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1
INTRODUCTION

Machine learning (ML) is increasingly recognized as a technology with a great potential
for task automation, task acceleration, or task effectiveness improvement. In practice,
ML has already shown promises in various industries and public organisations. It is now
used in advertising, banking and finance, document management, security, predictive
maintenance, healthcare, retail, law, agriculture, manufacturing, transportation, etc.1

For the public sector, it is envisioned to be especially impactful for cyberdefense, traffic
management, administrative tasks, real-time translation,2 road infrastructure inspec-
tion, tax-evasion detection, etc.3

Next to the potential utility of ML, what explains its rapid adoption is one unique
characteristics of its application process: ML is seen as one of the artificial intelligence
technologies that enables a (relatively) easy development of automated software, as it
primarily consists in automatically learning relevant patterns from data, instead of thor-
oughly identifying such patterns and manually expressing them in a formal language
[414]. The growth of ML has been fostered by a variety of seminal research papers propos-
ing new algorithms to train ML models, such as ridge regression [360], classification trees
[130], generalized additive models [340], support vector machines [345], random forests
[129], etc., and later on new architectures for deep learning models. These models work
with a variety of input data, e.g., tabular data, images, text, video, etc., to perform a vari-
ety of tasks, e.g., classification, regression, detection, segmentation, etc., corresponding
to the needs of various domains. One can for instance think of Word2Vec embeddings
[550] or the BERT model [430] for natural language processing, the AlexNet model [453]
for computer vision, or the deep Long Short-term Memory recurrent neural networks
[306] for speech-to-text applications, etc.

1https://www.grandviewresearch.com/industry-analysis/machine-learning-market
2https://wp.nyu.edu/dispatch/5-examples-of-using-ai-deep-learning-for-the-
government-and-public-sector/

3https://www.mckinsey.com/industries/public-and-social-sector/our-insights/when-
governments-turn-to-ai-algorithms-trade-offs-and-trust

1

https://www.grandviewresearch.com/industry-analysis/machine-learning-market
https://wp.nyu.edu/dispatch/5-examples-of-using-ai-deep-learning-for-the-government-and-public-sector/
https://wp.nyu.edu/dispatch/5-examples-of-using-ai-deep-learning-for-the-government-and-public-sector/
https://www.mckinsey.com/industries/public-and-social-sector/our-insights/when-governments-turn-to-ai-algorithms-trade-offs-and-trust
https://www.mckinsey.com/industries/public-and-social-sector/our-insights/when-governments-turn-to-ai-algorithms-trade-offs-and-trust
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2 1. INTRODUCTION

1.1. MOTIVATION: ML HAZARDS, FROM ML THEORY TO ML
PRACTICES

Despite the potential of ML, ML also suffers from hazards that can cause or reinforce
harms. These ML hazards are at the core of the motivation for this thesis, as we describe
in the remaining of this section.

1.1.1. DANGERS OF ML MODELS: FAILURES, HAZARDS & HARMS

One of the primary arguments for the adoption of ML to perform certain tasks in a spe-
cific application context is the advantages it brings, in comparison to humans working
for this application. Oftentimes, ML is argued to be more accurate, and less biased than
human decision makers, making the decision-making task at hand safer and fairer —
“If you want the bias out, get the algorithms in” (MIT research scientist Andrew McAfee
[752]). The proposed arguments are respectively that humans are not able to process as
much data (and in a same amount of time) as a machine in order to identify and take the
most appropriate action, and that humans are all biased and make decisions based on
biased judgements, whereas a machine would be more objective and bring consistency
to the decisions.

Unfortunately, these arguments have revealed flawed in recent years. A plethora of
incidents and accidents caused by ML-powered systems have led to identify many haz-
ards and harms of ML. To name a few, we can cite discrimination in allocation task [546],
offensive representations in classification tasks4, denying the principal of individual jus-
tice [254], insecurity (e.g., in relation to adversarial attacks) [610], safety issues due to
false positives or false negatives (e.g., accidents in autonomous driving or healthcare),
privacy infringement (e.g., datasets collected without informed consent), unnecessary
cost, environmental impact due to data storage and computational power required, etc.5

[490, 240, 120] And of course, not all harms are known.

