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Abstract

By the late 2020s or early 2030s, the next generation of telescopes will be able to directly observe the reflected
starlight of Earth-like exoplanets. Because of the huge distance to other stars, such exoplanets will appear as
single unresolved pixels. A single pixel can, however, provide information about what the planet looks like
because its brightness varies in time as it rotates about its axis and orbits its star. Several researchers have
shown that these changes in brightness can, indeed, be used to retrieve a map of the planet. Their meth-
ods use the Lambertian model of diffuse reflection to retrieve albedo maps of the planet’s surface. We aim
to develop new algorithms that can retrieve maps of non-Lambertian planets with a Rayleigh scattering at-
mosphere, clouds with water droplets that cause rainbows and oceans that exhibit a glint feature. We also
aim to evaluate the validity of the Lambertian assumption for such non-Lambertian planets. We numerically
compute reflected light curves with the previously mentioned non-Lambertian effects, including the polar-
ization of the reflected light. Instead of retrieving albedo maps, we classify facets by their surface type and
cloud coverage, using convolutional neural networks. We show that a convolutional neural network can clas-
sify facets on a non-Lambertian planet with an accuracy of 87% for an ideal geometry and no noise, when
the rotation axis is known. Using another neural network architecture, we show that the rotation axis can
be constrained with a mean squared error as low as 0.006 for our training data and similar results are seen
for a model Earth. Including polarization in the retrieval improves the rotation axis retrieval’s mean squared
error (MSE) by roughly 15% and the classification accuracies of ocean facets and cloudy facets by 2% and
1% respectively. We show that a retrieval algorithm that relies on the Lambertian assumption causes con-
centric artefacts about the poles when applied to light curves of a non-Lambertian planet for all inclinations
besides face-on. The MSE of the rotation axis retrievals increases by roughly one order of magnitude for these
inclination when making the Lambertian assumption.

Delft, June 2021
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1
Introduction

Since 1995, when Mayor and Queloz [29] discovered the first exoplanet orbiting another star, more than 4000
exoplanets have been identified and catalogued.1 Nowadays, statistics show that nearly all stars have exo-
planets orbiting around them (Dressing and Charbonneau [5], Tuomi et al. [40]). Some of these exoplanets lie
in the "habitable zone", close enough to their star that, assuming the presence of an Earth-like atmosphere,
water on the surface does not freeze and far away enough that it does not boil off, instead forming oceans.
These Earth-like landscapes of continents and water oceans are a promising environment for extraterrestrial
life to evolve.

With the aim of finding signs of extraterrestrial life, NASA and ESO are currently designing the next gen-
eration of telescopes that will be able to detect reflected starlight from these Earth-like exoplanets. This is
particularly difficult due to the very faint exoplanet signal and the adjacent starlight that is at least 10 mil-
lion times brighter (Hunziker et al. [18]). The approach taken by the Starshade Rendezvous Probe mission
(Sara Seager [33]) and HabEx (JPL [19]) is to fly a space telescope in formation with a flower-shaped starshade
that blocks the bright starlight, an idea originally proposed by Cash [4]. Another approach is the European
Extremely Large Telescope (E-ELT),2 which is large enough to observe Earth-like exoplanets about some stars
from the ground using a coronagraph, which blocks the bright starlight from inside the telescope, in com-
bination with an extreme adaptive optics system. Both approaches are expected to take the first images of
Earth-like exoplanets in the late 2020s or early 2030s. Due to the huge distance, however, the exoplanets will
appear as single pixels, much like Earth in the Pale Blue Dot picture taken by Voyager 1 as it left the solar
system (Figure 1.1).

Figure 1.1: The Pale Blue Dot picture of Earth, taken by Voyager 1 as it left the solar system. Like Earth in this picture, a directly observed
exoplanet will appear as a single pixel. In this thesis, we use the pixel’s varying brightness to infer the planet’s map.3

1https://exoplanetarchive.ipac.caltech.edu/
2https://www.eso.org/public/teles-instr/elt/
3Image Source: https://solarsystem.nasa.gov/resources/536/voyager-1s-pale-blue-dot/
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Also due to the huge distances, the intensity of the received light will be very low. Even with the largest
near-future telescopes, the number of photons received from the planet will need to be counted for minutes,
hours or days to obtain a clear measurement. In Figure 1.2, we show the number of photons that would
be received by the Starshade Rendezvouz Probe (with the Roman Space Telescope) and HabEx, which have
aperture diameters of 2.4 and 4 meters respectively, for a completely white, Earth-sized planet around a Sun-
type star at full phase. We assume that the flux is integrated over 3 hours and wavelengths within a range of
50 nm are combined. For these low levels of photons, the particle nature of light gives rise to a noise called
shot noise, so that even a perfect instrument with no background noise cannot make perfect observations of
the planet’s brightness.

Figure 1.2: The maximum number of photons (white Lambertian planet at full phase) for an Earth-sized planet around a Sun-type
star. The integration time is 3 hours and the wavelength bands are 50 nm wide such that each wavelength can be resolved. HabEx is a
proposed mission with a starshade and dedicated telescope for the 2030s (JPL [19]) and the Nancy Grace Roman Space Telescope, to be
launched in the mid-2020s,4has hardware to fly in formation with a starshade that could be launched in the late 2020s (Sara Seager [33]).
Lines for some wavelengths are covered by other wavelengths.

If the planet’s surface is not homogeneous due to continents, oceans and/or clouds, its brightness will
vary as it rotates about its axis and different surfaces are illuminated by the starlight. These daily variations
are caused by longitudinal variations on the planet and can be seen by the high-frequency oscillations in
Figure 1.3. At larger timescales, the planet’s orbit about its star causes phase changes, much like the ones
we see on the moon. Since the planet is unresolved, however, we don’t see a change in the shape, as we do
for the moon, but a change in the brightness of the unresolved pixel. The brightness variations due to phase
changes are on an annual timescale and are caused by latitudinal and longitudinal variations on the planet,
depending on the orientation of the planet’s orbit and rotation axis. One final variation that can be observed
is the polarization (the direction of the electric field vector) of the reflected light waves. Depending on the
directions of the incoming and outgoing light rays, Rayleigh scattering in the atmosphere, scattering by clouds
particles and reflection by surfaces like oceans can cause the planetary signal to become polarized such that
the light waves tend to be oriented in a particular direction, which can be measured by a polarimeter.

Some authors (for example Fujii and Kawahara [8], Kawahara and Masuda [23], Fan et al. [6], Farr et al.
[7] and Asensio Ramos and Pallé [2]) have started solving the problem of creating hypothetical maps of plan-
ets using numerically simulated observations of reflected starlight. They have shown that by measuring the
changes in brightness of a planet over time, it is possible to constrain its rotation axis and retrieve a rough
planetary surface map, using daily variations for longitudinal resolution and annual variations for latitudinal
resolution. In these studies, the planets’ surfaces are treated as Lambertian reflectors, which diffusely reflect
starlight in all directions.

We propose a retrieval algorithm which uses the more accurate model of directionally dependent reflec-
tion, described by Rossi et al. [32]. The model includes an Earth-like atmosphere with Rayleigh scattering,

4https://roman.gsfc.nasa.gov/

https://roman.gsfc.nasa.gov/
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Figure 1.3: The variations in brightness, F , and degree of polarization, P , of a model Earth throughout half of an orbit. High-frequency
daily fluctuations are due to the rotation of the planet about its axis and longer scale variations are due the movement from directly
behind the star (α = 0◦) to directly in front of the star (α = 180◦). These flux curves are created by Groot et al. [12] using the same
directional reflection models used in this thesis.

water clouds that create a rainbow at certain orbital locations and oceans that exhibit a bright glint feature.
Ocean glint is the same phenomenon you observe when you see the reflection of the sun in the ocean at the
beach and is shown by Trees and Stam [39] to significantly affect a planet’s brightness. The polarization of the
reflected light is also dependent on the direction of reflection, so this is also included in the model and used
for the retrievals.

Using light curves created with this more accurate model requires a new approach to planet mapping in
which the surface types are retrieved, rather than albedo values. We approach this problem by using neural
networks, which has several advantages: Neural networks are universal approximators (Hornik [17]) and can
thus be used to solve the non-linear problem of constraining a planet’s rotation axis and neural networks
have achieved state-of-the-art-results in classification problems (Schmidhuber [34]), which is the nature of
surface type mapping. Since directional reflection is more complicated than Lambertian reflection, it seems
that analytical methods would be difficult to apply to the more accurate light curves so neural networks may
be the better solution.

The surface type maps we achieve in this research using neural networks are of similar detail to the albedo
maps retrieved by other authors for Lambertian planets, with more than 85% of the planet being correctly
classified in the ideal case. We show that including a polarimeter and measuring polarization on the next gen-
eration of telescopes would somewhat improve the retrieval of both the rotation axes and maps of observed
Earth-like exoplanets. We also show that the Lambertian assumption causes large errors for inclinations be-
sides a face-on orbit.

In Chapter 2 of this thesis, we create a set of 4 million fake Earth-like planets, with different surface and
clouds maps, that can be used to train neural networks. The next step, in Chapter 3, is to compute the re-
flected flux of each planet for different orbital locations and rotation phases. We design, test and train a
neural network to infer the planets’ rotation axes based on these light curves in Chapter 4. In Chapter 5, we
recreate other authors’ results by retrieving albedo maps of Lambertian planets using simple neural networks.
We show that when a retrieval algorithm based on the Lambertian assumption is applied to non-Lambertian
planets, strong concentric artefacts about the poles can result. We present the new method of mapping, by
classifying facets on the planetary surface as different surface types in Chapter 6. Finally, the conclusions and
recommendations for future research can be found in Chapter 7 and Chapter 8, respectively.



2
Creating Planets

The goal of this thesis is to create retrieval algorithms that infer an exoplanet’s surface map based on direct
observations. The neural network approach requires a large set of training data, consisting of many planets’
properties and their respective observations. Ideally this training data would be taken from actual planets and
moons but this is impossible since the planets and moons in our solar system are two few and not sufficiently
Earth-like. In this chapter, we thus create a set of fake planets, for which synthetic observations are simulated
in Chapter 3.

Four parameters are varied between the planets:

• Cloud Map

• Surface Map

• Orbital Inclination

• Rotation Axis.

To reduce computation and memory requirements, each planet does not have four unique parameters. In-
stead, a set of possibilities is defined for each parameter. Then each planet is created by randomly drawing
from the sets of possibilities and stored as four indices. 4 million planets are thus created nearly instantly.

The first step in defining cloud and surface maps is defining facets on the surface of the planet in Sec-
tion 2.1. Next, Section 2.2 - Section 2.5 describe how each set of parameters is created, respectively. The
goal of these methods is an unbiased set of possibilities, as peculiarities of the data set can be learned by the
networks. To this end, planet maps that are similar to Venus (completely cloud covered) and Mars (nearly
completely desert covered) are included in the training set and there is no bias in the inclination or tilt of the
planets. The final set of planets is presented in Section 2.6.

2.1. Planet Facets
To simulate the reflected star light of a planet, the planet’s surface should be defined by either continuous
functions or a set of discrete facets. The facet approach allows for simple distinction between different surface
types such as those seen on the terrestrial planets and moons in our Solar System. For this reason, it has been
chosen for this thesis research. We identify several requirements for the surface facets:

• The set of facets should approximate a spheroid.

• The set of facets should be three dimensional, so that rotation about the axis and the star is possible.

• The set of facets should be approximately equal in area so that the level of detail on each part of the
planet is approximately equal.

• The number of facets on the sphere should be variable so that the spatial resolution can be adapted if
necessary.

We have investigated two types of facet schemes that (partially) fulfill these requirements: the HEALPix
scheme developed by Gorski et al. [11] and the Fibonacci lattice by González [10].

4
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2.1.1. HEALPix
HEALPix (Hierarchical Equal Area isoLatitude Pixelization) is a facet scheme developed for full-sky cosmolog-
ical maps and it is the standard scheme used for exoplanet cartography (see for example Fujii and Kawahara
[8], Kawahara and Masuda [23], Fan et al. [6], Farr et al. [7], Asensio Ramos and Pallé [2]). Besides the facets’
equal areas, a major advantage of the HEALPix scheme is that nearby facets are indexed consecutively, allow-
ing for easier data processing for "convolutions with local and global kernels, Fourier analysis with spherical
harmonics and power spectrum estimation, wavelet decomposition," etc. (Gorski et al. [11]).

Figure 2.1: The 12 base resolution facets of HEALPix, one of the two considered facet schemes. All facets have an equal area on the
surface of a sphere and can be subdivided for higher resolutions as done in Figure 2.2 for a total of 768 facets. (Figure 5 from Gorski et al.
[11])

(a) Planetary disk as seen by an observer.

(b) Geodetic (longitude-latitude) coordinate system.

(c) Mollweide projection (areas are proportionally correct but shapes are distorted).

Figure 2.2: A higher resolution HEALPix scheme, created by subdividing the base facets in Figure 2.1 into four equal rhombuses three
times for a total of 12 ·43 = 768 facets.

The HEALPix scheme is based on 12 base facets, as shown in Figure 2.1. In order to achieve higher res-
olutions, the base facets are each subdivided into four quadrilaterals, allowing for 12 ·4N total facets for any
non-negative integer N . A HEALPix scheme divided three times (N = 3), thus resulting in 768 facets, is shown
for different projections in Figure 2.2.
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2.1.2. Fibonacci Sphere
The Fibonacci spiral is a method of creating any positive integer N of evenly spaced points on the surface
of a sphere, based on the golden ratio. One axis through the sphere is chosen (in our case the y-axis) and
for a sphere with radius R the coordinates of the sampled points are evenly spaced in the range −R ≤ y ≤ R.
The other two Cartesian coordinates (in our case x and z) are found by rotating about the chosen axis by
the golden ratio (≈ 137.5◦), as shown in Figure 2.3. Due to the nature of the golden ratio, periodicities or
near-periodicities are avoided and so there is no clumping of the points (González [10]).

Figure 2.3: The Fibonacci Spiral with 21 equally spaced points on the surface of a sphere, created by equally distributing along one axis
and rotating by the golden ratio about said axis. (Figure 2 from González [10].)

(a) Planetary disk as seen by an observer.

(b) Geodetic (longitude-latitude) coordinate system.

(c) Mollweide projection (areas are proportionally correct but shapes are distorted).

Figure 2.4: A Fibonacci sphere with 768 facets, created by passing 383 points of a Fibonacci spiral into the scipy ConvexHull function.

