGH CONTACTS

Figure 5.20 shows the number of dislocations in the pile-up nd (excluding the
dislocation initially in the contact) in red, the number of absorbed dislocations
nabs in blue and the number of nucleated dislocations nnuc in green as a func-
tion of normal stress. The simulation starts with three dislocations in the pile-up
and one absorbed in the contact. At σN = 0.35 GPa, the second dislocation of the
pile-up is absorbed in the contact. For a third dislocation from the pile-up to be
absorbed, a dislocation has to be nucleated from the impingement site back into
the crystal. The process of absorption and nucleation continues until all four dis-
locations initially present have caused the nucleation of four dislocations. Note
that the total number of absorbed dislocations in the contact nabs does not grow
beyond two.

Figure 5.20: Number of dislocations in the pile-up nd, the number of nucleated dislocations nnuc,
and the number of absorbed dislocations nabs as a function of normal stress for bi-crystal A.

As mentioned earlier, the dislocations in the initial pile-up are all on the same
slip plane. However, the four nucleated dislocations are all found to be on differ-
ent slip planes, spanning in total a distance of seven slip planes. The reason for
this is found in the way in which dislocations are absorbed in the contact. For the
absorption of two consecutive dislocations, the atoms in the contact rearrange to
accommodate the dislocations, causing the total Burgers vector of the two dislo-
cations to spread out in the contact. Therefore, nucleation back into the lower
crystal is very likely to occur at different slip planes. This process of absorption
and re-nucleation results in local roughening of the contact (see Fig. 5.21). This
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causes the last nucleation event in Fig. 5.20 to occur at a larger stress, about 0.6
GPa larger, than would be expected based on single dislocation impingement (see
Fig. 5.16).

Figure 5.21: Local contact structure of bi-crystal A after nucleation of four dislocations following
the impingement of four dislocations. The initial roughness is R = 0.26, the final local roughness,
calculated in a 5 nm window, is Rloc = 0.35.
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Figure 5.22: Number of dislocations that can be absorbed by a contact as a function of roughness
when four dislocations impinge.

Figure 5.22 shows the number of absorbed dislocations Nabs that the contact
can accommodate as a function of R. It appears that for R < 0.5 no more than
two dislocations can be absorbed in the contact. For R > 0.5 the number of dis-
locations that can be absorbed is found to increase. Although the roughness also
gives rise to stress concentrations, a larger roughness also entails more freedom
for local atomic rearrangement and hence more dislocations can be absorbed at
increased R.



5

62 5. IMPINGEMENT OF EDGE DISLOCATIONS ON ATOMICALLY ROUGH CONTACTS

5.7. DISCUSSION
In this work it has been shown for the first time that the atomic scale roughness
of the contact interface plays a key role in the impingement behavior of single
and multiple dislocations. The atomic scale roughness is critical in predicting
the nucleation stress, while for instance GB energy does not seem to hold predic-
tive power, similar to what is reported in Ref. [14]. The varying local roughness
results in a variation in nucleation stress and absorption stress, similar to the re-
sults in [9] where it is concluded that the local structure determines the nature of
the interaction between dislocation and GB.

In this atomic-scale work, the nucleation stress is measured globally. How-
ever, in micron-scale models this stress can be interpreted as a local stress, since
the length scale in these models is orders of magnitude larger. Therefore, the re-
sults of this work can be incorporated in larger scale dislocation dynamics models
in which stress relaxation in the material occurs by the collective behavior of dis-
locations (nucleation, annihilation, glide, (de-)pinning), as [16–18], to more accu-
rately describe dislocation impingement at contacts. At present such models do
not incorporate absorption of dislocations and nucleation from contacts. Inter-
faces are generally treated as impenetrable barriers for dislocations, on which dis-
location pile-ups grow unbounded. The fact that pile-ups can have a significant
effect on the plastic response is for instance shown in Ref. [17], where pile-ups on
single asperity contacts result in a hardened response. The present work shows
at which local normal stress state, the pile-up will no longer grow, because the
dislocations are absorbed at the impingement site and/or re-nucleated from the
it, controlled by the atomic contact roughness. The nucleation stresses for pile-
ups beyond four dislocations on Al nano-scale contacts found in this study range
from 0.9 GPa to 2.1 GPa depending on the roughness. Such rather large stresses
are not likely to be reached at the contact when a material at the micron-scale
deforms plastically under contact loading. For this reason we do not expect that
the results of micron-scale dislocation dynamics simulations of contact will be
significantly affected by modifying the constitutive laws in the light of the results
of this work.

5.8. CONCLUSIONS
Molecular dynamics simulations have been performed to study the impingement
behavior of edge dislocations on aluminum contacts.

• Atomic scale contact roughness, as described by the simple, novel defini-
tion proposed in this work, is found to control dislocation absorption and
re-nucleation from the impingement site, since the contact roughness is
a measure of the freedom for atomic rearrangement during impingement.



REFERENCES

5

63

On the other hand no universal correlation is found between contact en-
ergy and the nucleation stress.

• The normal stress at which re-nucleation occurs increases with increasing
atomic scale roughness until a certain threshold, R ≈ 0.5. Above this thresh-
old, the effect of a single absorbed dislocation on roughness is insignificant.
Therefore, above this threshold the nucleation stress is unaffected by im-
pinging dislocations.

• When multiple dislocations impinge on the same site, the nucleation stress
decreases with the number of dislocations. However, when the number of
impinging dislocations is larger than 3, the normal nucleation stress be-
comes constant. This is because the dislocations at the tail of the pile-up
contribute less to the stress field in the area surrounding the impingement
site.

• The repeated process of absorption and re-nucleation of multiple disloca-
tions leads to local contact roughening.

• Impingement of a single dislocation on a rough contact can result in the
nucleation of a twin, given the large stress concentration at points close
to the impingement site. When multiple dislocations impinge, twins are
no longer observed, since in these cases the stress concentration is much
stronger at the impingement site itself than in the rest of the contact.

• The contact pressure at which nucleation occurs is rather large, in the order
of 1 GPa. Only when this large pressure is exceeded, dislocations from a
pile-up are expected to be absorbed and re-nucleated, decreasing the pile-
up length. Therefore, for moderate applied loading it is expected that long
dislocation pile-ups can form.

An important implication of this study is that the large pile-ups that are found
in micron-scale contact models are indeed realistic features of the plastic contact
response. This conclusion is strengthened by our observation that the repeated
process of dislocation absorption and re-nucleation locally roughens the contact,
thereby increasing locally the nucleation stress.
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6
FRICTION OF ATOMICALLY STEPPED

SURFACES

Self-organized criticality is a new way of viewing nature... perpetually
out-of-balance, but organized in a poised state.

