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Evaluating Crowd Flow Forecasting Algorithms for
Indoor Pedestrian Spaces: A Benchmark
Using a Synthetic Dataset

Weiming Mai ", Dorine Duives, Panchamy Krishnakumari™, and Serge Hoogendoorn

Abstract— Crowd management plays a vital role in urban
planning and emergency response. Accurate crowd prediction is
important for venue operators to respond effectively to adverse
crowd dynamics during large gatherings. Although many studies
have tried to predict crowd densities or movement dynamics
with data-driven predictive models, their validation is often
limited to data within the same scenario. As a result, the
predictability of the data-driven model in unseen scenarios, such
as evacuation scenarios, remains unknown due to the challenges
of collecting out-of-distribution data regarding emergency condi-
tions. To address this problem, we present an evaluation pipeline
to evaluate different kinds of data-driven models. A method is
proposed to generate realistic scenarios by simulation and collect
synthetic data from these scenarios to acquire a comprehen-
sive dataset. With these synthetic data, we evaluated different
predictive models, from traditional machine learning methods
to deep learning time-series prediction models, to explore their
generalizability. Furthermore, we propose a weighted average
metric, which is better suited to determine the performance
of forecasting algorithms under adverse conditions. Through
extensive experimentation, we showcase the heterogeneity and
diversity of the simulation dataset. The evaluation results also
revealed that all the data-driven models performed poorly in
unseen scenarios, highlighting the urgent need to develop a robust
and generalizable model for predicting crowd flow in indoor
spaces.

Index Terms— Simulation modeling, crowd flow prediction,
data-driven methods.

I. INTRODUCTION

N INDOOR spaces, such as train stations, airports, and

shopping malls, the dynamics of the crowd can change
instantaneously due to factors such as alterations in train
schedules or the occurrence of significant events like evac-
uations or large gatherings. Grasping the intricacies of crowd
movement dynamics and forecasting movement dynamics can
prove vital in ensuring crowd safety. There are two primary
approaches to predict crowd movement in indoor environ-
ments. The traditional method involves constructing offline
simulation models to analyze crowd behavior and dynam-
ics [1], [2], [3]- In order to analyze pedestrian movement
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dynamics, a myriad of simulation models have been developed
that can simulate the walking dynamics of crowds. The Social
Force Model (SFM) [4] is one of the representative models
that focuses on microscopic pedestrian behavior. It is based
on the principles of social interactions and the forces that
influence individuals’ movement in a crowd. The Cellular
Automata (CA) [5] model is used to simulate complex systems
consisting of a grid of cells that interact with their neighboring
cells based on predefined rules. Macroscopic models focus on
overall crowd movement and treat pedestrians as flows, which
takes less computational time. The continuum models [6], [7]
describe the behavior of a system as a continuous field or
distribution rather than individual entities or particles. The
network flow model [8] is another type of macroscopic crowd
movement model. However, all these simulation models are
designed to answer a what-if question rather than real-time
prediction with the data observed by the sensors [9].

Instead of explicitly modeling the physical process, data-
driven models can learn latent behavioral patterns from
historical data to predict future crowd flow. Data-driven
approaches can generally be categorized into video-based and
non-video-based methods [10]. Video-based methods employ
video datasets [11] for crowd counting or density estimation,
they utilize object detection techniques [12], [13], [14] to
predict the individual motion behavior of the pedestrian.
On the other hand, non-video-based methods focus primarily
on human trajectory prediction [15], [16]. Some approaches
utilize Wi-Fi localization [17], [18] or Global Positioning
System (GPS) data [19], [20] to identify high-density crowd
areas. Additionally, Tordeux et al. [21] explored the use
of artificial neural networks (ANNs) to predict microscopic
crowd dynamics.

However, data-driven models rely on substantial amounts of
data to effectively capture the inherent dynamics of mobility
patterns. In reality, the availability of recorded data under
extreme conditions is often severely limited, and such data
typically lie outside the distribution of normal scenarios.
Despite the success of all these fancy prediction models, their
resiliency to abrupt scenarios remains unknown. Consequently,
the use of simulators to generate data to train and test the
models becomes crucial. Simulators offer the advantage of
being controllable, enabling us to simulate various scenarios
that might not be present in the limited real-world data. In [22],
synthetic crowd datasets are generated using agent-based
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simulation for predicting crowd severity levels. The simulation
output includes the agents’ positions, speeds, and headings,
which are then processed to obtain crowd density, speed, and
heading direction as inputs for the prediction model. The
particle filter simulation method is also studied in [9] and [23].
It is used for crowd-state prediction, using observation data
to estimate latent parameters for real-time predictions. While
both studies employ simulation tools for crowd analysis and
prediction, they only focus on small indoor areas and require
detailed data, such as agent speed, density, or precise positions,
which are difficult to obtain in real-world scenarios.

In this work, we focus on evaluating data-driven models
that predict crowd movement using pedestrian flow (count)
data from sensors. Flow data is directional, making it a better
representation of crowd movement than speed or density.
In addition, it is easier and more accurate to collect. To assess
model performance, we generate synthetic sensor flow data
through simulation. This dataset not only addresses the lack
of publicly available data but also serves as a key component
of our evaluation framework for flow prediction models in
indoor spaces. Source codes of the synthetic dataset and the
pedestrian simulation model we used are publicly available.'

Our contribution could be summarized as follows:

o We design a set of conditions to reproduce realistic
indoor crowding scenarios via microscopic pedestrian
simulation. With this approach, we created a synthetic
dataset encompassing a wide range of adverse condi-
tions. To validate the quality of this dataset, we analyze
the origin-destination (OD) matrix and the macroscopic
fundamental diagram (MFD) of different scenarios to
showcase the heterogeneity and diversity of the demand in
the dataset. Quantitatively, the diversity of the data among
these scenarios is evaluated by the prediction error of a
data-driven predictor.

« We propose an evaluation pipeline to assess the general-
izability of data-driven prediction models across various
crowd dynamics. To ensure fair evaluation under different
conditions, we introduce a safety-concerned metric that
measures prediction error considering the quantile of
the data. This data-centric pipeline allows researchers to
easily evaluate predictive models in diverse scenarios.

« Using the synthetic datasets, we re-evaluate different
prediction models from traditional machine learning
methods, e.g. Multivariate Linear Regression (MLR) and
Gradient Boosting Decision Tree (GBDT), to deep learn-
ing time-series predictive models, e.g. Recurrent Neural
Networks (RNN) and Graph Neural Network (GNN) in
the out-of-distribution (OOD) setting. The experimental
results also affirm the robustness of the proposed metric.

The outline of this paper is as follows. Section II reviews
various traffic and crowd flow prediction methods. Section III
formally defines the indoor crowd flow prediction problem in
the context of emergency management and outlines the process
of simulation and synthetic dataset generation. Section IV
introduces the predictive Al models used in our study and

1 https://github.com/WaimenMak/Crowd-Prediction
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presents the evaluation pipeline diagram. Finally, Section VI
discusses future research directions.