To convert the sampled points into a set of facets that approximate a sphere, the convex hull problem
needs to be solved, which is the problem of identifying the lines (in 2-D) or facets (in 3-D) which encapsulate
a set of points while only using those points as vertices. To do this, the ConvexHull function from the SciPy
Python package, which is an implementation of the Quickhull algorithm, is used.5 This splits the sphere into

5https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html


2.2. Surface Maps 7

2N +2 triangular facets when there are N sampled points.
The resulting facet scheme for 768 facets is shown in Figure 2.4 and shows that the facets are far more

irregular than when using the HEALPix scheme and patterns are difficult to recognize. The facets appear to
be roughly equal in size, which is confirmed by plotting the facets’ areas in Figure 2.5, which shows that their
standard deviation is only 6% of their mean.

Figure 2.5: Areas of the facets on the Fibonacci sphere shown in Figure 2.4. N, µ and σ indicate the total number, mean and standard
deviation, respectively. The areas are verified by multiplying N and µ and a deviation of 0.8% from the surface area of a perfect sphere is
found (radius = 1). The two left-most outliers are faces with one vertex at [0,1,0].

2.1.3. Comparison of Facet Schemes
Both of the first two requirements for the facet scheme, which are approximation of a spheroid and three-
dimensionality, are fully met by both HEALPix and the Fibonacci method. The third and fourth requirements
state that the areas of the facets should be roughly equal and that the number of facets should be easy to
vary, respectively. HEALPix has equal facet areas, but can only be used for 12 · 4N (12, 48, 192, 768, 3072 ...)
number of facets. The Fibonacci sphere has only approximately equal facet areas but can be used for any
even number of facets. We decide to use the Fibonacci sphere since the shortcomings of HEALPix seem to
outweigh those of the Fibonacci sphere, which has nearly equal facet areas. The ability to vary the number
of facets when using the Fibonacci method is helpful for creating fake planets and trying different network
architectures to retrieve planet maps. Through trial and error, we find that using 1000 facets strikes a balance
between sufficient detail in the spatial resolution and efficient training of neural networks.

2.2. Surface Maps
After splitting the planetary surface into facets, each facet can be assigned a surface type such as the ones
we see on Earth (ocean, vegetation, desert, etc.), to create maps of Earth-like planets. These surface maps are
used to compute reflected fluxes in Chapter 3 and will be retrieved by the architecture described in Chapter 6,
using said fluxes. We identify the following requirements for an algorithm that creates such surface maps:

• The algorithm should be efficient enough that a set of at least 10,000 different maps can be created.

• The patterns should be fractal in nature, roughly resembling those on Earth.

• It should be easy to control the fraction of the planet covered by a given surface type, so that this can be
drawn from a distribution.

These requirements are met by first generating an elevation profile across the planet and then choosing an
elevation range for the different surface types.

2.2.1. Elevation Profile
We investigated two different methods to create elevation maps:
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• The Great Circle method6

• Tetraheral Subdivision by Mogensen [30].

The Great Circle method works by creating random great circles on a sphere and raising the elevation of all
points on one side of the great circle and lowering the elevation of all points on the opposite side. This method
has the disadvantage that the maps are symmetrical, as elevations on opposite points of the sphere are always
negative of each other. Although we did not investigate it, there seems to be a possibility that a neural network
would become optimized to take advantage of this artefact, which is not representative of nature.

The Tetrahedral Subdivision method is described in the paper by Mogensen [30]. This method works by
creating a random tetrahedron around the planet and then placing a new point on its longest edge (in the
middle of the edge, with a random offset along the edge) to divide it into two new tetrahedra. This method is
repeated until each facet on the sphere’s surface is contained by a unique tetrahedron, with a unique eleva-
tion. By trial and error, we find that the offset exponent q discussed in the paper provides a roughly Earth-like
level of map complexity for q = 0.5. An example elevation profile is shown in Figure 2.6.

Figure 2.6: Example elevation profile created using the tetrahedral subdivision method developed by Mogensen [30]. A tetrahedron
around the planet is subdivided repetitively until each facet is contained in a unique tetrahedron with a unique elevation. Each elevation
range can be assigned a surface type to create planet maps. Recall that we use 1000 surface facets.

Due to the irregularity of the tetrahedra, patterns in the elevation profile are not easily detected, making
this method advantageous compared to the Great Circle method. Another advantage is that the method is
computationally more efficient. For these reasons, the Tetrahedral Subdivision method is chosen rather than
the Great Circle method.

2.2.2. Surface Types
The next step to create the surface maps is to assign elevations ranges for each type of surface. For simplicity,
only three types of surface are considered (in ascending order of elevation):

• Oceans are included as they are an indicator of habitability.

• Sandy desert is included as it is a common surface type on the terrestrial planets in our Solar System.

• Vegetation is included since finding evidence of life is the "holy grail" of exoplanet studies. The chloro-
phyll bump and red edge, shown in Figure 2.7, are two distinctive features of the reflection spectra of
vegetation that can be used to identify it. It is likely that life on other planets has different absorption
spectra than Earth’s vegetation, but similar patterns could be observed (Fujii et al. [9], Seager et al. [35]).

To assign each facet on the planet a surface type, first a fraction of the total surface to be covered by each
type should be defined. This is not a trivial problem as the following requirements should be met:

• Three numbers should be drawn from a random distribution.

• The numbers should be between 0 and 1.

• The numbers should sum to one.

6http://paulbourke.net/fractals/noise/index.html

http://paulbourke.net/fractals/noise/index.html
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• The numbers should each have equal covariances, so that a neural network cannot infer one surface
type’s presence due to another’s presence.

• A significant portion of the numbers should be near 0 or 1, so that there are planets in the training data
set that are nearly completely covered in a single surface type (such as Mars).

Figure 2.7: The reflection spectrum of a deciduous leaf shows the features of a chlorophyll bump and red edge (also shown in Figure 3.4),
which are unique to plants on Earth. Vegetation is included as a surface type in the fake planet maps since similar features could be an
indicator of life on an exoplanet. (Figure 1 from Seager et al. [35])

To fulfill these requirements, the following functions are used for a, b, and c, the fractions of surface covered
by ocean, sandy desert and vegetation, respectively:7

x1 ∼ unif(0,1)
x2 ∼ unif(0,1)
a = x2

1
b = (1−a)(1+ sin(π · (x2 −0.5))/2
c = 1−a −b

(2.1)

such that the probability distribution for a, b and c is f (x) = 1
2
p

x
on [0,1]. For each elevation map, a triplet of

a, b, and c is created using the above equations. The elevation ranges that correspond to each surface type
are then computed with ocean, sandy desert and vegetation in ascending order. Each facet is thus assigned a
surface type depending on its elevation, creating maps such as the examples in Figure 2.8.

A set of 10,000 surface maps is created and to verify that the distributions in Equation 2.1 work as in-
tended, each map’s surface type fractions are plotted in a histogram in Figure 2.9. The covariance matrix of
the number of surface type facets shows that the covariances are approximately equal:

Σ=
 8.83 −4.42 −4.41
−4.42 8.96 −4.54
−4.41 −4.54 8.95

 ·104 (2.2)

This shows that no surface type is an indicator of another surface type’s presence (off-diagonal values are the
covariances of combinations of different surface types).

7Dr. Paul Visser came up with these equations.
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Figure 2.8: Examples picked from the set of 10,000 surface maps used for training the neural networks. The fraction of each surface type
is drawn from the distributions in Equation 2.1 and used to determine each surface type’s range on elevation maps like the one shown
in Figure 2.6. Ocean, vegetation and desert are represented by dark blue, dark green and brown, respectively, with the RGB values being
the effective albedos for the wavelengths 700, 550 and 500 nm, respectively (see Figure 3.4).

Figure 2.9: The number of facets of each surface type for all 10,000 surface maps. These are drawn from the distributions in Equation 2.1
following the distribution 1

2
p

x
. The covariances are roughly equal for each combination (see Equation 2.2). There are 10,000 surface

type maps (N = 10,000) and 50 bins, which the number of facets are split into.

2.3. Cloud Maps
Like Earth and Venus, exoplanets may have clouds that hide the surface from the view of observers. These
clouds can greatly effect the planetary climate and are thus of interest when assessing habitability (Karalidi
et al. [20].) To simulate clouds patterns, the method from Rossi et al. [32] that creates patchy, zonal clouds is
chosen. The planets’ facets are projected into a geodetic (longitude-latitude) coordinate system, and then a
facet on the planet is selected as the center of a cloud patch. Then 100 samples are drawn from a Gaussian
distribution with a covariance matrix of:

Σ=
[

0.15 0
0 0.003

]
[rad2] (2.3)

The asymmetry between longitude and latitude leads to zonal cloud patterns, similar to those observed
on Earth and other planets such as Jupiter. This process can be repeated until the desired cloud coverage
is achieved, which is drawn from the first distribution in Equation 2.1, independently of the surface cover
draws. A set of 10,000 cloud patterns is created, of which four examples are shown in Figure 2.10. The cloud
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covers of the maps are plotted in a histogram in Figure 2.11, to verify that the distributions in Equation 2.1
work correctly again.

Figure 2.10: Examples picked from the set of 10,000 cloud maps, created by picking random locations on the map as a center of a cloud
and making 100 draws from a Guassian distribution until the desired cloud cover is reached. The longitudinal width is on average

p
50 ≈ 7

times greater than the latitudinal height, due to the asymmetry in the covariance matrix in Equation 2.3.

Figure 2.11: The number of cloudy facets for each of the 10,000 cloud maps, drawn from the first distribution in Equation 2.1.

2.4. Inclinations
The inclination, i , of a planet’s orbit is defined as the angle between the orbital plane and the reference plane
containing the observer, as shown in Figure 2.12. This means that an orbit that is seen on its side (or edge-on)
has an inclination of 0◦ and a face-on orbit has an inclination of 90◦.8 This angle is important for retrievals
as it determines the range of phase angles, α, (discussed in Chapter 3) that are visible to the observer to
i ≤α≤ 180◦−α. For simplicity, the studied inclinations are limited to steps of 15◦ between 0◦ and 90◦:

i ∈ {0,15,30,45,60,75,90} [deg] (2.4)

Inclinations outside of 0◦ ≤ i ≤ 90◦ are redundant since these orbits are mirror images of ones inside these
inclinations.
8Note that in many exoplanet papers the opposite is true.
9Image Source: https://commons.wikimedia.org/wiki/File:Orbit1.svg#/media/File:Orbit1.svg

https://commons.wikimedia.org/wiki/File:Orbit1.svg##/media/File:Orbit1.svg
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Figure 2.12: Orbital Elements. In this report x is defined as the direction toward the observer and Ω is always π/2. Other Ω values are
redundant as they are equivalent to a rotation of the reference frame.9

2.5. Rotation Axes
An exoplanet’s rotational period and axis of rotation modulate the observed light curves and must therefore
be retrieved to map an exoplanet’s surface (Kawahara [22].) The rotation axes of the planets in our Solar
System exhibit a bias towards a small axial tilt, but this need not be the case for all exoplanets, as large impacts
and/or planetary migration can cause a change in rotation axis, which is believed to be the reason that Uranus
has an axial tilt of 98◦ (Lissauer and Pater [28].)

So that the neural networks do not learn a bias towards planets with a small axial tilt, we decide to use
rotation axes that are homogeneously distributed across a unit sphere’s surface. Additionally, the neural net-
works should not be able to resolve degeneracies by learning the sampling of rotation axes. A degeneracy
occurs when two unique planets create the same light curves, which we find to be the case for two planets in
side-on orbits, whose maps are flipped about the equator and whose rotation axes are the same in the out-of-
orbital plane direction and negatives of each other in the orbital plane. This degeneracy is discussed in more
detail in Section 4.2. So that the neural networks cannot resolve this degeneracy using the sampling, each
rotation axis’ degenerate counterpart is also be included in the set. To achieve this, the first 32 points from
a 64-point Fibonacci spiral (see Section 2.1.2) as well as their degenerate counterparts (found by multiplying
element-wise by [-1,-1,1]) create a set of 64 axes, which can be seen in Figure 2.13.

Figure 2.13: Locations of the 64 rotation axes projected onto xy (left), zy (middle) and xz (right) planes. The rotation axes are taken
from the first 32 values of a Fibonacci spiral sampled at 64 locations and their degenerate counterparts (see Section 4.2). Degenerate
counterparts are plotted in the same color and connected by a line. Only half of the axes on the ’visible’ side of the unit sphere are
plotted.

2.6. Combinations
In Section 2.2 - Section 2.5 the set of possibilities for each of the four planetary parameters are defined. The
set size for each is shown in Table 2.1, resulting in a total of 44.8 billion unique combinations. To create a
training data set with 4 million planets, each parameter is drawn from its set and the four parameters are
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stored as four integer indices. The first four planets in the data set are shown in Figure 2.14.

Surface Maps 10,000
Cloud Maps 10,000
Rotation Axes 64
Inclinations 7

Table 2.1: The set size for each of the four planetary parameters. Multiplication results in a total of 44.8 billion unique combinations.

Inclination
Rotation

Axis
Map

75◦
 0

1
0



75◦
 −0.108

−0.937
0.334



75◦
 −0.430

−0.524
0.735



30◦
 0.541

0.012
−0.841



Figure 2.14: The first four planets in the training data set of 4 million. The fluxes of each planet are calculated as described in Chapter 3
and used to train the neural networks. Dark blue, brown, green and gray represent ocean, sandy desert, vegetation and clouds, respec-
tively. The inclination is defined such that side-on and face-on orbits have inclinations of 0◦ and 90◦, respectively. The observer is in the
direction of the x-axis.



3
Computing Reflected Fluxes

The next step for the training of the neural networks is computing the reflected light signals of the planets.
This thesis differs from the approach used by others (see for example Fujii and Kawahara [8], Kawahara and
Masuda [23], Fan et al. [6], Farr et al. [7], Asensio Ramos and Pallé [2]) in several aspects.

One improvement is that the method developed by Rossi et al. [32] and Groot et al. [12] is used to calculate
fluxes, allowing for directional dependence of the reflected light (Section 3.1). Effects such as ocean glint and
rainbows are also included, causing significant deviations from Lambertian reflection signals used by other
authors. Another advantage of this approach is that the polarization of the reflected light is also calculated,
which has been shown by Trees and Stam [39] and Groot et al. [12] to carry information about oceans and
clouds and could thus be used to increase mapping accuracy.