Per Bak

Parts of this chapter have been published in Ref. [1]
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6.1. INTRODUCTION
Friction of rough surfaces is the outcome of multiple asperities of different size
being flattened and sheared. However, even contacts at the nano-scale can ex-
hibit roughness in the form of atomic scale steps. Such steps are essentially the
smallest scale of roughness and can originate for example from crystal growth [2,
3] or the escape of dislocations through surfaces [4–6] and are known to affect
friction [7]. Several experimental studies [8–10] have revealed that the friction
stress of a tip dragged along a stepped surface is larger compared to the fric-
tion stress of a tip dragged on an atomically flat surface. The reason for this in-
crease has been attributed to the surface potential landscape [8, 10] associated to
stepped surfaces, where an additional barrier to motion, the Ehrlich-Schwoebel
barrier [11, 12], has to be overcome in the direction perpendicular to the step.
Consistently with these findings, interface imperfections, of the type of steps and
ledges, have been found to increase the shear strength of various interfaces, as
those of metallic multi-layers [13]. Furthermore, it has been hypothesized that
static friction increases due to defects like vacancies and impurities at the inter-
face that allow surfaces to sink into their pinning potentials despite the elastic
energy that this costs [14].

The aim of this study is to understand the role of atomic scale steps on the
frictional behavior of metal contacts. The size of the steps considered here is in
the order of the dislocation Burgers vector (up to 7b). We are interested in under-
standing whether these steps will maintain their size during contact sliding, or
evolve towards a flatter surface, and through which atomic processes this would
occur. Another question we intend to answer is whether the stress concentra-
tion associated with the step is sufficient to nucleate dislocations under moderate
contact loading, and how dislocation nucleation would contribute to frictional
sliding. Molecular dynamics simulations of the deformation of poly-crystalline
metals has shown a competition between stress relaxation by dislocation glide
and by grain boundary slip [15]. Since in a molecular dynamics simulation grain
boundaries and dry nano-contacts do not differ much, we are interested in veri-
fying whether a similar competition between dislocation nucleation and slip can
be found also for the stepped contacts. If dislocations would play a role during
frictional sliding of stepped contacts, their behavior would be markedly different
than that of flat contacts.

Whether or not the frictional behavior of flat and stepped contacts is intrinsi-
cally different might have implications also in relation to the self-organized criti-
cality of friction. In the past three decades, the concept of self-organized critical-
ity has been introduced to explain physical processes involving dissipation [16,
17]. In one of the first works on self-organized criticality (SOC), it has been hy-
pothesized that this concept is underlying for spatial and temporal scaling in dis-
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sipative non-equilibrium systems [17]. This is certainly interesting in the context
of friction, where the length scales involved differ by orders of magnitude. Sev-
eral experimental and theoretical studies have confirmed the existence of SOC in
sliding friction [18–21].

In this work it is found that both flat and stepped surfaces present self-organized
criticality. However, the atomic mechanisms that come into play are very differ-
ent for stepped and flat contacts. Stress relaxation of flat contacts occurs purely
by contact slip, while for stepped contacts the steps can move along the contact
plane but also normally to the plane. Despite the mechanisms are different the
power law statistics are affected rather minorly.

The chapter is organized as follows: in Section 6.2 the computational ap-
proach and problem formulation are presented. In Section 6.3 the friction behav-
ior of single step surfaces in contact is analyzed. In Section 6.4.1 this is continued
for step pair surfaces in contact. Section 6.4.2 is devoted to the study of step pair
surfaces of larger height, i.e. nano-scale asperities. Finally, the conclusions are
presented in Section 6.5.

6.2. COMPUTATIONAL APPROACH AND PROBLEM FORMULATION
The molecular dynamics (MD) simulations are performed using LAMMPS [22]
with an EAM potential [23] developed by Purja Pun and Mishin [24–26]. This po-
tential has shown to give accurate surface and stacking fault energies, making it
especially suitable for studying the mechanical behavior of contacts and inter-
faces.

In this work we focus on fcc metals. Aluminum has a large stacking fault en-
ergy, which entails that the separation of the two partials, by which a dislocation
exists in an fcc metal, is small. This limits the necessary dimensions of the sim-
ulation box, and hence the simulation time. Some of the simulations were re-
peated with nickel and we could indeed verify that the results obtained in this
study are qualitatively similar for different fcc metals. It is therefore expected that
the qualitative results in general apply to ultra-clean, oxide-free fcc metal sur-
faces. Although we are aware that aluminum has a high oxidation rate, and that
such ultra-clean, oxide-free metal surfaces are less realistic, this is convenient for
the aim of this study, which is to fundamentally understand the effect of steps on
friction.

The contact is formed between two crystals with the same height (in the z-
direction, perpendicular to the contact plane) h/2 = 45 nm, so that the total height
is h = 90 nm. The width w in the periodic x-direction is varied between 15 and
45 nm. The periodic y-direction is taken short, d = 2 nm, so that the steps are
straight line-defects in the contact (see Fig. 6.1). The two crystal orientations that
are chosen both have symmetric slip systems for which the (dislocation) slip line
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Figure 6.1: Schematic representation of the model. The step height δ varies and relates to the lattice
constant a, i.e. the Burgers vector b = a/

p
2.

lies along the short y-axis and are shown in Fig. 6.1.

Both periodic steps and step pairs (see Fig. 6.1) are studied. Periodic steps are
created by applying vertical displacements to atoms in the lower crystal, such that
at the periodic boundary the applied vertical displacement is zero and in the mid-
dle of the simulation cell it is δ (see Fig. 6.1). The periodic boundary conditions in
the x-direction effectively let us investigate a periodic array of steps. We here as-
sume that the steps can emerge due to the absorption of impinging dislocations
from the crystal. In Ref. [4] it is found that maximum two dislocations can be ab-
sorbed at the same impingement site. Therefore the height of the step δ (in the
z-direction) is taken to be a/2 or a, which represents 1 or 2 escaped dislocations,
respectively.

The step pairs are created by removing atomic planes parallel to the crystal
surfaces (see Fig. 6.1). This creates two steps of opposite sign.

The distance between the two crystals is initially a. The contact forms during
a relaxation run. Depending on the step height, a closed contact or a contact with
a gap (free surfaces) forms. In this work a vertical atomic separation smaller than
one lattice parameter a is defined as a ‘closed’ contact, otherwise as a gap.

After the system is relaxed, 10 atomic planes at the top of the upper crystal
are displaced in the x-direction over a distance of 40 nm with a constant velocity
vT = 2 m/s, while keeping 10 atomic planes at the bottom of the lower crystal fixed
in the x-direction. This gives an applied strain rate of approximately 2 ·107 s−1. In
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this work, we focus on understanding the effect of different step geometries. No
normal load is applied, and the contact interaction between the surfaces is purely
by atomic interactions. To this end atoms are unconstrained in the z-direction,
unless otherwise specified.

For a single step, the problem is not symmetric, and both loading directions
are studied, indicated by step-up and step-down as shown in Fig. 6.2. For a step
pair, the geometry is symmetric, therefore only loading in the positive x-direction
is studied.