ML production ML model

Developers’ 
practices Bug Failure

ML interaction

Hazard Harm

ML 
developer ML user Decision-

subjects, …

Environment

Clients, model 
owners, etc

Output

a subset causes a subset results in a subset 
leads to

some areintroduced in

ML task 
design

ML inference 
process

ML model 
goal

ML training 
process

Figure 1.1: Clarification of the terminology used in this thesis around the concepts of harm, failure, and hazard.
In dark orange, the type of hazards (and their causes) we primarily focus on (including in Part III), and in light
orange those hazards for which we leave to future work the development of diagnosis methods. In blue, we
show how hazards and their causes relate to the different components of a machine learning system. In green,
we illustrate which stakeholders typically intervene on these components, we primarily focus on the machine
learning developers (dark green), as they are those stakeholders whose technical practices might lead to harms.

4https://www.theguardian.com/technology/2023/feb/08/biased-ai-algorithms-racy-women-
bodies

5https://www.w3.org/TR/webmachinelearning-ethics/

https://www.theguardian.com/technology/2023/feb/08/biased-ai-algorithms-racy-women-bodies
https://www.theguardian.com/technology/2023/feb/08/biased-ai-algorithms-racy-women-bodies
https://www.w3.org/TR/webmachinelearning-ethics/
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In Figure 1.1, we clarify the terminology that we will use along the thesis. The exam-
ples above constitute examples of algorithmic harms, i.e., harms caused by the devel-
opment or use of an ML system in the real world. Before a harm arises, we talk about
hazard, i.e., the risk that a harm could arise in the world. In the thesis, we investigate
two types of hazards: a) hazards that find their cause in a dangerous output failure of the
ML system (i.e., a hazardous output failure, such as those that lead to discrimination),
the failure itself being caused by a bug in the system that results from problematic ML
developers’ practices (e.g., a problematic design choice about the training dataset or the
architecture of the ML model); or b) hazards that are not due to the system output but
to its inherently problematic goal, or due to its development and deployment processes
(e.g., environmental impact). Hazardous output failures are the issues for which we de-
velop diagnostic solutions in Part III. In this thesis, we focus on the technical elements
(failures, bugs, and design choices), that when unaccounted for, might transform a haz-
ard of type a) or type b) into a harm. In Figure 1.2, we provide a more concrete example
of the way in which a problematic practice of an ML developer might result into a harm.

ML production ML model

Practices for dataset 
cleaning, e.g., 

removing records 
with missing values

Population 
silencing 

in training 
dataset

High-error 
rate for 

this 
population

ML interaction: 
no oversight

Potential for 
unfair 

treatment of 
this population

Allocative 
harm

Output

Figure 1.2: Example of the way in which one flawed practice of an ML developer might result into a harm.
Imagine a use-case where an ML developer builds an ML system to allocate welfare benefits across individuals.

EXAMPLES OF HARMS COMING FROM HAZARDOUS MODEL OUTPUT FAILURES

Across application domains, the use of ML systems has caused many harms, among
which many (more than 2400 at the time of the writing of this thesis) are referenced in the
AI Incident Database.6 We give here a few examples of these harms, that are specifically
related to failures in the outputs of ML-powered systems.

Discrimination. In relation to tabular data, ProPublica7 has shown that the COMPAS
system used in the United States of America to predict recidivism risk discriminates
against African Americans in comparison to white defendants. In the Netherlands, the
child care benefits scandal (“toeslagenaffaire”8) revealed that the ML system used by the
Dutch government to spot benefits fraud inaccurately flagged families from ethnic mi-
norities and lower-income families as suspicious of frauds, leading to exorbitant debts.
Around natural language processing, the Amazon automatic screening tool9 for hiring

6https://incidentdatabase.ai/
7https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing

8https://www.politico.eu/article/dutch-scandal-serves-as-a-warning-for-europe-over-
risks-of-using-algorithms/

9https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G

https://incidentdatabase.ai/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.politico.eu/article/dutch-scandal-serves-as-a-warning-for-europe-over-risks-of-using-algorithms/
https://www.politico.eu/article/dutch-scandal-serves-as-a-warning-for-europe-over-risks-of-using-algorithms/
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
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has been discovered to penalize women candidates for a job in comparison to men can-
didates. As for computer vision applications, investigations have shown highly unequal
errors rates between intersectional groups within facial attribute classification systems
(especially between darker-skin color women, and lighter-skin color men) [138], offen-
sive labels outputted to characterize darker-skin color individuals, such as with the infa-
mous Google Vision API that incorrectly described certain individuals as “gorillas”10 or a
dark-skin hand holding a thermometer as holding a gun11, etc.