II. RELATED WORK
A. Data-Driven Mobility Forecasting

With the emergence of machine learning and deep learn-
ing techniques, a lot of research studies how to develop a
model to forecast or estimate the movement patterns and
behaviors of individuals or vehicles across an entire network
or transportation system [24]. It involves analyzing histori-
cal data, current conditions, and various factors influencing
future mobility patterns. Compared to simulation techniques,
data-driven approaches require more data and computational
complexity. Benefits from the large amount of data, the models
don’t require making strict mathematical assumptions and go
through a validation and calibration process.

Extensive research has been devoted to traffic prediction.
Conventional statistical models such as history average (HA),
auto-regressive-moving-average (ARIMA) [25], and vector
auto-regression (VAR) have been widely used for time series
traffic flow prediction. These models are limited to single
target point prediction and are not suitable for network-wide
mobility prediction. With the advent of complex model struc-
tures, e.g., convolutional neural network and graph neural
network, researchers have developed different deep learning
models to capture the complex dynamics of vehicular mobil-
ity [26], [27], [28] and human mobility [29], [30], [31]. These
models aim to approximate the intricate dynamics function
involved in predicting network-wide mobility patterns, mostly
are in the city level.

B. Indoor Crowd Monitoring and Prediction

Some researchers have studied real-time monitoring to send
out warnings of overcrowding. For instance, in the work
by Zhang et al. [32], they develop a crowd management
system by crowd density estimation. They propose a risk rating
system and an early warning mechanism to manage the crowd.
Similarly, Martani et al. [12] study monitoring techniques and
apply them to pedestrian microsimulations to achieve crowd
flow prediction. With the rise of deep learning, many studies
have leveraged computer vision techniques [13], [33], [34] for
crowd counting to enhance monitoring systems. The intrinsic
drawback of monitoring is that they can only perceive the
things that have happened, which lacks a proactive approach
and does not offer a comprehensive solution.

Data-driven techniques have been widely applied to predict
the crowd state proactively. In [34], the authors combined
deep learning techniques and domain knowledge for predicting
inbound and outbound metro passenger flow. Sudo et al. [18]
make use of deep learning techniques to predict the crowd
density with a Wi-Fi dataset in eight venues of an indoor
environment. However, these works focus on a coarse time
horizon prediction, in which the time interval is at least
10 minutes. Therefore they do not apply to instant indoor
crowd movement prediction.

In a finer time granularity, Zhang et al. contribute a
large-scale video dataset WORLDEXPO’10 [11] for crowd
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counting or density estimation, and [35], [36] use human-
trajectory datasets: ETH [37] and UCY [38] to predict individ-
ual pedestrian movement. The prediction of the video-based
methods is highly dependent on the quality of the video, and
these methods are not robust enough for large-scale crowd
estimation and are restricted to a specific place where the
camera can cover. Some used different non-video-based data
e.g., GPS and Bluetooth for the crowd tracking [10]. And
yet, with all these progressive works mentioned above for
traffic prediction or indoor crowd prediction, there remains
a research gap concerning the reliability of the prediction
model in unseen scenarios. The prediction accuracy of the
data-driven model could not be guaranteed without testing in
a comprehensive dataset. Consequently, simulation is needed
to generate diverse scenarios for evaluating these methods to
thoroughly test data-driven methods.

III. DATA-DRIVEN INDOOR PEDESTRIAN FLOW
FORECASTING AND SYNTHETIC
DATA DEVELOPMENT

A. Research Approach

The state-of-the-art above identifies that there are two rea-
sons why we cannot forecast flows in a building during adverse
events at the moment, being 1. we do not have forecasting
models that are trained for adverse conditions and, 2. There is
no dataset that contains sufficient adverse event conditions to
train. This research will benchmark existing (flow) forecasting
techniques concerning their ability to forecast flow during
adverse conditions. To do so, we develop a new evaluation
pipeline. First, we create a synthetic dataset that features
pedestrian flows in an indoor environment during normal
and adverse conditions. This synthetic dataset is accordingly
used to train existing flow forecasting models. Lastly, a new
evaluation method is developed that specifically aims to assess
models concerning their abilities to forecast flow under adverse
conditions.

Underneath, first, a mathematical definition of the flow
forecasting problem is provided. Accordingly, the simulation
scenario variables are defined. Third, the Safety-concerned
metric is introduced. This section ends with a brief introduc-
tion to the comprehensive evaluation pipeline.

B. Mathematical Definition of the Flow Forecasting Problem

Pedestrian flows are characterized by three fundamental
traffic flow variables: density (p), speed (v), and flow (f) [3].
Density is defined as the number of pedestrians per unit of area
at a certain moment. Speed is defined as the distance traveled
by a person per unit of time. The crowd flow refers to the
number of people crossing a line (i.e., cross-section) within
a certain period. Here, both velocity and flow are vectors.
To account for the directionality of the flow, we define the
flow as inflow (Blue arrow in Figure 1 - direction towards
the center of the building), and outflow (Orange arrow in
Figure 1 - direction towards the nearest exit of the building).
In practice, the flow data is collected by sensors located at the
cross-sections shown in the figure. Please note that we record
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Fig. 1.

Visualization of the flows in an intersection of a building.

the flow in the corridors to reduce the directionality of the
flow at a cross-section to II directions.

In this paper, we focus on forecasting the flow rate. This
crowd flow forecasting problem can be defined as: Given the
T’ lags of historical flow data X to forecast the future T
horizons.

X7+ XY RIOY X L X

where f(-) is the function approximator that maps the historical
time series signals to 7 prediction horizons. To capture the
movement of the crowd throughout the infrastructure, there
have been some works [8], [39] model the whole building
as a network, in which rooms are vertexes and the corridors
are edges. Different from these studies, we deploy the sensors
in the corridors evenly, from that we then obtain a sensor
network that monitors the spatial flow rates. The data collected
from multiple sensors can be effectively represented as a graph
signal denoted as X € RV*C_ Here, N represents the number
of sensors, while C corresponds to the feature dimension of
the data recorded by each sensor. In our simulation setup, each
sensor is capable of recording bi-directional pedestrian flow
rates, namely fi, and fou. By summing these two flow values,
we can obtain the overall flow fioa. Therefore, in our setting,
the feature dimension C is equal to 3 since it encompasses
the bidirectional flow components (fin, four), as well as the
combined overall flow ( fiotal)-

C. Developing a Synthetic Crowd Flow Dataset

To create the synthetic dataset featuring sensor data we
utilize a microscopic pedestrian simulation model. We run
a wide variety of scenarios with varying conditions. During
each simulated scenario, we capture the flow at a wide variety
of sensor locations. The flow rate records form the synthetic
dataset.