Figure 6.2: Schematic representation of the two loading directions for periodic (single) step con-
tacts.

An NPT ensemble is applied to mimic the material response at the nano-scale.
Heat conduction in a metal is in reality dominated by free electrons. However,
classical MD simulation can not account for this. To compensate for the much too
low heat conduction, the system is thermalized to the desired temperature [27],
300 K, using a Nosé-Hoover thermostat.

6.3. CONTACTS WITH PERIODIC STEPS

6.3.1. SELF-ORGANIZED CRITICALITY OF ATOMIC SCALE FRICTION

We study the effect of a periodic array of single steps of small height, δ0 = a/2
and δ0 = a, on the friction behavior of a contact for both loading directions and
compare the results with an atomically flat contact. The small step height results
always in a closed contact. Figure 6.3 shows the σxz shear stress for step height
δ0 = a = 0.405 nm. The stress concentration at the step arises due to closure of
the contact. In order to eliminate the effect of thermal fluctuations, the system
has been cooled to 1K to visualize the stress.

The applied displacement first results in elastic shearing (ux < 2 nm), as seen
in Fig. 6.4, where results for various step spacings are shown, together with the
response of a flat contact. The shear stress is defined as τ = Fx/(wd), where the
total force Fx measured at the top of the upper crystal in the x-direction is di-
vided by the constant area wd . Contacts with different step density have the
same elastic shearing response. At about ux = 2 nm (γ ≈ 0.022) sliding sets in
resulting in a fluctuating friction stress ranging from about 400 MPa to 900 MPa.
In this work ‘sliding’ indicates the total displacement of one crystal with respect
to the other, while ‘slip’ indicates each discrete displacement jump occurring af-
ter a sticking period, as shown in Fig. 6.4. Decreasing the step spacing results in
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Figure 6.3: Shear stress σxz in the vicinity of a single step (height δ= 0.405 nm).
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Figure 6.4: Shear stress τ as a function of applied displacement ux for different step spacing and for
a flat contact, with the definition of sliding and slip depicted.

increased fluctuations in the friction stress, while the average friction stress in-
creases only moderately. Every simulation is repeated four times with different
initial atomic velocities (different realizations), to find the average behavior. The
average friction stress τfr and the root mean square fluctuation are determined
from the shear stress curves of the different realizations during sliding and shown
in Fig. 6.5, for both loading directions. The average friction stress τfr of stepped
contacts is slightly higher than for a flat contact. More pronounced are the dif-
ferences in terms of rms fluctuations of the friction stress. The difference is more
pronounced for smaller step spacing, i.e. for rougher surfaces; while there are no
visible differences in the loading direction.
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Figure 6.5: Average and rms variation of friction stress τfr during sliding as a function of step spacing
w for both sliding directions. For clarity the data points have been shifted by 0.8 nm.

Figure 6.6: Distribution f (S) of the stress drops S =∆τd/τ̄, where ∆τd is the size of the stress drop
and τ̄ is the average friction stress during sliding. The two limiting cases of Fig. 6.4 are shown, the
stepped contact with spacing w = 15 nm and a flat contact. The intermediate cases w = 30 nm and
w = 45 nm are between the two limits.

The most important features of self-organized criticality are [28, 29]: 1) an
abundance of meta-stable states, 2) the energy continuously put into the system
is partly released in recognizable relaxation events, 3) the system is slowly driven
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away from the ground state so that the average waiting time between events and
the event duration time are clearly separated, 4) the size of the relaxation events
follows a power law distribution, 5) all statistical properties should be stationary
in the large-time limit, indicating that the attractor of the self-organized state is
found. The subject of this work also includes these features: 1) the contact in-
volves a large ensemble of atoms that during sliding are in meta-stable states, 2)
the energy put into the system during ‘stick’ is released in recognizable relaxation
events during ‘slip’, i.e. there are stress drops in the friction stress, 3) in Fig. 6.4 it
is clearly seen that the event duration time (slip) is much faster than the waiting
time between events and hence the system is driven slowly, 4) the size of the stress
drops S is given by power-law statistics f (S) ∝ Sβ as shown in Fig. 8.1, 5) sliding
occurs in the attractor state, which means that the stress drop statistics do not
change over time. The attractor associated with the self-organized critical state
depends on the step density. Therefore, also the stress drop statistics are different
for stepped or flat surfaces in contact (Fig. 8.1). For flat contacts, stress drops of
smaller magnitude occur more often than for stepped contacts. For stepped con-
tacts, stress drops with larger magnitude are more frequent. Hence, the power-
law exponent for a stepped contact is βstepped = −1.87 larger than for a flat con-
tact βstepped = −2.08, i.e. the stress that can build up and is released is larger for
smaller step spacing (larger step density). The atomistic mechanisms that gov-
ern the stress drop-statistics for stepped contacts are various: not only local slip
across the step, but also step motion and contact migration, as will be discussed
in the following section.

6.3.2. NORMAL CONTACT MIGRATION

A closer look at the sliding process of the stepped contacts reveals that additional
to slip at the contact, another mechanisms occurs: motion of the step along the
contact resulting in normal migration of the entire contact. Migration of the con-
tact is a stress relaxation mechanism that competes with contact slip. The di-
rection of migration depends on the loading direction as shown in Fig. 6.7. The
contact migration is a consequence of the motion of the step similar to the mech-
anism for grain boundary migration discussed in Refs. [30–32]. In Refs. [30, 31]
it is explained how local atomic rearrangement leads to step motion from which
the migration results. In Ref. [32] it is found that grain boundaries that are intrin-
sically immobile become mobile through additional line-defects like steps. The
phenomenon is analogous to re-crystallization (see Fig. 6.7). A unit displacement
of the step in the horizontal direction induces a unit displacement in the vertical
direction. Inverting the loading direction inverts the stress state and hence results
in step motion and contact migration in the opposite direction.

Figure 6.8 shows the absolute normal migration distance |un| per unit applied
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(a) (b)

Figure 6.7: Contact migration at ux = 40 nm for a) the step-up loading direction and b) the step-
down loading direction. Atoms that originally belong to crystal A (B) are indicated with the color
red (blue). The grey atoms indicate the new position of the contact, based on CNA.

displacement as a function of step spacing. As to be expected with increasing
step density, the normal migration increases. Figure 6.8 shows that for δ0 = a/2
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Figure 6.8: Normal migration distance |un| per unit applied displacement as a function of step
spacing (i.e. box width). For clarity the data points have been shifted ±0.3 nm for the positive and
negative x-direction, respectively. The error bars denote the rms variation in the normal migration.

in the step-down direction, the migration distance is significantly lower than in
the other cases, and thus contact slip prevails over contact migration since dur-
ing sliding the total sliding displacement equals the applied displacement. The
cause for the prevailing local slip across the step in the step-down loading direc-
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tion is due to the asymmetry of the Ehrlich-Schwoebel barrier [11, 12] as shown in
Fig. 6.9. For slipping across the step in the step-up direction, atoms have to come
out of a low energy well and be pushed over a high energy barrier. For slipping
across the step in the step-down direction, atoms have to cross a lower energy
barrier towards lower energy level and hence slipping across the step is facili-
tated. With increasing step height, also the barrier height increases and hence
only when the step height is large enough (δ0 = a), the barrier height becomes
so large that slipping across the step is unfavorable so that for both sliding direc-
tions step motion is promoted. Interestingly, for steps of height a0/2 slip over the

Figure 6.9: Ehrlich-Schwoebel barrier [11, 12] showing the asymmetry of the potential landscape
near the step.

step and step motion involve energy barriers that have similar height, so that the
friction stress is independent of loading direction (see Fig. 6.5), although in one
direction local slip across the step dominates over step motion and in the other
direction step motion dominates over local slip across the step.

