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A B S T R A C T

This project develop a new method to generate breakline from the point cloud di-
rectly with the MAT.
The breakline is a structured line of the object surface which has high curvature.
Meanwhile, the reciprocal of the medial edge ball’s radius can represent the point
with high curvature, which is the fundamental idea of this project.
The key parts of the method are: (a) with the help of MAT detecting candidate
points having high curvature; (b) connect the candidate points to get breaklines
with graph theory or polynomial fitting.
The topology of the breakline is considered. In addition, this project also provides
the polyline simplification and smoothing.
In the resulting breakline, 27/32 are true positive.
In general, the average correctness is 97% and 96%, the average quality is 90.67%
and 91.19%, and the average completeness is 93.84% and 93.92% for valley and
ridge. Most of accuracy parameters are above 80%. The accuracy is high.
As to the precision, the average polyline precision is 0.3 and 0.23, and the average
vertex precision is 1.14 meter and 1.12 meter. Comparing with the point density
2pts/m2. 25 of 27 breaklines’ polyline precision is better than 0.5. 16 of 27 break-
line’s vertex precision is better than 1.0; and 23 of 26 is better than 1.5. The precision
is also good.
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1 I N T R O D U C T I O N

1.1 motivation
A breakline presents a discontinuity of the earth surface, and it can be defined as a
structured line of the object surface which has high curvature. In the natural world,
a breakline can be a ridge, a valley or drainage line, and is essential for the descrip-
tion of the terrain surface. Breaklines were formed by long-term action of nature. In
the geometry point of view, they constraint the surface height change. Thus it has a
critical role in terrain modeling. Furthermore, a ridge has the property to separate
two adjacent river systems, also called watershed. This physical property takes a
unique position in the engineer construction.
Many applications require high-quality breaklines, such as geology scientific re-
search Bryan and Moore [1977], surveying and mapping engineer, GIS application
Zhu et al. [2001]. It is used as a constraint to generate a better DTM and data
compression Linde et al. [1980]. In hydrological field, breaklines are essential for
flood simulation and basin simulation models Bridge and Leeder [1979]. It can also
monitor identical man-made objects, such as, dams or dikes, by comparing morpho-
logical features (breaklines) at different time epochs. As a consequence, developing
an efficient method to generate high accuracy breakline is necessary.
The traditional way to extract breaklines is from raster data or contour line. With
the appearance of Lidar point clouds, users can get more accurate and uniform
ground elevation data. Besides, for a given laser pulse, a lidar system can record
multiple returns, which makes filtering out some man-made object and vegetation
possible. If a user converts point cloud data into raster or vector data, depends on
the raster resolution or number of remained vertices, there is a loss of information.
The accuracy is degraded since the exact altitude of the original points might be
lost especially for the irregular surface like mountain and seafloor. So developing
new approaches to extract breakline directly from point clouds is useful.

1.2 research questions and scope
The research question is ”How to generate a 3D breakline directly from point cloud
with the MAT?” And to solve this question, some sub question will carry out:

1. What is the link between Medial Axis Transform (MAT) and a breakline?

2. If MAT is suitable for generating a 3D breakline?

3. What are the requirements for the point cloud to extract breaklines?

4. Is it possible to automatically generate a breakline without user defined pa-
rameters?

The scope of this study will limited in natural ground surface, such as extracting
ridge and valley for mountains, not include detecting edge of roof. Because the edge
of roof is a ”jump edge”, which is a regular breakline, and has different geometry
property to the ridges and valley (more details in Section 2.1.4).
The terrain can not contain trees (see Figure 1.1). Because the MAT can not find the
structure for point cloud with tress (see Figure 1.1b). Moreover if there is a river or
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2 introduction

lake in the ground surface, it will cause a hole in the point cloud. And this project
can not manage holes.

(a) Point cloud(white) and zoom in trees (color stands for height)

(b) Point cloud(white) and MAT (green)

Figure 1.1: Terrain point cloud contain trees and the MAT result.

1.3 reading guide
There are in total 6 chapters in this thesis, and the rest chapters are organised as
following:
Chapter 2 first introduces some existing methods to generate breaklines. Then it
explains some necessary concepts and functions of Medial Axis Transform.
Chapter 3 explains conceptual framework, workflow and principles of some algo-
rithms related to this project.
Chapter 4 shows the details of implementation and experiments, also discuss the
problems and possible solutions for each step.
Chapter 5 first shows the resulting breakline, then makes comparisons with the
breaklines extracting from other methods. Finally validate the accuracy and the
precision of the result. Chapter 6 summaries the result of this project, answers the
research questions, The main issue is discussed in this chapter. Moreover the future
works is given in the final chapter as well.



2 R E L AT E D W O R K

This chapter consists of two parts. The first part introduces existing methods to
generate breaklines based on different input data: a raster (Section 2.1.1), contour
lines (Section 2.1.2), a mesh (Section 2.1.3), or a point cloud (Section 2.1.4). Then a
short summary of those methods is given in Section 2.1.5.
The second part (Section 2.2) explains the Medial-Axis Transform(MAT) in detail,
i.e. the definition, the medial geometry, the algorithm to approximate the MAT and
MAT segmentation.

2.1 existing method to generate breakline
Since the 1980s, how to automatically extract breaklines implicit in the digital ter-
rain model is an essential study. Many researchers have developed different meth-
ods focusing with various purpose. Due to the physical properties of breaklines, it
was especially popular for the segmentation of water bodies at the beginning. With
the development of new technology to obtaining ground height, such as lidar, the
point cloud has come to the stage. The point cloud is widely used in 3D building
modeling. Thus roof edges detection as a special kine of breakline has been studied
extensively recently.
Now there are four kinds of different input data that is able to generate breaklines:
raster, contour line, mesh and point cloud. This section will provide an overview of
existing method to get breaklines from these data types.
Because raster based method and contour line based method have different char-
acteristics compared to point cloud base method, this section will only introduce
several principal methods of these two methods, and focus on point cloud based
method.

2.1.1 Raster input

Figure 2.1: General process to extract breakline from raster image
(the hue represents height )

The raster method extracts breaklines from a DEM. In this context, the local max-
imum curvature stands for the local change in slope. Martz and Garbrecht [1992]
carried out a series of researches focusing on the D8 method, and Greysukh [1967]

3
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implemented the 8-neighbours method to extract the catchment area from DEM.
These two methods were similar, and they calculated the height difference between
the central raster cell and eight local neighbours respectively to get the slope in 8

directions. The 8-neighbours method detects the slope variation, while D8 sorts the
height difference and gives a feature code to the cell. D8 tries to find a code pattern
to extract surface feature.
Peucker and Douglas [1975] found an easier method to detect pit and peak points
to confirm ridge and valley. This study used a 2x2 moving window on DEM to
compare altitude change between neighbours. But this method resulted in many
isolated or incorrect pit or peak points, and can not find a complete breakline. Band
[1986] enhanced this method by using binary refinement algorithm to get a single
cell’s width segments set, and then join the segments, finally accomplished a com-
plete tree-like network of valleys. But it only works well on valleys, and is not
adaptable to most other land form types.
O’Callaghan and Mark [1984] suggested another approach. This approach aimed
at calculating each pixel’s upstream pixel number, called the confluence cumulative
value. If this value is larger than a threshold, the point was recorded as a pit. This
method used eight connection points to find the flow direction, then it calculated
the number of input path (NIP) and the number of output path (NOP). A pixel
with NOP = 0 might be a pit or noise. Confluence area calculation started at where
NOP = 0, and searches its next downstream pixel one by one. This approach was
time-consuming. And different valleys might need different thresholds, using one
single threshold is not suitable for all kinds of terrain. This approach was improved
and changed to fit many other studies, such as Band and Robinson [1992].
Chorowicz et al. [1992] developed the Profile scan algorithm and hydrological flow
modeling to extract drainage networks. This method analyses raster data in a verti-
cal and a horizontal section to get characteristic points. Since it only analyses two
orthogonal directions, the main drawback is that this method highly depends on
the choice of section direction. Information on other directions might be missing.
Jenson and Domingue [1988] used digital simulation of overland water flow in 3D
topographic surface. The watershed algorithm is also popular in some GIS software
to extract breakline. Because the property of raster data, all the method suffer from
one of the following: miss candidate characteristic points, not completely break-
lines, sensitive to noise, over-segmentation.

2.1.2 Contour line input

Figure 2.2: General process to extract breakline from contour line.

Contour lines are leveling lines that do not cover the whole ground surface. So
to get the elevation of a point not on a contour line requires an additional process.
Therefore, contour line is incomplete DEM data, but it is very suitable to extract
breaklines.
The most common algorithm is the maximum curvature discriminant method [Chang
et al., 1998]. The characteristic candidate points in the structure of contour lines have
the local maximum curvature. From a geometric approach, the curvature is the sec-
ond derivative of an object’s surface. In other words, a characteristic point is where
the contour line curve changes or has the maximum curvature. The approach to ex-
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tract candidate points is similar to the theories of line simplification or compression
line segmentation. After acquiring the feature point, this method connects them
by the vector perpendicular to feature point’s normal vector. Furthermore, Ebner
et al. [1988] tracked the vertical vector of the contour line to analyses the surface
water flow. The method may also produce breaklines with missing connections and
isolated segments.

2.1.3 Mesh input

Except for traditional vector and raster input, the 3D mesh can also be used to ex-
tract breaklines. Based on the research of Cazals and Pouget [2005], CGAL includes
a package1 for approximating the ridges of a smooth surface discretized by a trian-
gle mesh (see Figure 2.3).
It defines a ridge as a curve along which one of the principal curvatures has an
extreme along its curvature line on a smooth surface. It requires the differential
quantities associated to the mesh vertices as input.

red: ridges; blue: umbilics

Figure 2.3: Crest ridges on the David,model provided by the Digital Michelangelo Project

2.1.4 Point cloud input

A point cloud is a set of 3D points, that represents the boundary of an object. Now
a point cloud is primarily perceived as a means for gathering detailed information
about the surface of the terrain. It has a different character from the raster, contour
line and mesh data. The point cloud is sparse data, and all the properties related to
points (such as the normal of a point) are also sparse. Since point clouds are widely
used and have different characteristics, researches focusing on detecting breaklines
from the point cloud are necessary.
Different methods specialise in different types of breaklines, for example man made
objects (building roofs) and natural object (mountain ridges and valleys, shorelines).

• Different edge types and characteristics

1 http://t.cn/AiCuocQk

http://t.cn/AiCuocQk


6 related work

As explained in Chapter 1, breaklines present the discontinuity of the terrain sur-
face. The discontinuity can be classified as jump, crease or curvature edge (see
Figure 2.4), and they have different properties (see Table 2.1).

Because the ”jump edge” has a clear ”gap” in range in the point cloud data, it

Figure 2.4: Different edge types [Ugelmann, 2000].

Edge type discontinuity in continuity in

jump edge range
crease edge surface normal range

curvature edge curvature range and surface normal

Table 2.1: Characteristics of edge types [Ugelmann, 2000]

can be detected using standard edge operators designed for intensity images such
as the gradient, Sobel, Kirsch, Laplacian of Gaussian, and Canny edge operators
[Ugelmann, 2000]. Furthermore, the ”jump edge” breaklines appear in buildings
mostly (e.g. roof ridge). The building ridges can be derived by the intersection of
two facade surface. Those man made roof ridges are more regular, and can be char-
acterised as the combination of different simple geometries such as line segments,
curve etc. In 3D building reconstruction, roof edge extraction has been studied ex-
tensively (Vosselman et al. [2001]; Schwalbe et al. [2005]; Verma et al. [2006]; Wang
and Shan [2009]).
The ”crease edge” and ”curvature edge” are different from the ”jump edge”. They
are the common breaklines in a natural terrain surface. They can not be summarised
as combination of simply geometries easily and look more irregular. They require
special methods to extract. This project focuses on these two type of breaklines in
natural world.

• Generating breaklines from a point cloud

Ugelmann [2000] developed an edge-extraction based approach to find breaklines
of dikes in dense laser dataset. The strategy is shown in Figure 2.5. It turns the
point cloud into grey value raster image first. The approach is based on a hypoth-
esis test to find points with extreme curvature values in the image, that broadly
indicate breakline-regions. Then the regions are reduced to one pixel wide break-
lines by means of non-maxima suppression taking into account maximal curvature
direction, and one can get a raster breakline. The next step is turning the raster
breakline into vector, and this yields rather zigzag breaklines. Finally, a cubic poly-
nomial fitting method is used in x, y coordinates to get a smooth breakline. The
result is demonstrated on a dense point cloud with 7 points/m2, and shows a set
of relatively distinct lines of a dike. The flow diagram shows that, this approach
does not directly process the point cloud to extract breaklines. It turns point cloud
into a raster first, and the core part (finding points with extreme curvature values)
is in raster data. This method is still the area of image processing, and not a real 3D
method.
Briese [2004] developed a technique to extract breaklines for dikes. This technique

requires point cloud and a 2D approximate breakline as input. It creates a buffer
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Figure 2.5: Flow diagram of Ugelmann [2000] proposed strategy

around the 2D approximate breakline in the xy plane. Along the 2D breakline a
number of overlapping patches are created (see Figure 2.6 left). For each patch, the
method fits a left local half plane and a right local half plane to the point cloud. The
intersection of each pair of planes is a breakline line segment. If the 2D approximate
breakline is missing, an operator needs to manually draw a vector which defines
the direction of each breakline. Based on this vector, the patch can be found, and the
intersection line segment direction is used to found the next patch. The breakline
is growing gradually until it touches the boundary of the point cloud. The biggest
disadvantage is the need of a 2D breakline as input or requiring a manually drawn
point or line segment with orientation as start point for each breakline. It can not
find breaklines that are not in the 2D input breaklines or missed by the operator.
This technology is limited by the quality of input 2D breaklines or the operator. It
is suitable for extracting pair vise structure line such as dikes. But for a mountain
with complex breaklines, missing 2D breaklines in the input or too much manual
intervention will be a problem. Furthermore, the breaklines of a dike changes grad-
ually, but the resulting breakline has a strong change in the direction where two
patches are overlapping.

