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SlimML: Removing Non-critical Input Data in
Large-scale Iterative Machine Learning

Rui Han, Chi Harold Liu, Senior Member, IEEE , Shilin Li, Lydia Y. Chen, Senior Member, IEEE ,
Guoren Wang, Senior Member, IEEE , Jian Tang, Fellow, IEEE , Jieping Ye

Abstract—The core of many large-scale machine learning (ML) applications, such as neural networks (NN), support vector machine
(SVM), and convolutional neural network (CNN), is the training algorithm that iteratively updates model parameters by processing
massive datasets. From a plethora of studies aiming at accelerating ML, being data parallelization and parameter server, the prevalent
assumption is that all data points are equivalently relevant to model parameter updating. In this paper, we challenge this assumption by
proposing a criterion to measure a data point’s effect on model parameter updating, and experimentally demonstrate that the majority
of data points are non-critical in the training process. We develop a slim learning framework, termed SlimML, which trains the ML
models only on the critical data and thus significantly improves training performance. To such an end, SlimML efficiently leverages a
small number of aggregated data points per iteration to approximate the criticalness of original input data instances. The proposed
approach can be used by changing a few lines of code in a standard stochastic gradient descent (SGD) procedure, and we
demonstrate experimentally, on NN regression, SVM classification, and CNN training, that for large datasets, it accelerates model
training process by an average of 3.61 times while only incurring accuracy losses of 0.37%.

Index Terms—Iterative machine learning, large input datasets, model parameter updating, MapReduce.

F

1 INTRODUCTION

Machine learning (ML) has become ubiquitous in re-
cent years and its success can be attributed to its ability
to extract knowledge and make decisions by learning the
underlying structures of large input datasets [17], [27], [36].
To train learning models, ML applications often adopt the
iterative optimization process [12]. It specifically minimizes
the cost (loss) function that quantifies the penalty paid for
the difference between estimated and actual values for input
data. The trained model is characterized by its parameters
and evaluated by an accuracy metric such as prediction
error or classification accuracy on test sets. In many real-
life applications, the training algorithm has to process a
tremendous number of input data instances and takes a
significantly long time, tending to be the bottleneck of ML.
The outstanding challenge still remains of how to efficiently
use ML systems on massive input data points [17], [28] and
commodity hardware [24], [44].

To enable fast processing of large datasets, one major cat-
egory of techniques exploits data parallelism to improve the
performance of data processing at each iteration [22], [40],
[54], or samples important data to improve the convergence
speed of iterative training (optimization) process [38], [45].
In a data-parallel environment, large datasets also result
in tremendous amount of local variables (e.g. intermediate
results to compute gradients) during model training [43],
in particular for deep neural networks (e.g. convolution-
al neural networks (CNNs) [41]) with millions of model
parameters. Another category of techniques, therefore, is
developed to improve the performance of accessing (storing
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and retrieving) and synchronizing local variables and global
parameters [20], [31], [32], [43], [53], or apply compression
methods (e.g. vector quantization [33] and weight prun-
ing [29]) to reduce the model size. At each iteration of
model training, these techniques typically use stochastic
optimization methods to select a subset/mini-batch of input
data for model training [14]. In particular, latest batch size
control techniques address large mini-batch instability and
significantly increase training speed by using larger batch
sizes [23], [52]. Most of these techniques treat the selected
data points in each batch equally and implicitly assume the
equal effect on model parameter updating.

However, when applying ML in real datasets, there
exists a considerable proportion of non-critical input data,
namely the data that has little influence on model parameter
updating during the iterative training process. For example,
Fig. 1 illustrates critical and non-critical data points in
three typical iterative ML algorithms: neural network (NN)
regression [56], SVM classifier [19], and CNN [41], [42].
We can see that critical points are those whose gradients
are larger than 0 (NN regression), are incorrectly classified
(inside the two hyperplanes of the SVM classifier), and have
the largest error signal (CNN), respectively. The remaining
points are non-critical because they do not influence model
parameter updating. Our empirical evaluations on massive
and real datasets (Section 2.3) show that the percentages
of non-critical input data range from 48.77% to 93.59% (the
average is 75.27%) across these three ML algorithms and
across their iterations of training. Based on the observation
on the presence of non-critical data, coresets [13], [34] and
importance sampling [48], [49], [55], [61] techniques select
part of important input data points for model training.
However, the former uses fixed subsets of input data and
cannot reflect the changes in model parameters, and the
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Fig. 1. Examples of critical and non-critical data in three ML algorithms

later is computationally expensive to compute the gradient
norms of all input data points for sampling.

Motivated by these problems, this paper proposes S-
limML, a non-critical input data removal framework for
iterative and large-scale ML. The basic approach taken by
SlimML is to generate a small number of aggregated data
points at the pre-training stage, where each point preserves
the averaged attribute values over a subset of similar origi-
nal input data points. At each iteration of the model training
stage, SlimML uses aggregated data points to estimate the
effects between different parts of the input data and model
parameter updating, thus removing the non-critical parts
before training. In particular, the contributions of this paper
are as follows:
• We propose an effective criterion to quantify a data point’s

effect on model parameter updating. The experimental eval-
uations on widely-used ML algorithms and datasets show
that this criterion distinguishes critical and non-critical
input data during iterative model training (Section 2).

• We design two SlimML modules for efficient non-critical
input data removal (Section 3). First, the input data ag-
gregator module quickly generates aggregated data points
for high-dimensional and massive datasets using incre-
mental singular value decomposition (SVD) [26] based
dimensionality reduction and locality sensitive data divi-
sion. Second, the input data remover module enables fast
estimation of input data’s effect using aggregated data
points, while providing precise estimation by selecting
and processing a small number of aggregated data points
that possibly contain critical data.