Rare migration reversal
In most cases normal migration occurs in one particular direction, related to

the loading direction. However, there are cases where the direction of migration
is reversed, as can be seen in Fig. 6.10 where the average z-coordinate of the con-
tact is presented. Reversal occurs at about ux = 10 nm. This is caused by the
nucleation of dislocations, which cause a change in the sign of the step. In an
FCC metal it is often energetically favorable for a dislocation to split into two par-
tial dislocations separated by a stacking fault, and this is also the case for Al. The
atoms in the stacking fault ribbon have a local HCP structure, so that the number
of atoms with HCP structure is a measure of the number of dislocations in the ma-
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terial. In Fig. 6.10 it is shown that initially there are no atoms with HCP structure
in the system (based on a Common Neighbor Analysis, CNA [33], excluding the
contact), i.e. there are no dislocations. Only at an applied displacement of about
10 nm, significantly beyond the onset of sliding as seen in Fig. 6.4, dislocation
nucleation occurs. The number of HCP atoms, on average approximately 65, and
the separation of the partials, indicates that two dislocations (four partial dislo-
cations) are nucleated. It is the nucleation of these two dislocations that changes
the sign of the step in the contact and causes the reversal of the migration direc-
tion. Migration reversal by dislocation nucleation is a rare event in simulations
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Figure 6.10: Average z-coordinate of the contact (red) and the number of atoms with HCP structure
(blue) as a function of applied displacement.

with a negligible normal loading, as it was only found in 1 out of 24 cases studied.

6.3.3. VACANCY GENERATION

A contact, flat or stepped, between two crystals with different orientation entails
a certain excess free volume compared with the perfect crystal, so that the contact
can be thought of as a potential reservoir of vacancies. It has been reported that
curvature driven grain boundary migration can result in the generation of vacan-
cies to accommodate the excess free volume [34] associated with the decrease in
the grain boundary volume. For a flat contact in this study it has been found that
upon applied tangential displacement, pure slip at the contact occurs, and the ex-
cess free volume at the contact is unchanged. However, as just shown, a stepped
contact migrates in the normal direction, which is similar to a re-crystallization
process. It is found that this re-crystallization can result in the generation of va-
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cancies, which are found in the re-crystallized part of the bi-crystal. This is shown
in Fig. 6.11, where only atoms that do not have a perfect local FCC structure are
represented.

Figure 6.11: Contact after 40 nm applied displacement in the positive x-direction, clearly showing
vacancies generated between the initial and the current position of the contact. Only atoms that do
not have a perfect local FCC structure are shown.

It is important to realize that this vacancy generation is found to take place at
room temperature. The local vacancy concentration near the contact that results
from the normal migration is more than two orders of magnitude higher than
the equilibrium vacancy concentration at room temperature. We expect that in
cases when both plastic deformation and contact migration occur together, dis-
location climb might even occur at room temperature. Experimental observa-
tions of dislocation climb in Al/Nb multi-layers indicates that dislocation climb
can indeed occur at room temperature due to high vacancy concentration in the
interfaces [35].

6.4. CONTACTS WITH PERIODIC STEP PAIRS

6.4.1. SMALL STEP HEIGHT

In this section we will study the friction behavior of step pairs and compare it to
that of periodic single steps and atomically flat contacts. The step pairs introduce
an additional parameter, the width between the opposite steps wsp0. To study
the effect of wsp0 we choose one specific box width w = 30 nm and vary the pair
width. For each case four simulations with different initial atomic velocities are
performed. Figure 6.12 shows the average friction stress and its rms variation dur-
ing sliding as a function of the step pair width to spacing ratio, wsp0/w , for three
different step heights and for the flat contact. We find that the average friction
stress is not significantly affected by the width of the step pair. This might seem
surprising at first sight, but the absence of a clear trend is due to the fact that the
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steps move independently in a stochastic manner, so that the initial configuration
is soon lost during sliding.
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Figure 6.12: Average and rms variation of the friction stress as a function of normalized pair spacing
wsp0/w for several step heights. The line for the flat contact is the same as in Fig. 6.4.

In the previous section it was shown that a self-organized critical state is in-
volved in sliding friction and that the fluctuations in the friction stress are larger
at smaller step spacing. Interestingly, for the periodic step pair contacts it is
found that there exist two sliding states: one being ‘jerky’ with large stress fluc-
tuations, the second one being ‘smooth’ with small fluctuations (Fig. 6.13). The
smooth sliding state is associated with the attractor: sliding can transit through
self-organization from the jerky state into the smooth state. This self-organization
is carried by the atomic rearrangement of the contact. Figure 6.13 shows an ex-
ample for which the transition between jerky sliding and smooth sliding occurs
at about ux = 20 nm. Also the fractional change in the number of interface atoms
(non-FCC atoms) Nint, (Nint −Nint,0)/Nint,0, as a measure of the interface rough-
ness is shown. It is seen that the decrease in interface roughness coincides with
the jerky-smooth sliding transition. From start the steps are separated, and hence
the contact has a jagged roughness. The components of the steps are observed to
move individually, thereby initially maintaining the jagged roughness (Fig. 6.14a).
Although the steps are opposite, they do not annihilate, since there is still an ex-
cess volume with respect to a flat contact. In the process of sliding, atomic rear-
rangement (self-organization) through step motion results in an evolving contact
topology, i.e. lower roughness. Eventually the self-organization results in a flatter
contact, since the constituents of the step pair organize in a low-energy config-



6

80 6. FRICTION OF ATOMICALLY STEPPED SURFACES

uration, which results in a ‘wave’ that travels through the contact during sliding
opposite to the loading direction, as shown in Fig. 6.14b.
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Figure 6.13: Example of shear stress τ (red) and fractional interface roughness (Nint−Nint,0)/Nint,0
(blue) as function of applied displacement ux. A comparison of the two graphs shows that the large
fluctuations in the friction stress coincide with the roughened contact.