1) Introducing the Synthetic Dataset: We use the micro-
scopic pedestrian dynamics simulation package Pedestrian
Dynamics2 to simulate the movement dynamics in the station,
the underlying model used for this agent-based simulation
is the Social Force model. Figure 2 shows the 2D view of
the train station model, where the numbered yellow blocks
represent the sensor locations. Floor I represents the main
hall of the station on the ground floor. Floor 2 represents the

2https://WWW.incontrolsim.com/our—software/
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Floor 2

Fig. 2. 2D view of the train station.

train station platforms located on the first floor. Escalators and
stairs connect Floor 1 and Floor 2. As shown in the figure,
there are 8 train tracks. In our setting, there are a total of
4 lines and each train belongs to one of the lines.

Within the station, we designed a sensor network, featuring
35 sensors. The sensor in the simulation is the abstraction of
all kinds of devices that capture pedestrian flow. In practice,
the visual data collected by the camera can be used to estimate
pedestrian counts using computer vision techniques. To ensure
consistency, the time granularity of all sensors is set to 10s.
Hence, the unit of the flow rate is peds/10s. Each sensor
position is then treated as a node in the network. For each
scenario, the simulation time is fixed at 1 hour, resulting in a
total of 360 data points for the time-series. Under the setup
described in [26], the time series data is divided into multiple
samples using sliding windows. In this approach, the window
width is consistently set to 24 time units. Thus, the input of
the model can be denoted as X = {X'™™},,—0:11, which is the
previous 2-mins historical flow data. And the output of the
model is ¥ = {X’ +"}n=1;12, which corresponds to the flow rate
at the sensor location for the coming 2 minutes. In practice,
the prediction horizon is determined according to the average
travel time from the main entrance to the back exit.

In traditional time-series data prediction, the overall dataset
is continuous and not time-correlated, thus the training and
testing dataset can be obtained according to the given propor-
tion. In contrast, in our study, we sample data from different
scenarios to construct the training dataset and testing dataset.
The testing is scenario-specific, with each scenario having its
own set of parameters.

Floor 1

2) Scenario Development: In this section, we describe the
process of developing scenarios for the synthetic dataset.
In general, millions of scenarios can unfold in an indoor
environment, with diverse infrastructures giving rise to distinct
situations. For this study, we pick a train station as a case
study. In our agent-based simulation model, agents primarily
originate from two sources, from outside the train station and
from inside the trains. There are 2 main normal activity routes
for these agents: the agents from outside the station follow
the route Entry — Wait — Board. To mimic the real
scenario, there are also agents from outside who just walk
through the station from one entrance to another exit Entry —
Transfer — Exit. For the agents alighting from the train,
their normal activities are Alight — Wait — Transfer or
Alight — Exit. More detailed activity routes can be found
in Table VI.

No day is the same in a train station. Therefore, we intro-
duce variance in the scenarios. Table I summarize different
exemplary conditions considered in our simulation. First,
we consider the influence of passengers, i.e., the individuals
boarding the transportation system. In particular, we consider
the arrival frequency of the passenger, the route choice, and
the walking speed. By setting the boarding probability of each
line, we can generate different OD demands in the train station.
The last variable in passenger represents the stochastic nature
of pedestrian behavior, featuring, for instance, alternative route
choice or unpredictable sudden movements. This variable
introduces variability and noise into the dataset, reflecting
real-world scenarios where pedestrian behavior deviates from
the expected pattern. Secondly, we examine the impact of the

Authorized licensed use limited to: TU Delft Library. Downloaded on June 05,2025 at 14:47:21 UTC from IEEE Xplore. Restrictions apply.
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TABLE I

SCENARIOS GENERATION: Factors REPRESENT THE POTENTIAL FACTORS THAT INFLUENCE THE MOVEMENT OF THE CROWD. Variables ARE THE
PARAMETERS OF EACH FACTOR THAT COULD BE TUNED TO GENERATE VARIOUS CONDITIONS.
AND THE SCENARIO IS THE COMBINATION OF THE CONDITIONS

Factors Variables Conditions
. 1. Rush hour
Arrival Rate 2. Off-peak period
Passenger - -
3. High demand for Line X
Demand 4. Low demand for Line X
5. Normal demand for Line X
. 6. Low throughput
Pedestrian Speed 7. High throughput
8. Alight/Board
Pedestrian Activities 9. Wait
10. Transfer
. . 11. Different train schedules
Transportation | Train Schedule 12. Train X is delayed for T mins
Evacuation Emergency Route 11. Evacuate from the main and szlck exit
13. Evacuate from the platform exit
Disruption System Malfunctioning | 14. Escalator £ is malfunctioning

transportation system itself, such as the train schedule, whether
the train is delayed, and for how long it will take.

In addition, two factors are included to simulate abnormal
events, being an Evacuation, and a Infrastructure disruption.
These two disruptions can significantly impact the mode
choice and route choice [2] of the pedestrians, which creates
large, very sudden changes in the sensor data. In the case
of Evacuation, an emergency occurs, requiring a complete
evacuation of all pedestrians from the station, leading to
a complete alteration of their route towards a designated
emergency exit (i.e., the nearest one). On the other hand,
Disruption simulates infrastructure problems within the train
station. In this case, we included a malfunctioning escalator.

We simulate a wide variety of scenarios by tuning the
variables of each factor. This approach enables us to explore
the effects of these factors on crowd flow and evaluate the
models’ performance in handling normal and abnormal sce-
narios. Many more conditions can be added to the synthetic
dataset. Yet, the current synthetic dataset is sufficient for the
purpose of benchmarking crowd flow forecasting models.

3) Parameter Settings for the Conditions: This section
introduces the detailed parameter settings of different exem-
plary conditions. In each scenario, the agent generator
generates a group of people at each time interval. The number
of people in this group follows a uniform distribution U (2, 5),
meaning that 2 to 5 people will be in this group. The time
interval is a random variable following an exponential distri-
bution, such that the arrival of the passenger groups follows
a Poisson distribution. We set the mean interval s = 2 for
the rush hour condition, which means that on average every
2 seconds a group of passengers would arrive at the station.
For off-peak hours, we set s = 4.

The demand for each train line is represented by the
probability that passengers will choose that line. We categorize
demand levels as high, normal, and low. Suppose there are
four train lines, when the demand for Line 1 is high, the
probability distribution is [52%, 16%, 16%, 16%]. For normal
demand, it is [25%, 25%, 25%, 25%], and for low demand,
it is [10%, 30%, 30%, 30%]. The maximum walking speed

follows a triangular distribution; in a high-throughput con-
dition, the distribution is Triangular(2,1.5,2.5), meaning
that the average maximum walking speed of each agent is
2(m/s), the highest maximum walking speed is 2.5(m/s),
and the lowest value is 1.5(m/s). The maximum walking
speed follows the distribution Triangular(1.35,0.8,1.75) in
a normal condition. For all agents, the minimum walking speed
is 0.06(m/s). More details of the agent profile are introduced
in the Appendix.

