
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Iterative solutions to sequences of Helmholtz
equations

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

J.M. DE GIER

Delft, the Netherlands
August 2012

Copyright © 2012 by J.M. de Gier. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

“Iterative solutions to sequences of Helmholtz equations”

J.M. DE GIER

Delft University of Technology

Daily supervisor Responsible professor

Dr.ir. M.B. van Gijzen Prof.dr.ir. C. Vuik

Other thesis committee members

Dr. K. Dekker Dr. J.L.A. Dubbeldam

August 2012 Delft, the Netherlands

Preface

The so-called Pythagoreans, who were the first to take up mathematics, not only advanced this
subject, but saturated with it, they fancied that the principles of mathematics were the principles

of all things.
Aristotle

For the last 300 or so years, the exact sciences have been dominated by what is really a good idea,
which is the idea that one can describe the natural world using mathematical equations.

Stephen Wolfram

During my studies in Applied Mathematics I frequently wondered why mathematics is as effective
as it is. If mathematics is just a human construction that consists of symbols and relations, how
can it match the reality that surrounds us to amazing precision? It seems that the mathematical
building blocks correspond to the building blocks of the universe and this is one of the reason why
I love my studies in mathematics: it is a way to comprehend the (physical) reality.

With this thesis I finish my education in Applied Mathematics at the Delft University of Tech-
nology. In the past year, I gradually changed from a student to a ‘citizen’, as it is called among
students. This means less late-night partying, working 9-to-5 and, as icing on the cake, moving
from a student house to an apartment.

I would like to thank the thesis committee members for their time and energy spent on reading the
literature review and this thesis and their comments to improve the research and the thesis. My
biggest thanks go to my supervisor, Martin van Gijzen, for the many conversations that guided
my research and clarified my thinking on any problem that I came across.

Jan de Gier
Delft, the Netherlands, August 2012

i

ii

List of Symbols

Mathematical symbols

i imaginary unit,
√
−1

α+ βi complex conjugate, α− βi

|α+ βi| absolute value,
√
α2 + β2

ϕα+βi argument, arctan(β/α)

x vector (x1, . . . , xn)T in Rn or Cn or vector field S → Rn or S → Cn

Kk(A, r0) Krylov subspace of dimension k, span{r0,Ar0, . . . ,A
k−1r0}

x · y
n∑
i=1

xiyi

‖x‖ 2-norm,
√

x · x

∆xi xi − xi−1

A n× n real or complex matrix, (aij)
n×n in Rn×n or Cn×n

A (n+ 1)× n real or complex matrix, the extended counterpart of A

A∗ conjugate transpose of A, AT

σ(A) spectrum of A, set of eigenvalues of A

ρ(A) spectral radius of A, maximum of the absolute values of the set of eigenvalues of A

κ(A) spectral condition number of (non-singular) A in the 2-norm, ‖A‖‖A−1‖

Ω bounded region in Rn

Γ boundary of Ω

n outward unit normal to the boundary

∂f

∂xi
partial derivative of f with respect to xi

∇f gradient of f ,

(
∂f

∂x1
, . . . ,

∂f

∂xn

)T
∂f

∂n
∇f · n

∇ · f divergence of f ,

n∑
i=1

∂fi
∂xi

iii

∇2f Laplacian of f ,

n∑
i=1

∂2f

∂x2
i

, ∇ · ∇f

δ(x) n-dimensional Dirac delta function

δij Kronecker delta

Physical symbols

t time [s]

ρ (fluid) density [kg/m3]

p (fluid) pressure [kg/(m s2)]

u (particle) displacement [m]

v (particle) velocity [m/s]

c0 speed of sound (in air) [m/s]

f (ordinary) frequency [1/s]

ω angular frequency [1/s]

k acoustic wavenumber [1/m]

λ wavelength [m]

Z0 characteristic acoustic impedance (of air) [kg/(s m2)]

Zn specific normal acoustic impedance [kg/(s m2)]

iv

List of Figures

Page

3.1 A piecewise linear basis function . 8
3.2 A subdivision of Ω into triangular elements . 9
3.3 Contour lines of the amplitude |P (x)| in the 2D room 10
6.1 Eigenvalues and Ritz values of the Hanowa matrix, conventional ω in IDR(s) . . . 30
6.2 Eigenvalues and Ritz values of the Hanowa matrix, new ω in IDR(s) 31
6.3 Eigenvalues of the Hanowa matrix and Ritz values based on Hk 32
6.4 Eigenvalues and Ritz values of several matrices . 33
6.5 Validation on small preconditioned room problems 34
6.6 Validation on a larger preconditioned room problem 34
7.1 The FIAT Punto . 37
7.2 The FEM model of the FIAT Punto . 38
7.3 Matrix structures for the car problem . 39
7.4 Residual norms for the fluid problem with differently factorised preconditioners . . 41
7.5 Residual norms for the structure problem . 42
7.6 Residual norms for the fluid problem with LU factorisation of the preconditioners . 44
7.7 # iterations for the fluid problem with different types of extrapolation 46
7.8 # iterations for the structure problem with different types of extrapolation 47
7.9 # iterations for the fluid problem with initial search space U0 48
7.10 # iterations for the structure problem with initial search space U0 49
7.11 Lagrange inter- and extrapolation on a sine function 50
7.12 # iterations for the fluid and structure problem with inter- and extrapolation . . . 51
7.13 Results for the structure problem with three preconditioners 53
7.14 # iterations for the fluid problem with/without update of the preconditioner . . . 54
7.15 # iterations for the structure problem with/without update of the preconditioner . 55
7.16 Cumulative computation time (s) for update thresholds q 56
7.17 Cumulative computation time (s) for shift parameter c 58
7.18 Performance of different algorithms on the fluid problem 60
7.19 Performance of different algorithms on the structure problem 63
7.20 Performance of IDR(s) with Pr

∗(f0) and without U0 64
7.21 # iterations and residual norms for the car problem with/without U0 67
7.22 Performance of different methods on the car problem 70
7.23 Performance of different methods on the large car problem 71
7.24 Ritz values and enclosing ellipses for the fluid problem 72
7.25 Residual norms for the fluid problem with Pr

f (f0) 73
7.26 Residual norms for the fluid problem with Pi

f(f0) 74
7.27 Residual norms for the car problem with P∗f (f0) 75
B.1 Location of the eigenvalues . 86
B.2 Several choices for x0 and initial U0 . 88
B.3 Number of MATVECS per frequency for various methods 89
B.4 Computation time per frequency for various methods 90
B.5 Number of MATVECS per frequency for various preconditioner shifts k0 92
B.6 Computation time per frequency for various preconditioner shifts k0 93

v

vi

List of Tables

Page

7.1 Results at a residual norm of 10−8 for the fluid problem 41
7.2 Exact LU factorisation for the fluid and structure problem 43
7.3 Results at a residual norm of 10−8 for the structure problem 44
7.4 # iterations for the fluid problem with different types of extrapolation 45
7.5 # iterations for the structure problem with different types of extrapolation 47
7.6 # iterations for the fluid problem with initial search space U0 48
7.7 # iterations for the structure problem with initial search space U0 49
7.8 # iterations for the fluid and structure problem with inter- and extrapolation . . . 51
7.9 Results for the structure problem with three preconditioners 52
7.10 Computation time (s) for Pr

∗(f0) with/without updating the shift 56
7.11 Performance of different algorithms on the fluid problem 59
7.12 Performance of different algorithms on the structure problem 61
7.13 Performance of IDR(s) with Pr

∗(f0) and without U0 62
7.14 Norms of individually computed solutions of fluid and structure part 65
7.15 Norms of the fluid part and the structure part of the complete solution 66
7.16 Results for the car problem with/without U0 . 68
7.17 Performance of different methods on the car problem 69
7.18 Performance of different methods on the large car problem 71
B.1 Computation time of (I)LU factorisation . 87
B.2 Computation time for various methods and preconditioner shifts 88
B.3 Computation time for various methods . 91
B.4 Computation time for various preconditioner shifts k0 91

vii

viii

Contents

Page

Preface i

List of Symbols iv

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Content of the report . 1

2 Formulation of the problem 3

2.1 The wave equation . 3

2.2 The Helmholtz equation . 5

2.3 Acoustic source term . 5

2.4 Room acoustics and boundary conditions . 6

3 Discretisation 7

3.1 Example . 9

4 Iterative methods 11

4.1 Krylov space methods . 11

4.2 Arnoldi iteration . 12

4.3 Generalised Minimal Residual . 13

4.3.1 Convergence . 15

4.4 BiCG, CGS and BiCGSTAB . 16

4.4.1 Bi-Conjugate Gradient . 16

4.4.2 Conjugate Gradient Squared . 16

4.4.3 Bi-Conjugate Gradient Stabilised . 17

4.5 Preconditioning . 17

4.5.1 Incomplete LU factorisation . 17

5 Shifted Laplace preconditioning 19

5.1 Optimization of the shift . 20

6 Induced Dimension Reduction (s) 23

6.1 Induced Dimension Reduction . 23

6.2 Induced Dimension Reduction (s) . 23

6.3 The initial search space U0 . 26

6.4 Eigenvalue approximation with IDR(s) . 27

6.4.1 Derivation of the eigenvalue approximation 28

6.4.2 Validation and tests . 30

6.4.3 The Chebyshev polynomial . 35

ix

CONTENTS

7 Numerical experiments on the car problem 37
7.1 Modelling the acoustics of a car . 37
7.2 The mathematical problem . 39
7.3 LU factorisations of the preconditioners . 40

7.3.1 Pivoting . 43
7.4 Solving sequences of fluid and structure problems 44

7.4.1 Reuse of solution vectors . 45
7.4.2 A modified shifted Laplace preconditioner 52
7.4.3 Updating the preconditioner . 53
7.4.4 Other Krylov subspace methods . 58
7.4.5 Conclusions . 64

7.5 The complete car problem . 64
7.5.1 Simultaneous computation of the structure and fluid problem 65
7.5.2 Fixed shifted Laplace preconditioners . 66
7.5.3 Updating the preconditioners . 68
7.5.4 Solution to the large car problem . 70
7.5.5 Conclusions . 71

7.6 Using eigenvalue information for reduction . 72

8 Conclusions 77
8.1 Summary of results . 77
8.2 Future research . 78

A Quasi Minimal Residual Induced Dimension Reduction (s) 81

B Initial experiments on the room problem 85
B.1 Location of the eigenvalues . 85
B.2 LU and ILU factorisation . 87
B.3 Krylov subspace methods . 87
B.4 IDR(4) with various shifts for the shifted Laplace preconditioner 91

x

Chapter 1

Introduction

The essence of mathematics is not to make simple things complicated,
but to make complicated things simple.

Stanley Gudder

Background noise in cars is discomforting for occupants and hence the reduction of the noise emis-
sions is considered to be an important aspect in the design of new cars. In order to reduce the
noise in a car without the need of an expensive prototype, a mathematical model of the acoustic
behaviour of this car and the propagation of sound inside this car is needed. At the basis of this
model lies a system of coupled differential equations that describes for instance the sources of
noise, such as vibrating car parts due to road contact and the engine, and the propagation of this
noise through the structure of and the air inside the car. Since different sound frequencies result
in different ways of propagation, the differential equations need to be solved for a whole range of
frequencies. The combined results for all relevant frequencies might lead to adjustments in the
car design, after which the acoustics of the adjusted car are again modelled and the propagation
of sound with certain frequencies is recomputed. Although much research is carried out in for
instance the development of numerical models and numerical methods for the simulation and op-
timisation of the acoustic models, it is not yet possible to minimise the noise inside a car based
on the model solutions.

In this thesis, we consider sequences of linear systems of equations that follow from the differential
equations that describe the acoustics of a car, where the solution to a single linear system corre-
sponds to the pressure perturbations that are caused by acoustic waves of a certain frequency. We
consider several iterative numerical methods which belong to the class of Krylov subspace meth-
ods and that solve these linear systems. In addition we investigate a particular type of so-called
preconditioning, which is a specific procedure that rewrites the system into a form that is more
suitable for the numerical methods.

Since we need to solve the acoustic problem for sequences of frequencies, there is an order in
which all individual problems are solved. This offers opportunities in the use of the results that
are already obtained and we study a number of these options in this thesis. The research question
reads: how can information from previous linear systems be used to reduce the computation
time needed? This information considers solution vectors, spectral information of the system
matrices and results on the numbers of iterations that are needed for convergence. We can use
this information for initial search spaces, for improving the initial guess and for adapting the
preconditioner. We consider the research question in the context of IDR(s) and the preconditioners
we consider are (based on) the shifted Laplace preconditioners.

1.1 Content of the report

This thesis comprises eight chapters. In the second chapter we derive the wave equation, which
describes the pressure perturbations in a fluid that are caused by acoustic waves. We simplify it

1

1. Introduction

to the Helmholtz equation, which is a time independent equivalent of this wave equation. Chapter
three briefly describes the discretisation of the Helmholtz equation that results in a linear system
of equations and introduces an academic Helmholtz problem that is used for the testing and
prototyping that can be found in Appendix B. Chapter four treats several numerical methods
and general solution techniques that are applicable to the derived linear system. We describe in
chapter five the shifted Laplace preconditioner and in chapter six the iterative method IDR(s) and
the extensions concerning the initial search space and the approximations to the eigenvalues of the
system matrix. In chapter seven we apply some of the methods and techniques of the preceding
chapters and perform a set of numerical experiments to the car problem. In the last chapter, we
draw conclusions concerning the achievements and make a few suggestions for further research.

2

Chapter 2

Formulation of the problem

Music is a higher revelation than all wisdom and philosophy.
Ludwig van Beethoven

2.1 The wave equation

Sound and, more generally, acoustic waves generate very small disturbances in the ambient pres-
sure that propagate through a medium such as water and air. In order to study the pressure
disturbances in air, the wave equation is applied. For the derivation of this wave equation several
conservation laws are used. Conservation of an attribute means that it can neither arise nor van-
ish, but can only move. This implies that the total rate of inflow in any region equals the rate of
increase of that attribute within that region. In this section, we follow [17, Ch. 1 and 3] and [18,
Ch. 1,2 and 3] and apply the law of conservation of mass to an infinitesimal volume after which
the following (continuity) equation can be derived:

∂

∂t
ρ(x, t) +∇ ·

(
ρ(x, t) v(x, t)

)
= 0, (2.1)

where ρ(x, t) is the fluid density and v(x, t) is the flow velocity.

Under the assumption that air is incompressible and has zero viscosity the Euler equation holds.
This equation represents conservation of momentum and energy and equates the rate of change of
fluid momentum to the negative of the pressure gradient. The Euler equation is given by

∇p(x, t) + ρ

(
∂

∂t
v(x, t) + (v(x, t) · ∇)v(x, t)

)
= 0, (2.2)

where p(x, t) is the fluid pressure.

Fluctuations in density and pressure caused by the propagation of even the loudest sounds are
more than 1000 times less than the average density ρ0 (≈ 1.2 kg/m3) and pressure p0 (≈ 105 Pa)
of atmospheric air. In addition, these fluctuations occur very quickly since the sound frequencies
f that are audible to the average human range from 20 Hz to 20 kHz and therefore we assume
that density and pressure fluctuations are adiabatic (which means that there is no heat transfer).
Under these conditions we can assume that the change of pressure p̃ due to sound propagation
is related only to the change of density ρ̃, that is, p̃ = p̃(ρ̃). Since the changes are very small
compared to the average values of density and pressure, the density and pressure are related
linearly and based on the assumption that air is an ideal gas we have that

p̃ = c20ρ̃, (2.3)

where c0 is the speed of sound in air, which is equal to 343 m/s at a temperature of 20◦C.

3

2. Formulation of the problem

We consider the perturbations ρ̃ around ρ0 and p̃ around p0, that is,

ρ(x, t) = ρ0 + ρ̃(x, t) and p(x, t) = p0 + p̃(x, t).

We substitute these in (2.1) and (2.2) and discard all nonlinear terms (assuming that ∇· (ρ̃v) and
(v · ∇)v are small), after which we obtain

∂

∂t
ρ̃(x, t) + ρ0 ∇ · v(x, t) = 0, (2.4)

and

∇p̃(x, t) + ρ0
∂

∂t
v(x, t) = 0. (2.5)

For the remainder of the report we drop the tildes for notational convenience.

We take the difference between the time derivative of (2.4) and the divergence of (2.5) to obtain(
∂2

∂t2
ρ(x, t) + ρ0∇ ·

∂

∂t
v(x, t)

)
−
(
∇2p(x, t) + ρ0∇ ·

∂

∂t
v(x, t)

)
= 0,

and combine this result with (2.3), which leads to the desired wave equation for to acoustic pressure
fluctuation:

∇2p(x, t) =
1

c20

∂2

∂t2
p(x, t). (2.6)

We stress that the sound pressure p in this equation is the acoustic pressure perturbation about
the undisturbed pressure p0.

A solution for the one-dimensional equivalent of (2.6) is

p(x, t) = fr(c0t− x) + fl(c0t+ x), (2.7)

where fr is a wave traveling to the right and fl a wave traveling to the left. Waves that are created
by sinusoidally vibrating sources in space and time (such as a speaker or a string instrument) with
an angular frequency ω = 2πf (where f is the ordinary frequency) result in a pressure perturbation
equal to

p(x, t) = Ar sin(ωt− kx+ ϕr) +Al sin(ωt+ kx+ ϕl),

where Ar and Al are the amplitudes, ϕr and ϕl are the phase angles and k is the acoustic
wavenumber. From (2.7) if follows that k = ω/c0. Since the wave is sinusoidal, it repeats itself af-
ter the wavelength λ and we have k = 2π/λ. We combine these two equation and obtain λ = c0/f .

As the wave passes, the air particles oscillate back and forth in the direction of this wave, but
there is no net movement of the particles. The disturbances caused by the sound wave travel with
a constant speed c0 and it can be shown [18, Ch. 2.3] that for a wave (traveling to the right) the
particle velocity v satisfies

p

v
= ρc0 = Z0,

and Z0 is the so-called characteristic acoustic impedance (Z0 = 415 kg/(s m2) in air of 20◦C).

4

2. Formulation of the problem

2.2 The Helmholtz equation

In the analysis of acoustical problems it can be useful to consider one single frequency. To study a
single frequency we assume that p(x, t) = P (x)Θ(t) and apply separation of variables. Substitution
in the wave equation (2.6) results after some rearranging in

1

P (x)
∇2P (x) =

1

c20Θ(t)

d2

dt2
Θ(t).

Since the left hand side of the equation depends on x only and the right hand side on t only, this
equation is valid if and only if both sides are equal to a constant value −k2, which is chosen in
this way for convenience. Note that we have defined earlier k as the wavenumber. We obtain the
following two equations

∇2P (x) + k2P (x) = 0, (2.8)

which is known as the frequency-domain wave equation or Helmholtz equation, and

d2

dt2
Θ(t) + ω2Θ(t) = 0, (2.9)

where we have used that ω = kc0.

The fundamental solutions of (2.9) can be written as

Θ1(t) = aeiωt and Θ2(t) = āe−iωt,

where a ∈ C is a constant that describes the amplitude |a| and the relative phase ϕa of the wave.

If P̃ (x) is a solution to (2.8), then cP̃ (x) (c ∈ C) is also a solution and hence we can absorb the
constant a in c and we state that

p(x, t) = P (x) eiωt (2.10)

or
p(x, t) = P (x) e−iωt,

where P (x) satisfies (2.8). We emphasise that the space-dependent solution P (x) holds for the
angular frequency ω = kc0 only.

2.3 Acoustic source term

A differential equation analogous to (2.6) can be obtained when a mass source term is added to
the mass conservation equation (2.1) or a force density is added to the Euler equation (2.2). This
results by a similar derivation (under certain conditions) to the inhomogeneous wave equation

1

c20

∂2

∂t2
p(x, t)−∇2p(x, t) = s(x, t),

where s(x, t) is the source term. We consider a harmonic point source which is located at xs with
angular frequency ω and amplitude a 6= 0 so that

s(x, t) = aeiωtδ(x− xs).

Under these conditions separation of variables can be applied and this results in the Helmholtz
equation with source term, which equals

−k2P (x)−∇2P (x) = S(x),

with S(x) = aδ(x− xs). The problem is generally scaled such that a = 1.

5

2. Formulation of the problem

2.4 Room acoustics and boundary conditions

We consider sound propagation in an enclosed space Ω ⊂ Rn, where the sound propagates accord-
ing to the acoustic wave equation (2.6). Under the assumption that the time dependence of the
pressure behaves as exp(iωt), the Helmholtz equation (2.8) holds, which results in a solution of
the form (2.10). Both p(x, t) and P (x) have to meet the characteristics of the boundary Γ that
encloses the space.

The characteristics concerning the acoustics of a boundary Γ are expressed in the wall impedance
Z̃, which is the ratio of the acoustic pressure that acts on a point on the boundary and the normal
component vn = n · v of the air velocity v at that point:

Z̃ =

(
p

vn

)
Γ

.

Under the assumption that the direction in which the acoustic waves are traveling is normal to
the (entire) boundary, we have that vn = ‖v‖ and we obtain the normal acoustic impedance

Z̃n =

(
p

‖v‖

)
Γ

.

We define the specific normal acoustic impedance Zn as the ratio of the normal acoustic impedance
of the wall and the acoustic impedance of the air, that is,

Zn =
Z̃n
Z0
.

The boundary conditions for the wave equation (2.6) are expressed in the specific normal acoustic
impedance and we have that

Zn
∂

∂n
p(x, t) +

1

c0

∂

∂t
p(x, t) = 0 on Γ. (2.11)

This Robin boundary condition is valid for a general absorbing boundary. For certain boundaries
this can be simplified to a Dirichlet or Neumann boundary condition. For a so-called open bound-
ary Γo that consists of a surface with a very low acoustic impedance, we have that Z̃n � Z0 and
hence Zn ≈ 0. This results in the Dirichlet boundary condition

p(x, t) = 0 on Γo.

When the surface of a boundary Γr has much higher impedance than the impedance of air, Z̃n �
Z0, the second term in (2.11) is negligible. This type of boundary is called reflecting and the
Neumann boundary condition holds:

∂

∂n
p(x, t) = 0 on Γr.

In order to obtain the boundary conditions of the Helmholtz equation (2.8), we substitute (2.10)
into (2.11) and we obtain

Zn
∂

∂n
P (x) + ikP (x) = 0 on Γ,

P (x) = 0 on Γo,

∂

∂n
P (x) = 0 on Γr.

6

Chapter 3

Discretisation

Mathematics is the queen of sciences and arithmetic is the queen of mathematics.
Carl Friedrich Gauß

We apply the finite element method and Galerkin method as described in [13, Ch. 5,6 and 7], in
order to discretise and numerically solve the Helmholtz equation with a harmonic point source
term in some enclosed space Ω, that is, we apply it to

−k2P (x)−∇2P (x) = δ(x− xs) on Ω. (3.1)

On the boundary Γ = Γa ∪ Γo ∪ Γr, the boundary conditions

Zn
∂

∂n
P (x) + ikP (x) = 0 on Γa,

P (x) = 0 on Γo,

∂

∂n
P (x) = 0 on Γr,

(3.2)

are imposed.

We note that the solution P (x) of the weak form must be in the space Σ = {P ∈ H1(Ω) : P |Γo
=

0}, where H1(Ω) is the first Sobolev space.

We multiply the Helmholtz equation (3.1) with an arbitrary testfunction η ∈ Σ and integrate over
Ω to obtain

−k2

∫
Ω

ηP dΩ−
∫

Ω

η∇2P dΩ =

∫
Ω

ηδ(x− xs) dΩ.

We apply Greens first identity,∫
Ω

ψ∇2ϕ dΩ +

∫
Ω

∇ϕ · ∇ψ dΩ =

∮
Γ

ψ
∂ϕ

∂n
dΓ,

to the second term of the left hand side and obtain

−k2

∫
Ω

ηP dΩ +

∫
Ω

∇P · ∇η dΩ−
∮

Γ

η
∂P

∂n
dΓ =

∫
Ω

ηδ(x− xs) dΩ.

Substitution of the boundary conditions (3.2) results in

−k2

∫
Ω

ηP dΩ +

∫
Ω

∇P · ∇η dΩ + ik

∫
Γa

1

Zn
ηP dΓ =

∫
Ω

ηδ(x− xs) dΩ. (3.3)

We solve the equation (3.1) with boundary conditions (3.2) by finding a solution of the equivalent
weak form, that is, by finding P ∈ Σ such that (3.3) is satisfied for all η ∈ Σ. We note that such a

7

3. Discretisation

P automatically satisfies the natural boundary condition ∂P/∂n = 0 on Γr. The essential bound-
ary condition P = 0 on Γo is met too since we defined earlier that Σ = {P ∈ H1(Ω) : P |Γo

= 0}.

We use the finite element method and subdivide Ω into N simplex-shaped elements that consists
of n distinct nodes (corner points) xj (j = 1, . . . , n). We choose n basis functions ηi(x) ∈ Σ
(i = 1, . . . , n) such that ηi(x) is linear per simplex and the i-th basis function is equal to 1 at
node xi and 0 at all others, that is, ηi(x

j) = δij . We refer to Figure 3.1 for an example of such a
piecewise linear basis function on (a part of) a two-dimensional triangular mesh.

It is needed that the position of the source coincides with a node since if and only if the source
xs corresponds to the k-th node we have that∫

Ω

δ(x− xs)ηi(x) dΩ =

{
1 i = k,
0 i 6= k.

Figure 3.1: A piecewise linear basis function.

We apply the method of Galerkin by approximating the solution P (x) by a finite linear combination
of the n piecewise linear basis functions and state that there exist coefficients pi (i = 1, . . . , n)
such that

P (x) ≈ Pn(x) =

n∑
i=1

piηi(x).

We choose η = ηj (j = 1, . . . , n) and we obtain n linear equations, since for each j = 1, . . . , n we
have that

n∑
`=1

p`

(∫
Ω

∇η` · ∇ηj dΩ + ik

∫
Γa

1

Z0
η`ηj dΓ− k2

∫
Ω

η`ηj dΩ

)
=

∫
Ω

ηjδ(x− xs) dΩ.

This last equation can be written as

(K + ikC− k2M)p = b, (3.4)

and a P (x) that satisfies the weak formulation (3.3) can be approximated by the solution of the
linear system of equations (3.4). The right hand side of this equation is equal to the k-th stan-
dardunit vector b = ek.