Recently a combined computational and experimental study of wear of metal
surfaces scratched with a tip pointed towards an analogy with laminar and tur-
bulent flow [27, 36]. However, in Refs. [27, 36] laminar plastic flow developed into
turbulent plastic flow. The transition found in the present work is from a “tur-
bulent" state into a “laminar" state. Processes at the atomic scale control energy
dissipation at the nano- or even micro-scale. Obviously, the stress drop statistics
are significantly different in the jerky state compared to the smooth sliding state.
The jerky state is similar to sliding friction of a contact with large step density,
while the smooth sliding state is similar to sliding of a flat contact.

(a)

(b)

Figure 6.14: The contact structure showing a) jagged roughness in the jerky sliding stage at ux ≈ 8
nm, and b) a smooth ‘wave’ in the contact during the smooth sliding stage at ux ≈ 30 nm. Atoms
that do not belong to the interface, i.e. that have FCC structure type, are excluded.



6.4. CONTACTS WITH PERIODIC STEP PAIRS

6

81

The sliding displacement usmooth at which the transition to smooth sliding
occurs, defined as the displacement between the onset of sliding and the transi-
tion, is shown in Fig. 6.15 as a function of wsp0/w . For the smallest step height the
transition is almost immediate once sliding is initiated. For larger step height, sig-
nificant atomic rearrangement is involved (Fig. 6.14) and the transition is found
to take place at greatly varying displacements for different initial conditions (re-
alizations).
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Figure 6.15: Average sliding displacement and rms variation (between different realizations) at
which the transition to smooth sliding occurs as a function of the relative pair width.

One final note on the possibility of contact migration of step pair surfaces
in contact. Because the steps are initially opposite, there is no net migration,
since one of the steps causes migration upwards, while the other causes migration
downwards, effectively canceling each other. However, as found in the previous
section, dislocation nucleation from the contact can statistically occur. This leads
to a net step height in the contact, which undoes the cancellation, and therefore
leads to migration of the contact. Since this is found to occur in only about 10 %
of the cases, without correlation with pair spacing or step height, we consider it
of only minor significance in the friction behavior of stepped surfaces in spite of
its fundamental interest.

A note on shearing with a normal load applied

The simulations of the step pair contacts, where repeated after applying a nor-
mal load to the contact, to highlight the effect of dislocation nucleation. With the
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application of normal load it is indeed expected that dislocation and twin nucle-
ation from the steps becomes relevant. It is found that up to an applied normal
load of 3 GPa no dislocation and/or nucleation during normal loading occurs.
However, as shearing sets in, the higher the normal load, the more likely the nu-
cleation of dislocations and/or twins becomes. Above a normal load of 1.5 GPa,
we always observe dislocation and/or twin nucleation. When dislocation/twin
nucleation occurs the transition between jerky and smooth sliding is no longer
observed. This is because the nucleation of a dislocation/twin affects the net step
height of the contact which from zero becomes b. The presence of a net step
height leads to contact migration and smooth sliding is never achieved. Below a
normal load of 1.5 GPa the likelihood of observing jerky-smooth sliding transition
decreases with increasing normal load.

6.4.2. LARGE STEP HEIGHT: NANO-SCALE ASPERITIES

In this section we will study the friction behavior of contacts with step pairs of
large height, δ ≈ 1.5 nm. After relaxation the contact does not close, resulting
in a gap. The contact can be thought of as being made by a surface consisting
of a periodic array of nano-scale asperities of various widths wsp0 touching an
atomically flat surface. The normalized contact area is then given by:

Ar

wd
= w −wsp

w
. (6.1)

Here Ar is the contact area, d is the periodicity in the small y-direction. The con-
tact area is not always constant during shearing, therefore for characterization
we will use Ar0, wsp0 and δ0 for the initial contact area, step pair width and step
height, respectively. Without subscript 0, the variables refer to evolving quantities.
Figure 6.16 shows an example of the initial contact structure with a clear gap. Two

Figure 6.16: Contact with nano-scale asperities for case AB. Atoms that do not belong to the inter-
face, i.e. that have FCC structure type, are excluded.

cases are studied: case AB, crystal A has a stepped surface and crystal B a flat sur-
face, and case BA, for which the situation is reversed. Figure 6.17 shows the shear
stress as a function of applied displacement for different wsp0/w . Larger wsp0/w
entails smaller initial contact area leading to larger contact stress and hence an
earlier onset of sliding as seen in Fig. 6.17. Figure 6.18 shows the static friction
stress τs (taken at 1 nm offset displacement) as a function of the normalized ini-
tial contact area Ar0/(wd) for the two different cases. Both cases show a linear
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Figure 6.17: Shear stress as a function of applied displacement for different step pair widths (for
large step height). One curve (light blue) shows the statistical transition to smooth sliding similar
to the transition found for small height step pairs.

relation in τs with contact area. Stepped surfaces give clearly a larger static fric-
tion stress than a flat contact.
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Figure 6.18: Static friction stress as a function of the normalized contact area. Error bars give the
rms variation between different realizations.

In Fig. 6.19 it can be seen that during sliding, material is transferred from one
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surface to the other. This is similar to the re-crystallization process observed pre-
viously for single periodic steps, except for the fact that here the contact topology
changes drastically by material transfer, and hence it is appropriate to refer to it as
a wear process [37]. The other difference is that the contact does not migrate, un-
less dislocation nucleation occurs, and therefore the vacancies that are generated
are re-absorbed during sliding. Due to atomic wear the contact area increases,
i.e. the gap decreases, until full contact is reached. This increase in contact area
is the cause for the increase in τ at small shearing displacement in Fig. 6.17.

(a)

(b)

Figure 6.19: a) The initial contact (case AB), atoms that originally belong to crystal A(B) are indi-
cated with the color blue(red). The grey atoms indicate the position of the contact, based on CNA.
b) Developing wear at ux ≈ 5 nm.

Figure 6.20 shows the sliding displacement uc needed for the gap to com-
pletely close. For large step pair width, i.e. small contact area, lesser material
of the small asperity is available to be transferred until full contact is reached,
and therefore the gap closes at rather low sliding displacement. At small step pair
width, i.e. large contact area, only a small amount of material is needed to be
transferred from one surface to the other to close the gap, so that also in this case
the gap closes at rather low sliding displacement. At intermediate step pair width
the sliding displacement to closure is larger. The maximum does not occur at
Ar0/(wd) = 0.5, since the closure is a non-linear process in which the interaction
between the free surfaces is involved, leading to sudden gap closure when the
distance between the free surfaces becomes small enough. The wear process is
especially important when the initial contact area is small, when the largest dif-
ference is found between the static friction stress and the sliding friction stress in
the large ux limit.