Brzank et al. [2005] also focused on dikes, and he improved Briese’s method. He
solved the ”strong change” problem by adding more patches at the ”strong change”
area.
Brzank et al. [2005] proposed another approach to extract breaklines. It turns the
point cloud into a raster image and applies an edge detection algorithm on it to
derive the 2D approximation of the breaklines. Then a hyperbolic tangent surface
model is estimate by a non-linear least-squares adjustment to express the coastal
surface. The breaklines are derived from the surface model (see Figure 2.7). To be
noticed, the xy approximate location of breaklines is estimated from a raster image.
Hence, this method is not a real 3D method.
Pang et al. [2012] extracts valley-ridge lines from point-cloud-based 3D fingerprint

models. They first apply the moving least-squares method to fit a local paraboloid
surface and to represent the local point cloud area. On the basis of the fitting sur-
face, they calculate the curvature and curvature tensors, and then detect potential
valley-ridge points. Second, through statistical means of local neighbours, they
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Left: Ground view of overlapping patches; Right: Perspective view of a reduced number of
patches and half plane pairs.

Figure 2.6: Basic concept for breaklines extraction on point cloud by Briese [2004].

(a) Hyperbolic tangent surface.
(b) Deriving breaklines from

surface model.

Figure 2.7: Extracting a breakline from a surface model by Brzank et al. [2005]
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project those points to the most likely valley-ridge lines. Third, by growing the
polylines along the directions of the maximal principal curvatures they obtain the
3D valley-ridge lines (see Figure 2.8).

For different object, breakline detection are used in many field. For example,

Left: tracing in one direction of the seed point; Right: tracing in the opposite direction.
The purple point: the starting point; the blue point: the new sample point; The red point:
the optimized new sample point.
r: the radius of the neighbor region of the newly generated sample point; s: a user-defined
step size.

Figure 2.8: Connecting potential valley-ridge points along the directions of the maximal prin-
cipal curvatures ([Pang et al., 2012]).

Rutzinger et al. [2006] outlines an object-based extraction framework and demon-
strate it on the extraction of moraines. A preset definition of the phenomena dis-
tinctiveness dictates the search window and curvature related parameters. Features
are extracted by skelatonization of high curvature regions.
Baruch and Filin [2008] detects receding shorelines by local extreme curvature from
a laser point cloud. It uses a multi-scale approach that allows detecting different
ridge realizations.

2.1.5 Summary

A breakline is a structure line with local extreme curvature in the continues surface,
but a point cloud is discrete data and can not cover the whole space (discontinues
in surface). From the existing methods, there are three ways turning discrete points
to a continuous surface, which are actually interpolation methods:

1. Turning the point cloud into raster image;

2. Fitting a surface to the point cloud based on the shape of an object;

3. Finding local neighbours of a point, and using mathematical statistics.

Turning into raster to generate breaklines can benefit from plenty of image process-
ing methods and operators. Fitting a surface can result a smooth breakline. In those
two methods, individual points must be compliant to the collective on a local scale
and lose their individual property. It might lose accuracy or extreme values in the
transforming (to raster or surface) process.
In general, all the methods contain two basic parts:
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1. depending on the input, a method defines geometry or physical properties
which can distinguish the discontinuity points/region in the surface (e.g. height
difference in raster, curvature in contour line and mesh, rain flow accumula-
tion etc.). Based on those geometry, the method extracts topographic charac-
teristic points what might in the breaklines.

2. connect the characteristic points to get breaklines.

Examples of this process are shown in Figure 2.1 and Figure 2.2.

2.2 medial-axis transform
The medial-axis transform (MAT) was first proposed by Blum [1967] in 2D at the
beginning, and Peters [2018] applied the MAT to geographical point clouds. It is an
alternative way to describe an object’s shape, and to characterize it by a skeleton,
which is different from the common boundary representation (see Figure 2.9).

(a) A 2D object (b) Solid boundary rep. (c) MAT of solid boundary

(d) Point boundary rep. (e) MAT of point boundary

Figure 2.9: Boundary representation and interior MAT

2.2.1 MAT definition

MAT is based on the definition of “Medial balls”, which is a ball that fits completely
inside the object’s boundary, and does not contain any other ball that would fit in-
side it. The centre of the MAT ball is called a medial atom. And it has an important
characteristic: a Medial ball touches the boundary in at least two points, called its
feature points. Therefore, the distances between the medial atom and its feature
points are equal. The MAT is defined as a set of medial atoms of the object.
Figure 2.9 shows a 2D object and its boundary representation (boundary rep), which
is a solid closed polyline. And the interior MAT is also a set of solid polylines. One
polyline is called a medial branch, and the point where one medial branch intersects
with another one is called junction point, and it presents the topology relationship
between different parts of the object.
If we turn the 2D boundary polyline into a set of 2D points, the interior MAT will
also turn into a set of 2D points (see Figure 2.9). While the exact location of junction
points might missing, the topology can still be estimated by where the medial balls
overlap between different branches.
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Moving from 2D points to 3D points, the 2D medial branch become a 3D ”surface”,
called a medial sheet. Except for convex objects, objects have both an interior MAT
and an exterior MAT (Figure 2.10). For an unclosed 3D surface, for example, the
ground surface, the interior MAT is the points below the ground, and the exterior
MAT is the points above the ground (Figure 2.11).

The greatest advantage of MAT method is supporting processing point cloud di-

Figure 2.10: Interior MAT (blue) and exterior MAT (green) (black: objects surface)

Figure 2.11: interior MAT and exterior MAT of ground surface

rectly, in other words, it is fully 3D. And there is no need to convert point cloud into
raster or vector data. Therefore it will not lose information, and keep high accuracy.

2.2.2 Medial geometry

In addition there are several geometry property for each Medial ball (shown in
Figure 2.12):

• Spoke vector: the vector from central of Medial ball to a feature point;

• Separation angle: the angle θ between the two spoken vector;

• Media bisector: the angular bisector of separation angle θ

2.2.3 Shrinking-ball algorithm for medial atoms

In practice, the MAT can be approximated by the shrinking-ball algorithm, which
requires an oriented point cloud as input. For one feature point, the centre of a
medial ball must lie in the reverse direction of its normal vector, the centre of the
ball can be calculated if the radius is known. With the decrease of the radius, the
ball keeps shrinking until it touches another point and there is no other point inside
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Figure 2.12: Medial point and its geometry [Peters, 2018]

the ball. And this ball is a Medial ball, and the centre of the medial ball is the medial
atom. The 2D shape result is shown as blue dots in Figure 2.13, and mountainous
surface point cloud MAT result is in Figure 2.14. It is possible that a point may not
touch any medial ball. Therefore, for the interior or the exterior MAT, the maximum
possible number of medial atom is the same size of input point cloud.

Figure 2.13: MAT point in 2D shape [Peters, 2018]

(a) Top view (b) Side view

Figure 2.14: MAT points for mountainous surface point cloud.

2.2.4 Medial segmentation and topology

Furthermore, the MAT processing also includes a segmentation method, whose
function is to classify the medial atoms into different medial sheets by checking the
similarity of the bisector. And the topological relationship between medial sheets is
estimated by local neighbour analysis. This two kinds of geometry feature can be
useful for extracting breaklines from a point cloud.
The segmentation process is implemented with a region growing algorithm, which
starts at a random points as the initial seed point, using a validation function to
check whether its local neighbour point is belongs to the same medial sheet as the
initial point or not. And the points pass the validation will add to the seed point
set. It iterates until all the seed points have been checked and there is no new seed
point can be added. One can observe that for one medial sheet, the medial balls
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have similar bisector. Therefore, the validation function will be true if the difference
of bisectors is below a certain threshold. Also in one medial sheet, the medial balls
are overlap with each other in a large areas (see Figure 2.15). So another validation
function could be whether two medial balls overlap enough, more specifically, the
sum of two balls’ radius divided by the distance between the two medial atoms is
larger than a threshold.
The medial sheets containing a very low number of medial atoms will be labelled

Figure 2.15: MAT segmentation: ball overlap [Peters, 2018]

as unclassified and eliminated from the segmentation result. This might because of
ground noise, for example a large stone. Also if vegetation is captured a lot by the
point cloud, especially for dense point clouds, whose normal vector will vary a lot
in a small scale or within its neighbours. According to the shrinking ball algorithm,
it might generate some medial atoms close to the ground surface with nonuniform
bisector. Those MAT points are classified into ground noise.
As for the topology of medial sheets, for each pair of medial sheets, one can accu-
mulate the neighbour points belonging to another sheet (and the idea is shown in
Figure 2.16). If the accumulation number is large enough, these two sheets have
a high probability being connected. In conclusion, the MAT method is able to im-

Figure 2.16: Accumulating neighbours [Peters, 2018]

plement on point cloud directly, and it provide medial geometry, segmentation and
adjacent information, which are convenient to breakline generation. More impor-
tant, from the top view of MAT result (in Figure 2.14), it has a ”breakline-like”
distribution, which means the MAT result indicates the breakline with some prop-
erties, which makes this method very suitable to solve the main research question.





3 B R E A K L I N E G E N E R AT I O N W I T H T H E
M AT

This chapter introduces the conceptual framework to extract breaklines based on
the MAT method. The focus will mainly be on the theoratical aspects of this project.
Section 3.1 explains the geometry link between the MAT and breaklines which is
the fundamental idea of this project. This section also gives an overview of the
workflow, briefly presents the steps. The next section explains how to estimate the
orientation of a point cloud. Section 3.3 includes the MAT adjustment made in
this project to solve the main research question. Section 3.4 explains how to ex-
tract points that might lie on a breakline. The following two sections present two
methods to generate polylines as breakline from the extracted points. Section 3.5
presents how to find breakline with graph theory (minimum spanning tree and
shortest path algorithm). Section 3.6 presents another method to find breakline
by polynomial fitting. Section 3.7 connects the breaklines using the MAT adjacent
relationship. Finally Section 3.8 provides an option to simplify or smooth the break-
lines.

3.1 methodology
As defined in Chapter 1, a breakline is a structured 3D polyline of the object surface
which has high curvature. Curvature has different definitions in different areas of
geometry. The well known Augustin-Louis Cauchy defines:

the center of curvature of a curve C as the intersection point of two
infinitely close normals to the curve, the radius of curvature as the dis-
tance from the point to C, and the curvature itself as the inverse of the
radius of curvature.

Figure 3.1 shows a point p on a 2D curve C, and according to Cauchy’s definition,
the curvature of p is 1

r . To be noticed, the tangent circle is also a 2D medial ball in
the figure.
As for a point P on a 3D surface S, one can fit a ball touching the surface at point P
with maximum radius r, and the curvature of this point P is still 1

r .
This definition also links the breakline and the MAT together well. In Figure 3.2a,

Figure 3.1: A 2D curve (blue circle is also a medial ball)

15
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c1, c2, c3 are the medial atoms of a terrain MAT, and m is the point on the breakline.
Along the direction of c1, c2, c3, the radius of the medial balls become smaller and
smaller. The last medial ball c3 is approximately tangent at point m and the radius
of c3 indicates the locally extreme curvature.
As further evidence, if the medial atoms are projected to the xy plane, the projected
points are gathered around m(x, y), which explains the reason why MAT result have
a ”breakline-like” distribution in Section 2.2 (see Figure 2.14).
In further observation of Figure 3.2b, one can fit a curve l passing the medial atoms.
l intersects the ground surface at the ground point m with maximum curvature,
which is a candidate point. The direction of l is approximately the direction of the
bisector.
In addition, in terrain modelling, the interior and exterior MAT respectively corre-

(a) (b)

Figure 3.2: Medial ball and curvature (side view)

spond to the topographic ridge and valley features (see Figure 3.3), which are two
main kinds of breaklines in a natural ground surface. The process to extract ridges
and valleys are the same, and if not specified, all the explanation and images use
the ridges and interior MAT result as example.
Furthermore, the medial atoms are segmented into medial sheets (explained in Sec-
tion 2.2), and one medial sheet indicates one ridge or valley (see Figure 3.3).
In conclusion, those internal relations are the fundamental of this project.:

1. Radius and bisector of medial balls indicate the point on the breakline;

2. Interior and exterior MAT separate ridge and valley;

3. One medial sheet stands for one breakline.

With the help of MAT, this chapter proposes a new approach to generating break-
lines from point cloud directly. Similar to the other methods (see section 2.1.5),
the key part to generate breaklines consisting of two aspects: (1) finding candidate
points that might lie on the breaklines, (2) connecting the points to form polylines
to get breaklines.
Based on the fundamental idea, 7 steps are taken to get 3D breaklines directly from
point cloud (shown in Figure 3.4):

1. Normal estimation for the point cloud;
The normal vector of a point is a required input for the MAT ball shrinking
algorithm.

2. MAT processing (preparing for step 3 and 5);
In the second step, the plane area of the terrain is separated from the point
cloud by MAT. This step proposes a new geometry and a new method for
medial sheet segmentation. The adjacent relationship between medial sheets
are separated into deep and surface adjacent.

3. Candidate point extract;
In the third step, since a small radius of a medial ball corresponds to a high
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(a) Concept.

(b) Simulation

Figure 3.3: Interior and exterior MAT indicate ridge and valley (side view)

Figure 3.4: Methodology flow chart
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curvature, those medial balls are selected to calculate candidate point coordi-
nates.

4. Polyline generation from candidate points;
The fourth step provides two options to generate polylines.
One option utilizes graph theory. It first connects the candidate points to its
closet neighbour with the minimum spanning tree (MST) algorithm. Then it
simplifies the MST into a polyline with the shortest path algorithm.
The other option utilizes polynomial fitting. It fits a cubic polynomial function
through the candidate points as a polyline.

5. The topology of breaklines;
The fifth step estimates the junction point for adjacent breaklines with the
MAT adjacent relationship between medial sheets.

6. Polyline simplification and smoothing.
In the sixth step, the polyline can be simplified and smoothed. The simplifi-
cation eliminates less important point in the polyline. For the smoothing four
methods are compared to insert new point in the polyline.