Physical harms. The above examples reflect ML system outputs that cause discrimi-
nation and have strong harmful social impact on individuals or communities especially
when related to resource allocation or erroneous representations. System outputs have
also led to safety risks and physical accidents (without association to discrimination).
Countless examples show misclassifications of ML algorithms that led to errors in medi-
cal diagnoses [527], sometimes with strongly imbalanced error rates across categories of
population [593]; misrecognitions that could have led to car accidents, or actually led to
injuring pedestrians1213, etc.

CAUSES OF THESE HAZARDS & HARMS

The hazards potentially resulting in these harms find their causes in a multitude of intri-
cate design choices made to develop and exploit ML-based systems [546, 28].

• Dataset design. One of the first issues resides in the design of the training datasets
for the ML models underlying the systems, that bear many limitations. Among these
limitations, the most frequently cited are the following. It is now well-understood that
the data on which a model is trained contains historical human biases, and hence a
model trained on this data reproduces and oftentimes amplifies these biases, causing
unfairness in its outputs or output errors that might lead to safety risks [687]. Besides,
it is also now clear that models pick up on spurious correlations contained in these
datasets [785], leading to incorrect and over-simplified inference mechanisms, that
again lead to safety risks. Distribution shifts [448] between the training data and the
data the model sees in deployment are also one of the main causes of these outputs
failures, as the model has not been able to learn to make correct predictions on types
of data it has never seen before.

• Model design. The construction of the model itself can also cause errors in the out-
puts, e.g., due to shortcut learning [284] or in-adapted objective functions [28].

• Model interaction design. The way one interacts and uses the outputs of a model is
also a source of errors, e.g., when one might under-rely, or over-trust the outputs of
the model [452].

10https://www.bbc.com/news/technology-33347866
11https://algorithmwatch.org/en/google-vision-racism/#:~:text=In%20an%20experiment%

20that%20became,was%20labeled%20%E2%80%9Celectronic%20device%E2%80%9D.
12Accidents related to Tesla cars: https://www.theguardian.com/technology/2022/oct/26/tesla-

criminal-investigation-self-driving-claims-sources
13Accidents related to Uber cars: https://www.bbc.com/news/technology-54175359

https://www.bbc.com/news/technology-33347866
https://algorithmwatch.org/en/google-vision-racism/#:~:text=In%20an%20experiment%20that%20became,was%20labeled%20%E2%80%9Celectronic%20device%E2%80%9D.
https://algorithmwatch.org/en/google-vision-racism/#:~:text=In%20an%20experiment%20that%20became,was%20labeled%20%E2%80%9Celectronic%20device%E2%80%9D.
https://www.theguardian.com/technology/2022/oct/26/tesla-criminal-investigation-self-driving-claims-sources
https://www.theguardian.com/technology/2022/oct/26/tesla-criminal-investigation-self-driving-claims-sources
https://www.bbc.com/news/technology-54175359
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• Task design. Needless to say, the application for which the model might be used can
also be considered problematic and harmful in itself by certain populations, such as in
Iran where the authorities envision the use of facial recognition technologies in order
to enforce the hijab law on women14.

In this thesis, we especially investigate dataset and model design practices, and de-
velop solutions for developers to better diagnose hazardous failures of ML-based sys-
tems resulting from those dataset and model design choices (Part III). These problem-
atic design choices are themselves due to a variety of reasons that we also explore further,
especially in Part II, and that had been rarely explored at the time of conducting the re-
search for our thesis. Of course, research has yet to identify, understand, and develop
mitigation methods for all these hazards [369], and it is not known whether ML devel-
opers are able to handle them without the inputs from research. Besides, even when
hazards are fairly well-understood by the research community, there might be other ob-
stacles for the developers to handle them, that we study further. For instance, in the
literature and in our studies, we identify organisational and business pressures [666], a
lack of education about these problems [743, 662], and a risky attitude from the develop-
ers [220], e.g., not feeling responsible for the problems, or not considering their design
choices potentially hazardous.

