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 a b s t r a c t

The demand for new offshore wind farms is increasing at a rapid pace, and the installation rate must be quadru-
pled by 2030 to meet the ambitions of European countries. The installation of the superstructures involves several 
components and is highly weather-dependent, making this an important bottleneck. In this paper, we evaluate 
the two main strategies for the installation of superstructures: feedering and shuttling. With feedering, the in-
stallation vessel is fed with components by feeder vessels directly from manufacturing ports. With shuttling, the 
installation vessel retrieves the components itself from a marshalling port. In contrast to existing studies, we 
include manufacturing ports and their production rate to have a better understanding of their influence on the 
installation rate and develop a rolling horizon optimization-simulation framework composed of a mixed integer 
linear programming model and a Markov simulation model for weather forecasting. A heuristic is proposed to 
solve the model to overcome the limitation of commercial solvers. Results indicate that accurate initial buffer 
calculations, depending on the production rate at the manufacturing ports and project-dependent characteristics, 
can increase the installation rate significantly for both strategies. Finally, feedering outperforms shuttling in most 
scenarios and is less weather dependent.

1.  Introduction

European countries surrounding the North Seas have set a goal of 
installing at least 120 gigawatts (GW) of offshore wind energy by 2030 
(NSEC, 2023). Currently, only 30GW is currently installed, which means 
a fourfold scale-up is required in the upcoming years. However, this 
scale-up is faced with many challenges, such as a limited fleet of Wind 
Turbine Installation Vessels (WTIVs), bottlenecks in port capacity, and 
weather-dependency of operations (uit het Broek et al., 2019; CEIF, 
2022). Hence, more and more studies on the installation logistics have 
been conducted (Tjaberings et al., 2022). Within the total costs for 
offshore wind farms (OWFs), the transportation and installation stage 
makes up 20% of the total costs (Sarker and Faiz, 2017). Additionally, 
weather-related delays during installation account for over 20% of the 
time required for offshore wind projects (Lerche et al., 2022). Barlow 
et al. (2015) indicate loading operations also contribute significantly to 
the total delay, making the transportation and installation of offshore 
wind farms relevant from a cost and time perspective.

In this paper, we focus on superstructure installation for wind tur-
bines, referring to the installation of the tower, the nacelle, and three 
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blades by the WTIV. Compared to substructure installation (i.e., the 
foundation of the wind turbine), it involves more components and is 
more weather-sensitive (Rippel et al., 2019b). We explore two installa-
tion strategies: shuttling and feedering. Fig. 1 illustrates the difference 
in the logistics between these two strategies. Rectangles indicate phys-
ical locations, whereas rounded rectangles indicate which vessels are 
required for transportation or transshipment. With shuttling, the WTIV 
collects components itself at a marshalling port, and with feedering, the 
WTIV remains offshore and gets supplied directly via feeder vessels from 
the manufacturing ports. The risk of shuttling is that the WTIV spends 
more time sailing than installing, whereas, for feedering, the risk is that 
there are insufficient weather conditions for both transshipping and in-
stalling offshore. Additionally, the location of and production rate of 
components at the manufacturing ports are of great importance to instal-
lation efficiency and may severely impact the installation time (Hrouga 
and Bostel, 2021).

Literature on the superstructure installation phase of wind turbines 
has increased in the past few years due to the increasing size of wind 
farms, wind turbines required installation capacity, and costs (Ren et al., 
2018). Existing studies show several limitations. In Rippel et al. (2019b) 
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Fig. 1. Shuttling and feedering logistics respectively.

and Irawan et al. (2017), only shuttling is considered, but interesting op-
timization and simulation methods are used. In Tjaberings et al. (2022), 
feedering is considered, but for the installation of substructures and 
without considering manufacturing ports. The closer work to our study 
is the conference paper of Oelker et al. (2018) that compares shuttling 
and feedering but uses historical weather data and does not consider 
the production rate at manufacturing ports. Moreover, we provide a 
more accurate forecasting tool based on Markov chains to best capture 
stochasticity in weather conditions.

The goal of this paper is to develop a comprehensive framework to 
analyze superstructure installation strategies for offshore wind farms 
considering the production rate of components. The paper makes four 
contributions to the literature. Firstly, our study combines shuttling, 
feedering, manufacturing ports, port capacity and forecasted weather 
in a dynamic modeling framework. We develop a rolling horizon 
optimization-simulation framework composed of a mixed integer lin-
ear programming model and a Markov simulation model for weather 
forecasting. Secondly, a tailored heuristic is proposed to overcome the 
limitation of commercial solvers to solve instances quickly. Thirdly, by 
means of a set of case studies from the North Sea, we analyze key fac-
tors for each strategy, such as port locations, buffer size, and vessel size. 
The numerical experiments using real-world data show the benefit of 
the strategies and how project-dependent nuances can affect the results. 
Fourthly, we arrive at the new result that under most scenarios, feed-
ering is preferred over shuttling. Only in a limited number of specific 
cases, shuttling performs better.

This paper is structured as follows. In Section 2, we provide a review 
of relevant literature. In Section 3 we provide a formal definition of 
the problem along with the decision support framework. Section 4 we 
show the numerical tests to analyze the different strategies and provide a 
comprehensive sensitivity analysis based on real-world data. Sections 5 
and 6 concludes our paper with a discussion and synthesis of the results 
respectively.

2.  Related work

Installing a wind turbine entails the positioning and installation of 
the substructure as well as the superstructure. Afterward, the substa-
tion is installed, which collects the cables from all wind turbines and 
connects them to the shore. All these structures are installed indepen-
dently, as structure-specific vessels are required, so it is considered not a 
relevant simplification to focus on a specific stage (Rippel et al., 2019a). 
Superstructure installation, also called wind turbine installation, is the 
most complex transportation and installation stage, as it requires several 
sequential weather-dependent installation operations compared to sub-
structure installation (Rippel et al., 2019b). Also, the number and type 

of components (in terms of size and weight) are quite different, making 
it necessary to evaluate these two stages apart. The interested readers 
are referred to Vis and Ursavas (2016) or Rippel et al. (2019a) for litera-
ture reviews on superstructure installation and to Hong et al. (2024) for 
a review specific on floating offshore wind farms. To our knowledge, no 
such review exists for substructure installation, but we refer to Tjaber-
ings et al. (2022) for one of the most recent works. For a framework 
on the high-level logistical decisions, such as port and vessel selection, 
refer to the recent work of (Gonzalez et al., 2024).

The number of studies on superstructure installation has increased 
in recent years. The following studies focus on shuttling, as it is the 
standard strategy in practice. One of the first optimization attempts 
was the work of Scholz-Reiter et al. (2010), who used a MILP to find 
short-term schedules while considering different weather scenarios, in-
stallation concepts, and load capacities. However, the scheduling prob-
lem is NP-hard, so the MILP was only able to solve small scenarios. 
Consequently, they later developed a heuristic to solve larger instances 
and longer planning periods (Scholz-Reiter et al., 2011). Irawan et al. 
(2017) developed a bi-objective optimization model, which tries to bal-
ance project duration and costs. Their metaheuristic method, which in-
cludes greedy heuristics, performed well and is much faster than the ex-
act method. Rippel et al. (2019b) stated that resource restrictions at the 
port and uncertainty in weather predictions are often neglected. There-
fore, they proposed a Mixed-Integer Linear Programming (MILP) for the 
scheduling in combination with a Markov model to forecast weather 
conditions. They find that the installation efficiency and port usage 
strongly depend on the weather conditions. Ursavas (2017) used Ben-
ders decomposition and also highlighted the uncertainty with regard to 
weather conditions. The results showed that including weather uncer-
tainty can reduce the project duration and increase the installation rate 
compared to typical planning approaches that use historical weather 
data. Barlow et al. (2018) developed a mixed method with both simula-
tion and optimization. Simulation allows developers to make long-term 
strategic decisions, whereas optimization can provide robust schedules.