• We implemented SlimML on Spark [1] (a mainstream
platform to support large-scale ML using the MapReduce
paradigm) and incorporated it with standard and deep
ML algorithms using Intel BigDL [2]: NN regression,
SVM, and CNN (Section 3.4). Specifically, we apply S-
limML on the prevalent training methods (mini-batch

gradient descend and stochastic gradient descent (SGD))
of these algorithms, and also demonstrate the general
applicability of of SlimML to other optimization methods,
i.e. Adam [39] and Adadelta [60], and in combination with
the importance sampling [11], [45].

• We evaluate the effectiveness of SlimML on large datasets
of millions of instances (Section 4), some of which requires
training time upto two days for SVM on commodity
hardware. The evaluation results show: (1) in SlimML, the
times of generating and processing aggregated data points
take an average of 0.16% and 2.62% of the total model
training time; (2) by removing non-critical input data
during the training process, SlimML reduces input data
by an average of 71.31% and speedups model training by
an average of 3.61 times for all models and by 4.63 times
for the large AlexNet model [41], while only incurring
negligible accuracy losses of 0.37% and 0.10%.

2 BACKGROUND AND MOTIVATION

To show our motivation behind focuing on removing non-
critical input data during the iterative training process, we
demonstrate its prevalence in three popular iterative ML al-
gorithms: NN regression [56], SVM classifier [19], and CNN
[41]. This section first explains their model updating process
as the background of this work (Section 2.1). Subsequently,
it formally defines a data point’s effect on model parameter
updating and non-critical data (Section 2.2) and presents the
results of a measurement study on non-critical input data
using concrete cases and real datasets (Section 2.3).

2.1 Model Parameter Updating in Iterative ML Algo-
rithms

This work studies the gradient descent based supervised
learning algorithms (e.g. regression or classification), which
represent the dominant iterative optimization techniques in
the ML community [14], [47], [50]. Given a model (function
f(~x,Θ)) characterized by its parameters Θ, an algorithm
trains it to minimize a specified cost function c(Θ, I) (also
called loss or error function) on a training dataset I . Such
a cost function essentially represents a surrogate of error
on unknown samples, namely the model accuracy on test
datasets such as the prediction error in regression problems
or the accuracy of identifying correct categories in classifi-
cation problems.

In a typical training process, the algorithm starts from
randomly generated initial parameters Θ0 of the model and
iteratively updates them until convergence. At iteration i
(i > 1), the algorithm takes a set Ii of data points and the
parameters Θi−1 from the previous iteration as input and
updates each parameter θi ∈ Θi as follows:

θi = θi−1 − λ · g(Ii,Θi−1, θi−1) (1)

where λ is the learning rate and gradient g(Ii,Θi−1, θi−1)
represents the steepest direction of updating θi−1 in order to
have the largest reduction in the cost function. This gradient
is calculated as:
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g(Ii,Θi−1, θi−1) =
1

|Ii|

|Ii|∑
j=1

(
∂c(Θi−1, ~x

(j))

∂θi−1
· (f(~x(j),Θi−1)

−y(j)))
(2)

where ∂c(Θi−1,~x
(j))

∂θi−1
is the partial derivative of the cost func-

tion on parameter θi−1 and (f(~x(j),Θi−1 − y(j))) is the
prediction error on data point (~x(j),y(j)). We now introduce
three examples following the above iterative training pro-
cess.

NN regression. The first example represents one impor-
tant class of regression applications. The algorithm trains
a neural network model to predict ~x’s target value y [56].
The cost function (i.e. mean squared error (MSE)) measures
prediction errors on I : c(Θ, I) = 1

N

∑N
i=1(f(~x(i),Θ) −

y(i))2 +λ 1
v

∑v
i=1 w

2
i , where v is the number of weights in Θ

and λ is the regularization parameter.
Model parameter updating. Mini-batch gradient descen-

t [14] is a dominant training method for neural network
models. The algorithm has several epochs, each epoch first
shuffles the input data and then sequentially divides it into
multiple subsets. At each iteration, the algorithm uses a set
of input data points to update model weights.

SVM classifier. The second example constitutes another
important application in supervised ML, and we study the
binary soft-margin SVM classifier [19]. This classifier con-
structs a plus-hyperplane (y=+1) and a minus-hyperplane
(y=-1), classifying data points into positive and negative
categories. Given input data I , the cost function measures
the error of the classifier on the training data: c(Θ, I) =
1
2‖~w‖

2 + λ 1
N

∑N
i=1 max{0, 1− y(i)f(~x(i),Θ)}, where ~w is a

d-dimensional vector of weights.
Model parameter updating. SGD is a widely applied

method to train SVM classifiers [51]. At each iteration, this
algorithm randomly takes one or multiple input data points
and uses them to calculate the gradient for model parameter
updating.

CNN. The final example is one major type of deep
learning applications. CNNs [41] are widely used in visual
recognition and take images as input data. A CNN archi-
tecture (the whole network model such as LeNet-5 [42] and
AlexNet [41]) uses a series of layers of different types (that
is, convolutional, pooling, Rectified Linear Unit (ReLU), and
fully-connected (FC) layers) to extract an image’s charac-
teristics and predicts its class score in the last CF layer
(the output layer). The pooling/ReLU layers implement
fixed functions, and each convolutional/FC layer consists
of multiple neurons. Each neuron has trainable parameters
(weights and bias) and an activation function that defines
the output, given an input combined with the parameters.

Model parameter updating. Similar to regular multi-layer
neural networks, the parameters in a CNN architecture are
trained using gradient descent and backpropagation. For
every neuron in the convolutional/FC layer, its parameters
are updated according to Eqn. (1) and (2), in which the
error signal (f(~x(j),Θi−1)−y(j)) is backpropagated from the
output layer to the input layer. Mini-batch gradient descent
is a common training method for CNNs.

2.2 Effect on Model Parameter Updating
Herein, we focus on critical and non-critical data over the
iterations of model training. At each iteration, a training
algorithm starts from the model parameters obtained in the
previous iteration and adjusts them according to gradients
calculated using the input data. Hence, if processing a data
point (~x, y) triggers an update in the model parameters,
we consider that point critical and introduce a criterion
to measure the effect of processing it on model parameter
updating.