1.1.2. FROM GUIDELINES & THEORY TO PRACTICES AGAINST HAZARDS:
THE MISSING LINK

We identify several efforts aimed at mitigating potential hazards and harms. A plethora
of documents have emerged, all aiming at tackling the problem by design, especially
numerous ML ethics guidelines [412] from companies and public institutions, and new
regulations such as the General Data Protection Regulation15 (GDPR), the Artificial In-
telligence Act16 (AI Act), or the Digital Services Act17 (DSA) in the European Union. In
the realm of trustworthy ML/AI ethics research, countless research papers that aim at
developing methods for developers to identify and mitigate these issues have been pub-
lished [153], alongside a number of papers that propose documentation and checklists
[283, 556] for ML developers to further reflect about the potential harms of the systems
they build (we draw an overview of these research publications in the next section). Yet,
“AI ethics is failing in many cases” [326]. Despite the lack of precise estimates of the
number of accidents caused by ML every year, it does not seem that the number of these
accidents is decreasing, especially when looking at the recently-released systems, that
continue perpetrating various harms, such as ChatGPT18 for text generation, or DALL-E
and Stable Diffusion for image generation19.

We argue further in this thesis that one of the primary reasons for the number of
harms not to decrease despite all the policy and research efforts deployed is the lack of

14https://www.theguardian.com/global-development/2022/sep/05/iran-government-facial-
recognition-technology-hijab-law-crackdown

15https://gdpr-info.eu/
16https://artificialintelligenceact.eu/
17https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
18https://www.insider.com/chatgpt-is-like-many-other-ai-models-rife-with-bias-2023-1
19https://techpolicy.press/researchers-find-stable-diffusion-amplifies-stereotypes/

https://www.theguardian.com/global-development/2022/sep/05/iran-government-facial-recognition-technology-hijab-law-crackdown
https://www.theguardian.com/global-development/2022/sep/05/iran-government-facial-recognition-technology-hijab-law-crackdown
https://gdpr-info.eu/
https://artificialintelligenceact.eu/
https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
https://www.insider.com/chatgpt-is-like-many-other-ai-models-rife-with-bias-2023-1
https://techpolicy.press/researchers-find-stable-diffusion-amplifies-stereotypes/
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understanding about practices of the developers of ML models. These practices might
bear limitations as developers are not necessarily ethical unicorns [662] and might face
a diversity of challenges (as hinted above). Yet, these limitations remain overlooked.
Overlooking these limitations in turn results in mis-aligning current policy and research
efforts with the real needs of ML developers. Hence, the understanding and analysis of
practices of these ML developers appears as the missing link between harms and the de-
velopment of appropriate directions to diagnose and prevent the system failures causing
harms.

1.1.3. GOAL OF THE THESIS: MITIGATING HAZARDS
In this thesis, we aim at contributing to the growing body of knowledge and methods
related to the development of trustworthy ML technologies that would be less hazardous
and harmful. Especially, we give ourselves two objectives:

• Characterizing the misalignment between ML research tackling questions of hazardous
output failures and harms, and practical efforts ML developers make towards tackling
the hazards of ML.

• Developing and thoroughly evaluating model explainability-based, technical, and method-
ological support for ML developers to tackle hazards of ML, specifically to diagnose
model output failures, based on the most urgent types of misalignment identified.

In the remaining of this chapter, before explaining our mixed-method approach to-
wards achieving our objectives, we present an overview of related works, that should
give the reader a better understanding of the state of the discipline, its main research
directions, the position of our work within this body of literature, the relevant research
areas we get inspiration from, and the scoping of our work. Finally, we list our research
questions and contributions.
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1.2. POSITIONING OF THE THESIS IN THE ML LANDSCAPE
Facing the breadth of ML research and the breadth of our goal, in this section, we posi-
tion our work within existing literature, and we explain how we scope down our goal in
relation to insights from existing literature.

