<]
TUDelft

Delft University of Technology

Breaking the Latency Barrier
Practical Haptic Bilateral Teleoperation over 5G

Kroep, Herman; Coppens, Stijn; Wésten, Koen; Bhattacharjee, Anup; Venkatesha Prasad, R. R.

DOI
10.1145/3716550.3722020

Licence
cCcBY

Publication date
2025

Document Version
Final published version

Published in
Proceedings of the ACM/IEEE 16th International Conference on Cyber-Physical Systems, ICCPS 2025,
held as part of the CPS-loT Week 2025

Citation (APA)

Kroep, H., Coppens, S., Woésten, K., Bhattacharjee, A., & Venkatesha Prasad, R. R. (2025). Breaking the
Latency Barrier: Practical Haptic Bilateral Teleoperation over 5G. In Proceedings of the ACM/IEEE 16th
International Conference on Cyber-Physical Systems, ICCPS 2025, held as part of the CPS-loT Week 2025
Article 2 ACM. https://doi.org/10.1145/3716550.3722020

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1145/3716550.3722020
https://doi.org/10.1145/3716550.3722020

)
i Breaking the Latency Barrier: Practical Haptic

Bilateral Teleoperation over 5G

Koen Wosten
Delft University of Technology
Delft, Netherlands
koen.wosten@gmail.com

Herman Kroep
Delft University of Technology
Delft, Netherlands
h.J.C kroep@tudelft.nl

Stijn Coppens
Delft University of Technology
Delft, Netherlands
sdd.coppens@gmail.com

Anup Bhattacharjee
Delft University of Technology
Delft, Netherlands
a.k.bhattacharjee@tudelft.nl

Abstract

Haptic bilateral teleoperation holds promise for applications
such as telemaintenance, remote manipulation, and disaster
response, yet delivering precise, low-latency force and video
feedback remains challenging. This study advances haptic
bilateral teleoperation by combining live video with Model
Mediated Teleoperation (MMT) to enable predictive force
feedback. While this method has benefits, several non-trivial
challenges, such as synchronizing the model with user’s and
remote robot’s actions, arise. A novel algorithm is devel-
oped that allows the robotic device to replicate interactions
predictively experienced by the operator. We validated this
approach in a fully functional system that performs reli-
ably despite significant network delays. The latency perfor-
mance of the system is extensively characterized, achieving a
motion-to-pixel latency of 58 ms. A user study revealed that
operators did not perceive network latency of at least 75 ms,
resulting in a 133 ms motion-to-pixel delay requirement. Ad-
ditionally, a 5G latency analysis demonstrated that effective
haptic teleoperation is achievable with both operator and re-
mote ends connected via 5G. This provides a path away from
strict latency requirements toward practical teleoperation
solutions using currently available technology.

1 Introduction

Haptic bilateral teleoperation allows humans to manipulate
remote environments through robotic devices, extending
their expertise over the internet to a remote place. The oper-
ator receives visual feedback through a monitor and force
feedback through a haptic device. This provides the nec-
essary sensation to execute physical actions in the remote
environment as shown in the Fig. 1.
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Figure 1: An operator uses a haptic device to guide a
robot equipped with a marker to draw on a whiteboard.
Simultaneously, a 3-RRS manipulator controls the ori-
entation of the whiteboard as the operator makes the
drawing. The operator receives live video footage on
a monitor and predictive force feedback from a local
physics simulation with a digital twin of the remote
environment.

Such a system has the potential to enable people to work
and contribute from anywhere to anywhere, significantly
diminishing the dependence on their physical presence. This
can offer cost savings, quicker emergency responses, and
large environmental benefits. It also allows people to act in
inaccessible or risky areas, from modifying satellites in orbit
to rescuing people from burning buildings.

Three key components are required for the effective hu-
man operation of a remote robotic device. First, the robot
must replicate the operator’s movements, which requires
transmission of the operator’s actions. Second, visual feed-
back on the robot’s real-time performance must be provided.
Third, force feedback must be provided to convey the robot’s
interactions with the environment.

We consider two methods for providing feedback to the
human operator. The first method is to directly measure,
using a camera for visual feedback or sensors for force feed-
back and transmitting this data directly to the operator. The
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second method uses a local simulation to calculate predic-
tive feedback. Continuously rendering images of the local
simulation can be used for predictive visual feedback, while
a physics simulation can calculate predictive force feedback.

The first method of measuring and directly transmitting
feedback does not require constructing a model, making it
scalable and well-suited for general-purpose teleoperation.
However, this approach faces the significant obstacle of meet-
ing extremely low latency requirements. Research shows that
delay exceeding 5 ms in conveying force feedback impairs
user experience [5]. Despite efforts to minimize network
delay, achieving such a low threshold is still highly challeng-
ing. Nonetheless, this direct measurement method has been
successfully implemented in controlled environments, such
as hospitals, where a wired connection between the opera-
tor and robot can restrict the delay under the requirement
threshold.