Oelker et al. (2018) compared feedering and shuttling, using a 
discrete-event simulation model to test the performance of either strat-
egy under different conditions, such as distance to the wind farm and 
fleet size. Feedering generally performs better than shuttling, except if 
the distance to the wind farm is too large or the fleet of feeder vessels 
is too small. However, their study did not consider manufacturing ports 
and port capacity. Quandt et al. (2017) considered port capacity, i.e., 
the available storage space, via simulation and found that efficient uti-
lization of the port capacity significantly improves the installation rate. 
Similarly, Oelker et al. (2020) found that due to the increasing size of 
wind turbines and projects, the concept of shuttling might not be feasible 
in the future due to the limited port capacity. Beinke et al. (2017) took a 
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Table 1 
Overview of reviewed T&I literature.
 Author  Sim  Math  Weather  Shuttling  Feeder  Manu  Port cap.
Beinke et al. (2017) ✓ ✓ ✓ ✓

Irawan et al. (2017) ✓ ✓ ✓

Quandt et al. (2017) ✓ ✓ ✓ ✓ ✓

Ursavas (2017) ✓ ✓ ✓

Barlow et al. (2018) ✓ ✓ ✓ ✓

Oelker et al. (2018) ✓ ✓ ✓ ✓ ✓

Rippel et al. (2019b) ✓ ✓ ✓ ✓

Oelker et al. (2020) ✓ ✓ ✓ ✓

Tjaberings et al. (2022) ✓ ✓ ✓ ✓

 This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓

more supply chain-oriented simulation approach and found that includ-
ing additional aspects, such as manufacturing ports, can lead to more 
insights into the mutual effects of different parts of the logistical system 
and thus increase installation efficiency. Paterson et al. (2018) assess 
the impact of vessel technology on construction durations for offshore 
wind farms to evaluate the installation durations through simulation.

There are three main takeaways from the reviewed literature. Firstly, 
only two papers consider feedering as a transportation strategy. Sec-
ondly, only three papers consider manufacturing ports. Moreover, these 
papers assume production times are sufficiently fast to always have com-
ponents available. Thirdly, only two papers take into account port ca-
pacity, while this is a significant bottleneck and could limit project du-
ration significantly (NSEC, 2023). From Table 1, it becomes clear that 
this paper is the first to address feedering, manufacturing ports, and port 
capacity simultaneously. Our literature review is synthesized in Table 1.

3.  Methodology

First, Section 3.1 describes the rolling horizon modelling approach. 
Next, the Markov weather simulation model is detailed in Sections 3.2 
and 3.3 describes the optimization model. Lastly, Section 3.4 describes 
how the updating process is performed.

3.1.  Rolling horizon modelling approach

The complexity of the problem in this paper lies in the dynamic na-
ture of weather conditions, which can only be reliably forecasted for 
roughly two weeks (Ritchie, 2024). Hence, a rolling horizon approach 
is a valid option to solve the problem at hand. Similarly to Rippel et al. 
(2019b), we use a simulation loop where weather conditions are dy-
namically forecasted, and based on these predictions, the optimization 
model is launched. At the same time, the actual weather conditions are 
realized, and based on these, the input for the optimization model is 
updated.

In short, three steps can be distinguished. First, the weather forecast 
estimates the duration of all vessel actions through simulation. Second, 
an optimization model is used to create a vessel schedule based on these 
action durations for a given forecast period. Third, the system state is 
updated, i.e. actions are performed for the current time step, and the 
model moves to the next time step. This process is repeated until some 
stopping criterion is met (e.g., all turbines are installed). At the begin-
ning of this approach, the system is initialized, following the current 
vessel and port states and the time is set to zero (Fig. 2).

3.2.  Markov weather simulation model

Markov models are a commonly used approach to produce weather 
forecasts (Pandit et al., 2020). Whilst the general Markov principle is 
quite simple, some important considerations for implementation can in-
fluence the performance significantly. Capturing seasonality is one such 
consideration. If one probability matrix is used for all forecasts, there is 
no variation over the year. Thus, forecasts during summer will not be 
different from forecasts during winter. Therefore, to realistically cap-
ture seasonality trends, monthly probability matrices are used, similar 
to Pandit et al. (2020).

Additionally, Pandit et al. (2020) find a strong correlation between 
wave height and wind speed. This was confirmed by the weather data 
available in this research, with correlations of over 0.85 between wind 
speed and wave height. With the operational limits of this report, the 
wave height is only necessary for the jacking operations of the WTIV 
and transshipment, whereas the wind speed is needed for every weather-
dependent operation. Moreover, Ursavas (2017) states that wind speed 
is the limiting factor for the operational limits, not wave height. There-
fore, only wind speeds are forecasted, and then the wave height is de-
termined based on the correlation between wave height and wind speed 
using a simple linear regression model with intercept and coefficient.

Another important consideration for the implementation of Markov 
models is the number of weather states. If too many states are consid-
ered, no historical transitions could be available or the model could 
become very large. On the other hand, if too few are considered, the 
states may not represent reality sufficiently. Therefore, for this report, 
the number of considered weather states are integer values of wind 
speed in m/s from 0 to the maximum value recorded in the available 
data set. This strikes a good balance in terms of aggregation and fully 
captures the operational limits, which are also in integer m/s.

A parametrized approach is proposed to determine action dura-
tions. To determine appropriate action durations, 𝑁 simulations are 
performed where each simulation represents a singular forecast. Then 
a safety benchmark, 𝜌, which is a fraction of the simulation is used as 
follows. If in fraction 𝜌 of the simulations the activity can be completed 
within 𝐷 time units, this is the time duration of that operation for the 
optimization model, where 𝐷 is as low as possible.

3.3.  Optimization model

The optimization model is used to create a vessel schedule based on 
these action durations for a given forecast period. Section 3.3.1 moti-
vates the use of a network flow model and provides the mathematical 

Fig. 2. Overview of the rolling horizon approach.
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model and assumptions. Furthermore, Section 3.3.2 provides a heuristic 
approach to solve this MILP.

3.3.1.  Mathematical model
To model the problem mathematically, we use a network flow rep-

resentation. There are three basic operational stages: manufacturing, 
transportation, and installation. The manufacturing and installation 
stages are represented as single steps, but all operational steps of feed-
ering and shuttling are kept in detail. This approach strikes a balance by 
simplifying independent operations but retaining the complexity asso-
ciated with the transportation strategies and thus captures the essence 
of the problem. A network flow model is a logical choice for the model, 
as there is a natural component flow from the manufacturing ports to 
the offshore wind farm Tian et al. (2023). An example is provided for 
shuttling in Fig. 3 and feedering in Fig. 4.

We endow the network flow model with five features. First, discrete 
time steps are introduced to allow for the inclusion of weather con-
ditions. Second, multiple commodities are introduced to represent the 
different components required for installation. Third, dummy nodes are 
introduced for each feeder vessel to model the choice of one of them for 

transportation (see in both figures that nodes 6 and 7 are the dummy 
nodes of the two available feeder vessels). Fourth, for the shuttling strat-
egy, we define a return arc from the OWF to the marshalling port for the 
WTIV because it can be decided that the WTIV returns to the marshalling 
port before all components on board are installed if the weather condi-
tions worsen (see the arc from node 10 to node 9 in Fig. 3). Finally, the 
transshipment activity in the feedering strategy requires both the instal-
lation vessel and feeder vessel to be available at the same time, implying 
that synchronization constraints are needed.

The mathematical formulation is inspired by the model in Tian 
et al. (2023). Although their study focuses on a different application, 
namely resource-constrained project scheduling and material ordering, 
we convert their formulation into a suitable form for wind farm in-
stallation, including manufacturing ports and production rates. In addi-
tion, we add synchronization between the resources for transshipment
operations.

We define a directed graph 𝐺 = (𝑉 ,𝐴) with nodes 𝑖 ∈ 𝑉  and arcs 
(𝑖, 𝑗) ∈ 𝐴. Each node of the network is defined for every discrete time 
𝑡 ∈ 𝑇 . We also define the set of components 𝑘 ∈ 𝐾 to be installed. Next, 
we consider the following subsets of A: 𝐴𝐷𝑒𝑝

𝑖  indicating the dependent 

Fig. 3. Network flow representation of shuttling with two feeder vessels. Activities are indicated at the top, and the colour of the nodes indicates the physical 
locations.

Fig. 4. Network flow representation of feedering with two feeder vessels. Activities are indicated at the top, and the color of the nodes indicates physical locations.
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nodes for node 𝑖, 𝐴𝐷𝑒𝑝
𝑖𝑗  indicating the dependent arcs for arc (𝑖, 𝑗), 𝐴𝐼𝑛𝑠𝑡

indicating the installation arc(s) and 𝐴𝑇 𝑟𝑎𝑛𝑠 indicating the transporta-
tion arc(s). Lastly, with 𝐹+(𝑖𝑡) and 𝐹−(𝑖𝑡) which we indicate the in- and 
outgoing arcs of node 𝑖 at time 𝑡 respectively.