1.2.1. ML, A FIELD ACROSS THEORY & PRACTICE
Machine learning (ML) is a technology that has been studied from various perspectives.
We now outline these perspectives as a background for our own research work, and espe-
cially discuss the areas the closest to our work (as summarized in Figure 1.3). We differ-
entiate between research on ML theory and research on ML practices. In terms of theory,
technical research aims at developing theories and algorithmic tools for developers to
tackle system failures and harms during the ML lifecycle, and interdisciplinary research
aims at characterizing the harms that ML might cause and at analyzing proposed tech-
nical theories especially in terms of conceptual limitations. Socio-technical research on
ML practices typically investigates how various stakeholders conceive and handle the
harms that are theorized and formalised in the technical research, and the limitations
of these theories. We are especially interested in the research that revolves around de-
velopers’ practices. While we acknowledge the ambiguous and pervasive frontiers be-
tween the different research fields and research communities, for the sake of simplicity,
we present only a brief overview of the relevant research areas.

ML Harms 

ML Debugging 

ML Explainability 

ML Fairness 
ML Robustness 

Human-in-
the-loop 

ML
ML 

Regulation

Metric Mitigation method

Research Fields

Conceptual 
understanding & 
limitations of the 

solutions

Research on Practices

ML Ethics

ML 
Perceptions

Use of ML 
Fairness tools

Use of ML 
Explainability

Data science 
practices

ML Fairness 

ML Robustness 

Research on Theory: Problem framing & solutions

Conceptions & 
workflows for 

ML harms

Explainability for 
ML robustness / 

harms
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workflows for 
ML robustness

Explanations for 
robustness

Additional 
M

L harm
s

Tackling 
non-fairness 

ML harms

Technical solutions Interdisciplinary

Impacting factors

Part I Part II

Part III

Figure 1.3: Summary of the related works in the area of machine learning failures and harms. We operate a clear
distinction between the theoretical works and the works investigating practices. We also distinguish between
the technical works (metric and mitigation methods), the socio-technical ones aiming at understanding the
problem and potential limitations of the technical work, and the other socio-technical works that study the
practices with regard to these prior works. We emphasize in grey the areas where work has been conducted,
and in orange the areas where clear research gaps reveal. Those gaps in italic are the ones we tackle, while the
others are left for future work.
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MACHINE LEARNING THEORY, AS A TECHNICAL OBJECT OF ENQUIRY

Many works in ML are stemming from a technical perspective. Their goal is typically
to improve the technology in terms of output performance (e.g., improving the correct-
ness of the outputs) [407, 378] and process performance (e.g., improving the inference
speed or training time of the technology, reducing the amount of data needed to obtain
a given output accuracy, etc.) [540] or transparency [573, 44], as well as to develop new
capabilities (e.g., the expansion from classification tasks to regression tasks, recommen-
dations, etc.) [212]. Such works are performed either in an application-agnostic manner,
or for specific, novel, domains of application (e.g., agriculture [496] or medicine [664]).
Strongly connected to these algorithmic works is progress in terms of hardware that is
necessary to power these algorithms, such as for the computational power necessary to
train the algorithms and build models (e.g., development of CPU, GPU, and NPU for fast
and large computational power), and for the memory storage required for saving and
loading the high amount of data samples on which the algorithms are trained (e.g., de-
velopment of larger memory storage, etc.) [96, 341]. Facing the fast expansion of the
field, researchers have specialized in different application areas (cf. Figure 1.4), reflected
by the different conferences in which scientific papers are published, such as computer
vision based on image and video data (e.g., CVPR, ICCV), natural language processing
based on text data (e.g., EMNLP), general ML primarily relying on tabular data (e.g.,
ICLR, NeurIPS), recommender systems (e.g., RecSys), etc. Below, we describe some of
the most relevant research areas for the goals of our thesis.