The second method of predicting feedback uses a local
simulation to predict feedback, a technique known as Model
Mediated Teleoperation [9, 10, 13]. Instead of communicating
measured force feedback, the remote domain extracts model
parameters from the remote environment. These model pa-
rameters are used in the operator domain to predict feedback
based on the operator’s actions before the robotic device
imitates the actions. This approach provides a low-delay
feedback source through simulation but requires a highly
accurate local model that reflects the remote environment.
Constructing such a model is challenging even in a known
environment. It becomes particularly difficult in unfamiliar
environments with hard-to-capture details, such as objects
out of view or properties like density. Additionally, certain
environments are far easier to simulate accurately than oth-
ers; scenarios involving liquids or deformable objects, for
instance, demand performance that is not available in the
state of the art.

To maintain the accuracy of the local model, it has to
be updated with the latest observations from the remote
environment while the operator is actively interacting with
it. The added network delay further complicates this task.
While recent studies showcase this method’s potential to
handle a significant network delay, current implementations
are limited to static and rigid objects [5, 6, 11].

Given the significant challenges existing approaches pose,
we arrive at the following questions: How to realize haptic
bilateral teleoperation in today’s networks? It is obvious that
MMT is needed to deal with higher network latencies, but
this comes with the challenges above. Thus, we pose the
following research question: How to realize a high-quality
haptic bilateral teleoperation session for a human operator with
MMT (local models) while dealing with changes in the dynamic
remote environment? We propose a hybrid solution that lever-
ages both approaches: visual feedback is delivered through

live video transmitted from a camera and displayed on a
monitor. In contrast, predictive force feedback is generated
through a local physics simulation. This approach addresses
the core limitations of each method: while force feedback re-
quires ultra-low delay, video feedback is less delay-sensitive.
Additionally, predicting force feedback is more feasible than
delivering an immersive, accurate, real-time rendered visual.

This proposed solution, though promising, still faces sig-
nificant challenges, which we will outline and solve in this
work. It must undergo thorough validation to ensure the ap-
proach is feasible and provides a satisfactory user experience.
Additionally, delay requirements must be established for the
new approach. The operator will experience predictive, near-
instantaneous force feedback alongside video feedback with
greater delay, and this discrepancy must be explored. An-
other key challenge is that force feedback is provided for
actions that have not been executed yet, which could create a
mismatch between the operator’s experience and the robot’s
eventual actions.

To address these, we develop an algorithm that causes the
robot to execute deliberate actions to ensure its movements
retrospectively align with the operator’s prior experience.
We construct a real-world system based on this concept,
demonstrating its feasibility for long-distance operation and
evaluating its performance through extensive user studies.
Video footage of the experimental setup is provided at this
URL'.

All the evaluation and user studies have been performed
in a live private 5G network. The contributions of this work
are as follows:

1 Framework: We present a framework for haptic bilateral
teleoperation that integrates live video measurements with
model-mediated teleoperation for predictive force feedback.
2 Algorithm: We propose an algorithm that preserves in-
teractions experienced by the operator under significant
network latency.

3 Implementation: We implement and validate the frame-
work and algorithm in a working system, enabling haptic
bilateral teleoperation under considerable network latency.
4 Characterization: We characterize key system delays
through objective measurements, providing a low-latency
baseline performance.

5 User trials: Through a user study, we identify latency
tolerance thresholds for force and visual feedback.

6 5G testbed: We analyze round-trip latency over a 5G stan-
dalone network. This demonstrates that our system supports
effective haptic bilateral teleoperation with both operator
and remote ends connected via 5G.

The rest of this work is structured as follows. Section 2 pro-
vides an overview of relevant literature. Section 3 presents
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the proposed framework for haptic bilateral teleoperation.
Section 4.1 describes our proposed algorithm for handling
interaction mismatches under network latency. Section 5
outlines the experimental setup used to evaluate the system.
Section 6 analyzes the results, including objective measure-
ments, algorithm performance, and findings from a user
study. Finally, Section 7 concludes the work.