7. Save polylines to a file.
In the end, the result can be saved into a .obj file to share and open in other
software.

3.2 normal estimation

In a point cloud, the orientation of a point p is the normal vector of its local surface.
In this study, the local plane is fitted by the k-nearest-neighbour of the point P (see
Figure 3.5). Each point has two reverse orientations, one points above the ground,
the other point under the ground. The first is for the exterior MAT and second for
the interior MAT.

Figure 3.5: Normal estimate

3.3 mat processing

This section extracts more information from the MAT to solve the main research
question. First, it separates points in the plane area of the terrain from the point
cloud by MAT. Second, it proposes a new metric and a new method to do sheet seg-
mentation. Third, this section separate the medial adjacency into deep and surface
adjacent.
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3.3.1 Finding planar areas in the terrain with the MAT

In the MAT definition, a feature point touches a medial ball at a point p, but this
does not always mean that the curvature of p is the reciprocal of the medial radius.
As Figure 3.3b shows, the simulation terrain consists of three planar surfaces, the
curvature should be 0.
Using medial ball’s radius to find candidate point, a plane terrain area with a small
medial ball may also be selected as a candidate point. This can cause problems.
In the MAT shrinking-ball algorithm (Section 2.2), some terrain points can not find
a medial ball, and they are left as unshrunken points (see Figure 3.6). In the interior
MAT, the unshrunken points cover planar areas in the terrain, and a few valley
points, and vice versa for the exterior MAT. The unshrunken points can thus be
used to remove the points that touch small medial balls in a planar areas.

Figure 3.6: Terrain point cloud (colour) and in interior unshrunken points (black).

3.3.2 Medial direction and segmentation

Because one medial sheet corresponds to one breakline, a better sheet segmentation
result will provide a better breakline result. In order to get a more accurate segmen-
tation, this section introduces a new property called the medial direction, ~nc.
As shown in Figure 3.7, point c is the centre of the medial ball, and point p, q are
the two feature points. Points p, c, q lie in the same profile/section plane. The
medial direction, ~nc is the normal vector of plane pcq, and it can be calculated by
the normalization of the cross product of two spoke vectors:

~nc ′ = ~sp × ~sq (3.1)

~nc =
~nc ′∥∥∥ ~nc ′
∥∥∥ (3.2)

Depending on the order of spoke vectors in cross product, ~nc can have two direc-
tions: one points to the inside of plane pcq (~sp × ~sq), and the other points to the
outside of plane pcq (~sq × ~sp). This project always use the spoke vector that equals
to the reverse normal vector of point cloud as the first multiplier.
Since all the points in plane pcq have the same normal vector. For the medial ball
close to the point on the breakline, the point is approximately on the same plane.
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Because the line between the medial ball and the curvature, ~nc can be approximately
seen as the directions of maximal principal curvatures of the point (~v) on the break-
line.

In Figure 3.8, each sheets has a different medial direction. Therefore instead of

Figure 3.7: Medial direction ~nc

using bisector difference as validation function (explained in Section 2.2), one can
define a new segmentation validation condition by medial direction similarity :
If the difference between the medial direction of two medial atoms is below a thresh-
old, they are likely to belong to the same medial sheet.
But the change of medial direction is gradually, not a ”jump” change. Hence when

(a) Real data example (green: medial direc-
tion, orange, yellow, pink, blue: medial
atoms belonging to different sheets).

(b) Theoretical example (arrows: medial di-
rection).

Figure 3.8: Medial sheets and its direction.

a sheet bends into two different sheets, the differences of medial direction will stay
below the threshold (for example Figure 3.8a) , and it might be classified into the
same sheet which is not correct actually.
One solution is using a smaller threshold. But a very small threshold will split a
large medial sheet into many small medial sheets (over-segmentation). If the num-
ber of points in one segment class is too small to fit a medial sheet, it will be labelled
as unsegmented.
Another solution is to combine two validation functions. Take the bisector and the
ball overlap validation function (explained in section 2.2) into account, there are
three independent validation functions:

1. the difference between the medial direction of two medial atoms is below a
threshold ~nct.

2. the difference between the bisector of two medial atoms is below a threshold
~bt.



3.4 candidate points extraction 21

3. the sum of two balls’ radius divided by the distance between the two medial
atoms is larger than a threshold bot.

There are four different combinations {1,2}, {1,3},{2,3} and {1,2,3}. If both two or
three conditions are true, two medial atoms are likely to belong to a same medial
sheet.
In this way, the strict thresholds can be avoid, and the validation function has more
constraints. Figure 3.9 shows a segmentation result.
In addition one more threshold is introduced:

cn : a threshold for the minimum number of points to firm a medial sheet;
The size of a medial sheet represents the scale of the breakline. If the total number
of points in a medial sheet is below cn, than this sheet might be caused by a big
stone or noise in the ground, and it will not be taken for the further processing.
The value of cn is related to the resolution of original point cloud and the minimum
breakline length a user want to detect.

3.3.3 Separating adjacent relationship into surface and deep adjacent

Observing carefully in the segmentation result, one can find two kinds of adjacency
between medial sheets (see Figure 3.10). If two medial sheets are adjacent close
to the terrain surface, they are surface adjacent. While if two medial sheets are
adjacent far from the terrain surface, they are deep adjacent. Those two kinds of ad-
jacency relationship can be distinguished by the shortest distance of the neighbour
points (explained in Section 2.2.4) to ground surface.
Figure 3.11 demonstrates the possible causes of the deep adjacency. The deep ad-

jacency shows the internal relation of the mountain, such as the mountain folded
relationship or indicating the denudation process. It might be interesting for ge-
ology research. But the breakline is the ground surface geometry, and this project
only need the surface adjacency.

3.4 candidate points extraction

According to the fundamental idea explained in Section 3.1, a candidate point on a
terrain surface is a point with a local maximum curvature. In the context of the MAT,
a greater curvature corresponds to a smaller Medial ball. Therefore, the medial balls
with a small radius are selected in each medial sheet, and the candidate points are
calculated based on those medial balls (see Figure 3.12 ). Within this section, both
finding medial balls and extracting candidate points are based on the segmentation
result from the last section, more specifically, they are applied on each medial sheet.

3.4.1 Finding edge balls

From the observation of one medial sheet, medial balls closer to the terrain surface
will have a smaller radius, and these balls are edge balls (see Figure 3.13 and Figure
3.2b). For the interior MAT (corresponding to ridge) these are the top edge balls,
and for the exterior MAT (corresponding to valley) these are the bottom edge balls.
The small radius is relative, and different for every medial sheet. Even in the same

medial sheet, the edge balls’ radius is variable. That is why an edge ball can not be
selected by filtering on medial radius. The edge balls need to be found from their
location in the sheet.
This project tried two options to find the edge balls:
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(a) Side view.

(b) Top view.

Figure 3.9: Segmentation result: medial sheets (colour) and terrain point cloud (white).
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(a) Two pairs of medial sheets are adjacent close to the terrain surface.

(b) Two medial sheets are adjacent far from the terrain surface.

Figure 3.10: Two kinds of adjacent between medial sheets.
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(a) Mountain folded relationship.

(b) Residual of the denudation process.

Figure 3.11: The causes of the deep adjacent.

Figure 3.12: Work flow for extract candidate points.

Figure 3.13: A medial sheet and its edge balls (side view)
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1. Find traces of medial atoms approximately along the bisector~b direction (see
Figure 3.14) in one medial sheet. The last medial atom of one trace is the edge
ball.

2. Evaluate separately for every medial ball whether it is an edge ball or not.

Figure 3.14: Profile section view for trace p1 p2 p3 and deviation angle α

• The first option: finding edge ball through traces

In Figure 3.14, the medial bisector of a medial atom p1 always approximately points
to the next medial atom. The radius of p2 is always smaller than p1. Then p2 might
be able to find a next neighbour (p3) in its bisector direction, until there is in no
point in the current point’s medial bisector direction. p1 p2 p3 is a trace, and its end
point is the required edge ball point.
Since p2 is not exactly colinear with the bisector of p1, a deviation angle α is intro-
duced (shown in Figure 3.14). α is defined as the angle between the bisector of the
current medial atom c and the vector starting at c ending at another medial atom c′.
In order to realize this idea, the FindTraces algorithm is implemented, see Algo-
rithm 3.1.
A trace starts at a medial ball with a big radius, and along the trace is growing di-
rection, the radius keeps decreasing. To make sure a trace start growing at a point
with a large radius, a priority queue of medial atoms with a descending order on
radius is used.
For a trace, the current last point is p, j is one of p’s neighbour, the deviation angle
of p, j is αpj. With the user defined maximum deviation angle αt, j is the next point
in the trace if it satisfies the flowing three requirements:

1. j is not in other trace;

2. the radius of j is smaller than the radius of p;

3. αpj < αt.

If j meets all the requirement, it will be added to this trace and become the new
current last point for the next iteration. If no neighbouring point meets all the re-
quirements, the trace finishes at p.
In the FindTraces algorithm, for each point p, there might more than one point meet-
ing those three requirements, and they are ”valid points”. There is a competition of
”closest to bisector first” and ”closest to point p first” to be the next point.
”Closest to bisector first” selects the point that is closest to the direction of the bi-
sector of p as the next point among all the valid points. This is described by the
deviation angle α, the smaller α the closer to the bisector. Algorithm 3.1 (line 16 -
20) implements this strategy.
But ”closest to bisector first” may cause a problem. In Figure 3.15a, if both vp1 and
vp2 are valid points, the further point vp2 has a smaller deviation angle. With ”close
to bisector first” strategy, vp2 is chosen as the next point, while the true next point
vp1 is missed . vp1 will become an isolated point or be put into the wrong trace.
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Algorithm 3.1: FindTraces (MATdata, α thresh)
Input: MATdata: Medial ball i belonging to one sheet consists of its

geometry:
ci: the x, y, z coordinate of medial atom i,
ri: the radius of of medial atom i,
~bi: the bisector of medial atom i,
αt: the threshold for deviation angle.
Output: AllTrace: lists of medial atoms in one trace

1 pq← a priority queue of ci with the descending order of radius;
2 kd← a KD tree of ci;
3 AllTrace← empty;
4 while pq is not empty do
5 p← pop the first element ci with the largest radius in pq;
6 next← True;
7 a trace← empty;
8 while next do
9 a trace Add p;

10 pq \ p;
11 next← False;
12 Neighbours← FindNeighbourPoints(p, kd);
13 candidate← Neighbours ∩ pq & & rNeighbours < rp;
14 if candidate is empty then
15 continue;

16 α← a list of deviation angle for each pair of (p, candidatei);
17 pi ← the point with min(α);
18 if min(α) < αt then
19 p← pi;
20 next← True;

21 AllTrace Add a trace;

22 return AllTrace
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”Closest to point p first” selects the point that is closest to the point p as next point
among all the valid points. Then the 16th - 20th line of Algorithm 3.1 will become:

1 sorting the candidate by the distance to p in ascending order;
2 for point c in candidate do
3 αpc ← the deviation angle of p, c;
4 if αpc < αt then
5 p← pi;
6 next← True;

With the ”close to point first” strategy, an unsuitable αt will cause a problem. In
Figure 3.15b, both vp1 and vp2 are valid points and vp2 is closer to point p. A large
αt will result in vp2 to be the next point, while the true next point is vp1. The trace
thus bends to wrong direction.
To get the best next point, this strategy needs a small αt. But αt is different for every
medial sheet, and there is no good way to estimate αt. Using a strict αt might result
in no valid points in some sheets.

In conclusion, to find a complete trace there needs to be a balance between the

(a) Closest to bisector first (b) Closest to point first

Figure 3.15: Problems in finding trace.

”closest to bisector first” strategy and the ”closest to point first” strategy, which
makes the problem even more complex. The traces found by ”close to point first”
for one sheet are shown in Figure 3.16. There are a lot of short traces and they end
far away from the terrain surface. Still, no easy way to find a perfect complete trace
can be found.

• The second option: finding edge ball by evaluating every medial atom sep-
arately

The second option is evaluating for every medial ball whether it is an edge ball or
not. To realise the idea, an edge ball detection algorithm is shown in Algorithm
3.2. Different from Algorithm 3.1 that tries to find the next point in the trace, the
EdgeBallDection algorithm does the opposite. It traverses every medial atom, if a
point p does not have any point can be validate as ”next point”, than this point is
an edge point. And for each neighbour n the validation criterion are:

1. the radius of n is smaller than the radius of p;
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Figure 3.16: Profile section view for traces (white) and terrain point cloud (color stands for
height).

2. αpn is smaller than the maximum deviation angle threshold, α thresh.

It starts at a random point of the medial atoms C of a sheet, i.e. ci. First it finds the
local neighbours of ci, and if ci does not have any neighbour, the point is probably
far away from the medial sheet, and ci will not be considered.
The algorithm sort the neighbours by the distance to ci, and only keep the neigh-
bours that satisfy criterion 1. Then it traverses each local neighbour n, and breaks
when finding the ”next point”, more specifically, the deviation angle between ci and
n is below threshold ta. If ci does not have any ”next point”, in other words, is an
edge ball point, ci is the edge ball’s centre, and will be added to the output.
There are two ways to find the neighbours of a point. One is searching the neigh-
bours in a certain radius, tr, and the other one is finding the k-nearest-neighbours.
The difference between the two methods is summarised in Table 3.1. Both two op-
tions require the user to define a threshold. Different threshold values will affect
the result and computation time. Both a small search radius and a small number
of N-nearest-neighbours might result in no neighbours being found, and no edge
balls. The ”search radius” will cost more execution time, while it is capable to find
neighbours in all directions. The ”KNN” takes less execution time, but if there are
plenty neighbours gathering in one direction this option might not able to find the
next visit point (see Figure 3.17).

Table 3.2 provides a test on both two options. The total number of input Medial

(a) small radius neighbour search (b) 5-nearest-neighbour search

red: query point; pink: selected neighbours; black: unselected neighbours, gray: bisector.