As the gap closes, the free surface area decreases, together with the potential
energy (change in the order of 1 meV/atom). The dissipated energy in this pro-
cess is in reality absorbed by a large heat bath. Since our simulations consider
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Figure 6.20: Sliding displacement to closure uc as a function of normalized contact area. This is
the difference in applied displacement between the onset of sliding and full closure of the gap. The
error bars indicate the rms variation between different realizations.

a rather limited systems size, the thermostat takes care of the absorption of the
generated heat. Once the gap is completely closed, the friction stress is statisti-
cally independent of wsp0/w , i.e. the behavior becomes like the behavior of step
pair contacts with small contact height, as discussed in the previous section.

6.5. CONCLUSIONS
Room-temperature molecular dynamics simulations of contact friction between
two differently oriented Al crystals have yielded the following results:

• Sliding friction of stepped surfaces has all the properties of self-organized
criticality. The power law slip statistics depend on the step spacing: large
slip events are much more probable for contacts with small step spacing
than for contacts in the large spacing limit, i.e. atomically flat contacts.

• Apart from slipping, atomic steps can move along the contact and concur-
rently migrate perpendicular to the contact. Contact migration occurs only
when there is a net step height, it is a re-crystallization phenomenon and
results in vacancy generation near the contact.

• When the steps are in pairs, there is no net step height and overall migration
of the contact does not take place. The stick-slip behavior of these contacts
occurs in two clearly distinguishable stages, first jerky with large stick and
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slip events, then smooth and similar to a flat surface. The two stages are
separated by a marked transition. The friction behavior is statistically inde-
pendent of step pair width.

• Step pair contacts of large height, where there is a gap between the surface,
suffer from wear, which results in a growing contact area, eventually making
the friction behavior similar to that of small height step pair contacts.
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7
UNEXPECTED SENSITIVITIES IN

LOW TEMPERATURE MOLECULAR

DYNAMICS SIMULATIONS

Perturbations may even make the system more robust, by helping it to discover a
more stable organization.

Francis Heylighen

Parts of this chapter are intended to be published in Ref. [1].
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7. UNEXPECTED SENSITIVITIES IN LOW TEMPERATURE MOLECULAR DYNAMICS

SIMULATIONS

7.1. INTRODUCTION

Results of molecular dynamics (MD) simulations can vary between different cal-
culations. Firstly because of thermal noise inherent to physical problems at fi-
nite temperature. Secondly, MD simulations involve solving coupled differential
equations [2], so that changes in the initial atomic velocities/positions or differ-
ent implementation of a parallel processing scheme can result in different out-
comes. Hence, at finite temperature, simulations have to be repeated with dif-
ferent initial atomic velocities, randomly generated from a Maxwell-Boltzmann
distribution, to obtain a reliable average response, especially those simulations
in which effects of interest depend strongly on rare events at the atomic level. In
contrast, it is often assumed that low temperature MD simulations or molecular
statics (MS) simulations, where the temperature is effectively 0 K, are insensitive
to different initial atomic velocities, since the spread in atomic velocities is neg-
ligible and thermal noise is suppressed. However, in this chapter we shall show
that this assumption does not hold for all problems and depends on the topology
of the problem. Hence, one has to be very cautious in doing low temperature MD
and interpreting the results.

Figure 7.1: Schematic representation of the two crystals in contact with a shear load applied at the
top.

As benchmark problem the atomic scale friction of aluminum nano-scale con-
tacts is studied under shear loading using an EAM potential [3] at two tempera-
tures: room temperature, T = 300 K, and near-zero temperature, T = 0.1 K. A
schematic representation of the model is shown in Fig. 7.1. The simulation box
size is 30 nm x 2 nm x 90 nm. A schematic representation of the different contact
topologies, before and after relaxation, is shown in Fig. 7.2. The contact between



7.1. INTRODUCTION

7

91

Figure 7.2: Schematic representation of the different contact topologies before and after relax-
ation. Note that the character of steps is one-dimensional, while the character of adatoms is zero-
dimensional.

two crystals is chosen either atomically flat, disordered by randomly placed ad-
sorbed atoms (20 % of one atomic plane) or stepped, i.e. one surface contains
a step pair of which the constituents are of opposite sign, so that there is no net
step height. The height of the step is only one lattice parameter, so that almost full
contact is formed upon relaxation. Only at the location of the steps, stress con-
centrations arise due to strongly local symmetry breaking, shown in Fig 7.3. Since

Figure 7.3: Stress concentration near the step pair shown in Fig. 7.2, related to strongly local sym-
metry breaking in the topology of stepped contacts.

periodic boundary conditions are used, the stepped surface can also be viewed
as a surface containing a periodic array of small height asperities. Such surface
roughness can emerge due to crystal growth or dislocation escape. Additionally,
friction simulations are performed of stepped contacts with additional structural
disorder by randomly placed adatoms at the surfaces (20 % of one atomic plane).
Sliding friction is established by applying a tangential displacement uT at con-
stant velocity at the top boundary of the upper crystal, while keeping the bottom
boundary of the lower crystal fixed. The whole system is thermalized to the de-
sired temperature using a Nosé-Hoover thermostat, avoiding local heating during
sliding. The study in this chapter is an extension of the more elaborate study on
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SIMULATIONS

the frictional behavior of stepped surfaces in contact at room temperature pre-
sented in Chapter 6.

7.2. RESULTS
The shear stress for stepped, disordered and flat contacts at room temperature,
T = 300 K, is shown as a function of applied displacement in Fig. 7.4 for different
initial atomic velocities and/or different numbers of processors used for paral-
lelization. Parallelization entails that the physical space of the system is parti-
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Figure 7.4: Shear stress τ as a function of applied displacement uT for friction simulations of
stepped, flat and disordered contacts at room temperature, T = 300 K. Different initial atomic ve-
locities are used or different number of processors are used for parallelization. The colored and
black curves represent the stepped and flat/disordered contacts, respectively. Similar conditions
are used for the black curves as represented by the legend for the colored curves.

tioned into sub-systems to decrease computational time. Given the finite floating
point precision, a different number of processors can lead to small differences in
velocities, positions and forces due to rounding. The room temperature simula-
tions do not provide unexpected results. As expected, the elastic part is identi-
cal for all cases. At an applied displacement of uT ≈ 2 nm, sliding sets in. For
both atomically flat and disordered contacts there is no significant effect of ini-
tial velocities or different numbers of processors. For a disordered contact, the
friction stress is lower than for a flat contact, since atoms at the interface are out
of registry compared to a flat contact, so that it takes lesser applied mechanical
energy to overcome the barrier for sliding. For stepped contacts, however, there
is a clear effect on the onset of sliding for different initial atomic velocities or dif-
ferent numbers of processors. This is caused by the fact that the steps with the
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local stress concentrations act as additional barriers for sliding and to overcome
this barrier preferably the vectors of the atomic velocities have to align, which oc-
curs by chance. As sliding develops, it is found that the friction stress converges
to (near-) smooth sliding with approximately the same friction stress. In Chap-
ter 6 it is shown that this transition to smooth sliding of stepped contacts occurs
due atomic rearrangement, i.e. self-organization of the steps, which decreases the
contact roughness caused by the local symmetry breaking at the steps. Note that
the dark blue curve in Fig. 7.4 is slightly more fluctuating than the other curves.
In this case a single dislocation is nucleated from the contact, giving the contact
a net step height and making it slightly rougher, which explains the fluctuations
in friction stress.