2 Related Works

The Tactile Internet was initially coined to achieve sub-
1 ms latency for applications with tactile feedback, making
real-time teleoperation feasible [1]. However, the initial la-
tency requirement has since been shown to be less strict, and
closer to sub-10ms latency [6]. Advances in 5G, Software
Defined Networking (SDN), and Network Function Virtual-
ization (NFV) have contributed to reducing latency [11].
Model Mediated Teleoperation (MMT). This addresses
network delays by using a predictive model of the remote
environment, but this approach faces limitations. The model
Jjump effect occurs when updates in the local model cause jar-
ring changes in feedback, affecting operator control. Strate-
gies like delayed updates and adaptive controllers reduce
these impacts [8]. MMT also struggles in dynamic environ-
ments, especially when interacting with nonlinear objects,
due to model mismatch, which can destabilize the system [4].
Human Intent in Teleoperation. Integration of human
intent in teleoperation improves adaptability and can reduce
latency requirements by allowing predictive adjustments.
While intent recognition has been studied in robot-human
collaboration [2], its application in MMT for replicating user
actions remains limited. Related fields, such as Learning from
Demonstration (LfD) and imitation learning, use pre-trained
models to transfer human skills to robots [7], though real-
time applications present unique challenges.

User Experience Metrics. User experience in teleoperation
is challenging to quantify, as traditional control-theoretic
metrics may not reflect subjective perception. In the human-
machine-interaction field more human-oriented metrics like
perceived transparency, Just-Noticeable Difference (JND),
and task completion time are used to gauge usability and
satisfaction [3, 12].

3 Haptic Bilateral Teleoperation
framework

This section outlines a framework for designing a long-
distance haptic bilateral teleoperation system that combines
live video and predictive force feedback based on Model-
Mediated Teleoperation (MMT) principles. As shown in Fig. 2,
the framework has three key components: the Operator Do-
main, the Network Domain, and the Remote Domain.

Operator domain Network domain Remote domain

V(t—7) 40}
monitor [¢f---------------- camera f+—
model St—7) S(t) Pe(t) )
N observer environment
updater 0]

S(1)

haptic pe(t) physics é(f} 77777777 S (f :'f)ﬁ imitation | X () robot
device ’ engine controller controller
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Figure 2: Illustration of our proposed framework.

In the Operator Domain, a human operator interacts with
a digital twin of the remote environment using a physics
engine and haptic device. The digital twin mirrors the remote
environment, giving the operator predictive force feedback
for immediate haptic responses. A model updater uses remote
measurements to keep the local model current.

In the Remote Domain, a robotic device mirrors the op-
erator’s actions, interacting with physical objects in the en-
vironment. Sensors continuously monitor the state of the
environment, updating the digital twin to maintain align-
ment between the virtual and physical spaces. In this work,
motors manipulating the environment also serve as sensors,
further detailed in Section 5. In this work, we denote the
counterpart of any parameter 0 in the remote domain as 6
in the operator’s domain.

In the remote domain, S represents the observed state of
the environment, including attributes of all observed objects
like position, orientation, shape, mass, friction coefficients,
center of mass, and inertia. These properties are either pro-
vided accurately upfront or estimated and refined during
runtime through subsequent observations.

In the Operator Domain, an operator interacts with a digi-
tal twin of the remote environment using a physics engine.
This digital twin, denoted as S , conveys the state of the re-
mote environment and is used by the physics engine in the
Operator Domain.

The operator uses a haptic device to interact with a local
physics engine. The haptic device measures only the position
of its end-effector, which is the point on the robotic device
that interacts with the environment. A haptic rendering al-
gorithm in the physics engine converts the end-effector’s
position to a corresponding position in the virtual environ-
ment and calculates the applied force. The control signal
X denotes the operator’s state in the virtual environment.
The predicted applied force, referred to as f , is returned to
the operator. The physics engine can be seen as a function
that changes the state of the environment and the operator,
represented by

(§(t),X(t)) = physicsEngine (.§(t —e),X(t - e),ﬁe(t)) ,
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where t—e represents the previous discrete step of the physics
engine.

The full description of the virtual state $ and the operator
X are transmitted to the remote domain, arriving with an
added network delay of 7. The imitation controller then takes
into account the delayed state in the operator domain and
the state of the local environment to adjust the control signal,
resulting in

X(t) = imitationController (X’(t —17),S(t - 1), S(t)) .

The imitation controller is designed to act when discrep-
ancies exist between the states S and S. In those cases, the
imitation controller adjusts the control signal to prioritize
the operator’s intent. Here, operator intent refers to the ac-
tions or goals the human operator intends to perform in the
remote domain. The method for discerning operator intent
and perception is determined beforehand and incorporated
into the design of the imitation controller. In this work, we
propose the demonstration mismatch algorithm, further ex-
plained in Section 4.1.

The control signal drives the robot controller, which man-
ages the specific robotic device. The robot controller operates
on the output of the imitation controller. The robotic device
measures end-effector position p, and applied force f. Here,
the end-effector is the part of the robot that interacts with
the environment. The observer consists of sensors in the
remote domain that track position in real-time, orientation,
and motion of objects. With these measurements and data
from the robotic device, the observer estimates the state S of
the remote environment. Accurate and fast object tracking
is crucial, especially when the data influences the control
strategy of the imitation controller.