Figure 3.17: radius neighbour search and k-nearest-neighbour search.

points is 336839, and besides the mentioned threshold, all the other processing is
the same. Figure 3.18 compare the output of ”20NN” and ”search radius = 30m
”. The output of ”20NN” still has a sheet-like point distribution. Thus, in practice
algorithm 3.2 incorporate the search radius method.

To avoid missing neighbours, the search radius should be a larger value. This
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Algorithm 3.2: EdgeBallDetection (MATdata, α thresh,r)
Input: MATdata: Medial ball i belonging to one sheet consists of its

geometry:
C: the x, y, z coordinate of medial atom i,
ri: the radius of of medial atom i,
~bi: the bisector of medial atom i,
αt: the threshold for deviation angle,
r: Search radius
Output: Pe: a set of extreme balls’ medial atoms

1 kd← aKDtreeo f ci;
2 for each point ci in C do
3 Neighbours← FindNeighbourPoints(ci, kd, r);
4 if Neighbours is empty then
5 continue;

6 else
7 counter = 0;
8 sort Neighbours by ascending distance to ci;
9 remove points with radius larger than r ci in Neighbours;

10 for each point n in Neighbours do
11 αn ← the deviation angle of ci and n;
12 if αn < αt then
13 break;

14 else
15 counter ++;

16 if counter == size of Neighbours then
17 Pe Add ci;

18 return Pe

Radius KNN

Required define threshold radius [meter] k [integer]
execution time longer shorter
small threshold results in no neighbours no neighbours
problems can not deal with plenty neigh-

bours gathering in one direction
(see Figure 3.17)

Table 3.1: The differences of two methods for finding neighbours

Number of edge balls (ne) ne/n
10NN 261376 77.6%
20NN 188486 55.96%

Search radius = 30 m 61512 18.26%

Table 3.2: Number of edge balls with two methods (n = 336839 number of the input medial
atoms)
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red: search radius = 30m; yellow: 20 nearest neighbours; White: terrain point cloud.

Figure 3.18: Result of two methods.

returns more neighbours, but after sorting the neighbours by the closeness to the
query point, the neighbour traversal will stop at the closest neighbour that meets
the deviation angle threshold, and does not go through every neighbour. This re-
duces the running time. Moreover, the MAT atom density depends on the point
cloud resolution, therefore using n times the resolution as search radius is logical.

3.4.2 Filtering edge balls

To get better edge balls, some restricting conditions are used to filter edge balls.
First, since the radius and the curvature are reciprocal of each other, the maximum
radius is used to remove edge balls with low curvature. Close to the ground, some
ground noise will result in small radius medial balls, and they need to be filtered
out too. Hence, the minimum radius is used. Therefore, the edge balls are limited
by minimum and maximum radius.
Second, there are some points far away from the terrain surface point cloud. This
might caused by the edge ball detection that is influenced by the shape of a medial
sheet (see Figure 3.19), the points in the highlighted circle might also contribute to
edge medial balls. They can be removed by the distance to the terrain surface.
Third, in planar area, the unshrunken points are used to remove edge balls by pro-

jecting the unshrunken points and edge ball atoms to the xy plane, if the distance
between the edge ball atom and the closest unshrunken point is too small, the edge
ball will be eliminated too.

3.4.3 Calculating candidate point coordinates from the remaining edge balls

This section is about calculating candidate point coordinates from the remaining
edge balls (see Figure 3.20). According to Section 3.1, in an edge ball C, the candi-
date point m is the intersection of the bisector~b and the terrain surface.

As explained before, the bisectors close to the ground are influenced by small
ground objects (or noise), and the edge balls’ bisectors varies more than others. To
reduce the noise, the weighted average bisector ~bavg is used.
For the medial atom of an edge ball p
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colour points: medial atoms belonging to different sheets; White:terrain point cloud.

Figure 3.19: Medial sheet

Figure 3.20: Edge balls to candidate points
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The k-nearest-neighbor medial atoms of p in the same medial sheet are found

weighti =
ri

∑k
i=1 ri

(3.3)

~bavg =
k

∑
i=1

~bi × weighti (3.4)

And for further calculation, ~bavg needs normalization, with

~bavg = (xb, yb, zb) (3.5)

the normalized the bisector ~bn is found as

~bn =
(xb, yb, zb)√

xb
2 + yb

2 + zb
2

(3.6)

The comparison of whether using the weighted average bisector ~bavg or not is in
Figure 3.21. It is clear in the image that the candidate points are gathering to a
better smooth line with ~bavg.

There are four methods to calculate the coordinates of candidate point m (see

*red: with ~bavg; green: without ~bavg .

Figure 3.21: Result of using and not using weighted average bisector ~bavg.

Figure 3.22):

1. The intersection of the bisector and the medial circle (Figure 3.22a).
If the coordinate of c is (xc, yc, zc), the radius is r, and the normalized weighted
average bisector is ~bn,
Candidate point: m = c + r · ~bn

2. The intersection of the bisector and right-angle side lpm (Figure 3.22b):
In triangle ∆mpc, ∠mpc = 90◦,
the separation angle ∠pcq = θ, lpc = r, ∠pcm = 1

2∠pcq = θ
2

lmc =
lpc

cos(∠pcm)
= r

cos( θ
2 )

Candidate point: m = c + lmc · ~bn

3. Using splines fitting the profile/section of plane pcq, the intersection of bisec-
tor and the spline will be the candidate point (see Figure 3.22c).
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4. Find the k-nearest-neighbour points in the ground point cloud, and use spa-
tial interpolation to get the z coordinate of candidate point m (Figure 3.22d).
Candidate point m = (x, y, z), the coordinate of c is (xc, yc, zc), and the nor-
malized weighted average bisector ~bn = ( ~bnx, ~bny, ~bnz);
x = c + r · ~bnx
y = c + r · ~bny
z = NN spatial Interpolation at (x, y)

(a) Intersection of bisector and the
circle

(b) Intersection of bisector and right-
angle side

(c) Splines fitting (d) Spatial interpolation

Figure 3.22: Four methods to calculate candidate points coordinates (candidate point: m).

The resulting candidate points of first two methods is in Figure 3.23. Both Figure
3.22 and Figure 3.23 shows that in side view, the intersection of the bisector and the
circle is a little bit below the surface, while the intersection of bisector and right-
angle side is higher than the surface. As to the top view, those two results are
almost overlapping, which means the (x, y) coordinate of candidate points is stable
in the two methods.
The difference of the (x, y) coordinate between the first and the second method is

small, but the z coordinate is not accurate. This project takes the (x, y) coordinate
with the first method (intersection of bisector and the circle) first. Then implement
the Nearest Neighbour interpolation 1 at (x, y) to get z coordinate. In this way the
candidate point’s coordinate (x, y, z)is found.
This project also tried spline fitting to calculate candidate points coordinate (see
Figure 3.22c). But to use spline fitting, additional points are required to control the
curve. Those points can not be found, so spline is not the solution for candidate
point coordinate calculation.

1 https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation

https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
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red: intersection of bisector and the circle; green: intersection of bisector and right-angle
side; White: terrain point cloud.

Figure 3.23: candidate points with first two methods.

3.5 polyline generation from candidate points
using the graph theory

In this section, the main task is generating polylines from the candidate points as
the breakline using graph theory.
This section first connects the candidate points to its closest neighbours with the
minimum spanning tree (MST) algorithm. Then it simplifies the MST into a simple
polyline with the shortest path algorithm.
As defined in Chapter 1, a breakline of an object’s surface is a polyline. A polyline
is a connected series of line segments, more exactly, it is a curve specified by a set
of ordered points P(p1, p2, . . . , pn) called vertices. The start and the end points of a
polyline are called free vertices.

3.5.1 Connecting candidate points with the minimum spanning tree

As Section 3.1 explained, the candidate points from the same sheet should be the
vertices from one polyline ( or breakline). Section 3.4 shows that the extracted
candidate points distribute like a polyline. To get this polyline, the points need to
be connected to the nearest neighbours first.
The connection can be formed by the following process:
In a set of candidate points P from the same medial sheet:

1. Initialize a set of points G = ∅ and a set of line segments l = ∅;

2. starting at a random candidate point p0, P \ p0 (remove p0 from P), G ∪ p0
(add p0 to G);

3. For every point gi in G, find the closest point pi in P and calculate the dis-
tance di for each pair of (di, pi), and find the minimum distance dmin and its
corresponding points d̂ and p̂, P \ p̂, G ∪ p̂, l ∪ (ĝ, p̂);

4. Repeat the third step until P = ∅; which means every point has been added
into G, and the connection described by line segments is saved in l.

This is a description of the Minimum spanning tree algorithm.
In an undirected graph G = (V, E), V is a set of vertices, (vi, vj) represents the edge
connecting the vertices vi and vj, and E is a set containing all the edges, in other
words, (vi, vj) ∈ E, and w(vi, vj) is the weight of edge (vi, vj).
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The Minimum spanning tree T is a graph, containing all the vertices and a sub-
set of edges in G (T = (V, Ê)), and has the minimum sum of the edge weights
∑(vi ,vj)∈Ê w(vi, vj).
The graph G can be initialised by adding every candidate point as a vertices, adding
each pair of candidate points as an edge, and the distance as the weight of the edge.
So for a set of n points, the created graph G contains n vertices and n(n − 1)/2
edges. The out put T is the minimum distance spanning tree. The concept is shown
in Figure 3.24. The result of this step is in Figure 3.25.

Figure 3.24: Connect candidate points by MST concept

3.5.2 Simplification of the MST into one polyline with the shortest path algorithm

This section describes how to get a polyline from the minimum spanning tree graph
(T), which stores a set of unordered line segments, by the shortest path algorithm.
The target polyline is the longest path in T (see Figure 3.26). Notice that, not all
the candidate points are taken into the output polyline. In Figure 3.26, only the red
points are taken into the output polyline, and the black points are eliminated from
the output.
There is no cycle in T, otherwise a vertex in the cycle can have two paths connecting

to another vertex in the cycle, which is in violation of the minimum sum distance
requirement. Therefore, there is only one path from one vertex to another vertex in
MST.
This project tried three methods to find the start and end vertexes:

1. largest Euclidean distance: It calculates the Euclidean distance for each pair
of candidate points. The point pair with the largest Euclidean distance are the
start and end vertices in Graph T. The output polyline is the the path between
them, and it can be found with the shortest path algorithm.

2. longest accumulation distance: It finds the path for each pair of vertices in
Graph T. The path with the largest accumulation weight, in other words the
path with the longest accumulation distance, is the required polyline.

3. maximum number of vertices: It finds the path for each pairs of vertices in
Graph T. The path with the maximum number of vertices, in other words the
path consisting of the most candidate points, is the required polyline.

In a set of well extracted candidate points, for example Figure 3.26, those three
methods have similar output. Figure 3.27 shows the output polylines for the three
methods, and the difference appear around the free vertices of a polyline. For this
dataset, the ”largest Euclidean distance” and the ”maximum number of vertices”
provide better results. But it might be different for other inputs. Because the Eu-
clidean distance for each pair of vertices has already been calculated in previous
step (Section 3.5.1), to save the computation time, the default option is the ”largest
Euclidean distance”.
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(a) .

(b) .

Figure 3.25: Minimum spanning tree result (green: candidate points, white: MST edge)

Figure 3.26: From MST line segments to polyline (point: candidate point; line: MST; red line:
extracted polyline)
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(a) largest Euclidean distance (b) longest accumulation distance

(c) maximum number of vertices (d) Point cloud (colour stands for height)

Figure 3.27: The result of Simplify MST into one polyline with three methods.

3.6 polyline generation from candidate points
using a polynomial fit

This section provide another option to obtain breaklines from candidate points. It
fits a polynomial function for all candidate points of a sheet, and exports a smooth
polyline as breakline.
Polynomial fitting for breakline generation is actually a 2D problem. Projecting the
polyline onto the xy plane, and fitting a polynomial function in the xy plane. The
z coordinate could be calculated by spatial interpolation at (x, y) in the point cloud
to make sure the breakline is always on the terrain surface.
This project uses the cubic polynomial function:

y = f (x) = t3 · x3 + t2 · x2 + t1 · x + t0 (3.7)

The ”polynomial fit” treats the breakline as a function, therefore for one x value, the
function f (x) maps to exactly one y value, in other words, one x can not correspond
to more than one y.
The candidate points in Figure 3.28 are not x-monotone, therefore it can not directly
use its (x, y) coordinate for polynomial fit. Hence, a coordinate transformation is
required.

The transformed coordinate x axis can be largest eigen value’s corresponding
eigen vector. The y axis is another eigen value’s corresponding eigen vector. Than
the transformed coordinate is settled. But is does not work for all breaklines (for
example the highlight breaklines in Figure 3.27).
There are two common fitting methods: the least square fit and the maximum like-
lihood fitting. The sum of the distance between each candidate point and the fitting
polyline is the root mean square error (RMSE) (see Figure 3.29). This project takes
the least square fit because calculating the RMSE is easier during the process.
For ill distributed candidate points (see Figure 3.30), the RMSE is large. It shows

the candidate points are inadequate to generate a breakline. Therefore, it will be
removed from the resulting breaklines.
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Figure 3.28: Candidate points for polynomial fitting

Figure 3.29: The root mean square error

Figure 3.30: The large root mean square error



3.7 the topology of breaklines 39

3.7 the topology of breaklines

Based on the MAT adjacency graph, this section finds the topology relation between
different polylines.
Two polylines can only have four kinds of relationships: isolated, touching, cross-
ing or overlapping (see Figure 3.31). Within the scope of extracting breaklines for
mountains, the cross relation will turn into touching, and overlap will be treated as
one breakline (see Figure 3.32). Therefore two ridges or two valleys can not cross or
overlap each other, they only have two relations: isolated or touching.
The breakline adjacency relationship is the same in the corresponding medial sheet.

