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Purpose: Intravascular optical coherence tomography (OCT) is widely used for analysis of the coro-

nary artery disease. Its high spatial resolution allows for visualization of arterial tissue components in

detail. There are different OCT systems on the market, each of which produces data characterized by

its own intensity range and distribution. These differences should be taken into account for the devel-

opment of image processing algorithms. In order to overcome this difference in the intensity range

and distribution, we developed a framework for matching intensities based on the exact histogram

matching technique.

Methods: In our method, the key step for using the exact histogram matching is to determine the tar-

get histogram. For this, we proposed two schemes: a global scheme that uses a single histogram as

the target histogram for all the pullbacks, and a local scheme that selects for each single image a tar-

get histogram from a predefined database. These two schemes are compared on a unique dataset con-

taining pairs of pullbacks that were acquired shortly after each other with systems from two vendors,

St. Jude and Terumo. Pullbacks were aligned according to anatomical landmarks, and a database of

matched histogram pairs was created. A leave-one-out cross validation was used to compare perfor-

mance of the two schemes. The matching accuracy was evaluated by comparing: (a) histograms using

Euclidean (dx2) and Kolmogorov–Smirnov (dKS) distances, and (b) median intensity level within

anatomical regions of interest.

Results: Leave-one-out validation indicated that both matching schemes yield comparably high

accuracies across the entire validation dataset. The local scheme outperforms the global scheme with

marginally lower dissimilarities at both histogram level and intensity level. High visual similarity was

observed when comparing the matched images to their aligned counterparts.

Conclusion: Both local and global schemes are robust and produce accurate intensity matching.

While local scheme performs marginally better than the global scheme, it requires a predefined his-

togram dataset and is more time consuming. Thus, for offline standardization of the images, the local

scheme should be preferred for being more accurate. For online standardization or when another sys-

tem is involved, the global scheme can be used as a simple and nearly-as-accurate alternative. © 2018

The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Associa-

tion of Physicists in Medicine. [https://doi.org/10.1002/mp.13103]

Key words: histogram specification, image intensity, intensity standardization, intravascular optical

coherence tomography (IVOCT)

1. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of

death worldwide.1 Introduction of intravascular optical coher-

ence tomography (IVOCT) has largely advanced understand-

ing and treatment of one of the most common CVDs, the

coronary artery disease.2–5 Design of IVOCT enables visual-

ization of superficial tissue structures of the arteries with res-

olution as high as 5–10 lm. The wavelength of its light

source is around 1300 nm, which permits a relatively deep

penetration into the vessel wall. The intravascular term indi-

cates that the images are acquired from the inside of the blood

vessel. For current commercial systems, this is achieved by

inserting a catheter into the coronary artery, pushing away the

blood by injecting a flush media and pulling it back through

the lesion location. The catheter has been designed to emit

near-infrared light towards the artery wall and to receive the

back-propagated light. The received light is recorded as a
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one-dimensional signal (A-line) containing the back-propa-

gated intensities ordered by ascending distances to the cathe-

ter. By rotating the catheter tip with a constant speed, two-

dimensional (2D) images can be generated. Centering at the

catheter, each cross-sectional image contains about 500 A-

lines from different directions. These A-lines are recorded as

a raw image in polar coordinates, as shown in Figs. 1(b) and

1(e), or transformed into the Cartesian coordinates, as shown

in Figs. 1(c) and 1(f). As the catheter is pulled back at a con-

stant speed using a motorized pullback device, a stack of

images, referred to as a pullback is acquired.

The use of IVOCT in clinical studies increases exponen-

tially.2 Because of its high resolution, IVOCT contributed to

confirmation of pathological findings on progression of (neo)

atherosclerosis by visualizing morphologies like intimal ero-

sion, fibrous plaque, calcified nodule, lipid pool, macro-

phages distribution, intraluminal thrombus, etc.6–12 Attracted

by the conspicuous clinical prospects, many efforts were paid

to detection and characterization of IVOCT morphologies,

such as fibrous, lipid-rich and calcified plaques,13

macrophages distributions,7 thrombus,14 side branches,15,16

struts17–19, and struts embedding20 with image intensities,

and/or optical parameters.21,22 However, diversity of IVOCT

data can limit comparison of the results, especially when

intensity values are used. In particular, there is no consented

standard for the imaging range, unlike, for example, in com-

puted tomography (CT), meaning that IVOCT images gener-

ated with different commercially available systems are

typically characterized by different intensity ranges. The most

commonly used commercial systems are the Illumien Optis

from St. Jude Medical (St. Paul, MN, USA), which saves the

raw data in a 16-bit format, and the Lunawave from Terumo

(Tokyo, Japan), which saves the raw data in a 8-bit format.