The observed state of the remote environment is trans-
mitted back to the operator domain, arriving with a net-
work delay of 7. This feedback includes video and force mea-
surements resulting from active remote interactions, which
should be relayed to the operator immediately. The mea-
sured state of the remote environment, S, is used to update
the digital twin in the operator domain, §, as follows:

$(#) = modelUpdater (S(t _ ), §(t),>2(t)) .

The update strategy should be designed to disturb the opera-
tor minimally. This can involve delaying the model updates
when the operator actively interacts with an object, a tech-
nique that has shown potential in previous studies [8, 14].

The visual feedback can be treated as a completely inde-
pendent system. This is beneficial, as any improvements in
delay in live streams can be directly used to improve the
overall system without the need for integration.

The network domain includes all system components re-
sponsible for synchronizing data between the operator and

Operator domain Network domain Remote domain
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Figure 3: Illustration of critical feedback loops in our
proposed framework.

remote domains. Teleoperation applications involve vari-
ous modalities, each with distinct requirements. Kinematic
data, which includes positions and orientations of objects,
demands low delay but has a small data size, requiring only a
few bytes per object. This data is typically resilient to loss be-
cause subsequent packets negate the need for retransmission
of previous ones. As demonstrated by Kroep et al., a teleop-
eration setup can maintain a satisfactory user experience
even with 50% packet loss [5]. The resilience is enhanced
by the robot arm controller functioning as a low-pass filter
due to both the robot’s acceleration constraints and its lower
update frequency (60 Hz versus a 1 kHz packet rate).

On the other hand, data related to objects’ shapes, physi-
cal properties, and audio-visual content involve larger data
payloads but are more tolerant of delays while requiring
higher reliability. Therefore, the network must handle var-
ious data types, balancing high-volume transmission with
specific delay requirements for each. In complex environ-
ments, the rate of data generation may surpass available
bandwidth, necessitating the prioritization of crucial data
based on the operator’s actions and proximity to objects. Ef-
fective network design must incorporate advanced protocols,
efficient bandwidth usage, data compression, and priority
management to address these challenges.

3.1 Critical Feedback Loops

Multiple feedback loops must operate in concert to ensure
smooth system functionality, each with specific delay re-
quirements. We outline these critical feedback loops below,
as illustrated in Fig. 3, and provide a mathematical basis for
calculating allowable delay within each loop.

Predictive Force Feedback (A). This loop handles the pre-
dictive force feedback experienced by the operator. When
the operator interacts with the haptic device, the movement
is captured and processed by the physics engine to generate
predictive force feedback, which is then transmitted back to
the haptic device without requiring data from the remote
environment.
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Model Update Feedback (B). This loop updates the local
model to reflect changes in the remote environment. Higher
delay, here, leads to greater divergence between the local
model and the remote environment, increasing the risk of a
mismatch between the operator’s experience and the robot’s
actual execution. Maintaining low delay is critical to mini-
mize these discrepancies and keep the operator’s experience
accurate.
Robot-Object Interaction (C). This loop governs the ro-
bot’s ability to interact accurately with objects in the remote
environment. delay within this loop impacts the robot’s re-
sponsiveness and precision in replicating actions involving
physical contact or manipulating objects.
Motion-to-photon latency (D). This loop covers the time
from when the operator performs an action to when the
visual outcome appears on the monitor. Low delay in this
loop is essential for effective hand-eye coordination. Most
of the components in the system directly affect the delay
of this loop, including the network. The ability of the non-
network components to act at low delay directly influences
the network’s delay requirements.

The latency in these feedback loops is analyzed in Sec-
tion 6.1, where we provide empirical measurements to eval-
uate their baseline performance.

4 Demonstration mismatch algorithm

When the robot imitates the operator’s actions, the opera-
tor has already experienced predictive feedback as a con-
sequence of his actions. This structure, where the operator
receives feedback based on a task yet to be executed, is cru-
cial for meeting delay requirements. Therefore, an algorithm
is needed that acts as a self-fulfilling prophecy for the feed-
back provided to the operator. This algorithm should adjust
the robot’s trajectory to ensure the imitated task execution
closely matches the operator’s experienced feedback.

4.1 Consequence of Mismatch

For the analysis in this work, we consider a general scenario
where the end-effector of the robot applies a specific amount
of pressure to a precise contact point on an object. Assuming
accurate tracking methods, there will be minimal differences
between the position of the object in the operator environ-
ment and the remote environment. This is because, for the
system to be satisfactory, a network delay of less than 100 ms
is necessary, as shown in Section 6. Thus, we can assume that
mismatches will be small, in the range of 1 cm displacement.