(a) Isolated (b) Touching (c) Crossing (d) Overlapping

Figure 3.31: Four kinds of relationships between two polylines

(a) cross turns into touching in breakline

(b) overlap turns into one breakline

Figure 3.32: There is no cross or overlap between two breakline

Because a breakline is the geometry for the object’s surface, only the surface adja-
cency (see Section 3.3.3) is considered. The vertices where two breaklines touch or
cross are called junction vertices. As Section 2.2 explained, they need to be esti-
mated.
For two isolated breaklines, they are generated separately from different sheets and
graphs, hence there is no edge or path connecting them. Isolated lines do not need
further processing.
As for two touching breaklines, the junction vertices need to be located. There can
be two situations (Figure 3.33a and Figure 3.33b), they both touch where two poly-
lines are nearest.
For the four free vertices v1, v2, v3 and v4, the closest point in another polyline can

be found vc1, vc2, vc3 and vc4. The nearest vertices pair (vi, vci), i ∈ 1, 2, 3, 4 should
be added to the polyline, and vci is the junction vertex. But vci is only an estimated
point, and it may be a little shifted from the true junction point j (see Figure 3.33c
and Figure 3.33d).
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(a) j in the polyline (b) j outside the polyline

(c) ĵ for j in the polyline (d) ĵ for j outside the polyline

j: true junction point; v1, v2, v3, v4: free vertices from two polyline; vc1, vc2, vc3, vc4 closest
vertices of free vertices; ĵ: estimated junction point .

Figure 3.33: Three methods to calculate candidate points coordinates.

3.8 polyline simplification and smoothing
Some parts of the resulting breaklines are zigzagging (especially when one zooms
in, such as in Figure 3.34) and contain many points. Some applications might re-
quire a smooth polyline or with few points. This section provides a method to
simplify the polyline and compares several options to smooth the polyline. De-
pending on the user’s requirement, the breaklines can be simplified or smoothed,
or both. Or a polyline can be simplified first, than smoothed, and simplified again.

Figure 3.34: zigzagging

3.8.1 Polyline simplification

The purpose of line simplification is using as little as possible points to represent
the polyline’s shape.
This project use Visvalingam’s algorithm to simplify the 3D polyline2. Compered
with Douglas–Peucker, the well known line simplify algorithm, Visvalingam algo-
rithm may be more effective and has a remarkably intuitive explanation: it progres-
sively removes points with the least-perceptible change. See Figure 3.35, each pair
of adjacent line segments forms a triangle, and the area of every triangle can be
calculated. It removes the point with the smallest triangle area, then updates the
polyline and the triangle area until all the triangle areas are larger than a threshold.
The result is shown in figure 3.36.

2 https://hull-repository.worktribe.com/output/459275

https://hull-repository.worktribe.com/output/459275


3.8 polyline simplification and smoothing 41

(a) Calculating the area of every triangle ( s is the smallest trian-
gle).

(b) Remove point with the smallest triangle.

Figure 3.35: 3D polyline simplify.

Figure 3.36: 3D polyline simplification result (before black; after green)

3.8.2 Polyline smoothing

The purpose of line smoothing is reducing sharp angles by adding new points. Here
lists the comparison of three polyline smoothing method for this project:

1. b-spline
B-spline smoothing only passes the start point and end point of a polyline 3,
it might not pass other point in between.

2. cubic spline
The cubic spline method passes all the points in the polyline. It fits a cubic
polynomial function for each pair of neighbour points in the polyline. Forcing
every piecewise function to have the same gradient at the breakline points
except at the start and the end points in the polyline.

3. polynomial fit
Similar to Section 3.6, the polynomial fit might not pass all the points from
the polyline. It fits a polynomial function for all the points in the polyline.

This project tests the b-spline (see Figure 3.37). The output polyline is rather smooth
and contains much more points, but it has strange curve at sharp corners.
This project also tests the polynomial fit. The difference of polyline smoothing and

polyline generation with a polynomial fit is in the input points. Polyline smoothing
takes the vertices in the polyline as input, while polyline generation takes the can-
didate points as input. The vertices in the polyline are a subset of candidate points.
Figure 3.38 shows that with ”polynomial fit”, the smoothed breakline might very
different from the input polyline.

This project also proposes another method for line smoothing. The main idea is

3 there are three cases for b-spline: open, clamped and close. This project takes ”clamped” to force the
smoothed polyline pass the start and end points.
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Figure 3.37: 3D polyline smoothing: b spline (before black; after green)

Figure 3.38: polynomial fit for polyline smooth

removing sharp angles. It calculate the angle of each pair of adjacent line segment
in a polyline (see Figure 3.39). For the point with the sharpest angle α, two new
point are inserted in the middle of the two adjacent line segments separately, and
after that the old point is removed. This process is repeated until all the angles are
larger than an angle threshold. The full procedure is given in Algorithm 3.3, in each
iteration, one point is modified and one point is inserted to remove the sharp angle.

(a) .

(b) .

Figure 3.39: 3D polyline smooth.

The result is given in Figure 3.40. Because the derivative at point in the polyline
is not continuous, the resulting polyline is not actually smooth. Within this method,
the sharp angle is removed, the shape of polyline is kept and it does not insert too
much points like b-spline fitting.
Each polyline smoothing method has advantages and disadvantages. A combina-

tion of them might generate a better result, for example first smoothing a line by
removing sharp angles, then b-spline smoothing, finally line simplification.
Notice that the polyline simplification and smoothing is not always necessary. The
candidate point extraction process performs a kind of spatial interpolation in the
xy plane. A well extracted candidate point is already distributed smoothly. Ill
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Algorithm 3.3: lineSmooth (pts, α)
Input: pts: a sequence of points of the input polyline,
α: the threshold for sharp angle
Output: pts: a sequence of points of the smoothed polyline

1 angList← the angle of two adjacent line segments in the polyline;
2 minAng← the minimum angle in angList;
3 while minAng < α do
4 Ang idx ← the index of minAng in angList;
5 pt idx = Ang idx + 1;
6 pt← pts[pt idx];
7 pt pre← pts[pt idx− 1];
8 pt a f t← pts[pt idx + 1];
9 pt1 ← (pt pre + pt)/2;

10 pt2 ← (pt + pt a f t)/2);
11 pts[pt idx] = pt1;
12 pts.insert(insertIdx = pt idx + 1, insertPt = pt2);
13 angList[Ang idx]← the angle between line segment (pt1, pt pre) and

(pt1, pt2);
14 ang← the angle between line segment (pt1, pt2) and (pt2, pt a f t);
15 angList.insert(insertIdx = Ang idx + 1, insertAng = ang);
16 minAng← the minimum angle in angList;

17 return pts

Figure 3.40: 3D polyline smoothing result (before black; after green)
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conditioned candidate points are caused by ground noise or incomplete sheet seg-
mentation results mostly. A better segmentation method would thus also help.



4 I M P L E M E N TAT I O N A N D
E X P E R I M E N T S

This chapter mainly explains the implementation details and some experiments to
generate breaklines. Section 4.1 introduces the tools and open source libraries used
in the project. Section 4.2 shows the software architecture and presents a summary
of all the involved user defined parameters in the breakline generation process.
Section 4.3 describes the experimental data used for this project. Finally Section 4.4
to Section 4.7 prsent experiments of some important intermediate results for several
steps that are part of the breakline generation process.

4.1 tools and libraries
This project uses some existing tools and open source libraries to accomplish the
task. For the development, the object-oriented programming language C++ is used.
The most important library is geoflow 1. All the steps to extract breaklines are
implemented with this library. The main functions that are integrated in geoflow
for this project are:

• normal vector estimation of a point cloud;

• the ball shrinking algorithm to extract medial atoms;

• Principal Component Analysis (PCA) for calculating eigenvalue and eigenvec-
tor of a point cloud;

• Visvalingam polyline simplification algorithm;

• 3D geometry viewer;

• some other useful 3D geometry operators, such as vector operators.

Furthermore, some other libraries used for this project are:

• boost: Minimum Spanning Tree 2 and shortest path 3;

• eigen: polynomials module 4;

• spline: b-spline interpolation 5;

• CGAL: spatial geometry operators 6.

In addition, Cloud Compare is used for manually drawing breaklines as reference
data for validation. Qgis is also used for some spatial analyses in validation step.
AcrMap is used for comparing result.
In the end, the project is on github 7.

1 https://github.com/tudelft3d/geoflow

2 https://www.boost.org/doc/libs/1_51_0/libs/graph/doc/kruskal_min_spanning_tree.html

3 https://www.boost.org/doc/libs/1_34_0/libs/graph/doc/dijkstra_shortest_paths.html

4 https://eigen.tuxfamily.org/dox/unsupported/group__Polynomials__Module.html

5 https://github.com/chen0040/cpp-spline.git

6 https://www.cgal.org/

7 Sourcecode:https://github.com/qq2012/geoflow-nodes
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4.2 the implemented prototype
This section shows the software architecture and presents a summary of all the
involved user defined parameters in the process.

4.2.1 The software architecture

The architecture of the code is based on the workflow explained in Section 3.1. The
working flow chart implemented in geoflow is in Figure 4.1.

The parameter ”isInterior” of ”MaGeometryNode” in MAT processing step (see

Figure 4.1: Working flow chart in geoflow node.

Table 4.1 and Figure 4.3) controls if the output breaklines are ridges or valleys. If
isInterior = True, the rest of flow chart works on the interior MAT, and generates
ridges. While if isInterior = False, it works on the exterior MAT, and generates
valleys.

4.2.2 Summary of thresholds

During the generation of breaklines, a number of user defined parameters are used,
and they are listed in Table 4.1.
Some of the parameters such as isInterior and OnlySur f aceAdjacent determine the

output of different steps.
The others parameters are user defined thresholds, and they are different from each
input point cloud dataset. All of them depend on the point cloud resolution. Some
of the thresholds like r prefer a larger value to get a more promising result, but will
increase the execution time (explained in Section 3.4.1). cn depends on the point
cloud resolution, the degree of ground noise and the minimum length of breaklines
the user want to detect. But the thresholds involved in the segmentation process
don’t have any default value, they need the user to find out the best values.

4.3 data and research area

In this project, the Lidar point clouds are download from OpenTopography 8. Within
the scope of this project, a mountain terrain with no trees is chosen as test data. The
test data details are in Table 4.2 and Figure 4.2. As one can see, the second dataset

8 https://opentopography.org/

https://opentopography.org/
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Variable and sym-
bol

Type Step Description

isInterior bool MAT Process-
ing

control the output breakline
is ridge or valley

minimum point
number: cn

integer MAT Process-
ing: segmenta-
tion

the minimum number of me-
dial atoms to firm a medial
sheet

segmentation
method

enumerate MAT Process-
ing: segmenta-
tion

choose the segmentation
method*

ball overlap thresh-
old: bot

scalar MAT Process-
ing: segmenta-
tion

evaluate if two medial atoms
belong to the same medial
sheet

bisector difference
threshold: ~bt

degree MAT Process-
ing: segmenta-
tion

evaluate if two medial atoms
belong to the same medial
sheet

medial direction
difference thresh-
old: ~nct

degree MAT Process-
ing: segmenta-
tion

evaluate if two medial atoms
belong to the same medial
sheet

OnlySur f aceAdjacent bool MAT process-
ing: adjacent

control if the adjacency
graph only exports the
surface adjacency

search radius: r1 meter MAT process-
ing: adjacent

find the neighbours of a me-
dial atom within the radius

The minimum num-
ber of neighbour
points: acn

integer MAT process-
ing: adjacent

determine if two medial
sheets are adjacent.

The maximum dis-
tance of neighbour
points to the terrain:
dpa

meter MAT process-
ing: adjacent

determine if two adjacent
medial sheets are surface ad-
jacent.

deviation angle
threshold: αt

degree candidate
point: edge
ball detection

determine if a medial atom
is an edge point

search radius: r2 meter candidate
point: edge
ball detection

find the neighbours of a me-
dial atom within the radius

Maximum edge
ball radius: rx

meter candidate
point: filtering

remove candidate points
with small curvature(big
radius)

Minimum edge ball
radius: rn

meter candidate
point: filtering

remove edge balls resulting
from ground noise

Minimum distance
to unshrunken
point: dun

meter candidate
point: filtering

remove candidate points in
planar areas

Minimum distance
to point cloud: dpn

meter candidate
point: filtering

remove edge ball atoms far
away from terrain

bisector average fac-
tor: k

integer candidate
point:coordinate
calculation

the number of knn neigh-
bours used for calculatint the
average bisector

Maximum Root
Mean Square Error
threshold: RMSEt

scalar Polynomial fit-
ting

remove candidate points not
distributed like a line

*segmentation method enumerate type = {”bisector”, ”ball overlap”, ”medial direction”,
combine ”bisector” and ”ball overlap”, combine ”bisector” and ”medial direction”, combine
”ball overlap” and ”medial direction”, combine three} (see Section 3.3.2)

Table 4.1: Control parameters and useful thresholds
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contains a large area and the point density, and the terrain height difference is big-
ger too.

Format Point count Point density Source
1 LAS 72493 2pts/m2 OpenTopography
2 LAS 2173787 6.03pts/m2 OpenTopography

Table 4.2: Overview of test data and their details

(a) Data 1.

(b) Data 2.

Figure 4.2: The two test datasets.

4.4 medial segmentation
Medial segmentation is a part of the MAT processing step (see Figure 4.3). The user
can choose the segmentation method and the related thresholds (see Table 4.1).
Since one medial sheet will generate one breakline (explained in Section 3.1), the

medial sheets establish the basic shape of the generated breaklines. The medial
segmentation is crucial to the result breakline.
The ”minimum point number” cn (see Table 4.1 and Section 3.3.2) is related to the
smallest breakline that is generated, which is a constant value for one dataset.
The number of points in a medial sheet is influenced by the depth and length of the
sheet (see Figure 4.4a), the density of input point cloud (explained in Section 2.2.3).
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Data minimum z maximum z height difference
coordinate coordinate [meter]

1 650.33 710.84 60.51
2 1821.87 2051.56 229.69

Table 4.3: Height difference of two test data

Figure 4.3: Medial segmentation and its thresholds.