As a concrete example, the Cartesian images from these two

systems are shown in Figs. 1(c) and 1(f), and their polar coun-

terparts are shown in Figs. 1(b) and 1(e). Images were acquired

shortly after each other during the same intervention at the

same location inside an artery of one patient. The histograms

of the corresponding regions on the IVOCT images acquired

by the two systems indicate different intensity ranges within

the same tissue type. Furthermore, the different shape of these

histograms suggests that relationship of intensities between

these two systems is not simply linear. In fact, an exponential

relationship has been observed in our previous work.23

Most OCT studies used the same type of IVOCT system to

guarantee high reproducibility. On the other hand, doing so

limits the scope of developed applications, when the same

method is applied to data from another vendor that has differ-

ent intensity distribution, repeated validation is required. To

improve efficiency of development, images need to be

(a) (b) (c)

(d) (e) (f)

FIG. 1. Histograms (a) of regions delineated in St. Jude polar (b) and Cartesian (c) images. Histograms (d) of regions delineated in Terumo polar (e) and Carte-

sian (f) images. Side branches and lesions were used as landmarks to find the corresponding locations in St. Jude and Terumo images. Regions were separated

according to their morphological appearance and visible borders and are correspondingly delineated in the polar images. [Color figure can be viewed at wileyon

linelibrary.com]
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standardized across devices. Only few papers on this topic

have been published in the IVOCT field, whereas several

papers on increasing the comparability of ophthalmological

OCT images were published. In particular, a normalization

approach was proposed for comparing images from two ven-

dors.24 This approach involves three steps: density scaling

and sampling, noise reduction, and amplitude normalization.

It was later improved by integrating virtual averaging.25 This

A-line normalization approach was shown to reduce the mea-

surement difference26 and the appearance disparity.27

In this work, we explore the possibility of converting the

data between different OCT systems and propose a matching

scheme with good generalization and minimal loss of detail.

Our pretrained algorithm can also be used for intensity

matching when the target data are not given. By doing this,

when a method developed for data acquired with system-A

needs to be evaluated with data acquired with system-B, we

can modify the data from system-B to follow the intensity

distribution of system-A, such that the method can be tested

on the data from system-B with minimum modification. Such

data conversion is referred to as the histogram modifica-

tion.28–31 The basic histogram matching theory has been pro-

posed in the work of Hummel et al.28 Since then, this study

has been widely used as the fundamental theory in image

modification studies at the histogram level. Later, the exact

histogram specification (EHS) was proposed as a successful

discrete solution to the model in practice.29–31 This approach

was used to produce comparable measurements in ophthal-

mological OCT images generated with low signal strength to

that generated with high signal strength32 and to compensate

light attenuation in confocal microscopy.33

Our main goal in this paper is to propose a framework for

matching intensities in OCT images from different vendors

using EHS. A straightforward approach would be to match

intensities per pullback. We compare this global scheme to a

local scheme that takes the local intensity variations into the

consideration. All the analyses are conducted with raw polar

images, whereas the Cartesian images are only used for the

visualization of results. The in vivo patient data used in this

study are unique in the sense that both St. Jude and Terumo

pullbacks were specially acquired for this study. A more elab-

orate explanation of this is provided further in the manu-

script.

The paper is structured as follows. For better understand-

ing of the underlying principles and terminology, we explain

both the model and the EHS in Section 2. In Section 3, the

data and its processing are described, the distance measures

are introduced, and the matching schemes are proposed and

validated. Results are reported and discussed in Sections 4 to

6. Finally, in Section 7 we draw the conclusions.

2. THEORY AND TERMINOLOGY

Each 2D image can be represented as a matrix I(x,y),

which is the discrete subsample of a bounded surface func-

tion f(x,y), where {(x,y)|0 ⩽ x ⩽ N,0 ⩽ y ⩽ M}. The inten-

sity function f(x,y) follows a distribution function Pf(t) that

indicates the chance of f(x,y) being less or equal than t. Given

two images fs �PfsðzsÞ and ft �PftðztÞ, the goal of histogram
transformation is to search for a mapping T, such that the

composition is T � fs �PftðztÞ. In this work, fs and ft are

referred to as the source and the target image, respectively.