In an evacuation scenario, the evacuation process starts at
some point during the simulation and continues until all people
are evacuated from the building. In our setting, we mainly
change emergency routes as described in the table, while the
other variables remain unchanged.

D. Data-Driven Predictive Models

We adopt a wide variety of prediction models ranging from
traditional statistics-based methods to deep learning methods.
Since there are currently no SOTA data-driven models specifi-
cally designed for crowd flow prediction, most of these models
are data-driven and have been widely used in time-series
prediction and widespread application in traffic or crowd
forecasting. However, they have not yet been benchmarked
in the context of indoor crowd flow prediction. The models
are introduced as follows.

- MLR: Multivariate Linear Regression take multiple vari-
ables as input for prediction. We implement this model
with the python package scikit-learn.’

- VAR: Vector AutoRegression is a forecasting algorithm
that can be used when two or more time series influence
each other. In our experiment, we tried different lags as
input and found that in our dataset the model with a lag
of length 3 (30s) performs the best.

- MLP: Multi-layer Perceptron which is a fully-connected
artificial neural network. We set the hidden layers as 2,
and in each layer, there are 50 neurons. This is also
implemented based on scikit-learn.

3https://scikit—learn.org

Authorized licensed use limited to: TU Delft Library. Downloaded on June 05,2025 at 14:47:21 UTC from IEEE Xplore. Restrictions apply.



7958

- XGBOOST: eXtreme Gradient Boosting [40] is a scal-
able end-to-end tree boosting system, which is widely
used by data scientists for many machine learning tasks.
The early stop round is set to be 10 to prevent overfitting
and RMSE is adopted as the evaluation metric.

- N-BEATS Neural Basis Expansion Analysis for Time
Series Forecasting [41] is a deep learning model designed
for time series forecasting. It uses a basis expansion
method that allows for interpretable forecasts, offering
insights into the underlying patterns in the data.

- RNN: Recurrent Neural Network is a mature and widely
used deep learning model for time series or sequential
data forecasting. We chose the Gated Recurrent Unit
(GRU) as the model structure in this study. There are
two RNN layers with 64 hidden units and one linear layer
for the output. Note that in the experiment, we try two
types of output format for multistep prediction: one vector
output and a multi-step output in an autoregressive way,
i.e., Seq2seq [42].

- GAT-GRU: Graph Attention Network [43] is a graph
network that uses the attention mechanism to aggregate
adjacent information. We combine the GRU with GAT to
extract the spatial-temporal representation of the data.

- DCRNN: Diffusion Convolutional Recurrent Neural Net-
work [26], a graph-based deep learning model for traffic
forecasting that incorporates both spatial and temporal
dependency in the traffic flow. It utilizes the spa-
tial topology construction which is an adjacent matrix
that captures the spatial dependency. Here, we adopt
a binary graph [28]. The elements of the matrix are
1 or 0, where 1 identifies that two sensors are first-order
neighbors.

- STGCN: Spatio-Temporal Graph Convolutional Net-
work [44] uses graph convolutional layers to aggregate
information from neighboring nodes and uses the convo-
Iutional layer to extract the temporal features.

E. Safety-Concerned Metric

Time-series crowd flow data often display frequent irregu-
larities and sudden bursts, with data distributions frequently
departing from a Gaussian pattern and showing considerable
skewness. Typically, the majority of flow counts are zero or
very low, with only a few instances of high counts. In the
context of pedestrian flow prediction, commonly used time
series prediction metrics are Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE). The definition of MAE and
RMSE could be described by the following equations:

I < )
MAE:NE}YZ—% ) (1)

RMSE =

1 T
~ 200 =2, )
t=1

where N is the number of data samples, y; is the ground
truth value, and 3, is the prediction. These two metrics
focus on evaluating the average prediction error of a model.
However, in pedestrian flow prediction, the primary concern

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 26, NO. 6, JUNE 2025

is whether the model can accurately predict large crowding
moments, rather than predicting the average performance of
the system. Hence, even if a model may not perform optimally
during average conditions if it demonstrates the ability to
capture crowding instances effectively, it is still considered
a valuable prediction model. Figure 3 shows a case study
and confirms our previous intuition, namely in both average
metrics, Model 1 performs better than Model 2. However,
the quantile loss of Model 1 is larger than Model 2, which
means that Model 2 can better predict the 0.9 quantile of the
flow data. Therefore, Model 2 has less underestimation on the
crowding part framed by the red boxes in the figure.

To alleviate this issue, we introduce a composite metric
that simultaneously considers average performance and edge
performance (i.e., the error of the predicted quantiles). The
first component of the new composite metric is designed to
measure the average error between predictions and actual
values. For instance, the MAE can be adopted for this purpose,
serving as an unbiased estimator of the expected prediction
error. On the other hand, RMSE can be employed, introducing
a penalty factor for large differences between prediction and
ground truth.

The second component considers the error between the
prediction and the chosen quantile of the ground truth, which
may correspond to the higher flow in the data. Therefore,
we use the quantile loss as the second measurement:

Loy, 30) =213 = yil (oL, <y, + (1 = p)I5y). (3)

Here, p represents the quantile, when the prediction y; is
equal to the pth quantile of the ground truth distribution, the
loss function could be minimized [45]. To reduce the noise
of the data, and make the metric more robust, we adopt the
p — risk metric proposed in [46], with slight modifications
tailored to suit our problem. In this paper, the p — risk is
defined as:

ROT: S) =TI Y Lp(Zs. Zes)- 4)
teT
where 7 denotes the number of training samples after the
sliding window process. The aggregated count within a period
is calculated by: Z;.5 = ZSS:_(} Vi+s. Here, s denotes the
prediction horizon of s steps and S is the time span. This
summing process reduces the noise of the data and the sum
value represents, in practice, the total flow in the future period
S, which is more meaningful than the value of a single time
step.
Finally, the weighted average error (WAE), featuring both
components, can be described as the following equation:

1
WAE = — > [(1 = ¥)Lavg + viR’IT: S| (5)

11 ieZ

Here, WAE is the weighted sum of the error L,y and p —
risk average on each sensor i (Z is the set of sensors/nodes).
When L,z is chosen to be MAE and the time span S is
set to 1, the value of WAE represents the expected deviation
between the prediction Y and the quantile Q. (Y|X) in terms of
pedestrian flow (peds/10s). It is equivalent to T —quantile loss.
It can be proven that T = w, the proof is presented
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Fig. 3. Evaluation on different metrics: The figures show the prediction result of two models Model 1 (RNN) and Model 2 (DCRNN) at the 1874 sensor.
The MAE:s are 4.15 (peds/10s) (top) and 4.34 (peds/10s) (bottom), respectively. And the RMSEs are 5.39 (peds/10s) (top) and 6.04 (peds/10s) (bottom).
The quantile losses are 10.17 (peds/10s) (top) and 8.60 (peds/10s) (bottom) respectively.
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in the appendix. When equal importance is given to both
average and edge performance, i.e., y and p are set to 0.5, with
L,yg chosen as MAE. In this case, T equals 0.5, reducing the
weighted average metric in Equation 5 to MAE. This illustrates
the flexibility of the metric without sacrificing generality.