The stiffness matrix K, the matrix C and the mass matrix M are all real, symmetric and positive
semi definite. The system matrix (K + ikC− k2M) is complex, symmetric and indefinite. (A real
matrix A is positive semi definite or psd if xTAx ≥ 0 for all x ∈ Rn and indefinite if both A and
−A are not psd.)

8

3. Discretisation

3.1 Example

As an example we consider a two-dimensional room of L by L meters Ω = [0, L]× [0, L] surrounded
by four walls Γ = Γn∪Γe∪Γs∪Γw. The wall at the east Γe consists of a sound absorbing material
with Zn = 1

5 − 3
2 i kg / (s m2) while the other three walls Γn,Γs,Γw reflect the sound and hence

satisfy a Neumann boundary condition. We fix L = 4 m and locate an harmonic point source at
the centre of the room: xs = (2, 2)T .

We determine the propagation of sound with frequency f = kc0/2π in this room by solving the
following Helmholtz equation with boundary conditions:

∇2P (x) + k2P (x) = δ(x− xs) on Ω,

Zn
∂

∂n
P (x) + ikP (x) = 0 on Γe,

∂

∂n
P (x) = 0 on Γn,Γs,Γw.

(3.5)

The weak form of this problem is equal to∫
Ω

∇P · ∇η dΩ + ik

∫
Γe

1

Zn
η dΓ− k2

∫
Ω

Pη dΩ =

∫
Ω

δ(x− xs)η dΩ, (3.6)

where η ∈ H1(Ω) is an arbitrary test function.

The room Ω is divided into triangular elements. See Figure 3.2 for an example of a coarse subdi-
vision. In this particular subdivision we have chosen a gridsize h = L/12 m, which means that we
have n = (L/h+ 1)2 = 169 nodes xi and N = 2 · (L/h)2 = 288 elements. The absorbing boundary
Γe includes the nodes x157, . . . ,x169 and xs = xdn/2e since the source is at the centre of the room.

x1

x2

x3

...

x14 x27 . . .

h

n = #

N = #

Figure 3.2: A subdivision of Ω into triangular elements.

The Galerkin method applied to (3.6) with the basis functions ηi results in n linear equations

n∑
`=1

p`

(∫
Ω

∇η` · ∇ηjdΩ + ik

∫
Γe

1

Zn
ηj dΩ− k2

∫
Ω

η`ηj dΩ

)
=

∫
Ω

δ(x− xs)η dΩ (j = 1, . . . , n),

9

3. Discretisation

which can equivalently be written as the linear system

(K + ikC− k2M)p = b. (3.7)

The matrices K, C and M are very sparse. If the Newton-Cotes quadrature rules are used for the
numerical integration, we obtain the respective structures

K =


, C =


, M =


.

The solution to (3.7), which is a numerical approximation of the solution to (3.5), for f = 70 Hz,
f = 72 Hz and f = 74 Hz is given in Figure 3.3. It is clear that the solutions differ significantly
even for frequencies that are close to each other. We can also see from this figure that ∂

∂n |P | = 0
for all walls, except for the wall at the east.

0 2 4
0

2

4

0.
2

0.2

0.2

0.2

0.20.2

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4
0.4

0.6

0.6

0.6

0.6

0.6

0.8

1

(a) f = 70 Hz

0 2 4
0

2

4

0.
2

0.2

0.2

0.
2

0.2

0.2

0.2

0.2

0.2

0.2

0.
4

0.4

0.4

0.4

0.4

0.4

0.40.
4

0.4

0.
4

0.4

0.6

0.6

0.60.6

0.6

0.8

0.8

1

(b) f = 72 Hz

The solution to (18), which is a numerical approximation of the solution to (16), for f = 70 Hz,
f = 72 Hz and f = 74 Hz is given in Figure 3. It is clear that the solutions differ significantly
even for frequencies that are close to each other. We can also see from this figure that ∂

∂n |P | = 0
for all walls, except for the wall at the east.

0 2 4
0

2

4

0.
2

0.2

0.2

0.2

0.20.2

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4
0.4

0.6

0.6

0.6

0.6

0.6

0.8

1

(a) f = 70 Hz

0 2 4
0

2

4

0.
2

0.2

0.2

0.
2

0.2

0.2

0.2

0.2

0.2

0.2

0.
4

0.4

0.4

0.4

0.4

0.4

0.40.
4

0.4

0.
4

0.4

0.6

0.6

0.60.6

0.6

0.8

0.8

1

(b) f = 72 Hz

0 2 4
0

2

4

0.
2

0.2

0.2

0.
2

0.2

0.2

0.
2

0.
2

0.2

0.
2

0.
4

0.4

0.4

0.
4

0.4

0.4

0.
4

0.
4

0.4

0.
4

0.4

0.
4

0.
6

0.6

0.6

0.
6

0.6

0.
6

0.6

0.6

0.
60.

8

0.8

0.80.8

0.8

1

1

(c) f = 74 Hz

Figure 3: Contour lines of the amplitude |P (x)|.

10

(c) f = 74 Hz

Figure 3.3: Contour lines of the amplitude |P (x)|.

10

Chapter 4

Iterative methods

Any sufficiently advanced technology is indistinguishable from magic.
Sir Arthur Charles Clarke

Modelling the propagation of acoustic waves in some space Ω results in a large, sparse and linear
system

Ax = b, (4.1)

with A = (aij)
n×n ∈ Cn×n a square coefficient matrix and b ∈ Cn the right hand side vector.

The objective is to determine the solution vector x ∈ Cn that satisfies (4.1). Various numerical
methods have been developed for solving these type of linear systems. An overview of iterative
methods can be found in [16] and [21] and these books have served as the basis for the upcoming
sections.

Standard or direct methods compute the solution in a finite number of steps by using a matrix
factorisation or decomposition and give the exact answer if they are performed with infinite preci-
sion arithmetic. Since finite precision is used the result is an approximation of the exact solution.
An example of a direct method is the LU factorisation, which factors the matrix A as the product
of a lower triangular matrix L and an upper triangular matrix U such that LU = A, after which
the problem (4.1) can be solved directly by forward and backward substitution.

Since direct methods scale poorly with the size of the problem, which means that it is very time
consuming to determine for instance the LU factors for large A, iterative methods are developed.
These methods generate a sequence of improving approximations x0,x1, . . . of the desired solution
x until a termination criterium is satisfied. The sequence {xi}i≥0 converges to x in some norm
‖ · ‖ (which is usually the 2-norm) for a given initial guess x0 if and only if

lim
i→∞

‖x− xi‖ = 0.

The vector εi = x−xi is known as the i-th error. Since x is unknown, the error εi is not available
and hence the residuals ri = b−Axi are used. Note that the residuals and the errors are closely
related since ri = A(x− xi) = Aεi.

4.1 Krylov space methods

The most simple Krylov subspace method is the standard Richardson iteration. In this case, we
have the recursion

xi = xi−1 + (b−Axi−1) = xi−1 + ri−1.

Multiplying the above equation with −A results in ri = (I−A)ri−1, so

ri = (I−A)ir0.

11

4. Iterative methods

It follows from these equations that

x1 = x0 + r0,

x2 = x1 + r1 = x0 + r0 + (I−A)r0,

x3 = x2 + r2 = x0 + r0 + (I−A)r0 + (I−A)2r0,

...

which means that the approximations xi satisfy

xi = x0 +

i∑
j=0

(I−A)jr0. (4.2)

This implies that if ρ(I−A) < 1 we have that A is non-singular and

lim
i→∞

xi = x0 +

∞∑
j=0

(I−A)jr0

= x0 + [I− (I−A)]−1r0

= x0 + A−1r0

= A−1b = x.

It also follows that xi lies in the affine space x0 + span{r0,Ar0, . . . ,A
i−1r0}. The subspace

Ki(A, r0) = span{r0,Ar0, . . . ,A
i−1r0}

is known as the Krylov subspace of dimension i, generated by matrix A from initial residual r0.

Since the geometric series (4.2) converges very slowly it is reasonable to consider some other

polynomial than Pi(ξ) =
∑i
j=0(1− ξ)j in A. Methods that use this general polynomial approach

are known as Krylov space methods: a standard Krylov space method solves (4.1) with some
initial guess x0 iteratively by generating a sequence {xi} such that

xi − x0 = Pi−1(A)r0 ∈ Ki(A, r0),

with Pi−1(ξ) some polynomial (with degree i−1). The residuals ri satisfy the polynomial relation
ri = Ri(A)r0, with

Ri(ξ) = 1− ξPi−1(ξ).

We will describe some Krylov subspace methods in the next sections.

4.2 Arnoldi iteration

The Arnoldi iteration was proposed in 1951 by W.E. Arnoldi and published in [1] and is used to
build an orthonormal basis of the k-th Krylov space Kk(A, r0), which means that it determines
orthonormal vectors q1, . . . ,qk such that

span{q1, . . . ,qk} = Kk(A, r0).

12

4. Iterative methods

The matrix Qk = (q1, . . . ,qk) satisfies QkQ
T
k = I. We create Qk by starting with the initial unit

vector q1 = r0/‖r0‖, after which we recursively compute vectors the qj (j = 2, 3, . . . , k) by

qj =
Aqj−1 −

∑j−1
i=1 hi,j−1qi

hj,j−1
, (4.3)

where hi,j = Aqi · qj and hj,j−1 = ‖Aqj−1 −
∑j−1
i=1 hi,j−1qi‖. So the Arnoldi iteration multiplies

the earlier obtained vector qj by A and orthonormalises the result against all previously obtained
qi, i = 1, . . . , j − 1. The method of orthonormalisation is known as the Gram-Schmidt process.

We rewrite (4.3) as h1,j−1q1 + · · ·+hj,j−1qj = Aqj−1 and after combining these equations for all
qi with i < j, we obtain the matrix equation

QjHj−1 = AQj−1, (4.4)

where the entries of HT
j−1 ∈ Cj×(j−1) are uniquely determined by the coefficients hi,j (and hence

has zeros at hi,j for all i > j + 1). After k iterations we obtain hk+1,k = 0 and hence qk+1 cannot
be determined and we obtain after deleting the bottom row of (4.4)

QkHk = AQk,

or equivalently A = QkHkQ
T
k , with Hk ∈ Ck×k an upper Hessenberg matrix, a matrix that has

zero entries below the first subdiagonal.

Note that the algorithm does not break down as long as the dimension of Kk(A, r0) equals k. The
set of vectors {q1, . . . ,qk} indeed form an orthonormal basis of the Krylov subspace Kk(A, r0)
since q1 = r0/‖r0‖ and each vector qj can be written as Rj(A)q1 (with Rj(ξ) some polynomial
of degree j). An algorithmic description of the Arnoldi iteration is given below.

Algorithm 1 Arnoldi iteration.

Require: q1 such that ‖q1‖ = 1
for j = 1, . . . , k do

v = Aqj
for i = 1, . . . , j do

hi,j = v · qi
v = v − hi,jqi

end for
hj+1,j = ‖v‖
qj+1 = v/hj+1,j

end for

4.3 Generalised Minimal Residual

The Generalised Minimal Residual method (GMRES) was proposed by Y. Saad and M.H. Schultz
in 1986 in [19] and is applicable to systems (4.1) when A is a general (non-singular) square matrix.
GMRES makes use of the Arnoldi iteration and minimises in the k-th iteration the residual norm
‖rk‖ over all vectors in x0 +Kk(A, r0) by solving the least square problem

min
xi∈x0+Kk

‖rk‖ = min
xi∈x0+Kk

‖b−Axk‖. (4.5)

13

4. Iterative methods

In fact, GMRES solves an equivalent but smaller least square problem that results in a vector
yk ∈ Ck that satisfies

xk = x0 + Qkyk, (4.6)

and xk ∈ x0 +Kk(A, r0) since q1, . . . ,qk is an orthonormal basis for Kk(A, r0).

We derive this smaller least square problem by substituting (4.6) and the Arnoldi relation (4.4)
into (4.5) and

rk = b−Axk

= b−A(x0 + Qkyk)

= r0 −AQkyk

= ‖r0‖q1 −Qk+1Hkyk

= Qk+1(‖r0‖e1 −Hkyk).

Since Qk+1 is a matrix with orthonormal columns, we have that

‖b−Axk‖ = ‖βe1 −Hkyk‖,

where β = ‖r0‖. So the solution to the minimisation problem (4.5) can be obtained by solving
the smaller least square problem

min
yk∈Ck

‖βe1 −Hkyk‖, (4.7)

after which the k-th approximation xk = x0 + Qkyk is determined. The above leads to the GM-
RES algorithm as given in Algorithm 2.

To solve the least square problem (4.7) the QR decomposition is used. It decomposes the Hessen-

berg matrix Hk as Q̃∗k+1Hk = Rk, with Q̃k+1 a (k+1)×(k+1) orthogonal matrix, Rk = (RT
k ,0)T ,

and Rk an upper triangular matrix. This is done by left multiplication of (4.7) with a sequence
of Givens matrices Φi of size (k+ 1)× (k+ 1), (with i = 1, . . . , k). The non-zero elements of these
matrices are

φj,j = 1 (j 6= i, i+ 1),

φi,i = φi+1,i+1 = cos(θi) = hi,i/(h
2
i,i + h2

i+1,i)
1/2,

φi,i+1 = −φi+1,i = sin(θi) = hi+1,i/(h
2
i,i + h2

i+1,i)
1/2.

Note that the coefficient θi of Φi is chosen in such a way that hi+1,i is eliminated after multiplica-

tion with Φi. Since all Φi are orthogonal matrices we have that the product Q̃∗k+1 = Φ1 ·Φ2 · · ·Φk

is orthogonal also and it follows that

‖βe1 −Hkyk‖ = ‖Q̃∗k+1(βe1 −Hkyk)‖ = ‖βQ̃∗k+1e1 −Rkyk‖.

The solution to the minimisation problem (4.7) is obtained by solving the triangular system that
remains after deleting the bottom rows of the matrices in the above minimisation problem.

In appears that for some k � n the norm of the k-th residual is almost always already very
small, which means that the approximation xk of the solution x is sufficiently accurate and only
k iterations are needed. In addition, the minimisation problem (4.7) is much easier to solve than
the equivalent problem (4.5) since Hk is (k + 1) × k while A is n × n. Also, it is shown in [19]
that hk+1,k|ek · yk| = ‖b−Axk‖ = ‖rk‖, so the norm of the k-th residual can be obtained easily.

14

4. Iterative methods

These characteristics ensure that GMRES is applicable to certain large problems.

A disadvantage of GMRES is that the amount of work and memory that is needed to store
and compute Hk and Qk increases with j. This long recurrence is sufficient to make GMRES
unworkable for problems that need a lot of iterations. GMRES(m) is developed to provide a
solution for the memory and work problems. The algorithm performs the same steps, but restarts
after m iterations once x0 is set equal to xm. However, this can cause stagnation if A is not psd.

Algorithm 2 Generalised Minimal Residual.

Require: x0, tol ∈ (0, 1), maxit > 0
r0 = b−Ax0, β0 = ‖r0‖ and q1 = r0/β0, j = 0
while βj > tol and j ≤ maxit do

j = j + 1
v = Aqj
for i = 1, . . . , j do

hi,j = v · qi
v = v − hi,jqi

end for
hj+1,j = ‖v‖
qj+1 = v/hj+1,j

solve minyj ‖β0e1 −Hjyj‖
βj = hj+1,j |ej · yj |

end while
xj = x0 + Qjyj

4.3.1 Convergence

Since GMRES minimises at each iteration the residual ‖rk‖ the method is optimal in finding the
solution of (4.1) in terms of number of iterations. This does, however, not at all imply that GM-
RES is optimal in computation time and storage requirements.

We make two observations. The first is that in infinite precision arithmetic GMRES will always
converge in (at most) n steps, which means that rn = 0 and xn = x. This is the case since
Kn(A, r0) = Cn. The second is that ‖ri+1‖ ≤ ‖ri‖, which means that the convergence is mono-
tonic. This follows from the fact that Ki(A, r0) ⊂ Ki+1(A, r0). The first observation is not
significant in practice since GMRES is used as an iterative method: we want to know if GMRES
converges (to a specified tolerance) in k � n iterations.

We know that ‖rk‖ = ‖Rk(A)r0‖ ≤ ‖Rk(A)‖‖r0‖ is minimal. Now, the critical factor for the size
of this quantity is almost always ‖Rk(A)‖ and this means that the convergence rate of GMRES
is usually determined by the inequality

‖rk‖
‖r0‖

≤ inf
Rk∈Pk

‖Rk(A)‖. (4.8)

The value of ‖Rk(A)‖ can be estimated by considering polynomials that satisfy Rk(0) = 1 and
that are as small as possible on the set of eigenvalues σ(A). It follows that convergence depends
to a large extent on σ(A) and that for fast convergence the eigenvalues need to be clustered away
from the origin [21, Ch 6.11.4].

15

4. Iterative methods

4.4 BiCG, CGS and BiCGSTAB

4.4.1 Bi-Conjugate Gradient

Where GMRES preserves orthogonality of the residuals, the Bi-Conjugate Gradient method (BiCG)
considers two sequences of residuals {ri}i≥0 and {r̃i}i≥0 that are mutually orthogonal. The method
was introduced in 1976 by R. Fletcher in [5]. For the update of the residuals r̃i, the conjugate
transpose of A is used and the two updates are

ri = ri−1 − αiApi and r̃i = r̃i−1 − αiA∗p̃i,

where

pi = ri−1 − βi−1pi−1 and p̃i = r̃i−1 − βi−1p̃i−1.

In order to meet the orthogonality relations

ri · r̃j = 0 = pi ·Ap̃j (i 6= j),

the choices for αi and βi are

αi =
r̃i−1 · ri−1

p̃i ·Api
and βi =

r̃i · ri
r̃i−1 · ri−1

.

Note that BiCG needs two matrix-vector multiplications (MATVECS) per iteration: one with A
and one with A∗, where the conjugate transpose of A is used only for the computation of αi and
βi. The methods CGS and BiCGSTAB, which are discussed in the upcoming sections, are derived
from BiCG and do not use the matrix multiplication with A∗.

4.4.2 Conjugate Gradient Squared

As with all Krylov subspace methods, the residuals of BiCG satisfy a polynomial relation: ri =
Ri(A)r0 and r̃i = Ri(A)r̃0. For the determination of the coefficients αi and βi we need

ρi = r̃i · ri = Ri(A
∗)r̃0 ·Ri(A)r0,

and this can be written equivalently as

ρi = r̃0 ·R2
i (A)r0,

and A∗ is not needed in the determination of αi and βi. This leads to the Conjugate Gradient
Squared method (CGS), which is derived by P. Sonneveld and published in [26] in 1989. The
recursion for the residuals rCGS

i is given by

rCGS
i = R2

i (A)r0.

CGS method does not involve computations with r̃i and A∗, but we still need two MATVECS
per iteration. The speed of convergence for CGS is in many cases twice as fast as for BiCG, but
the convergence behaviour is in general very irregular.

16

4. Iterative methods

4.4.3 Bi-Conjugate Gradient Stabilised

The Bi-Conjugate Gradient Stabilised method (BiCGSTAB) was presented in [30] in 1992 by H.
A. van der Vorst. Instead of computing the residuals with the polynomials Ri(A) (as in BiCG)
or R2

i (A) (as in CGS), BiCGSTAB determines the i-th residual through

rBiCGSTAB
i = Qi(A)Ri(A)r0,

where Qi(A) = (I − ω1A) · (I − ω2A) · · · (I − ωiA). The coefficients ωi are generally chosen in
such a way, that the norm of the i-th residual is minimised with respect to ωj . BiCGSTAB needs
also 2 MATVECS per iteration and the convergence is often much faster than BiCG and much
smoother than CGS.

4.5 Preconditioning

In order to speed up the convergence and improve the stability of a method, preconditioning is
applied. Preconditioning transforms the original linear system into another system with the same
solution that has more favorable spectral properties and hence is easier to solve for an iterative
method. In applying preconditioning, we replace the original system (4.1) by

P−1Ax = P−1b, (4.9)

with P the (left) preconditioner. The preconditioner is often decomposed as P = PLPR and the
preconditioned system with the same solution as (4.1) is

(P−1
L APR)(P−1

R x) = P−1
L b. (4.10)

A good preconditioner P should in general be easy to construct and apply, while at the same
time the preconditioned system (4.9) should be easy to solve. These two requirements are in
competition with each other and it is necessary to find a balance between the two. For instance
P = A−1 is a perfect preconditioner in that just one iteration is needed, but P−1 is very time
consuming to construct or apply, while on the other hand P = I is constructed and applied in no
time, but does not improve the convergence properties.

4.5.1 Incomplete LU factorisation

Since most systems are very large, we do not compute and store P−1A explicitly in general. It
only is required that Pw = v can be solved readily and hence needed that w = P−1v can be
computed easily for some arbitrary vector v ∈ Cn. The LU factorisation of P ensures that the
preconditioner is easy to apply. However, the factorisation of a sparse matrix results in so-called
fill-ins, that is, nonzero elements that emerge during the elimination process in positions that were
initially equal to zero. The triangular factors L and U are therefore (far) less sparse than A. This
is one of the reasons why LU factorisation is not suitable for solving large sparse linear systems.
However, by discarding part of the fill-in it turns out that we might obtain a good preconditioner
P = L̃Ũ, where L̃ and Ũ are the approximate LU factors of A.

The no-fill incomplete LU factorisation or ILU(0) factorisation was proposed in [15] by J.A. Mei-
jerink and H.A. van der Vorst. It allows no fill in at all. For some systems the obtained precon-
ditioner is very effective, but the no-fill factorisation is in general too crude an approximation of
A and an iterative method might still require many iterations to converge. That is why more so-
phisticated incomplete LU factorisations are developed. These methods allow at least some fill-in

17

4. Iterative methods

in the approximations L̃ and Ũ.

The so-called ILUT(τ) or incomplete LU factorisation with a threshold or drop tolerance τ is
proposed by Y. Saad and described in [20]. This method uses this drop tolerance τ as a dropping
criterium: fill-ins are only allowed if their absolute value is greater than τ . Since the matrix can
be poorly scaled, the drop tolerance is in general relative to (the norm of) the i-th row of A: fill-in
is accepted only if it is greater in absolute value than the drop tolerance τ‖A(i,:)‖.

18

Chapter 5

Shifted Laplace preconditioning

Equations are more important to me, because politics is for the present,
but an equation is something for eternity.

Albert Einstein

We consider shifted Laplace preconditioning for the discrete Helmholtz equation (3.4) where the
system matrix is equal to

A = K + ikC− k2M. (5.1)

The matrices K,C and M are symmetric, real and psd and k is the acoustic wavenumber, which
satisfies k = 2πf/c0. We are in general interested in the solution to (3.4) for a range of frequencies
f1, . . . , fn ∈ R+, where the following preconditioner, based on [4], (with fixed z ∈ C) is used:

P = K + ikC− zM. (5.2)

We solve the preconditioned system (4.9) instead of the original system (4.1) and expect that the
convergence properties improve. It is clear that choosing z = k2 reduces the system to x = A−1b,
but we are only interested in preconditioners that are relatively cheap and applicable to a whole
range of acoustic wavenumbers.

First, we consider the more general system matrix

A = K + ikC− `M,

with ` = `(k) ∈ C and Re(`) > 0. We follow [7] and determine the eigenvalues λ of the precondi-
tioned matrix

P−1A = (K + ikC− zM)−1(K + ikC− `M),

that is, we solve

(K + ikC− zM)−1(K + ikC− `M)v = λv.

For z = ` we have that λ = 1. For z 6= ` we have that

(K + ikC)v =
λz − `
λ− 1

Mv.

We define µ = (λz − `)/(λ− 1), which are the eigenvalues of the pencil (K + ikC,M). Since z, λ
and µ are in general complex, we write z = zr + izi, λ = λr + iλi and µ = µr + iµi. It can be
shown that µi ≥ 0 [7]. We obtain

µ− ` = λ(µ− z),

and equivalently

µr + iµi − ` = λr(µr − zr) + iλr(µi − zi) + iλi(µr − zr) + λi(−µi + zi),

19

5. Shifted Laplace preconditioning

and we split this equation in the real and complex parts

µr − ` = λr(µr − zr) + λi(−µi + zi),

µi = λr(µi − zi) + λi(µr − zr).

We distinguish between the three cases zi = 0, zi < 0 and zi > 0.
If zi = 0, the eigenvalues λ are in the half plane

(`− z)λi ≥ 0. (5.3)

This follows from the fact that for zi = 0, the above equation for the complex part implies that
for λi 6= 0

µr = µi
1− λr
λi

+ z,

and substitution of this equation into the equation of the real part results in

(`− z)λi = µi(λ
2
i + (λr − 1)2).

Since µi ≥ 0, inequality (5.3) follows.

If zi < 0, then the eigenvalues λ are inside or on the circle with centre c and radius r, where

c =
`− z
z − z , r =

∣∣∣∣ z − `z − z

∣∣∣∣ . (5.4)

As was shown in [7], it suffices to prove that |λ− c| ≤ r, which is done as follows:

|λ− c|2 =

∣∣∣∣µ− `µ− z −
`− z
z − z

∣∣∣∣2
=

∣∣∣∣µ(z − `)− (`− z)z
(µ− z)(z − z)

∣∣∣∣2
=

∣∣∣∣µ− zµ− z

∣∣∣∣2 r2

=
(µr − zr)2 + (µi + zi)

2

(µr − zr)2 + (µi − zi)2
r2

≤ r2.

The inequality follows from the fact that zi < 0 and µi ≥ 0.

If zi > 0, then the eigenvalues λ are outside or on the circle with centre c and radius r. This can
be shown analogous to the above.

5.1 Optimization of the shift

We restrict our analyses for the convergence properties to GMRES. An upper bound on the number
of iterations of GMRES is given in (4.8). If all eigenvalues of A are enclosed in a circle centered
at c and radius r (that does not enclose the origin), the convergence rate of GMRES is bounded
by the inequality

‖rk‖
‖r0‖

≤ κ(V) inf
Rk∈Pk

(
max
λ∈σ(A)

|Rk(λ)|
)
≤ κ(V)

(
r

|c|

)k
, (5.5)

20

5. Shifted Laplace preconditioning

where V is the matrix of eigenvectors of A and κ(V) = ‖V‖ ‖V−1‖ is the spectral condition
number of V in the 2-norm, which is typically small for Helmholtz problems. We refer to [19,
p 866] for a proof of these inequalities. For ` ∈ R we have that |c| = r and to derive for this case
an optimal shift, we consider first the more general case ` = `r + i`i ∈ C with r < |c| (which also
has physical meaning, as ` with `i ≤ 0 comprises a damping coefficient for non-viscous fluids).