A second deviation, discussed in Section 3.2, is that rather than continuous measurements throughout
one complete orbit, the planet is sampled at 8 locations in its orbit. The locations are selected such that the
phase angle (defined in Figure 3.1) is in the range 38◦ ≤ α ≤ 142◦ since observation becomes impossible if
the planet is too close to its star. At each location the planet is frozen in position and rotated about its axis
for 8 observations (Section 3.3). When compared to using continuous measurements throughout a complete
orbit, this approach greatly reduces memory requirements for storing the light curves, simplifies the network
architectures and increases neuron gradients, leading to more efficient training.

Figure 3.1: The planetary phase angle α.10

Another difference compared to work by other authors is the modelling of noise (Section 3.5). Rather than
using Gaussian noise, which creates negatives values for some observations, the more accurate model of shot
noise is used. Normalization of the flux curves is also included so that only relative fluxes and not absolute
fluxes are used by the retrieval algorithms, since the radius of an exoplanet is impossible to constrain using
direct observations (Section 3.6).

By simulating the light curves of a model Earth (Figure 3.9), we show that Stokes parameter U is of negli-
gible magnitude and would thus be dominated by noise. Hence, it is not used for the retrievals in our neural
networks.

10Images of the Earth and Nancy Grace Roman Space Telescope taken from https://commons.wikimedia.org/wiki/File:The_
Earth_seen_from_Apollo_17_with_transparent_background.png and https://www.nasa.gov/sites/default/files/
wfirst-afta_0.jpg, respectively.

14
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3.1. Reflection Models
Two models are used to simulate the reflection from a planet in this thesis:

• Lambertian reflection is used since it is the standard model used by other authors in the field of exo-
cartography and so is useful for comparison and verification.

• Directional reflection using Fourier files as described by Rossi et al. [32]. This method allows for more
accurate modelling of flux contributions, including ocean glint, rainbows and and polarized fluxes.

Both reflection models require that the three vectors in Figure 3.2 are defined for each of the planet’s
facets: vnor m is the vector normal to the facet surface, which can be computed by taking the cross product of
two edges, vobs is the vector towards the observer and is defined to always be [1,0,0] and vst ar is the vector
towards the star, which is found using the methods described in Section 3.2. All three are unit vectors. Using
these vectors, the flux of a planet can be calculated by summing the contributions of its 1000 facets.

Figure 3.2: The three vectors used to determine the flux contribution of a facet: the vector to the star, the vector to the observer and the
normal vector. All three are unit vectors.

3.1.1. Directional Reflection
To accurately simulate fluxes and include polarization, the method described in Rossi et al. [32] is used. This
uses radiative transfer computations with a model atmosphere consisting of homogeneous layers containing
cloud, aerosol and/or gas particles. The atmosphere used approximates Earth’s, with a depolarization factor
(Hansen and Travis [13]) of 0.0279, a surface pressure of 1.013 bar and 16 stacked atmospheric layers. The
outputs of the radiative transfer code are Fourier coefficients, R, that can be used to calculate the flux using
the following equations, from Rossi et al. [32]:

I
(
µ,µ0,φ−φ0,λ

)
/µ0F0(λ) = R0

11

(
µ,µ0,λ

)+2
∑M

m=1 cosm
(
φ−φ0

)
Rm

11

(
µ,µ0,λ

)
Q

(
µ,µ0,φ−φ0,λ

)
/µ0F0(λ) = R0

21

(
µ,µ0,λ

)+2
∑M

m=1 cosm
(
φ−φ0

)
Rm

21

(
µ,µ0,λ

)
U

(
µ,µ0,φ−φ0,λ

)
/µ0F0(λ) = 2

∑M
m=1 sinm

(
φ−φ0

)
Rm

31

(
µ,µ0,λ

) (3.1)

with F0 being the incident flux (we assume F0 = 1 per unit area) and Rm
11, Rm

21 and Rm
31 being the mth Fourier

coefficients for I , Q and U respectively. The files contain Fourier coefficients for 21 x 21 and 101 x 101 points
of µ and µ0, respectively, where:

µ= vnor m ·vst ar , µ0 = vnor m ·vobs (3.2)

Since the coefficients are discrete points in the continuous µµ0 plane, each facet’s R is found by nearest
neighbor interpolation, which is far more efficient than bilinear or bicubic interpolation (roughly 30 times
as efficient when using the SciPy Python package).11 To further increase efficiency, interpolation and subse-
quent calculations are only necessary when µ> 0 and µ0 > 0 as otherwise the flux equals zero. The azimuthal
difference angle, φ−φ0, is found by projecting vobs and vst ar onto the facet, finding their determinant and
dot product, and then passing both into the arctan2 function, respectively. The variables µ, µ0 and φ−φ0 are
illustrated in Figure 3.3 and are used with Equation 3.1 to calculate I , Q and U that together define the Stokes
vector:
11https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
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I =
 I

Q
U

 (3.3)

where I is the total flux and Q and U are perpendicularly polarized linear fluxes. The circularly polarized flux,
V , is excluded from the Stokes vector since Groot et al. [12] show that it is approximately 5 orders of magnitude
smaller than I for an Earth-like planet and thus detection is nearly impossible, as noise dominates the signal.

For sandy desert and vegetation, only 3 Fourier coefficients are used since Lambertian reflection of the
surface is assumed, while for the ocean 90 are used. The resulting fluxes are defined with respect to the local
meridian plane and must be multiplied by the rotation matrix, L, (Equation 2 in Rossi et al. [32]) to translate
into the planetary scattering plane before summing the facet contributions:

L(β) =
 1 0 0

0 cos2β sin2β
0 −sin2β cos2β

 (3.4)

where β (also shown in Figure 3.3) is the angle between the local meridian plane and the planetary scattering
plane, calculated by taking the clockwise angle from vnor m to vst ar when both are projected into a plane
normal to the observer.

The sandy desert and vegetation surfaces are modelled as Lambertian reflectors and the output files are
provided by Dr. Daphne Stam. The files for the ocean are provided by Victor Trees, with the ocean modelled
as a rough Fresnel reflecting surface with wave facet inclinations using a wind speed of 7 m/s (Trees and Stam
[39]).

Figure 3.3: Variables used to calculate the directional reflection using Equation 3.1. This planet’s star is to the right at a phase angle of
60◦.

Since the number of coefficients in the cloud files is too large to transfer easily, Dr. Daphne Stam instead
calculated the reflected Stokes vector for a grid of 100 x 100 pixels on the planetary disc of a cloud covered
planet for phase angles of:

α ∈ {0,20,30,35,38,40,42,45,50,60,80,90,100,120,140,160,180} [deg] (3.5)
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The flux of a cloudy facet can thus be found by selecting the nearest pixel on the planetary disc, and linearly
interpolating between phase angles. In these files the star is taken always to be to the right of the planet and
so the position on the planet needs to translated between reference frames. The inhomogeneous distribution
of phase angles ensures that the flux is accurate near phase angles with large flux gradients like the rainbow
feature at α = 38◦.

3.1.2. Lambertian Reflection
The Lambertian flux of a facet is calculated using its albedo, area and the three vectors in Figure 3.2:

I = albedo · area ·max(0,µ) ·max(0,µ0) (3.6)

The maximum functions are included in the equations so that facets facing away from the star or observer
contribute zero flux, rather than negative flux. The equation can be simplified by using a vnor m that is equal in
magnitude to the area of the facet when computingµ orµ0. This is easily achieved by computing vnor m as half
the cross product of two of the triangle’s edges. The total flux of a planet can then be computed by summing
the contributions of all 1000 facets. The calculation is verified by confirming that the flux of a completely
white planet with a radius of 1 and at full phase is equal to 2/3 ·π (Stam et al. [37]). A deviation of 0.6% is
found due to the facet approximation of a sphere.

For ease of comparison between the directional and Lambertian reflection models, the effective albedos
of each surface type are defined such that at full phase a completely homogeneous planet has the same flux
using either model. Each surface type’s effective albedo is therefore computed by calculating the flux of a
homogeneous planet with a radius of 1 at full phase using directional reflection and dividing by 2/3 ·π. These
results, shown in Figure 3.4, differ from the surface albedos due to the Rayleigh scattering contribution to the
planetary flux, which is largest for the smallest wavelengths. This gives Earth its characteristic blue tint that
can be seen in the Pale Blue Dot picture.

Figure 3.4: The effective albedos of sandy desert, vegetation, clouds and ocean, found by computing the planetary flux of a homogeneous
planet, including atmospheric scattering, at full phase. The 550 nm wavelength is included so that the chlorophyll bump can be resolved.
The albedos at 700, 550 and 500 nm are used for the RGB color values respectively for the maps in this thesis.

3.1.3. Phase Curve Comparison
The results are first verified by computing phase curves of homogeneous planets, shown in Figure 3.5, and
comparing to Figures 5 and 7 from Trees and Stam [39] for ocean and clouds, respectively, and Figure 4 from
Stam [36] for vegetation and sandy desert. The normalization in these papers is such that a Lambertian white
disc at full phase gives a flux of 1 while in this thesis it is such that a Lambertian white sphere at full phase
gives a flux of 1, so the results in Figure 3.5 must be divided by 1.5 for comparison.

For nearly all phase curves there is a significant deviation between the Lambertian and directional phase
curves. The exceptions to this are vegetation and desert-covered surfaces, which are modelled as Lambertian
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Figure 3.5: Phase curves for homogeneous planets of different surface types. The phase angle, α, is defined in Figure 3.1. These curves
are verified by comparing to Figures 5 and 7 from Trees and Stam [39] for ocean and clouds, respectively, and Figure 4 from Stam [36]
for vegetation and sandy desert. The results should be divided by 1.5 for comparison due to differences in normalization. The polarized
fluxes Q and U are computed using only directional reflection, since this is not possible with the Lambertian model. At α = 0◦ there is a
numerical artefact that causes the polarized flux to diverge from 0 since the vectors to the star and observer are equal.
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surfaces. For wavelengths greater than 600 nm, atmospheric Rayleigh scattering is negligible compared to
surface reflection so the directional and Lambertian light curves are nearly identical. The effect of Rayleigh
scattering increases for smaller wavelengths and hence the deviation from the Lambertian phase curve is
largest at 400 nm for vegetation and sandy desert. The Lambertian assumption overestimates the flux at
phase angles below 90◦, and underestimates it for phase angles above 120◦, due to forward scattering in the
atmosphere at the edges of the planetary disk. This means that retrieval algorithms relying on the Lambertian
model of reflection overestimate the albedo of a planet at low phase angles and underestimate it at large phase
angles due to atmospheric effects, even when the underlying surfaces are Lambertian.

The differences are even more pronounced for the cloudy planet, due to a relatively large negative gradient
at full phase, leading to a great overestimation of the flux for phase angles below 90 degrees. Due to forward
scattering, the Lambertian flux is also particularly underestimated when clouds are present at high phase
angles. This forward scattering increases in magnitude for higher wavelengths and so the greatest difference
is for a wavelength of 800 nm. At a phase angle of 38 degrees, there is also a slight flux increase due to the
rainbow effect of the cloud particles, although this effect is primarily seen in the linearly polarized flux Q. No
other surface type has such a large linearly polarized flux at low phase angles and high wavelengths, which
can be used as an indicator of clouds by a retrieval algorithm.

Finally, the surface type with the largest deviation from Lambertian flux curves is the ocean planet since
it exhibits a much higher flux for high phase angles due to ocean glint. This effect increases with increasing
wavelength as Rayleigh scattering becomes weaker. Consequently, increasing intensity with increasing phase
at a wavelength of 800 nm can be used as an indicator of an ocean, as shown by Trees and Stam [39]. This is
also true for the polarized flux of an ocean planet, which is significantly higher than the other studied surface
types for high phase angles, especially for high wavelengths.

3.1.4. Resolved Flux Comparison
To further illustrate the differences between Lambertian and directional reflection, resolved fluxes on the
planetary surface are shown in Figure 3.6. Only cloud planets and ocean planets are shown, as these are
the most interesting and suffice for the ensuing discussion. For the ocean planet, the glint pattern can be
seen most clearly for high phase angles, as expected from the phase curves in Figure 3.5. At α = 142◦ and
λ = 800 nm, the glint is very bright with a magnitude of 2.7, meaning that the underlying surface can be
unequivocally classified as ocean when compared to clouds, vegetation or sandy desert, if resolved. As the
phase angle decreases, the glint weakens and thus is less predominant in the planetary signal. For λ = 400 nm
the glint pattern is much weaker, reaching a maximum of roughly 0.8, since Rayleigh scattering dominates
the planetary signal and prevents light that is reflected by the ocean from reaching the observer.

An interesting effect of Rayleigh scattering is that the flux of the subsolar facets is not as high as predicted
by Lambertian reflection. This can be seen for both ocean and clouds at phase angles of 90◦ and 142◦. Thus,
a Lambertian retrieval algorithm is overly optimistic about the concentration of the planetary signal to a
specific region. For example, for the cloudy planet at α = 90◦, the Lambertian assumption would assume that
nearly all light being received is from the sub-solar region, while the directional model shows that the flux
contributions are more evenly distributed. This can also be seen for sandy desert and vegetation planets (not
shown).

As seen in Figure 3.5, the Lambertian model greatly underestimates the flux of the cloudy planet for high
phase angles, where forward scattering of light is predominant in the signal. Even a small number of cloudy
facets could lead a retrieval algorithm that assumes Lambertian reflection to greatly overestimate the albedo
of this region.

3.2. Orbit
To determine the directions towards the star and the observer from each facet on the planet, first the location
of the planet needs to be calculated. As described in Section 2.4, the orbital inclinations are drawn from a
set ranging from 0◦ to 90◦ in steps of 15◦. Since changing the orbital eccentricity and radius alters only the
magnitudes of the light curves, only circular orbits with a radius of 1 are considered for simplicity.

In the coordinate system used to simulate the orbit, the x-axis points to the observer, the ascending node
of the orbit is on the y-axis and the z-axis completes the Cartesian coordinate system, as shown in Figure 3.7.
Edge-on orbits are thus in the xy plane and face-on orbits are in the yz plane. The angle of rotation of the
exoplanet around its orbit is defined as u, starting at the intersection with the positive y-axis (each orbit
intersects the y-axis at [0,1,0] and [0,-1,0], regardless of inclination). Thus the position of the exoplanet in its
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Figure 3.6: Resolved fluxes with the star to the top-right of the planet. A brightness of 1 corresponds to a completely white Lambertian
surface with normally incident star light. The most extreme value is 2.7 for ocean glint at α = 142◦ and λ = 800 nm. α = 142◦ and
α = 38◦ are shown here since these are the closest positions to the star that are considered possible in Section 3.2. The Lambertian
assumption greatly underestimates the fluxes of cloudy planets and ocean-covered planets at high phase angles. At lower phase angles
the Lambertian assumption overestimates the concentration of the flux to the sub-solar point.
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orbit is given by:

position =
 cosu

cos i · sinu
sin i · sinu

 (3.7)

The angle of rotation in the yz plane is defined as γ, in anti-clockwise direction from the observer’s per-
spective, starting at the intersection with the positive y-axis.