The next question is how to define the weight y; for each
node. Since crowd flow patterns vary across sensors, the
focus at each location may differ. For example, in crowded
areas, we focus on prediction accuracy in the peak. In sparse
areas, we focus on average prediction accuracy. To this end,
we calculate the y; according to the following equation:

Diff,(Y;) — min; Diff,(Y;)
max; Diff,(Y;) — min; Diff,(Y;)

vi=1l, + () — ly)- (6)

3
Step 1

__________________________ q
1
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Data Quality :
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(Sec. IV) - ,
Scenarios
Visualization via TSNE !
(Sec. IV.B) :
1
1
Model Training on :
Training Scenarios |
I
Scenarios Screening & !
Benchmarking o . !
(Sec. V) Predicting 01? Testing 1
Scenarios 1
1
_____________________ p———
__________________________ q

Evaluation based on
Safety Metric
(Sec. lILE)

Prediction Results

__________________________ -

. Outputs Ej Data

where Diff,(Y;) = Q,(Yi)—Q,(Y), Q,(Y;) is the pth quan-
tile of the historical flow data Y; at the sensor i, and Y
denotes all historical flow captured by all sensors. Equation 6
is basically a min-max scale transformation on the difference
between Q,(Y;) and Q,(Y). [, and u, are the predefined
lower and upper bound of y, ie., y € [l,,uy], in the
experiment we set it to be [0, 1], and p is set to be 0.9, which
means we focus on the prediction of 0.9 quantile [46].

F. Evaluation Pipeline

Figure 4 presents the full scenario-based evaluation pipeline.
First, a set of parameters such as pedestrian walking speed,
demand, and train schedules are selected as inputs for the
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Fig. 5. The OD graph of scenario 11 (a), scenario 16 (b), and scenario 18 (c). In the graph, the vertexes are Main Entry-Exit, Back Entry-Exit, and Platform
1 to 8. Thicker edges indicate larger flows. Additionally, each origin is assigned a unique color, and edges with the origin color represent the flow from that
origin. In contrast, edges with the destination’s color represent the inflow to that destination.

simulation. A sensor network is then designed to capture
pedestrian flows at various locations within the station model.
The simulation, run via PedestrianDynamic, generates trajec-
tory data for each pedestrian. This trajectory data includes
details such as the AgentID, ActivityID, and the entry and exit
times for each agent. Using this information, we construct
an Origin-Destination (OD) matrix to analyze the diversity of
each generated scenario. Based on these scenarios, we decide
which crowd flow data will be used for training and which
will be reserved for testing the model.

The data collected from different scenarios allow us to
conduct both in-distribution and out-of-distribution testing.
In in-distribution testing, the training and testing datasets come
from different parts of the same distribution, while in out-of-
distribution testing, the training data are derived from normal
scenarios and the testing data from abnormal scenarios. These
datasets are divided according to the specific scenarios used.
The model is then evaluated using various metrics, such as
MAE, RMSE, and quantile loss, to identify the most suitable
predictive model for each testing scenario. This comprehensive
pipeline ensures the model is rigorously tested across different
conditions and configurations.

IV. DATASET QUALITY VALIDATION
A. OD Visualization

In this section, we conduct qualitative analyses of the
simulation data to verify its heterogeneity and diversity.

Based on our experience in train stations, we expect the
OD matrix to vary across different simulated scenarios. The
OD matrix represents the number of people traveling from
an origin to a destination within a given period. Specifically,
we anticipate changes in the OD matrix due to factors such
as the proportion of demand at the main and back entrances,
arrival frequency, and the occurrence of an evacuation. To ver-
ify this, we analyzed the OD matrices of three scenarios and
visualized their OD graphs in Figure 5. Scenario 11 (Figure 5a)
represents an evacuation scenario during rush hour. When the
alarm is triggered, pedestrians evacuate the building, resulting

in a significant flow from the main entrance to both the back
exit and the main exit.

Scenarios 16 and 18 are normal scenarios with different
demands on the train lines. In Scenario 18, the visiting prob-
ability distributions of Main and Back is set to [50%, 50%]
rather than [75%, 25%] as in Scenarios 11 and 16. Hence, the
flows from the back entry are more than Scenarios 11 and 16.
Besides, the boarding probability distribution for train lines
1 to 4 is [10%, 30%, 30%, 30%] in Scenario 16. Therefore,
in Scenario 16 the flow from Main to Pltl and Plt3 is much
lower than the other flows.

B. Analysis of Scenario Variations

To gain an overview of the distribution w.r.t the OD
demands of all scenarios, we compute the similarity between
the ODs of different scenarios. Specifically, we choose struc-
tural similarity index (SSIM) as the similarity measure [47].
The resulting pairwise SSIM values are used to construct the
similarity matrix presented in Figure 6a. We use the SSIM
similarities feature vector as a representation of each scenario
and perform the PCA dimension reduction, as shown in
Figure 6b. As we expect, scenarios with similar OD demands
tend to be close to each other. The scatter plot reveals the
dispersion of scenarios in the feature space, illustrating their
diversity in the OD demands. This indicates that the chosen
factors in Table I are capable of generating data with diverse
OD demands. The distinction between evacuation, abnormal,
and normal scenarios may not be immediately clear, as their
OD patterns can often appear similar. In essence, Figure 6b
provides an overview of the OD distribution for each scenario.
However, it falls short in capturing disparities across the
temporal dimension.

We again pick Scenario 11, Scenario 16, and Scenario 18
to conduct a comparison of their temporal disparities and
visualize the distribution of the network data of these scenar-
ios. We conduct the t-SNE (t-distributed Stochastic Neighbor
Embedding) technique to visualize the network time series
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data. t-SNE is a dimension reduction technique that can help
visualize high-dimensional data in a low-dimensional space.

The result is shown in Figure 7. All data points from
the three scenarios are generally concentrated within a single
cluster. However, in Scenario 11, there is a bunch of data
lying outside the cluster and corresponds to the data when
evacuation occurred. Scenarios 16 and 18 exhibit similar data
cluster shapes, whereas Scenario 11 shows most data points
dispersed outside the circular region formed by the other
two. This disparity reflects the fact that Scenarios 16 and
18 represent off-peak periods, while Scenario 11 occurs during
rush hour. Consequently, there is a significant contrast in
passenger volume between Scenario 11 and the other two
scenarios.