Definition 1 (Effect on model parameter updating). An
input data point (~x, y)’s effect on updating the model parameters
Θ, denoted by e(~x, y,Θ), is the sum of the absolute value of every
parameter’s gradient calculated using this data point:

e(~x, y,Θ) =
∑
θ∈Θ

|g((~x, y),Θ, θ)| (3)

According to Eqn. (2), the calculation of parameter θ’s
gradient depends on both the data point (~x, y) and the
parameters Θ obtained from the previous iteration. Note
that in CNN, we only consider the parameters in the first
layer (the input layer) when estimating an input data point’s
effect, because only this layer takes this point as input.

Discussion of input data selection/sampling. The i-
dentification and removal of non-critical input data (with
small effects on model parameter updating) is not intended
to replace, but rather complement the existing input data
selection/sampling techniques. That is, only the input data
points that are used by the training algorithm at each iter-
ation are considered. For example, the SGD based training
technique uses a mini-batch of sampled input data points
(random or importance sampling [38], [61]) at every itera-
tion, our work focuses on removing non-critical ones from
these points.

Discussion of overfitting. Existing supervised learning
algorithms usually employ regularization parameters to
prevent overfitting. For example, the NN regression and
the SVM classifier use parameters λ in their cost functions
to avoid overfitting. The estimation of effects in Eqn. (3) is
based on the cost functions with regularization parameters,
thereby keeping the regularized objective of the training
algorithms.

Discussion of other iterative optimization techniques.
The definition of effect on parameter updating (Eqn. (3) is
based on the gradient-based optimization techniques. This
definition can be directly extended to other iterative opti-
mization techniques (e.g. Newton and BFGS) by substituting
the gradient in Eqn. (2).

2.3 Experimental Evaluation
The measurement in this section focuses on the iterative
aspect of model training. We first take CNN (AlexNet archi-
tecture [41]) as an example and train this model using the
mini-batch method on the 32×32×3 Cifar10 dataset [3] with
60k data points and 10 object classes. The whole training
process takes 10k iterations. Figure 2 illustrates the proba-
bility distributions of input data points’ effects on parameter
updating at five different iterations. We can observe that: (i)
in all iterations, the input data points have a long tail in the
distribution such that most of the data points have much
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Fig. 2. Probability distributions of effect on parameter updating in CNN

smaller effect values than a small percentage of data points
with large effects; (ii) the data points’ effect values increase
over the course of iterations. For example, the maximum
effect value at iteration 10k is 300 times larger than that at
iteration 1k.

Based on the observation of long tail values of effect, we
set a threshold to divide input data points into critical and
non-critical ones (Definition 2). We further set the threshold
ε to 0.01 (that is, the data points whose cumulative effects are
smaller than 1% of the total effects have negligible influence
on model parameter updating) and extended our evaluation
to the three ML algorithms in Section 2.1: the NN regression
is trained using the NASA Earth Exchange (NEX) [7] dataset
with 12.11 million points; the SVM classifier is trained using
the Gas sensor array (GSA) [4] dataset with 8.39 million
points; and the CNN (AlexNet architecture [41]) is trained
using the Cifar10 dataset [3].

Definition 2 (Non-critical data points). Given a set of
m input data points {(~x(i), y(i))}mi=1 with increasing values of
effect, the first n ones belong to non-critical input data if their
cumulative effects divided by the total effects of all points is
smaller than a threshold ε:

n∑
i=1

e(~x(i), y(i),Θ)/

m∑
i=1

e(~x(i), y(i),Θ) ≤ ε (4)

Fig. 3(a), (c) and (e) show model training times (x axis)
and the accuracies on test sets (y axis) in NN regression
(number of neurons in hidden layer is 50), SVM classifier
(Gaussian radial basis function (RBF) kernel is used and
γ is 1), and CNN (AlexNet), respectively. We can observe
that it takes several hours to dozens of hours to complete
the training process, during which the model accuracy
constantly improves across the iterations. During this it-
erative training process, Fig. 3(b), (d) and (f) show that
considerable proportions of non-critical input data exist at
each iteration: the average percentages of non-critical input
data are 55.57%, 86.71%, and 81.70% in the NN regression,
SVM, and CNN, respectively. In addition, we can observe
that these proportions gradually increase over the iterations
in all three algorithms. This indicates that the discrepancy
of effects among data points becomes larger when more
iterations are conducted. In other words, more data points
have negligible impact on model parameter updating when
the training process is nearing to converge. For example,
in the SVM classifier, more data points fall between the
two hyperplanes and thus do not influence the updating
of model parameters.

Fig. 3. Quantitative measurement of NN regression, SVM, and CNN

Challenge. The common observation from those three
ML algorithm is that removing large amounts of non-
critical input data can significantly reduce model training
time (both in terms of computation and communication
times), while causing negligible impact on model parameter
updating and accuracy if the removal is done correctly. To
slim down the training process by using a smaller amount
of critical data, it is critical to estimate input data’s effect
in a much shorter time compared to the model training time.
Nonetheless, directly computing all data points’ effects takes
prohibitively long time. Hence, the benefit and challenge
motivate the design of SlimML, explained in the subsequent
section.

3 SLIMML
In this section, we first present an overview of SlimML in
Section 3.1 and then explain its modules in Sections 3.2 and
3.3.
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3.1 Overview

For a ML application, SlimML is built upon the parallel data
processing framework and enables the efficient removal of
non-critical input data in model training using two modules,
as shown in Fig. 4.

Input data aggregator. Given an input dataset, this
module transforms it into multiple aggregated data points,
each of which represents a part (subset) of the original input
data points with similar feature values, and aggregates
their attribute information. Note that the aggregated data
generation is only performed once before the iterative model
training stage.