Let us consider 𝐶 𝑡
𝑖𝑗 , the cost to use arc (𝑖, 𝑗) at time 𝑡 and 𝐶𝑖, the 

inventory costs per area per time period at node 𝑖. Next, 𝐷𝑡
𝑖𝑗 indicates 

the duration arc (𝑖, 𝑗) is in use when starting at 𝑡. It should be noted 
that 𝐷𝑡

𝑖𝑗 is used to capture the production rates as well as varying ves-
sel speeds and durations of weather dependant operations. Since 𝐷𝑡

𝑖𝑗 is 
defined per time period, different durations can be applied for differ-
ent time steps, thus allowing us to capture the stochasticity of weather 
conditions. Moreover, each arc can have a different duration, thus al-
lowing for varying vessels speeds and production rates per arc. For each 
arc, we define a transfer capacity 𝑈𝑘

𝑖𝑗 per component, and for each 
physical node (e.g., ports), the available storage area is 𝐿𝑖, where a 
component 𝑘 takes up 𝑆𝑘 of it. Additionally, 𝑃𝑘 indicates how many 
components are required for installation, and 𝑄𝑘

𝑖  indicates how many 
components are available initially. Finally, 𝑀 is a sufficiently large
number.

There are two decision variables per arc, namely 𝑥𝑘𝑡𝑖𝑗  and 𝑦𝑡𝑖𝑗 , where 
𝑥𝑘𝑡𝑖𝑗  indicates the integer flow of components 𝑘 on arc (𝑖, 𝑗) at the start 
of time period 𝑡, and 𝑦𝑡𝑖𝑗 is a binary variable that indicates if the arc 
is activated in time period 𝑡. The other decision variable is 𝑏𝑘𝑡𝑖 , which 
indicates the integer inventory of component 𝑘 at node 𝑖 at the end of 
time period 𝑡.

The mixed integer linear programming model is defined as follows:

min
∑

𝑡∈𝑇

(

∑

(𝑖,𝑗)∈𝐴
𝐶 𝑡
𝑖𝑗𝑦

𝑡
𝑖𝑗 +

∑

𝑖∈𝑉

∑

𝑘∈𝐾
𝐶𝑖𝑏

𝑘𝑡
𝑖

)

(1)

𝑀 ∗ 𝑦𝑡𝑖𝑗 ≥
∑

𝑘∈𝐾
𝑥𝑘𝑡𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴,∀𝑡 ∈ 𝑇 (2)

𝑧=min 𝑇 ,𝑡+𝐷𝑡
𝑖𝑗

∑

𝑧=𝑡+1
𝑦𝑧𝑖𝑗 ≤ 1 − 𝑦𝑡𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴,∀𝑡 ∈ 𝑇 −1 (3)

∑

(𝑚,𝑙)∈𝐴𝐷𝑒𝑝
𝑖𝑗

𝑧=min|𝑇 |,𝑡+𝐷𝑡
𝑖𝑗

∑

𝑧=𝑡
𝑦𝑧𝑚𝑙 ≤ (1 − 𝑦𝑡𝑖𝑗 ) ∗ 𝑀 ∀(𝑖, 𝑗) ∈ 𝐴,∀𝑡 ∈ 𝑇 (4)

𝑏𝑘,𝑡+1𝑖 = 𝑏𝑘𝑡𝑖 +
∑

(𝑗,𝑖)𝑧∈𝐹+(𝑖𝑡+1)

𝑥𝑘,𝑧𝑗𝑖 −
∑

(𝑖,𝑗)𝑧∈𝐹−(𝑖𝑡+1)

𝑥𝑘,𝑧𝑖𝑗

∀𝑖 ∈ 𝑉 ,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 ⧵ 𝑡𝑚𝑎𝑥 (5)

𝑥𝑘𝑡𝑖𝑗 ≤ 𝑈𝑘
𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 ,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 (6)

∑

𝑘∈𝐾
𝑏𝑘𝑡𝑖 ∗ 𝑆𝑘 ≤ 𝐿𝑖 ∀𝑖 ∈ 𝑉 ,∀𝑡 ∈ 𝑇 (7)

∑

𝑘∈𝐾
𝑏𝑘𝑡𝑖 ≤

⎛

⎜

⎜

⎜

⎝

1 −
∑

(𝑚,𝑙)∈𝐴𝐷𝑒𝑝
𝑖

𝑦𝑡+1𝑚𝑙

⎞

⎟

⎟

⎟

⎠

∗ 𝑀 ∀𝑖 ∈ 𝑉 ,∀𝑡 ∈ 𝑇 (8)

𝑥𝑘𝑡𝑖𝑗 𝑃
𝑘 = 𝑦𝑡𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴𝐼𝑛𝑠𝑡,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 ⧵ 𝑡𝑚𝑎𝑥 (9)

𝑏𝑘0𝑖 = 𝑞𝑘𝑖 ∀𝑖 ∈ 𝑉 ,∀𝑘 ∈ 𝐾 (10)
𝑧=𝑡
∑

𝑧=0
𝑦𝑧𝑖𝑗 ≤

𝑧=𝑡
∑

𝑧=0
𝑦𝑧𝑗𝑖 + 1 ∀(𝑖, 𝑗) ∈ 𝐴𝑇 𝑟𝑎𝑛𝑠,∀𝑡 ∈ 𝑇 (11)

𝑧=𝑡
∑

𝑧=0
𝑦𝑧𝑗𝑖 ≤

𝑧=𝑡
∑

𝑧=0
𝑦𝑧𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴𝑇 𝑟𝑎𝑛𝑠,∀𝑡 ∈ 𝑇 (12)

𝑥𝑘𝑡𝑖𝑗 ∈ 𝑍+ ∀(𝑖, 𝑗) ∈ 𝐴 ,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 (13)

𝑥𝑘𝑡𝑖𝑗 ≤ 𝑈𝑘
𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 ,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 (14)

𝑏𝑡𝑖 ∈ 𝑍+ ∀𝑖 ∈ 𝑉 ,∀𝑡 ∈ 𝑇 (15)

𝑦𝑡𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴 ,∀𝑡 ∈ 𝑇 , 𝑘 ∈ 𝐾 (16)

The objective function (1), aims to minimize the total activity and 
holding costs. Constraint (2) ensures that if there is a flow of compo-

nents, the arc must be used. Constraint (3) ensures that if the arc gets 
used at time 𝑡, it is unavailable for duration 𝐷𝑡

𝑖𝑗 . Constraint (4) ensures 
a vessel can only traverse one arc simultaneously. Constraint (5) en-
sures flow conservation and constraint (6) the arc capacity. Constraint
(7) keeps track of port inventory capacity and constraint (8) of offshore 
vessel inventory, which is only possible if the vessel is offshore. Con-
straint (9) ensures the correct components are used for installation. Con-
straint (10): initializes the inventory. Constraint (11) and (12) ensures 
the WTIV shuttles between the OWF and marshalling port for shuttling. 
Constraints (13), (14), (15) ensure non-negative integer variables and 
constraint (16) the binary variables.

In this model, we make four main assumptions. First, that non-
weather-dependent processes can not be halted midway through an op-
eration, e.g. it is not possible to stop manufacturing halfway through the 
process. Second, we assume a limited non-homogeneous vessel fleet is 
available, in terms of capacity and sailing speed, as is the case in prac-
tice. The model can capture this variation implicitly, via the activity 
duration and arc capacity, and as such captures reality. Third, we do 
not consider port congestion. Whilst it would be possible to adjust the 
model to include a limited number of berths at a port, this is not the main 
interest of this study and and as such is not considered. Fourth, we as-
sume vessels can remain offshore indefinitely. Consequently, the instal-
lation vessel can remain offshore under all weather conditions without 
having to refuel or renew the crew, which especially impacts feedering. 
Normally, refuelling, recrewing or storms could be reasons to return to 
port. But it is estimated the frequency of recrewing or refuelling is low 
enough to not impact the results. During storms, no installation is pos-
sible regardless, which is why remaining offshore during storms is also 
not expected to impact the results significantly.