For each inclination, the exoplanet is observed at 8 locations in the orbit. The range of possible phase
angles throughout the orbit is i ≤α≤ 180◦− i . Only locations inside the phase angle range of 38◦ ≤α≤ 142◦
are considered since exoplanets cannot be directly observed when too close to their parent star. 38◦ is selected
as the inner phase angle so that the rainbow is visible, which could be recommended as a requirement for
future telescopes to help identify possible water clouds (Karalidi et al. [20]). Orbits with inclinations above 38◦
do not intersect the rainbow and the observation epochs are evenly distributed across the range 0◦ ≤ γ< 360◦,
to maximize modulation across the planet’s surface. For inclinations below 38◦, four observations are made
at the inner most points possible, 2 atα= 38◦ andα= 142◦ each. The remaining four locations are distributed
evenly within the range of possible γ. For an edge-on orbit, γ is either 0◦ or 180◦, so in this case the values of
u that the planet is observed at are found by taking the limit as i → 0◦.

The resulting values of u,α and γ for each epoch are presented in Table 3.1 and plotted from the observer’s
perspective in Figure 3.7.

Figure 3.7: Observation locations from the observer’s perspective. The rainbow is located at α = 38◦ and is reversed from a traditional
rainbow due to the small size of the cloud water droplets compared to rain droplets. Since α≥ 90◦ for all positions below the star in the
figure, the rainbow’s "reflection" is atα = 142◦. All points with the sameα = x and 180◦ -α lie on circle from the observer’s perspective for
the same reason a traditional rainbow appears circular, with the positions of the light source and observer being flipped. The light-gray
dotted lines show γ in eight evenly distributed steps of 45◦. The right and left-most planets for i = 90◦ are covering those for i ∈ {45◦,
60◦, 75◦} and for the edge-on orbit (i = 0◦) the planets with α > 90◦ are covering those with α < 90◦. The numerical values of u, α and γ

at each epoch can be found in Table 3.1.
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Incl. i Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7 Epoch 8

0◦
u = 23◦
α = 67◦
γ = 0◦

u = 52◦
α = 38◦
γ = 0◦

u = 128◦
α = 38◦
γ = 180◦

u = 157◦
α = 67◦
γ = 180◦

u = 203◦
α = 113◦
γ = 180◦

u = 232◦
α = 142◦
γ = 180◦

u = 308◦
α = 142◦
γ = 0◦

u = 337◦
α = 113◦
γ = 0◦

15◦
u = 24◦
α = 67◦
γ = 7◦

u = 55◦
α = 38◦
γ = 20◦

u = 125◦
α = 38◦
γ = 160◦

u = 156◦
α = 67◦
γ = 173◦

u = 204◦
α = 113◦
γ = 187◦

u = 235◦
α = 142◦
γ = 200◦

u = 305◦
α = 142◦
γ = 340◦

u = 336◦
α = 113◦
γ = 353◦

30◦
u = 30◦
α = 65◦
γ = 16◦

u = 66◦
α = 38◦
γ = 48◦

u = 114◦
α = 38◦
γ = 132◦

u = 150◦
α = 65◦
γ = 164◦

u = 210◦
α = 115◦
γ = 196◦

u = 246◦
α = 142◦
γ = 228◦

u = 294◦
α = 142◦
γ = 312◦

u = 330◦
α = 115◦
γ = 344◦

45◦
u = 0◦
α = 90◦
γ = 0◦

u = 55◦
α = 55◦
γ = 45◦

u = 90◦
α = 45◦
γ = 90◦

u = 125◦
α = 55◦
γ = 135◦

u = 180◦
α = 90◦
γ = 180◦

u = 235◦
α = 125◦
γ = 225◦

u = 270◦
α = 135◦
γ = 270◦

u = 305◦
α = 125◦
γ = 315◦

60◦
u = 0◦
α = 90◦
γ = 0◦

u = 49◦
α = 68◦
γ = 45◦

u = 90◦
α = 60◦
γ = 90◦

u = 131◦
α = 68◦
γ = 135◦

u = 180◦
α = 90◦
γ = 180◦

u = 229◦
α = 112◦
γ = 225◦

u = 270◦
α = 120◦
γ = 270◦

u = 311◦
α = 112◦
γ = 315◦

75◦
u = 0◦
α = 90◦
γ = 0◦

u = 46◦
α = 79◦
γ = 45◦

u = 90◦
α = 75◦
γ = 90◦

u = 134◦
α = 79◦
γ = 135◦

u = 180◦
α = 90◦
γ = 180◦

u = 226◦
α = 101◦
γ = 225◦

u = 270◦
α = 105◦
γ = 270◦

u = 314◦
α = 101◦
γ = 315◦

90◦
u = 0◦
α = 90◦
γ = 0◦

u = 45◦
α = 90◦
γ = 45◦

u = 90◦
α = 90◦
γ = 90◦

u = 135◦
α = 90◦
γ = 135◦

u = 180◦
α = 90◦
γ = 180◦

u = 225◦
α = 90◦
γ = 225◦

u = 270◦
α = 90◦
γ = 270◦

u = 315◦
α = 90◦
γ = 315◦

Table 3.1: Angles of interest for each observation epoch. u is the position in the orbital plane starting at [0,1,0], α is the phase angle and γ

is the position from the observer’s perspective (see Figure 3.7). The symbol denotesα= 38◦, for which the rainbow feature is visible.
This table can be used for reference for plots with flux curves at different observations epochs.

3.3. Rotation
For each of the 8 locations in orbit, each planet is observed for 8 evenly distributed phases of rotation. Rota-
tion of the facets’ normal vectors is done with Rodrigues’ rotation formula:

vrot = vcosθ+ (k×v)sinθ+k(k ·v)(1−cosθ) (3.8)

where k is the unit vector being rotated about, θ is the angle and v and vr ot are the normal vector before and
after rotation, respectively. First, the North Pole and rotation axis are aligned with θ being the angle between
the z-axis and the rotation axis, and k computed as the cross product of the z-axis and the rotation axis. Next,
the normal vectors are rotated about the rotation axis in eight equidistant steps to allow observations of all
visible sides of the planet.

As an example, the fluxes of the planet in Figure 3.8 in an edge-on orbit and with a rotation axis of [0,1,0]
(90◦ axial tilt) are shown in Figure 3.9. Since this planet is largely covered by ocean and clouds, the directional
and Lambertian curves differ significantly in magnitude, particularly for epochs at the extreme phase angles
(38◦ and 142◦). Even though the planet is not homogenous, the values of U are very small and thus would be
dominated by noise. For this reason, U is left out from retrievals in subsequent chapters.

Figure 3.8: Planet Earth with a cloud pattern selected from the set created in Section 2.3. The flux curves of this planet can be seen in
Figure 3.9.
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Figure 3.9: Flux curves for the planet shown in Figure 3.8 in an edge-on orbit with axis of [0,1,0] (axial tilt is 90 degrees). See Table 3.1
for the position of the planet during each epoch. The Lambertian assumption leads to an overestimation of the flux at high phase angles
(epochs 2 and 3) and an underestimation for low phase angles (epochs 6 and 7). The magnitude of the polarized flux is roughly 5 times
lower than the total flux, meaning that it is more susceptible to noise (see Section 3.5). The magnitude of the Stokes parameter U is
negligible compared to that of Q and would therefore be dominated by noise and hence it is not used in the retrievals in subsequent
chapters.

3.4. Creating a Large Data Set
The neural networks described in Chapter 4 - Chapter 6 require a large data set of planets and their respective
light curves for training. In this section, an efficient method to create light curves of each of the 4 million fake
planets is described. Instead of calculating each facet’s reflection (see Section 3.1) for each planet, orbital
location and rotation phase, it is far more efficient to calculate the fluxes for all possibilities shown in Table 3.2
and save these in an 8-dimensional array. The total size of this array is 2.06 billion numbers (4 ·7 ·64 ·8 ·8 ·
1000 ·6 ·3) and 8.26 Gb when stored as a NumPy float32 array. The fluxes of a planet can then be calculated
by summing across all axes (except for inclination), while matching each facet to its surface type.

3.5. Noise
3.5.1. Shot Noise
In this thesis, shot noise is used to simulate noise in the observations. Most exocartography research papers
use the unphysical, statistical model of Gaussian noise, since this is a generic form of noise that can be easily
compared to e.g. instrumental noise from other papers. However, the noise level is not adjusted to the magni-
tude of the flux, which can create negative values for observations with a low flux. In comparison, shot noise
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Parameter Number of Possibilities
Surface Types 4
Inclinations 7
Rotation Axes 64
Orbital Locations 8
Phases of Rotation 8
Facets 1000
Wavelengths 6
Stokes Parameters
(for directional reflection)

3

Table 3.2: All possibilities that the flux can be calculated be for. By calculating the fluxes of each combination and storing them, the flux
of any planet can be computed efficiently by summation. A total of 2.06 billion numbers must be stored.

is the result of the particle nature of light and is the physical lower limit of noise for a perfect instrument with
no background noise. Shot noise dictates that the number of photons observed by a detector is drawn from
a Poisson distribution with N being the number of photons that would be observed in the absence of this
noise, shown in Figure 3.10. This principle is expanded to polarized light by writing I and Q as functions of
the fluxes F0◦ and F90◦ , which are linearly polarized in perpendicular directions (i.e. 0◦ and 90◦, respectively),
and then rearranging equations:

I = F0◦ +F90◦ , Q = F0◦ −F90◦ (3.9)

⇒ F0◦,no noise = Ino noise +Qno noise

2
, F90◦,no noise = Ino noise −Qno noise

2
(3.10)

Since Ino noise and Qno noise are known from calculations in the previous sections, one can find F0◦,no noise

and F90◦,no noise. These are converted from absolute fluxes to numbers of photons by multiplying by Nmax,
the number of photons that would be received from a white Lambertian planet at full phase, given no noise.
F0◦ and F90◦ can then be drawn from Poisson distributions and I and Q can be computed with Equation 3.9.
The result of adding two Poisson distributions with N = a and N = b is a Poisson distribution with N = a +b,
so the distribution of I remains unchanged. The result of subtracting two Poisson distribution is a Skellam
distribution with N = a +b, shown in Figure 3.10 for a = b (and thus centered around 0).

Figure 3.10: The Poisson distribution represents the probability of k total photons being received, given a light source that emits a mean
of N photons. The Skellam distribution shows the probability of a polarized flux of k photons being received from an unpolarized light
source, since this Skellam distribution is centered around 0.

The effect of shot noise is visualized in Figure 3.11 for two partial sine curves with a maximum magni-
tude of 0.3 and -0.06 for I and Q, respectively. The magnitudes are roughly representative of those seen in
Figure 3.9. Due to the smaller absolute values, the polarization curve is far more sensitive to noise than the
total flux curve, with the red line representing 1000 photons in both plots. For this flux curve to be reliably
observed only Nmax ≈ 500 photons are needed, while for polarization to be reliably observed Nmax ≈ 20,000
photons are needed.
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Figure 3.11: Flux curves with noise. The polarized flux is far more sensitive to noise due to its smaller magnitude (see Figure 3.9). Nmax
is the number of photons corresponding to a flux of 1 (white Lambertian planet at full phase). For illustration purposes, both "no noise"
curves are partial sine waves with magnitudes approximating the curves in Figure 3.9.

The signal-to-noise ratio (SNR) of shot noise is dependent on the number of photons that would be re-
cieved given no noise (Thangjai and Niwitpong [38]):

SNR =
p

N (3.11)

The fluxes of the planets never reach 1, so the SNR (which is unique to each observation) is always less thanp
Nmax. For example, a flux of 0.04 (see Figure 3.9) would correspond to SNR = 0.2

p
Nmax.

3.5.2. Shot Noise of Planned Exoplanet Missions
The number of photons that could be received by proposed direct imaging missions is discussed in this sec-
tion, to assess whether the results in subsequent chapters can be achieved using these mission architectures.
The most likely near-future candidates for direct observation of Earth-like exoplanets orbiting Sun-type stars
are space telescopes flown in formation with a starshade. This architecture is originally proposed by Cash [4]
and makes use of a "starshade" spacecraft that blocks out the star’s bright light, allowing a space telescope to
directly observe the reflected starlight of its orbiting planets. The starshade must be 30 to 50 meters wide and
is flower-shaped with a specific pattern that suppresses diffraction of light around it. In the 2018 report of the
NASA Starshade Rendezvous Probe mission by Sara Seager [33], these advantages are listed when compar-
ing a starshade to the advanced on-board coronagraph instrument (CGI) of the Nancy Grace Roman Space
Telescope, which will be launched (without a starshade) in 2025:

• Inner working angle reduced from 200-300 milliarcseconds (mas) to ≥100 mas

• Flux ratio sensitivity decreased from 5 ·10−8 −5 ·10−9 (wavelength dependent) to ≥ 1010

• 10 times larger throughput

For these reasons, a starshade is considered necessary to image Earth-like exoplanets with a space tele-
scope. Next generation ground-based telescopes such as the E-ELT will also have the capability to directly
image Earth-like exoplanets around nearby M-type stars but the contrast needed for such planets around
Sun-like stars cannot be achieved (Sara Seager [33]). The two starshade missions that have been selected for
study are the Starshade Rendezvous Probe that aims to use a starshade in combination with the Nancy Grace
Roman Space Telescope before 2030 and the HabEx mission (JPL [19]) that has a dedicated telescope and
starshade and aims to launch in the mid 2030s.

To characterize the number of photons that would be received from a nearby exoplanet, the planetary
albedo, planetary phase, planetary radius, distance to the observer and effective temperature and radius of
the star (we assume black body radiation) all need to be known. To simplify, we assume that the planet is
Earth-sized, orbiting at 1 AU distance from a Sun-type star. The planet is assumed to be completely white,
Lambertian and at full phase, which corresponds to a flux of 1 (or Nmax photons) according to the normaliza-
tion used for flux computations in Section 3.1.