Input data remover. Based on the aggregated data
points, this model is designed to remove non-critical input
data during the iterative training process. At each iteration,
the module is applied in each parallel task to estimate the
aggregated data points’ effects on model parameter updat-
ing, and outputs the critical parts of input data. Note that in
estimation, the number of aggregated points is sufficiently
small such that the processing only takes a small proportion
of the training time.

3.2 Input Data Aggregator

The input data aggregator module generates aggregated data
points for two purposes. (1) Data similarity preservation: it
groups similar data points of input data and stores their av-
eraged attribute information to preserve data similarity. This
tries to guarantee similar correlations to model parameter
updating between an aggregated data point and the original
data points it represents. (2) Fast generation: it completes
the generation process quickly even when handling large
datasets. To this effect, three steps are used in input data
aggregation.

Step 1. Dimensionality reduction. This step operates on
the attribute part (the N × d dataset X) of input data. To
handle high-dimensional data efficiently, this step employs
the incremental SVD method [26] to transform dataset X
(either sparse or dense) into a dense N × v data set X ′,
where v << d. This method is an approximation of standard
SVD and it is used for two reasons. First, it minimizes
the difference (i.e. the Frobenius norm between X and X ′)
between the two data sets in transformation. Second, its
execution time is independent of the data dimensionality
d: the transformation is an iterative optimization process
whose time complexity is O(v × e × a), where e is the
number of iterations for each dimensionality and a is the
number of attributes used in each iteration (that is, a finite
number of attributes is used at each iteration). Hence the
transformation can be completed quickly when dealing with
high-dimensional datasets.

Step 2. Locality sensitive division. This step operates
on the N × v reduced dataset X ′ and divides its N points
into 2v parts, where each part consists of N

2v points that are
similar in attribute values. Specifically, the division starts
from the whole dataset and splits them recursively using v
splits. Each split first sorts all the data points in each part
in an ascending order according to their attribute values in
a particular dimension j (1 ≤ j ≤ v) and then divides the
ranked points into two equal parts, guaranteeing that the

points with similar attribute values are grouped in the same
part under the split.

Note that compared to the other grouping methods such
as hash, clustering and index tree, our approach is straight
forward and has weaker guarantee of dividing related data
points. On the other hand, this method is employed for
two reasons. (1) Uniform data division. To make fair compar-
ison of aggregated data points effects on model parameter
updating, these points are generated at the same level of
granularity. An aggregated data point’s level of granularity
represents the number of input data points whose attribute
information is summarized by this point. Hash methods
such as locality sensitive hashing (LSH) [21] provide non-
uniform grouping of data points: the number of data points
in a group can be 100 times larger than another groups
number of data points. (2) Fast data division. Our approach
completes the division much faster than transitional data
grouping methods such as clustering and index tree. Take
k-means clustering and R-tree as examples to compare. The
time complexities of our method isO(v×N). In contrast, the
time complexity of k-means is O(2v× i×N), where v is the
number of cluster centers and i is the number of iterations
(2v × i >> v), and the time complexity of constructing a
R-tree is O(logN × N) (logN >> v). Let v=5, i=30, and
N=1,000,000, our method is 480 and 200 times faster than
k-means and R-tree, respectively.

Step 3. Information aggregation. According to the di-
vision result, the final step summarizes the information of
the original input data points in each part and generates an
aggregated data point (Definition 3) and an index file, which
records its mapping relationship to the original data points.
Note that step 2 divides data points in the reduced attribute
space while step 3 compute the averages of the original data
points’ attributes and category values.

Definition 3 (Aggregated data points). Suppose an ag-
gregated data point (~a,ŷ) (~a = (a1, a2, ..., ad)) correspond-
s to a set of m input data points {(~x(i), y(i))}mi=1 (~x(i) =

(x
(i)
1 , x

(i)
2 , ..., x

(i)
d )), then

aj =
wj × Σmi=1x

(i)
j

m
, ŷ =

Σmi=1y
(i)
j

m
(1 ≤ j ≤ d) (5)

Where wj represents feature j’s weight (importance). Typi-
cally, there are two ways to calculate the feature importance
in a ML algorithm. First, a simple way is to estimate feature
importance before training according to the characteristics
of the dataset itself. A possible method is to calculate each
features associated information gain using decision trees.
Moreover, in many iterative ML algorithms, the importance
of a feature varies when the model changes across the
iterations of training. The permutation feature importance
method [46] is commonly used to calculate a feature’s
importance as the difference of model errors between the
unchanged feature and a feature with a shuffled value.

Fig. 5 shows an example of the input data aggregation
process. Step 1 transforms a 12×5 dataset X into a 12×2
datasetX ′. We can see that data points with similar attribute
values (e.g., points ~x(1) and ~x(2) in X) still have similar at-
tributes in X ′. Step 2 operates on the 2-dimensional dataset
X ′ and divides the 12 data points into four equal parts
(subsets), where each part has three data points of similar
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Fig. 4. Overall process of SlimML

Fig. 5. An example of input data aggregator

attribute value. Finally, step 3 generates four aggregated
data points ~a(1) to ~a(4).

3.3 Input Data Remover
The input data remover module is designed for both the pa-
rameter server and the MapReduce architectures. As shown
in Figure 6, each map task processes one partition of input
data points to compute gradients for one partition of model
parameters using two steps. First, the module removes non-
critical input data points according to the model parameters
obtained in the previous iteration. Secondly, it uses the
remaining input data to update these parameters.

Fig. 6. Input data remover in a map task

Specifically, this module uses aggregated data points as
an approximation of input data and estimates these points’

effects on model parameter updating. If an aggregated
data point’s effect is lower than a removal threshold ε, its
corresponding input data points are removed according to
its index file. Hence the number of aggregated data points
determines both the overheads and effectiveness of the
input data removal. On the one hand, using aggregated
data points to remove non-critical input data requires extra
processing of these data points. The number of aggregated
data points, therefore, should be much smaller (e.g. 10 or
100 times smaller) than the number of original input data
points, guaranteeing this processing time only takes a small
proportion of the model training time. On the other hand,
a sufficient number of aggregated data points allows the
fine-grained differentiation of the different parts of the input
data represented by these points, thus enabling the accurate
computation of these parts’ effects.