This search has been formulated by Hummel et al.28 as an

optimization problem:

T̂ ¼ arg min
T

Za2

a1

½pT�fsðzÞ � pftðzÞ�
2
dz; (1)

where ½a1; a2� defines the range of image intensities. Here,

pX(z) is the probability density function (pdf) of image X,

which is the derivative of the distribution function PX(z), and

z is intensity level.

A unique monotonic solution of this model was given in

Ref. [28]:

~TðzsÞ ¼ P�1
ft
ðPfsðzsÞÞ; pfsðzsÞ[ 0; for 8zs: (2)

In practice, pX in both source and target spaces is usually esti-

mated as the normalized histogram vector:

pX ¼ fpij
P

pi ¼ 1; i 2 f0; . . .; 2L0 � 1gg, where L0 denotes
the maximum gray level of the images, pi denotes the fre-

quency of the image intensity corresponding to the interval

[zi,zi+1). Conventionally, the interval is referred to as a bin;

{zi} are the bin edges; the average of every two adjacent bin

edges ci = (zi+zi+1)/2 is the bin center, and pi is the bin value.

We define the bin edges for the ith bin as [ci � 0.5,ci + 0.5)

in this work.

To ensure that the distribution function PX is monotoni-

cally increasing, the following approximation is used:

Pj ¼
cj � zj

zjþ1 � zj
pj þ

Xj�1

i¼0

pi: (3)

This approximation is equivalent to interpolating Pj(z) for

z 2 ½zj; zjþ1Þ with a piecewise-linear function, the slope of

which is pj and the intercept is
Pj�1

i¼0 pi. Using this monotonic

approximation, ~T can be estimated with Eq. (2). However,

this estimation only shifts bins centers, and splitting of bins is

not possible. This becomes especially problematic when the

source and the target images are within different intensity

range, such as transforming 8-bit images to 16-bit images or

the other way around. Since the bins cannot be split, informa-

tion can only be retained based on the image that is repre-

sented by less bins. Attempts have been made to include local

information28 (local mean, entropy, etc.) into the objective

function as a “context-aware” term, but doing so introduces

more parameters, and the transformed images tend to be

blurred.

The aforementioned issues can be overcome by a tech-

nique called exact histogram specification (EHS).29–31 In the

following sections, we will use the previously introduced

notations. For an image of size M 9 N 9 P with gray values

in f0; 1; . . .; 2L0 � 1g, the histogram divides M 9 N 9 P

pixels into 2L0 bins. The fundamental idea behind EHS is to

strictly order all the pixels, such that the ordered pixels can be
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divided according to any given target histogram. This usually

cannot be done by using intensities only, thus auxiliary infor-

mation needs to be introduced.

Local means and wavelet coefficients have been reported

to be successful source of auxiliary information for achieving

strict ordering.30,31 In a more recent study,29 a moderately

improved performance in nature images has been reported

with a proposed auxiliary term involving three hyperparame-

ters. Compared to the other two aforementioned approaches,

the local-means approach better copes with noise and

involves no hyperparameters, thus it is chosen in this study as

the noise level of OCT images is known to be high.

Considering the intensity at each pixel as the first scale of

the local mean, for each pixel i we calculate a vector of multi-

scale local means with increasing window size l = [l1(i),

l2(i),. . .,lK(i)], K being the number of scales. Consequently,

all the pixels in the image can be ordered lexicographically

with a relational operator defined as

fi � jjl‘ðiÞ ¼ l‘ðjÞ8‘\‘0
; l‘0ðiÞ\l‘0

ðjÞg: (4)

As result of using this approach, pixels in one image are

expected to be ordered strictly by using just a few scales. It

was observed that K = 6 scales are usually enough to arrange

all the pixels in a strictly ascending order.30 Once the strict

ordering is achieved, the pixels can be easily grouped again

following the histogram defined in the target image.

In practice, the EHS is often used to estimate the target

image(s) given the source image(s) and the target histogram.

In our case, however, the target histogram is unknown and

should first be defined using a group of matched source and

target images. Thus, our task is twofold: (a) To estimate the

target histogram(s) from the matched images, and (b) To

apply the estimated histogram(s) to a new source image. The

following section describes our method in full detail.

3. MATERIALS AND METHODOLOGY

As it was previously elaborated, the key step for using

EHS is to define the target histogram.