3.3.2.  Heuristic for solving the MILP
The solution space of the proposed model is relatively limited since 

it is heavily constrained and is used in a rolling horizon approach with a 
limited time frame. However, a preliminary analysis showed that com-
mercial solvers yet struggle to solve sufficiently fast for relevant instance 
sizes, also given the high number of repetitions required in the rolling-
horizon loop. Metaheuristic approaches such as genetic algorithms or 
simulated annealing can be overly complex and could require differ-
ent parametrizations to perform well (Fazi et al., 2015). Consequently, 
we develop an efficient tailored heuristic as a trade-off between run-
time and solution quality. This should reduce the runtime while having 
a marginal effect on the solution quality since we use problem-specific 
characteristics. When building the solution, the heuristic aims to process 
the components as quickly as possible. Three steps can be distinguished 
per iteration: (i) Initialization, (ii) Solution generation (iii) Selection and 
update.

In the initialization (i), the current system state is used as the initial 
solution. This could result in certain vessels already operating. There-
fore, at the start of the iteration, it is known for each arc whether or 
not it is active and for how long it will be unavailable if active. For 
this purpose, a new binary parameter is introduced: 𝑌 𝑡

𝑖𝑗 , which indicates 
whether arc (𝑖, 𝑗) is available at time 𝑡, 1 if so. If an arc is not available 
also the other dependent arcs are set with 𝑌 = 0. In this way, 𝑌  makes 
sure that difficult constraints about arc availability and time restrictions, 
such as (3), (4), and (11), are met.

Next, the algorithm performs a greedy choice (ii). The basic principle 
is that as many arcs as possible are activated since this should result in 
the highest flow of components through the network and, consequently, 
the highest installation rate. For the decision on which arcs should be 
activated, we generate 𝑛 lists with different arc orderings to obtain 𝑛
solutions. Given a certain list, the algorithm tries to activate the arcs in 
the list sequentially. The first list follows the natural order of the net-
work: manufacturing arcs first and the installation arc last. The second 
list adopts the reversed order. Next, 𝑛2 − 2 lists are generated based on 
random orderings to diversify the search space and avoid local optima. 
Finally, the last 𝑛2  lists are also based on random orderings; however, 
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arcs related to the WTIV are prioritized, to stimulate installation. For 
feedering, if the WTIV has sufficient components, the installation arc is 
prioritized. If it is missing certain components, the transshipment arcs 
are prioritized. For shuttling, if the WTIV is offshore and has sufficient 
components, the installation arc is prioritized. If not, the return arc is 
prioritized. After the 𝑛 solutions are generated, the best one in terms of 
objective value is chosen. Finally, the algorithm implements the solution 
and updates the status of the network.

Overall this algorithm aims to exploit problem-specific considera-
tions to effectively construct a good solution. This is done by smartly 
incorporating difficult constraints and only checking for simple con-
straints. Specific ordering sets are used to improve the performance and 
ensure the algorithm does not get stuck in local optima.

3.4.  Update module

It is known where vessels are located and whether or not they are 
performing an action. If an action, which is currently ongoing, is un-
able to be finished due to bad actual weather conditions, this action 
is stopped. This does result in undesirable situations where vessels are 
sitting idle since another vessel could not finish its operation. Due to 
the stochastic nature of weather conditions, this does represent reality, 
where this is also not certain in advance. To implement these actions, 
some adjustments to the mathematical formulation were also needed. 
Besides each node having a starting inventory as in (10), each arc now 
also has a starting state and inventory as in (17) and (18). For (11) and
(12) an additional binary parameter 𝑖𝑛𝑝𝑜𝑟𝑡 was added for the current 
location, which is 1 if the vessel is in port, which results in (19) and
(20) respectively.
𝑦0𝑖𝑗 = 𝑦𝑖𝑛𝑖𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (17)

𝑥𝑘0𝑖𝑗 = 𝑥𝑘,𝑖𝑛𝑖𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾 (18)
𝑧=𝑡
∑

𝑧=0
𝑦𝑧𝑖𝑗 ≤

𝑧=𝑡
∑

𝑧=0
𝑦𝑧𝑗𝑖 + 1 − 𝑖𝑛𝑝𝑜𝑟𝑡 ∀(𝑖, 𝑗) ∈ 𝐴𝑇 𝑟𝑎𝑛𝑠,∀𝑡 ∈ 𝑇 (19)

𝑧=𝑡
∑

𝑧=0
𝑦𝑧𝑗𝑖 ≤

𝑧=𝑡
∑

𝑧=0
𝑦𝑧𝑖𝑗 + 𝑖𝑛𝑝𝑜𝑟𝑡 ∀(𝑖, 𝑗) ∈ 𝐴𝑇 𝑟𝑎𝑛𝑠,∀𝑡 ∈ 𝑇 (20)

4.  Computational experiments

This section describes the case studies, experimental setup and nu-
merical results. All tests are performed on a 2.8GHz Intel Core i7-
7700HQ Quad-Core processor. The algorithms are coded in Python and 
run with Visual Studio Code.

4.1.  Case studies

Three reference projects are available: a finished project (NL) to 
validate the model, a current project (DE), and a future project (DK). 
These projects are summarized in Table 2, and locations are visualized 
in Fig. 5. Díaz and Guedes Soares (2020) find that wind farm dimen-
sions and the capacity of the turbines are increasing rapidly. Therefore, 
this combination of projects allows for a reliable and realistic synthe-
sis of results and was validated by industry experts. For an overview of 
ports used in the industry, refer to NSEC (2023), and for vessels, refer to
H-Blix (2022).

For all projects, the feedering is hypothetical, as it is currently not 
applied. For DE and DK, ports and vessels are arbitrarily picked since 
the installation of the superstructures has not started yet. Turbine size 
and WTIV for DE and DK are chosen such that they represent current 
and future projects, respectively. Distances are calculated using the MIT 
maritime scgraph python package (Makowski, 2023). Table 3 shows the 
impact of turbine size on the vessel capacity and required storage area. 
The storage area for 15MW turbines is based on NSEC (2023); the rest 
is estimated based on the 15MW turbines and validated with industry 
experts.

Fig. 5. Overview of project locations, squares indicate ports, circles indicate the 
OWF.

Table 2 
Overview of reference projects.

 OWF  NL  DE  DK
 Name  HKN  Dreiht  Nordsoen
 Size  0.69GW*  0.96GW  1.00GW
 WT size  10MW*  15MW  20MW
 Turbines  69  64  50
 Ports  NL  DE  DK
 Marshalling  Eemshaven  Esbjerg  Hull
 Tower  Esbjerg  Esbjerg  Sevilla
 Nacelle  Cuxhaven  Odense  St.-Nazaire
 Blade  Aalborg  Nakskov  Cherbourg
 Vessels  NL  DE  DK
 WTIV  Small  Medium  Large
 WTIV speed  10.5 kn  10.5 kn  10.5 kn
 FV size  Medium  Medium  Medium
 FVs  3  3  3
 FV speed  14 kn  14 kn  14 kn

Note. In bold it is highlighted which project characteristic is summarized. i.e. 
OWF, Ports or Vessels for each of the reference projects (NL, DE, DK).

Table 3 
Vessel capacity and storage space required per wind turbine size.
    Vessel capacity  10MW  15MW  20MW  Unit  
  Small  [3, 3, 9]  [2, 2, 6]  [1, 1, 3]  [Tower, Nacelle, Blade] 
  Medium  [5, 5, 15]  [3, 3, 9]  [2, 2, 6]  [Tower, Nacelle, Blade] 
  Large  [10, 10, 30]  [7, 7, 21]  [5, 5, 15]  [Tower, Nacelle, Blade] 
  Storage space  10MW  15MW  20MW  Unit  
  Tower  0.07  0.1  0.15  ha  
  Nacelle  0.03  0.04  0.05  ha  
  Blade  0.05  0.07  0.1  ha  
Note. Vessel capacity and storage space required depending on the turbine size.

Table 3 indicates how many sets of turbines a vessel can carry, so 3 
indicates 3 towers, 3 nacelles and 9 blades, FVs only carry one compo-
nent type since the manufacturing ports are dedicated to a single com-
ponent. Besides the vessel and port capacities, weather dependency is 
one of the key challenges of this paper. Table 4 shows an overview of 
operations, based on installation, from Rippel et al. (2019b) and trans-
shipment limits from Vis and Ursavas (2016).