Based on these aggregated data points, the steps of input
data removal in a parallel worker are detailed in Algorithm
1. At each iteration of model training, this module first
computes the effects of all m aggregated data points (line
1 to 3). It then employs a ranking method to sort all the
aggregated points in an ascending order according to their
effects on model parameter updating (line 4) and add them
to set C (line 5). Subsequently, the first i points are identified
as non-critical ones if their accumulated effects divided by
the accumulated effects of all m points is smaller than or
equal to the threshold ε, and they are removed from set C
(line 6 to 10). Finally, the algorithm returns the critical input
data according to the aggregated data points in C (line 11).

3.4 Implementation
SlimML is implemented in Scala and it is currently targeted
for ML applications running on Spark [1]. Its input data
aggregator module is implemented based on the open source
packages of SVD, and its input data remover module is
incorporated with typical iterative ML algorithms.

The Input data aggregator module operates on a ML
algorithm’s input data and it is independent of the iterative
training process. Among its three steps, step 1 (dimension-
ality reduction) is the most computationally expensive one
that takes most of the generation time. We therefore use
the incremental SVD method [5] to approximate the matrix
transformation. Step 1 treats the dimensionality reduction
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Algorithm 1 Input data removal in a parallel worker
Require: (~a, y): an aggregated data point that corresponds

to multiple input data points;
{(~a(1), y(1),(~a(2), y(2),...,(~a(m), y(m)}: the partition (set)
of m aggregated data points in the task;
e: an aggregated data point’s effect on parameter updat-
ing;
Θ: the partition of model parameters in the task; ε: the
threshold of non-critical input data;
C: the set of critical aggregated data points.

1. for i=1 to m do
2. Compute (~a(i), y(i)’s effect e(i) using Eqn. (3);
3. end for
4. Sort the m aggregated data points in ascending order

according to their effects;
5. C={~a(1),~a(2),...,~a(m)};
6. for i=1 to m do
7. if (

∑i
j=1 e

(j)/
∑m
j=1 e

(j) ≤ ε) then
8. C= C \ {(~a(i), y(i)) };
9. end if

10. end for
11. Return the set of input data points represented by the

aggregated data points in C.

process as a gradient descent optimization problem whose
running time can be controlled by setting the number of it-
erations and the number of attributes used at each iteration.

The advantages of generating aggregated data points are
two fold: (i) removing the non-critical input data before
the training of each iteration, and more importantly (ii)
incorporating the input data remover module into a ML
algorithm does not require any modification in its model
training process. We incorporated this module into three ML
algorithms introduced in Section 2.1: (1) NN regression is
implemented as a network of sigmoid activation functions
[56]: fNN (~x,Θ) = Σnh

i=1(wi(d+2)+d+1 · s(Σd−1
j=0wi(d+2)+j ·

xj + wi(d+2)+d)) (wi ∈ Θ), where s(x) is the sigmoid
activation function 1

1+e−x , nh is the number of neurons in
the hidden layer, and d is the data dimensionality. (2) SVM
classifier [19] is implemented as: fSVM (~x,Θ) = ~wT~x+ b =∑N
i=1 αiy

(i)κ(~x(i), ~x) + b (~w, b ∈ Θ), where α1 to αN are
the Lagrange multipliers and κ(~x(i), ~x) is a kernel function
such as Gaussian RBF kernel exp(−γ‖~x(i) − ~x‖2. (3) CNN
is implemented as two representative architectures: LeNet-5
[42] and AlexNet [41]. In addition to the input and output
layers, all two architectures have multiple convolutional
layers (2 for LeNet-5, and 5 for AlexNet), 2 pooling layers,
and 1 or 2 FC layers (1 for LeNet-5, and 2 for AlexNet).

To support the processing of large datasets, the dis-
tributed versions of all three algorithms are built upon the
MapReduce paradigm and the resilient distributed dataset
(RDD) data structure in Spark [59], and they are implement-
ed on Spark Machine Learning Library (MLlib) [8] (support-
ing the synchronous SGD) and BigDL [2] (supporting the
asynchronous SGD [50] and the parameter server paradig-
m [18], [43]). The implementation modifies the Distributed
optimizer function, which conducts the model training in
parallel workers. Figure 7 lists the four steps of this function:
step 1 initializes the model parameters and distributes their

replication to workers. Step 2 samples training data from the
input data, transforms it into the mini-batch RDD structure,
and partitions it to workers. Subsequently, step 3 calcu-
lates gradients using the partitions of model parameters
and training samples in each worker. At the end of each
iteration, step 4 aggregates gradients from these workers
and updates the model. Our implementation modifies steps
2 and 3 of this function. Specifically, the mini-batch data
structure at step 2 is modified to describe aggregated data
points and their corresponding input data points. At step
3, Algorithm 1’s non-critical input data removal is added
before the gradient calculation. The implementation of each
ML algorithm requires changing less than 100 lines of code.

Fig. 7. The Distributed optimizer function in MLLib/BigDL

4 EVALUATION

In this section, we first evaluate SlimML’s salient feature
in removing non-critical input data by quickly generating
and processing aggregated data points (Section 4.2), and
then highlight its effectiveness in reducing model training
times with negligible accuracy losses (Section 4.3). Finally,
we discuss SlimML’s applicability in different optimization
and sampling methods (Section 4.4).

4.1 Experimental Settings

Experiment platform. The experiments were conducted on
a YARN cluster with one master node and 10 worker nodes
connected through 1 GB ethernet network cards. Each node
is equipped with two Intel Xeon E5645 processor cores, 32
GB of DRAM, and one 1 TB 7200RPM SATA disk drive,
and runs Linux Ubuntu 14.04.1. The Spark cluster has 40
executors, each executor has two vcores and 4 GB memory,
and the driver memory is 20GB. The JDK, Spark, Scala
versions are 1.8.0, 2.0.0, and 2.11.8, respectively.