3.A. Global and local matching schemes

To determine the target histogram, the most straightfor-

ward approach is to use the overall histogram generated with

all the images. However, using the global histogram as a ref-

erence might result in information loss as some of the less

represented tissue structures might get overshadowed in the

global histogram. Using local histograms might help resolv-

ing this issue.

Therefore, we introduce a Global scheme and a Local

scheme for determination of the target histogram. For apply-

ing the Local scheme, each pullback is split into smaller sec-

tions (our pullback alignment and splitting algorithm is

described in the following section). For providing a formal

definition, we denote the database of matched histogram

pairs as H ¼ fðHk
1;H

k
2Þjk ¼ 1;NHg, where Hk

1 denotes the

histogram of kth section in the original space (e.g., St. Jude),

Hk
2 denotes its counterpart in the target space (e.g., Terumo),

and NH is the size of the database.

For matching a given image with histogram H�
1 , the Global

scheme uses one overall histogram as the target histogram,

that is,

HG
2 ¼

XNH

k¼1

Hk
2: (5)

The Local scheme determines the target histogram for each

section as the second component of the database entry whose

first component is the most similar to H�
1 :

HL
2 ¼ H

argmin
k¼1;NH

dðH�
1
;Hk

1
Þ

2 : (6)

Here, d(Hi,Hj) denotes dissimilarity between two histograms

Hi and Hj. The remainder of this section describes creation of

the histogram database and introduces the dissimilarity mea-

sures.

3.B. Data description and alignment

In our case, the target histogram is estimated using a data-

set of matched images. As the final goal of this study is to

transform OCT images both from intensity space of St. Jude

system (St. Jude space) to that of Terumo system (Terumo

space) and the other way around, the target histograms in

both St. Jude and Terumo spaces need to be determined. To

achieve this, eight in vivo pullbacks were acquired from left

anterior descending artery (LAD) of two different patients,

marked as A and B. The data acquisition strictly followed the

clinical guideline of Sakurabashi Watanabe Hospital (Osaka,

Japan), and the analysts from Leiden University Medical

Center (Leiden, The Netherlands) were blinded from all

patients’ information. For each patient, IVOCT pullbacks

from the same vessel segment were acquired shortly after

each other with St. Jude and Terumo systems, before and

after the stent implanting procedure. As a result, four pairs of

corresponding St. Jude–Terumo pullbacks were made avail-

able for the study. The St. Jude pullbacks were acquired at a

pullback speed of 36 mm in 180 frames per second with a

frame interval of 0.2 mm, and the Terumo pullbacks were

acquired at a pullback speed of 40 mm in 158 frames per sec-

ond with a frame interval of 0.25 mm. Raw polar images as

provided by the vendors are used in this study. St. Jude

images are 16-bit “linear” with a transversal pixel size of

0.0050 mm, and Terumo images are 8-bit “log-like” com-

pressed with a transversal pixel size of 0.0049 mm.

Due to different distal and proximal locations in two corre-

sponding pullbacks, images within overlapping part of the

vessel should be matched. We determine the start and the end

frames of overlapping part by searching for identical side

branches that are closest to the proximal and the distal parts

of the pullbacks. Since we primarily aim at analyzing the tis-

sue region, images with stent struts points are excluded (more

elaborate discussion about this is provided in Section 6).
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Compared to the histogram of the entire overlapping part

of pullbacks, histograms of smaller sections may preserve

more local structural information. Therefore, we further split

the overlapping part into small sections using key frames

defined by two main types of anatomical landmarks (as

shown in Fig. 2): the side branches and the tissue types with

identical patterns, for exmaple, culprit lesion visible in

Fig. 1(c) and 1(f). For the poststenting pullbacks, the proxi-

mal and distal edges of the stent struts are also considered to

be crucial landmarks. Key frames were identified indepen-

dently by two experienced IVOCT readers, using QCU-CMS

(Quantitative Coronary Ultrasound—Clinical Measurement

Systems; Leiden University Medical Center, Leiden, The

Netherlands), which is the research version of QIVUS (Quan-

titative IntraVascular UltraSound; Medis, Leiden, The

Netherlands). Only landmarks with consensus were selected.

Even though the catheter is pulled back with a uniform

speed, the number of frames within a certain section can be

affected by the heartbeat cycle, slight bending of the artery,

interaction between the catheter and the artery wall, and so

on. Due to this effect, finer splitting or frame-to-frame match-

ing is not possible without introducing an interpolation error.