If a medial sheet contains too little atoms, the medial sheet corresponds to a small
breakline, and it will be eliminated by cn (see Figure 4.4b).
Generated breaklines with different cn are shown in Figure 4.5. The figure shows

that a too small cn will take small breaklines into account, but a too large cn will
remove correct breaklines.
In order to investigate whether the small breaklines are expected or not, Figure 4.6

gives more information. The image shows an interesting case: a long breakline that
is approximately in parallel with two other short breaklines. Checking the medial
sheets that generate those three breaklines, it looks like a ”tree”. The two small
sheets are the branches of the big main sheet. The bottom up view shows that the
two small sheets indeed indicate the curvature change of the terrain surface. Those
two small breaklines are expected output.

The ”segmentation method” and its related thresholds play a decisive role in the
segmentation result. There are two types of error in the segmentation:

1. One medial sheet is wrongly segmented into two or more sheets (see Figure
4.7). Two breaklines are extracted which should be one line actually.

2. Two or more medial sheets are wrongly segmented as one sheet (see Figure
4.8).
In Figure 4.8a, two adjacent sheets are merged into one. Polylines generated
with the graph theory method (explained in Section 3.5,) will generate one
polyline from a part of the sheet, and will cause a missing breakline of an-
other part. Polylines generated with polynomial fitting (explained in Section
3.6) will result in one line which does not suit neither part of the medial sheet.
In Figure 4.8b, two isolated but close sheets are merged as one. Depending
on the extracted candidate points distribution, the extracted polyline is unex-
pected.

In practice, big segmentation errors can be avoided with careful ”segmentation
method” choice and thresholds setting. The error appears mostly at small break-
lines (see Figure 4.9).
The shape of two adjacent medial sheets will also effect the output breakline (see
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(a) The number of points in a medial sheet is influenced by the
depth and length of the sheet.

(b) Very small features in the ground are eliminated by cn.

Figure 4.4: Medial sheet and cn.

(a) cn = 60 (b) cn = 130

(c) cn = 200 (d) Terrain point cloud

The polyline is generated with graph theory without topology, other parameters:
”segmentation method” = ”bisector”,~bt = 3, αt = 15, r2 = 45)

Figure 4.5: different cn with generated ridge for data 1.
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The ridge is generated with graph theory without topology, other parameters:
”segmentation method” = ”bisector”,~bt = 3, cn = 80, αt = 15, r2 = 45)

Figure 4.6: Three parallel breaklines.

(a) The whole sheet is separated as two. (b) A part of sheet is separated

Figure 4.7: One medial sheet is wrongly segmented into two sheets (side view).
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(a) Two adjacent sheets are merged into one. (b) Two isolated but close sheets are merged.

Figure 4.8: Two medial sheets are wrongly segmented as one sheet (side view).

The valley is generated with graph theory without topology, other parameters:
”segmentation method” = ”bisector”,~bt = 3, cn = 100, αt = 15, r2 = 45)

Figure 4.9: valley, exterior medial sheets and terrain point cloud.
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Figure 4.10). The two polylines should be merged where they are parallel.

The breakline(ridge) is generated with graph theory without topology, other parameters:
”segmentation method” = ”bisector”,~bt = 3, cn = 130, αt = 15, r2 = 45)

Figure 4.10: Adjacent medial sheets and generated breakline.

4.5 candidate point extraction
This section consists of two parts. Section 4.5.1 discuss the performance of the ”can-
didate point extraction” step. Section 4.5.2 shows another method to get candidate
points, and points out the weakness of this method.

4.5.1 Experiments

The candidate point extraction step contains 7 parameters (also see Figure 4.11 and
Table 4.1):

1. deviation angle threshold: αt, default αt = 15;

2. search radius: r2, default r2 = 45;

3. Maximum edge ball radius: rx;

4. Minimum edge ball radius: rn, default rn = 0;

5. Minimum distance to unshrunken point: dun;

6. Minimum distance to point cloud: dpn;

7. bisector average factor: k, default k = 10.

αt and r2 are involved in the edge ball detection part.
As explained in Section 3.4.1, r2 prefers a large value, and it is related to the point
cloud resolution. Figure 4.12 shows the detected edge balls with different r2. In the
two side views, it is obvious that smaller r2 contains more unexpected points, more
specifically, points not on the edge of a sheet. It is because a smaller search radius
can not find neighbours outside the radius.

The unexpected point can be filtered out by rx, rn, dun and dpn (see Figure 4.13).
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Figure 4.11: Candidate point extraction and its thresholds.

(a) r2 = 45.

(b) r2 = 100.

Figure 4.12: Detected edge ball.
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The two filtered results get similar edge ball points. It proves that with the same αt
and filter parameters, the remaining edge ball atoms are similar, and the influence
of different r2 can be eliminated with filtering.
Thus a question might arise: is it possible to get edge balls by filtering medial atoms
without edge ball detection? To answer this question, this section uses the same four
thresholds as in Figure 4.13 to filter medial balls of each medial sheet. Figure 4.14

shows the result.
From the image without edge ball detection, the output points are distributed like
a medial sheet. To be noticed, as Section 3.1 explained, only the edge ball’s radius
stands for the curvature, and other balls not. Except for that, is it possible to calcu-
late candidate point coordinates from the ”sheet like” points? This question shares
common properties with Section 4.5.2, and will be answered there.

(a) r2 = 45. (b) r2 = 100.

αt = 15, filter parameters: rx = 28; rn = 0; dun = 300; dpn = 3.5.

Figure 4.13: Remaining and filtered edge ball atoms with different r2.

filter parameters: rx = 28; rn = 0; dun = 300; dpn = 3.5.

Figure 4.14: The medial atoms with edge ball detection (red), and without edge ball detec-
tion (green).

The value of αt also influences the result. As Figure 4.15 shows, a more strict αt will
provide more edge medial balls.
The effect of different αt is illustrated in Figure 4.16. It shows that the number of

detected edge balls with different αt of a terrain point cloud (total number of medial
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(a) p is not an edge ball with big αt, (b) p is an edge ball with small αt

Figure 4.15: Big and small deviation angle thresholds αt

atoms 336839). With an increased αt, the number of detected edge medial balls are
reduced. But very few edge balls might result in not enough candidate points for
further processing.

Figure 4.17 shows the candidate points with different deviation angle threshold

the total input medial atoms size is 336839.

Figure 4.16: Effect of different deviation angle thresholds.

(without filtering candidate points far away from the terrain, as explained in Sec-
tion 3.4.2). In Figure 4.17a and Figure 4.17b, the points from a larger threshold can
not cover the points from a smaller threshold. It means the points from a larger
threshold are more aligned to the breakline. In Figure 4.17c, the candidate points
from the small threshold still looks like a ”sheet”.
Therefore a result with more candidate points might also contain bad points that
are less aligned with the true breakline. Hence, a larger deviation angle should be
implemented. In general, αt can take a default value for all data, but tuning the
value for different input point clouds may yield a better result.

4.5.2 Calculating candidate point coordinates with all the medial atoms

This project also tried another method to extract candidate points: For every me-
dial sheet, taking all the medial atoms into the process to calculate the candidate
point coordinates.
In this way, every medial atom will produce one candidate point. The resulting
candidate points are shown in Figure 4.18. The output points cover an area on the
ground, and are not distributed like a line any more.
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(a) αt = 1(white) and αt = 10(red)(Top view)

(b) αt = 10(red) and αt = 14(green) (Top view*)

(c) αt = 1(white) and αt = 14(green) (side view*)

*In the top view, if two points are in the same position, only one can be seen.

Figure 4.17: Candidate points with different deviation angle thresh (αt).
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The wide bands of points will cause problem for fitting a polyline (see Figure 4.19).

colors stand for points from different medial sheets.

Figure 4.18: Candidate points from all the medial atoms.

The graph theory result is much more zigzagging. The highlighted part does not
correspond with the terrain in neither case.
As to the question in Section 4.5.1, are the ”sheet like” distribution points (obtained

(a) Generating breakline with graph theory
method

(b) Generating breakline with polynomial fit-
ting

Figure 4.19: Generating breakline from all atoms

by filtering medial atoms for each sheet) suitable for calculating candidate points?
Using all the medial atoms as input points to calculate the candidate point coor-
dinates is an extreme case of the question. The input points disperse wider along
z axis, the output candidate points are distributed wider band on the terrain sur-
face. Whereas the input points disperse narrower along z axis, the output candidate
points are distributed narrower on the terrain surface.
Thus the ”sheet like” distribution points is inconvenient for candidate points. The
extracted ”edge ball” atoms can be seen as depth = 0, and the resulting candidate
points are distributed like a line most. The edge ball detection step is thus necessary.

4.6 polyline generation

Generating breaklines with graph theory is automatic, and does not involve user
defined parameters. The result of this method has already been displayed in Sec-
tion 3.5, and it will not be repeated now.
This section focus on the performance of generating breaklines with the polyno-
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mial fit method. Section 4.6.1 compares the breaklines from polynomial fitting of
different degrees.

Figure 4.20: Polyline generation and related thresholds.

4.6.1 Comparing polynomial fitting with different degrees

The polynomial function with different degree i is:

y = f (x) =
i

∑
0

ti · xi (4.1)

The output breaklines from degree 1 to 5 degree are shown in Figure 4.21.
The quintic polynomial (degree = 5) might overshoot for some breakline. Thus it is
not a good option.
The average RMSE for all polylines (including removed by RMSEt) is decreasing
with increasing degree . With the same RMSEt, quartic and cubic polynomial keep
one more breakline than quadratic and linear polynomials. It proves that a higher
degree of polynomial fitting a better function. But a better function dose not means
a more reliable breakline.
Quadratic and linear polynomial generate rough polylines, which are not suit the
terrain surface very much.
The polylines from quartic and cubic polynomial fitting look better. They get larger
curvature than the other two. Quartic consists of more curves than cubic, but it does
not fitting the ground better. In addition, the natural mountain breaklines usually
do not contain such strong curve.
Therefore cubic polynomial fitting is the best option.

4.6.2 Generating polyline with medial direction

As Section 3.3.2 explained, the medial direction ~nc of an edge ball can be approxi-
mately seen as the directions of maximal principal curvatures of the point (~v) on the
breakline. As Section 2.1.4 Figure 2.8 explained, ~nc will point to the lower direction
of a breakline or the upper direction of the breakline.
In practice, this project does not take advantage from this property. But several
ideas might improve the result and are worth trying:

• Connecting the candidate points by using ~nc (see Figure 4.22).
Similar to Algorithm 3.1 (finding trace line by point’s bisector) and the re-
search of Pang et al. [2012] (see Section 2.1.4 and Figure 2.8). The polyline can
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(a) i = 1; avg(RMSE) = 0.354 (b) i = 2; avg(RMSE) = 0.291

(c) i = 3; avg(RMSE) = 0.258 (d) i = 4; avg(RMSE) = 0.248

(e) i = 5.

i: the degree of polynomial function; RMSEt = 0.8;
avg(RMSE): the average RMSE for all polylines (including removed by RMSEt).

Figure 4.21: Breaklines generated with different degree of polynomial function
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be generated following ~nc. The output polyline might consist of less candidate
points, but the polyline will be less zigzagging.

Figure 4.22: Profile section view of a medial sheet and ~nc.

• In Section 3.5.1 ”Connecting candidate points with the minimum spanning
tree”, the weight of an edge (v1, v2) is confirmed by:

weight = distance(v1, v2) (4.2)

Because the breakline should approximately flow the ~nc or −~nc. The edge
direction that is similar to ~nc should get heavier weight. Therefore the weight
can be improved:

weight = α · distance(v1, v2) + β · Angle(~nc, ~v12) (4.3)

where α, β are weighting parameters;
~v12 is the vector starting from vertex v1 ending at v2;
Angle(~nc, ~v12) is the angle between the two vectors.
The advantage of this method is that it takes both the candidate points’ spatial
distribution and the directions of maximal principal curvatures (~nc) of the
candidate points into consideration. While the disadvantage is that Equation
(4.3) includes two new parameters, thus a user needs to define more variables
by himself.

4.7 surface adjacency and the topology of break-
lines

In order to get the surface adjacency relationship, three parameters are required
(see Figure 4.23 and Table 4.1).
The search radius (r1) and the minimum number of neighbour points (acn) are two

related parameters. r1 is to find the neighbours of every medial atom, and a larger
r1 will find more neighbours belonging to another medial sheet. The correlated acn
should be larger to determine if two medial sheets are adjacent.
The maximum distance of neighbour points to the terrain (dpa) determines if two
adjacent medial sheets are surface adjacent, and it is related to point cloud resolu-
tion.
Figure 4.24 shows the result of connecting breaklines by surface adjacent medial
sheets. Some connections are good estimations, and some problems of connecting
to the closest points method are exposed:

1. rough angle
Because two breaklines are connected with their closest point pairs, the added
connecting line segment and the ordinary polyline create a rough angle.
An idea to solve this problem is to fit a polynomial functions for two polyline
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Figure 4.23: MAT adjacent, breakline topology and related thresholds.

in 2D, and the estimated junction point ĵ could be the intersection of those
two functions. This idea might solve the ”rough angle”, but will cause other
problems:
(1) When two adjacent breakline are approximately parallel to each other (see
the pink area in Figure 4.24), ĵ will be far away from the two polylines, and
might even cross other breaklines.
(2) The fitted function pair might not intersect (see the blue area in Figure
4.24).

2. tail
For some pairs of adjacent polylines, the closest point is not the best estimation
of junction point, but the free vertex 9 is. It will create a tail at the end of a
polyline.
A possible solution is adding a new user defended parameter, the minimum
tail length (lt). When the tail is shorter than lt, the junction will be the closest
free vertex instead of the closest point. But this involves a new hard threshold
again.

3. connection order error
In the image, (l1, l2) and (l2, l3) are two pairs of adjacent breaklines. l2 is
connected to l1 first, then l2 is updated by adding a new point p1 after p2.
l2 and l3 are connected after that. Because l2 was changed, and the point of
l2 closest to l3 is no longer p2 but p1. With this process, the angle p2 p1 p3 is
created.
But actually (l2, l3) should be connected first, and the angle will not appear.

9 start or the end point of a polyline, explained in Section 3.5
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r1 = 20; acn = 10; dpa = 150; breakline is generated with graph theory method .