Figure 1.4: Call for papers for the 2022 NeurIPS conference.20

20https://nips.cc/Conferences/2022/CallForPapers

https://nips.cc/Conferences/2022/CallForPapers
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Machine Learning Diagnosing & Debugging. Diagnosing and debugging ML [150] is
the idea of developing methods to identify and characterize failures of ML models and
their causes, and methods to mitigate these failures —depending on the failures, they
might be considered hazards of ML. A failure of an ML model corresponds to the condi-
tion when the behavior of a model is not aligned with the expectations one has for this
behavior. A model’s behavior can relate to a large diversity of properties, be it proper-
ties related to the type of outputs that are expected (e.g., accurate outputs, fair outputs),
or properties of the process related to obtaining the model (e.g., short training time,
privacy-preserving training datasets) or its outputs (e.g., inference speed, robustness to
adversarial attacks). Typically, an unexpected behavior is due to various kinds of bugs in
a model, be it code implementation bugs (the script does not execute properly), bugs in
the design of the ML pipeline (e.g., too small training dataset for the size of the model
architecture, in-adapted loss functions or architecture hyperparameters), or bugs due
to wrong translation between the intended design and the code implementation. While
traditional software debugging has primarily focused on the first type of bugs, techni-
cal ML research primarily focuses on the second type, and human-computer interaction
has recently investigated the last type of bug (cf. Part II Chapter 5 for more details).

In terms of technical research, ML debugging encompasses research on multiple, in-
terdependent topics. ML testing refers to “any activity aimed at detecting differences
between existing and required behaviours of ML systems” [924], and the research in this
area proposes various methods to identify failures of the models according to various
output or process objectives. Among those objectives, ML robustness [670] has become
one sub-field in itself where metrics and mitigation methods are proposed for measuring
and avoiding brittleness of the models to various adversarial and natural perturbations
that might cause output errors and harms. Model certification is the idea of formally en-
suring certain properties of a model outputs or inference process [218], where research
spans the development of formal model specifications and formal proofs to ensure that
the model adheres to the desired properties. Model verification of certain model (safety)
properties [628] in turn proposes formal specifications of these properties and develops
method to test them efficiently. These research areas are now also joined with research
from the data management field, typically to identify dataset bugs [303], or problematic
design choices in the data engineering pipeline [514].

In this thesis, we focus primarily on ML robustness (the ML developers we interview
in Part II are not concerned at all with model certification and verification), that is a
first step towards developing less harmful models (before actually certifying these mod-
els). We especially investigate state-of-the-art approaches proposed in research, and the
challenges developers face when tackling potential issues with natural perturbations (we
leave for future work adversarial perturbations).

Machine Learning Explainability. Closely related to ML debugging are the two re-
search fields of ML explainability and ML fairness.

As ML is a technology whose development and use involve a great diversity of stake-
holders, it is argued —and even required by regulations (e.g., the GDPR)— that ML mod-
els should be explainable [101]. For the practitioners developing these systems, having
explanations about the model can allow for more effective debugging [100]. For a user
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of these systems, an explainable model can allow for better trust calibration and trust-
worthy human-ML collaborations [827]. For a decision subject of a model, explainability
can serve to trust and accept decisions, or to ask for recourse [423]. For a model owner or
external auditor, explainability is necessary in order to judge on the readiness for deploy-
ment of the model [511]. Explainability research currently focuses on developing meth-
ods to extract post-hoc explanations on the functioning of a model, or to build models
that are inherently explainable [140] (cf. Part III Chapter 10 for a more detailed account
of existing explanability methods). This is challenging due to the diversity of models that
exist, and because the faithfulness of an explanation is both hard to evaluate (no ground
truth exists) and difficult to ensure [943, 232].

In this thesis, we investigate further to what extent developers make use of explain-
ability to avoid hazardous failures and harms, and develop a new explainability method
and user-interface to support developers further in their activities.