Table I gives an overview of the aligned data. Patient-A

had no stent planted beforehand, while Patient-B did have

one. Hence, the number of frames without stent struts in

Patient-B is smaller than in Patient-A. Overall, the pullbacks

were aligned with 23 key frames. Within these frames,

regions of clinical interest (ROI) were delineated based on

their appearance and visible borders according to the consen-

sus;11 see Fig. 1. In total, we have 18 corresponding pairs of

sections and 38 ROIs. After correspondence between the sec-

tions had been established, the database of matched his-

togram pairs was generated using foreground regions

bounded by the lumen border and 1 mm behind. This corre-

sponds to the depth of 200 pixels in St. Jude polar image and

204 pixels in Terumo polar image. The lumen border is

detected by the QCU-CMS software in an automated manner.

3.C. Dissimilarity between histograms

The Euclidean and the Kolmogorov–Smirnov distances

are used for comparing two histograms. They are first used in

the analysis of the local variations and, after that, for evalua-

tion of matching schemes.

For calculating the distances, the histograms are normal-

ized to obtain the probability density functions (pdf’s) and

the corresponding cumulative density functions (cdf’s). The

Euclidean distance for measuring dissimilarity between two

pdf’s p and q is defined as

dx2ðp; qÞ ¼ ðp� qÞ � ðp� qÞ0; (7)

the discrete approximation of which is equivalent to the

objective function in Eq. (1). The Kolmogorov–Smirnov dis-

tance measures dissimilarity between the distribution func-

tions (also known as cdf’s) P and Q:

dKSðP;QÞ ¼ max
i

jPi � Qij: (8)

3.D. Validation

Leave-one-out validation is used to compare the Global

and Local schemes. One of the four pullback pairs is left out

in turn, and the target histogram is determined with the other

three. Consequently, the intensities of the left-out pullback

are matched. As part of each leave-one-out experiment, med-

ian intensities within each ROI are compared in both target

and matched images. The target and matched median values

are shown in the scatter plot and compared in the Bland–Alt-

man plot. The scatter plot can show whether two groups of

FIG. 2. The landmarks for aligning the pullbacks. [Color figure can be viewed at wileyonlinelibrary.com]
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data are linearly related and how much the trend line deviates

from the diagonal line, which is the ideal case indicating that

two groups of data match perfectly. The Bland–Altman plot

shows the average vs the difference of each two compared

values, which reveals the difference of two groups of data

more explicitly. The mean and the standard deviation values

of the difference are also called the systematic difference and

the random error. With a properly low random error, the clo-

ser the systematic difference to zero level is, the more likely

that two groups of data are originating from the same distri-

bution. For reference, also the key frames are matched using

the target histograms extracted directly from their corre-

sponding aligned frames.

4. RESULTS

We calculated the distances between all the histograms in

two spaces. Figure 3 gives a general overview of all the dis-

similarities. In the scatter plot of distances in Fig. 4, we

observed a linear trend and further performed the regression

analysis. The statistical results show that the dissimilarities in

two spaces are correlated significantly with P < 0.005. This

validates the assumption and supports the Local matching

scheme.

Results of the leave-one-out validation for both St. Jude-

to-Terumo (S?T) and Te-ru-mo-to-St. Jude (T?S) images

are reported in Figs. 5 and 6 and summarized in Table II. For

a section containing 70 images, generating the histograms

takes 10 s. For the Local scheme, the time for searching in

our database of 34 histograms using our Matlab (MathWorks,

R2016a with Statistics and Machine Learning Toolbox)

implementation is 1.25 s. Figure 5 shows the estimated target

probability profile (normalized histogram) together with that

determined by the aligned data (in red color; will be further

referred to as the aligned histogram). The corresponding

cumulative probability plots are shown as well. Both dx2 and

dKS are shown as bar charts in Fig. 6, and the numbers are

reported in Table II. The distances between matched and ref-

erence distributions for both Global and Local schemes are

low and robust; see Fig. 6 and Table II. The average distance

of all four validation experiments (Aver in Table II) indicates

that, in general, the Local scheme outperforms the Global

scheme.