It is known that for multigrid methods the purely imaginary shift zr = 0 works well [7]. The
purely imaginary shift z = izi, which is shown to be optimal in [7] follows from minimizing the
upper bound of (5.5), that is, by considering the minimum of the function

f(zr, zi) =

(
r

|c|

)2

=
(zr − `r)2 + (zi − `i)2

(zr − `r)2 + (zi + `i)2
.

The partial derivative
∂f

∂zi
=

4`i([z
2
i − `2i]− [zr − `r]2)

([zr − `r]2 + [zi + `i]2)2

is equal to zero if z2
i − `2i − `2r = 0, so we choose z = izi = ±|`|i. Since a shift with negative

complex part results in a more favorable distribution of eigenvalues of P−1A, as we have shown
in the above, we choose zi ≤ 0 and hence set

z = −|`|i. (5.6)

For zr ≤ 0 all eigenvalues of the preconditioner are in the right half-plane. We again choose zi ≤ 0
and since `r > 0, we have that the partial derivative

∂f

∂zr
=

8(zr − `r)zi`i
([zr − `r]2 + [zi + `i]2)2

is negative for zr ≤ 0 and hence f takes its minimum on the edge zr = 0. So, (5.6) is optimal for
all choices of z with zr ≤ 0.

Because of continuity arguments, the choice (5.6) is still valid for the case `i = 0 and r = |c|.

The linear systems that we consider can be written as (5.1) and hence we can confine ourselfs
to the case ` = k2. We will consider two different choices for the shift of the shifted Laplace
preconditioner (5.2), which we apply to sequences of linear systems (5.1) with k = k1, k2, . . . , kn.
We consider the purely imaginary shift z = −k2

j i (cf. (5.6)) and the real shift z = k2
j , (with

j = 1, 2, . . . , n). For this last case, the preconditioned system matrix for the linear system with
k = kj reduces to the identity matrix and obtaining the solution is trivial, but there is no analyses
available on the performance of this preconditioner for k 6= kj .

21

5. Shifted Laplace preconditioning

22

Chapter 6

Induced Dimension Reduction (s)

I don’t need sleep, I need answers. I need to determine where in
this swamp of unbalanced formulas squatteth the toad of truth.

Sheldon Cooper in The Big Bang Theory (Chuck Lorre, Bill Prady)

6.1 Induced Dimension Reduction

The method of Induced Dimension Reduction (IDR) for solving the system (4.1) with A a general
square matrix was proposed by P. Sonneveld in 1980 [31] and is based on a three term recurrence
for the residuals

ri = (I− ωiA)

(
ri−1 −

p · ri−1

p · (ri−1 − ri−2)
(ri−1 − ri−2)

)
,

where p ∈ Cn is some arbitrary vector, r0 an initial residual and r1 = (I − ω1A)r0. The above
recurrence results almost always in r2n = 0, which means that x2n = x. The residuals r2j and
r2j+1 live in the so-called Sonneveld spaces Gj . These spaces are inductively defined as

G0 = Kn(A, r0),

Gj = (I− ωjA)(Gj−1 ∩ S),
(6.1)

where S = span{p}⊥ and ωj is a non-zero scalar. It can be shown that under mild conditions
Gi ⊂ Gi−1 and Gk = {0} for some k ≤ n [31, p. 551].

Given that ri−1 and ri are in Gj , we can compute a vector si = ri−γi∆ri ⊥ p (with ∆ri = ri−ri−1)
by choosing γi = −(p · ri)/(p ·∆ri). Note that si ∈ Gj ∩ S and it follows that

ri+1 = (I− ωjA)si ∈ Gj+1.

The scalar ωj is fixed for two steps and chosen such that the convergence of the residuals improves.
We set ωj = (Asi · si)/(Asi ·Asi) thus make sure that ri+1 ⊥ Asi and hence that the norm of
the (i+ 1)-th residual ‖ri+1‖ = ‖(I− ωA)s‖ is minimised with respect to ω.

Since −A∆xi+1 = ∆ri+1 = (I− ωjA)(ri − γi∆ri)− ri we can compute xi+1 by

xi+1 = xi + ωjri − γi(∆xi + ωj∆ri).

The above results in the IDR algorithm as described in Algorithm 3.

6.2 Induced Dimension Reduction (s)

IDR(s) is a generalisation of IDR where instead of one hyperplane span{p} the intersection of
s� n distinct hyperplanes is used. We define

S = {p1, . . . ,ps}⊥,

23

6. Induced Dimension Reduction (s)

Algorithm 3 Induced Dimension Reduction.

Require: x0, p, tol ∈ (0, 1), maxit > 0
r0 = b−Ax0, ∆g0 = 0, ∆y0 = 0, γ = 0, i = 0
while ‖ri‖ > tol and i ≤ maxit do

i = i+ 1
s = ri−1 + γ∆gi−1

t = As
if i = 1 or i is even then

ωi = (t · s)/(t · t)
else

ωi = ωi−1

end if
∆xi = γ∆yi−1 + ωis
∆ri = γ∆gi−1 − ωit
xi = xi−1 + ∆xi
ri = ri−1 + ∆ri
if i is even then

∆yi = ∆yi−1

∆gi = ∆gi−1

else
∆yi = ∆xi
∆gi = ∆ri

end if
γ = −(p · ri)/(p ·∆gi)

end while

where the spaces S and G0 do not share a nontrivial invariant subspace of A. This idea was con-
ceived by P. Sonneveld and M.B. van Gijzen and described in [25] and [9]. The Sonneveld spaces
Gj are again defined by (6.1) but we determine s+ 1 residuals in each space Gj+1. Normally, the
dimension of Gj+1 equals the dimension of Gj minus s.

Given that ri−s, . . . , ri ∈ Gj , the residual ri+1 is forced to be in the space Gj+1 by ensuring that

ri+1 = (I− ωj+1A)vi,

with vi ∈ Gj ∩S and ωj+1 = (Avi ·vi)/(Avi ·Avi) (so that the norm of this first residual in Gj+1

is minimal). We ensure that the vector vi is in Gj by choosing it equivalent to [25] as

vi = ri −
s∑

k=1

γik∆ri−k. (6.2)

Orthonormalisation of the set of vectors {p1, . . . ,ps} results in a set {p̃1, . . . , p̃s} and we define
the matrix P = (p̃1, . . . , p̃s). Now, vi ∈ S implies that it satisfies

P∗vi = 0. (6.3)

If we substitute (6.2) in (6.3), we obtain a set of s linear equations with s unknowns γik, which
is almost always uniquely solvable. We define γi = (γi1, . . . , γ

i
s)
T and ∆Ri = (∆ri−1, . . . ,∆ri−s)

and we can solve this linear system,

(P∗∆Ri)γi = P∗ri, (6.4)

24

6. Induced Dimension Reduction (s)

to obtain γi and compute the first residual ri+1 ∈ Gj+1 since we have that

ri+1 = ri − ωj+1Avi −∆Riγi.

Other residuals ri+2, ri+3, . . . ∈ Gj+1 can be obtained by repeating the above calculations. We
need (at least) s+ 1 residuals in Gj+1 before we continue to the next space Gj+2. The value ωj+1

is determined in the computation of ri+1, but is held fixed in the calculations of all subsequent
residuals in Gj+1. Note that the first s + 1 residuals r0, . . . , rs should be in G0 = Kn(A, r0) and
since we generally have that Kn(A, r0) = Cn, any set of s+ 1 (independent) vectors suffices.

After defining ∆Xi = (∆xi−1, . . . ,∆xi−s) we determine the approximate solutions xi by

xi+1 = xi + ωj+1vi + ∆Xiγi.

The choice (6.2) appears to be an unnecessary restriction and for larger values of s also leads to
instability. Therefore, we follow [9] and note that since the residual differences ∆ri are in the space
Gj any linear combination gi of them is too. We obtain s of these vectors, after which we define
the matrix Gi = (gi−s, . . . ,gi−1). Since gi ∈ Gj , there exist vectors ui that satisfy gi = Aui and
we define Ui = (ui−s, . . . ,ui−1). By an equivalent reasoning to the above we obtain

vi = ri −
s∑

k=1

γikgi−k (6.5)

and the recursions
ri+1 = ri − ωj+1Avi −Giγi ∈ Gj+1,

xi+1 = xi + ωj+1vi + Uiγi.

The additional s residuals ri+2, . . . , ri+s+1 ∈ Gj+1 and approximations xi+2, . . . ,xi+s+1 are deter-
mined by first computing the update vectors by

ui+k = ωj+1vi+k + Uk−1γk−1 and gi+k = Aui+k, (k = 1, . . . , s),

after which we compute

ri+k+1 = ri+k − gi+k and xi+k+1 = xi+k + ui+k, (k = 1, . . . , s).

The generalisation from residual differences ∆ri to vectors gi ∈ Gj allows us to choose the gi in
such a way that the algorithm improves. Choosing gi+k ⊥ pj and ri+k+1 ⊥ pj (j = 1, . . . , k − 1
and k = 1, . . . , s) ensures that the system (analogous to (6.4))

(P∗Gi+k)γi+k = P∗ri+k

is easier to solve. This is because gi+k · pj = 0 and ri+k+1 · pj = 0 and hence the system matrix
P∗Gi+k is lower triangular.

Since a small value of ωj+1 deteriorates the accuracy and convergence of IDR(s) (similar to such
a negative effect on BiCGSTAB [23]), we increase ωj+1 if it is too small. To be more precise, we
increase its value if the cosine of the angle between Avi and vi is smaller than a value κ (where
κ = 0.7 is recommended in [23]). The resulting IDR(s) algorithm is given in Algorithm 4.

For the sake of completeness, the Quasi Minimal Residual variant of the IDR algorithm, which
applies the GMRES philosophy to the vectors gi, which can be found in Appendix A.

25

6. Induced Dimension Reduction (s)

Algorithm 4 Induced Dimension Reduction (s).

Require: x0, P, s > 0, tol ∈ (0, 1), maxit > 0
r0 = b−Ax0, gk = 0, yk = 0 (k = 1, . . . , s), ω = 1, κ = 0.7, i = 0
while ‖ri‖ > tol and i ≤ maxit do

i = i+ 1
f = P∗ri−1, (φ1, . . . , φs)

T = f
for j = 1, . . . , s do

solve c from Mc = f , (γ1, . . . , γs)
T = c

v = ri−1 −
∑s
k=j γkgk

ui = ωv +
∑s
k=j γkuk

gj = Auj
for k = 1, . . . , j − 1 do

α = (pk · gj)/µk,k
gj = gj − αgk
uj = uj − αuk

end for
µk,j = pk · gj , Mk,j = µk,j (k = j, . . . , s)
β = φj/µj,j
ri−1 = ri−1 − βgj
xi−1 = xi−1 + βuj
if j + 1 ≤ s then

φk = 0 (k = 1, . . . , j)
φk = φk − βµk,j (k = j + 1, . . . , s)
f = (φ1, . . . , φs)

T

end if
end for
t = Ari−1

ω = (t · ri−1)/(t · t)
ρ = (t · ri−1)/(‖t‖‖ri−1‖)
if |ρ| < κ then

ω = ωκ/|ρ|
end if
ri = ri−1 − ωt
xi = xi−1 + ωv

end while

6.3 The initial search space U0

The IDR(s) method constructs s + 1 vectors gi in each space Gj . For j > 0, these vectors are
based on the s + 1 vectors in Gj−1, while the s + 1 vectors in G0 are obtained by initialising the
s vectors as gi = 0, after which s iterations are carried out. Since each vector gi corresponds to
a vector ui through gi = Aui, we can choose s vectors to be in the so-called initial search space
U0 and in this way fill the space G0 with s+ 1 vectors. Since G0 = Kn(A, r0) and Kn(A, r0) = Cn
under mild conditions, any n-dimensional vector suffices.

Approximations to eigenvectors of the system matrix A are good candidates for this initial search
space U0, but for the given problem these vectors cannot be obtained easily. Since the approximate
solutions xi lie in the space Uj , we could for a sequence of Helmholtz problems use the solutions

26

6. Induced Dimension Reduction (s)

to s problems that most likely have some agreement to the solution of the problem that we are
about to solve.

6.4 Eigenvalue approximation with IDR(s)

Since IDR(s) is a Krylov subspace method, the approximations xi and residuals ri are based on
a polynomial in A, as we showed in section 4.2. The residuals ri satisfy

ri = Ri(A)r0 = [I−APi−1(A)]r0,

with Ri(0) = 1 and Pi−1(A) a polynomial of degree i − 1, such that xi = x0 + Pi−1(A)r0 ∈
Ki(A, r0). This implies that IDR(s), and in fact any Krylov subspace method, can be seen as a
method that constructs a residual polynomial Ri in A.

Since we have that ri ∈ Gj , we can write the residuals as

ri =

j∏
`=1

(I− ω`A)r̂i = Ωj(A)r̂i (6.6)

for certain vectors r̂i, where Ωj(ξ) = (1−ω1ξ) ·(1−ω2ξ) · · · (1−ωjξ). The roots of this polynomial
are ξk = 1/ωk (k = 1, . . . , j).

Note that the r̂i are in the Sonneveld space G0, and hence r̂i can be written as

r̂i = Ψi−j(A)r0,

where Ψi−j is some polynomial of degree i− j. This implies that the residual polynomial equals

Ri(ξ) = Ωj(ξ)Ψi−j(ξ).

Due to finite terminiation, the roots of Ψi−j(ξ) should converge to the eigenvalues, see [9]. The
residual polynomial Ri(A) is optimal if it is minimal on the spectrum of A, which follows from
the estimate ‖ri‖ ≤ ‖Ri(A)‖‖r0‖. The value ωj is traditionally determined by the minimisation
of the norm of the first residual ri with respect to ωj . However, if bounds on the spectrum σ(A)
are known, we can base our choice for the values ωj on this information, which might lead to a
polynomial that is smaller on the spectrum and hence might result in a reduction of the number
of iterations that are needed for convergence.

If the system matrix is explicitly available (for instance, if we do not apply a preconditioner)
several bounds on the spectrum can be determined relatively easily, see [29]. Any matrix can for
example be written as the sum of two Hermitian matrices, as follows:

A =
1

2
(A + A∗) + i

1

2i
(A−A∗) = <(A) + i=(A),

with <(A) = 1
2 (A + A∗) and =(A) = 1

2i (A + A∗). Since an eigenvalue λi of any square ma-
trix A lies within at least one of the Gershgorin discs D(aii, Ri), where Ri =

∑
j 6=i |aij |, we can

determine a bounding box by applying the Gershgorins circle theorem to both <(A) and =(A).
In other words, we obtain the following bounds on the eigenvalues: mr ≤ Re(λi) ≤ Mr and
mi ≤ Im(λi) ≤M i.

27

6. Induced Dimension Reduction (s)

Since the system matrix is often not explicitly available, we need other ways to determine a certain
set in which the spectrum of the matrix is contained. For large matrices, this is generally very
difficult and we therefore use IDR(s) to compute (an approximation of) the eigenvalues of the
system matrix. The obtained eigenvalue approximations are known as Ritz values. The set of all
possible Ritz values is the so-called numerical range or field of values, which is defined as

FOV(A) =

{
x ·Ax

x · x : x ∈ Cn \ {0}
}
. (6.7)

In GMRES, the Arnoldi iteration of section 4.3, which was primarily seen as a way to reduce a
matrix A to an upper Hessenberg matrix, generates an orthonormal basis for the Krylov subspace
and constructs (partial) Hessenberg factorisations. The eigenvalues of these matrices, the Ritz
values, are accurate eigenvalue approximations. The Arnoldi relation (4.4) can be written as

AQj = QjHj + hj+1,jqj+1e
∗
j , (6.8)

from which it follows that if hj,j−1 = 0, the columns of Qj−1 span an eigenspace of A. If
hj,j−1 6= 0, the columns approximate an eigenspace of A and the eigenvalues of Hj−1 might be
good approximations of the eigenvalues of A.

6.4.1 Derivation of the eigenvalue approximation

It is possible to use IDR(s) to derive an equation similar to (4.4), but in this case, an equivalent
of the matrix Qj−1 is not explicitly available. We are, however, still able to obtain the matrix Hi

and the desired Ritz values.

To simplify the analyses, we introduce a new way of indexing, that is, we consider the residuals
rjk = ri, where the relation between these indices is given by i = (j − 1)s + k. This means that

the residuals rjk (k = 0, . . . , s) are in the space Gj .

The first vector rj+1
0 in the new space Gj+1 is given by

rj+1
0 = (I− ωj+1A)rjs,

and all residuals rj+1
k ∈ Gj+1 (k = 1, . . . , s) are obtained by the use of vectors vjk and gj+1

k , as
follows:

vjk = rj+1
k−1 −

s∑
`=k

γj`,kg
j
`

gj+1
k = rj+1

k−1 − (I− ωj+1A)vjk −
k−1∑
`=1

αj+1
`,k gj+1

`

rj+1
k = rj+1

k−1 − β
j+1
k gj+1

k

28

6. Induced Dimension Reduction (s)

We substitute the third and first equation in the second and obtain

1

βj+1
k

(rj+1
k−1 − rj+1

k) = rj+1
k−1 − (I− ωj+1A)vjk −

k−1∑
`=1

αj+1
`,k

βj+1
`

(rj+1
`−1 − rj+1

`)

= rj+1
k−1 − (I− ωj+1A)

(
rj+1
k−1 −

s∑
`=k

γj`,kg
j
`

)
−
k−1∑
`=1

αj+1
`,k

βj+1
i

(rj+1
`−1 − rj+1

i)

= rj+1
k−1 − (I− ωj+1A)

(
rj+1
k−1 −

s∑
`=k

γj`,k

βj`
(rj`−1 − rj`)

)
−
k−1∑
`=1

αj+1
`,k

βj+1
`

(rj+1
`−1 − rj+1

`)

and we can write this equivalently as

Arj+1
k−1 =

1

ωj+1

(
−(I− ωj+1A)

s∑
`=k

γj`,k

βj`
(rj`−1 − rj`) +

k∑
`=1

αj+1
`,k

βj+1
`

(rj+1
`−1 − rj+1

`)

)
, (6.9)

with αj+1
k,k = 1.

Each zeroth residual rj+1
0 satisfies rj+1

0 = (I− ωj+1A)rjs, and hence it follows from (6.6) that

r̂j+1
0 = r̂js. (6.10)

For k = 1, . . . , s, we substitute (6.6) into (6.9) and cancel the product terms, which results in the
relation

Ar̂j+1
k−1 =

1

ωj+1

(
−

s∑
`=k

γj`,k

βj`
(r̂j`−1 − r̂j`) +

k∑
`=1

αj+1
`,k

βj+1
`

(r̂j+1
`−1 − r̂j+1

`)

)
.

We rewrite this as

Ar̂j+1
k−1 =

1

ωj+1

(
−

s−1∑
`=k−1

γj`+1,k

βj`+1

r̂j` −
s∑
`=k

γj`,k

βj`
r̂j` +

k−1∑
`=0

αj+1
`+1,k

βj+1
`+1

r̂j+1
` −

k∑
`=1

αj+1
`,k

βj+1
`

r̂j+1
`

)
,

and after recombining the summation terms and substitution of (6.10), we end up with

Ar̂j+1
k−1 =

1

ωj+1

(
−
γjk,k

βjk
r̂jk−1 −

s−1∑
`=k

[
γj`+1,k

βj`+1

−
γj`,k

βj`

]
r̂j` +

[
αj+1

1,k

βj+1
1

+
γjs,k

βjs

]
r̂js

+

k−1∑
`=1

[
αj+1
`+1,k

βj+1
`+1

−
αj+1
`,k

βj+1
`

]
r̂j` −

αj+1
k,k

βj+1
k

r̂j+1
k

)
.

By choosing appropriate values hj`,k we can simplify this to

Ar̂j+1
k−1 =

s∑
`=k−1

hj`,kr̂
j
` +

k∑
`=1

hj+1
`,k r̂j+1

` ,

and if we use the original indices it reduces to

Ar̂i−1 =

i∑
`=i−s−1

h`r̂`.

29

6. Induced Dimension Reduction (s)

This leads to the relation
AR̂i = R̂iHi + hi+1,iri+1e

∗
i , (6.11)

with R̂i = [r̂0 r̂1 · · · r̂i] and Hi an (i+ 1)× i extended Hessenberg matrix with upper bandwidth
s and lower bandwidth 1 (and hence s + 2 non-zero diagonals). This equation is similar to the
Arnoldi relation (6.8), but in this case R̃i is not known explicitly and it is not a matrix with
orthonormal columns. The elements of Hi are the values hi, which depend on the coefficients ωj
and α`,i, β`,i and γ`,i. Its eigenvalues are an approximation to (some of) the eigenvalues of A.

6.4.2 Validation and tests

We validate the above analyses by considering a few test matrices of which the precise spectrum
can be computed easily. We use several matrices that are included in the Matlab gallery of test
matrices, which is based upon the work of N. J. Higham, see [11]. First we use as system matrix
the Hanowa matrix. This sparse n×n matrix has non-zero entries ai,i = d and ai,i+n = i = ai+n,i.
The eigenvalues of this matrix are d± ik with k = 1, 2, . . . n/2. We perform n+ bn/sc iterations,
which results in the matrix Hn after which the eigenvalues of this matrix, the Ritz values, are
computed.

−6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(a) n = 10, d = 1

0 10 20 30 40 50 60

−25

−20

−15

−10

−5

0

5

10

15

20

25

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(b) n = 50, d = 1

0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(c) n = 100, d = 1

44 46 48 50 52 54 56
−6

−4

−2

0

2

4

6

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(d) n = 10, d = 50

20 30 40 50 60 70 80

−25

−20

−15

−10

−5

0

5

10

15

20

25

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(e) n = 50, d = 50

20 40 60 80 100 120 140 160 180 200
−80

−60

−40

−20

0

20

40

60

80

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(f) n = 100, d = 50

Figure 6.1: Eigenvalues and Ritz values of the Hanowa matrix of size n× n.

The distribution of the eigenvalues, indicated with a black ‘o’, and the Ritz values, specified with
red (for s = 1), green (for s = 4) or blue (for s = 8) dots, are displayed in Figure 6.1. We see that
for small Hanowa matrices, the Ritz values do converge to all the eigenvalues of A. Increasing s
leads to more accurate Ritz values for the larger matrices and we indeed observe that the exterior
eigenvalues are better approximated by the Ritz values.

For increasing matrix size n, some of the Ritz values are located farther away from the actual
spectrum of A. Similar behaviour has been described by M.H. Gutknecht and J.M. Zemke in [10].

30

6. Induced Dimension Reduction (s)

They suggest that this is caused by the fact that the reciprocals of ωj are outside of the set (6.7),
the field of values of A.

In [22], V. Simoncini and D.B. Szyld consider a case where the reciprocals of ωj are in this field of
values. They choose for ω−1

j the Ritz values that result from a preliminary generation of a small
Krylov subspace.

Alternatively, we consider

ωj =
vi · vi

vi ·Avi
,

and thus also make sure that ω−1
j ∈ FOV(A). This choice of ωj is known as the method of steepest

descent and results from choosing ωj such that (I−ωjA)vi ⊥ vi. If we repeat the above test with
this choice of ωj , the results are as in Figure 6.2.

−6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(a) n = 10, d = 1

−30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20

25

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(b) n = 50, d = 1

−60 −40 −20 0 20 40 60
−50

−40

−30

−20

−10

0

10

20

30

40

50

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(c) n = 100, d = 1

44 46 48 50 52 54 56
−6

−4

−2

0

2

4

6

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(d) n = 10, d = 50

20 30 40 50 60 70 80

−25

−20

−15

−10

−5

0

5

10

15

20

25

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(e) n = 50, d = 50

0 20 40 60 80 100

−50

−40

−30

−20

−10

0

10

20

30

40

50

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(f) n = 100, d = 50

Figure 6.2: Eigenvalues and Ritz values of the Hanowa matrix of size n× n.

The resulting Ritz values resemble the eigenvalues more accurately, and the Ritz values that are
still distant from the spectrum are more close to the spectrum compared to the standard choice of
ωj . The Ritz values are also more evenly distributed around the spectrum. Therefore, we choose
the method of steepest descent for ωj in all upcoming tests.

We note that the Ritz values that are not accurately approximating eigenvalues all lie on some kind
of oval close to the line on which these eigenvalues are located, see for instance Figure 6.2(e)-(f). If
we consider only Hk (which corresponds to taking only k + bk/sc iterations for some k < n), this
oval is less apparent and the Ritz values show more resemblance with the eigenvalues. In Figure
6.3 we display the results for k = 10, 30, 50 for the Hanowa matrix with n = 100 and d = 50. For
increasing s, the minimal surface that encloses this oval is smaller and hence the cooresponding

31

6. Induced Dimension Reduction (s)

Ritz values are a better approximation to the eigenvalues.

0 20 40 60 80 100

−50

−40

−30

−20

−10

0

10

20

30

40

50

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(a) k = 10

0 20 40 60 80 100

−50

−40

−30

−20

−10

0

10

20

30

40

50

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(b) k = 30

0 20 40 60 80 100

−50

−40

−30

−20

−10

0

10

20

30

40

50

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(c) k = 50

Figure 6.3: Eigenvalues of the Hanowa matrix of size 100× 100 and Ritz values based on Hk.

We consider a few other simple matrices of which the spectrum has a particular shape, and compare
for s = 1, 4, 8 the Ritz values with the eigenvalues of these matrices, see Figure 6.4. The Dramadah
matrix has entries equal to 1 on the first superdiagonal, the main diagonal and all even subdiagonals
and its spectrum can be described as a rotated Y-shape. The Smoke matrix is a sparse matrix
with the n roots of unity on the main diagonal and the non-zero entries ai,i+1 = 1 = an,1. The
eigenvalues of this matrix all lie on the unit circle. The Lesp matrix is a tridiagonal matrix with
the entries on the diagonal ai,i = −2i − 3, on the superdiagonal ai−1,i = i and the subdiagonal
ai,i−1 = 1/i. Its eigenvalues are distributed evenly on the interval [−2n−3.5,−4.5]. The Riemann
matrix is a full matrix with ai,j = i if i+ 1 | j+ 1 and ai,j = −1 otherwise. Almost all eigenvalues
are real and positive and the integers on (n/3, n/2] are eigenvalues.