Figure 4.24: Connection of adjacent breaklines





5 R E S U LT VA L I DAT I O N A N D
C O M PA R I S O N

This chapter focuses on the extracted breakline and the breakline’s quality. Section
5.1 demonstrate the ridges and valleys of two test datasets. Section 5.2 compares
the extracted breakline with other three method: manually drawn (Section 5.2.1),
ArcMap (Section 5.2.2) and CGAL package 1 (Section 5.2.3). Section 5.3 explains
the validation method (section 5.3.1) first, and then shows the validation result of
dataset 1 (Section 5.3.2).

5.1 extracted breakline overview
Figure 5.1 and Figure 5.2 show the extracted ridges and valley for data 1 and data
2.

In general, this project is able to extract ridges and valleys in both two test data
with the graph theory method and polynomial fitting method. Both two results
with the graph theory method are more zigzagging, and the polyline simplify and
smooth are implemented. The advantage of generating breakline with polynomial
fitting method is removing unexpected breaklines with RMSET . Meanwhile, the
disadvantage is the result breaklines are too smooth and contains more polyline
crosses. Those are not suit the reality.
Data 2 takes a smaller segmentation threshold, and a smaller cn, and keeps more
detail (small) breaklines. The breaklines with graph theory from data 2 looks more
complete and smooth. It is because data 2 contains a larger area, a larger point
cloud, a higher point density, a bigger height difference (see Table 4.3).
Examining the result breakline carefully, three kinds of problems can be found:

1. original breakline shift
Observing the original breaklines (without smooth and simplify), one ridge is
shift from the ground truth (see Figure 5.3). But in the corresponding medial
sheet, the medial atoms don’t shift. The zoom in image shows the medial
atom and the bisector, and the bisector is variant a lot at that area. It cause the
shifting. The bisector variation might because of the ground points containing
noise (for example small vegetation or animals appearing etc).
This kind of shifting is eliminated with the polyline smooth and simplify. But
it also pay by lose points or accuracy of other polylines.

2. incomplete small breaklines
There are some small ridges and valleys in the terrain, but only some of them
will be extracted (see Figure 5.4). The related medial sheets containing little
atoms will be filtered during the segmentation process (see Section 4.4). In
addition, for those small area, to successfully separate medial sheets requires a
more strict segmentation threshold. But the threshold is for the whole dataset,
and it will influence other sheets (see Section 4.4).

3. a ridge and a valley cross each other
The ridges or valleys do not cross each other. But in the result, a ridge and
a valley might across. It appears twice in data 1 (see Figure 5.4). It might

1 explained in Section 2.1.3
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(a) candidate points (b) terrain

(c) breakline with graph theory (top view) (d) breakline with polynomial fit (top)

(e) breakline with graph theory (with topology, smooth and simplify)

(f ) breakline with polynomial fit

generate 20 ridges and 13 valley ”segmentation method” = ”bisector”,~bt = 3, cn = 110,
αt = 15, r2 = 45)

Figure 5.1: Ridge (red) and valley (green) of test data 1.
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(a) candidate points (b) terrain

(c) breakline with graph theory (top view) (d) breakline with polynomial fit (top)

(e) breakline with graph theory (with topology, smooth and simplify)

(f ) breakline with polynomial fit

generate 297 ridges and 324 valleys ”segmentation method” = ”bisector”,~bt = 2.5, cn = 70,
αt = 20, r2 = 100)

Figure 5.2: Ridge (red) and valley (green) of test data 2.
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because the interior and exterior MAT does not separately completely.
The medial sheet bellow the terrain point cloud, but belongs to the exterior
MAT. But according to the MAT definition, the medial atoms below the terrain
is the interior MAT. This miss classification sheet generates a ”valley” which
should be a ridge actually. The ”valley” is overlapping with the the ridge
generated from the correct classified interior MAT, the two breakline should
be one ridge.

4. The breakline indicated by the related medial sheet does not exist in the
terrain (see Figure 5.5).
Observing the medial sheets and the terrain carefully, there is no ridge but
only valley in the area. In Figure 5.5, some of the point cloud normal vectors
that are close to the breakline point to the exterior of the terrain, but some
of the normal vectors point to the exterior of the terrain. According to the
”shrinking ball algorithm” (Section 2.2.3), it will cause the ”interior and exte-
rior error”. Similar to the previous item, the generated ”ridge” should be a
valley and merged with the an other valley.

Figure 5.3: breakline shifting (example: ridge of data 1)

5.2 comparison
Section 5.2.1 compares the extracted breakline with the manually drawn breakline
for the small test data, data 1. Section 5.2.2 compares with the commercial software
ArcMap. Section 5.2.3 shows the extracted breakline with CGAL package.

5.2.1 Comparison with manually drawn breakline

Figure 5.6 shows the manually drawn ridge and valley for test data 1. It uses the
same point cloud as the breakline extraction process. An operator manually picks
3D points from the point cloud as breakline vertices with the help of an open source
software ”cloud compare”. Picking original points as breakline vertices can make
sure the vertices are exactly on the Terrain surface. The reliability of reference
breakline is highly depending on the operator’s intention, experience, ability, and
perception. In addition, whether two breaklines should be adjacent or not is highly
depends on the operator’s individual understanding of the dataset, and might be
different from operators.
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Figure 5.4: Overlap and incomplete breaklines (example: ridge and valley of data 1)

Figure 5.5: Overlap and incomplete breaklines (example: ridge and valley of data 1)
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For further observation, the ridge and valley are shown separately in Figure 5.7.

Figure 5.6: Manually drawn ridge and valley for test data 1

Except for the four problems mentioned in Section 5.1, some observations can be
found:

1. different pattern around mountain peak
In Figure 5.7a, around the local peak (orange circles in the image), the manu-
ally drawn ridge has a different pattern to the extracted result. The manually
drawn ridges pass and end at the local peak, while the extracted ridges will
go around the peak.
After more careful observation of the terrain point cloud, the maximum curva-
ture is around the extracted polylines actually. In addition Section 4.4 Figure
4.6 also proved that the skeleton (medial sheet) of the terrain separates around
the peak.
This might proved that, the manually drawn ridge is effect by the operator,
and the peak of a mountain might cause the optical illusions to cause inaccu-
rate in manually drawn ridges in that area. The automatic extraction result in
this project is less effected by the optical illusions, and extracting more reliable
ridges around the peak.

2. different topology
The two kinds of result breaklines has different topology.
First, for a same pair of breaklines, the adjacency might be different between
them. As this section explained at the beginning, the manually drawn adja-
cency depends on the operator. The adjacency from extracted breaklines also
depends on the user defined parameters (see Section 4.7).Because around the
beginning or the end of a breakline, the curvature tends to be more uniform,
and the curvature becomes continuous gradually, and the adjacent uncertainty
makes sense.
Second, for one breaklines, it might exist in different forms. One breakline
from the manually drawn data might separate into small fragments and be-
comes a part of horizontal breaklines in the extracted data, vice versa.
For example, the zoom in ”different topology” area in Figure 5.7b, there are
three valleys in the manually drawn data, and two of them becomes one valley
in the extracted data.

3. true positive breaklines
If there is a breakline in the terrain, the extracted breakline is called ”true pos-
itive breaklines”. There are some true positive breaklines extracted with this
project, but neglected by the manually drawn result. For data 1, it happens
only for ridge where the breakline is inconspicuous (see Figure 5.7a).
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4. false positive breaklines
There are some breaklines founded by the manually drawn result, but ne-
glected by this project. For data 1, it happens only in valley (see Figure 5.7b).

5. false negative breaklines
If there is no breakline in the terrain, but this project extracted one in the
related location, the extracted breakline is a ”false alarm”, and called ”false
negative” breakline. For data 1, there is one false negative in ridge extraction
result (see Figure 5.7a).

(a) ridge

(b) valley

Figure 5.7: Comparison extracted breakline (white) with manually drawn breakline (green)
of test data 1.

In conclusion, this project generate more reliable ridges around mountain peak.
For test data 1, this project performs more sensitive when generating ridge. For one
hand the method is able to find inconspicuous true positive ridges, which is easy
to be neglected by the operator. This is the advantage of being sensitive. While
in another hand, it also result in ”false alarm”, more specifically, generating false
negative ridges. This is the disadvantage, also the ”trade of” for the advantage
aspect. For valleys, this method does not create false negative breaklines, but lead
to false positive breaklines.
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5.2.2 Comparison with ArcGis

At present, there is no commercial software can directly generate breakline for natu-
ral terrain. The Hydrology tool embedded in ArcMap can help user generate ridge
and valley identify breakline pixels. It uses raster DEM as input, and calculates wa-
ter flow direction and flow accumulation. The pixels Where the flow accumulation
value is 0 is the ridge pixels. The result ridge points is in Figure 5.8.
The valley extraction uses a reverse DEM, other steps are the same as ridge extrac-
tion. The reverse DEM is calculated by using maximum height in the region minus
the height for each DEM pixel.
Since the AcrMap does not have polylines, comparing with candidate points is fair.

Figure 5.8: Generating ridge by ArcMap (gray: DEM raster; colour: ridge cells).

Figure 5.9 compares the ridge cells from ArcMap with the candidate points of data
1.
Both two results have the same pattern around the mountain peak.
AcrMap does not contain the ”false negative ridge” (in the green circle of the image)
caused by MAT ”interior and exterior error”.
But ArcMap result containing 3 wronging identify ridges (in right bottom yellow
circle). It caused by the TIN interpolation method to generate raster from point
cloud. AcrMap also missed some parts of ridges when they are vanishing (arrows
in the figure), and also missed some small ridges (red area). Further more, the re-
sult is a set of cells, which does not convert into geometrical features and can not
support further spatial topological analyses.

5.2.3 Comparison with CGAL

The CGAL package requires a TIN mesh as input. Data 1 is transformed to mesh
with the Delaney triangulation (see Figure 5.10).
CGAL package also requires a lot of user defined parameters. The result is shwon
in Figure 5.11.
The CGAL package generating 4055 breaklines which contains a lot of small line

segments. A lot of breaklines are cross, which is unexpected.
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Figure 5.9: The ridge cells from ArcMap(white - grey tone) and the candidate points (yellow)
of data 1

Figure 5.10: The TIN mesh generated from data 1.
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Figure 5.11: The resulting breaklines from CGAL.

It is because the CGAL package requires a smooth mesh as input and the result is
data-driven.
While this project is able to extract reliable breaklines with the same point cloud
that generates mesh for CGAL. Therefore, this project is less influenced by the input
data.

5.3 validation and analysis
This section contains three parts: the validation method, the validation result of
dataset 1 and a short summary of the validation result.

5.3.1 Validation method

For the evaluation of the output breaklines, a set of manually drawn breaklines is
used as a reference data. The breakline to be evaluation is the test data. Compared
with the reference breakline, there are 3 situations demonstrating in Table 5.1.
The validation contain two parts:

Reference breakline
breakline exist breakline not exist

Test
breakline

breakline
detected

TP (true positive,
correctly identified)

FN (false negative,
incorrectly identified)

breakline
not detected

FP (false positive
miss identified)

Table 5.1: Overview of validation

1. if the breakline generated correctly?
With in this context, the TF, FN and FP stand for the ”true positive break-
line”, ”false negative breakline” and ”false positive breaklines”. This part is
manually identified.

2. how is the accuracy and precision of the ”true positive breakline”?
With in this context, the TF, FN and FP stand for the number of points of three
different part of the breakline (see Figure 5.12).

In this study, for each manually drawn breakline l and its corresponding test break-
line l̂, one can create a buffer b and b̂ with the same distance to separate the TF, FN
and FP part of a breakline:
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Figure 5.12: Validation

• The vertexes belonging to l̂ but not in buffer b are the FN vertexes,

• and other vertexes inside or on buffer b are TP vertexes.

• the vertexes belonging to l, but not in buffer b̂ are FP vertexes.

In addition, from both Table 5.1 and Figure 5.12, the number of test breakline ver-
texes NE is:

NE = TP + FN (5.1)

Because the the number of vertexes of test breakline is usually ten times larger than
the reference breakline, a scalar is used:

scalar =
NE
NR

; (5.2)

where NR is the number of reference breakline vertexes.
The accuracy validation can be described in three parameters: correctness, quality
and completeness. Those three parameters can be calculated by TP, FP and FN:

correctness =
TP

TP + FP× scalar
(5.3)

quality =
TP

TP + FN + FP× scalar
(5.4)

completeness =
TP

TP + FN
; (5.5)

As to the precision can be described by polyline precision (pl) and vertex precision
(pv). d(v, rl) is the distance from vertex v to the reference polyline rl in 3D. pl and
pv can be calculated as:

pl =
∑ d(v, rl)

the length o f l
; where vertex v ∈ TP; (5.6)

pv =
∑ d(v, rl)

TP
; where vertex v ∈ TP; (5.7)

Because the z coordinate of the extracted breakline is obtained by the nearest neigh-
bour spatial interpolation, and the vertices of the reference breakline is from the
original point cloud. Therefore both two kinds of breaklines are on the same terrain
surface. Thus the buffer can be a 2D polygon. accuracy validation can be processed
in 2D xy plane.
In the precision calculation, the distance between vertex v and polyline l is in 3D
space, so the precision of z coordinate is also taken into consideration.
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5.3.2 Validation result

This section shows the validation result of the breakline generated with graph the-
ory adding the topology and smooth and simplify operation. A more detail val-
idation should also consider the breaklines generated with graph theory adding
the topology without smooth and simplify operation, also the breaklines generated
with polynomial fitting.
In practice, the manually drawn breakline is influenced by the point cloud distribu-
tion (see Figure 5.13). Sometimes the best location of a breakline is not the point
from the point cloud. Therefore the reference data is not perfect.

Figure 5.13: The manually drawn breakline is influenced by the point cloud distribution

• PART 1: if the breakline generated correctly

The Figure 5.14 shows the reference valleys and the test valleys for data 1. There
are 13 test valleys and 18 reference valleys in the image.
The Figure 5.15 shows the reference ridges and the test ridges for data 1. There are

Figure 5.14: The reference valleys (green) and the test valleys (white) for data 1

19 test ridges and 19 reference ridges in the image.
The diagnose is list as flow:
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Figure 5.15: The reference ridges (green) and the test ridges (white) for data 1

1. TP valleys
In the image, vi (i = 1, 2, 3, ..., 11) are eleven pairs of test valley and reference
valley, and ri (i = 1, 2, 3, ..., 16) are 16 pairs of test ridge and reference ridge.
They are true positive breaklines.