Scatter plots and Bland–Altman plots of the median inten-

sities within ROIs are shown in Fig. 7. When comparing

intensities in St. Jude space, an increasing trend is observed

in the absolute systematic error; see Figs. 7(b), 7(e), 7(h),

7(k). Following the conventional statistical procedure for

Bland–Altman analysis,34 the St. Jude intensities were com-

pared in the logarithm scale; see Figs. 7(c), 7(f), 7(i), 7(l).

Without an obvious trend in Terumo space, the intensities are

compared in the linear space; see Fig. 7(a), 7(d), 7(g), 7(j).

For the reference matching between the corresponding key

frames, the systematic differences are �4.50 for S?T and

0.15 for T?S; see Figs. 7(a) and 7(c). This difference is the

most likely to be caused by the selection of data and is inde-

pendent of the scheme used. Using this intrinsic systematic

difference as a reference, the absolute systematic differences

yielded by the Local scheme are relatively small: 9.67 (S?T)

and 0.07 (T?S) for dx2, 7.92 (S?T) and 0.06 (T?S) for

dKS, compared to the Global scheme: 10.26 (S?T), 0.12

(T?S). Taking into consideration the described intrinsic dif-

ference, the Local scheme yields absolute values closer to

zero for both S?T and T?S matching. All comparisons in

Bland–Altman analysis suggest that the Local scheme outper-

forms the Global scheme for EHS-based intensity transforma-

tion in IVOCT images between St. Jude and Terumo systems.

The images matched with the target histogram determined by

the Global scheme are shown in Fig. 8. The matched images,

see Figs. 8(e)–8(h), 8(m)–8(p), and the corresponding

aligned images, see Figs. 8(a)–8(d), 8(i)–8(l), show compara-

ble intensity levels in both St. Jude and Terumo spaces.

5. COMPARING ATTENUATION COEFFICIENT
VALUES USING BOTH ST. JUDE AND TERUMO
IMAGES

One of the postprocessing steps in IVOCT data analysis is

the estimation of the attenuation coefficients, which are

defined as the distinction rate of light passing through a

TABLE I. Data description.

Patient Treatment
St. Jude Terumo

Landmark Section ROI

PLa(mm) Allb Maxb Minb PLa(mm) Allb Maxb Minb

A Prestenting 108 507 80 10 168 389 88 9 14 13 32

Poststenting 108 69 52 17 147 53 41 12 4 2 4

B Prestenting 75 40 21 19 152 33 19 14 3 2 1

Poststenting 75 12 12 12 111 10 10 10 2 1 1

Total 628 80 10 485 88 9 23 18 38

ROI Adventitia Calcification Fibrous IMLc Lipid Neointima Total

No. 4 11 10 4 3 6 38

aPL: total length of the entire pullback.
bAll, Max, and Min: the total, maximal, and the minimal numbers of frames in the aligned sections.
cIML: intima-media layer.
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volume of tissue with a unit of lm�1. It is considered to be a

key feature for identification of different tissue types in the

arterial wall. In our previous work,35 we reported the depth-

resolved (DR) estimation using St. Jude images. However,

applying this estimation directly to Terumo images results in

a different range of values. Therefore, we applied this estima-

tion approach to the matched Terumo images (in St. Jude

range) to validate the assumption that proposed matching

scheme facilitates generalization of the attenuation estimation

algorithm developed for St. Jude data to Terumo images. The

results described above show comparable performance for

both schemes. We further illustrate performance of the

Global scheme for the estimation of attenuation coefficient

using the DR method.

The attenuation was estimated both in the matched and

original Terumo images. The median values within ROIs

were compared to those estimated using St. Jude images. The

paired t-test at 5% significance level was used with a null

hypothesis that the mean difference between two sets is zero.

Figure 9 shows the Bland–Altman plots of the com-

parison of median attenuation coefficient in ROIs in

(matched/original) Terumo images and in corresponding

ROIs in St. Jude images. In the plot presented in

Fig. 9(a), original Terumo images were directly used for

FIG. 3. The distances between all the histograms in the database for St. Jude (left) and Terumo (right) spaces. All the distances were multiplied by a factor of 100

for presentation purposes. In each distance map, dx2 and dKS are shown in the lower and upper triangles, respectively. [Color figure can be viewed at wileyonline

library.com]

FIG. 4. Linear regression of distances of all the histograms in our database for St. Jude and Terumo. [Color figure can be viewed at wileyonlinelibrary.com]
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the estimation. Comparing to those estimated using the

corresponding St. Jude images, the points are not evenly

distributed around the zero-line, and both systematic dif-

ference and the range of random error are high. Paired

t-test indicates that the mean difference is significantly

different from zero with P < 0.001, and the 95% confi-

dence interval (CI) is [0.74,1.42]. In Fig. 9(b), the

matched Terumo images were used for the estimation. In

this case, the difference with the values estimated using

the St. Jude images is much smaller, which is indicated

by lower systematic difference and random error range,

and the points are more randomly distributed around the

zero-line. For this case, paired t-test gives P = 0.320 with

a 95% CI of [�0.10,0.30].