In practice, operations are only allowed to happen sequentially, so if 
the wind speed is too high for a specific operation at any point during 
operations, that operation is not considered possible. Moreover, often 
a safety factor 𝛼 is applied to the duration of the operation, as can be 
found in the industry guideline DNVGL-ST-N001.
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Table 4 
Overview of duration and operational conditions of relevant operations.
 Operation  Duration (h)  Max. wind (m/s)  Max. wave (m)
 (Un)load component (LC)  3  –  –
 Transship component (TS)  3  12  2
 Jack-up (JU)  3  14  2
 Install tower (IT)  3  12  –
 Install nacelle (IN)  3  12  –
 Install blade (IB)  3  10  –
 Jack-down (JD)  3  14  2

Note. “Operation” shows the operation. “Duration” shows the duration of that 
operation and “Max. Wind” and “Max. Wave” show the maximum allowed wind 
speed and wave height respectively, – means no limit. Units are indicated in 
brackets.

Table 5 
Estimates of essential costs for ports and vessels.
    Ports  Unit  10MW  15MW  20MW  
  Handling  Per lift  e5,000.00  e8,000.00  e11,000.00  
  Holding  Per m2/year  e100.00  e100.00  e100.00  
  Vessel  Unit  Small  Medium  Large  
  FV  Per day  e10,000.00  e20,000.00  e30,000.00  
  WTIV  Per day  e100,000.00  e200,000.00  e300,000.00 
Note. “Operation” and “Unit” show the operation and corresponding unit re-
spectively. The next three columns show these costs for a “10MW,” “15MW” 
and “20MW” size turbine. Similarly “Vessel” indicates the vessel type and costs 
for increasing vessel sizes.

Table 5 summarizes the costs based on estimates from literature and 
company data. However, these are difficult to verify due to confiden-
tiality. Regardless, experts in the field have deemed that these values 
are in the right order of magnitude.

In practice, port capacity is reserved such that 50% of the project 
turbines can be stored, which ensures components are always available. 
Fig. 6 visualizes the costs for each of the reference projects per year for 
this port capacity.

This shows that the WTIV costs comprise at least 50% and up to 
75% of the total costs. Moreover, it should be noted that aspects such 
as port capacity and the vessel fleet are fixed for a given project once it 
has started. Therefore, the only method to reduce costs is to minimize 
the project duration, as then both port capacity and the vessels can be 
rented for a shorter period. Therefore, it is sufficient to maximize the 
installation rate for a given project, as costs will be minimized as a re-
sult. The installation rate, 𝐼𝑟𝑎𝑡𝑒, is defined as number of installed wind 

turbines per day, and calculated by dividing the number of installed 
turbines by the project duration in days.

4.2.  Verification of the Markov model

The Markov model is calibrated on ERA5 hourly data from 1979 to 
2000, see Hersbach et al. (2020) for further details on the dataset. How-
ever, 𝑁 and 𝜌 still have to be tuned for the best forecasting accuracy. 
The forecasting period is set to two weeks.

Based on Fig. 7a, there is an optimum for 𝜌 around 0.5. Additionally, 
based on Fig. 7, the forecast accuracy does not significantly improve 
for a higher number of simulations than 10. Therefore, the number of 
simulations is set to 10 and rho to 0.5 for this paper. We find an aver-
age forecast accuracy of 72.92% over a two-week forecasting horizon 
concerning weather windows. In general, it is difficult to compare the 
forecasting accuracy to regular weather forecasts. However, Pandit et al. 
(2020) have shown that Markov models perform well in determining the 
wind speed for offshore wind farms. Similarly, Rippel et al. (2019a) also 
find that a Markov approach performs well. Moreover, both emphasize 
the benefits of lack of training time and specific parameter optimiza-
tion compared to other models. Therefore, we conclude that the Markov 
model is a suitable choice.

4.3.  Experimental setup

The experimental setup is key to gaining relevant insights. Table 6 
summarizes the four experiments, which ensure relevant insights can be 
derived. Per experiment, a full factorial approach is used, for all three 
reference projects and both shuttling and feedering, e.g. yielding 3 ×
3 × 2 = 18 combinations for the distance experiment. Table 7 shows the 
general parameter settings, which result in a runtime of five minutes per 
combination.

Firstly, we perform an experiment related to the distance between 
the marshalling port and the OWF to see how this affects the installation 
rate. Secondly, we examine if larger vessels make the installation process 
more efficient as, theoretically, less time is spent on sailing. Thirdly, we 
analyze how different weather conditions impact the installation rates 
of both strategies. Lastly, we perform an experiment related to buffer 
size to check if, with sufficient starting inventory, the WTIV can be used 
as efficiently as possible, as components are always available. It should 
be noted that the efficiency is measured in terms of the installation rate, 
𝐼𝑟𝑎𝑡𝑒, for all experiments. The installation rate is defined as the number 
of installed wind turbines per day and calculated by dividing the number 
of installed turbines by the project duration in days.

Fig. 6. Visualisation of handling (blue), holding (orange), FV (green) and WTIV (red) costs.
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Fig. 7. Effects of 𝜌 and 𝑁 on the forecast accuracy.

Table 6 
Overview of the experimental setup.
    Distance  Values  
  Marshalling port  [Eemshaven, Esbjerg, Hull] 
  Vessel size  Values  
  WTIV  [Small, Medium, Large]  
  FV  [Small, Medium, Large]  
  Weather  Values  
  Simulation year  [2003, 2015, 2023]  
  Alpha  [1, 1.2, 1.5]  
  Weather forecast  [Markov, Accurate]  
  Buffer size  Values  
  Production time (h)  [54, 81, 162]  
  Starting inventory (%)  [0–100, 𝛿 = 10]  

Table 7 
Parameter settings.
    Parameter  Value  
  Buffer size  50%  
  Production time (h)  54  
  Weather model  Markov  
 𝑁  10  
 𝜌  0.5  
 𝛼  1  
  Forecast horizon (h)  342  
  Time unit (h)  9  
  Optimization model  Greedy  
  Greedy its  25  
  Sim start  01-04-2022 
  Sim end  01-01-2024 

4.4.  Distance experiment

In this section, the results of the distance experiments are discussed. 
Table 8 shows the installation rates for the three projects, where the 
marshalling port location is varied. The highest installation rate is high-
lighted in bold per project, which results in the shortest project duration.

Based on Table 8, on average, for the standard port configuration 
of each project from Section 4.1, feedering has a 9.2% higher installa-
tion rate than shuttling, whilst the required port capacity is similar. The 
port capacity for feedering is the sum of the three manufacturing ports, 
and for shuttling it is the capacity at the marshalling port. It should be 

noted that, generally, the best strategy in terms of installation rate also 
minimizes the required port capacity.

For both DE and NL, feedering is the best strategy according to
Table 8, regardless of the marshalling port location for shuttling. For 
NL, the installation rate of feedering is at least 29.2% higher than shut-
tling, whereas, for DE, this is 3.8%. This is interesting as Eemshaven 
is located 100 km away from the OWF for DE, which is only a five-
hour sail. Whereas, for feedering, the furthest manufacturing port lies 
almost 500 km away, which is a 40-h round trip. An explanation could 
be that this distance also has to be travelled to transport components 
to Eemshaven, but then the WTIV also has to travel back and forth to 
the port, adding extra time to the installation process and thus reducing 
efficiency. Feedering reduces project duration by two weeks for DE and 
almost two months for NL.

However, if the distance between the manufacturing ports and OWF 
becomes large, shuttling becomes more attractive, as is the case for DK 
in Table 8. Shuttling from Esbjerg is 12.9% more efficient than feed-
ering, saving almost 6 weeks in project duration. A big consideration 
still is that feedering requires no marshalling port at all. Interestingly, 
marshalling from Eemshaven or Hull, which are both located closer to 
the furthest manufacturing port, performs quite similarly to feedering, 
possibly due to the large distances between the marshalling port and 
OWF. This shows that if no marshalling port is available near the OWF, 
feedering can serve as a viable alternative, even if the distance between 
the manufacturing ports and OWF is over 1500 km.

These findings are in line with Oelker et al. (2018), who also find 
that if the distance between the OWF and the marshalling port is too 
large, shuttling becomes more attractive. It should be noted that Oelker 
et al. (2018) only tested a 4 and 7h sailing time, whereas in this report, 
much larger sailing times, up to 60h, are considered. Also, the difference 
in installation rate can not only be attributed to the distances. Both DE 
and DK face more challenging weather conditions than NL, which could 
also play a role. Fig. 8 shows the installed turbines for each project over 
time.