The integration time of the telescopes is taken to be 24/8 = 3 hours and the band width of the wavelengths
is taken to be 50 nm such that each of the wavelengths that we use in our simulations can be resolved. The
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total number of photons emitted by the star for each wavelength band is found by dividing the energy output
by the energy of an individual photon. The energy output for each wavelength range is computed using the
Stefan-Boltzmann law for the radius and effective atmospheric temperature of the Sun, 695,700 km and 5772
K, respectively.12 The number of photons reflected towards the observer by the white, Lambertian planet at
full phase is equal to:

Nmax = Ṅ · tinteg. · 1

4

(
rtelescope

dstar

)2

· 1

4

(
rplanet

rorbit

)2

· 8

3
(3.12)

where Ṅ is the rate of photons being emitted by the star for the desired wavelength range, tinteg. is the inte-
gration time, dstar is the distance to the star system and rtelescope, rplanet, rorbit are the radii of the telescope
primary mirror, planet and planetary orbit, respectively. 8/3 is a correction factor to correct from a homoge-
neously re-emitting sphere to a Lambertian sphere at full phase (Stam et al. [37]).

Figure 3.12: The maximum number of photons (white Lambertian planet at full phase) for an Earth-sized planet around a Sun-type star.
The integration time is 24/8 = 3 hours and the wavelength bands are 50 nm wide such that each wavelength can be resolved. The Nancy
Grace Roman Space Telescope is shown since a mission has been proposed to fly a starshade in formation with it (Sara Seager [33]).
HabEx is a proposed mission for the 2030s with a starshade and a dedicated telescope for direct imaging of exoplanets (JPL [19]). The
lines for some wavelengths are covered. The least number of photons is received for a wavelength of 400 nm since the power output
of the Sun decreases for this wavelength, while the energy per photon increases. Note that this figure is the same as Figure 1.2 in the
introduction.

The results in Figure 3.12 show that the maximum number of photons received from an Earth-like planet
would be between 105 and 106 for a Sun-type star at Alpha Centauri’s distance (3 hour integration time). In
subsequent chapters, roughly Nmax = 104 photons are needed for accurate retrievals. This would be possi-
ble up to a distance of around 20 light years with the Nancy Grace Roman telescope in combination with a
starshade and 30 light years for the HabEx telescope, using this simple noise model.

Some of the noise sources that are not included are:

• Background starlight that refracts around the imperfect starshade.

• Background light due to zodiacal and exozodiacal dust. Exozodiacal dust is expected to be common in
the habitable zones of other stars and will be the largest source of astrophysical noise (Roberge et al.
[31]).

• Instrumental noise.

For these reasons, the noise estimates made in this report should be treated as a lower limit for the true noise.
If the SNR of a future mission is too low, it can be increased by increasing the width of the wavelength bands

12https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html
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or the integration time which would result in lower resolution of the wavelengths and rotational phases, re-
spectively. Another method to increase the SNR is to observe the planet for more epochs than eight days
during the year, which requires more time using advanced telescopes that are in high demand.

3.6. Normalization
The total flux observed from an exoplanet is proportional to its albedo and its radius squared (as well as the
incident stellar flux that we assume to be equal for all planets in our reflected flux computations). Since
an Earth-like exoplanet’s radius cannot be constrained from observations of reflected fluxes, a planet with
a radius of r and an albedo of a cannot be distinguished from a planet with a radius of x · r and an albedo
of a/x2 for any number x > 0. For this reason, relative fluxes rather than absolute fluxes should be used for
retrievals. Thus, unless stated otherwise, the retrieval algorithms in subsequent chapters use light curves that
are normalized such that their maximum value is equal to 1 by dividing by the largest flux. Normalization is
done after applying noise.



4
Rotation Axis Retrieval

The first step taken to retrieve planet maps based on the reflected fluxes calculated as described in Chapter 3,
is to estimate the orientations of the rotation axes of the planets. This has been shown by Kawahara [22]
to be possible by observing the frequency modulation of the planetary signal over a complete orbit. As the
planet orbits its star, the period of the light curve increases or decreases depending on the rotation direction,
allowing for the orientation of the rotation axis to be constrained. The approach taken in this thesis does
not use this effect, since our planets are "frozen" in their orbital locations for each observation epoch and
therefore the frequencies of the light curves are constant.

Instead, we use a convolutional neural network approach (Section 4.1) with ’periodic convolutions’, which
are modified 1-D convolutions that take advantage of the periodic nature of the light curves. Two layers of
periodic convolutions are followed by a series of 5 dense layers with PReLU activation functions and dropout
layers to prevent the neural network from overfitting the training data. The outputs of the neural network are
the three Cartesian coordinates of the planets’ rotation axes.

In Section 4.2, we empirically prove a degeneracy for two planets that are in a side-on orbit, whose maps
are flipped about the equator and whose rotation axes are the same in the out-of-orbital plane direction and
negatives of each other in the orbital plane. This is tested for several cases and in all cases the same light
curves are computed. The neural network is shown to solve this degeneracy for very low levels of noise,
which shows that numerical artefacts in the curves can be used to constrain the rotation axis. However, these
numerical artefacts can be removed by applying noise to the curves, as discussed in Section 4.4.

The degeneracy discussed above can be solved by constraining the axis to one half of the search space,
with the other solution found in the other half of the search space. The results of the retrievals are shown
in Section 4.5. Here, we also assess the benefits of detecting polarization and the errors that are caused by
assuming Lambertian reflection of a non-Lambertian planet.

4.1. Architecture
4.1.1. Periodic Convolutions
Convolutional neural networks are originally developed for 2-D image recognition (Lecun et al. [27]) but re-
cently, 1-D convolutions have been used to process time-series signals to achieve state-of-the-art results in
fields such as "biomedical data classification and early diagnosis, structural health monitoring, anomaly de-
tection and identification in power electronics and electrical motor fault detection" (Kiranyaz et al. [25]). The
architecture described in Section 4.1.3 uses 1-D convolutions with some adjustments to take advantage of
the periodic nature of the light curves.

Recall that the rotation phases being used are 0◦, 45◦, 90◦ ... 315◦. Since the prime meridian of the planet
(the line of 0◦ longitude) is arbitrarily chosen, the relationship between the rotation phases of 315◦ and 0◦
should be equivalent to the relationship between e.g. 45◦ and 90◦. To make sure that these combinations
are not seen differently by the neural network, the first N −1 rotation phases are appended to the end of each
light curve before the 1xN convolutional kernel slides over the light curve, as seen in Figure 4.1 (this figure also
shows the definition of kernel size). Thus, for a kernel size N = 3, the first 2 rotation phases are appended (i.e.
0◦ and 45◦ in the top diagram of Figure 4.1). An additional advantage is that the dimensions of the light curve
are not changed by the convolution, without the need for zero-padding. Zero-padding is a common method

28
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Figure 4.1: Periodic convolutions with different strides and kernel sizes. Since the rotation phases are periodic in nature, the first N -1
values are appended to the end of the light curve before the size N kernel slides over, preserving the dimensions (8 steps corresponding
to the 8 rotation phases). When a stride of N is used, the kernel size should be a multiple of N so that some rotation phases are not
convolved less often than others (as shown for stride = 2 and kernel size = 3). Using this approach reduces the MSE of the neural network
by ≈ 10%.

of preserving data dimensions by surrounding the data by zeros, which has the disadvantage of increasing
susceptibility to spatial bias, as shown by Alsallakh et al. [1].

For down-sampling the dimensions of the data, a stride greater than one can be used (see Figure 4.1 for
the definition of stride). However, as shown in Figure 4.1, this can lead to unintended consequences when
the kernel size is not a multiple of the stride length, since some rotation phases will then be sampled more
often than others, increasing their impact on the output of the neural network. Since for our planets all
rotation phases are of equal importance, this is avoided by using a kernel size of 1x4 and a stride of 2 in the
final architecture, as illustrated in the bottom diagram of Figure 4.1. We tested the effectiveness of using
periodic convolutions by comparing to results of a neural network with normal convolutional layers and the
loss (which should be minimized through learning for accurate retrievals) is found to decrease by 10% by
using the periodic convolutions.

4.1.2. Inclination Input
The orbital inclination angle of a directly observed exoplanet can be determined by observing the location
and speed of the planet with respect to its star. We have tried several architectures that include both the
inclination and light curves as inputs to retrieve the rotation axis. Two rough outlines of such approaches are
shown in Figure 4.2.

In Figure 4.2a, the light curves are first convolved by 1-D kernels before being concatenated with the
inclination angle. To allow the neural network to recognize the relative importance of the inclination in com-
parison to the light curves, the inclination is multiplied by a factor N that we determine by trial and error.
This showed that a factor N of 0 is most effective, leading to the conclusion that this architecture works best
without an inclination input.

Another approach is shown in Figure 4.2b. Here we attempted to transform the light curves such that
they can be processed by the same convolutions and dense layers for an effective result independent of the
inclination. To find this transformation, the inclination is fed into a number of layers that produce an array
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that is added to or multiplied by the light curves. For some iterations of the architecture, the light curves are
also included as an input for this transformation. It is found that the loss is much greater using this approach
than using simple convolutional layers followed by dense layers without inclination as an input.

(a) The inclination (multiplied by a factor) is concate-
nated to the light curves after they are convolved. (b) The inclination (and the light curves) are fed into

layers that create an array of values to transform the
light curves by addition/multiplication or both.

Figure 4.2: Two different approaches to include both inclination and light curves as input for the retrieval of the rotation axis. Both of
these attempts proved to be unsuccessful, since removing the inclination input decreased the validation loss of the trained networks.

4.1.3. Final Architecture
Instead of including the inclination as an input, we retrained the neural network for each of the 7 inclinations
(0◦, 15◦, 30◦ ... 90◦). The approach from Figure 4.2a is the most effective one after the inclination input is
removed, so this architecture is chosen for the final network. The convolutional layers are called the "feature
recognition" part of the network and the dense layers following this are called the "feature combination" part.
This architecture is similar to the ones seen in other signal processing neural networks such as in Badshah
et al. [3].

The input dimensions to the neural network are either 8x8x6 without polarization (8 orbital locations, 8
rotation phases, 6 wavelengths) or 8x8x12 with polarization (both Stokes parameters I and Q are included,
which doubles the final dimension). Recall that the Stokes parameter U is of negligible magnitude and is
thus not included in the retrievals. The feature recognition part of the network consists of two periodic con-
volution layers, each with 16 filters. The first layer, which has a kernel size of 3, increases the dimensions of
the input to 8x8x16, as shown in Figure 4.3. The final dimension increases to 16 since each of the 16 filters,
which convolve the 6 wavelengths and 3 rotation phases, have an individual output. To halve the size of the
data, the second periodic convolution skips half of the "steps" (stride = 2) with a kernel size of 4, leading to
a 8x4x16 output, as shown in the bottom diagram in Figure 4.1. The output of the final convolution layer is
then flattened and passed onto the feature combination part of the neural network.

The output from the convolutional layers is fed through 5 dense, fully connected layers with linear acti-
vation functions and a bias. These layers have 512, 512, 256, 32 and 3 nodes, respectively. The first four layers
are followed by PReLU activation functions to introduce non-linearity (He et al. [15]):

f
(
yi

)= {
yi , if yi > 0
ai yi , if yi ≤ 0

(4.1)

where the slope coefficient a causes non-linearity due to the change in gradient at yi = 0 and is actively
learned and manually inspected as described in Section 4.3.2. To prevent overfitting, the first three layers are
also followed by dropout regularization layers with a dropout rate of 15%. These dropout layers randomly
set 15% of the layer’s outputs to 0, which prevents the neural network from overfitting to peculiarities of the
training data. The network has a total of 667,907 or 667,619 trainable parameters, depending on whether po-
larization is included or not, respectively. The trainable parameters are weights of the convolutional kernels,
linear nodes or slope coefficients of the PReLU layers, which are all adjusted through learning.
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Figure 4.3: The final network architecture to retrieve rotation axes. The feature recognition part uses periodic convolutions and the
feature combinations part consists of densely connected layers with PReLU activation functions and dropout layers to prevent over-
fitting (numbers above lower layers represent number of nodes). In case polarization is used, the shape of the input is 8x8x12, otherwise
it is 8x8x6. The periodic convolutions maintain the 1st and 2nd dimension of the data since the N−1 first values along the rotation phase
axis are appended to the end before convolution. The number of filters determines the 3rd dimension of the output. The total number
of trainable parameters is 667,907 or 667,619, depending on whether polarization is included or not.

4.2. Degeneracy
A degeneracy occurs when two planets with different parameters create the same light curves and thus cannot
be distinguished from each other. One such degeneracy is identified for planets in side-on orbits, that meet
the following two requirements:

• The two planets have the same map except flipped about the equator.

• The rotation axes of both planets have the same out-of-orbital-plane component but the opposite
in-orbital-plane component. In the reference system described in Section 3.2 this is expressed as an
element-wise multiplication by [-1,-1,1].

The degeneracy is found because the neural network cannot effectively constrain the x and y axes of planets
in a side-on orbit. We identify the above requirements by trial-and-error and confirmed by testing that the
light curves are the same for several different pairs of planets that meet both requirements. One example is
shown in Figure 4.4, although slight differences in the fluxes can be identified since the maps are not exactly
mirrored about the equator due to the asymmetry of the facet scheme about the equator.
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Figure 4.4: Two planets in a side-on orbit with different rotation axes and maps that produce (virtually) the same light curves. This
degeneracy occurs when the component of the rotation axis in the orbital plane (the xy plane in this case) is multiplied by -1 and the
map of the planet is reflected about the equator. Since the facet scheme on the surface of the planet is not symmetric about the equator,
the map is not exactly reflected causing slight differences between the curves, for example at the end of epoch 3 for 400 nm.

4.3. Training
4.3.1. Training Parameters
When the neural network is trained on all planets with a certain orbital inclination angle, the available num-
ber of light curves is 4,000,000 / 7 ≈ 570,000. In order to resolve the degeneracy described in Section 4.2, the
neural network can also only be trained on all planets with a rotation axis with y ≥ 0, in which case the num-
ber of curves is half of this. Note that we use 90% of the curves for training and 10% are used for validation,
with training being stopped when the validation loss does not decrease for 2 consecutive epochs, to prevent
overfitting.

Since retrieving the rotation axis is a regression problem, we chose the mean squared error (MSE) as the
loss to be minimized by the neural network. We found that for small batch sizes (16 to 64 planets fed into
the neural network together for training), the training loss may begin to increase after roughly 10 epochs. We
believe that this means the optimization algorithm, Adam (Kingma and Ba [24]), is overshooting the local
minimum and adjusting to peculiarities in the small batch, rather than finding the global optimum. This
problem was solved by increasing the batch size to 256. The neural network is created and trained using the
Keras Python package13 and is retrained for each orbital inclination and noise level.