−1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(a) Dramadah matrix, n = 30

0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(b) Dramadah matrix, n = 74

−2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(c) Dramadah matrix, n = 100

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(d) Smoke matrix, n = 30

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(e) Smoke matrix, n = 75

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(f) Smoke matrix, n = 100

32

6. Induced Dimension Reduction (s)

−60 −50 −40 −30 −20 −10

−20

−15

−10

−5

0

5

10

15

20

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(g) Lesp matrix, n = 30

−180 −160 −140 −120 −100 −80 −60 −40 −20

−60

−40

−20

0

20

40

60

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(h) Lesp matrix, n = 74

−250 −200 −150 −100 −50

−100

−80

−60

−40

−20

0

20

40

60

80

100

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(i) Lesp matrix, n = 100

0 5 10 15 20 25 30

−10

−5

0

5

10

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(j) Riemann matrix, n = 30

−10 0 10 20 30 40 50 60 70

−30

−20

−10

0

10

20

30

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(k) Riemann matrix, n = 75

0 20 40 60 80 100
−40

−30

−20

−10

0

10

20

30

40

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(l) Riemann matrix, n = 100

Figure 6.4: Eigenvalues and Ritz values of several matrices of size n× n.

For rather small sized matrices (i.e. n = 30), the Ritz values almost always coincide with the
eigenvalues of the system matrix, especially for the case s = 8. If the matrix gets larger, the
Ritz values are again less accurate. In a few cases, a single Ritz value is very distant from the
spectrum. This can happen for any value of s and any value of n. If we consider for instance the
Riemann matrix, we see in Figure 6.4(k) that with n = 75 all Ritz values are relatively close to
the spectrum, while for n = 74 and s = 8, we obtain a single Ritz value close to 1952 and with
n = 76 and s = 1 a Ritz value is close to -480. All other Ritz values in these two cases are just as
close to the spectrum as for the case n = 75.

In the last validation test, we focus on the room problem of section 3.1 with the system ma-
trix (3.7), which depends on the acoustic wavenumber k. We consider the two shifted Laplace
preconditioners that are described in section 5.1. The purely imaginary shifted preconditioner
Pi(k0) = K + ik0C + ik2

0M has as shift −ik2
0 and the preconditioner with a real shift k2

0 equals
Pr(k0) = K+ik0C−k2

0M. The resulting preconditioned system matrices [P∗(k0)]−1A(k) are used
in the experiments of the Literature Review, see Appendix B. In this test, we set k0 = 120 · 2π/c0
and k = 100 ·2π/c0. For a small number of unknowns n, we are able to compute the eigenvalues of
the preconditioned system matrix and take enough iterations to construct the Hessenberg matrix
of size n× n, which leads to n Ritz values. The results are displayed in Figure 6.5.

The exterior Ritz values match with the exterior eigenvalues of the system matrix, while the more
clustered eigenvalues are not approximated very well. We also observe that for n = 49 and n = 100
the oval around (a part of) the spectrum is again present. It is remarkable that this oval is worse
for increasing s.

We are of course interested in an approximation of the eigenvalues of a large system matrix of size

33

6. Induced Dimension Reduction (s)

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.2

0

0.2

0.4

0.6

0.8

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(a) Pi(k0), n = 25

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.2

0

0.2

0.4

0.6

0.8

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(b) Pi(k0), n = 49

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(c) Pi(k0), n = 100

−12 −10 −8 −6 −4 −2 0 2 4

−8

−6

−4

−2

0

2

4

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(d) Pr(k0), n = 25

−6 −5 −4 −3 −2 −1 0 1 2

−6

−5

−4

−3

−2

−1

0

1

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(e) Pr(k0), n = 49

−2 0 2 4 6 8 10

−8

−6

−4

−2

0

2

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(f) Pr(k0), n = 100

Figure 6.5: Validation on the room problem with the n× n system matrix [P∗(k0)]−1A(k).

n × n without the need of n iterations. Taking less than n iterations was very effective for the
above test matrices, which we motivated by Figure 6.3, not only for reasons concerning computa-
tion time, but also for a better approximation to the eigenvalues. We consider the room problem
with n = 1600 equations and consider k+bk/sc iterations with k = 40, see Figure 6.6 for the results.

We see that some inaccurate Ritz values are present for all values of s, but the distribution of the
eigenvalues is very accurately represented by the 40 Ritz values.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(a) Pi(k0)

−12 −10 −8 −6 −4 −2 0 2 4 6
−14

−12

−10

−8

−6

−4

−2

0

Eigenvalues
Ritz values, s=1
Ritz values, s=4
Ritz values, s=8

(b) Pr(k0)

Figure 6.6: Validation on the room problem with n = 1600 and k = 40 Ritz values.

34

6. Induced Dimension Reduction (s)

The above tests validate the analyses of the preceding section. For very small matrices, all the
eigenvalues can be found by computing n Ritz values. For larger matrices, this does not work.
Since we are in general not interested in computing all n eigenvalues, this is not an obstacle.

The lack of accuracy is most probably caused by numerical instability and sensitivity to rounding
errors. The current implementation follows directly from the analysis and the eigenvalue estimation
is just a by-product of IDR(s).

6.4.3 The Chebyshev polynomial

The Ritz values tend to approximate the exterior eigenvalues better than the eigenvalues in the
interior part of the spectrum, see [2, Ch 3.2]. This implies that if we construct a convex set C ⊂ C
that encloses the Ritz values, the spectrum of A is most probably contained in this set. If we then
construct a polynomial that is small on this set, it is also small on the spectrum.

A promising candidate is a polynomial based on the so-called Chebyshev polynomial T Cm(ξ), This
polynomial is monic and of degree m and is defined to be minimal on a set C, that is, it satisfies

‖T Cm(ξ)‖∞ ≤ ‖P C(ξ)‖∞,

with P C(ξ) any monic polynomial of degree m. The zeros ξi of this polynomial are known as
Chebyshev nodes.

Note that after choosing ωi = 1/ξi, we have that the nodes of T Cm(ξ) and Ωm(ξ) =
∏m
i=1(1− ωiξ)

coincide and hence that Ωm(A) is small on σ(A).

For some sets, the Chebyshev polynomial is explicitly known. If for instance the set equals
C = [−1, 1], the Chebyshev polynomial of degree m is given by

T [−1,1]
m (ξ) =

m∏
i=1

(
cos

(
2i− 1

2m
π

)
− ξ
)
,

and this can easily be extended to an arbitrary interval C = [f1, f2] by a proper transformation,
which results in the Chebyshev nodes

ξi =
1

2
(f1 + f2) +

1

2
(f2 − f1) cos

(
2i− 1

2m
π

)
. (6.12)

For many problems, however, the Ritz values and eigenvalues do not lie on a straight line and
a two-dimensional set is needed. The easiest convex set on which the Chebyshev polynomial is
explicitly known is a disk D(c, r). The m-th Chebyshev polynomial on this set is given by

TD(c,r)
m (ξ) = (ξ − c)m,

with Chebyshev nodes ξi = c.

The Chebyshev polynomial is also known on the area enclosed by an ellipse with foci f1,2 and
major radius a. This set can be defined by C = {ξ ∈ C : |ξ + f1|+ |ξ + f2| ≤ 2a}. The nodes of
the m-th Chebyshev polynomial on this set are the same as the nodes on the line segment that con-
nects the two foci of this ellipse, and we therefore have that the nodes are given by (6.12). We refer
to [24] for the proofs on the Chebyshev polynomials and corresponding nodes on the described sets.

35

6. Induced Dimension Reduction (s)

It is far from trivial to obtain the minimal-area enclosing ellipse for a given set of points. One of
the options is to use the so-called Khachiyan algorithm, which is a linear optimization problem
that finds a solution to a certain tolerance in a finite number of steps, see [28].

36

Chapter 7

Numerical experiments on the car
problem

There are now three types of scientists: experimental, theoretical, and computational.
Silvan Samuel Schweber

7.1 Modelling the acoustics of a car

We focus on the modelling of the pressure disturbances caused by acoustic waves inside a moving
car, where we refer to [14] for a detailed description. The acoustics waves arise from not only the
engine, but also from vibrations of the car structure due to for instance road contact and wind. To
limit the amount of noise in a car it is needed that the pressure disturbances in the air inside the
car (the car fluid) and the vibrations of the car (the car structure) are investigated. We combine
these vibrations in fluid and structure in a single numerical system and define to this end the car
fluid as Ω ⊂ R3, which is surrounded by the structure surface Γ and the car structure Ω̃. As an
example, we consider a FIAT Punto, which is taken from [3]. In Figure 7.1 the physical car is

displayed, where the corresponding fluid part Ω and structure part Ω̃ are given in Figure 7.2.

Figure 7.1: The FIAT Punto.

The boundary conditions on Γ are obtained from the interaction between the fluid and the struc-
ture of the car. The displacement of the structure is described by so-called far field conditions.

37

7. Numerical experiments on the car problem

(a) fluid part

(b) structure part

Figure 7.2: The FEM model of the FIAT Punto.

The wave equation (2.6) describes the pressure disturbances of the fluid Ω and the weak formulation
is given by∫

Ω

1

ρ0
∇p · ∇η dΩ +

∫
Γ

r

(ρ0c0)2
η
∂p

∂t
dΓ +

∫
Ω

1

ρ0c20
η
∂2p

∂t2
dΩ +

∫
Γ

n · ∂
2u

∂t2
η dΓ = 0, (7.1)

where η ∈ H1(Ω) such that it satisfies the boundary conditions on Γ, and u = u(x, t) the dis-
placement of the structure surface Γ. Damping and absorption at the boundary is incorporated
in the extra term ∫

Γ

r

(ρ0c0)2
η
∂p

∂t
dΓ,

and r = r(α) depends on the properties of the material described by α.

Finite element discretisation of (7.1) leads to the system

Mf
d2

dt2
p + Df

d

dt
p + Kfp + Dsf

d2

dt2
u = 0.

The vibrations of the structure are obtained by applying a direct discrete finite element method
[14] and we obtain the system

Ms
d2

dt2
u + Ds

d

dt
u + Ksu−DT

sfp = fs.

We combine these systems into(
Ms 0
Dsf Mf

)
d2

dt2

(
u
p

)
+

(
Ds 0
0 Df

)
d

dt

(
u
p

)
+

(
Ks −DT

sf

0 Kf

)(
u
p

)
=

(
fs
0

)
. (7.2)

38

7. Numerical experiments on the car problem

We note that the matrices in (7.2) are highly dependent on the geometry of the car and the type
of finite elements that are used.

We perform the Fourier Ansatz (
u
p

)
=

(
ũ
p̃

)
eiωt, fs = f̃eiωt,

and obtain after multiplication of the second block row of (7.2) by ω−1 the frequency dependent
linear system{

−ω2

(
Ms 0
0 Mf

)
+ iω

(
Ds iDT

sf

iDsf Df

)
+

(
Ks 0
0 Kf

)}(
ũ

p̃/ω

)
=

(
f̃
0

)
,

or, for short
{K + f · 2iπD− f2 · 4π2M}x = A(f)x = b. (7.3)

The matrices K, D and M are symmetric and sparse. The goal is to solve the system (7.3) for
the range of frequencies f = 1, 2, . . . Hz.

7.2 The mathematical problem

We consider two numerical versions of the linear system (7.3), which are constructed by the
engineering company SFE in Berlin. The first consists of n = 192 184 and the second of n =
495 151 equations, where the fluid part has nf = 16 363 unknowns and the structure part either
ns = 175 821 or ns = 478 788 unknowns. We will focus on the smaller of these two. Unfortunately,
we do not know what the individual entries stand for and we cannot visualise any solution vector
x. The matrix structures of the smaller problem are given in Figure 7.3. The matrix structures
for the larger one are very similar to these structures.

(a) Stiffness matrix K.

0 5 10 15

x 10
4

0

2

4

6

8

10

12

14

16

18

x 10
4

nz = 262142

(b) Damping matrix D.

0 5 10 15

x 10
4

0

2

4

6

8

10

12

14

16

18

x 10
4

nz = 490265

(c) Mass matrix M.

Figure 7.3: Matrix structures.

We first focus on IDR(s), after which we compare the resulting best strategy for this method
with other well-known Krylov subspace methods. All experiments are performed on a desktop PC
with a single CPU clocked at 3.0 GHz and with 16 Gb RAM with Matlab 7.7, where we used the
standard Matlab implementations for GMRES, CGS and BiCGSTAB and for IDR(s) the Matlab
code of M.B. van Gijzen1. We consider several (modified) shifted Laplace preconditioners and

1IDR(s) has been included in the Collected Algorithms of the ACM as Algorithm 913, see http://calgo.acm.org

39

7. Numerical experiments on the car problem

different approaches in reusing the available information that results from the computations for
other frequencies that are carried out earlier.

As we have seen, the car problem consists of a fluid and a structure part with interaction terms in
the damping matrix D. First, we focus on the fluid part and structure part separately and then
we consider the complete problem. The fluid part of the car problem, in short the fluid problem,
consists of real numbers only and is given by

(Kf − f2 · 4π2Mf)xf = Af(f)xf = bf , (7.4)

where we fix the right hand side bf = ed0.5nfe. That is, we consider a point source in one of the
nodes. The damping at the boundary is incorporated in the interaction term −ωDsf and hence
Df = 0. The structure problem equals

(Ks + f · 2iπDs − f2 · 4π2Ms)xs = As(f)xs = bs. (7.5)

The stiffness matrix Ks and the damping matrix iωDs are complex matrices. This last matrix
contains only 82 non-zeros. As right hand side we consider again a point source in a node and
we choose bs = ed0.5nse. It follows from Figure 7.3(c) that Ms, the mass matrix of the structure
problem, is almost diagonal. In fact, the upper and lower bandwidth equal 5 and hence Ms con-
sists only of 11 non-zero diagonals.

For all experiments we set tol = 10−8 and maxit = 1000, unless it is explicitly stated otherwise.

7.3 LU factorisations of the preconditioners

In the first set of experiments, we use the shifted Laplace preconditioner to solve the fluid part
(7.4) and structure part (7.5) of the car problem. We consider the preconditioner with a real
shift and an imaginary shift with a fixed shift frequency f0 and apply it to problems with several
frequencies. The shifted Laplace preconditioner with a purely imaginary shift is defined as

Pi(f0) = K + f0 · 2iπD + f2
0 · 4iπ2M, (7.6)

and the shifted Laplace preconditioner with a real shift is given by

Pr(f0) = K + f0 · 2iπD− f2
0 · 4π2M = A(f0). (7.7)

The reduction to similar preconditioners for the separate fluid and structure problem follows nat-
urally and is indicated by a subscripted ‘f’ for the fluid and ‘s’ for the structure problem. We
factorise the preconditioners with three types of (incomplete) LU factorisation, namely exact LU
factorisation, ILU(0) factorisation and ILUT(τ) factorisation with τ = 0.01. We investigate if
the preconditioners and the factorisations for the fluid and the structure problem lead to results
that are comparable to the results that we obtained earlier for the room problem, see Appendix
B. We use IDR(4), choose as initial guess x0 = 0 and consider the relative residuals ‖ri‖/‖b‖ at
the i-th iteration for the frequencies f = 10, 50 and 100 Hz. In Figure 7.4 the results for the
fluid problem are displayed. We compare the results for the unpreconditioned problem, given in
Figure 7.4(a), to the problem where we apply the factorised preconditioners Pr

f (f0) and Pi
f(f0)

with f0 = 50 Hz with different (incomplete) LU factorisations, see Figure 7.4(b)-(d). Some results
concerning computation time and number of iterations to obtain a relative accuracy of the residual
that satisfies ‖ri‖/‖b‖ ≤ tol are tabulated in Table 7.1.

40

7. Numerical experiments on the car problem

0 50 100 150 200 250 300 350 400 450 500
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

re
la

tiv
e

re
si

du
al

f = 10
f = 50
f = 100

(a) No preconditioner

0 20 40 60 80 100 120 140
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

re
la

tiv
e

re
si

du
al

Pr , f = 10

Pr , f = 50

Pr , f = 100

Pi , f = 10

Pi , f = 50

Pi , f = 100

(b) ILU(0) factorisation

0 10 20 30 40 50 60 70 80 90
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

re
la

tiv
e

re
si

du
al

Pr , f = 10

Pr , f = 50

Pr , f = 100

Pi , f = 10

Pi , f = 50

Pi , f = 100

(c) ILUT(0.01) factorisation

0 2 4 6 8 10 12 14 16 18 20
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration

re
la

tiv
e

re
si

du
al

Pr , f = 10

Pr , f = 50

Pr , f = 100

Pi , f = 10

Pi , f = 50

Pi , f = 100

(d) LU factorisation

Figure 7.4: Relative residual norms per iteration for the fluid problem.

Computation time (s) Number of iterations

Precond. Factorisation Factor. 10 Hz 50 Hz 100 Hz 10 Hz 50 Hz 100 Hz

Pr
f (50)

LU 1 351.23 79.88 17.65 121.71 9 1 13

ILUT(0.01) 5.26 1.45 1.40 1.49 58 56 65

ILU(0) 0.07 0.66 0.62 0.71 86 84 95

Pi
f(50)

LU 3 282.47 69.96 70.07 108.95 9 9 14

ILUT(0.01) 10.06 2.13 1.90 2.25 59 55 63

ILU(0) 0.11 1.15 1.04 1.22 86 84 94

No preconditioning - 1.26 1.20 1.31 321 311 342

Table 7.1: Computational results at a residual norm of 10−8 for the fluid problem.

We have seen that for the room problem the number of iterations that is needed to obtain a certain
accuracy is independent from the shift of the preconditioner f0, as soon as we use incomplete LU

41

7. Numerical experiments on the car problem

factorisation to factor a preconditioner. The results from Figure 7.4(b)-(c) strongly suggest that
this also holds for the fluid problem, since the residuals of the problems with system matrices
[Pr

f (f0)]−1Af(f) and [Pi
f(f0)]−1Af(f) almost coincide for the same frequency f while the shifts of

these two preconditioners are in fact completely different from each other. We also see in Table
7.1 that the numbers of iterations for a relative residual norm of 10−8 are identical or at least very
similar for both preconditioners. If we use Pi

f(f0) as preconditioner, the factors contain complex
numbers and the computation time is greater in comparison with the use of Pr

f (f0), which can be
explained by the fact that the fluid problem contains real numbers only.

The exact LU factorisation results in the need of very few iterations for a proper accuracy, but
computing and applying the preconditioners is very expensive. More generally, we see that the
application of any preconditioner reduces the number of iterations greatly and that the better
the product of the factors resembles the preconditioner, the less iterations are needed. However,
the application of a preconditioner increases the computation time per iteration drastically. We
see confirmed that the higher the number of non-zeros in the (incomplete) LU factors, the larger
the computation time. In this context, we note that solving the problem without preconditioning
needs by far the most iterations, but the computation time that is needed is surprisingly small
compared to the cases where we use a preconditioner.

We consider the same approach for the structure problem. However, it is only possible to compute
the ILU(0) factors of the preconditioners in a reasonable amount of time and with relatively small
storage requirements. We use IDR(4), fix x0 = 0 for the frequencies f = 10, 50, 100 Hz and as
frequency for the shifted Laplace preconditioners we choose again f0 = 50 Hz.

Whether we apply no preconditioner or we use the ILU(0) factors, we do not observe convergence
for any frequency. In Figure 7.5 the residual norm is given after 900 to 1000 iterations and we see
that it behaves erratic for all frequencies.

900 910 920 930 940 950 960 970 980 990 1000
10

−1

10
0

10
1

iteration

re
la

tiv
e

re
si

du
al

f = 10
f = 50
f = 100

(a) No preconditioning

900 910 920 930 940 950 960 970 980 990 1000
10

−1

10
0

10
1

10
2

iteration

re
la

tiv
e

re
si

du
al

Pr , f = 10

Pr , f = 50

Pr , f = 100

Pi , f = 10

Pi , f = 50

Pi , f = 100

(b) ILU(0) factorisation

Figure 7.5: Relative residual norms per iteration for the structure problem.

42

7. Numerical experiments on the car problem

7.3.1 Pivoting

While the computation time for the exact LU factors for the fluid problem is already very high, it
is impossible to construct the factors for the structure problem on an average desktop computer.
This is caused by the fact that the standard Matlab routine keeps interchanging rows during the
factorisation to improve the accuracy of the resulting factors. This interchanging is based on a
certain element in this matrix, the pivot element, which is interchanged with a more desirable
entry. So instead of determining the LU factors such that A = LU, the Matlab routine produces
in fact a permuted lower triangular matrix P−1L and an upper triangular matrix U. The matrix
P is a permutation matrix2, and hence it can be written as (eTk1 , e

T
k2
, . . . , eTkn)T with (k1, k2 . . . , kn)

a permutation of (1, 2, . . . , n). Note that the product PA consists of the rows of A rearranged in
a new order and, similarly, the product AP is equal to a reordering of the columns of A.

For our problems, the computation time increases so immensely, that we cannot use the standard
Matlab routine. Therefore, we suppress the standard way of pivoting and control the interchang-
ing of rows and columns in the process of factorisation by fixing two thresholds, τ1 and τ2, in
the determination of LU factors that satisfy PAQ = LU, with P and Q permutation matrices.
The thresholds are for symmetric matrices as follows: a diagonal element is chosen such that
|Aj,j | ≥ τ1 max |Aj:n,j |. If no diagonal element satisfies this requirement, an element on the sub-
diagonal is selected such that |Aj+1,j | ≥ τ2 max |Aj+1:n,j |. The standard choice of thresholds are
τ1 = 10−3 and τ2 = 0.1.

If we set τ1 = 0 (and τ2 = 0), we perform the LU factorisation with so-called diagonal pivoting:
we choose as pivot element the largest remaining diagonal element, that is, |Aj,j | ≥ maxi≥j |Ai,i|.
This means that P = QT and for symmetric matrices also that L and UT have the same sparsity
pattern.

Computation time (s)

Problem Preconditioner Thresholds Factorisation Application

Fluid

Pr
f (f0)

None 1 355.71 8.93

τ1 = 10−3, τ2 = 0.1 1.05 0.03

τ1 = 0, τ2 = 0 1.04 0.03

Pi
f(f0)

None 3 322.32 8.30

τ1 = 10−3, τ2 = 0.1 2.54 0.08

τ1 = 0, τ2 = 0 2.55 0.08

Structure

Pr
s (f0)

τ1 = 10−3, τ2 = 0.1 50.13 0.94

τ1 = 0, τ2 = 0 36.24 0.80

Pi
s(f0)

τ1 = 10−3, τ2 = 0.1 49.42 0.92

τ1 = 0, τ2 = 0 36.60 0.80

Table 7.2: Exact LU factorisation for the fluid and structure problem.

If we use either of the above thresholds, the computation and application time reduces spectacu-
larly for the fluid problem and we are also able to determine exact LU factors for the precondi-
tioners of the structure problem. For a comparison of the LU factorisations, see Table 7.2. There
is hardly any difference in the choice of thresholds for the fluid problem, but for the structure

2Note that in this context P is not a preconditioner.

43

7. Numerical experiments on the car problem

problem both the factorisation and application time is less for diagonal pivoting and hence we
choose this type of pivoting in all upcoming experiments.

We can now solve the earlier described structure problem, since the residual norms do converge
when exact LU factorisation with pivoting is used. We repeat the above experiment where we now
use LU factorisation with diagonal pivoting and the resulting relative residual norms are given in
Figure 7.6. The computation time and number of iterations for an accuracy of 10−8 are tabulated
in Table 7.3. We note that for increasing frequency the number of iterations becomes very large.

0 20 40 60 80 100 120
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

re
la

tiv
e

re
si

du
al

Pr , f = 10

Pr , f = 50

Pi , f = 10

Pi , f = 50

(a) LU factorisation for f = 10, 50 Hz

0 100 200 300 400 500 600 700 800 900 1000
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

re
la

tiv
e

re
si

du
al

Pr , f = 100

Pi , f = 100

(b) LU factorisation for f = 100 Hz

Figure 7.6: Relative residual norms per iteration for the structure problem.

Computation time (s) Number of iterations

Preconditioner 10 Hz 50 Hz 100 Hz 10 Hz 50 Hz 100 Hz

Pr(50) 80.32 1.00 699.07 91 1 794

Pi(50) 47.04 40.81 483.06 53 46 549

Table 7.3: Computational results at a residual norm of 10−8 for the fluid structure.

7.4 Solving sequences of fluid and structure problems

As we have shown in the preceding section, we are able to separately solve the fluid and struc-
ture problems, at least for small frequencies. In this section we investigate ways to reduce the
computation time by the use of earlier obtained solutions and by modifying the shifted Laplace
preconditioners (7.6) and (7.7).

First, we consider the reuse of information for the initial guess, by extrapolation the solutions that
we obtained earlier or by spanning an initial search space U0. Second, we investigate the perfor-
mance of the shifted Laplace preconditioners Pr

∗(f0) and Pi
∗(f0) and for the structure problem a

modified shifted Laplace preconditioner Pm
s (f0) which equals Pr

s (f0) except that we ignore the
complex part. Next, we investigate if it is reasonable to update the shift in the shifted Laplace
preconditioners and if so, how we should choose the moment of updating and which shift the

44

7. Numerical experiments on the car problem

new preconditioner should have. We also compare the number of iterations that different Krylov
subspace methods need to obtain the same accuracy, similar to the experiments we did for the
room problem. We consider the Krylov subspace methods that we described in sections 4.3 and
4.4 and IDR(s) for different values of s.

7.4.1 Reuse of solution vectors

Extrapolation of previous solution vectors for the initial guess x0

One of the ways to reduce the number of iterations that a numerical method needs for convergence
to a certain tolerance, is to improve the initial guess for the problem. The standard choice is
x0 = 0, but some (educated) guess could be much better. Since we solve sequences of problems,
the solutions to previously solved problems are available. It is reasonable to use some of these
previous solutions for a maybe better initial guess, by using some type of extrapolation. We
investigate if cubic spline and Lagrange extrapolation of at most s solutions reduce the computation
time for the fluid problem for both IDR(4) and IDR(8) with Pi

f(f0), where f0 = 50 Hz, for the
frequencies 1, 2, . . . , 100 Hz. We note that a similar experiment with Pr

f (f0) as preconditioner
leads to practically the same reduction in numbers of iterations for higher frequencies in the fluid
problem and for the structure problem. For now, we do not use an initial search space and we
emphasize that we use for IDR(4) the previous 4 solutions and for IDR(8) the previous 8 solutions
in order to make a fair comparison with the choices where we do use the initial search space
that contains s vectors. We compare the results for cubic spline and Lagrange extrapolation with
choices of the starting vector x0 equal to 0 (no extrapolation), equal to the last solution (constant
extrapolation) and based on linear extrapolation of the previous two solutions. The results are
given in Figure 7.7(a)-(b). Figure 7.7(c)-(d) result from the same experiment with a shift for the
preconditioners f0 = 525 Hz and a frequency range 501, 502, . . . , 550 Hz. The total number of
iterations is given in Table 7.4. In order to keep a good overview, we summerise the choices for
the experiment.