To validate the assumption that scenarios with less sim-
ilar OD demands are harder to predict, we conducted
a quantitative analysis. Using Figure 6b as a refer-
ence, we trained an MLP in nine scenarios sampled
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from the cluster in the lower right corner and evaluated
its performance using OOD testing. The training scenar-
ios are [scl,sc2,sc2_2,sc3,sc4_2,sc5,scl3,sc18, scl19].
Essentially, most of these scenarios are in the off-peak period,
but with different demands on each train line and a low
volume of passengers. The trained MLP is then used to predict
the other scenarios in our synthetic dataset. We calculate the
mean SSIM representation vector of the training clusters and
measure its cosine similarity to the other testing scenarios.

The validation results are presented in Figure 8. It is
observed that the prediction errors generally decrease as the
similarity increases. This observation underscores two key
insights: (1) Scenarios with OD demands different from those
of the training scenario tend to be less predictable. (2) Predict-
ing scenarios with high passenger volume poses a significant
challenge for the models, especially when high-volume data
is scarce. Furthermore, analyzing the SSIM between the ODs
of different scenarios allows us to have a ballpark estimation
of the predictability of different scenarios.
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TABLE I

PERFORMANCE OF MODELS ON IN-DISTRIBUTION AND OUT-OF-DISTRIBUTION TESTING SCHEME. THE ERROR IS CALCULATED AS THE AVERAGE OVER
EACH SCENARIO, NODE, PREDICTION HORIZON, AND FEATURE, WITH UNITS IN (PEDS/10S). MODELS ANNOTATED WITH v/ INDICATE THAT
WE BUILD SEPARATE MODELS FOR EACH SENSOR, DECOUPLING THE SPATIAL INFORMATION THE MODELS PERCEIVE

In-distribution

Out-of-distribution

Models

RMSE MAE 09-risk RMSE MAE 0.9-risk
VAR vl 6.43 3.86 10.00 6.45 4.01 9.56
VAR 5.24 3.11 7.25 6.52 3.80 9.38
Linear Regression v1 6.36 3.84 9.96 7.16 4.44 9.78
Linear Regression 491 3.13 6.95 8.22 5.01 11.42
MLP vl 6.40 3.77 8.77 7.32 4.26 8.95
MLP 4.84 3.04 6.62 5.78 3.48 8.24
XGBOOST vl 6.05 3.61 8.64 6.70 4.00 8.35
XGBOOST 439  2.62 5.40 540  3.08 6.29
N-BEATS 486  3.10 7.15 727 453 9.95
GAT-GRU 5.87 3.36 8.87 6.75 4.03 8.65
RNN 4.61 2.89 6.58 5.34 3.18 7.96
RNN Seq2seq 4.53 2.76 6.26 5.73 3.18 7.80
DCRNN 4.84 2.75 6.42 5.73 3.12 7.45
STGCN 4.96 2.99 6.48 7.03 3.88 10.79
g0, Scenario 18 MFD 80 Scenario 11 MFD « To what extent does a set of models featuring one sensor
Inflow Inflow .. . .
2 i Ze - position predict better than one model featuring all sensor
o o L] . . . .
3 : S positions at once, given that different locations have
B 40 Bao A different flow patterns?
gzo gzo « Which model performs best for a given set of scenarios?
e [ 8 We evaluated more complex learning-based prediction mod-
% 1 2 3 4 5 & 7 % T s i s 6 7 els on the proposed synthetic dataset to see whether the

Density (peds/m?) Density (peds/m?)

(a) MFD in a free flow space. (b) MFD in evacuation.

Fig. 9. Comparison of MFDs for two scenarios.

C. Macroscopic Fundamental Diagram

To better illustrate the characteristics of pedestrian flow
in different scenarios, we present the density-flow macro-
scopic fundamental diagram (MFD) for Scenarios 18 and 11.
To construct this MFD, we focus on the red-shaded area in
Figure 2, which encompasses the gate machine and is bounded
by sensors 5, 6, 7, and 3. The sum of the inflow and outflow
data captured by these sensors is used to calculate the flow
in the MFD. The number of passengers is estimated based on
the inflow and outflow within this area, allowing us to infer
the approximate density. The results are shown in Figure 9.

The MFD in Scenario 18 demonstrates the free-flow regime
of the triangular density-flow fundamental diagram. In con-
trast, Scenario 11 captures both the free-flow and congestion
regimes. During evacuation, people attempt to leave the sta-
tion, but due to high density, they become stalled at the gate
machine. The MFD is constructed using only sensor flow data,
demonstrating that synthetic flow data can capture general
traffic phenomena and thus reflect the authenticity of the
synthetic dataset.

V. BENCHMARKING VARIOUS MACHINE
LEARNING MODELS

In this section, we evaluate the data-driven prediction mod-
els using the synthetic dataset. Accordingly, we derive the
answers to the following two questions:

more advanced model can generalize better. To explore the
model’s performance under varying conditions, we conduct
both in-distribution and out-of-distribution testing. In the in-
distribution testing, we use all scenario data to generate
training and testing sets. In out-of-distribution testing, the
models are exclusively trained using normal scenarios, and
their performance is assessed using abnormal and evacuation
scenarios. The prediction errors for each model are presented
in Table II.

A. Local or Global Inputs?

Upon analyzing the results in Table II, it is evident that
the models trained employing individual sensor data generally
perform worse than those trained using data from all sensors as
input. This discrepancy may be due to the use of global sensor
network data, combining information from multiple sensors
can lead to better performance.

B. Which Model Is the Best?

Another key finding is that all models exhibit performance
degradation when tested on out-of-distribution data. Analyzing
the average error across all model types, we observe that
XGBOOST achieves the best performance among the tested
models in both evaluation settings.

As the average error alone does not capture edge-case
performance, we analyze the model’s performance on two
scenarios of interest. Specifically, we focus on the performance
in two abnormal scenarios: Scenario 11 and Scenario 21. Sce-
nario 11 represents an evacuation where people exit through
the main and back exits, while Scenario 21 simulates a group
of people passing through the train station without boarding.
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We analyze the behavioral differences between these two
scenarios by projecting them into a 2-dimensional space using
t-SNE (Figure 10). To differentiate data before and after the
evacuation event, which occurs at time step 270 (45 min-
utes), data points after this time step are highlighted in red.
In Figure 10a for Scenario 11, there is a significant shift in
data distribution after evacuation. In contrast, Figure 10b for
Scenario 21 shows that all data points remain within the same
distribution.

We evaluated the performance of each model in both
scenarios using multiple metrics. Specifically, for the WAE
metric, the timespan S is set to 3 and p = 0.9, and we
choose L,y as the RMSE. The prediction errors for each
evaluation metric are shown in Figure 11. From Figure 11a
and Figure 11b, we observe that the best-performing models
vary between the two scenarios based on MAE and RMSE.
However, when evaluated using WAE, XGBOOST consistently
achieves the lowest prediction error across both scenarios.
Since WAE prioritizes accuracy at the 0.9 quantile, which is
critical during overcrowding events, XGBOOST emerges as
the top-performing model among those tested.