For room temperature simulations we can therefore conclude that the initial
velocities, or numbers of processors, are irrelevant for the onset of sliding of an
atomically flat or disordered contact, but are very important for a stepped con-
tact, i.e. local behavior. For large uT, the initial differences average out and the
behavior becomes statistically independent of the small differences caused by
different initial atomic velocities or different parallelization.

Studying the mechanical response of materials with MS/MD simulations at
zero or near-zero temperature is thought of to have the advantage that the spread
in atomic velocities/positions/forces that exists at room temperature, is com-
pletely or nearly absent. Secondly, thermal activation is negligible at low temper-
ature, so that if the strain rate is low enough, the simulations are quasi-static and
the results are rate-independent. One would therefore expect that if we repeat
the previous simulations at near-zero temperature, T = 0.1 K, the results, espe-
cially for the stepped contacts, would be insensitive to different initial conditions
or different number of processors for parallelization, and one could suffice with
only a single simulation.

The shear stress as a function of applied displacement at T = 0.1 K for stepped,
atomically flat and disordered contacts with different initial velocities and/or dif-
ferent numbers of processors is shown in Fig. 7.5. The stress levels are higher
compared to the room temperature simulations, since the thermal activation present
at room temperature, is suppressed at 0.1 K. Similarly to the room temperature
simulations, it is found that both the onset of sliding and the friction stress in the
developed sliding stage of the flat and disordered contacts is independent of ini-
tial velocities or numbers of processors used. However, for the stepped contact,
the behavior is significantly different from the behavior at room temperature. In-
terestingly, in contrast with the room temperature simulations, it is now the onset
of sliding that is insensitive to initial atomic velocities or number of processors,
as shown in the inset in Fig. 7.5. The spread in velocities is near-zero, so that
all atomic velocity vectors at the contact have the same direction to overcome
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Figure 7.5: Shear stress τ as a function of applied displacement uT for friction simulations of
stepped, flat and disordered contacts at near-zero temperature T = 0.1 K. Different initial atomic
velocities are used or different number of processors are used for parallelization. The colored and
black curves represent the stepped and flat/disordered contacts, respectively. Similar conditions
are used for the black curves as represented by the legend for the colored curves.

the barriers caused by the steps. However, as sliding develops, the results start
to diverge, which eventually develops into very different friction stress in the later
sliding stage for different initial velocities or different numbers of processors. The
green curve in Fig. 7.5 shows the lowest friction stress for stepped contacts and
the behavior still shows some stochasticity due to local roughness. The reason is
found to be similar to what was discussed previously for the dark blue curve in
Fig. 7.4, i.e. in this case a single dislocation is nucleated from the contact leading
to a net step height in the contact and a rougher contact. The light blue curve

(a) (b)

Figure 7.6: Very different contact structures that have developed for an applied displacement
uT = 20 nm at T = 0.1 K. Different initial atomic velocities can result in (a) the nucleation of dislo-
cations and twins from the contact or (b) a highly smooth contact structure with steps. Coloring is
according to a Common Neighbor Analysis (CNA) [5].
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in Fig. 7.5 shows significantly increasing friction stress. In this case dislocations
and twins are nucleated from the contact, which increases the roughness of the
contact as shown in Fig. 7.6a. However, there are also two cases (red and blue
in Fig. 7.5) that show smooth sliding due to the atomic rearrangement, leading to
a rather smooth contact shown in Fig. 7.6b, which contains steps (zero net step
height) that can move in the contact plane.

We can conclude that, surprisingly, small changes in the initial or process-
ing conditions at low temperature lead to very different results when atomic rear-
rangement from an initial state with strongly local symmetry breaking (like stepped
contacts) is involved. Unexpectedly, the results are very sensitive to different ini-
tial or processing conditions.
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Figure 7.7: Shear stress τ as a function of the applied displacement uT for friction simulations of
stepped contacts at a temperature T = 0.1 K with additionally randomly placed adatoms (20 % of
one atomic plane) at the surfaces.

Instead of increasing the temperature to induce noise/disorder, we can also
randomly place adatoms (20 % of one atomic plane) on the surfaces for a stepped
contact at T = 0.1 K, leading to increased disorder. Figure 7.7 shows that the large
variation in the shear stress during sliding for low temperature simulations of a
stepped contact (Fig. 7.5), although not zero, is significantly decreased. The vari-
ation in shear stress during sliding relative to the average value is ∆τ/τ̄= 0.07 for
the case of a stepped contact with adatoms, where for the case of a purely stepped
contact it is ∆τ/τ̄ = 0.36. In comparison, the relative variation at room tempera-
ture in the developed sliding stage is ∆τ/τ̄ = 0.06, close to the relative variation
in the friction stress at 0.1 K with additional structural disorder. So the sensitivity
to different initial or processing conditions in the developing friction stress re-
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lated to the initial strongly local symmetry breaking at the contact is suppressed
by either additional structural or thermal disorder.

7.3. CONCLUSIONS
In conclusion, when performing low temperature MD simulations on a prob-
lem that involves significant atomic rearrangements related to a state of initial
strongly local symmetry breaking, small differences in initial or processing con-
ditions in absence of thermal noise or structural disorder can lead to a large vari-
ation in the obtained results. The initial response related to dissipation, i.e. stress
relaxation, is identical at low temperature. However, the system evolves through a
landscape of local instabilities for which continuously new minimal energy states
are found, which makes it sensitive to small changes in initial velocities or round-
ing errors in using a different parallelization scheme. This can therefore lead to
a large variation in the results. Finite temperature or structural disorder washes
out the irregular low temperature events sequence and leads to a stable and ro-
bust average behavior [6]. Obviously this does not mean that low temperature MD
without additional structural disorder is useless. For problems where the interest
is in the onset of deviation from elastic behavior, only a low number of dissipation
events are involved and the results are still reliable with rather small variation.
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Reason, or the ratio of all we have already known, is not the same that it shall be
when we know more.

William Blake
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8.1. CONCLUSIONS
The objective of this work has been to obtain a better understanding of contact
and friction. To this end, a computational study of a fundamental nature has
been performed, focussing on micro-scale metal single asperities and nano-scale
metal contacts. In the following, the main conclusions of each chapter shall be
presented.

In Chapter 3, a discrete dislocation plasticity analysis of the plastic shear re-
sponse of micro-scale single asperities of rectangular and truncated sinusoidal
shape is presented. The advantage of these shapes is that the real contact area
is equal to the apparent contact area and is constant during deformation. This
study leads to the following conclusions:

• Self-similar asperities with small size have a higher contact shear strength
than large asperities, even though the elastic behavior measured in terms
of asperity shear strain is identical.