Tested workloads and datasets. We test workloads of
three ML applications (NN regression, SVM, and CNN)
based on the implementations in Section 3.4. For each ap-
plication, different model complexities are tested: (1) NN
regression: the number of neurons in the hidden layer is
set to 50 or 100; (2) SVM: the Gaussian RBF kernel is
used and the gamma parameter is set to 1

18 (i.e. 1 over
the number of features) or 1

9 (representing a more complex
model); and (3) CNN: LeNet-5 and AlexNet architectures
are used. As listed in Table 1, NN regression, SVM, LeNet-
5 and AlexNet are tested using NEX [7], Wearable Stress
and Affect Detection (WESAD) [10], GSA [4], MNIST [6],
TinyImages (extracted from the 100 classes of the Tiny
Images dataset [9]) and Cifar10 [3] datasets, in which the
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numbers of training/testing points are 9,691,154/2,422,788,
50,400,000/12,600,000, 6,709,412/1,677,353, 50,000/10,000,
200,000/50,000 and 50,000/10,000, respectively.

TABLE 1
Summary of workloads and datasets

Workload NN regression SVM CNN
LeNet-5 AlexNet

Dataset NEX,WESAD GSA MNIST, Tiny-
Images

Cifar10

Compared techniques. The stardard SGD method and
two sampling techniques widely used in todays large-scale
ML are compared. (1) Coreset [13], [34]. This technique
constructs a weighted subset of the input data (called a
coreset) that only contains 25% of the original input data
and uses this coreset in model training. The current coreset
construction algorithm is developed for NN regression.
(2) Importance sampling [48], [49], [55], [61]. This technique
skews the sampling towards important input data points
according to the distribution of their losses, thus reducing
the variance of gradient estimates. It can be applied in both
NN regression [16] and CNN [37], [38].

Model training settings. We set the hyperparameters
of model training according to the commonly used ones
or default values in current ML libraries and BigDL [2].
In detail, the mini-batch gradient descent method [14] is
used to train NN regression and CNN. Each epoch divides
the input data into 100 subsets, the learning rate is set
to 0.01, and the regularization parameter λ=0.1. The SGD
method [51] is used to train SVM. Each iteration takes 10k
training samples, the learning rate is set to 1.49× 10−7 (i.e.
1 divided by the number of training instances), and the
regularization parameter λ=1. For all compared techniques,
we use the same hyperparameters, batch size, and initial
model parameters in comparative evaluations.

Evaluation Metrics. Both performance and accuracy
metrics are used to evaluate the ML process across a number
of iterations. At a certain iteration, the performance metric is
the model training time. In SlimML, this time is the sum
of the generation and processing times of aggregated data
points and the model training time on critical input data.
In addition, the accuracy metric is MSE on the test set for
NN regression, and its classification accuracy on the test set
for SVM and CNN. We report the top-1 accuracy: the top
predicted class (the one having the highest probability) is
the same as the target class label.

4.2 Overheads and Effectiveness of Input Data Re-
moval

The effectiveness of input data removal relies on quickly
generating aggregated data points and using them to com-
pute effects of different parts of input data.

Generation of aggregated data points. We tested the three
steps of generating aggregated data points in SlimML. At
step 1, the input dataset is transformed to a low-dimensional
dataset using the incremental SVD, In transformation, the
number of iterations for each dimensionality is 10 and the
number of attributes in each iteration is 5% of the data
attributes. At step 2, the dataset is divided into different

subsets according to the aggregation ratios. At step 3, the
information of each subset is aggregated to generate an
aggregated data point. Step 1 takes a majority (over 95%)
of generation time, and thus the generation time is mainly
determined by the running time of incremental SVD rather
than the aggregation ratio. Table 2 reports the generation
time of each dataset and it is two to three orders of magni-
tude shorter than that of model training time listed in Table
3. We also compared SlimML to the coreset approach [13],
[34] when processing the same datasets (note that the cur-
rent coreset techniques cannot be applied to image datasets),
because both approaches are conducted at the pre-training
stage. We can see in Table 2 that our approach is 3.44 times
faster than coreset.

TABLE 2
Comparison of generation time (seconds) at the pre-training stage

Dataset NEX WESAD GSA MNIST Cifar10 TinyImage
SlimML 148.11 943.38 6.44 11.73 35.64 106.09
Coreset 510.82 3205.41 20.04

TABLE 3
Comparison of whole model training time (hours)

Dataset NEX WESAD GSA MNIST Cifar10 TinyImage
SlimML 2.95 4.04 12.16 1.10 2.70 16.30
Coreset 5.44 24.61 27.35

Processing aggregated data points. To evaluate the compu-
tation costs of processing points, we divide each iteration’s
model training process into two parts: processing aggregat-
ed data points and removing non-critical input data (part 1),
and model training using critical input data (part 2). For ei-
ther part, we report its percentage computation time, which
denotes the execution time of this part divided by the total
execution time. For each ML algorithm and dataset, we test
three cases of input data aggregation, which are denoted by
three aggregation ratios (the number of original input data
points divided by the number of aggregated data points), as
shown in Fig. 8. Some algorithms process larger datasets, so
larger aggregation ratios (50, 100 and 200) are used. We can
see that the execution time of part 1 is inversely proportional
to the aggregation ratio. That is, a larger compression ratio
(e.g. 200) means shorter execution times of part 1. Overall,
SlimML quickly processes aggregated data points such that
it takes an average of 2.46% of the total model training time.