6. DISCUSSION

Clinical significance of IVOCT structures has been

reported extensively in clinical research. The use of IVOCT

for the analysis of CADs grows exponentially. For more effi-

cient analysis with minimum manual intervention, automated

methods for tissue quantification, characterization, and

FIG. 5. The aligned and trained probability and the cumulative probability distributions for leaving the 1st (a), the 2nd (b), the 3rd (c), and the 4th (d) pullback

out. Target profiles for both St. Jude (S?T) and Terumo (T?S) images are shown. For the latter case, the x-axis is shown in the logarithm scale (ln) for the sake

of better visualization. [Color figure can be viewed at wileyonlinelibrary.com]
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classification are needed. However, a lack of standardized

image intensities can increase the difficulty of designing

algorithms or restrict the possibility of generalization of algo-

rithms developed for one specific imaging system. Therefore,

standardizing image intensity is a crucial processing step to

speed up the development and validation of methods for

intravascular tissue analysis.

This study aims at exploring a proper scheme to match

IVOCT image intensities with the local-mean EHS technique.

In our case, the most essential step is to determine the target

histogram. Preliminary statistical analysis suggests that dis-

tances in both spaces are significantly correlated. Based on

this analysis, we propose a Local matching scheme and

compare it with the Global scheme. Target histograms deter-

mined with both schemes turned out to be successful in

matching IVOCT intensities at relatively low cost. In this,

Local scheme marginally outperforms the Global scheme,

which is in line with the results of our preliminary statistical

analysis. Moreover, the attenuation estimation experiment

presented in Section 5 illustrates benefits of using the Global

scheme in practice by showing that it, in particular, largely

improves the compatibility of the estimated attenuation coef-

ficient across vendors.

Significant variation in the histograms of different sections

is caused by many reasons, the difference in tissue composi-

tion being the major factor. As it has been reported in Ref.

FIG. 6. The bar chart of the distances for leave-one-out experiment for matching St. Jude to Terumo (S?T) space and Terumo to St. Jude (T?S) space.

“Pb” = “pullback”. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. Results of leave-one-out cross validation.

S?T T?S

Pb1 Pb2 Pb3 Pb4 Avera Pb1 Pb2 Pb3 Pb4 Avera

dx2 Global 0.0248 0.0135 0.0381 0.0241 0.0251 0.0058 0.0046 0.0110 0.0090 0.0076

Local 0.0192 0.0141 0.0231 0.0091 0.0164 0.0069 0.0053 0.0042 0.0049 0.0053

dKS Global 0.0994 0.0593 0.1398 0.0711 0.0924 0.0252 0.0179 0.0303 0.0273 0.0252

Local 0.1022 0.0724 0.1110 0.0347 0.0801 0.0276 0.0137 0.0246 0.0183 0.0210

aThe average performance of all the four leave-one-out experiments.

Bold indicates the best performance.
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[5], tissue types are mainly visually assessed by recognizing

bright speckle, presence of following shadow, sharpness of

border, etc. Quantitative results confirm that these image

structures yield variations in the histogram. Our previous

study36 demonstrated that image intensities can also be

affected by position of the catheter. This effect can cause a

large variation in the distances and can, thus, explain the low

R
2 in the reported statistical analysis.

The Bland–Altman analysis shows a systematic difference

in median intensities within selected regions of interest, even

when the exact histogram is specified using the matched key

frames. This intrinsic variation may be caused by many fac-

tors, such as the data alignment bias, intrinsic difference in

systems for data acquisition, etc. Although this difference is

relatively low, it should be accounted for in future applica-

tions of this method.