• Contact area and spacing between dislocation sources are the length scales
that control the plastic behavior of the asperities: the contact area deter-
mines the size of the stressed region, inside and below the asperity, where
dislocation nucleation can occur. Source spacing controls how many sources
can be activated in the stressed region and thus gives rise to plastic defor-
mation.

• For small and large contact area, the asperity can be idealized to have zero
volume. Only for intermediate contact area, i.e. 0.5 µm < C < 3 µm for
the dislocation source density used in this study, the shape and size of the
asperity are relevant. The taller the asperity, the more plasticity inside it,
the softer its shearing response.

In Chapter 4 a discrete dislocation plasticity analysis of the ploughing response
of sinusoidal asperities and the comparison with the shear response of asperities
is presented. This leads to the following conclusions:

• The friction force, defined as the ploughing force at final displacement, is
insensitive to the ploughing depth and follows a distribution that is almost
Gaussian with a depth-independent standard deviation.

• Although ploughing is insensitive to the ploughing depth, shearing is very
much sensitive to the shearing height, because of the associated change in
contact area. It is found that a larger contact area results in a larger fric-
tion force. The relative standard deviation increases with decreasing con-
tact area (or increasing height).
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• For shearing of self-similar asperities and zero-height asperities a size-dependent
response is found. However, the friction force for ploughing of self-similar
asperities is size-independent.

• For small asperity size the friction strength measured in the asperity base
is identical for ploughing and shearing, so that at small asperity size the
more complex ploughing model can be replaced with the simpler flat con-
tact shearing model.

Since dislocation pile-ups on the contact can significantly affect the plastic
response of asperities, we have studied with atomistic simulations the impinge-
ment behavior of edge dislocations on contacts under quasi-static loading condi-
tions in Chapter 5. This study has led to the following conclusions:

• Atomic scale roughness, a simple, novel definition proposed in this work,
is found to control dislocation absorption and re-nucleation from the im-
pingement site.

• The normal stress at which re-nucleation occurs increases with increasing
atomic scale roughness until a certain threshold. Above this roughness, the
effect of a single absorbed dislocation is insignificant compared to the con-
tact roughness.

• When multiple dislocations impinge, the nucleation stress decreases with
the number of dislocations. For more than three dislocations in a pile-up,
the normal stress at nucleation becomes constant.

• The repeated process of absorption and re-nucleation of multiple disloca-
tions leads to local contact roughening.

• Impingement of a single dislocation on a contact can result for large rough-
ness in the nucleation of a twin. When multiple dislocations impinge, twins
are no longer observed.

• The contact pressures at which nucleation occurs are rather large, in the or-
der of one GPa. Only when this is exceeded, dislocations from a pile-up are
expected to be absorbed and re-nucleated, decreasing the pile-up length.
Therefore, for moderate applied loading it is expected that long dislocation
pile-ups can form.

Roughness does not only exist at the asperity level (micro-scale contacts) but
also at the atomic level (nano-scale contacts). Atomic scale steps formed for in-
stance by the escape of dislocations through surfaces or through crystal growth,
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make nano-scale contacts atomically rough. In Chapter 6 we have studied the ef-
fect of atomic scale steps on the friction behavior of nano-scale Al contacts, lead-
ing to the following conclusions:

• Sliding friction has all the properties of a self-organized critical state. The
power law slip statistics depend on the step spacing: large slip events are
much more probable for contacts with small step spacing than for contacts
in the large spacing limit, i.e. atomically flat contacts.

• A small net step height (order of magnitude of one lattice constant) in the
contact results in contact migration perpendicular to the contact plane, due
to the motion of the step along the contact plane. Contact migration results
in vacancy generation in the re-crystallized part near the contact.

• Step pair contacts of small height, have two clearly distinguishable sliding
stages, jerky and smooth, separated by a marked transition. While the con-
tact is initially rough, the steps organize in such way that a smooth contact
topology is obtained, leading to smooth sliding. The friction behavior is
statistically independent of step pair width.

• Step pair contacts of large height, where there is a free gap between the
surface, suffer from wear, which results in a growing contact area, eventu-
ally making the friction behavior similar to that of small height step pair
contacts. The onset of sliding is clearly affected by the step pair width, i.e.
smaller initial real contact area entails lower static friction stress.

In Chapter 7 the unexpected observation is done that sliding friction for stepped
contacts is very sensitive to initial or processing conditions for MD simulations at
low temperature. Since it is commonly assumed that MD simulations at low tem-
perature do not show significant variation in the results, due to the (near) absence
of thermal noise, this observation urges for very careful considerations when per-
forming low temperature MD simulations involving dissipation-processes.

8.2. OUTLOOK
This work is motivated by the need for a deeper understanding of friction of rough
metal surfaces in contact. However, since this fundamental study focusses on
specific length scales, it does not provide for answers on the interplay between
different relaxation mechanism, like dislocation nucleation and glide and contact
slip. One of the major recommendations is therefore to construct a multi-scale
model in which both atomistic and dislocation processes are incorporated. This
will certainly become relevant when considering real rough surfaces in contact.
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It is expected that certain contact regions in such rough contacts will show plas-
tic deformation of asperities, while other contact regions, where the local shear
stress is high, will show sliding through local slip and step motion.

In this study it is observed that friction of nano-scale contacts involves a self-
organized critical state. This means that the statistics of the stress drops during
sliding is described by a power-law distribution. A closer look at the friction stress
versus applied displacement curves for zero-height asperities has revealed a sim-
ilar feature. Figure 8.1 shows the power-law statistics of the stress drops during
sliding for both nano- and micro-scale Al contacts. Of course we can only make
such a comparison if the stress-curves does not show significant hardening, since
self-organized criticality (SOC) requires a steady-state. For smaller contact area
the stress-curves show more hardening, and therefore do not comply to the crite-
ria of SOC. This means that SOC does not simply apply to all length-scales. How-
ever, in this work we have already observed that SOC can occur also when mul-
tiple relaxation mechanisms occurring simultaneously (local slip and step mo-
tion at the nano-scale). It would be interesting to study whether sliding friction
of real rough surfaces, entailing multiple length scales and hence multiple relax-
ation mechanisms, has the properties of a self-organized critical state.

Figure 8.1: Power-law statistics of the stress drops in friction simulations of micro-scale contacts
using discrete dislocation dynamics and nano-scale contacts using molecular dynamics.

Lastly, in this study we have applied small-strain discrete dislocation dynam-
ics for the analysis of the plastic shear response of single asperities. However,
since this involves a problem with large strain gradient, it is hypothesized that
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the finite strain method described in Ref. [1] is more appropriate to accurately
incorporate lattice rotation. It has yet to be shown to which extent finite strain
dislocation dynamics will give different results or not, but a finite strain study will
definitely give a relevant extension to the gained knowledge of the shear response
of single asperities in this work.
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