� Objective: performance of several types of extrapolation.
� Problem: the fluid problem.
� Frequency range: f = 1, 2, . . . 100 Hz and f = 501, 502, . . . 550 Hz.
� Method: IDR(s) with s = 4, 8.
� Preconditioner: Pi

f(f0) with f0 = 50 Hz and f0 = 525 Hz.
� Results: Figure 7.7 and Table 7.4.

Total number of iterations

Frequency range Method None Constant Linear Cubic spline Lagrange

f = 1, 2, . . . , 100 Hz.
IDR(4) 1 034 809 657 442 451

IDR(8) 997 740 617 449 593

f = 501, 502, . . . , 550 Hz.
IDR(4) 25 316 24 249 23 263 21 718 21 729

IDR(8) 18 745 18 172 17 442 16 232 16 274

Table 7.4: Number of iterations for the fluid problem with different types of extrapolation.

The improvements are significant, although for the frequency range f = 501, 502, . . . , 550 Hz the
relative improvement is much less for all types of extrapolation compared to the reduction on the
range f = 1, 2 . . . , 100 Hz. The higher the order of the extrapolation, the better the number of
iterations is reduced and cubic spline and Lagrange extrapolation reduce the number of iterations

45

7. Numerical experiments on the car problem

the most, except for IDR(8) for the frequencies f = 1, 2, . . . , 100 Hz. The difference between
these two in all other test cases is per frequency erratic and is over a larger range of frequencies
negligible.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

frequency

ite
ra

tio
ns

none
constant
linear
spline
lagrange

(a) IDR(4), f = 1, 2, . . . , 100 Hz.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

frequency

ite
ra

tio
ns

none
constant
linear
spline
lagrange

(b) IDR(8), f = 1, 2, . . . , 100 Hz.

505 510 515 520 525 530 535 540 545 550

400

450

500

550

frequency

ite
ra

tio
ns

none
constant
linear
spline
lagrange

(c) IDR(4), f = 501, 502, . . . , 550 Hz.

505 510 515 520 525 530 535 540 545 550
280

300

320

340

360

380

400

420

frequency

ite
ra

tio
ns

none
constant
linear
spline
lagrange

(d) IDR(8), f = 501, 502, . . . , 550 Hz.

Figure 7.7: Number of iterations for the fluid problem with different types of extrapolation.

If we compare the results for f = 1, 2, . . . , 100 Hz with the results of f = 501, 502, . . . , 550 Hz, we
see that the number of iterations that are needed for convergence becomes very large for higher
frequencies. If we apply IDR(4) with Lagrange interpolation, we need on average 5 iterations per
frequency for f = 1, 2 . . . , 100 Hz and more than 430 iterations for f = 501, 502, . . . , 550 Hz. For
IDR(8) and Lagrange interpolation this is subsequently 6 and 325 iterations. This means that for
small frequencies IDR(4) is slightly better than IDR(8), but IDR(8) clearly outperforms IDR(4)
for higher frequencies and hence more difficult problems.

We repeat the same experiment for the structure problem, but restrict ourself to the sequence
of f = 1, 2 . . . , 100 Hz since for frequencies above 500 Hz, we do not observe convergence within
1000 iterations. The number of iterations per frequency is displayed in Figure 7.8, while the total
number of iterations is given in Table 7.5. In short:

� Objective: performance of several types of extrapolation.

46

7. Numerical experiments on the car problem

� Problem: the structure problem.
� Frequency range: f = 1, 2, . . . 100 Hz.
� Method: IDR(s) with s = 4 and s = 8.
� Preconditioner: Pi

s(f0) with f0 = 50 Hz.
� Results: Figure 7.8 and Table 7.5.

Total number of iterations

Frequency range Method None Constant Linear Cubic spline Lagrange

f = 1, 2, . . . , 100 Hz.
IDR(4) 12 654 12 395 12 208 11 953 11 931

IDR(8) 9 667 9 249 9 030 9 205 8 867

Table 7.5: Number of iterations for the structure problem with different types of extrapolation.

It follows that for higher order extrapolation the reduction in the number of iterations is larger,
but the differences are relatively small. For small frequencies, IDR(8) and IDR(4) are again more
or less comparable and the number of iterations is small, while IDR(8) performs much better for
frequencies larger than 50 Hz, where the number of iterations increases significantly. IDR(4) needs
up to 600 iterations for the frequencies close to 100 Hz.

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

frequency

ite
ra

tio
ns

none
constant
linear
spline
lagrange

(a) IDR(4), f = 1, 2, . . . , 100 Hz.

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

frequency

ite
ra

tio
ns

none
constant
linear
spline
lagrange

(b) IDR(8), f = 1, 2, . . . , 100 Hz.

Figure 7.8: Number of iterations for the structure problem with different types of extrapolation.

The initial search space U0

We investigate if an initial search space U0 reduces the number of iterations. We therefore repeat
the above experiments for the fluid and structure problem, but now we define for the problem with
frequency f the space U0 as the span of the last s solutions xf−1,xf−2, . . . ,xf−s. Some results for
the fluid problem are presented per frequency in Figure 7.9 and the totals are tabulated in Table
7.6. We give a short summary of this experiment.

� Objective: performance of U0.
� Problem: the fluid problem.
� Frequency range: f = 1, 2, . . . 100 Hz and f = 501, 502, . . . 550 Hz.

47

7. Numerical experiments on the car problem

� Method: IDR(s) with s = 4 and s = 8.
� Preconditioner: Pi

f(f0) with f0 = 50 Hz and f0 = 525 Hz.
� Results: Figure 7.9 and Table 7.6.

505 510 515 520 525 530 535 540 545 550
360

380

400

420

440

460

480

500

520

540

frequency

ite
ra

tio
ns

none
constant
linear
spline
lagrange

(a) IDR(4), f = 501, 502, . . . , 550 Hz.

505 510 515 520 525 530 535 540 545 550
240

260

280

300

320

340

360

frequency

ite
ra

tio
ns

none
constant
linear
spline
lagrange

(b) IDR(8), f = 501, 502, . . . , 550 Hz.

Figure 7.9: Number of iterations for the fluid problem with initial search space U0.

Total number of iterations per type of extrapolation

Frequency range Method None Constant Linear Cubic spline Lagrange

f = 1, . . . , 100 Hz
IDR(4) 657 648 646 645 645

IDR(8) 884 894 862 868 895

f = 501, . . . , 550 Hz
IDR(4) 21 768 21 718 21 732 21 708 21 673

IDR(8) 14 689 14 584 14 477 14 386 14 385

Table 7.6: Number of iterations for the fluid problem with initial search space U0.

If we compare the results of this experiment with the experiment where we use extrapolation and
no initial search space, see Table 7.4, we see that cubic spline and Lagrange extrapolation without
the use of U0 have the best performance on f = 1, 2, . . . , 100 Hz. For higher frequencies and hence
more difficult problems, we see that applying U0 does reduce the number of iterations. For IDR(4)
and cubic spline or Lagrange extrapolation, this improvement is negligible, but for other choices
it is significant.

The resulting number of iterations almost coincide for both the ranges f = 1, 2, . . . , 100 Hz and
f = 501, 502, . . . , 550 Hz. This implies that the type of extrapolation is in fact not relevant and
that the extra information we use for the extrapolation is somehow already incorporated in the
initial search space. The small differences in the totals are mainly caused by the differences in
number of iterations for the first s frequencies. We also note that IDR(8) performs worse compared
to IDR(4) for the first 100 frequencies, but that IDR(8) is much better for the much more difficult
problems with frequency range f = 501, 502, . . . , 550 Hz.

48

7. Numerical experiments on the car problem

The results for the structure problem for f = 1, 2, . . . , 100 Hz are given in Figure 7.10 and Table
7.7. We summerise this experiment as

� Objective: performance of U0.
� Problem: the structure problem.
� Frequency range: f = 1, 2, . . . 100 Hz.
� Method: IDR(s) with s = 4 and s = 8.
� Preconditioner: Pi

s(f0) with f0 = 50 Hz.
� Results: Figure 7.10 and Table 7.7.

Total number of iterations per type of extrapolation

Frequency range Method None Constant Linear Cubic spline Lagrange

f = 1, . . . , 100 Hz
IDR(4) 11 045 11 159 11 180 10 969 10 997

IDR(8) 7 806 7 739 7 838 7 753 7 745

Table 7.7: Number of iterations for the structure problem with initial search space U0.

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

frequency

ite
ra

tio
ns

none
constant
linear
spline
lagrange

(a) IDR(4), f = 1, . . . , 100 Hz

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

frequency

ite
ra

tio
ns

none
constant
linear
spline
lagrange

(b) IDR(8), f = 1, . . . , 100 Hz

Figure 7.10: Number of iterations for the structure problem with initial search space U0.

The application of the initial search space U0 has also for the structure problem the effect that the
type of extrapolation becomes irrelevant, since the total numbers of iterations are again practically
the same. If we compare these results to the similar experiment without U0, see Table 7.5, we
conclude that using the initial search space reduces the number of iterations for both IDR(4) and
IDR(8) and hence is the better choice.

Inter- and extrapolation

We have seen that increasing the order of extrapolation implies that the resulting initial guess
becomes better, since less iterations are needed before convergence occurs. However, the results of
extrapolation are often subject to greater uncertainty compared to interpolation. For a motivation
of this statement, we refer to Figure 7.11. Here, we use Lagrange interpolation and extrapolation
with six given points (marked with a ‘+’) to approximate a seventh point (marked with an ‘o’) on

49

7. Numerical experiments on the car problem

a sine function for several step sizes. For a step size equal to 17/50π, the extrapolation happens
to be good, but when we choose a step size 23/50π, the result is very inaccurate. If we compare
extrapolation and interpolation with equal step sizes, we see that the resulting extrapolation points
are all less accurate. Therefore, we should most likely prefer to use interpolation for the initial
guess.

0 1 2 3 4 5 6 7 8 9

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

step = 17/50 π
step = 20/50 π
step = 23/50 π

(a) interpolation

0 1 2 3 4 5 6 7 8 9

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

step = 17/50 π
step = 20/50 π
step = 23/50 π

(b) extrapolation

Figure 7.11: Lagrange inter- and extrapolation on a sine function.

We examine if interpolation does improve the results by combining inter- and extrapolation as
follows: we use extrapolation for all odd frequencies and interpolation for the even frequencies
with f = 1, 2, . . . , 100 Hz. We implement this in such a way, that each set of s odd solutions is
used twice: once for the extrapolation of the next odd frequency and once for the interpolation of
an even frequency, where half of the known frequencies is smaller and the other half larger than
this frequency. The question is: does the reduction in the number of iterations on account of the
interpolation outweigh the expected increase of the number of iterations due to the extrapolation
over larger step sizes?

The answer to this question is determined for the case where we use IDR(4) and as preconditioner
Pi
∗(f0) with f0 = 50 Hz and we do not use an initial search space. As a check, we consider also

the case with linear inter- and extrapolation, which is of course based on 2 solutions only. The
results are given in Figure 7.12 and Table 7.8.

� Objective: performance of inter- and extrapolation.
� Problem: the fluid and the structure problem.
� Frequency range: f = 1, 2, . . . 100 Hz.
� Method: IDR(s) with s = 4.
� Preconditioner: Pi

∗(f0) with f0 = 50 Hz.
� Results: Figure 7.12 and Table 7.8.

We first note that the results with cubic spline inter- and extrapolation are very similar to the
results for the Lagrangian case, especially for the fluid problem, where the numbers of iterations
almost always coincide. We also remark that the resulting curves exhibit a sawtooth-like shape.
For the fluid problem sometimes the extrapolation is better and sometimes the interpolation, while
for the structure problem the interpolated frequencies converge always in less iterations.

50

7. Numerical experiments on the car problem

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

frequency

ite
ra

tio
ns

linear
spline
lagrange

(a) fluid problem

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

frequency

ite
ra

tio
ns

linear
spline
lagrange

(b) structure problem

Figure 7.12: Number of iterations with a combination of inter- and extrapolation.

Total number of iterations

Problem Linear Cubic spline Lagrange

Fluid 661 528 529

Structure 11 827 11 662 11 931

Table 7.8: Number of iterations with a combination of inter- and extrapolation.

If we compare these results with a similar case where we only use extrapolation, see Tables 7.4 and
7.5, it follows that for the fluid problem the reduction of iterations is much better for the case with
only extrapolation. For the structure problem, the results are more or less equal. This means that
there is no significant improvement with the approach of inter- and extrapolation. Apparently,
the extrapolation over a larger interval spoils the small improvement of interpolation to such an
extent, that there is no net improvement.

Intermediate conclusions

We draw the following intermediate conclusions, based on the experiments in this section:

� The fluid problem is much easier to solve than the structure problem. For the fluid problem,
the number of iterations is very small for low frequencies and we are also able to solve the
problem for higher frequencies within an acceptable amount of iterations.

� For higher frequencies, both problems become much more difficult. This is caused by the
fact that for increasing frequencies the system becomes more and more indefinite. The fluid
problem can be solved for all frequencies smaller than 550 Hz, but we are not able to solve
the structure problem within 1000 iterations for frequencies above 150 Hz with a shift f0 for
the preconditioner that is not close to f .

� Using information of previous solutions does reduce the computation time. We can use these
solutions to improve the initial guess (by extrapolation of the solutions) or as a span for an
initial search space U0. The reduction due to extrapolation is smaller than the improvement
that results from the use of the initial search space for the fluid problem with high frequencies

51

7. Numerical experiments on the car problem

and for the structure problem, that is, for the difficult problems. If we use both strategies,
it follows that the type of extrapolation becomes irrelevant (after s iterations) as soon as we
choose this space U0.

� IDR(8) leads to much better results compared to IDR(4) for the higher frequencies. A
question that remains is, if further increasing of s will improve the computational results.
This comes with higher storage requirements, since more vectors (of size n) need to be stored.
However, since the LU factorisation is a much more demanding operation, we do not consider
this to be a problem for s ≤ 32. We will come back to this later.

7.4.2 A modified shifted Laplace preconditioner

Comparison of preconditioners

We have seen that the construction and application of a preconditioner that contains only real
numbers is faster for the fluid problem (see Table 7.2). Therefore, we investigate for the structure
part a modified real shifted Laplace preconditioner, by discarding all the 344 627 complex terms out
of a total of 8 742 240 non-zeros in Ks and the complete damping matrix Ds, which consists only
of 82 non-zeros. The resulting modified shifted Laplace preconditioner consists of real numbers
and is defined as

Pm
s (f0) = Re(Pr

s (f0)) = Re(Ks)− f2
0 · 4π2Ms.

This preconditioner is also proposed by V. Mehrmann and C. Schröder in [14], although we derived
this preconditioner independent from this article. We compare the computation time and numbers
of iteration for all three shifted Laplace preconditioners. We choose IDR(8) and use the earlier
defined initial search space U0 and since the type of extrapolation is not relevant we choose for
the straightforward constant extrapolation, that is, x0 = xf−1, and we consider f = 1, 2, . . . , 100
Hz and set f0 = 50 Hz. The results per frequency are presented in Figure 7.13 and the total time
and total number of iterations is tabulated in Table 7.9.

� Objective: performance of the three shifted Laplace preconditioners.
� Problem: the fluid and the structure problem.
� Frequency range: f = 1, 2, . . . 100 Hz.
� Method: IDR(s) with s = 8, with U0 and x0 = xf−1.
� Preconditioner: Pr

s(f0), Pi
s(f0), Pm

s (f0) with f0 = 50 Hz.
� Results: Figure 7.13 and Table 7.9.

Pr
s (f0) Pi

s(f0) Pm
s (f0)

Time (s) 6 081 7 062 6 002

Iterations 6 643 7 739 9 960

Table 7.9: Computational results for the structure problem with the three preconditioners.

If we compare the numbers of iterations, we see that the modified preconditioner is the most
expensive of the three. However, since the application time of this preconditioner is cheaper, it
outperforms in terms of computation time the other two slightly on the given interval. Note that
the modified preconditioner behaves per iteration very similar to the imaginary shifted precondi-
tioner.

52

7. Numerical experiments on the car problem

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

frequency

ite
ra

tio
ns

Pr

Pi

Pm

(a) iterations

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

frequency

co
m

pu
ta

tio
n

tim
e

Pr

Pi

Pm

(b) computation time (s)

Figure 7.13: Computational results for the structure problem with the three preconditioners.

We would expect that for the real shifted preconditioner Pr
s (f0) the number of iterations for the

frequency f = f0 would reduce to 1, since in this case (Pr
s (f0))−1As(f) = I. However, the number

of iterations is equal to s + 1 = 9. This behaviour occurs in some cases when we use an initial
search space U0, which has dimension s. If we do not use this space, the number of iterations
does equal 1. The need of s + 1 iterations is caused by the fact that after s iterations the first
minimisation step takes place. We can for now easily remedy this shortcoming by not using the
search space for the computation of the solution to f = f0 if we apply Pr

∗(f0), that is, we set
U = ∅ whenever f = f0.

7.4.3 Updating the preconditioner

Since the computation of the LU factors is completed in a relative small amount of time, we are
able to compute a new preconditioner every now and then without effecting the computation time
unacceptably much. We have studied this strategy for the room problem with the conventional
LU factorisation and have concluded that the total number of iterations reduces drastically for
the shifted Laplace preconditioner with real shift, see Appendix B. This is due to the fact that a
real shifted Laplace preconditioner is very efficient in a small range of frequencies, which can be
seen for instance in Figure 7.13 on the interval f ∈ [30, 80]. The preconditioner with real shift
performs the best in this interval, while outside this interval the other two preconditioners need
equal or less computation time.

The question that arises immediately if we want to update the preconditioner is: at what point
should we choose a new preconditioner and what shift f0 should we choose for this new precon-
ditioner? A first answer to this question is based on the ratio between the application time and
the factorisation time of the preconditioner. For the fluid problem, we observe that for the shifted
Laplace preconditioner with a real shift the time to factorise the preconditioner is on average 1.03
seconds, while 100 iterations with this preconditioner are done in approximately 2.73 seconds.
This means that in computation time 38 iterations are comparable to the factorisation of a new
real shifted preconditioner. The shifted Laplace preconditioner with imaginary shift is factorised
in 2.54 seconds while 100 iterations are performed in 7.15 seconds, so 36 iterations are comparable
with the factorisation of this preconditioner.

53

7. Numerical experiments on the car problem

Since the computation time that is needed to construct and factorise the preconditioner is compa-
rable with approximately 40 iterations, it follows that as soon as we need more than 40 iterations
to compute an accurate solution, we should have computed a new preconditioner for that step.
We therefore update the preconditioner in the first experiment as soon as we need more than
40 iterations. This is reasonable because, while the number of iterations per frequency behaves
erratic, it lies within a rather small bandwidth. The value of the shift f0 of the preconditioner is
set equal to the upcoming frequency f , which means that for the next iteration we will need just
1 iteration for the preconditioner with a real shift.

We compare this updating strategy for the shifted Laplace preconditioners Pr
f (f0) and Pi

f(f0)
with the cases where we have set f0 equal to the centre of the interval and we do not update
the preconditioners. We choose again for IDR(8), use the previous solutions for the initial search
space and constant extrapolation. The results are given in Figure 7.14, where an ‘o’ indicates the
moment that we computed a new preconditioner for this frequency.

� Objective: performance of updated shifted Laplace preconditioners.
� Problem: the fluid problem.
� Frequency range: f = 1, 2, . . . 500 Hz.
� Method: IDR(s) with s = 8, with U0 and x0 = xf−1.
� Preconditioner: Pr

s(f0), Pi
s(f0), where f0 is either updated or not.

� Results: Figure 7.14.

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

frequency

ite
ra

tio
ns

Pr, no update

Pr, with update

Pi, no update

Pi, with update

Figure 7.14: Number of iterations for the fluid problem, with/without update of the preconditioner.

For the imaginary shifted preconditioner Pi
f(f0), we see that there is almost no difference in

numbers of iterations whether we update or not and hence it is not profitable to update this
preconditioner. On the other hand, for Pr

f (f0) we see that the total number of iterations is very
small where we update the preconditioner, while the number of iterations becomes very large for
high frequencies that are not close to f0. We also note that even for the frequencies near 500 Hz
the updated real shifted Laplace preconditioner is still applicable to several frequencies before we
compute a new preconditioner.

For the structure problem we do not take the updating of the shifted Laplace preconditioner
with imaginary or modified real shift into consideration, since we do not expect any improve-
ment compared to the unupdated preconditioner. The factorisation time for the shifted Laplace

54

7. Numerical experiments on the car problem

preconditioner with real shift equals 36.4 seconds, while an iteration is done in on average 0.923
seconds and hence the computation of the LU factors is in time also equivalent to approximately
39 iterations. We therefore again update the preconditioner if more than 40 iterations are needed
to compute the solution of a certain frequency. We consider a much smaller frequency interval,
since the number of iterations increases drastically for higher frequencies and convergence does
not occur for frequencies much higher than 100 Hz. We refer to Figure 7.15 for the results for the
frequencies f = 1, 2, . . . , 100 Hz.

� Objective: performance of updated shifted Laplace preconditioners.
� Problem: the structure problem.
� Frequency range: f = 1, 2, . . . 500 Hz.
� Method: IDR(s) with s = 8, with U0 and x0 = xf−1.
� Preconditioner: Pr

s(f0), where f0 is either updated or not.
� Results: Figure 7.15.

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Pr, no update

Pr, with update

Figure 7.15: # iterations for the structure problem, with/without update of the preconditioner.

It follows that also for the structure problem the total number of iterations and the total com-
putation time is much smaller if we apply and update the real shifted preconditioner. Note that
for the fluid problem the first update was at approximately 230 Hz, while we need for the struc-
ture problem 6 updates for the first (and easiest) 100 frequencies. For frequencies above 60 Hz
the preconditioner needs to be updated every 10 or less iterations and we expect that for higher
frequencies we need to update even more frequently.

We compare the computation time for the preconditioner Pr
∗(f0) with and without update, see

Table 7.10. In this table, we include the total time we need for the LU factorisation of the
preconditioners. The reduction in computation time for the real shifted Laplace preconditioner
that results from updating the shift is for both the fluid and the structure problem significant, and
we expect a further improvement if we enlarge the interval and hence compute more frequencies.
We are able to solve the fluid problem 2.7 times faster for the frequency range f = 1, 2, . . . , 500
Hz, while the frequencies f = 1, 2, . . . , 100 Hz of the structure problem are solved 2.3 times faster.

The choice of the update threshold q

In the last set of experiments, we computed a new preconditioner if the number of iterations
passed a threshold of q = 40. This is rather conservative choice and we could choose a smaller

55

7. Numerical experiments on the car problem

Without update With update Improvement

Fluid 858.8 313.6 63.5%

Structure 6 117 2 667 56.4%

Table 7.10: Computation time (s) for Pr
∗(f0) with/without updating the shift.

value for this threshold, since the computation time of the LU factors of the preconditioner is not
relevant to a single frequency only, but also to the length of the frequency range we can apply it
to. Therefore, we repeat the above experiment for Pr

∗(f0) with different values of q for the fluid
and structure problem. The results are given in Figure 7.16, where the moment we update the
preconditioner is marked with a ‘+’.

� Objective: investigation of the update threshold q.
� Problem: the fluid and structure problem.
� Frequency range: f = 1, 2, . . . 500 Hz and f = 1, 2, . . . 100 Hz.
� Method: IDR(s) with s = 8, with U0 and x0 = xf−1.
� Preconditioner: Pr

s(f0) where the shift f0 is updated.
� Results: Figure 7.16.

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

frequency

cu
m

ul
at

iv
e

co
m

pu
ta

tio
n

tim
e

10
15
20
25
30
35
40

(a) fluid problem

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

frequency

cu
m

ul
at

iv
e

co
m

pu
ta

tio
n

tim
e

10
15
20
25
30
35
40

(b) structure problem

Figure 7.16: Cumulative computation time (s) for different updated thresholds q.

We see in Figure 7.16 that for smaller frequencies the number of frequencies to which the pre-
conditioner is applicable is larger than for higher frequencies, which implies that the number of
iterations increases more rapidly for higher frequencies. We therefore expect that upward from a
certain frequency the number of iterations will be larger than q for the frequency f = f0 +1 which
means that we have to compute a new preconditioner every second iteration. This is of course
undesirable, and we should therefore choose q not too small (at least not for high frequencies).

The described behaviour can be seen in Figure 7.16(a) for the choice q = 10. For all frequencies
above 300 Hz, we update the preconditioner every second iteration, which leads to far too many
updates and the corresponding curve is therefore much steeper than the others on the interval
[300, 500] Hz. Since for increasing frequencies the updated preconditioner is applicable to less

56

7. Numerical experiments on the car problem

iterations, we expect that for every threshold we will reach a certain frequency after which this
behaviour occurs. For instance, while the value q = 15 is still the best after 500 frequencies, we
need to update the preconditioner far more often for the frequencies in [300, 500] Hz than in the
case where we choose q = 20 and we indeed see that the curve is steeper around 450 Hz. In Figure
7.16(b) we observe similar properties for the structure problem and while q = 20 is still the best
choice after 100 frequencies, q = 25 or even q = 30 might be the best choice for frequencies up to
150 Hz.

Instead of fixing a threshold before we compute all frequencies, we could base the current choice
of q on the frequency f or the number of frequencies that we are able to compute with a certain
preconditioner. However, it is not clear how to effectively increase the value of q based on this
information, while the expected improvement is very little. Therefore, we are satisfied with a fixed
threshold of q = 15 for frequencies up to, say, 750 Hz for the fluid problem and for the structure
problem we set q = 25 if we would compute all frequencies smaller than 150 Hz.

We conclude that choosing a proper threshold leads to a significant decrease in computation time.
It is however very hard if not impossible to say in advance which choice is the best for a certain
range of frequencies. Compared to the initial choice of q = 40, the reduction in computation time
for the fluid (with q = 15) is 17.9% and for the structure (where we choose q = 20) equals 19.6%.