Consider a solid object represented by a 2-dimensional
manifold in a 3-dimensional space. We assume that the dis-
placement is small enough to consider the local area around
the contact point as a tangent space with tangent vector T.
The displacement caused by the delay in tracking the object

in motion can be divided into a component parallel to the
tangent vector T and a component orthogonal to the tangent
vector T.

Assuming that the direction of motion of the object is
uncorrelated with the tangent vector, the average amount of
displacement parallel to the tangent vector can be expressed

as:
2
Epar = ;lvobjl, (1)

and the average lateral displacement as:

2V2

2
Ejagt = — |Uobj [ (2
T

The lateral displacement will result in the pressure being
applied to an incorrect spot. In the context of drawing, ink is
deposited in a displaced location. Parallel displacement, how-
ever, has a more significant effect. It can determine whether
the end-effector touches the object when it should not or
fails to touch it when it should. Additionally, parallel dis-
placement can cause variations in the applied pressure.

When the end-effector is already in contact with the ob-
ject, any parallel displacement into the object will result in
increased pressure. This increase in pressure can be modeled
using a spring constant k that characterizes the compliance
controller of the robot.

Assume that the end-effector is displaced into the object
by a distance Ep,,. The force applied by the robot Fypplied is
given by

2
F= kEpar = ;k|vobj|- ®3)

Therefore, if the system is tuned for stiff dynamics, repre-
sented by a high k, a small displacement will yield a large
increase in applied force.

4.2 Position Relative to Object

Since the operator is working within a simulation, both the
position of the operator and the position and orientation of
the objects are precisely known. This information can be
used to extract the operator’s actions relative to the object.
As the positions and orientations of objects in the remote
environment are tracked in real time, this data can be utilized
to construct a trajectory for the robot relative to the object.
It is important to consider the position and orientation of
the object to accurately determine the relative position.

The variables used in the math in this section are all time-
dependent. For the sake of clarity, the time dependence is
implicit in the expressions for the rest of this section.

To mathematically describe the position and orientation
of the operator in the remote domain, while preserving the
relative position to the object, we need to translate to the
local frame and then back to the global frame for both posi-
tion and rotation. Let pop; and f?obj be the position and the
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rotation matrix of the object in the operator domain, respec-
tively. Let p. be the position vector of the end-effector in the
operator domain. Let popj and Rp,; be the position and the
rotation matrix of the object in the remote domain.

To obtain the equivalent absolute position in the remote
domain that preserves the relative position to the object, we
transform the end-effector we get

Pe = RobjR;blj (pe - i)obj) + Pobj

where ﬁgblj is the inverse of the rotation of the object in the
operator domain.

When the end-effector is in close proximity to the object,
this approach has benefits, but at longer distances problems
arise. First of all, it would be odd for the end-effector to
respond with precision to an object that is moving slightly
while far away. Secondly, any differences in rotation at longer
distances will result in significant velocity in the remote end-
effector. Finally, this approach does not scale to multiple
objects.

4.3 Demonstration Mismatch Algorithm

Preserving the relative position has many benefits in close
proximity to an object. However, this effect should diminish
as the distance increases. Additionally, a method is needed
to generalize the algorithm to any number of objects. A map-
ping can be created between the two environments, estab-
lishing a transition region between the absolute position and
the relative position with respect to the object. Depending
on the degree of difference between the absolute and relative
positions, a short transition region can lead to significant
unintended movement of the robot as the operator moves
through this region. This added movement can be notice-
able to the operator and can impart a significant amount
of kinetic energy to the robot that was not present in the
operator’s actions.

We first consider a single object in the environment. The
object can be of any shape, but a method is needed to find the
closest point on the object to any given point in space. We
define the point on an object that is closest to the end-effector
as

0; = arg min ||, — 0,
0;€0;
and o; as the equivalent point of 6; on the object in the
remote domain.

To map between the operator and remote domains, we first
calculate the distance between the closest point on the object
in the operator domain and its counterpart in the remote
domain. This distance takes into account the difference in
position and rotation of the object between the two domains.

A smooth transition function is applied to ensure a gradual
change from relative to absolute positioning. We first define

a ratio based on the distance of the end-effector to the object
and the amount of displacement of the object:

_lpe — il
&= ———.
[|6; — 05|

We then choose the transition between absolute and rela-
tive as:

N\ 2 N3
() = 3(%) —2(2—§') if& <1,
) =
1 otherwise.
Note that max (%) = 1, which ensures that any move-

ment of the operator in one direction in the operator domain
cannot result in movement in the opposite direction in the
remote domain.