4.3.2. PReLU Slope Coefficients
The slope coefficients a (see Equation 4.1) are inspected after training in Figure 4.5. The second, third and
fourth PReLU layers’ parameters are distributed about zero, approximating a classical ReLU function, for
which a = 0. We hypothesized that since these approximate a ReLU function, replacing these PReLU layers

13https://keras.io/

https://keras.io/
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with ReLU would lead to better results but this was found to be untrue as the validation losses of thus modified
networks are higher, meaning that the non-zero a values in these PReLU layers do add value. Unlike the other
PReLU layers, the first one is not centered around zero and instead has a mean a of -0.32, with a standard
deviation that is larger than for the other layers by roughly one order of magnitude. The negative coefficients
of the majority of the nodes in this layer mean that negative values returned by the convolutional layers are
turned positive when passed in to the feature combinations part of the neural network. It is unclear to us why
this is the case.

Figure 4.5: PReLU slope coefficients after training (1st, 2nd, 3rd and 4th PReLU layers are top left, top right, bottom left and bottom right,
respectively). See Figure 4.3 for the position of each layer in the neural network. These parameters are retrieved from a neural network
trained on planets in a side-on orbit with directional light curves including polarization. Although PReLU layers 2, 3 and 4 approximate
ReLU layers, replacing them with ReLU leads to worse results.

4.4. Numerical Artefacts
When training the network with light curves with very little noise, the neural network is able to distinguish
between the two degenerate cases and correctly estimate x and y of the planet’s rotation axis. Since this
information is not actually present in the light curves, this shows that the neural network is using numerical
artefacts to identify the rotation axis. For example, these numerical artefacts could be due to the way each
facet’s flux is stored (as a float32) or the facet scheme of the planetary surface.

By increasing the noise levels, these small numerical artefacts can be reduced such that the neural net-
work must use true physical phenomena for the retrieval. By testing that for a given noise level the degenerate
cases can indeed not be distinguished, we have confirmed that the neural network solves the retrieval in the
intended manner. The results in Figure 4.6 show that a noise level corresponding to Nmax ≈ 10,000 photons
is needed.

4.5. Retrieval Accuracy
4.5.1. With Degeneracy
The retrieval accuracy of the neural network is plotted as a function of the planet’s orbital inclination angle
in Figure 4.7. The loss is highest for side-on orbits, which is explained by the degeneracy since the neural
network cannot accurately determine the x and y components of the rotation axes. The loss continually
decreases with increasing inclination, likely due to the near-degeneracies that exist for inclinations close to
side-on. The differences in between the Lambertian and directional models are similar in Section 4.5.2, and
are discussed there.
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Figure 4.6: Axis predictions for 200 planets in side-on orbits with different noise levels. These plots show that when there is very little
noise the neural network is able to resolve the degeneracy described in Section 4.2 using numerical artefacts in the simulated fluxes. For
higher levels of noise (Nmax = 10,000 or 1,000 photons) the degeneracy cannot be resolved so the x and y predictions are grouped around
x = 0 and y = 0, respectively, which minimizes the mean squared error (MSE). This shows that the network uses true physical phenomena
for retrieval in these cases.
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Figure 4.7: The retrieval accuracy as a function of inclination. Since there are no constraints on the rotation axis, the loss is very high for
side-on and near-side-on orbits due to the degeneracy and near degeneracies.

4.5.2. Without Degeneracy
The degeneracy can be mitigated by constraining the rotation axes of the planets to y ≥ 0 and training the
neural network on only these planets. The neural network is able to approximate the rotation axis in this half
of the search space effectively, as shown by the 100 examples in Figure 4.8. The solution within this search
space can then be used to find the solution in the other half of the search space by multiplying the rotation
axis by [-1,-1,1] and flipping the map about the equator. This decreases the MSE of the side-on orbits by
roughly one order of magnitude and the MSE of face-on planets by a factor of around 2 (see Figure 4.9). The
retrieval is still significantly more accurate for face-on orbits than side-on orbits, with a MSE that is roughly 2
times smaller.

Figure 4.8: Axis predictions (x on the left, y in the center and z on the right) for 100 planets in side-on orbits (i = 0◦), with the side-on
degeneracy mitigated by constraining y ≥ 0. Once the solution in this search space is identified, the other solution can be found by
element-wise multiplying the axis by [-1,-1,1] and flipping the map about the equator. These figures compare to row 3 in Figure 4.6
where the degeneracy is not visible.

Three models are trained separately: One is trained only on light curves computed using Lambertian
reflection and thus "learns" the Lambertian assumption. The other two are trained on light curves computed
using directional reflection, once with and once without polarization values included. Note that all losses
discussed in this section are validation losses, and are thus the loss of the model when applied to the 10% of
validation planets, which it is not trained with. The model trained with Lambertian curves performs best of
all combinations when retrieving the rotation axes of Lambertian planets, with an MSE of 0.0049 for i = 75◦.
However, this is shown to be an inaccurate retrieval since when the model is applied to the more accurate
directional light curves, the loss is drastically higher, by roughly one order of magnitude for low inclinations.
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This shows that if the neural network "learns" the Lambertian assumption, this leads to large errors for non-
Lambertian planets at low inclinations. Evaluating such a model using only light curves computed using the
Lambertian assumption would lead to incorrect confidence in the retrieval algorithm’s accuracy. However,
we show that when such a retrieval algorithm is used to retrieve the rotation axes of non-Lambertian planets
in a face-on orbit, the model has an MSE of 0.0085, only 32% greater than 0.0064 for the model trained trained
on light curves computed using directional reflection. This confirms that the reflected flux in a side-on orbit
is mostly Lambertian.

Figure 4.9: The retrieval accuracy as a function of inclination after resolving the degeneracy by constraining y ≥ 0. The loss for low incli-
nation is significantly lower than in Figure 4.7, where the degeneracy is not resolved. The graph shows that the Lambertian assumption
causes very large errors, as a neural network trained on Lambertian curves and applied to more accurate directional light curves has an
MSE roughly one order of magnitude larger than a model trained on directional light curves. For a side-on orbit the effect is relatively
small (MSE only 32% larger). Including polarization increases the accuracy of the retrievals for all inclinations.

The MSE of the directional models is also highest for the side-on orbit and decreases (nearly) continuously
until reaching a minimum for the face-on inclination, by a factor 2. This shows that planets in side-on or near
side-on orbits are more difficult to characterize in terms of their rotation axes’ orientations. We show that
including polarization measurements in the retrievals increases the accuracy of the retrieval for all orbital
inclinations. The beneficial effect of including polarization in the retrieval is smallest for the inclinations of
75◦ and 90◦, which can be explained since the reflected flux for these inclinations is mostly Lambertian. The
largest decrease in MSE by including polarization occurs for i = 60◦, where including polarization decreases
the loss by 23%.

4.6. Verification
To verify that the retrieval algorithm is able to retrieve planets with maps and rotation axes not included in
the training data, light curves are calculated for a model planet Earth with the cloud pattern in Figure 3.8. The
fluxes are computed using directional reflection with polarization for a face-on orbit with a rotation axis of
[0.918, 0.281, -0.281], such that the tilt is 23.4◦. Noise corresponding to Nmax = 10,000 photons is then added
to the curves and they are normalized to have a maximum value of 1, so that the relative fluxes are used
(since the radius of an exoplanet cannot be constrained using observations of reflected starlight). The neural
network trained on planets with rotation axes with y ≥ 0 predicts a rotation axis of [0.904, 0.170, -0.331] for
these light curves, corresponding to a MSE of 0.0050, similar to the MSE shown for face-on orbits in Figure 4.9.
Thus, we can conclude that the neural network has not "memorized" the sets of maps or rotation axes in the
training data and constrains the rotation axis in the intended manner.



5
Albedo Map Retrieval

In this chapter, we show our retrievals of albedo maps from light curves like the ones retrieved by other au-
thors (see for example Fujii and Kawahara [8], Kawahara and Masuda [23], Fan et al. [6], Farr et al. [7], Asen-
sio Ramos and Pallé [2]) and in Section 5.1 we show that this is possible using simple neural networks with
one to three layers. The mean squared errors (MSE) of the retrieved maps vary between 0.015 and 0.022, de-
pending on the combination of rotation axis and orbital plane (Figure 5.2). For side-on orbits, rotation axes
with a tilt near 90◦ are optimal for retrieval of albedo maps and for face-on orbits, rotation axes with a tilt near
0◦ (normal to the orbital plane) are optimal.

In Section 5.3, the architecture is expanded to relative (normalized) light curves. Three layers with ReLU
activation functions are used to estimate two scaling factors, one that is multiplied by the retrieved map and
one that is added to the retrieved map to correct for the overall brightness of the planet. The MSE of the
retrieved maps increases to only 0.016 for the ideal geometry when using this architecture, compared to an
MSE of 0.015. Applying noise to the curves decreases the retrieval accuracy (Figure 5.4), but some features of
Earth, like North America, are still visible for maximum photon numbers greater than or equal to 10,000.

Finally, we test the Lambertian assumption by applying a neural network trained with light curves com-
puted using Lambertian reflection to light curves computed using directional reflection. The neural network
"learns" the Lambertian assumption and retrieves non-existent concentric patterns about the poles of the
non-Lambertian planets. These artefacts are shown in Figure 6.4 and are retrieved for all orbital inclinations
except for face-on orbits.

5.1. Absolute Light Curves
In this section, we attempted to replicate the results of other authors to retrieve the albedo map of a planet
based on reflected light curves that are computed using Lambertian reflection and are not normalized. Since
this is a linear problem, an estimation of the solution can be found with very simple neural networks.

Over the course of one orbit around the star, the complete surface of a planet is visible to an observer only
in the special case that the rotation axis is normal to the vector to the observer. Since information about facets
that never face the observer is not present in the light curves, the neural network cannot retrieve the albedos
of those facets, and they are not included as outputs. The facets that will be visible to the observer can be eas-
ily identified by checking whether the facet’s normal vector has a positive x component for any combination
of orbit location and rotation phase. The sum of facets that fulfill this requirement is equal to the number of
facet albedos retrieved by the neural network. This number can be between 500 (the rotation axis is pointing
directly towards or away from the observer and half of the facets become visible) and 1000 (the rotation axis
is normal to the vector towards the observer and each facet becomes visible for some rotation phase depend-
ing on the orbital location). Note that every facet that becomes visible also becomes illuminated while being
visible.

Since the problem is linear in nature, the first architecture that is tried is a single layer of nodes (see
Table 5.1). Each facet output is thus computed by multiplying the 64 flux values (8 orbit locations x 8 rotation
phases) by 64 trainable parameters. It is found that including biases in the nodes decreases the accuracy
since there is no bias of any facet towards a higher or lower albedo, so these are not included. The number of
trainable parameters for this single-layer architecture is 64 multiplied by the number of outputs (the number
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of visible facets).
To test this architecture and compare it to others, it is trained using Lambertian, non-normalized flux

curves for an orbital inclination of 30◦ and a rotation axis of [0.93, -0.20, -0.30]. This geometry is found to
be the best combination in Section 5.2. The wavelength chosen for the retrievals is 550 nm, since at this
wavelength it is easiest to distinguish the albedos of all 4 surface types from each other (see Figure 3.4). Fur-
thermore, 10% of the data is used as validation data, the batch size of the training is set to 32 (found by trial
and error to be the best), the network is trained until the loss does not decrease for 10 consecutive epochs
and the loss function used is the mean squared error (MSE) since this is a regression problem. The training
parameters are not changed for the other architectures discussed in this section so that comparisons are fair.

Model Architecture Val. Loss (MSE) Training Epochs
681 Nodes 0.0186 413
64 Nodes
681 Nodes

0.0164 249

Periodic Convolution
64 Nodes
681 Nodes

0.0146 383

Table 5.1: Three of the tested architectures to retrieve facet albedos. These architectures are tested for the best combination of inclination
and rotation axis (shown in Figure 5.2), for which 681 facets are visible. The inputs to the neural network are 64 Lambertian fluxes (8 orbit
locations x 8 rotation phases) for the wavelength of 550 nm. The architectures are trained until the validation loss does not decrease for
10 consecutive epochs. The periodic convolution uses a 1x3 kernel, as shown in Figure 4.1.

Figure 5.1: Examples of albedo map retrievals for the best (top left) and worst (top right) geometries described in Figure 5.2 using absolute
light curves for a wavelength of 550 nm. 681 and 917 facets are visible in the two cases, respectively. The map of the planet being retrieved
are the model Earth at a wavelength of 550 nm (bottom). The mean square error for these two retrievals is 0.0286 and 0.0129, respectively,
which is similar to the MSE of the validation data for these geometries (see Figure 5.2).

The validation loss of the single layer after 413 training epochs is 0.0186 (see Figure 5.4 for a visual repre-
sentation of what retrieved maps look like for different loss levels). By trial and error, it is found that adding
another layer of 64 nodes (equal to the number of flux inputs) decreases the MSE to 0.0164 while also roughly
halving the number of training epochs to 249. Adding more dense layers than this does not further decrease
the validation loss of the network. However, the accuracy can be improved by including a periodic convolu-
tion (described in Section 4.1.1) with a kernel size of 1x3 before the two densely connected layers. The MSE
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of this model when applied to the validation data is equal to 0.0146. Two example retrievals are shown in Fig-
ure 5.1 for a model planet Earth in the best and worst configurations of inclination and rotation axis, which
are described in Figure 5.2.

5.2. Retrieval Accuracies for Different Inclinations and Rotation Axes
In this section, the effect of inclination and rotation axis on the retrieval accuracy of the albedo maps is in-
vestigated. Only half of the 64 axes in the training data are discussed since all rotation axes with x ≤ 0 can be
reflected in the z y plane to create a new axis with x ≥ 0 that has the exact same observations but in reverse
order and hence the same retrieval accuracy would be found.

The final model from Table 5.1 is re-trained for all 32 axes with x ≥ 0 for each of the 7 inclinations (0◦, 15◦,
30◦, 45◦, 60◦, 75◦ and 90◦). The MSE of the validation data is plotted for each combination in Figure 5.2 with
the locations of the crosses indicating the orientations of the rotation axes for each orbital inclination angle
i . Note that the number of facets that are retrieved varies for each rotation axis, since not all facets become
visible.

We find that a rotation axis angle (angle between the rotation axis and orbital normal vector) near 90◦
provides the best retrieval accuracy for side-on and near-side-on orbits (i.e. i = 0◦ and i = 15◦). For side-on
orbits (in the x y plane), the orbital movement modulates the signal across the y (vertical) axis of the planet’s
surface. When the rotation axis has a large component in the orbital plane, this provides modulation in
the opposite (z) direction. Conversely, when the axis is normal to the orbital plane the modulation due to
the rotation of the planet is in the same direction as the modulation due to the orbital movement. Side-on
orbits with rotation axes normal to orbital plane thus have the worst accuracy of all combinations. The worst
geometry that is studied is for a side-on orbit and a rotation axis of [0.34, -0.11, -0.94], with an MSE of 0.022.