For clinical application, both schemes can also be

easily embedded as an independent function for automated

intensity standardization. For the global scheme, the target

histogram needs to be saved within the program. During

calculation, this target histogram is loaded and used in

EHS. For the local scheme, the database of histogram

pairs needs to be saved. During calculation, the target his-

togram needs to be searched in the database and then it is

used in EHS. Furthermore, the proposed experimental

setup is not limited to the two considered IVOCT systems

and can be used to standardize image intensities between

other OCT systems or even for other modalities, for exam-

ple, MRI. Matching images to St. Jude or Terumo images

can also further speed up the validation of newly devel-

oped IVOCT systems. As long as the order of intensities

of different structures in both systems is consistent, strict

ordering can be applied to insure that the exact histogram

can be specified.

In this work, we developed and presented a framework for

minimizing intensity variation between two different IVOCT

systems. At the same time, there might be variations caused

by differences between systems from the same vendor, differ-

ences between catheters for the same imaging machine, and

even differences in the pullbacks acquired using the same

hardware and catheter. Since the images were calibrated by

design during the acquisition, we expect these variations to

be small.

Bare metal stents (BMS) were implanted in two out of the

four pullbacks used in this particular study. Due to their high

light reflectance, the BMS struts appear on the images as sat-

urated bright spots with dark shadows behind them. They dis-

turb the intensity distribution. Since this work mainly focused

on matching images of the arterial tissue, images with stent

struts were deliberately excluded from the analysis.

6.A. Limitation

The data used in this study are specially generated for con-

struction of this intensity matching framework. Performing

(virtually) simultaneous acquisition with two IVOCT systems

is not done in clinical practice. Therefore, the amount of data

used in this study is limited, which is a major limitation of

this work. However, these data are unique and more represen-

tative for the analysis on intensity matching than ex vivo and

animal data. Furthermore, results of leave-one-out validation

show reasonable robustness through pullbacks and patients.

At the same time, we acknowledge that extending the his-

togram database might potentially improve the histogram

FIG. 7. Scatter and Bland–Altman plots for comparing the median intensities within ROIs in target and matched frames (n = 38). Reference intensities, matched

according to the aligned key frames (a,c), compared to that matched with the Global scheme (d,f), the Local scheme with dx2 (g,i) and the Local scheme with dKS
(j,l). In the scatter plots, the regression line is shown as the solid line and the dashed line indicates the y = x line. In the Bland–Altman plots, the x-axis and the

y-axis are the average and the difference of the target and matched intensities, respectively. The solid line indicates the mean error, and the dashed lines mark the

95% confidence interval. The matched intensities are compared in Terumo (a,d,g,j), St. Jude (b,e,h,k), and logarithmic St. Jude (c,f,i,l) spaces, respectively.

[Color figure can be viewed at wileyonlinelibrary.com]
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matching as using a larger database will most likely lead to

more reliable estimation of the target histograms for both

Global and Local schemes.

6.B. Future work

This histogram matching scheme will be used for stan-

dardization of IVOCT image intensities as a crucial first

step for further quantification. Our future work will focus

on comparing the outcome of existing quantification

methods, such as attenuation estimation, quantification of

the degradation of bioresolvable struts and differentiation

of neointima, to data acquired by different IVOCT sys-

tems.

Once the matching framework is extensively validated,

this approach can be routinely used as a preprocessing step

for data standardization. The standardized images can be used

for the development of universal algorithms for segmentation

(of, for example, fibrous cap of TCFAs) or tissue analysis

(e.g., for estimation of attenuation coefficients).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

FIG. 8. Images matched using the Global scheme. Raw St. Jude images (a–d) were mapped to the Terumo intensity space (e–h). Raw Terumo images (i–l) were

mapped to the St. Jude intensity space (m–p). [Color figure can be viewed at wileyonlinelibrary.com]
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In this study, we did not include the stented segments of

the pullbacks due to the high reflectance of the metallic

struts. However, for future work the database could be

extended with the stented segments of the pullbacks by

excluding individual strut points and their shadows from the

images (rather than excluding the entire frame).

7. CONCLUSION

In this work, we presented our contribution to the

construction of an intensity standardization framework

for IVOCT images. We further contribute to the valida-

tion of two proposed schemes in the framework with

data acquired by two of the most commonly used

IVOCT systems in clinical research. Both local and glo-

bal schemes are robust and produce accurate intensity

matching. While local scheme performs marginally better

than the global scheme, it requires a predefined his-

togram dataset and is more time consuming. Thus, for

offline standardization of the images, the local scheme

should be preferred for being more accurate. For online

standardization or when another system is involved, the

global scheme can be used as a simple and nearly-

as-accurate alternative.
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