To delve deeper into the predictive capabilities of
XGBOOST, we provide a 30-second future prediction visu-
alization of XGBOOST at three sensor locations for Scenario
11 and Scenario 21 in Figure 12. Although XGBOOST per-
forms the best among predictive models, it still struggles to
accurately predict the evacuation period in Scenario 11.

Furthermore, although the prediction captures the overall
flow trend, it underestimates the number of people using the
Back Exit in Scenario 21 (Figure 12(d)). This discrepancy
arises because the model was trained on scenarios with fewer
pedestrians exiting through the back. However, more people
are moving from the main exit to the back exit in Scenario 21,
therefore the model cannot accurately capture the increase in
demand.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an evaluation pipeline and intro-
duce a novel safety metric to assess the performance of various
flow prediction models. To address the scarcity of collected
data for abnormal scenarios, we develop a method to generate
synthetic pedestrian flow data using a microscopic simulator
that replicates the authentic crowd dynamics in rare events.
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t-SNE Visualization of Scenario 21

'S
20 DA 2.,
D o ? .
@%,Q- L)
10 S, R Iy R
n: a‘a* u':“‘;": f:: . K
cets v LN
o, D 508 [©
0 Je0s e, 0
% o O
d“.l' ;' ee oo &% ™
.
0 RS TIPS Rk LT I
T O e ey ,, S e
o oo et
o0
e Before Time Step 270 X -
-20 8% %o, o
After Time Step 270 030 %o Y e°
-15 -10 -5 0 5 10 15
(b)

(a) t-SNE visualization on Scenario 11. (b) t-SNE visualization on Scenario 21.

The thorough experimental analysis reveals that our
designed factors can generate heterogeneous and diverse
indoor crowd flow datasets. The framework and synthetic
dataset provide a platform for evaluating and validating predic-
tive models prior to real-world data collection, model training,
and deployment. Additionally, we thoroughly benchmark sev-
eral widely used learning-based prediction models regarding
the out-of-distribution generalization.

The results reveal the power of data-driven methods in
predicting normal scenarios. They are particularly good at
memorizing historical patterns. However, these SOTA time-
series/traffic prediction models generate unreliable predictions
in unseen scenarios, particularly during adverse events. Mov-
ing forward, future research should focus on enhancing the
adaptability of predictive models to handle unpredictable and
dynamic crowd behaviors. Exploring novel techniques such as
online sequential learning could improve model performance
under non-stationary crowd dynamics. Moreover, incorpo-
rating domain-specific knowledge and physics-based models
into data-driven approaches may enhance interpretability and
generalizability. Beyond model adaptability, real-world data
could be collected from various scenarios to further calibrate
the synthetic parameters, improving the diversity and realism
of the datasets.

APPENDIX
WEIGHTED AVERAGE ERROR

Proposition 1: For the weighted average error defined in
Equation 5, when Lgyg is chosen to be the mean absolute error,
with time span S = 1, WAE is equivalent to T —quantile loss,
where T = w.

Proof: To prove that WAE is t —quantile loss when S =
I and Lgyg is MAE, we take the derivative of the expectation
of WAE and set it to O in order to determine the conditions
for § that lead to the minimization of WAE. The expectation
can be written as:

E(WAE) = (1 =py)E(y -y
———
MAE
+2y [PEj<y(y = 3) + (1 = p)Ej>, (3 — )]
p—quantile loss

=[(1 = y) +2yplE5<,(y — ) + [(1 — p)
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Performance of Models in Scenario 21
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(a) Evacuation scenario. (b) Normal scenario with disruption. The minimum error of each metric is highlighted by different white-shaded patterns.
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+2y(1 = p)]Ej= (3 — y)

+00
=[1—-y)+ 2)/,0]/ (v = fdy
y

y
F (L= p) 4+ 29(1 = p)] / G — ) fO)dy,
)

where f(y) is the probability density function of the ground
truth variable. Next, we take the derivative of Equation 7, let
m=[(1—-y)+2yp]land n = [(1 — p)+2y (1 — p)], we have:

AE(WAE +oo y
#:—m/ dF()’)"‘”/
ay 3 —00

=-m(l = F(3)) +nF()
=m+nF@)—m. (8)

dF(y)

Here, F(y) denotes the cumulative distribution function of
vy, and dF(y) = f(y)dy. Let Equation 8 be 0, we can get

F) = o0 = -

%2”’. Thus, when = Q.(y), where

TABLE III
STATISTICS OF THE SYNTHETIC CROWD FLOW DATASET

Num. of Scenarios ~ Num. of Samples ~ Num. Of Sensors  Frequency

35 11697 35 10's

T = #, WAE can be minimized, which indicates that
WAE is equivalent to t — quantile loss. ]

DATASETS

The statistics of the synthetic dataset are summarized in
Table III.

SETTING OF THE SIMULATION

This section introduces the detailed setting of the simu-
lation’s input, including the settings of the agent and the
transport element. Figure 13 illustrates the simulation process
of the simulation platform. It consists of two generators to
generate the agent and transport element (train). The generator
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Simulation Process
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TABLE V
PASSENGER ACTIVITIES
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Transportation Input Settings — i Il All agentstop | |
.| Train arrive at || current activities |
Line ID I—» station I| andexistthe ||
Time Table of the l ‘ station ‘
‘ Train alighting from the T
Generator Number of J |
Delay Time Alighting H l
Passenger Passenger exit the
Min Dewell Time l—» station
Fig. 13. Framework of the simulation.

TABLE IV

PARAMETER SETTING OF THE PEDESTRIAN

Category Parameters Value
Radius (m) 0.239
General Max speed (m/s)

Min speed (m/s)

Triangular(1.35, 0.8, 1.75)
0.06

Route Planning

Routing method
Density delay weight

LeastEffort

Uniform(0.5, 1.5)
Viewing distance (m) 60

Route Following

Preferred clearance (m) 0.3
Max shortcut distance (m) 0
Side preference Uniform(-1, 1)

Viewing angle (°) 75
FoV density range (m) 2
Local Behavior  FoV avoidance range (m) 8
Personal distance (m) 0.5
Relaxation time (s) 0.5

generates passenger and train according to the predefined
parameters. During the simulation, the agents would perform
the activities we designed. Once the evacuation is activated,
all agents need to stop their current activities and need to exit
the station.

Agent Profiles

Table IV summarized the parameter setting for the pedes-
trian in the simulation. The explanations of the parameters are
cited from the manual of Pedestrian Dynamics.

Radius: The radius of the agent, in meters.

Routing method: When the routing method is set to
“least effort”, the route is dynamically updated when new
density information becomes available.