Machine Learning Fairness. It is now well understood that ML models might cause
discrimination and unfairness because of biased outputs (one type of output failure)
[546]. The field of ML fairness has hence developed in order to propose fairness metrics
to evaluate the potential social impact of the ML models [848], and unfairness mitiga-
tion methods to develop models without harmful social impact [268]. There exists to
date more than 30 fairness metrics that aim at measuring different kinds of social im-
pact and build on top of each other to address the limitations in the modeling of the
problem. A large number of mitigation methods also exist, that address transforma-
tions of the training dataset, of the model architecture or training procedure, or of the
post-processing functions for the model outputs (cf. Part I Chapter 4 for a more detailed
account of the research on this topic). These methods still remain limited in that they
cannot yet be applied to all types of ML models that have been developed to date, and
they do not allow for building entirely fair models [98, 369].

In this thesis, we investigate how developers perceive and use these methods in an
effort to avoid algorithmic unfairness and other harms caused by ML models. Both the
fields of explainability and fairness present a predominance of technical works, however,
as we explain in the next subsections, these works are often argued to be necessary but
insufficient towards preventing all hazards of ML. This explains the need for the inter-
disciplinary and socio-technical research we will discuss.

Human-in-the-Loop Machine Learning. Human-in-the-Loop (HIL) ML is a research
area that leverages the latest advancements in crowd computing knowledge and infras-
tructures in an effort to solve some of the problems that ML suffers from [746]. Initially,
Human-in-the-Loop ML was especially relevant for decreasing the number of annota-
tions needed to train a ML model (active learning) [900] or to increase the quality of the
labels used to train the models [237], as these were the two obvious sources of failures
and components of the ML pipeline where human capabilities could be leveraged. It is
now also increasingly used for debugging ML models. One can think especially of the
identification of unknown unknowns of ML models [741, 334], where human capabili-
ties are especially relevant to identify meaningful human patterns of data samples where
the model might be wrongly confident. Even more recently, human-in-the-loop tech-
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niques are combined to explainability methods, as the natural next component of the
ML pipeline where humans are useful [824]. They can interpret explanations to identify
potential model bugs, leading to an easier formulation of solutions to these bugs and
improvement of the models.

In this thesis, we rely on this research area to develop a more interpretable explain-
ability method for developers to diagnose their ML models and avoid harms.

MACHINE LEARNING THEORY, AS AN INTERDISCIPLINARY OBJECT OF ENQUIRY

ML is a technology that is increasingly introduced into society. Similarly to any other
technology, it can have not only a positive, but also negative impact on society. The
harms caused by ML cannot be understood with a sole technical lens on the technol-
ogy. It is also necessary to adopt a socio-technical lens to scrutinize this technology,
understand its potential impact on populations and the environment, and propose well-
informed and appropriate solutions to this impact. This has recently given rise to new
interdisciplinary conferences, such as the ACM Conference on Fairness, Accountabil-
ity, and Transparency (FAccT), and the AAAI / ACM Conference on Artificial Intelligene,
Ethics, and Society (AIES), whose research focus is often broadly referred to as respon-
sible AI, trustworthy AI, or AI ethics research directions. There, philosophy [104], ethics
[907], and science and technology studies (STS) [312, 109] scholars have especially aimed
at characterizing the harms caused by ML models and ML research trends, and surfac-
ing the various philosophy theories that underlie proposed fairness metrics or mitigation
methods. They have also investigated what a good explanation is for various stakehold-
ers. Legal scholars [89] and policy makers have investigated the ins and outs of regula-
tions to understand their fit to the hazards of this new technology, and proposed new
regulations for a more responsible use of the technology, referring to technical, algorith-
mic fairness and explainability, solutions.

Especially relevant to our thesis are the works that draw upon prior research in other
research fields, to surface and characterize the harms and other hazards caused by the
outputs of ML models, but also by their production. Scholars have taken inspiration
from the way hazards and risks are modeled and avoided in other fields such as aviation
and related this to ML to envision development guidelines, regulations, or audits [661].
They have also looked into research on human values and drawn parallels for ML in or-
der to identify which values might be infringed [184, 915]. Many of these works have
insisted on the conceptual limitations of ML fairness frameworks to represent, measure,
and mitigate the harms caused by ML models, by looking at fields like political philoso-
phy as comparison points. For instance, it has been argued that existing fairness metrics
focus solely on statistical properties of the outputs of the models, leaving out of consider-
ation other justice criteria such as an individuals’ entitlements to a fair procedure [310].
Certain works have also taken a broader lens on the systems, for instance pointing out
to the poor labor conditions of crowd workers annotating training datasets [393], or de-
nouncing the environmental impact of large models [93, 464]. Meta-research works have
also reflexively investigated how ML research is conducted to re-orient it further, e.g., in
terms of limitations and poisonous trends current model benchmarks foster [659].