The choice of the shift parameter c

In the above, we fixed a shift for the preconditioner equal to f0 = f + 1 as soon as the number
of iterations for the frequency f was larger than the threshold. In order to make optimal use of
the valley shape (which we observe for instance in Figure 7.13 around 50 Hz) we should probably
choose f0 a bit larger. In this experiment, we base our choice of f0 on the number of frequencies

that a shift is applied too, that is, we redefine f0 as f
(new)
0 = f + c · (f − f (old)

0) with c ∈ (0, 1].
We fix for the fluid problem a threshold q = 15 and set as initial shift f0 = 100 Hz and for the
structure problem we choose q = 20 and f0 = 20 Hz, and we repeat the above experiment for
values of c equal to 0.4, 0.5, . . . , 1.0. Some results concerning computation time are displayed in
Figure 7.17. Note that the default choice uses the above initial values for f0 instead of f0 = 1 and
hence there is already some improvement compared to the results displayed in Figure 7.16.

� Objective: investigation of the shift parameter c.
� Problem: the fluid and structure problem.
� Frequency range: f = 1, 2, . . . 500 Hz and f = 1, 2, . . . 100 Hz.
� Method: IDR(s) with s = 8, with U0 and x0 = xf−1.
� Preconditioner: Pr

s(f0) where the shift f0 is updated.
� Results: Figure 7.16.

We see that for both the fluid and the structure problem, the best choice appears to be c = 0.5.
In this case, the reduction in total computation time (which is 208.4 seconds) is approximately
7.5% for the fluid and (with 2 097 seconds) equal to 11.3% for the structure problem.

Intermediate conclusions

Although the LU factorisation of the preconditioner is a demanding operation in terms of memory,
it can be performed in a relatively short time (it equals in terms of computation time approximately
40 iterations). Therefore, the updating of the shifted Laplace preconditioners is a serious option.
We draw the following conclusions concerning this updating:

57

7. Numerical experiments on the car problem

100 200 300 400 500
0

50

100

150

200

250

frequency

cu
m

ul
at

iv
e

co
m

pu
ta

tio
n

tim
e

1.0
0.9
0.8
0.7
0.6
0.5
0.4
Default

(a) fluid problem

20 40 60 80 100
0

500

1000

1500

2000

2500

frequency

cu
m

ul
at

iv
e

co
m

pu
ta

tio
n

tim
e

1.0
0.9
0.8
0.7
0.6
0.5
0.4
Default

(b) structure problem

Figure 7.17: Cumulative computation time (s) for different choices of shift parameter c.

� Since the real shifted Laplace preconditioner Pr
∗(f0) behaves very well on a small interval

around f0 and much worse outside this interval, updating this preconditioner more than
halves the computation time. Updating the imaginary shifted Laplace preconditioner Pi

∗(f0)
does not improve the computation time and the precise shift of this preconditioner is of minor
importance for the number of iterations for a given frequency. For the modified real shifted
preconditioner Pm

s (f0), it is not clear whether a valley is present around f0 or not (see Figure
7.13(a)) and we have left this out of consideration for now.

� There is a lot of freedom in the choice of the moment that we update and in the choice of the
shift f0. The best results are obtained if we choose to update the preconditioner as soon as
we need more than 15 iterations (for the fluid problem with frequencies f = 1, 2, . . . , 500 Hz)
or 20 iterations (for the structure problem with frequencies f = 1, 2, . . . , 100 Hz) and set f0

to be the computed frequency f
(old)
0 plus half the number of frequencies f > f

(old)
0 that we

can apply the preconditioner with shift f
(old)
0 to. The total reduction of computation time,

compared to the standard choice (updating after 40 iterations and a shift equal to the next
frequency) is for the fluid problem equal to 33.6 % and for the structure problem 21.4 %.

7.4.4 Other Krylov subspace methods

We consider IDR(s) with s = 8, 16, 32 and compare it to CGS, BiCGSTAB and GMRES. For the
fluid experiment, we consider the real and imaginary shifted preconditioners Pr

f (250) and Pi
f(250)

and Pr
f (f0) where we update f0. For this last preconditioner, we choose as initial shift f0 = 1 Hz

and if we need more than q = 15 (for the fluid) and q = 20 (for the structure) MATVECS, we

set f
(new)
0 = f + c · (f − f (old)

0), with c = 0.5. We apply these preconditioners to all frequencies
f = 1, 2, . . . , 500 Hz. We use for IDR(s) the standard initial search space U0 and use for all
methods Lagrange extrapolation of s (for IDR(s) only) or 10 previous solutions. We have seen
that for IDR(s) without an initial search space, this was the best choice and we expect similar
results for other Krylov subspace methods. The number of MATVECS and computation time are
per frequency displayed in Figure 7.18 and the totals are given in Table 7.11.

� Objective: performance of the preconditioners for several Krylov subspace methods.

58

7. Numerical experiments on the car problem

� Problem: the fluid problem.
� Frequency range: f = 1, 2, . . . 500 Hz.
� Method: IDR(s) with s = 8, 16, 32, CGS, BiCGSTAB and GMRES.
� Preconditioner: P∗f (f0) with a fixed frequency f0 = 250 Hz and Pr

f (f0) with initial shift
f0 = 1 Hz and updates f0 := f + 0.5 · (f − f0) if # MATVECS > 15 for f − 1.

� Results: Figure 7.18 and Table 7.11.

Prec. IDR(8) IDR(16) IDR(32) CGS BiCGSTAB GMRES

Time (s)

Pi
f(250) 2 216 2 071 3 219 7 818 16 990 3 206

Pr
f (250) 845 778 1 196 15 721 10 689 1 115

Pr
f (f0) 227 315 770 267 323 521

MATVECS

Pi
f(250) 29 591 26 177 37 941 106 840 227 369 28 040

Pr
f (250) 30 884 26 691 36 790 452 808 387 999 21 477

Pr
f (f0) 7 070 8 597 15 969 8 760 10 556 6 517

Table 7.11: Performance of different algorithms on the fluid problem.

We do the above experiment for the structure problem also , but consider for this case also the
preconditioner Pm

s (f0), without update. We set f0 = 50 as shift for the preconditioners that we
do not update. The number of MATVECS and computation time are given in Figure 7.19 and
Table 7.12.

� Objective: performance of the preconditioners for several Krylov subspace methods.
� Problem: the structure problem.
� Frequency range: f = 1, 2, . . . 500 Hz.
� Method: IDR(s) with s = 8, 16, 32, CGS, BiCGSTAB and GMRES.
� Preconditioner: P∗s(f0) with a fixed frequency f0 = 50 Hz and Pr

s(f0) with initial shift
f0 = 1 Hz and updates f0 := f + 0.5 · (f − f0) if # MATVECS > 20 for f − 1.

� Results: Figure 7.18 and Table 7.11.

The relation between computation time and the number of MATVECS is almost linear for most
methods, since the multiplications with the (preconditioned) system matrix, the MATVECS, are
by far the most expensive operations. We see that this linearity property does not hold for GM-
RES and since this method uses long recurrences, this is no surprise.

The results of both the fluid and the structure problem need to be placed in the right perspective,
since the proper accuracy is not obtained in some cases. We focus on the cases where we used a
shifted Laplace preconditioner with a single fixed frequency first.

For the IDR(s) algorithms with s = 16 or s = 32, stagnation occurs for many frequencies. For
IDR(16), the residual norms are in the worst case (that is, for high frequencies) still smaller than
10−5, but for IDR(32) the results for all frequencies above 40 Hz for both problems are larger than
10−5 and for frequencies above 60 Hz so large that the solutions are too inaccurate and hence
irrelevant. This inaccuracy and stagnation is presumably caused by the fact that the matrix M,
which contains the values pk · gj (see Algorithm 4), is ill-conditioned, which follows from the fact
that for IDR(32) the estimated condition number in the 1-norm of this matrix, which is obtained
by the LAPACK estimator, is larger than 1016 for all frequencies above 40 Hz.

59

7. Numerical experiments on the car problem

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

frequency

M

A
T

V
E

C
S

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(a) Pi
f(250), number of MATVECS

50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

20

frequency

tim
e

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(b) Pi
f(250), computation time (s)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

frequency

M

A
T

V
E

C
S

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(c) Pr
f (250), number of MATVECS

50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

20

frequency

tim
e

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(d) Pr
f (250), computation time (s)

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

frequency

M

A
T

V
E

C
S

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(e) Pr
f (f0), number of MATVECS

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

frequency

tim
e

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(f) Pr
f (f0), computation time(s)

Figure 7.18: Performance of different algorithms on the fluid problem.

60

7. Numerical experiments on the car problem

Prec. IDR(8) IDR(16) IDR(32) CGS BiCGSTAB GMRES

Time (s)

Pi
s(50) 7 061 7 063 10 567 32 642 83 252 7 963

Pr
s (50) 6 058 6 146 9 573 47 363 110 661 6 283

Pm
s (50) 4 871 5 275 7 884 45 088 78 987 5 554

Pr
s (f0) 1 903 2 589 10 002 1 933 1 937 2 379

MATVECS

Pi
s(50) 7745 7198 9 854 24 546 90 407 5 360

Pr
s (50) 6 648 6 382 8 960 32 536 10 6181 4 312

Pm
s (50) 8 219 8 190 10 500 51 530 114 537 4 883

Pr
s (f0) 1 616 1 740 8 018 1 544 1 559 1 289

Table 7.12: Performance of different algorithms on the structure problem.

The behaviour of CGS and BiCGSTAB are comparable for the fluid problem. The number of
MATVECS increases drastically for frequencies above 300 Hz and for almost all of the higher fre-
quencies the algorithm breaks down (one of the parameters becomes zero), stagnates or reaches the
maximum of 1000 iterations, but in all cases the residual norm is still smaller than 10−5 and hence
the solution is still rather accurate. For the structure problem, CGS breaks down for frequencies
above 80 Hz (for Pi

s(50)) or above 65 Hz (for Pr
s (50) and Pm

s (50)), but in these cases the residual
norm is smaller than 10−5. BiCGSTAB needs more than 1000 iterations for the frequencies above
80 Hz, and for these frequencies the residual norm increases to values close to 106 and this means
that BiCGSTAB is not an accurate method for the structure problem.

The algorithms IDR(8) and GMRES determine for any preconditioner for both problems the so-
lution to all frequencies to a proper accuracy. In terms of computation time is IDR(16) the best
choice.

If we consider the real shifted preconditioner Pr
∗(f0) where we use the described updating strategy,

all the algorithms (except IDR(32)) behave very well. IDR(16) still stagnates, but the residuals
are smaller than 10−6 for all frequencies. While for a single preconditioner CGS and BiCGSTAB
behave much worse than IDR(s) and GMRES, they are comparable to these methods when we
consider the updated Pr

∗(f0). This means that CGS and BiCGSTAB improve greatly and this
improvement can be explained by the relative elongated valley that can be seen in Figures 7.18(c)
and 7.19(c). At the right of the shift f0, the number of MATVECS is very small and with the
updating strategy we exploit this property.

With the updating strategy of the real shifted preconditioner, IDR(8), CGS and BiCGSTAB are
comparable both in computation time and number of MATVECS for the fluid and for the struc-
ture problem, see Tables 7.11 and 7.12.

The valley for IDR(s) around f = f0 is very steep (see for instance Figure 7.18(e)), that is, there
is just a small peak to 1 iteration, and for all other frequencies we always need s + 1 iterations.
This means that the initial search space U0 again causes the algorithm to take s + 1 iterations
while it needs maybe less iterations to obtain the proper accuracy. For small values of s this is
no problem, but this might corrupt the performance of for instance IDR(16). Since in this case
an initial guess based on Lagrange extrapolation of previous solutions is the best alternative we
perform the above experiments for the fluid and structure problem without U0 and Lagrange ex-
trapolation. The results are displayed in Figure 7.20 and Table 7.13.

61

7. Numerical experiments on the car problem

Fluid Structure

IDR(8) IDR(16) IDR(8) IDR(16)

Time (s) 180 217 1 691 1 810

MATVECS 5 433 6 191 1 460 1 473

Table 7.13: Performance of IDR(s) with Pr
∗(f0) and without U0.

Without initial search space, the computation time and number of MATVECS is smaller com-
pared to the same experiment with initial space. As we expect, the relative reduction for IDR(16)
(which is 39% for the fluid problem) is higher compared to the reduction for IDR(8) (with 23%
for the fluid problem) and since we update the preconditioner for the fluid problem much more
often for high frequencies, the relative improvement for the fluid problem is also higher than for
the structure problem (which equals 10% for IDR(16)). This means that with this strategy, which
is in fact the same strategy we used for all other algorithms, IDR(8) and IDR(16) outperform
CGS and BiCGSTAB slightly. Although the space U0 reduces the total number iterations if we

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

frequency

M

A
T

V
E

C
S

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(a) Pi
s(50), number of MATVECS

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

frequency

tim
e

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(b) Pi
s(50), computation time (s)

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

frequency

M

A
T

V
E

C
S

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(c) Pr
s (50), number of MATVECS

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

frequency

tim
e

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(d) Pr
s (50), computation time (s)

62

7. Numerical experiments on the car problem

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

frequency

M

A
T

V
E

C
S

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(e) Pm
s (50), number of MATVECS

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

frequency

tim
e

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(f) Pm
s (50), computation time (s)

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

frequency

M

A
T

V
E

C
S

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(g) Pr
s (f0), number of MATVECS

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

frequency

tim
e

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(h) Pr
s (f0), computation time (s)

Figure 7.19: Performance of different algorithms on the structure problem.

use a single preconditioner for a whole range of frequencies, it turns out that the performance of
IDR(s) is better if we use no initial search space at all if we update our preconditioner. IDR(8)
needs the least amount of computation time and hence is the best method for both the fluid and
the structure problem.

We remark that CGS and BiCGSTAB have a small disadvantage compared to IDR(s): the con-
vergence behaviour is more irregular and the ‘walls of the valley’ are very steep. This implies that
these methods are very sensitive to the moment we compute a new preconditioner (based on q)
and to the shift of this preconditioner (based on c). If we for instance take as shift a too high
value, the number of iterations for the first few frequencies largely exceeds the threshold q. This
can be seen for instance for BiCGSTAB in Figure 7.19(g). For f = 42 Hz we pass the threshold
q = 20 and we therefore choose as new preconditioner Pr

s (47), after which we need 38 MATVECS
for f = 43 Hz. For IDR(s) the numbers of iterations of subsequent frequencies are much more
close together.

63

7. Numerical experiments on the car problem

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

frequency

M

A
T

V
E

C
S

IDR(8)
IDR(16)

(a) fluid problem

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

frequency

M

A
T

V
E

C
S

IDR(8)
IDR(16)

(b) structure problem

Figure 7.20: Performance of IDR(s) with Pr
∗(f0) and without U0.

7.4.5 Conclusions

In this section, we investigated ways to improve the computation time for the fluid problem
(7.4) and structure problem (7.5). We were able to solve the fluid problem for the frequencies
f = 1, 2, . . . , 500 Hz and for the structure problem for the frequencies f = 1, 2, . . . , 100 Hz. The
main conclusions based on the above experiments are given below.

� The different preconditioners Pi
∗(f0), Pr

∗(f0) and Pm
∗ (f0) with a fixed shift f0 equal to the

centre of the interval, convert the system matrices so that the problems can be solved for a
set of (relatively small) frequencies to a proper accuracy and within 1000 iterations.

� The solution to earlier obtained frequencies can be used effectively to reduce the computation
time and number of iterations if we solve a sequence of problems. We can use the s nearest
solution vectors by extrapolation them to improve the initial guess and as span for the
initial search space U0. Both strategies (and their combination) reduce the total number of
iterations that are needed for convergence for a sequence of systems.

� We exploit the fact that the real shifted Laplace preconditioner behaves very well around
its shift f0, by changing the shift of this preconditioner as soon as the number of iterations
becomes too large. To make optimal use of this valley shape, we fix a shift f0 a few iterations
to the right. This approach leads to a serious reduction in computation time.

� In comparison to other well-known Krylov subspace methods, IDR(s) performs very well.
We remark that the value of s should not be too small since then the number of iterations
increases too much for high frequencies, while for large s, the method is unstable for both
problems. We have seen that spanning an initial search space with previous solutions is not
efficient if we use an updated real shifted Laplace preconditioner.

7.5 The complete car problem

We consider in this section the complete problem (7.3) and apply some of the most promising
strategies that we developed in the last section to this problem. Since the structure part is the
dominating and hardest part of the problem, we expect similar computational results for the

64

7. Numerical experiments on the car problem

complete problem. Before we investigate the strategies, we study the accuracy of the solution to
the problem.

7.5.1 Simultaneous computation of the structure and fluid problem

If we combine the structure and the fluid problem (and include the interaction term), the resulting
(preconditioned) system matrix is badly scaled, as follows from the fact that the LAPACK esti-
mated condition number in the 1-norm is larger than 1016. This bad scaling property might lead
to very inaccurate results for either the structure part or the fluid part of the solution, while the
combined solution does satisfy the desired tolerance of 10−8. We therefore compare the accuracy
of the case where the fluid problem (7.4) and structure problem (7.5) are solved separately with
the solution that we obtain by the simultaneous computation of the structure and fluid part, that
is, by solving (

As(f) 0
0 Af(f)

)(
xs

xf

)
= Asf(f)

(
xs

xf

)
=

(
bs

bf

)
. (7.8)

Scaling of the preconditioned system matrix

We consider as a test the frequencies f = 10 Hz and f = 100 Hz for the structure and the fluid
problem. The corresponding norms of the solutions that we obtain by IDR(8) with tol = 10−8

are tabulated in Table 7.14. It follows that in both norms the solution to the structure problem
is greater than the norms of the solution to the fluid problem. This suggests that the structure
problem dominates the fluid problem and that if we solve (7.8), the fluid part might be inaccurate.
Since the fluid problem needs far less iterations compared to the structure problem, we expect
that inaccurate result will not occur.

Frequency 1-norm ∞-norm

xs
f = 10 Hz 13.5 4.96 · 10−3

f = 100 Hz 25.8 0.284

xf
f = 10 Hz 1.94 · 10−10 1.22 · 10−14

f = 100 Hz 8.79 · 10−12 9.67 · 10−15

Table 7.14: Norms of individually computed solutions.

We investigate the accuracy of the solution to (7.8) and the solution to two modified versions of
the problem where we use constant or diagonal scaling of the system matrix Asf(f), by comparing
them to the separately obtained solutions. The application of the constant scaling includes the
system matrix

Ãsf(f) =

(
As(f) 0

0 σ ·Af(f)

)
,

with σ a scaling factor. The solution to the problem with the above system matrix x̃sf must be
scaled back to obtain the desired solution:(

xs

xf

)
=

(
x̃s

σ · x̃f

)
.

Since the stiffness matrix K has the largest values (even for large values of f), we consider the
scaling factor σ = ‖Ks‖1/‖Kf‖1 = 5.5673 · 10−9.

65

7. Numerical experiments on the car problem

For diagonal scaling, we divide each entry on a column of the system matrix with the corresponding
element on the diagonal. That is, we scale the system matrix by right multiplication of the system
matrix with its inverse diagonal elements and hence we consider the modified system matrix

Âsf(f) = Asf(f)DA(f)−1,

where DA(f) is a diagonal matrix with its non-zero entries equal to the diagonal entries of Asf(f).
Again, the unscaled solution x̂sf is scaled back by xsf = [DA(f)]−1x̂sf . Note that the scaling of
the system matrix is in fact a type of preconditioning and in this case we have that PR = DA(f)
in (4.10).

The condition numbers of the scaled system matrices are approximately 1012 and although this is
very high (the reciprocal of this condition number is only 104 times the machine precision), it is a
significant improvement compared to unscaled system matrix. Since the solutions to the problems
with matrices Asf(f), Ãsf(f) and Âsf(f) (f = 10 Hz and f = 100 Hz) coincide with the case
where we compute the structure and fluid solution separately for at least 6 decimal places, both
types of scaling do not influence the accuracy and this suggest that the solutions to the unscaled
problem are accurate too. Therefore, we do not use any type of scaling (which would in fact be
less trivial for the system matrix where we include the damping term).

Including the damping term

The interaction term Dsf changes the solution drastically (as we see by comparing the results in
the Tables 7.15 and 7.14) and hence it is not usefull to use the separately obtained solutions to
the fluid and structure parts for instance as initial guess for the complete problem.

Frequency 1-norm ∞-norm

Structure
f = 10 Hz 7.81 · 10−6 5.68 · 10−10

f = 100 Hz 6.71 · 10−7 6.96 · 10−10

Fluid
f = 10 Hz 44.6 6.75 · 10−3

f = 100 Hz 6.71 4.16 · 10−2

Table 7.15: Norms of the fluid part and the structure part of the complete solution.

7.5.2 Fixed shifted Laplace preconditioners

We consider for IDR(s) with s = 4, 8, 16 the three shifted Laplace preconditioners Pi(f0), Pr(f0)
and Pm(f0) with a fixed shift frequency f0 = 50. We compare the results for two cases. The
first case is with the span of the s previous solutions as initial search space U0 combined with the
initial guess equal to the solution of the previous frequency, while in the second case we do not
use an initial space U0 and we base the initial guess on the Lagrange extrapolation of the previous
s solutions. We consider all frequencies f = 1, 2, . . . , 100 Hz and display the numbers of iterations
per frequency in Figure 7.21(a)-(c) and the total computation time and number of iterations in
Table 7.16.

� Objective: performance of U0.
� Problem: the car problem.
� Frequency range: f = 1, 2, . . . 100 Hz.

66

7. Numerical experiments on the car problem

� Method: IDR(s) with s = 4, 8, 16, Lagrangian extrapolation of xf−i (i = 1, 2, . . . , s).
� Preconditioner: Pr(f0), Pi(f0) and Pm(f0) with f0 = 50.
� Results: Figure 7.21 and Table 7.16.

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

frequency

ite
ra

tio
ns

Pi, with U

Pi, Lagrange

Pr, with U

Pr, Lagrange

Pm, with U

Pm, Lagrange

(a) IDR(4)

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

frequency

ite
ra

tio
ns

Pi, with U

Pi, Lagrange

Pr, with U

Pr, Lagrange

Pm, with U

Pm, Lagrange

(b) IDR(8)

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

frequency

ite
ra

tio
ns

Pi, with U

Pi, Lagrange

Pr, with U

Pr, Lagrange

Pm, with U

Pm, Lagrange

(c) IDR(16)

10 20 30 40 50 60 70 80 90 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

frequency

re
la

tiv
e

re
si

du
al

Pi

Pr

Pm

(d) residual norms of IDR(16)

Figure 7.21: Number of iterations and residual norms for the car problem with/without U0.

For most of the higher frequencies and some smaller frequencies, the desired accuracy is not ob-
tained, but for IDR(4) and IDR(8) the true residual norm is still smaller than 10−5. For IDR(16),
a satisfactory residual norm is obtained for less than half of the frequencies, which can be seen
in Figure 7.21(d), where we display per frequency the norm of the residual that we obtain with
IDR(16). Apparently, some frequencies are much more difficult than others and the difference
in residual norms can be very large for frequencies close to each other (consider for instance
f = 22, . . . , 25 Hz). We also note that there is some resemblance in the curves that correspond
to the preconditioners Pi and Pm. The bad convergence is again caused by stagnation of IDR(s)
due to the fact that the matrix M is ill-conditioned.

In terms of computation time and number of iterations, we see from Table 7.16 that IDR(8) and
IDR(16) are comparable and always outperform IDR(4). Since IDR(16) does not lead to satisfac-
tory results, it follows that IDR(8) is the best choice for all cases. The difference in computation

67

7. Numerical experiments on the car problem

with U0, constant extrapolation no U0, Lagrange extrapolation

Prec. IDR(4) IDR(8) IDR(16) IDR(4) IDR(8) IDR(16)

Pi(50) 21 573 16 577 16 477 21 304 16 958 16 108

Time (s) Pr(50) 19 930 13 845 13 369 20 111 14 354 13 794

Pm(50) 8 488 6 399 6 948 8 532 6 385 6 266

Pi(50) 12 665 9 725 9 373 12 513 9 955 9 140

Iterations Pr(50) 11 713 8 062 7 567 11 809 8 427 7 824

Pm(50) 13 848 9 946 9 929 13 408 9 864 8 887

Table 7.16: Computational results for the car problem with/without U0.

time in on the one hand IDR(4) and on the other hand IDR(8) and IDR(16) is mainly caused by
the much less iterations that are needed in the last case for high frequencies, which can be seen
from Figure 7.21(a)-(c).

It does not make a significant difference whether we use the initial search space U0 or not. The
total number of iterations is for all three preconditioners almost the same, as we see in Table
7.16. The corresponding curves in Figure 7.21(a) almost coincide for all preconditioners and in
7.21(b)-(c) we see that using the space U0 leads to less iterations for 71, . . . , 100 Hz and more
iterations for the frequencies s+ 1, . . . , 70 Hz. It is remarkable that at the moment that we apply
the initial search space, that is, at f = s+1, a significant increase in the number of iterations occurs.

Although the number of iterations is much higher for the modified real shifted Laplace precon-
ditioner, this preconditioner outperforms the others, since the factorisation is 9 times less time
consuming while the application time is reduced by a factor of 2,5. Therefore, the modified pre-
conditioner Pm(f0) is in terms of computation time the best preconditioner.

7.5.3 Updating the preconditioners

While the preconditioners Pm(f0) and Pi(f0) show some similarity in the number of iterations
per frequency, a small valley is apparent near 50 Hz for Pm(f0), as we see in Figure 7.21(a)-(c).
Therefore, we take also the updating of the modified real shifted Laplace preconditioner Pm(f0)
into consideration. We study the methods IDR(8), IDR(16), CGS, BICGSTAB and GMRES and
consider the preconditioners Pr(f0) and Pm(f0).

The time that is needed for the factorisation of Pr(f0) is approximately 146.9 seconds, and since
one iteration of IDR(s) takes more or less 1.76 seconds, 83 iterations are comparable to the factori-
sation. We performed some experiments in order to choose proper values for the threshold q and
update parameter c and it turns out that these values should be chosen equivalent to the structure
problem, that is, a threshold of q = 45 ≈ 0.55 · 83 leads to the best results for all algorithms. We
set as update parameter c = 0.5 for all algorithms but GMRES, since for this algorithm c = 0.3
leads to much better results.