Density delay weight : A multiplier for the density-based
delay in the routing algorithm. Pedestrians generally have
lower speeds when the density is high. When the value
larger than 1 means that the agent is more sensitive to
delays.

Viewing distance: The distance (m) along which the
agent can see edge densities in the ECM [48] network
(=0). A large value means that the agent is more aware
of the environment’s densities.

Preferred clearance: The preferred minimum distance
between the agent and obstacles (m).

Max shortcut distance: When the attraction point is
computed we find a point on the indicative route ahead

ID Name ActivityType ActivityGroup
1 Entry_station_1 ENTRY_EXIT station_entry_exit
5 Entry_platform_1 ENTRY_EXIT platform_entry_exit_1
6 Entry_platform_2 ENTRY_EXIT platform_entry_exit_2
7 Entry_platform_3 ENTRY_EXIT platform_entry_exit_3
8 Entry_platform_4 ENTRY_EXIT platform_entry_exit_4
9 Entry_platform_5 ENTRY_EXIT platform_entry_exit_5
10 Entry_platform_6 ENTRY_EXIT platform_entry_exit_6
11 Entry_platform_7 ENTRY_EXIT platform_entry_exit_7
12 Entry_platform_8 ENTRY_EXIT platform_entry_exit_8
16  Go_to ENTRY_EXIT sk Aok
17 Ticket_main TICKET_FACILITY ticket_facility_main
18  Ticket_back TICKET_FACILITY ticket_facility_back
19  Emergency_Exit ENTRY_EXIT station_entry_exit
21 Emergency_Exit PLT ENTRY_EXIT platform_entry_exit_1
23 Alight TRANSPORTATION  TransportGenerator_1
26  Entry_station_2 ENTRY_EXIT HoHE ALL*H*
27 Wait WAITING ok AL
28  Board TRANSPORTATION  ##*ALL***
29  Transfer TRANSPORTATION  #**ALL***
30 Cross ENTRY_EXIT station_entry_exit
(b) Evacuation Scenario
Fig. 14.  Visualization of passenger activities in normal and evacuation

scenarios. Red agents represent passengers alighting from the train, while
green agents are those heading to the platform.

of the agent. The maximum shortcut distance limits the
distance that the attraction point can be from the agent, <
0 means no restriction.

Side preference: Bias towards a certain side of the
corridor, between -1 (left) and 1 (right).

Field of view density range: The distance in the field
of view (m) that is used to determine the local density
around the agent (> 0).

FoV avoidance range: The distance in the field of
view (in meters) that is used for agent collision
avoidance (> 0).
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Scenario 12: Escalator Malfunction
Fig. 15. Density map in two different scenarios.
TABLE VI
PASSENGER ACTIVITY ROUTES
Name ID  Nr of activities  Activity 1 Activity 2 Activity 3 Activity 4
To_platform 1 4 1 | Entry_station 18 | Ticket_back 17 | Ticket_main 16 | Go_to

From_platform_1 2 2 5 | Entry_platform_1 16 | Go_to - -
From_platform_2 3 2 6 | Entry_platform_2 16 | Go_to - -
From_platform_3 4 2 7 | Entry_platform_3 16 | Go_to - -
From_platform_4 5 2 8 | Entry_platform_4 16 | Go_to - -
From_platform_5 6 2 9 | Entry_platform_5 16 | Go_to - -
From_platform_6 7 2 10 | Entry_platform_6 16 | Go_to - -
From_platform_7 8 2 11 | Entry_platform_7 16 | Go_to - -
From_platform_8 9 2 12 | Entry_platform_8 16 | Go_to - -
Emergency_Route 10 1 19 | Emergency_Exit - - -
Alighting Route_1 12 2 23 | Alight 26 | Entry_station_2 - -
Boarding Route 13 3 1 | Entry_station 27 | Wait 28 | Board -
Alighting Route_2 14 3 23 | Alight 27 | Wait 29 | Transfer -
Cross_station 15 2 1 | Entry_station 30 | Cross - -

« Personal distance: The desired personal distance ahead
(in meters) between agents (> 0).

« Relaxation time: An agent is assumed to require the
relaxation time to reach any desired velocity. It implies
that an agent is required to keep a certain ‘distance’ from
any static obstacle or agent.

Agent Activities.

Table V summarizes all possible activities agents can per-
form within the station, with their movement paths specified in
Table VI. As shown, alongside primary activities (e.g., alight-
ing, boarding, and transferring), additional activities are
incorporated to introduce variability in the crowd flow data,
such as passengers crossing through the station or entering
and exiting the platform without boarding (Entry_platform_x).
Additionally, activities for passengers purchasing train tickets
are included.

Among these activities, “GO_to” manages the OD demand
from station entries to platforms, while “Board” defines the
percentage of passengers boarding specific train lines.

Figure 14 visualizes passenger activities in both normal and
evacuation scenarios. During evacuation, all agents follow the
Emergency_Route defined in Table VI, which is a predefined
path guiding each agent to the nearest exit to leave the station.

Figure 15 visualizes the density map of an evacuation
scenario and an escalator malfunctioning scenario. In the
evacuation scenario, the density along the hallway and exit
is higher than that in the scenario 12. We can also observe
that due to the escalator malfunction, density around the left
most escalator is less than 1 p/m?

Transportation Input

The transport generator in the simulation uses a timetable
to create transport elements (trains). Agents can only begin
(alight) or complete (board) their journey with a transport
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TIMETABLE OF THE TRAIN STATION

D LineID  ArrivalTime DepartureTime Direction DelayTime MinDwellTime
Trainl Linel 60*0 60*0 + 90 0 0 0
Train2 Line2 60%2 60%2 + 90 1 0 0
Train3 Linel 60*4 60*4 + 90 0 0 0
Train4  Line2 60*%6 60*6 + 90 1 0 0
Train5 Line3 60*3 60*3 + 90 0 0 0
Train6  Line4 60*5 60*5 + 90 1 0 0
Train7  Line3 60*%6 60*6 + 90 0 0 0
Train8 Line4 60*1 60*1 + 90 1 0 0
activity. Table VII shows an example of the train schedule, [12] C. Martani, S. Stent, S. Acikgoz, K. Soga, D. Bain, and Y. Jin, “Pedes-

with 8 tracks and 4 lines in the station. Each train operates
on one of these lines. The ArrivalTime indicates the arrival
time of each train during the simulation. The DepartureTime
is the time that the train will leave the station, in the example,
the train will depart after 90 seconds they arrive. In each
scenario, the arrival list is repeated after a certain period until
the simulation terminates.

In the example, the DelayTime parameter is set to 0,
indicating no delays, but can be adjusted to simulate train
delays if desired. The MinDwellTime specifies the minimum
time a train must stay at the platform to allow passenger
boarding and alighting, ensuring the train does not depart
prematurely, even if its scheduled departure time has passed.
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