For a single object, we can then obtain an expression for
the transformed location of the end-effector in the remote
domain as

Pe = ﬁe + (1 _f(gi))(oi - 61)

To generalize this approach to any number of objects, we
consider the influence of multiple objects simultaneously.
Each object will exert a different degree of influence on the
end-effector’s position, proportional to the inverse of its
proximity to the end-effector. Weights are then calculated
based on these distances, with each weight being the inverse
of ||pe — 0i||. These weights are normalized such that their
sum is unity, which leads to

o b =all”
i = — .

2Zjllpe — 05117

The final expression for the transformed location of the
end-effector in the remote domain is given by

Pe = Pe +ZW1‘(1 - f(&))(0; — 0;).

The algorithm is illustrated in Fig. 4, where the algorithm
adjusts the remote robot’s position to ensure that it con-
tacts the remote object at the same point where the operator
interacted with the virtual counterpart.

5 Experimental setup

5.1 Remote drawing application with low
baseline delay

In this work, we developed a remote drawing application in
which a human operator uses a haptic device to control a
whiteboard marker attached to a robotic arm. The robotic
arm replicates the operator’s movements to draw on a mov-
ing whiteboard in the remote environment.

To achieve a minimal baseline delay, several design choices
were made. First, we opted to emulate network delay by
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Figure 4: Altering the position of the remote robot po-
sition due to a mismatch in position between operator
and remote objects. The path of the robot position is
shifted so that it hits the remote object at the same
spot where the operator hits its virtual counterpart.

Figure 5: The experimental setup. The robot (Ufactory
lite 6) is highlighted in orange with an extension that
holds a whiteboard marker, power supply, and emer-
gency button. Highlighted in green is the steward plat-
form attached to a lead screw contraption and the mo-
tor drivers. Highlighted in pink is the haptic device
(Novint Falcon).

specifically adding a delay to the data going from the opera-
tor to the remote domain with NeTem. The video footage is
not transmitted over a network; this eliminates the need for
encoding and decoding, lowering the delay further.

A second robotic device controls the whiteboard’s motion,
enhancing safety by restricting movement to defined limits
and ensuring consistent behavior for reliable experimental
results. The motor angles provide direct position and orien-
tation data, eliminating the need for external sensors. With
the whiteboard’s path predetermined, a simple predictive
model compensates for sensing delays, enabling accurate,
zero-delay state perception.

5.2 System overview

The system is structured around the three main domains
described in Section 3. The Remote Domain has a Ufactory

lite 6 robotic arm fitted with a whiteboard marker. The white-
board’s movements are controlled with a lead screw contrap-
tion that provides lateral movement and a 3-RRS parallel
manipulator that provides tilt. The whiteboard’s position
and orientation are determined directly through the motor
angles, which act as built-in sensors for tracking the exact
pose. These motor readings are sent to the system in realtime,
allowing the whiteboard’s pose to be accurately monitored
without requiring external sensors. Integrating systems in
the remote environment is managed through ROS2, which
uses topics to connect the robotic arm, whiteboard manipu-
lator, and communication with the Operator Domain. The
robotic devices are shown in Fig. 5.

The camera setup in the remote domain is treated as a
separate system. A Logitech HD 720p webcam is connected to
a Jetson Nano B01, which transmits the video via a gstreamer
pipeline. The video feed is displayed directly on a monitor.
Removing the network entirely for the visual feedback helps
to minimize the baseline delay.

The Operator Domain comprises a physics engine (Bullet)
and a Novint Falcon haptic device. The Novint Falcon tracks
its position at 1 kHz. The physics engine simulates forces and
object interactions, updating at 1 kHz. The operator experi-
ences force feedback through the Novint Falcon and visual
feedback through a monitor.

Communication between domains occurs within the Net-
work Domain via UDP. The network is simulated through
NetEm, where the delay is only added to the packets from
the operator to the remote domain, which ensures that visual
delay is affected in a representative way despite there not
being a network between the camera and monitor. The delay
is adjusted with NetEm to simulate varying network delays.

5.3 5G Network Latency

In addition to the primary experimental setup, we conducted
a separate test to evaluate end-to-end latency over a 5G
wireless network. The setup is a private 5G standalone de-
ployment that uses the n77 frequency band with exclusive
network use during the tests. We connect the remote and
operator domains to the 5G-NR routers. The remote domain
is connected to a Siretta QUARTZ 5G Industrial Router, and
the operator domain is connected to the Advantech ICR-
4453W1S. Both sides have network-provisioned SIM cards
that ensure a 5G connection. Latency-related data is collected
using the internal telemetry features of the routers.