The decomposition of Pm(f0) takes only 16.1 seconds and a single iteration of IDR(s) is done in
0.705 seconds, which implies that 23 iterations are in computation time equal to the factorisation
of the preconditioner. The conventional choice of the threshold would again be somewhere around
0.5 or 0.6 times 23, but this is not a proper choice if we use the modified preconditioner since

68

7. Numerical experiments on the car problem

the system matrix of the preconditioned system does not reduce to an (approximation of) the
identity matrix for f = f0 and the minimum number of iterations equals approximately 40. If
we want to apply the strategy similar to the case with the real shifted preconditioner, we need to
choose q much larger. Experiments show that a choice of q = 70 is the best. For this value the
preconditioner is still applicable to several frequencies, also for frequencies close to 100 Hz. The
values of c are the same, that is, for IDR(s), CGS and BiCGSTAB c = 0.5, and for GMRES c = 0.3.

We use the above algorithms and settings, and use Lagrangian extrapolation of previous solutions
for the initial guess to solve the preconditioned car problem with preconditioners Pr(f0) and
Pm(f0). The results are displayed in Figure 7.17 and Table 7.22. An ‘o’ again indicates the
moment where f0 is updated and hence a new factorisation is performed.

� Objective: performance of the preconditioners for several Krylov subspace methods.
� Problem: the car problem.
� Frequency range: f = 1, 2, . . . 100 Hz.
� Method: IDR(s) with s = 8, 16, CGS, BiCGSTAB and GMRES.
� Preconditioner: Pr(f0) and Pm(f0) with initial shift f0 = 1 and updates f0 := f+c ·(f−f0)

if # MATVECS > q for f − 1.
� Results: Figure 7.22 and Table 7.17.

Prec. IDR(8) IDR(16) CGS BiCGSTAB GMRES

Time (s)
Pr(f0) 5 978 5 674 8 751 7 840 6 693

Pm(f0) 3 686 3 806 7 396 7 289 4 344

MATVECS
Pr(f0) 2 857 2 876 3 350 3 251 2 823

Pm(f0) 5 816 5 731 9 142 9 283 3 820

updates
Pr(f0) 6 5 12 10 3

Pm(f0) 5 4 17 16 2

Table 7.17: Performance of different methods on the complete car problem.

Concerning the accuracy we can say that CGS and GMRES obtain a solution that corresponds
to a residual norm smaller than tol. For BiCGSTAB, breakdown occurs for some frequencies and
IDR(s) stagnates also for a few frequencies, but in these cases the residual norm is still smaller
than 10−6. For these frequencies, the system is most likely close to singular.

The moments that we update the shift of the preconditioners f0 and hence compute new LU fac-
tors, indicated by an ‘o’ in Figure 7.22, are almost always at the right frequencies: they are very
close to a peak in the number of MATVECS. We also note that for both CGS and BiCGSTAB,
of which the results have some similarity, we update more often than for IDR(s) and GMRES.
The peaks close to the frequencies where we update are also much higher. This is not caused
by improper values for q and c (which we investigated), but these peaks are inherent to these
methods: for two subsequent frequencies, the number of MATVECS for convergence can be very
distant from each other. The combination of many updates and high peaks in the number of
MATVECS results in a relatively bad performance of both CGS and BiCGSTAB.

GMRES is the best method if we would compute frequencies smaller than 50 Hz. Since for higher
frequencies the number of iterations that GMRES needs for convergence increases and GMRES
uses long recurrences, it becomes much worse for these frequencies and it is outperformed by

69

7. Numerical experiments on the car problem

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

frequency

M

A
T

V
E

C
S

IDR(8)
IDR(16)
CGS
BiCGSTAB
GMRES

(a) Pr(f0)

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

frequency

M

A
T

V
E

C
S

IDR(8) no U
IDR(16) no U
CGS
BiCGSTAB
GMRES

(b) Pm(f0)

Figure 7.22: Performance of different methods on the complete car problem.

IDR(s).

It follows from Figure 7.22 that the modified shifted Laplace preconditioner Pm(f0) does cause
a valley shape in the number of MATVECS around f = f0 and although much higher numbers
of MATVECS are needed for convergence, it outperforms the real shifted Laplace preconditioner
Pr(f0) for all methods in terms of computation time.

7.5.4 Solution to the large car problem

In addition to the car model with n = 192 184 unknowns, a model with a structure part of
ns = 478 788 unknowns and hence a total of n = 495 151 unknowns is available. With the
techniques we have developed in the above sections, we are able to solve this much larger problem.
Similar to the experiment of section 7.5.3, we consider IDR(8), CGS, BiCGSTAB and GMRES.
We do not take IDR(16) into consideration, since stagnation occurs and the residual norms are
too large for almost all frequencies. As preconditioner, we choose the modified shifted Laplace
preconditioner Pm(f0) and we update the shift f0 if we pass a threshold of q = 90 to the new

shift f
(new)
0 = f + c · (f − f (old)

0) with c = 0.5, except for GMRES where we again choose c = 0.3.
The number of MATVECS per iteration is displayed in Figure 7.23 and the totals of computation
time and numbers of MATVECS are tabulated in Table 7.18.

� Objective: performance of the preconditioners for several Krylov subspace methods.
� Problem: the large car problem.
� Frequency range: f = 1, 2, . . . 100 Hz.
� Method: IDR(8), CGS, BiCGSTAB and GMRES.
� Preconditioner: Pm(f0) with initial shift f0 = 1 and updates f0 := f + c · (f − f0) if

MATVECS > 90 for f − 1.
� Results: Figure 7.23 and Table 7.18.

The solutions to this car problem are less accurate then the solutions to the equivalent but smaller
problem. With GMRES, the residual norms are always smaller than 10−7, while for CGS these
norms are not larger than 10−6. The residual norms that result from using IDR(8) or BiCGSTAB

70

7. Numerical experiments on the car problem

IDR(8) CGS BiCGSTAB GMRES

Time (s) 8 220 15 063 16 194 13 584

MATVECS 6 427 9 674 11 029 4 824

updates 4 23 23 2

Table 7.18: Performance of different methods on the large car problem.

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

frequency

M

A
T

V
E

C
S

IDR(8)
CGS
BiCGSTAB
GMRES

Figure 7.23: Performance of different methods on the large car problem.

are in the worst case close to 10−5.

The computation time increases significantly, while the increase in the number of MATVECS is
relatively small. We observe for the larger car problem very similar behaviour of all methods to
the smaller problem. The curves of CGS and BiCGSTAB in Figure 7.23 are close together and
extreme jumps in the number of MATVECS above 50 Hz are also present. In addition, these
methods need far more updates than IDR(8) and GMRES, which behave much more stable. In
terms of computation time is IDR(8) the best method, but due to its lack of accuracy for higher
frequencies, GMRES is probably a better candidate, although it needs almost twice as much
computation time.

7.5.5 Conclusions

We applied in this section the techniques that we developed for the fluid and structure problem
to the complete car problem (7.3). We mainly focused on the problem with ns = 175 821 and
n = 192 184, but we were also able to solve the much larger car problem with a total of n = 495 151.
Based on the experiments, we draw the conclusions:

� The car problem is dominated by the structure problem, which is much larger than the fluid.
The structure problem needs always more iterations than the fluid problem and the separate
fluid and structure part solutions to the complete car problem are therefore accurate.

� The smaller car problem is only slightly larger than the structure problem, but much harder
to solve. The car problem needs (with the same preconditioner) approximately 3 times more
MATVECS compared to the structure problem and only GMRES is able to obtain a relative
residual with a norm smaller than 10−8.

71

7. Numerical experiments on the car problem

� Updating the shifted Laplace preconditioners Pr(f0) and Pm(f0) is again the best way to
solve this problem. The threshold q and shift parameter c that have the best performance
for the car problem are equivalent with the best choices for the structure problem, except
for GMRES where the shift for the new preconditioner needs to be much smaller.

� Although updating the real shifted preconditioner Pr(f0) reduces the number of iterations
to much lower values compare to the updated modified preconditioner Pm(f0) , this latter
preconditioner outperforms the real shifted version, especially for IDR(8) and GMRES.

7.6 Using eigenvalue information for reduction

Instead of using solution vectors, we could use spectral information of the system matrix. The
computation of the Ritz values, that are obtained by the relation (6.11) in IDR(s), does not
influence the convergence behaviour and the increase in the computation time is negligible, since
the number of iterations is much smaller than the size of the system matrices. We use for the
solution to a frequency f the Ritz values of the system matrix of f − 1.

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

2.5

f = 55 Hz
f = 65 Hz
f = 75 Hz
f = 85 Hz
f = 95 Hz
f = 105 Hz
f = 115 Hz
f = 125 Hz
f = 135 Hz
f = 145 Hz

(a) Pi
f(f0), f0 = 100

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f = 355 Hz
f = 365 Hz
f = 375 Hz
f = 385 Hz
f = 395 Hz
f = 405 Hz
f = 415 Hz
f = 425 Hz
f = 435 Hz
f = 445 Hz

(b) Pi
f(f0), f0 = 400

−2 −1 0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

f = 55 Hz
f = 65 Hz
f = 75 Hz
f = 85 Hz
f = 95 Hz
f = 105 Hz
f = 115 Hz
f = 125 Hz
f = 135 Hz
f = 145 Hz

(c) Pr
f (f0), f0 = 100

−30 −20 −10 0 10 20 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

f = 355 Hz
f = 365 Hz
f = 375 Hz
f = 385 Hz
f = 395 Hz
f = 405 Hz
f = 415 Hz
f = 425 Hz
f = 435 Hz
f = 445 Hz

(d) Pr
f (f0), f0 = 400

Figure 7.24: Ritz values and their minimal enclosing ellipses for the fluid problem.

72

7. Numerical experiments on the car problem

We could directly use the reciprocals of the Ritz values for ωj , as was done in for instance [22],
but we choose to consider the reciprocals of ψ Chebyshev nodes that follow from the Chebyshev
polynomial on the ellipse of minimal area that encloses all the Ritz values.

In Figure 7.24, the minimal enclosing ellipses that correspond to the Ritz values for the pre-
conditioned fluid problem are displayed. As preconditioners we choose Pi

f(f0) and Pr
f (f0) with

f0 = 100, 400 Hz and we consider the frequencies f0 ± k with k = 5, 15, . . . , 45 Hz.

Note that for the real shifted preconditioner the ellipses are very elongated, especially for the case
with f0 = 400 Hz. We see from Figure 7.24 that the ellipses are close together, while the differences
in frequencies is equal to 10 Hz. The resemblance is particularly present for the preconditioner
with imaginary shift. This implies that the Chebyshev nodes that correspond to the problem with
a frequency equal to f accurately approximate the Chebyshev nodes of the problem with f − 1 (if
f0 is held fixed).

For the fluid problem, we compare the convergence of IDR(s) for the frequencies f = 325, 395 Hz
by taking the residual norms per iteration into consideration. We use as preconditioners Pr

f (f0)
(see Figure 7.25) and Pi

f(f0) (see Figure 7.26) with f0 = 400 Hz. First, we consider the two
earlier described choices for ωj in IDR(s), that is, the minimisation strategy of the first residual
with respect to ωj : ωj = (Avi · vi)/(Avi · Avi) (in red) and the method of steepest descent
ωj = (vi ·vi)/(vi ·Avi) (in cyan). Second, we consider for ωj the reciprocals of ψ = 10 Chebyshev
nodes that result from the Ritz values that are obtained for the frequency f − 1, where these
Chebyshev nodes are used cyclically as the IDR iterations proceed, except for the first s iterations,
where we choose as always ω0 = 1. The choices for ωj for f−1 are again ωj = (Avi ·vi)/(Avi ·Avi)
(in green) and ωj = (vi · vi)/(vi ·Avi) (in purple).

0 50 100 150 200 250 300
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(a) f = 325 Hz, IDR(4)

0 50 100 150 200 250
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(b) f = 325 Hz, IDR(8)

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(c) f = 325 Hz, IDR(16)

0 5 10 15 20 25
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(d) f = 395 Hz, IDR(4)

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(e) f = 395 Hz, IDR(8)

0 5 10 15 20 25
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(f) f = 395 Hz, IDR(16)

Figure 7.25: Residual norms for the fluid problem with Pr
f (f0) and f0 = 400.

73

7. Numerical experiments on the car problem

It is remarkable that the method of steepest descent for the ωj is at least as good as the minimi-
sation strategy. For the cases where we use Chebyshev nodes, we see that the curves are mutually
very similar for most cases, which can be explained by the fact that we compute only k Ritz values
with k � n and these Ritz values are in this case often very similar for different choices of ωj . For
the cases where there is a significant difference in Chebyshev nodes (see Figure 7.26(a),(d)), we
see that the convergence behaviour for the case based on the Chebyshev nodes that follow from
the steepest descent method for ωj , is much worse. This is surprising since we have seen in section
6.4.2 that in this case the Ritz values better approximate the eigenvalues.

0 50 100 150 200 250 300 350 400 450 500
10

−15

10
−10

10
−5

10
0

10
5

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(a) f = 325 Hz, IDR(4)

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(b) f = 325 Hz, IDR(8)

0 20 40 60 80 100 120 140
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(c) f = 325 Hz, IDR(16)

0 50 100 150 200 250 300 350 400 450 500
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(d) f = 395 Hz, IDR(4)

0 50 100 150 200 250 300
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(e) f = 395 Hz, IDR(8)

0 20 40 60 80 100 120 140 160 180 200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(f) f = 395 Hz, IDR(16)

Figure 7.26: Residual norms for the fluid problem with Pi
f(f0) and f0 = 400.

We see from these figures also that if we choose for ωj the reciprocals of Chebyshev nodes, the
performance is never better than the choices based on Avi and vi, which implies that for this
problem the Chebyshev nodes strategy seems to work not well. For increasing s for IDR(s), the
curves are closer to each other, but this is due to the fact that the degree of the polynomial Ωj is
much lower for higher values of s.

We study a similar approach for the complete car problem, but note that for this case the resem-
blance for the Chebyshev nodes is much smaller. While most of the eigenvalues are clustered, a
few eigenvalues are very distant from this cluster. This results in very elongated minimal enclosing
ellipses that are differently orientated, while the clusters of eigenvalues are more or less the same.
We consider all three shifted Laplace preconditioners with a fixed shift of f0 = 50 Hz and deter-
mine the residual norms for f = 20, 48 Hz after each iteration. We do this for IDR(8) and give the
results in Figure 7.27, where the choices for ωj in IDR(s) are based on minimising a residual (in
red) or steepest descent (in cyan) are compared with the choice based on the Chebyshev nodes and
Ritz values that are obtained for f − 1 with minimising a residual (in green) or steepest descent
(in purple).

74

7. Numerical experiments on the car problem

0 50 100 150 200 250 300 350 400 450 500
10

−15

10
−10

10
−5

10
0

10
5

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(a) f = 20 Hz, Pr(f0)

0 20 40 60 80 100 120 140 160 180
10

−20

10
−15

10
−10

10
−5

10
0

10
5

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(b) f = 20 Hz, Pi(f0)

0 50 100 150 200 250 300
10

−15

10
−10

10
−5

10
0

10
5

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(c) f = 20 Hz, Pm(f0)

0 5 10 15 20 25 30
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(d) f = 48 Hz, Pr(f0)

0 50 100 150 200 250
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(e) f = 48 Hz, Pi(f0)

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω: minimising r
ω: Chebyshev nodes
ω: steepest descent
ω: Chebyshev nodes

(f) f = 48 Hz, Pm(f0)

Figure 7.27: Residual norms for the car problem with IDR(8) and f0 = 50.

We see from this figure that also for the car problem the method of steepest descent for the ωj is
as good as the minimisation strategy. For the cases where we use Chebyshev nodes, we see that
the curves are more distinct (except in Figure 7.27(d), where only ±25 iterations are carried out).
In contrast to the fluid problem, we see that the convergence behaviour for the case that is based
on the steepest descent method for the ωj in the determination of the solution for f − 1 is much
better than the results that correspond to the minimisation of ri with respect to ωj .

Both choices for the Chebyshev nodes do not lead to an improvement in the convergence behaviour
of IDR(s) with s = 8 and we do not expect different results for other values of s. We conclude
that also for the car problem, this approach does not lead to better computational results.

75

7. Numerical experiments on the car problem

76

Chapter 8

Conclusions

Enough research will tend to support your conclusions.
Arthur Bloch

Very much hard work remains to be done and one needs not only
great perspicacity but often a degree of good fortune.

Christiaan Huygens

In this thesis we considered the acoustics of a car and we studied several techniques to solve the
numerical linear systems of equations that result from the discretisation (see chapter 3) of the
equations that describe the pressure perturbations in the air inside the car (see chapter 2) and of
the displacement of the car structure parts. Since for every frequency the pressure perturbations
evolve differently, we solved the linear systems for sequences of frequencies with the aid of various
numerical methods known as Krylov subspace methods (see chapter 4). These methods allow the
use of results that are already obtained and the research done considers the use of this information
for improving the performance of the numerical methods.

We focussed on IDR(s) (see chapter 6), a Krylov subspace method that performs very well on dif-
ficult problems, and considered as preconditioner the shifted Laplace preconditioner (see chapter
5). The preconditioner is not needed for just speeding up to convergence, but also for enabling
iterative methods to determine the solution. Therefore, the (incomplete) LU factorisation of this
preconditioner should not lead to factors that are too crude an approximation to this precondi-
tioner.

In the experiments (see chapter 7) we consider several ways to use the available information. First,
we focused on solution vectors of nearby frequencies and applied them to improve the initial guess
for the solution vector and to span an initial search space. Second, we considered results on the
number of iterations, which allows us to update the shifted Laplace preconditioner in a proper
way. Third, we investigated if using approximate eigenvalues of the system matrices reduces the
number of iterations.

8.1 Summary of results

We firstly focussed on the fluid part and the structure part of the problem separately, after which
we considered the complete car problem. We have seen that the fluid problem needs far less it-
erations than the structure problem, which in turn is easier to solve than the car problem. All
problems become much more difficult for higher frequencies f , since the system matrices get in-
creasingly ill-conditioned when f grows. Extrapolation of earlier obtained solutions to certain
frequencies for the initial guess of the upcoming frequency reduces the number of iterations for all
problems, and spanning an initial search space with these solutions leads to even better computa-
tional results for the fluid and structure problem. Applying both search space and extrapolation
for these problems does not significantly effect the convergence compared to the case where we

77

8. Conclusions

only use the initial search space. For the car problem, there is hardly any difference in the com-
putational results between using the initial search space or not and we therefore consider only
extrapolation of solutions for this problem.

We considered three types of shifted Laplace preconditioners, which all change the system into
a form that is more suitable for the numerical methods. The first preconditioner has a purely
imaginary shift, the second has a real shift and the third equals the real part of the second pre-
conditioner, which means that the complete damping term and parts of the stiffness matrix are
discarded. This latter preconditioner is not used for the fluid problem since it is the same as the
real shifted preconditioner for this problem. If we choose the real shifted Laplace preconditioner
with a shift close to the frequency of the system, very few iterations are needed for convergence.
We therefore update the shift of this preconditioner if too many iterations are needed for a certain
frequency and we have seen that this more than halves the computation time for the fluid and
structure problem. Fine-tuning of the moment of updating and the precise value of the new shift
leads to an additional reduction of 30% (for the fluid problem) or 20% (for the structure struc-
ture). For the complete car problem, it appeared that a similar updating strategy for the modified
shifted Laplace preconditioner leads to even better results in terms of computation time.

The performance of IDR(s) on all problems is highly dependent on the value of s. For too small
values of s, the number of iterations that are needed for convergence for problems with higher
frequencies becomes very large, while too high values of s can result in an ill-conditioned matrix in
IDR(s). The best results are obtained for s = 8 and this choice does not suffer from the above two
problems. Compared to some other Krylov subspace methods, IDR(8) performs also very well. It
outperforms CGS and BiCGSTAB, of which the convergence behaviour for successive frequencies
is very irregular, and GMRES, which needs very few numbers of iterations that smoothly increase
for growing frequencies, but also requires long recurrences.

During the iterates of IDR(s) we can obtain a set of approximations to the eigenvalues, the so-
called Ritz values. We used these values to determine a subset in the complex plane that hopefully
encloses the spectrum and a polynomial that is small on this set. We matched the roots of this
polynomial with the roots of the part of the residual polynomial of IDR(s) that depends on ωj ,
but this did not lead to better convergence behaviour for our problems.

We have seen that the best approach to this car problem is to solve it using IDR(8), where we use
(the exact LU factors of) the modified shifted Laplace preconditioner with proper updates of the
shift and extrapolation of previously obtained solution vectors for an initial guess.

8.2 Future research

We list a few suggestions for future research. First, we consider ways to improve the performance
of IDR(s).

� The vectors that span the initial search space or the corresponding vectors in G0 should
maybe be adapted in IDR(s) in order to make it possible that the number of iterations is
less than s+ 1.

� For the car problem, the matrix M in IDR(s) is ill-conditioned. This causes a build-up
of rounding errors and hence less accurate or even inaccurate solution vectors. Factorisa-
tion of this matrix, with for instance the singular value decomposition, might lead to an
improvement in the robustness of IDR(s).

78

8. Conclusions

� We used IDR(s) as described in section 6.2, which is based on a so-called orthogonal residual
approach. As an alternative, we could instead use QMRIDR(s), which is discussed in Ap-
pendix A and relies on a minimal residual approach. Algorithms based on this last approach
leads in general to more stable updates for systems that cause breakdown for algorithms
with an approach of orthogonal residuals.

� The dissimilarity in Ritz values that follow from different choices for ωj suggest that the
eigenvalue approximations are dependent on ωj , even though the analysis imply that the
Hessenberg matrix is independent from ωj , see (6.11). In addition, there is a lack of accuracy,
which is presumably caused by numerical instability. Research on these matters might result
in changes in the current straightforward implementation of the equations of section 6.4 and
lead to better eigenvalue approximations.

� Based on the convergence process per Ritz value, it might be possible to determine if a
certain Ritz value converges to an eigenvalue or not. If it does not converge, it is clearly not
an approximate eigenvalue, while if it converges to a value that is not in the spectrum, it
will be interesting to determine what significance this value has.

Some other matters that may also require attention are listed below.

� We considered for ωj the reciprocals of a few Chebyshev nodes that follows from the Cheby-
shev polynomial on an ellipse. In addition to this specific polynomial on this particular
set, other options are available. We could for instance consider a Chebyshev polynomial on
several disjoint sets. It is also possible to use another polynomial, for instance a poly-
nomial based on a Leja sequency. This polynomial LCi (ξ) of degree i consists of Leja
points ξi ∈ C that are determined by iteratively chosing them so that the Leja polynomial
LCi−1(ξ) =

∏i−1
k=1 |ξ − ξk| is maximised on C for ξ = ξi.

� We used Matlab for all implementations and made a start with the implementation in For-
tran. With the use of advanced Fortran packages on numerical linear algebra, it is be possible
to further reduce the computation time. Especially parallelisation of the computations will
result in a significant reduction.

79

8. Conclusions

80

Appendix A

Quasi Minimal Residual Induced
Dimension Reduction (s)

Please, sir, I want some more.
Oliver in Oliver Twist (Charles Dickens).

The QMRIDR variant of the IDR algorithm is published in [8]. The idea behind this variant is to
apply the GMRES philosophy. As we have seen in section 4.3, GMRES generates a set of normal
basis vectors that span the Krylov space, after which a much smaller and projected system can
be solved. Here, a set of vectors gi ∈ Gj is orthonormalised by using Arnoldi iteration (see section
4.2) and this set is used to rewrite the original system into a smaller system.

Given the unit vector g1 = r0/‖r0‖ ∈ G0, we compute equivalent to (4.3)

gi+1 =
Agi −

∑i
k=1 βk,igk

βi+1,i
(i ≤ s),

with βk,i = Agk · gi and βi+1,i = ‖Agi −
∑i
k=1 βk,igk‖, and combine these equations to obtain

Gs+1Hs = AGs, (A.1)

where Gs = (g1, . . . ,gs) and Gs+1 = (Gs,gs+1). For the computation of the first vector gi+1 ∈ Gj
(for j = 1, 2, . . .) the vectors gi−s, . . . ,gi are available. First we obtain the vector vi by substituting
(6.5) into (6.3) and then we compute the vector ti = (A − µjI)vi ∈ Gj . We set gi+1 = ti/‖ti‖
and substitution of (6.5) into this equation results in

A

(
gi −

i−1∑
k=i−s

γikgk

)
= µj

(
gi −

i−1∑
k=i−s

γikgk

)
+ βi+1,igi+1.

The vectors gi+2, . . . ,gi+s+1 are obtained iteratively by computing ti+1 = (A− µjI)vi+1 and

gi+1 =
ti+1 −

∑i
k=j(s+1)+1 βk,igk

βi+1,i
.

We remark that all parameters βk,i are chosen such that the vectors gi ∈ Gj are orthonormal to
each other. We obtain

A

(
gi −

i−1∑
k=i−s

γikgk

)
= µj

(
gi −

i−1∑
k=i−s

γikgk

)
+

i+1∑
k=j(s+1)+1

βk,igk,

and with a proper choice of the matrices Ui and Hi this results in the generalised Hessenberg
decomposition

81

A. Quasi Minimal Residual Induced Dimension Reduction (s)

AGiUi = Gi+1Hi. (A.2)

Note that for the first s g-vectors we can write (A.1) in this form by defining Us = I. The matrix
Ui is an i× i upper triangular matrix with upper bandwidth s and Hi is an extended Hessenberg
matrix with upper bandwidth s and size (i+ 1)× i.

The Quasi Minimal Residual (QMR) method [6] can be used to solve the linear system (A.2) and
its derivation is similar to the derivation of GMRES for solving (4.1) (see §4.4). We use (A.2) to
construct approximation vectors xi that are a linear combination of gi−s+1, . . . ,gi by

xi = x0 + GiUiyi,

where yi is obtained by solving the minimisation problem

min
yi∈Ci

‖Gi+1(βe1 −Hiyi)‖,

and β = ‖r0‖. The matrix Gi+1 does not consist of orthonormal vectors and we therefore minimise
an upper bound. That is, we solve

min
yi∈Ci

‖Gi+1‖ ‖βe1 −Hiyi‖. (A.3)

It can be shown that ‖Gi+1‖ ≤
√
d(i+ 1)/(s+ 1)e [8].