For face-on and near-face-on orbits, the orbital movement of the planet modulates the signal in both the
y and z directions. The best retrieval accuracies are then found for axes near to the normal of the orbital plane

Figure 5.2: Accuracy of albedo retrievals using the final architecture from Table 5.1 for each combination of rotation axis and inclination.
The axes are projected onto the y z plane (y and z are the horizontal and vertical axes, respectively). Side-on orbits are in the x y plane
and face-on orbits are in the z y plane. Only axes with x > 0 are shown since the others are mirrors with the rotation epochs in reverse
order. The accuracies are generally higher for rotation axes that have a large tilt for (near-)side-on orbits and a small tilt for (near-)face-on
orbits. The highest loss is found for i = 0◦ and an axis of [0.34, -0.11, -0.94], while the lowest loss is found for i = 30◦ and an axis of [0.93,
-0.20, -0.30].



5.3. Relative (Normalized) Light Curves 40

that also modulate in both directions. Axial tilts near to 90◦ modulate in only one direction and thus show
slightly worse results. The best geometry is found for an inclination of 30◦ and an axis of [0.93, -0.20, -0.30], as
in this case the orbit and rotation axis both modulate across two perpendicular directions. The rotation axis
angle is 78◦, so the rotation axis lies close to the orbital plane, roughly in the direction of the observer. The
MSE for this case is 0.015 and this geometry is chosen for many of the remaining example retrievals in this
thesis.

5.3. Relative (Normalized) Light Curves
As is discussed in Section 3.6, flux curves that are normalized to an arbitrary maximum value (in our case 1)
should be used when developing retrieval algorithms for directly observed exoplanets since the radius of an
exoplanet is difficult to constrain from direct detections. To do this, we propose a new, modified architecture
in Figure 5.3. The outputs of the periodic convolution are used to estimate the overall brightness of the albedo
maps by three densely connected layers with 32 nodes each. Two single nodes, which output a single number
each, are then multiplied and added to the albedo map to scale the map to the estimated brightness. The
densely connected layers have ReLU activation functions, which are a special case of PReLU (Equation 4.1)
where a = 0. Based on our experience, using PReLU layers where a is actively trained instead of ReLU layers
in this architecture does not provide better results and increases the number of epochs needed to reach the
same validation loss.

Figure 5.3: The architecture used to retrieve relative light curves that have been normalized such that their maximum value along the
orbit is 1. Several "logic" layers with ReLU activation functions are used to scale the output map by adding and multiplying by two single
values. The scaling part of the network decreases the loss from 0.0197 to 0.0162 (for the ideal geometry described in Figure 5.2). The
output of the neural network is between 500 and 1000 values, depending on the number of facets that is visible for the specific geometry.
Neurons in the bottom layers have biases but ones in the top layers do not.

When using the final neural network that is designed for absolute flux curves (Table 5.1) and training it
with normalized flux curves, the MSE increases from 0.0146 to 0.0197. By using the scaling discussed above,
the loss function can be decreased from 0.0197 to 0.0162. This shows that the neural network is able to effec-
tively estimate the brightness of the map. Examples of retrievals using this architecture are discussed in the
next section.

5.4. Effects of Noise
In this section, the effect of noise on the albedo map retrievals is studied. We train the architecture from
Figure 5.3 on normalized, Lambertian light curves with different levels of shot noise (explained in Section 3.5).
The MSE of the validation data and the MSE of retrieved Earth maps are both shown Figure 5.4. For all noise
levels the retrieval of Earth is significantly better than for the validation data. This could be because the Earth
map is largely covered by vegetation and ocean, which have a similar albedo for a wavelength of 550 nm
(relative to e.g. a combination of clouds and ocean.) Homogeneous planets may be easier to retrieve since
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Max.
Photons

Validation
MSE

Earth
MSE

Retrieved Earth

∞ 0.0162 0.0142

105 0.0185 0.0146

104 0.0210 0.0157

103 0.0240 0.0184

102 0.0280 0.0262

10 0.0336 0.0284

Truth

Figure 5.4: Albedo retrievals of Earth for different levels of noise (see Figure 3.11), using the optimal configuration from Figure 5.2.
The architecture from Figure 5.3 for normalized flux curves is used and the flux curves are computed using the Lambertian reflection
model. The validation MSE refers to the MSE when the model is applied to the 10% of fake planets that are used for validation, rather
than training. The mean squared error for the Earth retrieval is lower than for the validation data for all noise levels. At a noise level
of Nmax = 100 photons the clouds are retrieved as high albedo regions and at a noise level of Nmax = 10,000 photons Afro-Eurasia and
North America can both be distinguished.
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there are less hard-to-predict details with large penalties for the loss function.
For the case with no noise (Nmax =∞), the clouds, the Sahara and North America can be clearly distin-

guished. These continental features disappear at a noise level of Nmax ≤ 1000 photons. For a noise level of
Nmax = 10 photons, the overall albedo of the planet can be estimated but the map is not spatially resolved.
The results shown here are comparable to results by other authors (Fujii and Kawahara [8], Kawahara and
Masuda [23], Fan et al. [6], Farr et al. [7], Asensio Ramos and Pallé [2]) although precise comparison is difficult
due to differences in geometry, noise models, number of observations and map of the planet to be retrieved.

5.5. Errors due to Lambertian Assumption
Since all other authors, to our knowledge, use Lambertian reflection for their retrievals, it is interesting to
evaluate the validity of the Lambertian assumption. To do this, the model from Figure 5.3, which provides
comparable results to those by other authors, is trained on Lambertian light curves and then applied to di-
rectional light curves (i.e. light curves computed using directional reflection). In Section 4.5, we showed that
the Lambertian assumption can only be used for rotation axis retrievals of planets in face-on orbits, so it is
expected that the same holds for retrievals of planet maps.

As can be seen in Figure 5.5, when the Lambertian assumption is used to retrieve planets based on di-
rectional curves, strong concentric artefacts about the pole appear for all inclinations besides the face-on

Desert Planet Cloudy Planet Ocean Planet
Inclination λ = 400 nm λ = 800 nm λ = 400 nm λ = 800 nm λ = 400 nm λ = 800 nm

0◦
Side-On

Orbit

30◦

60◦

90◦
Face-On

Orbit

Figure 5.5: Albedo retrievals of directional light curves for homogeneous desert, cloud and ocean planets using the architecture from
Figure 5.3 trained on Lambertian light curves. The axis (shown with a white or black X) for each inclination is chosen from Figure 2.13
to minimize the difference to the normal of the orbital plane. The tilts of the axes are 23◦, 11◦, 5◦ and 15◦ for the inclinations of 0◦, 30◦,
60◦ and 90◦, respectively. Concentric patterns are observed around the axis for all inclinations besides face-on, due to the lower total
flux at high phase angles and higher total flux at low phase angles of directional light curves compared to Lambertian light curves. This
shows that making the Lambertian assumption leads to incorrect retrievals for planets that are not in a face-on orbit. The retrievals of
the desert planet at λ = 800 nm are best since the desert is modelled as a Lambertian surface and atmospheric effects are minimal at this
wavelength.
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orbit. Each of the planets in the figure is a homogeneous planet and should be retrieved as such, which is
only the case for the face-on orbit. The artefacts at other inclinations are due to the overestimation of the
flux at low phase angles and underestimation of the flux at high phase angles when using the Lambertian
assumption (see Figure 3.5 for a comparison of Lambertian and directional light curves). Since the planets
are homogenous and thus have the same flux at all rotation phases, the magnitude at each phase angle is the
only difference between the Lambertian and directional reflection models in this case.

Since most exoplanets are not in a face-on orbit, these errors demonstrate a need for new retrieval algo-
rithms that use directional light curves to map planet surfaces.



6
Surface Type Map Retrieval

Since albedo maps, as used by the other authors working on this topic, do not completely describe a planet’s
surface and do not distinguish unique non-Lambertian features like oceans and clouds, a new approach is
used for creating planet maps. Instead of retrieving an albedo value in the interval [0,1] for each surface facet,
as is done in Chapter 5, the surface type of each facet is retrieved. The four possibilities for each facet are
ocean, clouds, vegetation and sandy desert. For each facet, our neural network predicts a probability for each
possibility.

To perform regularization of the surface map across the spherical surface of the planet, we use spherical
convolutions, as is done by Asensio Ramos and Pallé [2]. The algorithm by Krachmalnicoff and Tomasi [26]
is adapted so that it can be used for the Fibonacci sphere. We improve the algorithm by repeating and taking
out some values to take advantage of the periodic circular shape, rather than using zero-padding as is done by
Krachmalnicoff and Tomasi [26], which can cause artefacets (Alsallakh et al. [1]). The spherical convolutions
are applied after two layers of periodic convolutions and a dense layer, as shown in Figure 6.2.

We find that our proposed architecture predicts 87% of facets correctly for the ideal geometry in the ab-
sence of noise. Increasing the noise decreases the retrieval accuracy (see Figure 6.3) but most of Earth’s
features such as the Americas, the Sahara Desert and Europe can all be distinguished even for Nmax = 100
photons (see Figure 6.5.) These surface type maps show more detail and are more resilient to noise than the
albedo maps discussed in Chapter 5. In Section 6.4 the benefits of polarization are discussed. Due to their
unique polarization signature, including the polarization of the reflected starlight in the retrievals increases
the retrieval accuracies of ocean and cloudy facets by 2% and 1%, respectively.

As was also the case for the albedo maps (see Chapter 5), using a neural network trained on Lambertian
light curves (called the Lambertian neural network) to retrieve non-Lambertian planets, results in highly er-
roneous maps (see Figure 6.4.) However, in Figure 6.6 it is shown that the classification accuracies of the
Lambertian neural network are above 70% for all four surface types when the orbit of the planet is face-on,
since for this geometry the reflected light is mostly Lambertian.

6.1. Architecture
6.1.1. Spherical Convolutions
2-D convolutions are originally developed for image recognition (Lecun et al. [27]) but can also be used for
2-D image generation, for example when generating faces (Karras et al. [21]) or for semantic segmentation,
where the output of the neural network is an image with each pixel belonging to a class (Wang et al. [41]).
Asensio Ramos and Pallé [2] demonstrate that convolutions on the surface of a sphere can be used to regu-
larize retrieved exoplanet maps. They use the spherical convolution algorithm developed by Krachmalnicoff
and Tomasi [26] together with ReLU activation functions to regularize a retrieved planet map on a HEALPix
pixelization scheme (Gorski et al. [11]).

Since the HEALPix scheme is not used in this thesis, we have adapted the spherical convolution algorithm
by Krachmalnicoff and Tomasi [26] to a Fibonacci sphere. The spherical convolution takes advantage of the
optimization that has been achieved for 1-D convolutions by expanding the 1-D list of facets on the sphere’s
surface such that each facet is followed by its N surrounding facets. Then a kernel with size and stride equal
to N +1 (kernel size and stride are illustrated in Figure 4.1) convolve each facet with its surrounding facets.
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To achieve this for a Fibonacci sphere, each facet’s surrounding facets are identified by checking which
other facets share a vertex. They are then ordered in clockwise direction by calculating the clockwise angle
from the z-direction to each surrounding facet’s center (after projecting into the plane of the center facet.)
This series of facets constitutes a kernel with 1 "ring." More rings can be added by taking the surrounding
facets of the inner ring. A problem that needs to be solved is that the rings around the facets do not all have
the same size but the 1-D kernel can only have one size. To solve this, Krachmalnicoff and Tomasi [26] add
zero values to the end of the series that represents one ring. This method, called zero-padding, has been
shown by Alsallakh et al. [1] to potentially cause unwanted artefacts for regular 2-D convolutions. Hence, we
improve the solution by adding the first value to the end of the series, since the rings are periodic in nature.

Figure 6.1: An example of a spherical convolution with 5 rings. The method developed by Krachmalnicoff and Tomasi [26] (originally for
HEALPix) is adapted to the Fibonacci sphere with the improvement that the periodic nature of rings is used rather than zero-padding.
Some facets inside the rings are black because they are not included in the kernel, since the number of facets in each respective ring
must match for all kernel locations on the sphere.

The mean integer value of the rings surrounding each facet are computed and for each facet’s rings, if the
number of facets in the ring is not equal to the mean, facets are either repeated or taken out in an evenly
spaced manner. This leads to some "holes" in the rings as shown in Figure 6.1. In other places there are
double counts. These holes and double counts could lead to unintended artefacts.

6.1.2. Architecture
To create surface type maps, the output dimensions of the neural network should equal the number of visible
facets (500-1000) times the number of possible surface types (4). When creating a visual map or checking the
classification accuracy, each facet’s predicted surface type is the one with the highest probability.

To recognize patterns in the light curves, a similar periodic convolution approach as in Figure 4.3 is used.
Two periodic convolutions (see Section 4.1.1) with 16 kernels of size 1x3 and 1x4 are applied to the light
curves. No down-sampling is done as the resolution along the rotation phase should stay high to create
accurate maps (stride = 1). This means that we used a vector of size 1024 after flattening the outputs of the
periodic convolutions. This is followed by one dense layer for each surface type. Each dense layer has as
many nodes as there are output facets.

Finally, spherical convolutions are used for regularization of the surface map. A ResNet approach (He
et al. [16]) is used so that the dense layer output is fed into spherical convolutions (four filters, one ring) and
the output of the spherical convolution is then added to the original output. This is done 5 times before the
final output of the neural network. The spherical convolution kernels are set to all zeros before training, such
that the spherical convolutions minimally interfere with the learning of the earlier layers.

6.1.3. Training
The neural network is trained for one combination of inclination and rotation axis at a time, so there are
roughly 4,000,000 / 7 / 64 ≈ 9000 light curves in the training data, of which 10% are used for validation. The
neural network is trained using the Adam optimization algorithm (Kingma and Ba [24]), until the validation
loss does not decrease for 5 consecutive epochs. We find that a batch size (number of curves fed into the
neural network simultaneously for training) of 32 works best, since larger batch sizes can cause the neural
network to overshoot the local minima. We hypothesize that this is due to the gradient magnitudes in com-
bination with the standard learning rate in Keras. We also find that training the neural network using the
mean squared error (MSE) as the loss function gives the highest retrieval accuracies, compared to the cate-
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Figure 6.2: The architecture used to classify facets on a planet as one of the four surface types. Several periodic convolutions are used
to recognize patterns in the curves similar to the rotation axis retrieval network in Figure 4.3. To maintain a high level of resolution of
rotation phases, no down-sampling is used in the convolutions. Four dense layers with 500-1000 nodes estimate the probability of each
surface type for all visible facets. 5 spherical convolutions are performed in series and added to the final result. 4 filters are used in the
spherical convolutions to match dimensions.

gorical cross entropy which is more commonly used for classification problems (Zhang and Sabuncu [42]). It
is unclear to us why this is the case, but it may be due to the ill-defined nature of the exocartography inverse
problem or a suboptimal network architecture.