2. TN valleys
Reference valley 12 (rv12) and reference valley 18 (rv18) are two true negative
breaklines in valley. The missing valley happens in the area that the ground
surface is more plane (also see Figure 4.5).
Reference ridge 17, 18 and 19 (rr17, rr18, and rr19) are true negative breaklines
in ridge. It happens for the small ridges only.

3. FN valleys
Test valley 19 (tv19), test ridge 20, 21, 22 (tr20, tr21, and tr22) are ”false alarm”.
rv13, rv14, rv15, rv16 and rv17 are five small valleys and they are merged as one
test valley (tv20).
The cause of those false negative breaklines is explained earlier in Section 5.2.1
and Figure 5.5.

• PART 2: how is the accuracy and precision of the ”true positive breakline”

The 11 pairs of true positive valley and 16 pairs of true positive ridge are taken
into further analysis and the raw data is in Table 5.2 and Table 5.3, in addition, the
validation result is in Table 5.4 and Table 5.5.

In the accuracy validation, the parameters are the larger the better accuracy, and
in the precision validation, the parameters are the smaller the better.
In general, the average correctness is 97% and 96%, the average quality is 90.67%
and 91.19%, and the average completeness is 93.84% and 93.92% for valley and
ridge. Most of accuracy parameters are above 80%. The accuracy is high.
As to the precision, the average polyline precision is 0.3 and 0.23, and the average
vertex precision is 1.14 meter and 1.12 meter. Comparing with the point density
2pts/m2 (see Table 4.2). 25 of 27 breaklines’ polyline precision is better than 0.5. 16

of 27 breakline’s vertex precision is better than 1.0; and 23 of 26 is better than 1.5.
The precision is also good.
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TP pair TP FN FP NE NR length of ri ∑ d(v, ri)

v1 4 1 0 5 6 17.09 17.09

v2 25 0 0 25 33 125.86 31.91

v3 3 0 1 3 10 19.88 3.47

v4 8 0 0 8 11 35.16 12.67

v5 21 1 1 22 30 107.49 19.78

v6 19 0 0 19 13 39.94 41.19

v7 4 0 0 4 9 19.33 2.47

v8 11 2 0 13 17 40.57 8.55

v9 3 0 5 3 17 35.99 2.07

v10 8 1 0 9 9 27.45 13.44

v11 5 1 0 6 9 25.19 1.26

*ri is the corresponding reference polyline

Table 5.2: Raw data for valley validation

TP pair TP FN FP NE NR length of ri ∑ d(v, ri)

r1 10 0 0 10 10 72.39 4.61

r2 5 0 3 5 23 49.46 4.69

r3 6 0 0 6 7 15.91 4.20

r4 4 0 0 4 14 38.27 5.75

r5 6 0 0 6 11 30.12 2.96

r6 4 0 0 4 9 16.38 4.35

r7 3 0 0 3 9 11.90 2.33

r8 17 6 1 23 12 63.64 78.47

r9 5 1 3 6 9 28.29 7.42

r10 11 0 0 11 21 70.49 9.31

r11 16 0 0 16 25 77.18 13.70

r12 2 0 0 2 5 11.97 0.83

r13 5 0 0 5 6 22.51 4.20

r14 11 1 1 12 15 55.17 10.92

r15 8 5 0 13 13 48.79 8.83

r16 12 1 0 13 17 70.90 11.14

*ri is the corresponding reference polyline

Table 5.3: Raw data for ridge validation

Table 5.4: Valley validation result
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Table 5.5: Ridge validation result

In particular, r8 is the worst breakline among all the ridges and valleys. From the
image, the generated ridge 8 is far from the reference ridge.
The correctness and quality of v9 is the worst in valley, both are 77.27%. Checking
Figure 5.14, the test valley 9 missing a part of polyline, and it result in a larger
number of FP vertexes. This also proved in Table 5.2. v9 has the largest number of
False Positive value (5) in the whole test data.
v4, v6 and v7 achieve 100% for all three accuracy parameters. Checking in the image,
they are correct and complete.
While for v4, the whole polyline of test valley 4 is shifted a little from the reference
data. It is shown in the vertex precision value (1.58), which is the third large value
among all the test data.
Same as v6, it has the best accuracy but the worst precision (1.03 and 2.17). In the
zoom-in image (Figure 5.16), the extracted valley is a little bit far from the reference
data. v11 provides the best precision in both polyline and vertex. In Figure 5.14, the

Figure 5.16: The reference valley 6 (green) and the test valley 6 (white)

true positive part of extracted valley 11 is all most overlap with the reference data.
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5.3.3 Summary

The validation shows that most breaklines generated with this project is reliable (11

out of 13 valleys and 16 out of 19 ridges are TP). The reliable breaklines are high
accurate (average more than 90%) and precise.
In addition, the accuracy and precision are not necessary and sufficient conditions
to each other. A breakline with high accuracy might be bad in precision. While a
low accuracy is likely to a poor precision.
This project implements the simplest spatial interpolation ”Nearest Neighbour”. A
better spatial interpolation, such as TIN Linear Interpolation or Natural Neighbour
Interpolation, will improve the precision.
Observing the TN and FN breaklines and bad accuracy and precision breaklines
(r8), they appear in the plane surface or happen for small breaklines or caused by
the MAT interior exterior error (explained in Section 5.2.1).
To avoid the error in small breakline, the user can set a larger cn to remove them.
But a larger cn takes the risk of removing TP breaklines. For example, to remove
tv20 in Figure 5.14, the valleys smaller then tv20 might also be removed, such as v3
and v1. This is a trade of during the breakline generation process.
A solution is selecting a subset point cloud in the small breaklines area. Than gener-
ating breaklines for the subset. In this way, the segmentation method and threshold
can be more suitable for this area. The out put breaklines needs to merge with the
big dataset.
A better idea is estimate parameters for the input dataset, and might involved super-
vision classification or machine learning. It will help the whole process becoming
fully automatic which is more convenient for the user.



6 C O N C L U S I O N S A N D F U T U R E W O R K

Section 6.1 answer the main research question and summarises the main result of
this project. Section 6.2 gives the answer to the sub research questions. Further-
more, Section 6.3 makes a conclusion of the limitation and trade of for the breakline
generating process. Finally, Section 6.4 lists the promising ideas for the future work.

6.1 research overview
This project aims to generate breakline for mountains from the point cloud directly
with the MAT.
The breakline is a structured line of the object surface which has high curvature.
Meanwhile, the reciprocal of the medial edge ball’s radius can represent the point
with high curvature, which is the fundamental idea of this project.
To solve the main research question, 7 steps are taken to get 3D breaklines from the
point cloud:

1. Normal estimation for the point cloud;
The normal vector of a point is a required input for the MAT ball shrinking
algorithm.

2. MAT processing (preparing for step 3 and 5);
In the second step, the plane area of the terrain is separated from the point
cloud by MAT. This step proposes a new geometry and a new method for
medial sheet segmentation. The adjacent relationship between medial sheets
are separated into deep and surface adjacent.

3. Candidate point extract;
In the third step, since a small radius of a medial ball corresponds to a high
curvature, those medial balls are selected to calculate candidate point coordi-
nates.

4. Polyline generation from candidate points;
The fourth step provides two options to generate polylines.
One option utilizes graph theory. It first connects the candidate points to its
closet neighbour with the minimum spanning tree (MST) algorithm. Then it
simplifies the MST into a polyline with the shortest path algorithm.
The other option utilizes polynomial fitting. It fits a cubic polynomial function
through the candidate points as a polyline.

5. The topology of breaklines;
The fifth step estimates the junction point for adjacent breaklines with the
MAT adjacent relationship between medial sheets.

6. Polyline simplification and smoothing.
In the sixth step, the polyline can be simplified and smoothed. The simplifi-
cation eliminates less important point in the polyline. For the smoothing four
methods are compared to insert new point in the polyline.

81
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7. Save polylines to a file.
In the end, the result can be saved into a .obj file to share and open in other
software.

This method is able to extract breaklines for mountain regions. When the experi-
ment data contains a larger area, a higher point density, a bigger height difference
and less smooth surface, a set of smaller threshold is possible to use, and the gener-
ated breaklines contains more details (small breaklines).
Compared with the manually drawn breaklines. this project generate more reliable
ridges around mountain peak. For test data 1, this project performs more sensitive
when generating ridge. For one hand the method is able to find inconspicuous true
positive ridges, which is easy to be neglected by the operator. This is the advantage
of being sensitive. While in another hand, it also result in ”false alarm”, more specif-
ically, generating false negative ridges. This is the disadvantage, also the ”trade of”
for the advantage aspect. For valleys, this method does not create false negative
breaklines, but lead to false positive breaklines.
Compared with ArcMap which detects as breakline cells from a raster, this project
generates 3D polylines which support further spatial topological analyses. The gen-
erated 3D polylines are more complete (or longer) the the ArcMap.
Compared with CGAL mesh method, this project is less limited by the input data.
CGAL requires a smooth mesh input or the out put breaklines containing massive
unexpected polylines. While this project is able to extract reliable breaklines with
the same point cloud that generates mesh for CGAL.
According to the validation of data 1, that most breaklines generated with this
project is reliable. The reliable breaklines are high accurate (average more than
90%) and precise. In addition, the accuracy and precision are not necessary and
sufficient conditions to each other. A breakline with high accuracy might be bad in
precision. While a low accuracy is likely to a poor precision.
Observing the TN and FN breaklines, they appear in the plane surface or happen for
small breaklines or caused by the MAT interior exterior error (explained in Chapter
5).

6.2 research questions
In this section, the sub research questions proposed in Section 1.2 will be answered:

• Q: What is the link between Medial Axis Transform (MAT) and a breakline?
A: Explained in Section 3.1, there are three link between them:

1. The breakline’s definition is 3D polylines with maximum local curvature
in terrain surface. With the MAT method, the edge ball’s reciprocal value
of radius r ( 1

r ) presents the curvature. So 3D points with maximum cur-
vature can be located by this property, and those points are the vertexes
in breaklines.

2. Furthermore, the interior MAT presents the ridge and the exterior MAT
presents the valley.

3. One medial sheet indicates one breakline.

• Q: If MAT is suitable for generating a 3D breakline?
A: The MAT is able to provide useful medial geometries to generate break-
lines. The method this project proposed can successfully identify breaklines
when terrain’s height difference is large or in less planar area. This method
is sensitive which is good at finding hidden breaklines neglected by operator,
but also has false extraction or missing breaklines when the terrain surface is
planar or the breakline is rather small. Furthermore the ”exterior and interior
error” will cause repeating (or overlapping) breaklines.
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• Q: What are the requirements for the point cloud to extract breaklines?
A: As Section 1.2 said, MAT can not find the structure of a point cloud contain
trees in a small area. So the point cloud requires to be clean and do not
contain trees. Or the trees needs to be filtered with ground filters before
implementation.
Also if the point cloud is incomplete, for example, having holes caused by
lake or raver, this method can not extract breaklines successfully.

• Q:Is it possible to automatically generate a breakline without user defined
parameters?
A: For now this project is not fully automatic, and the segmentation process
needs the user operation. The segmentation result is easy to visualise and
compare in geoflow, so the proper parameters is not hard to find.

6.3 discussion
The main issue of this method is the trade off between detail (small breaklines) and
accuracy. There are three major trades off in this project, and they are embodied in
the user defined thresholds.

1. The resulting breakline is highly depends on the segmentation result. As Sec-
tion 4.4 explained, a ill segmentation will cause many problems: two close
or overlapping breaklines should be one, missing/incomplete breaklines or
unexpected breaklines.
The segmentation result is depends on the segmentation method and thresh-
olds. They are hard values and used for the whole dataset. Some areas (such
as the small breaklines in data 1, see Figure 5.4) require more specific thresh-
olds. To take care of the entirety dataset, the local details (more specifically,
the small medial sheets), are sacrificed. This is the first trade of in the method.

2. The sacrificed small medial sheets will cause errors in the resulting breaklines.
Those error can be eliminated by a larger cn. But a larger cn takes the risk of
removing True Positive breaklines. This is the second trade off in the method.

3. the polyline simplification and smoothing are capable to remove the ”shift” of
original breakline (see Section 5.1). But it is possible to lose accuracy at the
same time. This is the third trade of.

6.4 future work
The solution for the main issue is automatic segmentation, then estimating the other
thresholds for different sheets.
A idea for the automatic segmentation is implementing Support Vector Machine
(SVM) which is a unsupervised classification method. One medial geometry is one
feature vector in the SVM. The automatic segmentation should take care of the
entirety dataset and the local details (the small breaklines) both.
For the thresholds estimation, the point cloud meta data, such point density and
resolution, is necessary.
Besides the main issue, there are several ideas might improve the result:

1. the topology of the breaklines:
(a)The junction points need better estimating to remove the tail and rough
angle (see Section 4.7).
(b) After removing the ”tail”, two breaklines are connected at ”end-to-end”
should be merged as one polyline.
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2. Generating polyline with medial direction (See Section 4.6.2)
The medial direction ~nc of an edge ball can be approximately seen as the
directions of maximal principal curvatures of the point (~v) on the breakline.
~nc points to the lower direction of a breakline or the upper direction of the
breakline. This property might help to generate a more smooth and reliable
breakline.

3. Polyline smoothing by cubic spline method (see Section 3.8.2).

4. A better spatial interpolation will help for a better precision.
This project implements the simplest spatial interpolation ”Nearest Neigh-
bour”. A better spatial interpolation, such as TIN Linear Interpolation or
Natural Neighbour Interpolation, will improve the precision.

In addition, the ”exterior and interior error” (see Section 5.1) in the MAT also need
to take care of.
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Figure A.1: The UML diagram of software architecture
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