We obtain the solution to (A.3) by the QR decomposition of Hi as Q̃i+1Hi = Ri. This is done
by left multiplication of Hi with a sequence of Givens matrices, similar to §4.4. The solution of
(A.3) and the approximation xi are then given by

yi = βR−1
i Q̃∗i+1e1 and xi = x0 + βGiUiR

−1
i Q̃∗i+1e1.

To avoid the long recurrence problem of increasing size of the matrix Gi, we compute xi without
the need of this matrix Gi. We define the matrices Vi = (v1, . . . ,vi) = GiUi of which the column

vectors satisfy (6.5), and Wi = (w1, . . . ,wi) = ViR̃
−1
i and it follows that

wi =
1

rii,i

(
i−1∑

k=i−s−1

wkrik,i

)
.

After defining the vector φi = βQ̃∗i+1e1, we obtain the short recurrence update

xi = xi−1 + wiφii .

The above can be generalised for solving multi-shift systems.

Multi-shift QMRIDR(s)

For many Krylov space methods a shifted version is developed. We refer to [12] for a discussion
of the principles of constructing these methods. The idea is to solve shifted versions of the linear
system (4.1),

(A− σI)xσ = b,

for a whole set of values of σ simultaneously. The above calculations can be used to derive a
multi shift version of QMRIDR(s). We note that the direction of the first residuals need to be

82

A. Quasi Minimal Residual Induced Dimension Reduction (s)

independent of σ hence we need g1 = rσ0/‖rσ0‖ for all shifted systems. It is therefore reasonable
to set xσ0 = 0 and hence rσ0 = b.

We construct the approximate solutions xσi similar to the unshifted system by

xσi = Gi+1Uiy
σ
i ,

where Ui = (UT
i ,0)T and obtain yσi by solving the minimisation problem

min
yσi ∈i
‖Gi+1‖ ‖βe1 − [Hi − σUi]y

σ
i ‖,

which is an upper bound for

min
yσi ∈i
‖Gi+1(βe1 − [Hi − σUi]y

σ
i)‖.

We compute QR decompositions of Hi − σUi to obtain matrices Q̃σ
i+1 and Rσ

i that satisfy

Q̃σ
i+1(Hi − σUi) = Rσ

i . We define the vectors φσi and update vectors wσ
i analogous to the

unshifted case, after which the approximations xσi can be computed by

xσi = xσi−1 + wσ
i φ

σ
ii .

We present the multi-shift QMRIDR(s) algorithm below.

Algorithm 5 Multi-shift Quasi Minimal Residual Induced Dimension Reduction (s).

Require: σi ∈ C, (i = 1, · · · , nσ), s > 0, P0, tol ∈ (0, 1), maxit > 0
xσi = 0, (i = 1, · · · , nσ), µ = 0, M = 0, G = 0, w = 0, κ = 0.7
g = b ρ = ‖g‖, ρ0 = ρ; g = 1

ρg
for i = 1, . . . , nσ do

Wσi = 0, csσi = 0, snσi = 0, φσi = 0, φ̂σi = ‖g‖
end for
n = 0, j = 0
while ρ/ρ0 > tol and n ≤ maxit do

for k = 1, . . . , s+ 1 do
n = n+ 1
u = 0,u(s+1) = 1
m = P∗0g
if n > s then

Solve γ from Mγ = m
v = g −Gγ
u(1:s) = −γ

else
v = g

end if
M(:,1:s−1) = M(:,2:s), M(:,s) = m
G(:,1:s−1) = G(:,2:s), G(:,s) = g
g = Av;
if k = s+ 1 then

j = j + 1
ω = (g · v)/(g · g)

83

A. Quasi Minimal Residual Induced Dimension Reduction (s)

ρ = (g · v)/(‖g‖ ‖v‖)
if |ρ| < κ then

ω = ωκ/|ρ|
end if
if |ω| > eps then

µ = 1/ω
else

µ =
√
‖A‖1‖A‖∞

end if
end if
g = g − µv
h = µu
if k < s+ 1 then

β = G∗(:,s−k+1:s)g, g = g −G(:,s−k+1:s)β

β̂ = G∗(:,s−k+1:s)g, g = g −G(:,s−k+1:s)β̂

β = β + β̂
h(s+1−k+1:s+1) = h(s+1−k+1:s+1) + β

end if
h(s+2) = ‖g‖, g = g/‖g‖
ρ = 0
for i = 1, . . . , nσ do

r = 0, r(2:s+3) = h− σiu
lb = max(1, s+ 3− n)
for l = lb, . . . , s+ 1 do

t = r(l)

r(l) = csσi(l)t+ snσi(l)r(l+1)

r(l+1) = −snσi(l)t+ csσi(l)r(l+1)

end for
if |r(s+2)| < eps then

csσi(s+2) = 0, snσi(s+2) = 1, r(s+2) = r(s+3)

else
t = |r(s+2)|+ |r(s+3)|
ρ = t

√
(r(s+2)/t)2 + (r(s+3)/t)2

α = r(s+2)/|r(s+2)|
csσi(s+2) = |r(s+2)|/ρ, snσi(s+2) = αr(s+3)/ρ, r(s+2) = αρ

end if
φσi = csσi(s+2)φ̂

σi , φ̂σi = −snσi(s+2)φ̂
σi

csσi(:,1:s+1) = csσi(:,2:s+2), snσi(:,1:s+1) = snσi(:,2:s+2)

w = (v −Wσir(1:s+1))/r(s+2)

Wσi
(:,1:s) = Wσi

(:,2:s+1), Wσi
(:,s+1) = w

xσi = xσi + φσiw
ρ = max(ρ, |φ̂|√j + 1)

end for
end for

end while

84

Appendix B

Initial experiments

Computers are useless. They can only give you answers.
Pablo Ruiz y Picasso

We investigate the properties of the shifted Laplace preconditioner

Pi(k0) = K + ik0C + ik2
0M,

and the preconditioner that is optimal for a single frequency

Pr(k0) = K + ik0C− k2
0M,

where k0 is held fixed and chosen such that z = −ik2
0 with z as defined in (5.6). Both Pi(k0) and

Pr(k0) are applied to the linear system that describes the acoustics in a 4×4 m2 room with a point
source in the centre. The wall at the east is absorbing with an acoustic impedance Zn = 1

5 − 3
2 i

kg/(s m2) and the other walls are reflecting (see section 3.1). We choose the speed of sound in air
c0 is equal to 340 m/s. So, we consider the system (4.1) where the system matrix is given by

A(ki) = K + ikiC− k2
iM,

for a sequence of acoustic wave numbers ki = k1, . . . , kn ∈ R+.

In the first set of experiments we consider the location of the eigenvalues of the system matrix of
the linear system (4.1) and the equivalent preconditioned system (4.9) for a single frequency k and
different values of k0. In the second set we study the computation time of the (incomplete) LU
factorisation of the preconditioners Pi(k0) and Pr(k0). In the third experiments we apply several
Krylov space methods to solve the linear systems (4.1) and (4.9) for a range of frequencies and
fixed k0. In the last experiments we apply IDR(4) to (4.9) where we vary k0.

All experiments are performed on a PC with a single CPU clocked at 2.1GHz and with 8Gb RAM
with Matlab 7.7.

B.1 Location of the eigenvalues

For the problem of the two-dimensional room we choose a gridsize h = L/25 = 16 cm and inves-
tigate the location of the eigenvalues of the matrices A, [Pi(k0)]−1A and [Pr(k0)]−1A, all of size
676 × 676. We consider a frequency f = 60 Hz (and hence k = 60 · 2π/c0 ≈ 1.1088 m−1) and
compare the preconditioners Pi(k0) and Pr(k0) for values of k0 that correspond to the frequencies
40, 60, 80 and 100 Hz. In this way, we investigate if it is reasonable to choose the preconditioner
with fixed k0 for a range of frequencies.

The location of the eigenvalues is displayed in Figure B.1. For k0 = k the eigenvalues of (Pi)−1A
are on or inside the circle (which is defined by (5.4)) and the eigenvalues of (Pr)−1A = I are of

85

B. Initial experiments on the room problem

course equal to 1, see Figure B.1(b). For k0 6= k we see from Figures B.1(a), (c) and (d) that
the eigenvalues of (Pi)−1A are more clustered than the eigenvalues of (Pr)−1A. In addition,
the eigenvalues of (Pi)−1A are not too far from the circle (which enclosed the eigenvalues of
(K + ikC + iq2M)−1A) while the distribution of the eigenvalues of (Pr)−1A varies strongly, even
for small differences in values of k0.

−4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

Re(λ)

Im
(λ

)

(a) k = 60 · 2π/c0, k0 = 40 · 2π/c0

−4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

Re(λ)

Im
(λ

)

(b) k = 60 · 2π/c0, k0 = 60 · 2π/c0

−4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

Re(λ)

Im
(λ

)

No preconditioning
P = K + iq C − q² M
P = K + iq C + iq² M
Enclosing circle for K + ik C + iq² M

(c) k = 60 · 2π/c0, k0 = 80 · 2π/c0

−4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

Re(λ)

Im
(λ

)

(d) k = 60 · 2π/c0, k0 = 100 · 2π/c0

Figure B.1: Location of the eigenvalues.

The convergence of Krylov space methods is generally better for problems where the system ma-
trix is not highly indefinite and the eigenvalues are clustered away from zero. For the cases with
k0 6= k, the eigenvalues of both (Pi)−1A and (Pr)−1A are mainly clustered around 1 and some
eigenvalues are close to 0. A disadvantage of (Pr)−1A is that this matrix turns out to be highly
indefinite.

The problem of 676 equations is very small, but the location of the eigenvalues of much larger
matrices appears to be very similar to the respective small matrices.

86

B. Initial experiments on the room problem

B.2 LU and ILU factorisation

Since we need to apply the inverse of the preconditioners Pi(k0) and Pr(k0), we decompose these
preconditioners into an upper and lower triangular matrix using (incomplete) LU factorisation.
The exact LU factorisation of for instance Pi is very time-consuming since it is large and it results
in matrices Li and Ui such that LiUi = Pi. Incomplete factorisation results in approximations
L̃i and Ũi with Pi 6= L̃iŨi and it is possible that the properties of the original preconditioner Pi

are lost.

We use three types of LU factorisation, namely the standard (UMFPACK) LU factorisation, the
ILU(0) factorisation, which allows no fill-in, and the ILUT factorisation with a drop tolerance
τ = 0.01. This drop tolerance is applied in such a way that the non-zero off-diagonal entries of
Ũi satisfy |uj,k| ≥ τ‖Pi

(:,k)‖ and for the non-zeros of L̃i we have that |lj,k| ≥ τ‖Pi
(:,k)‖/uk,k. All

these methods are available in Matlab.

LU ILU(0) ILUT(0.01)

gridsize h L/99 L/199 L/399 L/399 L/799 L/1599 L/199 L/399 L/799

n× 1000 10 40 160 160 640 1280 40 160 640

Pi(k0) 1.74 27.9 420 0.06 0.27 1.26 2.03 21.2 177

Pr(k0) 1.79 26.3 406 0.06 0.22 1.10 1.50 17.1 136

Table B.1: Computation time (s) of (I)LU factorisation, k0 = 125 · 2π/c0.

We study the time it takes to apply the above (incomplete) LU factorisations. Some results are
tabulated in Table B.1, where n equals the number of equations. We see that LU factorisation
is very time consuming and of order O(h4), while ILU(0) needs far less computation time and
is of order O(h2). The order of ILUT(τ) is highly dependent on the value of τ and we see that
ILUT(0.01) is roughly of order O(h3). This means that if we extrapolate to one million equations,
we need for the LU factorisation of Pi approximately 16500 s, for the ILU(0) factorisation 0.77 s
and for the ILUT(0.01) factorisation 346 s.

B.3 Krylov subspace methods

We apply (I)LU factorisation to the preconditioners Pi(k0) and Pr(k0) with k0 = 125 · 2π/c0 and
compute the solution to (4.1) and (4.9) for a range of frequencies f = 1, . . . , 250 Hz with the
Krylov subspace methods IDR(4), IDR(8), CGS, BiCGSTAB, QMR and GMRES.

We set tol = ‖b‖ · 10−8 and maxit = 2000. As initial guess we choose for f = 1 the zero vector,
so x0 = 0, and for f 6= 1 the obtained solution to the previous frequency, that is x0 = xf−1.
For the computation of frequencies f > s with IDR(s) we use as initial space the space spanned
by the last s solution vectors and hence set U0 = (xf−1, . . . ,xf−s). This choice is motivated by
the computation of the pressure disturbances with IDR(4) on a mesh with gridsize h = L/50 = 8
cm, of which the computational results are presented in Figure B.2. The reduction of the total
number of MATVECS (matrix vector multiplications) and the total computation time by choosing
x0 = xf−1 combined with U0 = (xf−1, . . . ,xf−s) instead of x0 = 0 is approximately 40%.
We consider a gridsize of h = L/50 = 8 cm (and hence the number of equations n equals 2601) and
choose k0 = 125 · 2π/c0. The results concerning the computation time are tabulated in Table B.2,

87

B. Initial experiments on the room problem

50 100 150 200 250
0

500

1000

1500

f

M

A
T

V
E

C
S

x
0
 = 0

x
0
 = xf−1

x
0
 = xf−1, U = (xf−1, ... , xf−s)

(a) Number of MATVECS per frequency

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f

t

(b) Computation time (s) per frequency

Figure B.2: Several choices for x0 and initial U0.

where the computation time for obtaining the (approximate) LU factors of Pi and Pr is not taken
into account. A ∗ in this table indicates that the method does not converge for all frequencies. In
the case of BiCGSTAB, the residuals are almost always still very large after 2000 iterations, while
CGS does not converge for a few frequencies and we still have that ‖r2000‖ is less than 10 times tol.

For each method, we compare the computation times of the preconditioned system (4.9) with
the unpreconditioned system (4.1). If we use the exact LU factorisation, most methods perform
slightly better if we use Pi as preconditioner, but Pr never improves the computation time. For
QMR both preconditioners lead to an increase of computation time while for GMRES the pre-
conditioners greatly reduce the computation time. The ILU(0) and the ILUT(0.01) factorisations
of the preconditioners result always in a significant reduction of the computation time. It is re-
markable that the results for Pi and Pr are close together. If we compare the (I)LU factorisations
with each other, we see that both the ILU(0) and the ILUT(0.01) factorisation leads to a fur-
ther reduction of the computation time than the LU factorisation, and ILUT(0.01) seems to be
approximately 1.5 times better in reducing the computation time, compared to ILU(0).

Preconditioner Factorisation IDR(4) IDR(8) CGS BiCGSTAB QMR GMRES

Pi(k0)

LU 99 96 215 240 336 157

ILU(0) 62 69 115 274 133 455

ILUT(0.01) 37 41 75 94 96 146

Pr(k0)

LU 256 203 ∗827 1009 855 208

ILU(0) 58 69 91 271 124 444

ILUT(0.01) 31 37 77 118 91 123

No preconditioning 142 135 ∗233 ∗787 205 4428

Table B.2: Computation time (s) for each method, h = L/50, k0 = 125 · 2π/c0.

Now, we consider a gridsize of h = L/100 = 4 cm (so n = 10201) and again choose k0 = 125·2π/c0.
In Table B.3 the computation time is displayed for different methods, where the computation time

88

B. Initial experiments on the room problem

50 100 150 200 250
0

100

200

300

400

500

600

700

800

f

M

A
T

V
E

C
S

Pi

, LU

Pi

, ILU(0)

Pi

, ILUT(0.01)

Pr

, LU

Pr

, ILU(0)

Pr

, ILUT(0.01)

(a) IDR(4)

50 100 150 200 250
0

100

200

300

400

500

600

700

800

f

M

A
T

V
E

C
S

(b) IDR(8)

50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

f

M

A
T

V
E

C
S

(c) CGS

50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

f

M

A
T

V
E

C
S

(d) BiCGSTAB

50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

1000

f

M

A
T

V
E

C
S

(e) QMR

50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

1000

f

M

A
T

V
E

C
S

(f) GMRES

Figure B.3: Number of MATVECS per frequency for h = L/100.

89

B. Initial experiments on the room problem

50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

f

t

Pi

, LU

Pi

, ILU(0)

Pi

, ILUT(0.01)

Pr

, LU

Pr

, ILU(0)

Pr

, ILUT(0.01)

(a) IDR(4)

50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

f

t

(b) IDR(8)

50 100 150 200 250
0

10

20

30

40

50

60

f

t

(c) CGS

50 100 150 200 250
0

10

20

30

40

50

60

f

t

(d) BiCGSTAB

50 100 150 200 250
0

5

10

15

20

25

30

35

40

f

t

(e) QMR

50 100 150 200 250
0

5

10

15

20

25

30

35

40

f

t

(f) GMRES

Figure B.4: Computation time (s) per frequency for h = L/100.

90

B. Initial experiments on the room problem

of (incomplete) LU factorisation is not included. In this table, the same behaviour considering
the computation time emerges: if we use exact LU factorisation of Pi, preconditioning with Pr is
worse than preconditioning with Pi, while the results for the incomplete factorisations of Pi and
Pr are very similar.

Preconditioner Factorisation IDR(4) IDR(8) CGS BiCGSTAB QMR GMRES

Pi(k0)

LU 559 493 1200 1209 2260 759

ILU(0) 428 457 701 2879 953 4953

ILUT(0.01) 195 207 347 671 562 988

Pr(k0)

LU 1325 991 7228 5893 4359 1985

ILU(0) 401 445 649 2776 918 4899

ILUT(0.01) 181 195 323 636 530 935

Table B.3: Computation time (s) for each method, h = L/100, k0 = 125 · 2π/c0.

We consider the number of MATVECS and the computation time per frequency and hence inves-
tigate if the preconditioners with a fixed k0 are useful for a range of frequencies where k is close
to k0. The results are given in Figures B.3 and B.4.Since k0 corresponds to a frequency of 125
Hz, we would expect that on the interval f ∈ [100, 150] the preconditioners reduce the number
of MATVECS and the computation time the most. It is clear that this is indeed the case for Pr

combined with exact LU factorisation, but it seems neither for incomplete LU factorisation nor for
any (I)LU factorisation of Pi the case. We see from these figures also that the difference in pre-
conditioning with Pi or Pr combined with incomplete LU factorisation leads to similar behaviour
in the number of MATVECS and in computation time.

B.4 IDR(4) with various shifts for the shifted Laplace pre-
conditioner

To study the extent to which the convergence properties of (Pi(k0))−1A and (Pr(k0))−1A for
IDR(4) depend on the value of k0, we apply the preconditioners Pi(k0) and Pr(k0) for different
fixed values of k0. We also consider a set of preconditioners Pi(k0) and Pr(k0) where k0 = f0 ·2π/c0
and f0 = 25 + 50bf/50c. The total computation time is given in Table B.4 and the results per
frequency are given in Figures B.5 and B.6.

f0

Preconditioner Factorisation 25 75 125 175 225 25 + 50bf/50c

Pi(k0)

LU 591 547 558 628 748 359

ILU(0) 432 476 431 431 430 402

ILUT(0.01) 194 229 196 201 211 177

Pr(k0)

LU 1379 1370 1408 1528 2551 501

ILU(0) 410 413 403 404 405 430

ILUT(0.01) 188 187 184 180 179 203

Table B.4: Computation time (s) for IDR(4), h = L/100.

91

B. Initial experiments on the room problem

50 100 150 200 250
0

100

200

300

400

500

600

700

800

f

M

A
T

V
E

C
S

Pi

, LU

Pi

, ILU(0)

Pi

, ILUT(0.01)

Pr

, LU

Pr

, ILU(0)

Pr

, ILUT(0.01)

(a) k0 = 25 · 2π/c0

50 100 150 200 250
0

100

200

300

400

500

600

700

800

f

M
A

T
V

E
C

S

(b) k0 = 75 · 2π/c0

50 100 150 200 250
0

100

200

300

400

500

600

700

800

f

M

A
T

V
E

C
S

(c) k0 = 125 · 2π/c0

50 100 150 200 250
0

100

200

300

400

500

600

700

800

f

M

A
T

V
E

C
S

(d) k0 = 175 · 2π/c0

50 100 150 200 250
0

100

200

300

400

500

600

700

800

f

M

A
T

V
E

C
S

(e) k0 = 225 · 2π/c0

50 100 150 200 250
0

100

200

300

400

500

600

700

800

f

M

A
T

V
E

C
S

(f) k0 = (25 + 50bf/50c) · 2π/c0

Figure B.5: Number of MATVECS per frequency for IDR(4), h = L/100.

92

B. Initial experiments on the room problem

50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

f

t

Pi

, LU

Pi

, ILU(0)

Pi

, ILUT(0.01)

Pr

, LU

Pr

, ILU(0)

Pr

, ILUT(0.01)

(a) k0 = 25 · 2π/c0

50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

f

t
(b) k0 = 75 · 2π/c0

50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

f

t

(c) k0 = 125 · 2π/c0

50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

f

m

at
ve

cs

(d) k0 = 175 · 2π/c0

50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

f

m

at
ve

cs

(e) k0 = 225 · 2π/c0

50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

f

m

at
ve

cs

(f) k0 = (25 + 50bf/50c) · 2π/c0

Figure B.6: Computation time (s) per frequency for IDR(4), h = L/100.

93

B. Initial experiments on the room problem

The efficiency of the preconditioners Pi(k0) and Pr(k0) combined with the incomplete LU factori-
sation seems to be independent of k0. Both ILU(0) and ILUT(0.01) behave very much the same,
no matter which preconditioner or what value of k0 is chosen. So for this problem, the incomplete
LU factorisations are not sensitive to the value of k0.

Applying five preconditioners based on the frequency is useful for complete LU factorisation only
and improves the results for Pr greatly. Still, the Laplace preconditioner Pi performs better in
this case. Since we have to compute the LU factorisation five times, which is very time-consuming
especially for large matrices, the shifted Laplace preconditioner Pi with a fixed value of k0 seems
to be a better choice for very large problems.

94

Bibliography

[1] W.E. Arnoldi. The principle of minimised iteration in the solution of the matrix eigenvalue
problem. Quart. Appl. Math. 9:17-19, 1951.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000.

[3] R. Citarella, L. Federico, A. Cicatiello. Modal acoustic transfer vector approach in a FEM-
BEM vibro-acoustic analyses. Eng. Analyses with B.E. 31:248-258, 2007.

[4] Y.A. Erlangga, C. W. Oosterlee, C. Vuik. A Novel Multigrid Based Preconditioner For Het-
erogeneous Helmholtz Problems. Department of Applied Mathematical Analysis, Delft, 2004.

[5] R. Fletcher. Conjugate gradient methods for indefinite systems. Lecture Notes in Math.
506:73-89 1976.

[6] R.W. Freund, N.M. Nachtingal. QMR: A quasi-minimal residual method for non-Hermitian
linear systems. Numer. Math. 60:315-339, 1991.

[7] M.B. van Gijzen, Y.A. Erlangga, C. Vuik. Spectral analyses of the discrete Helmholtz operator
preconditioned with a shifted Laplacian. SIAM J. Sci. Comput. 5:1942-1958, 2007.

[8] M.B. van Gijzen, G.L.G. Sleijpen, J.P.M. Zemke. Flexible and multi-shift induced dimension
reduction algorithms for solving large sparse linear systems. Department of Applied Mathe-
matical Analysis, Delft, 2011.

[9] M.B. van Gijzen, P. Sonneveld. An elegant IDR(s) variant that efficiently exploits bi-
orthogonality properties. TOMS 1:5, 2011.

[10] M.H. Gutknecht, J.M. Zemke. Eigenvalue computations based on IDR. Res.Rep.SAM, Bericht
TUHH 2010.

[11] N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 1996.

[12] B. Jegerlehner. Krylov space solvers for shifted linear systems. Department of Physics, Indiana
University, 1996.

[13] J.J.I.M. van Kan, A. Segal, F.J. Vermolen. Numerical methods in scientific computing. VSSD,
Delft, 2005.

[14] V. Mehrmann, C. Schröder. Nonlinear eigenvalue and frequency response problems in indus-
trial practice. J. Math. Ind. 1:7, 2011.

[15] J.A. Meijerink, H.A. van der Vorst. An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix. Math. Comp. 31:148-163 1977.

[16] C.W. Oosterlee, C. Vuik. Scientific computing. Delft Institute of Applied Mathematics, Delft,
2009.

[17] A.D. Pierce. Acoustics, An introduction to its physical principles and applications. Acoustical
Society of America, New York, 1989.

95

BIBLIOGRAPHY

[18] S.W. Rienstra, A. Hirschberg. An introduction to acoustics. University of Technology, Eind-
hoven, 2004.

[19] Y. Saad, M.H. Schultz. GMRES: A generalised minimal residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Stat. Comput. 7:856-869, 1986.

[20] Y. Saad. ILUT: A dual threshold incomplete ILU factorisation. Numerical Linear Algebra
Appl. 1:387-402, 1994.

[21] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied Math-
ematics, Philadelphia, 2003.

[22] V. Simoncini, D.B. Szyld. Interpreting IDR as a Petrov-Galerkin method. SIAM J. Sci.
Comput. 32:1898-1912, 2010.

[23] G.L.G. Sleijpen, H.A. van der Vorst. Maintaining convergence properties of BiCGstab meth-
ods in finite precision arithmetic. Numerical Algorithms 10:203-223, 1995.

[24] V.I. Smirnov, N.A. Lebedev. Functions of a complex variable: Constructive theory. Translated
from the Russian by Scripta Technica Ltd, The M.I.T. Press, Cambridge, Mass., 1968.

[25] P. Sonneveld, M.B. van Gijzen. IDR(s): A family of simple and fast algorithms for solving
large nonsymmetric systems of linear equations. SIAM J. Sci. Comput. 31:1035-1062, 2008.

[26] P. Sonneveld. A fast Lanczos-type Solver for Nonsymmetric systems. SIAM J. Sci. Comput.
31(2):1025-1062 1989.

[27] P. Sonneveld. On the convergence behaviour of IDR(s). Department of Applied Mathematical
Analysis, Delft, 2010.

[28] M.J. Todd, E.A. Yildirim. On Khachiyans Algorithm for the Computation of Minimum Vol-
ume Enclosing Ellipsoids. Discrete Appl. Math. 155:1731-1744, 2007.

[29] R.S. Varga. Gershgorin and His Circles. Springer, Berlin, 2004.

[30] H.A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13:631-644 1992.

[31] P. Wesseling, P. Sonneveld. Numerical experiments with a multiple grid and a preconditioned
Lanczos type method. Approximation Methods for Navier-Stokes Problems, Lecture Notes in
Math. 543-562, 1980.

96