What can be observed is that installation under more difficult 
weather conditions, i.e. Fig. 8b and c, follows a sort of S-curve. This 
indicates that fewer turbines can be installed during the winter, where 
generally worse weather conditions occur. On the other hand, during 
the summer months, weather conditions are generally better, thus re-
sulting in a higher installation rate. Since each project starts in April 
with an initial buffer of 50%, each project starts with a high installa-
tion rate, but for both DE and DK, it is visible that after September, the
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Table 8 
Overview of the number of installed wind turbines per project and port setup. The first column 
shows the project. The second and third columns show the strategy and marshalling port. The 
fourth and fifth columns show the distance between the OWF and marshalling port and the 
furthest manufacturing port to the OWF (feeder) or marshalling port (shuttle). The last three 
columns show the required port capacity, project duration, and installation rate, respectively.
 Project  Strategy  Marshalling 𝐷𝑀𝑎𝑟𝑠 (km) 𝐷max

𝑀𝑎𝑛𝑢 (km)  Cap (ha)  Dur (d) 𝐼𝑟𝑎𝑡𝑒

 NL  Feeder  –  –  381.97  8.5  202.00  0.3416
 NL  Shuttle  Eemshaven  307.76  343.06  9.5  261.00  0.2644
 NL  Shuttle  Esbjerg  500.09  203.69  9.95  283.00  0.2438
 NL  Shuttle  Hull  366.08  437.98  9.87  280.00  0.2464
 DE  Feeder  –  –  469.28  13.02  391.00  0.1637
 DE  Shuttle  Eemshaven  103.96  543.26  14.56  406.00  0.1576
 DE  Shuttle  Esbjerg  274.31  158.47  14.49  428.00  0.1495
 DE  Shuttle  Hull  447.98  638.18  14.91  420.00  0.1524
 DK  Feeder  –  –  1513.68  16.5  352.00  0.1420
 DK  Shuttle  Eemshaven  416.18  1402.72  14.7  364.00  0.1374
 DK  Shuttle  Esbjerg  75.18  1515.03  13.5  312.00  0.1603
 DK  Shuttle  Hull  648.79  1351.03  14.1  343.00  0.1458

Fig. 8. Visualisation of installed wind turbines over time per project.

installation rate drops significantly up to March. Interestingly enough, 
both Fig. 8 and Table 8 imply that weather conditions are not the lim-
iting factor in feedering. For DE and DK, which both face much more 
difficult weather than NL, feedering is still a feasible approach. The ex-
periments in Section 4.6 further show that feedering is less weather-
dependent than shuttling.

4.5.  Vessel size experiment

In this section, the effects of the size of the FVs and WTIV are ana-
lyzed. Table 9 shows the numerical results of this experiment, averaged 
over the three projects, in terms of the installation rate. Let us consider 
the first three rows of Table 9, where the feeder vessels are small, and 
only the size of the installation vessel differs. It should first be observed 
that shuttling is 10–20% more efficient than feedering. For shuttling, 
it can be observed that the installation rate generally increases for a 
larger WTIV. Despite the increasing size of the installation vessel, the 
installation rate barely changes for feedering. This could indicate that 
the small feeder vessels are restricting the installation rate. For feeder-
ing it is even restricting certain projects so much that they can not be 
finished by 2024 since the number of installed turbines is lower than 
61. For shuttling, every project is finished by 2024. This shows that if 
the fleet of FVs is too small, having a marshalling port speeds up the 
projects significantly, as the components can get consolidated there and 
FVs do not have to wait for transshipment offshore.

Let us consider the next three rows, where the feeder vessel size is set 
to medium, the same size used for all other experiments. Interestingly, 
feedering now outperforms shuttling, which does confirm that the small 

FVs were limiting for feedering. For shuttling, the installation rate does 
not change significantly compared to the small FVs, which shows the 
small FVs were not limiting. Again, the installation rate for shuttling 
generally increases for a larger WTIV, but this increase is much larger 
for feedering, however. Using a large WTIV instead of a small WTIV 
increases the installation rate by 14.7% and reduces project duration 
by 7 weeks on average. This effect likely occurs since larger WTIVs can 
serve as an offshore buffer, thus being able to install whilst the FVs are 
collecting components.

Finally for the last three rows with the largest feeder vessels, we 
notice that for shuttling the installation rate once again does not change 
significantly. For feedering, however, installation rates are at least 4.5% 
higher than for medium feeder vessels. Additionally, larger WTIVs now 
drastically increase the installation rate. Using large instead of small 
WTIVs increases the installation rate by 19.9% for feedering. Reducing 
project duration by over 8 weeks and by a further month compared to 
medium feeder vessels. This results in feedering being almost 25% more 
efficient than shuttling.

Overall, these results are very interesting because, for shuttling, the 
size of the feeder vessels to transport components from the manufac-
turing to the marshalling port does not matter, and the size of the in-
stallation vessel only has a marginal effect on the installation rate. For 
feedering, the feeder vessels must be sufficiently large; otherwise, the in-
stallation rate gets restricted significantly. However, if the feeder vessels 
are sufficiently large, the installation rate is up to 25% higher than for 
shuttling, resulting in 10 weeks shorter projects on average. So as long 
as the feeder vessels are sufficiently large, feedering generally utilizes 
the WTIV more efficiently than shuttling.
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Table 9 
Effect of WTIV and FV size on installation rate, averaged over the projects. The first two columns 
indicate the WTIV and FV used. The next four columns indicate the strategy used, number of in-
stalled wind turbines, duration and installation rate. First for feedering, then for shuttling. Results 
are averaged over the three projects.
 WTIV  FV  Strat 𝐼𝑊 𝑇  Dur (d) 𝐼𝑟𝑎𝑡𝑒  Strat 𝐼𝑊 𝑇  Dur (d) 𝐼𝑟𝑎𝑡𝑒

 Small  Small  Shuttle  61.00  382.33  0.1595  Feeder  60.00  426.67  0.1406
 Medium  Small  Shuttle  61.00  351.00  0.1738  Feeder  60.67  424.67  0.1429
 Large  Small  Shuttle  61.00  359.67  0.1696  Feeder  61.00  416.33  0.1465
 Small  Medium  Shuttle  61.00  374.00  0.1631  Feeder  61.00  363.33  0.1679
 Medium  Medium  Shuttle  61.00  356.67  0.1710  Feeder  61.00  325.00  0.1877
 Large  Medium  Shuttle  61.00  363.33  0.1679  Feeder  61.00  316.67  0.1926
 Small  Large  Shuttle  61.00  376.67  0.1619  Feeder  61.00  344.67  0.1770
 Medium  Large  Shuttle  61.00  354.33  0.1722  Feeder  61.00  311.00  0.1961
 Large  Large  Shuttle  61.00  357.67  0.1705  Feeder  61.00  287.33  0.2123

Table 10 
Effects of weather windows and simulation year on installation rate. The first two columns indicate 
the simulation year and 𝛼 factor. The next four columns indicate the strategy used, total number 
of installed wind turbines, duration and installation rate. First for feedering, then for shuttling. 
Results are averaged over the three projects.
 Year 𝛼  Strat 𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑟𝑎𝑡𝑒 𝐼𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒
𝑟𝑎𝑡𝑒  Diff (%)  Strat 𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑟𝑎𝑡𝑒 𝐼𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒
𝑟𝑎𝑡𝑒  Diff (%)

 2003  1  Shuttle  0.1900  0.1959  3.12  Feeder  0.2133  0.2240  5.02
 2003  1.2  Shuttle  0.1511  0.1706  12.96  Feeder  0.1551  0.1631  5.11
 2003  1.5  Shuttle  0.1289  0.1563  21.28  Feeder  0.1327  0.1577  18.79
 2015  1  Shuttle  0.1594  0.1796  12.70  Feeder  0.1785  0.1826  2.31
 2015  1.2  Shuttle  0.1327  0.1393  4.94  Feeder  0.1329  0.1416  6.57
 2015  1.5  Shuttle  0.1205  0.1366  13.39  Feeder  0.1195  0.1390  16.26
 2023  1  Shuttle  0.1842  0.1918  4.13  Feeder  0.1909  0.1969  3.17
 2023  1.2  Shuttle  0.1370  0.1454  6.14  Feeder  0.1452  0.1496  2.97
 2023  1.5  Shuttle  0.1288  0.1438  11.69  Feeder  0.1287  0.1442  12.12

4.6.  Weather experiment

In this section, the results of different years of simulation and 𝛼 safety 
factors for durations are discussed. 2003 is a good weather year, 2015 
a bad weather year and 2023 an average year based on the historical 
weather data. Table 10 shows the effect on the installation rate for sim-
ulating in these years averaged over the three projects. Additionally, the 
value of 100% accurate forecasts is also tested. Each simulation is per-
formed for the full year, which means projects might not finish and start 
in January of the respective year.