Effectiveness of removing non-critical input data. Following
the setting of the previous evaluation (aggregation ratios
are 100, 100 and 10 for NN regression, SVM and CNN,
respectively), we evaluate the effectiveness of input data
removal at each iteration of model training. The threshold of
non-critical input data is 1% of the total effect, and the NEX,
GAS, MNIST, and Cifar10 datasets are tested. In evaluation,
we report the percentage of input data removal, which
denotes the amount of removed input data in a worker
by applying SlimML divided by that amount without our
approach. Fig. 9(a) to (c) first show the execution time of the
iterative training process. For NN regression and SVM, the
training processes take 10k and 300 iterations to converge,
respectively. For the LeNet-5 and AlexNet architectures of
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Fig. 8. Percentage computation time breakdown under three aggrega-
tion ratios.

CNN, the training processes take 100k and 10k iterations to
converge, respectively.

Fig. 9(d) to (f) show this percentage in each model during
its iterative training process. With SilmML, 55.33%, 74.14%,
and 84.45% of input data are reduced in the models of NN
regression, SVM, and CNN, respectively. This reduction is
primarily determined by three factors: (1) the characteristic
of input data: the NEX dataset in NN regression contains
the smallest proportion of non-critical input data, so the
percentage of reduction is also the lowest in this algorithm;
(2) the current model parameters: the values of model parame-
ters continuously change over the iterations, which cause
more input data points becoming non-critical and hence
more computational cost can be saved; (3) the aggregated
data points: SlimML uses aggregated data points’ effects
to approximately represent those of input data points and
decide the removal of non-critical ones.

4.3 Acceleration of Model Training

In this section, we first evaluate the effectiveness of SlimML
in accelerating the standard SGD training approach follow-
ing the experimental setting of the previous section. Fig. 10
shows the comparative results in terms of training time (x
axis) and accuracy on test sets (y axis). First, Fig. 10(a) to Fig.
10(c) show the comparison results when training models
of lower complexity. We can see that during the iterative
training process, applying SlimML to remove non-critical in-
put data achieves considerable reductions in training times
when obtaining the same accuracies. Hence the training
algorithms with SlimML converge much faster, while ob-
taining very similar accuracies in most of the cases. These
results verify that SlimML correctly removes input data that
has a much lower level of influence on model parameter
updating than the retained input data, thus resulting in
negligible accuracy losses.

Fig. 10(d) to Fig. 10(g) show the results when training
models of higher complexities. We can observe that SlimML
displays more obvious superiority over algorithms without
input data removal by reducing model training by an av-
erage of 3.72 times (this reduction is 2.45 times for models
of lower complexity). In particular, for the AlexNet with
the most numbers of model parameters, SlimML achieves
4.63 times reduction in model training times with negligible
accuracy loss of 0.10%. The above results verify SlimML’s
applicability to different ML algorithms and indicate that it
has more advantages in complex models.

We further compare SlimML to the two sampling tech-
niques using large datasets (WESAS and TinyImage). Fig-
ures 11(a) and (c) demonstrate the training time (x axis)
and accuracy (y axis) of the four techniques. For SlimML
(coreset), the training time includes both the generation
time of aggregated data points (coresets) and the iterative
model training time. We can see that the importance sampling
approach needs the longest training time. This indicates that
although this approach requires less number of iterations
to converge, it also needs to constantly calculate all data
points’ losses in order to update the distribution. Hence each
iteration takes much longer time than that of the standard
SGD approach (e.g. 40% longer in CNN). In contrast, the
coreset approach considerably decreases the training time
because it only uses a smaller subset of input data for
training. However, this technique also incurs the largest
accuracy losses: 2.64 times larger than those of SlimML and
importance sampling approaches. The results show SlimML
achieves both the shortest training time and small accuracy
losses, because its input data removal (see Figures 11(b)
and (d)) relies on the processing of aggregated data points
according to the latest model parameters, and the number
of aggregated data points is much smaller than that of the
input data points.

Fig. 11. Comparison of training time and accuracy with baseline tech-
niques
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Fig. 9. Applying SlimML to the standard SGD approach under different model complexities. The top figures ((a) to (c)) show the iterative model
training times across iterations and bottom figures ((d) to (f)) shows the percentages of input data removal.

Fig. 10. Comparison of training time and accuracy with and without removal of non-critical input data in standard SGD approach

Results. When applying SlimML to remove non-critical input
data, the model training is accelerated by an average of 3.61 times
with small accuracy losses of 0.37% in the evaluations of NN
regression, SVM, and CNN workloads.

4.4 Discussion of the Applicability in Other Optimiza-
tion and Sampling Methods
Discussion 1: Optimization methods. We take AlexNet
and Cifar-10 dataset as an example, and design two ex-
periments to demonstrate the applicability of SlimML with
other optimization methods in addition to the SGD method
shown in the previous evaluations. Two methods consid-
ered are: Adam [39] (a first-order gradient-based optimiza-
tion method) and Adadelta [60] (an adaptive learning rate
technique). The detailed model setting of these methods
follow the benchmark provided in [2].

Evaluation results. Figures 12(a) and (c) show the model
training time and its test accuracy of either standard opti-

mization method (without input data removal) and the one
with removal using SlimML. We can observe that compared
to SGD (Figure 10(f)), both optimization methods achieve
better model accuracies using less training times. This is be-
cause they optimize the model parameter updating process,
needing less iterations in training (2k iterations in Adam
and 6k iterations in Adadelta, as shown in Figures 12(b)
and (d)). SlimML is orthogonal to these methods such that it
reduces the training time of each iteration by removing non-
critical input data against all three optimization methods.
The evaluation results show that SlimML further reduces
training time by half while achieving the same model
accuracy (Figures 12(a) and (c)), because it reduces large
proportions of input data (72.75% in Adam and 64.78% in
Adadelta, as shown in Figures 12(b) and (d)).

Discussion 2: Integration with Importance sampling.
We implemented the representative importance sampling
method for deep learning [11], [45], which creates a multino-
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Fig. 12. Applying SlimML in the Adam and Adadelta optimization meth-
ods

mial distribution using the input data points’ losses. At each
iteration, we first sampled the training points based on the
distribution and remove the non-critical input data using
SlimML. In evaluation, the same mini-batch is used as the
previous sections and the data points’ losses are computed
at each epoch.