During the tests, three aspects were explored. First, there
is a difference between a single 5G link at the remote domain
and a wired operator domain, and both domains have a 5G
link. Second, the difference between a small 64 B packet and
a larger 1.4kB packet. Finally, we distinguish between a
connection where a PDU session has yet to be established
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Figure 6: CDFs of latency for the predictive force feed-
back, model update feedback, and robot-object inter-
action. The predictive force feedback is characterized
with a 480 Hz camera resulting in 2 ms precision.

for data transmission and one where a PDU session is active
(pre-established).

5.4 User Study

We conducted a user study to evaluate system usability in a
haptic bilateral teleoperation context. This study aimed to
determine subjective latency tolerance and tipping points
for both the network and force feedback delays.

Each participant began by selecting a complex drawing
task they could reproduce consistently. After familiarization
with the setup, participants were presented with a series of
test cases that included varying network latencies (0, 25, 50,
75, 100, 125, 150, and 200 ms) and force feedback delays (0,
5, 10, 15ms, and off). The drawing task was performed on a
moving whiteboard for each test case. Following each test
case, participants rated their experience on a 7-point Likert
scale, focusing on perceived control, usability, and overall
experience compared to the baseline condition. A total of
17 participants, aged 20 to 35, with technical backgrounds,
participated in the study.

6 Results
6.1 Baseline System Latency

To characterize baseline system performance, we performed
both internal and external measurements. These measure-
ments quantify the baseline latency of the five feedback loops
identified in Section 3.1. For all measurements, no additional
emulated network latency was added.

Local Predictive Force Feedback.. It is the time between
an operator’s input and the resulting force feedback response.
To measure this, the Novint Falcon is positioned so that its
proxy makes direct contact with a highly rigid virtual surface.
The Novint Falcon is then moved slightly toward the surface,
and the time it takes for the device to accelerate in the oppo-
site direction is used as an approximation of the predictive
force feedback delay. This delay is observed using a 480 Hz

high-speed camera. The results of these measurements is
shown in Fig. 6, with an average delay of 6.25 ms.

Model Update Feedback. It is the time it takes for an ac-
tion to manipulate an object to be sent from the operator
domain to the remote domain, for the robot to execute that
action, for the environment model to be updated, and for
this information to be sent back to the physics engine in the
operator domain. Key elements contributing to this delay
include ROS2 topic delays, operator-remote communication,
whiteboard motor communication, and forward kinemat-
ics processing. A cumulative distribution function of these
measurements is shown in Fig. 6, with 7.36 ms average delay.
Robot-Object Interaction. It is the time it takes for the
robot controller to recognize a change in whiteboard posi-
tion. Major delay contributors include ROS2 topic delays,
whiteboard motor communication, and forward kinemat-
ics processing. A cumulative distribution function of these
measurements is shown in Fig. 6, with 5.12 ms average delay.
Glass-to-Glass Latency. It is the total delay from the mo-
ment a physical event is captured by a camera to its appear-
ance on a display. This latency is measured with a high-speed
camera filming both a motor-driven clock hand and its de-
layed display on a monitor. We calculate the delay by ana-
lyzing the angle difference between the real and displayed
positions based on the motor’s constant rotation speed. The
average delay is 52.52 ms.

Motion-to-Photon Delay. It is the time from when a user
initiates a movement until the corresponding action appears
on the monitor. Nearly all components in the system con-
tribute to this delay. To measure it, a high-speed camera
records the moment the Novint Falcon is struck and the
corresponding movement displayed on the monitor. Frame
counting is used to estimate the delay, with an average delay
of 57.49 ms, most of which is attributed to the glass-to-glass
latency.

6.2 5G Network Latency Results

The 5G latency experiment results are presented in Fig. 7.
Three factors were tested: single 5G link against dual 5G
links, 64 B against 1.4 kB packet sizes, and active against not
yet established PDU sessions.

Effect of an Ongoing PDU Session. Establishing a new
PDU session significantly increases Roundtrip Time (RTT).
Maintaining an ongoing PDU session is crucial for mini-
mizing latency, which is ideal for applications like haptic
bilateral teleoperation that require a continuous data stream
in both directions.

Effect of Packet Size. In all scenarios, larger packet sizes
increase latency. For a single link with an established PDU
session, the mean RTT for 64 B packets is 10.6 ms, while for
1.4 kB packets it is 16.1 ms, with a difference of 5.5 ms. Such a
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Figure 7: 5G network latency, comparing single vs. dual
5G links, effects of packet size, and impact of active
(pre-established) vs. not yet established PDU sessions
on Roundtrip Time (RTT). The results show that main-
taining an active PDU session and using smaller pack-
ets minimizes latency, which is critical for applications
like haptic bilateral teleoperation.

difference is significant for haptic bilateral teleoperation and
suggests that smaller packets should be prioritized where
possible.