Based on the 𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑟𝑎𝑡𝑒  from Table 10, both feedering and shuttling 
performed better in 2003 than in the other years due to the better 
weather conditions. Especially feedering performs over 10% better than 
in 2023 and almost 20% better than in 2015 for 𝛼 = 1. For shuttling this 
is only 3% for 2023 and almost 20% for 2015. Moreover, even in 2015, 
feedering outperforms shuttling. This is surprising as it would be ex-
pected that for worse weather conditions it becomes more difficult to 
transship and install offshore. This could also be explained because for 
shuttling the WTIV is missing installation windows during the sailing, 
whereas for feedering these windows can be utilized. This shows that 
the weather conditions do significantly impact the installation rate, but 
feedering suffers less from worse weather conditions.

Regardless of the installation year or forecast quality, it can be ob-
served that the number of installed wind turbines decreases drastically 
for an increasing 𝛼 factor. Moreover, from Table 10 it seems that the 
installation rates of shuttling and feedering start to converge for larger 
values of 𝛼. This is the case for both the Markov and accurate forecasts, 
but the installation rate is significantly higher for the accurate forecasts. 
This indicates that shuttling and feedering make use of the same weather 
windows and this is the limiting factor on the installation rate.

Table 10 also shows that 100% accurate forecasts improves the in-
stallation rate, 𝐼𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑟𝑎𝑡𝑒 , anywhere between 2.31% and 21.28% com-
pared to 𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑟𝑎𝑡𝑒 , especially for higher values of 𝛼. This is not surpris-
ing, as longer weather windows are more difficult to forecast. For 𝛼 = 1

a 5.05% average increase in installation rate is observed. This means 
the added value of increasing the forecast accuracy is mainly interest-
ing for larger values of 𝛼, as for 𝛼 = 1.5 the average increase is 15.59%. 
Interestingly, shuttling seems to benefit more from accurate forecasts, 
likely since the forecast has a large influence on when the WTIV sails 
out to install. However, even with 100% accurate forecasts, feedering 
remains more efficient than shuttling, be it less significant. This shows 
that, regardless of the forecast accuracy and simulation year, feedering 
is generally more efficient than shuttling.

4.7.  Initial buffer experiment

In practice, projects do not start with zero initial inventory. Instead, 
first, a buffer of 50%, deemed as 𝐵𝑡𝑟𝑎𝑑 , is built up such that installation 
is not limited by component availability as there are large lead times on 
components (CEIF, 2022). Predictably, as the initial buffer gets larger, 
the required port capacity also gets larger. Fig. 9 illustrates the maxi-
mum port usage for the different buffer sizes. For feedering this is the 
total capacity summed over the three manufacturing ports.

Two trends are observable from Fig. 9. First, the required port ca-
pacity increases linearly for larger initial buffers, but at different slopes, 
depending on the production time. This indicates that the initial buffer 
size is also the largest inventory that is in the port at any point. Sec-
ond, up to 20% buffer, this trend does not hold. This makes sense as 
0% buffer port capacity is still required, as components still have to be 
stored. The same holds for 10% and 20% buffer. This means that this 
port capacity has to be reserved regardless, thus it might as well be filled 
with a 20% initial buffer as this increases the installation rate. In gen-
eral, it can be noted that the required port capacity is a direct result of 
the production time and initial buffer size and does not depend on the 
strategy, as Fig. 9 shows similar values for both shuttling and feedering. 
Fig. 10 visualizes the results of this experiment for different production 
rates and initial buffer sizes on the installation rate.
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Fig. 9. Maximum port capacity used vs initial buffer size for different production times.

Fig. 10. Average installation rate vs initial buffer size for different production times.

Fig. 10 shows two interesting trends. First, if an insufficient initial 
buffer is available, the installation rate gets restricted by the produc-
tion time, indicated by the linear installation rate. Second, feedering re-
quires larger buffers than shuttling, due to the higher installation rate, 
indicated by the line continuing longer than for shuttling. This shows 
there is a direct relation between the installation rate, initial buffer size 
and production time.

There also seems to be some noise or clutter in Fig. 10, as there 
are variations in the installation rate, even if sufficient initial buffer is 
available. This is caused by the averaging over the three projects. As 
observed from Fig. 10, the initial buffer size seems to depend on the 
production time and installation rate. A standard buffer size formula 
would be: 

𝐵𝑠𝑡𝑑 = 1 −
𝑃𝑟𝑎𝑡𝑒
𝐼𝑟𝑎𝑡𝑒

(21)

where 𝐵𝑠𝑡𝑑 is the fraction of the wind turbines required as initial buffer 
size and 𝑃𝑟𝑎𝑡𝑒 and 𝐼𝑟𝑎𝑡𝑒 are the production and unrestricted installation 
rate respectively. The unit of 𝑃𝑟𝑎𝑡𝑒 and 𝐼𝑟𝑎𝑡𝑒 does not matter as long as 
they are the same. This formula is based on the cycle inventory formula, 
but instead of calculating the average inventory, we are trying to calcu-
late the maximum inventory needed to not run out of components, so 
we do not divide by 2. This is expressed via B, which indicates which 
fraction of the total turbines should be stored initially.

Assuming that the production rate is lower than the installation rate, 
otherwise, no initial buffer is required. Based on the results, the average 
unrestricted installation rate for feedering is roughly 0.19 turbines per 
day and for shuttling this is 0.17. 162h of production time results in a 
production rate of 0.15. For feedering this would mean an initial buffer 

of 20% and for shuttling 10% of the total turbines. However, based on 
Fig. 10 this is not sufficient for both shuttling and feedering.

The first thing to consider is that Eq. (21) applies to fully linear 
processes where the production and installation rates are constant over 
time. For this problem that is not the case as the installation rate dif-
fers over time due to the weather conditions. Moreover, the installation 
rate also takes into account the time it takes from production to instal-
lation. So the manufacturing, transportation and storage times are also 
included, which might cause Eq. (21) to not work as installation time 
also covers non-installation-related processes.

Therefore, a simple formula to calculate the so-called unrestricted 
installation time is proposed, which can be used in (21). The unrestricted 
installation time (𝐼 ∗𝑡𝑖𝑚𝑒) refers to the theoretical installation time if 
components are always available and can be calculated as: 

𝐼 ∗𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑡𝑖𝑚𝑒 = 𝑇 𝑆𝑎𝑖𝑙𝑖𝑛𝑔 + 𝑇 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 + 𝑇 𝐼𝑛𝑠𝑡𝑎𝑙𝑙

𝑊 2
(22)

𝐼 ∗𝐹𝑒𝑒𝑑𝑒𝑟
𝑡𝑖𝑚𝑒 = 𝑇 𝑇 𝑟𝑎𝑛𝑠 + 𝑇 𝐼𝑛𝑠𝑡𝑎𝑙𝑙

𝑊 2
(23)

where 𝑇 𝑆𝑎𝑖𝑙𝑖𝑛𝑔 , 𝑇 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 , 𝑇 𝑇 𝑟𝑎𝑛𝑠, and 𝑇 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 indicate the time required for 
sailing, loading, transshipping, and installing per turbine, respectively. 
𝑊  indicates during which fraction of the year installation is possible. 
The weather-dependent activities are then divided by 𝑊 2 to account 
for the time when these activities are not possible, the square ensures a 
penalty for overlapping installation windows. I.e. during good weather 
conditions, installation can only happen after the previous installation 
is finished. This results in an new proposed buffer size formula, where 
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Table 11 
Overview of predicted buffer sizes and actual buffer size required. For each 
project, production time and strategy, the predicted buffer size according to 
practice 𝐵𝑡𝑟𝑎𝑑 and the proposed formula 𝐵𝑝𝑟𝑜𝑝 is shown, bold highlights which 
is closest to the actual required buffer 𝐵𝑎𝑐𝑡.