Evaluation results. Figure 13(a) shows that compared to
SGD with random sampling (Figure 10(f)), the basic impor-
tance sampling method (without removal) improves model
accuracy by about 5% via reducing the variance of the
gradient estimates in training. However, this method also
needs 19.95% longer time to complete the training process
because its expensive computation of input data points’
losses. In contrast, SlimML mitigates this phenomenon by
only calculating the losses of the aggregated points (for data
sampling), whose number is much smaller than that of input
data points. Furthermore, our approach removes an average
77.00% non-critical ones from the sampled points (Figure
13(b)), and reduces model training time by an average of
4.83 times with accuracy losses of less than 1% (Figure
13(a)).

Fig. 13. Applying SlimML in AlexNet training using the importance
sampling method

Discussion 3: removal threshold. In our approach, the
removal threshold is a key parameter that determines the
number of original data points to be removed from model
training. The variations in the threshold therefore influence
both training time and model accuracy. In previous evalua-
tions of the CNN workload, the threshold is set to 1%, which
allows the data points whose cumulative effects are smaller
than 1% of the total effects of all points to be removed.
In this evaluation, we first tested three thresholds: 0.8%,
1%, and 1.25%, which lead to considerable differences in
the percentages of removed input data during the iterative
training process, as shown in Figure 14(a). We further tested
six thresholds for two different workloads and datasets,
Figure 14(b) shows the percentages of input data removal
at the end of model training. In both evaluations, we can
see that lower thresholds always bring smaller numbers of
input data points to be removed, thus resulting in longer
training time. On the other hand, a larger threshold achieves
more performance improvement, but also incurs larger ac-
curacy losses (e.g. the accuracy loss is 7.49% if the threshold
is 1.25%). We can also observe that when the thresholds
are small (e.g. 0.6% and 0.8%), an increase in the threshold
value brings considerable improvement. However, the im-
provement becomes negligible when the threshold is larger
than a value (e.g. 1.5% in TinyImage or 1.25% in Cifar10).
This is because the input data points’ effects on model
parameter updating have a long tail in the distribution
(as shown in Figure 2), and most of them are identified
as non-critical data when the threshold is larger than the
value. In conclusion, SlimML can make trade-offs between
training time and model accuracy with the threshold, and it
is possible to introduce an automatic method to dynamically
adjust the removal threshold during the iterative training
process, while maintaining the accuracy loss below a user-
specified value.

5 RELATED WORK

We can summarise the key methodologies currently used in
large-scale ML into two camps as described below.

5.1 Massive Input Data Points
When handling massive data points, data parallelization
techniques process them in a parallel and distributed fash-
ion, thus accelerating the training process of ML algorithms
(e.g. mini-batch based neural network or SGD based SVM).
These techniques mainly concentrate on how to address
the challenges in data parallelization such as stragglers [30]
and data locality [58], or combine data parallelization and
algorithm parallelization to create an optimal execution
plan [15]. SlimML is built upon the dominant data parallel
paradigm - MapReduce [22], and it focuses on removing
non-critical input data in map tasks.

The most related approach to SlimML is coresets and
importance sampling that also select a part of more im-
portant (distinctive) input data points for model training.
Specifically, the coreset approach [13], [34] constructs a s-
maller, weighted subset of the input data to approximate the
full dataset and then uses this subset (i.e. coreset) in model
training. This construction process is completed at the pre-
training stage based on the input dataset itself. However, the
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Fig. 14. Percentages of input data removal under different removal
thresholds.

Fig. 15. Comparison of training time and accuracy under different re-
moval thresholds.

model is constantly updated during the iterative training
process, hence the importances of data points fluctuate and
the fixed coreset may poorly reflect the current situation.

For such an issue, recent importance sampling tech-
niques create a distribution to sample the most important
data points, and update the distribution at each iteration to
reflect the latest changes in model parameters [48], [49], [55],
[61]. In recent years, importance sampling has been applied
in many iterative ML algorithms such as regression [16] and
deep neural networks [37], [38]. However, it suffers from
being computationally expensive because each update of the
distribution needs to compute all input data points’ gradient
norms or losses with respect to the model parameters [38].
In contrast, SlimML incurs smaller computational footprint
using aggregated data points. First, its removal process only
calculates the gradient norms of aggregated data points,
whose number is much smaller than that of input data
points. Second, it is integrated with the MapReduce and
parameter server paradigms and thus can process partial
input data and model parameters in each worker in parallel.

5.2 Massive Model Parameters
In parallel and distributed model training, large datasets
result in tremendous amount of local variables (e.g. in-
termediate results to compute gradients in Eqn. (2)) used
to update the global parameters [43]. Parameter server is
another important category of techniques that improve the
performance of accessing (reading and updating) and syn-
chronizing local variables and global parameters [18], [20],
[43], [53]. This work is implemented based on the efficient
parameter synchronization of parameter server.

Model compression techniques apply lossy compression
techniques such as pruning unimportant connections [35],
vector Quantization [25], [33], huffman coding [29]) in
massive model parameters, thus reducing computation and
communication costs in model training. Within the context
of large-scale ML, these techniques has been applied in both
approximate nearest neighbour (ANN) search of stream
data [57] and deep neural networks [29]. During the iterative
training process, they treat the selected input data as equally
critical to model accuracy and hence are complementary to
the input data removal approach in this work.

6 CONCLUSION

In this paper, we presented SlimML to accelerate the train-
ing process of iterative ML applications, and demonstrated
its effectiveness using both three popular ML algorithms.
SlimML is based on two key ideas: (1) it aggregates infor-
mation of input data to create small aggregated data points
at the pre-learning stage; (2) using these points, it quickly
estimates the input data’s effects on model parameter up-
dating at each training iteration, using the data with high
estimated effects in model training. Evaluation results using
real workloads and massive datasets demonstrate the effec-
tiveness of SlimML in bringing considerable reductions in
model training times while only causing negligible accuracy
losses.
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