6.2. Retrieval Accuracy
In this section, the retrieval accuracies of the neural network architecture shown in Figure 6.2 are investi-
gated. The retrieval accuracy of each surface type is plotted as a function of the noise level in Figure 6.3. The
inclination and rotation axis chosen for this graph are the best combination discussed in Figure 5.2. Since
the inclination is 30◦, the rainbow feature at α = 38◦ is visible during two of the eight orbital positions and the
ocean glint feature is also prominent at the two orbital positions for which α = 142◦.

The network performs very poorly when trained on Lambertian light curves and applied to directional
light curves. This is further discussed in Section 6.3. The surface type that is classified correctly most often
is ocean, due to its unique ocean glint feature as well as its characteristic dark colors. We verify that the
high accuracy is (at least) partially due to the ocean glint since the Lambertian neural network applied to
Lambertian light curves does not perform as well as the directional neural network applied to directional
light curves. A similar effect is also seen for cloudy facets, which also have unique, non-Lambertian phase
curves (see Figure 3.5). The vegetation and desert surface types, which are modelled as Lambertian surfaces
below the atmosphere, do not see an increase in classification accuracy for the directional light curves, when
compared to the Lambertian light curves.
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Figure 6.3: The percentage of correctly identified facets in the validation data for different noise levels. Ocean, clouds, desert and vege-
tation are shown from left to right and have maxima of 92%, 85%, 85% and 85%, respectively. The architecture in Figure 6.2 is trained for
the best combination of inclination and rotation axis discussed in Figure 5.2. The directional neural network with polarization is the best
in nearly all cases. The Lambertian neural network has a very low classification accuracy when applied to the more accurate directional
light curves, except for the vegetation surface type. Ocean has the highest classification accuracy due to its unique glint feature, which
is not present in Lambertian light curves. This explains the discrepancy between the Lambertian neural network and directional neural
network (a similar effect is seen for cloudy facets).

The retrieved maps of planet Earth are shown in Figure 6.5 as a function of the noise level. These maps
have more detail than the albedo maps shown in Figure 5.4, which validates the approach of retrieving surface
types rather than albedos. In the absence of noise, all landmasses can be clearly distinguished. At a noise level
of Nmax ≤ 1,000 photons North and South America begin to disappear. Finally, for Nmax = 10 photons only the
overall surface type of the planet (vegetation and ocean) is retrieved. Since the level of noise for this case is
very high, the specific map of the retrieval can greatly change due to probabilistic noise contributions.

6.3. Validity of Lambertian Assumption
As can be seen in Figure 6.3, the Lambertian neural network yields a very high error rate when applied to
directional light curves. As a visual example of this, Figure 6.4 shows the retrieval of the directional light curves
of the model Earth by a neural network trained on Lambertian light curves. The neural network incorrectly
predicts a very large fraction of facets and predicts bright sandy desert where there should be dark ocean.

Since so far only the ideal geometry from Figure 5.2 is studied, other inclinations are also tested to see if
the Lambertian neural network can perform better, as was the case for rotation axis and albedo map retrievals
for a face-on orbit. In Figure 6.6, the Lambertian neural network is trained on different inclinations with
rotation axes with a tilt near 0◦. As was found in Section 4.5 and Section 5.5, the Lambertian assumption
is only reliable for face-on orbits and near face-on orbits (at i = 75◦ all surface types besides ocean have
a classification accuracy above 60%). Even for these cases, the directional neural network’s classification
accuracy is considerably higher and is thus preferred.

Figure 6.4: The neural network shown in Figure 6.2 is trained with Lambertian light curves and used to retrieve the map of the model
Earth (see Figure 6.5) using directional light curves. It does this very poorly due to the inaccuracies of the Lambertian reflection model.
The orbital inclination and rotation axis of the planet are the optimal configuration from Figure 5.2.
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Figure 6.5: Retrievals of Earth for different levels of noise using directional light curves with and without polarization. The architecture
from Figure 6.2 is trained for the optimal configuration from Figure 5.2. For Nmax = 10 photons, the overall surface types of the planet
(mostly ocean) are able to be retrieved. At a noise level of Nmax = 1,000 photons, the Sahara and the Americas are retrieved. At a noise
level of Nmax = 100,000 photons, the rough shapes of the continents and clouds can be distinguished. The classification network provides
much more detailed maps than the network for albedo maps shown in Figure 5.4.
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The only surface type for which the classification accuracy for the Lambertian neural network is above
65% for all inclinations is vegetation. This may mean that the Lambertian neural network uses the red edge
feature of vegetation at the wavelengths of 700 and 800 nm to classify vegetation facets. Since there is very
little atmospheric effect at these high wavelengths and because vegetation is modelled as a Lambertian sur-
face, the facets reflect nearly identically for the directional and Lambertian light curves (see the phase curves
in Figure 3.5).

Figure 6.6: The retrieval accuracy of the Lambertian retrieval algorithm applied to directional light curves as a function of inclination.
The rotation axes for each inclination are chosen to minimize the difference to the normal of the orbital plane (see Figure 5.5 for exam-
ples). For all inclinations besides the face-on orbit, the Lambertian neural network does very poorly. The directional retrieval algorithm
(without polarization) is shown in dotted lines for comparison. Even in the face-on orbit where the Lambertian assumption is most valid,
the directional neural network has a significantly higher accuracy.

6.4. Benefits of Polarization
To study the effects of including polarization on the retrievals, the confusion matrices are shown for the di-
rectional neural networks without and with polarization in Table 6.1 and Table 6.2, respectively. Confusion
matrices visualize the performance of classification models by showing the fraction of each actual class (in the
columns) that is in each predicted class (in the rows). These show that the retrieval accuracies of the desert
and vegetation surface types remain the same after adding polarization as an input to the retrieval. This is to
be expected since both are modelled as Lambertian, non-polarizing surfaces. The retrieval accuracy of ocean
and cloud facets are increased by 2% and 1%, respectively, due to the unique polarization signature of the
ocean glint and rainbow features. This shows that including polarimeters on future telescopes would slightly
increase their ability to map exoplanets, especially ones with oceans and clouds.
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Pred.
True

Ocean Desert Vegetation Clouds

Ocean 0.90 0.06 0.03 0.05
Desert 0.05 0.85 0.08 0.06
Vegetation 0.02 0.05 0.85 0.05
Clouds 0.03 0.04 0.04 0.84

Table 6.1: The confusion matrix for the neural network in Figure 6.2 with directional light curves without polarization for planets with
optimal configuration from Figure 5.2. Each number shows the fraction of each surface types’ facets (columns) that are classified as a
specific type (rows). No noise is applied to the curves. The ocean surface type is classified correctly most often due to its unique glint
feature and dark colors. The diagonal of the confusion matrix is each surface’s accuracy for Nmax =∞ (no noise) in Figure 6.3.

Pred.
True

Ocean Desert Vegetation Clouds

Ocean 0.92 0.06 0.03 0.05
Desert 0.04 0.85 0.08 0.05
Vegetation 0.01 0.05 0.85 0.04
Clouds 0.03 0.03 0.04 0.85

Table 6.2: The same confusion matrix as Table 6.1 but for light curves with polarization. Using polarization increases the retrieval accu-
racy of ocean facets by 2% and cloudy facets by 1% due to their unique polarization signatures (ocean glint and rainbow). Values that
increased or decreased in comparison to Table 6.1 are marked in green and red, respectively.



7
Conclusion

In this thesis, neural networks are used to retrieve exoplanet maps based on variations in reflected star light.
Due to the huge distances to other stars, the planets cannot be resolved and are instead observed as unre-
solved pixels. If the planet is not homogeneous, the pixel’s brightness and polarization vary as the planet
rotates about its own axis and orbits its star, giving information about longitudinal and latitudinal variations,
respectively. By observing the planet at different orbital positions and rotation phases, a map of the planet
may be reconstructed from the data.

The first step in retrieving the planet map is determining the planet’s rotation axis, which is done in Chap-
ter 4 by the neural network shown in Figure 4.3. We have implemented a new variation of 1D convolutions
that takes advantage of the periodic nature of the light curves, leading to 10% better results for rotation axis
retrievals. The periodic convolutions are followed by a number of dense layers with PReLU activation func-
tions.

The accuracy of the map predicted by the neural network is inclination-dependent, decreasing from a
mean squared error (MSE) of 0.011 for side-on orbits to 0.006 for face-on orbits (the axes have a magnitude
of 1). The case of exact side-on observation needs to be treated as a special case, because mirror reflection
of the configuration in the orbital plane does not change the signal. This degeneracy has been accounted
for in this algorithm. To our knowledge, this degeneracy has not been discussed in publications before. The
degeneracy is not problematic as both solutions can be found and they are not fundamentally different types
of planets.

In Chapter 5, we show that the albedo maps retrievals by other authors can be roughly replicated using
a single-layer neural network with observations as inputs and facet albedos as outputs. The accuracy of the
retrieval can be further increased by adding one layer of periodic convolutions and one additional dense
layer of neurons resulting in a MSE between 0.014 and 0.022, depending on the combination of inclination
and rotation axis. For face-on orbits, the retrievals are most accurate when the tilt of the planets is near 90◦
and for side-on orbits the retrievals are most accurate when the tilt of the planets is near 0◦ (there are no
seasons when the tilt is 0◦). It is also shown that relative, normalized curves such that the maximum flux is
equal to one can be used for retrieval by scaling the map with the network architecture shown in Figure 5.3.

In Chapter 6, we test a new approach to planet mapping by predicting surface types rather than albedos.
This approach is used since some surface types reflect starlight in a non-Lambertian manner, which is sim-
ulated using the method by Rossi et al. [32]. A relatively simple neural network (see Figure 6.3) can create
detailed planet maps of this type that predict up to 92% of ocean facets and 85% of other facet types correctly.
The network uses periodic convolutions followed by a dense layer that assigns probabilities for each surface
type to the facets. For regularization, spherical convolutions that are an improved version of the method by
Krachmalnicoff and Tomasi [26] are applied to the map in a ResNet fashion. When applied to a model Earth,
the retrieved map shows that the Sahara, Europe, Asia, the Americas and cloud patterns can all be retrieved
for a maximum photon number of 1000. Since we neglected all other types of noise, the shot noise alone
limits the possibility of the retrieval of the Earth map in such detail by the HabEx telescope in combination
with a star shade to a maximum of 75 ly.

In this research, the validity of the Lambertian assumption is assessed. We show that the retrieved rotation
axes, albedo maps and surface type maps are all usually poor, except for the case of face-on observation, in
which case the signal is mostly Lambertian. The MSE of the rotation axis retrievals is reduced by a factor 10
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if directional reflection is taken into account, compared to Lambertian reflection (see Figure 4.9). Retrieving
albedo maps using the Lambertian assumption creates concentric patterns about the poles (see Figure 5.5)
and retrieving surface type maps also creates erroneous maps (see Figure 6.4). These errors are due to the
overestimation and underestimation of the planet’s brightness for low and high phase angles, respectively,
due to effects like Rayleigh scattering, scattering by water clouds and ocean glint that Lambertian reflection
do not take into account (see Figure 3.5).

The usefulness of detecting the polarization of reflected starlight for planet mapping is also assessed in
this thesis. We show that shot noise effects the polarized signal of an exoplanet to a greater degree than the
total flux, since the degree of polarization is typically only around 20% (see Figure 3.11). Including polariza-
tion decreases the MSE of the rotation axis retrievals by around 15% (see Figure 4.9). It also increases the
accuracy of surface type maps, specifically the retrieval accuracy of ocean facets and cloudy facets by 2% and
1%, respectively (see Figure 6.3.)

Neural networks have been shown to be a promising candidate for retrievals of exoplanet maps from the
reflected starlight. Only 8 orbital locations and 8 rotation phases are needed when using the architectures
discussed in this thesis. The next generation of telescopes will be in high demand, so long observation times
are not guaranteed. However, the characterization and mapping of a potentially habitable Earth-like planet
will probably ensure a serious effort to obtain sufficient signal to noise ratios.



8
Recommendations

Some recommendations for future research are listed below:

• Include ice (this surface type is seen on Earth, Mars, Europa, etc.), different colored deserts (such as the
red desert seen on Mars) and/or other colored Lambertian surfaces in the training data.

• Included different atmospheric thicknesses and constituents in the training data and include these
parameters in the retrieval.

• Include different clouds such as the sulfuric acid clouds seen on Venus, which exhibit a different rain-
bow feature than water clouds (Hansen and Hovenier [14]).

• Wavelength dependent starlight can be included in the reflection model. In this thesis the star light is
always assumed to have a value of 1, but in reality the intensity of star light is wavelength dependent,
depending on the temperature of the star.

• Reflected star light from a moon or several moons could be included in the planetary signal and the
presence of moon(s) could be included in the retrieval.

• Simulate the reflected flux of the planet during a full orbit, rather than at 8 locations. Using such a light
curve for the retrieval (as is done by many other authors) may require new architectures as the number
of observations would drastically increase and thus the number of trainable parameters may become
too large for efficient training.

• Dynamic maps with diurnal and seasonal variations in the cloud maps could be used. This would
require new neural networks architectures to map the underlying surface in addition to the dynamic
cloud map.

• More accurately simulate noise. Effects such as instrumental noise and background noise (due to the
atmosphere, (exo-)zodiacal dust, refraction around the star shade, other stars etc.) are not included
and may be of greater or similar magnitude than the shot noise.

• Verify the retrieval algorithms with light curves of planets and/or moons in our solar system.

• Try higher and/or lower resolution maps planet maps. The HEALPix pixelization scheme could also be
tried instead of a Fibonacci sphere.

• Include different ratios of orbital and rotational period. In this research we assume that the movement
of the planet in its orbit is negligible during one rotation about its axis but this is not true for all planets
(for example Mercury has a 3:2 spin-orbit resonance).

• The rotation of the planet during one observational integration period causes smearing, which could
be included in the computation of the reflected fluxes.
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