 Project 𝑃𝑡𝑖𝑚𝑒 (h) 𝐵𝑠ℎ𝑢𝑡𝑡𝑙𝑒
𝑡𝑟𝑎𝑑 𝐵𝑠ℎ𝑢𝑡𝑡𝑙𝑒

𝑝𝑟𝑜𝑝 𝐵𝑠ℎ𝑢𝑡𝑡𝑙𝑒
𝑎𝑐𝑡 𝐵𝑓𝑒𝑒𝑑𝑒𝑟

𝑡𝑟𝑎𝑑 𝐵𝑓𝑒𝑒𝑑𝑒𝑟
𝑝𝑟𝑜𝑝 𝐵𝑓𝑒𝑒𝑑𝑒𝑟

𝑎𝑐𝑡

 NL  54.00  0.50  0.05  0.10  0.50  0.25  0.20
 NL  81.00  0.50  0.37  0.20  0.50  0.50  0.40
 NL  162.00  0.50  0.68  0.60  0.50  0.75  0.70
 DE  54.00  0.50  0.00  0.00  0.50  0.00  0.10
 DE  81.00  0.50  0.00  0.00  0.50  0.00  0.10
 DE  162.00  0.50  0.29  0.20  0.50  0.35  0.40
 DK  54.00  0.50  0.00  0.00  0.50  0.00  0.00
 DK  81.00  0.50  0.00  0.20  0.50  0.00  0.00
 DK  162.00  0.50  0.28  0.20  0.50  0.41  0.20

we convert the 𝐼 ∗𝑡𝑖𝑚𝑒 to 𝐼 ∗𝑟𝑎𝑡𝑒 such that it has the same unit as 𝑃𝑟𝑎𝑡𝑒: 

𝐵𝑝𝑟𝑜𝑝 = 1 −
𝑃𝑟𝑎𝑡𝑒
𝐼 ∗𝑟𝑎𝑡𝑒

(24)

Table 11 shows the predicted buffer size based on 𝐵𝑝𝑟𝑜𝑝, the tradi-
tional 50% buffer approach, 𝐵𝑡𝑟𝑎𝑑 , and the actual required buffer size, 
𝐵𝑎𝑐𝑡. The closest buffer, in terms of absolute deviation, to 𝐵𝑎𝑐𝑡 is high-
lighted in bold.

Table 11 illustrates that for all three project and production rates 
𝐵𝑝𝑟𝑜𝑝 is much closer to 𝐵𝑎𝑐𝑡 for both shuttling and feedering. There is 
only one case where the same buffer size is predicted by 𝐵𝑡𝑟𝑎𝑑 , which is 
likely a result of chance. On average, the traditional approach deviates 
0.33 from 𝐵𝑎𝑐𝑡 (𝑀𝑆𝐸 = 0.13), whereas the 𝐵𝑝𝑟𝑜𝑝 approach only deviates 
0.07 on average (𝑀𝑆𝐸 = 0.01). This shows the use of the traditional 
approach should be reconsidered as it is much too naive and robust. 
Therefore, the initial buffer should be calculated depending on project-
dependent characteristics, as this can increase the installation rate or 
reduce the required port capacity depending on the project.

5.  Discussion

Offshore wind expansion faces three challenges: (i) limited installa-
tion vessel fleet, (ii) limited port capacity, and (iii) operational suscep-
tibility to weather conditions. Each challenge and the insights gained 
regarding this challenge are elaborated on, based on the results from 
the computational experiments.

1. Limited fleet of wind turbine installation vessels
Due to the limited WTIV fleet, the installation rate has to be increased 
significantly to meet the 2030 climate ambitions. By only starting the 
installation process with a certain buffer already available, the instal-
lation rate increases significantly for both shuttling and feedering, as 
now components are readily available for installation.

Feedering generally increases the installation rate and reduces 
project duration by 9.21% compared to shuttling. This shortens 
project duration by 29 days on average, which could save mil-
lions. Additionally, feedering is less dependent on the quality of the 
weather forecast and weather conditions in general, so is also more 
robust than shuttling.

Shuttling starts being more efficient than feedering if the manu-
facturing ports are located more than 1000 km from the OWF and the 
marshalling port lies within 500 km of the OWF. However, if man-
ufacturing ports lie within roughly 500 km of the OWF, feedering is 
more effective. Additionally, if the size of the feeder vessels is too 
small, shuttling also becomes more efficient than feedering.

2. Limited port capacity
Results show that production rates have a significant impact on the 
required port capacity. If the production rate is 54 instead of 81h, 
a limited amount of port capacity is needed as just-in-time logistics 

can be used. However, if the production time is 162h per compo-
nent, buffers of up to 70% of the project size could be required. This 
translates to roughly 20ha of storage area for a 1GW project, which 
might not be available in the future.

Results also show that the required port capacity is directly re-
lated to the production time and initial buffer. Thus calculating the 
required initial buffer accurately will also result in the lowest amount 
of reserved port capacity, whilst optimizing the installation rate. 
The proposed formula (24) predicts the required buffer size much 
more closely than the traditional 50% for all projects and production 
times. Using the 50% is too naive and results in a significant over- 
or under-utilization of the port. This results in roughly 8ha against 
2ha of unnecessarily reserved port capacity respectively for a 1GW 
project, which shows more accurate initial buffer calculations can 
save hectares of required port capacity.

Since shuttling generally has a lower installation rate than feed-
ering, it also requires less initial buffer. So if port capacity is an issue, 
shuttling should be considered, but this does result in a longer project 
duration. So whilst it might help for port capacity, it could increase 
the pressure on the WTIV fleet.

3. Dependence on weather conditions
Weather conditions play a significant role in the installation rate and 
project duration of offshore wind projects. Feedering, on average, 
performs better than shuttling in any simulated year for the nominal 
weather window, i.e. 𝛼 = 1. Compared to an average year, the instal-
lation rate increases by 3.1 and 11.7% for shuttling and feedering 
respectively in a good year. In a bad year, installation rates decrease 
by 13.5 and 6.5% respectively. This means that feedering benefits 
more from good weather and is affected less by worse weather.

Moreover, increasing the accuracy of the weather forecast can in-
crease the installation rate significantly. Especially for higher values 
of 𝛼, a more accurate weather forecast can increase the installation 
rate by anywhere between 11.69% and 21.28%. For 𝛼 = 1 this effect 
is less pronounced, as installation rates increase by 5.05% on aver-
age. Additionally, shuttling benefits much more from higher-quality 
forecasts, as this likely allows for a better choice of when to sail out 
for installation from the port.

These findings are directly in line with Oelker et al. (2018), who also 
find that distance to the offshore wind farm and vessel capacity and 
number of feeder vessels in their study, respectively, are the limiting 
factors on feedering.

There are some limitations to the model. The key assumptions are 
that vessels can remain offshore indefinitely, sailing is not considered 
weather-dependent, and port logistics are considered on an aggregate 
scale. Whilst these limitations should be considered when studying the 
results, the motivation, verification, and validation show that the impact 
is limited and that the results are representative and realistic.

For future research, weather forecasting could be further developed, 
as more accurate forecasts result in higher installation rates. It would 
also be interesting to link the approach used in this paper directly to in-
dustry guidelines, i.e., DNVGL-ST-N001, which specifies rules for fore-
casting and operational limits. We define 𝛼 as a general safety factor 
for the forecasts, which is also used in the industry guidelines. DNVGL-
ST-N001 specifies a more detailed approach to determine when oper-
ations are allowed. However, according to industry experts supporting 
this work, the proposed approach does capture the essence of the op-
erational limits, and the results were validated during the analysis. For 
future research, the application of the whole DNVGL-ST-N001 standard 
is interesting and could be integrated in the proposed decision support 
framework.

Alternatively, (meta)heuristics could be used to handle more supply 
chain aspects, such as port congestion, refueling, or recrewing. It could 
also be insightful if a practical test case were performed using feedering 
to validate the results of this paper and explore any practical bottle-
necks.
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6.  Conclusion

In this study, we propose a rolling horizon simulation framework 
for the evaluation and optimization of offshore wind farm logistics. The 
framework uses a Markov weather forecasting model and optimization 
heuristic, which allows us to quickly solve the MILP within the rolling 
horizon loop.

We find that the locations of manufacturing ports in combination 
with the production rate of components should be considered as this 
has a significant impact on the installation rate and which initial buffer 
is required. The 50% initial buffer rule used in practice is much too 
naive and project-dependent characteristics should be considered, as 
this predicts the required buffer size much more accurately. Shuttling 
only becomes more efficient than feedering if the manufacturing ports 
are located far away from the offshore wind farm or if the feeder ves-
sels are too small. In all other circumstances, feedering outperforms 
shuttling and is also less weather-dependent according to our experi-
ments. Therefore, the industry should start exploring feedering as a fea-
sible strategy to increase the installation rate and meet the 2030 cli-
mate goals, whilst keeping into account the effects of manufacturing
ports.
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