Effect of Dual 5G Links. The addition of a second 5G link
approximately doubles the RTT, highlighting that latency is
primarily due to wireless links. Each 5G link adds a delay
cost between 10 ms and 16 ms, depending on packet size.

6.3 Algorithm performance subject to
network and measurement delay

To evaluate the proposed algorithm, we conducted an ex-
periment in which the operator domain followed a prepro-
grammed reference path, drawing a square with a perfectly
inscribed circle. The whiteboard moved back and forth with
the lead screw mechanism during the drawing.

This experiment assessed the drawing accuracy with and
without the algorithm under different network and mea-
surement latency conditions. Here, measurement latency
specifically refers to the delay between the whiteboard’s
movement and the robot controller receiving that informa-
tion. The resulting drawings are shown in Fig. 8.
Measurement Latency Impact. Measurement latency af-
fects both methods similarly, introducing offsets in the drawn
path as delays increase. This outcome is expected, as the al-
gorithm does not compensate for local measurement delays.
Network Latency Impact. Network latency greatly impacts
drawing accuracy in the absence of the algorithm. With

Effect of Network Delay and Measurement Delay on Drawing Quality
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Figure 8: Drawings with and without the algorithm
under network delays and measurement delays. Each
grid item shows a reference (- -), a replication without
the algorithm (—), and with the algorithm (—).
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Figure 9: User study results showing the impact of force
and visual feedback latency on the user experience.

the algorithm, the drawing closely matches the reference,
regardless of network latency.

In summary, the algorithm significantly enhances robust-
ness to network latency but does not mitigate local measure-
ment latency, which should, therefore, be minimized.
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Latency Requirements for Haptic Bilateral Teleoperation
Perception Hindrance Unusable
Force Feedback 9ms 16 ms >16 ms
Motion to pixel 133 ms 158 ms >208 ms

Table 1: Requirements for haptic and visual delay in
a remote drawing application. Note that the reported
force feedback includes 6 ms of baseline latency and ar-
tificially added latency. Likewise, the motion-to-pixel
latency includes 58 ms of baseline latency.

6.4 User study

To assess the system’s requirements, we conducted a user
study examining drawing accuracy and user experience un-
der various levels of force feedback and visual latency. Par-
ticipants tested multiple system configurations against a
baseline they had become familiar with. They were asked
to indicate whether they perceived any differences, if these
differences impaired their ability to draw, and at what point
the system became unusable.

Force Feedback Latency Sensitivity. As shown in Fig. 9,
users noticed delays in force feedback almost immediately,
with latencies above 5 ms negatively impacting control and
perceived responsiveness. Without force feedback, partici-
pants felt a significant disconnect from the robot. However,
even at the maximum tested latency of 10 ms, most still found
the system usable. It is important to note that latency for
force feedback is locally predicted and unaffected by network
latency.

Visual Feedback Latency Sensitivity Visual latency is
influenced by network latency. Fig. 9 includes added network
latency, which should be considered on top of the system’s
baseline motion-to-pixel latency of 58 ms. Users began notic-
ing delays at around 50 ms of added latency (total 108 ms),
but did not find the system harder to use until 100 ms (total
158 ms). At 200 ms (total 258 ms), most users found the appli-
cation unusable. These findings are summarized in Table 1.
They indicate that haptic teleoperation systems may toler-
ate significantly higher latencies than traditionally recom-
mended. Further studies are needed to refine requirements
for different applications.

When comparing the network latency levels in the user
study to the specifications measured for a 5G connection,
we conclude that this system can deliver a satisfactory user
experience even when both the operator and remote domains
are connected via a 5G wireless network.

7 Conclusions

Haptic bilateral teleoperation offers immense potential for
telemaintenance, remote manipulation, and disaster response
applications. Still, it is hindered by the challenge of deliv-
ering accurate, low-latency force and video feedback to the

operator. This work enhances teleoperation by integrating
live video with Model Mediated Teleoperation (MMT) to
provide predictive force feedback.

Central to our approach is an algorithm that enables a
robotic device to replicate interactions predictively experi-
enced by the operator, creating a “self-fulfilling prophecy”
effect. We implemented and validated this framework in a
functional system, achieving satisfactory haptic bilateral tele-
operation under substantial network delays. Video footage
of the experimental setup is provided at this URL? .

We identified four critical feedback loops and extensively
characterized their latency for our system. We conducted a
user study that demonstrates that a human operator does
not perceive the presence of a motion-to-pixel latency of 133
ms, with a network latency of 75 ms.

We analyzed the round-trip latency when using a 5G stan-
dalone network and demonstrated that our system supports
effective haptic bilateral teleoperation with both operator
and remote ends connected via 5G. This insight sets a path
away from unattainable latency requirements, moving to-
ward practical and feasible haptic teleoperation using cur-
rently available technologies.
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