In this thesis, we survey the understanding of harms and limitations of existing tech-
nical solutions, and later on investigate the practices of ML developers surrounding these
harms and the current limitations of technical solutions.
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MACHINE LEARNING PRACTICES, A SOCIO-TECHNICAL OBJECT OF ENQUIRY

Next to these conceptual works on ML hazards, another, recent, socio-technical research
direction stemming from human-computer interaction and science and technology stud-
ies researchers consists in investigating the practices of those developing the systems
[569, 620, 346], and in the development of non-technical solutions to support further
these practices [243, 283, 31]. These works have investigated the challenges for devel-
opers to achieve ML fairness [220, 481, 369], or explainable models [497, 244], discussed
a number of design opportunities to remedy to these challenges, and developed and
tested a number of solutions. Oftentimes, these solutions do not require high technical
complexity, but are geared towards socio-technical reflections that are rarely usual for
these developers. For instance, works have discussed documentation of the models, but
also of the training and test datasets [283], guidance frameworks to build less harmful
models [663], or reflection frameworks to inspire the identification of failures or design
model interactions that allow a more appropriate usage of these models [243]. Other
works, thanks to their critical perspective, have also identified a number of hazards and
challenges (organisational, historical, business incentives) that do not necessarily call
for design changes, but imply broader structural changes in terms of regulations on the
use of ML, and in cases prompting not to deploy models [666, 82].

In this thesis, we continue on this line of work by studying practices of ML devel-
opers and proposing new solutions for them. We fill in the gap around diagnosing and
debugging practices (most works focus on the use of explainability methods by develop-
ers without looking at the broader context of debugging). Besides, differently from these
works, we acknowledge the conceptual limitations of existing technical solutions, and
investigate how developers work with those limitations.

1.2.2. SCOPING THE RESEARCH

As the hazards of machine learning (ML) are numerous, it is not possible in a single thesis
to fully address how to make ML models less harmful. Hence, we explain below how we
scoped down our work, in terms of problem targeted and its breadth, in comparison to
existing ML research directions outlined earlier. Table 1.1 summarizes the scoping of our
research.

SCOPING THE PROBLEM TARGETED

Types of hazards, harms, failures, and bugs for which we study practices. In terms
of harms, we only investigate the ones that are not caused voluntarily (e.g., not adver-
sarial attacks), and that the technical research discusses as being observable primarily
from within the outputs of a model (e.g., not from ML processes, such as security and
privacy). That is, the failures we investigate revolve around undesired outputs, in terms
of the unfairness they might cause [546], and in terms of physical harms that might re-
sult from other output inaccuracies, especially from brittleness to natural perturbations
[448]. Natural perturbations correspond to any shift in the data distribution between
the training-test data, and the production data on which the model makes inferences.
Such perturbations are typical of ML applications as it is oftentimes impossible for de-
velopers to collect training datasets in the same conditions as the production data are
captured to input to the models. As they can be dangerous —they typically lead to drops
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Table 1.1: Summary of the scope of our thesis in terms of goals, proposed solutions, and future relevant re-
search directions.

Dimension Our focus Other directions

Types of
harms

Primarily harms that are caused
by problematic outputs from a ML
model.

Other harms do not come from the outputs of a
model, but from, e.g., the way the model is pro-
duced, the way individuals are represented in the
data, and by the application of ML itself to the in-
tended task.

Bugs Wrong configuration of the ML
pipeline.

Faulty implementation, faulty translation between
intended configuration and code implementation.

Borders of
the system
investigated

Data collection pipeline, data en-
gineering pipeline, and model en-
gineering pipeline; from model in-
puts to model outputs.

Infrastructures sustaining the pipelines and mod-
els; design of the model requirements before build-
ing the pipelines, usage of AutoML systems for sys-
tem development; interaction between the model
outputs and their usage by, e.g., decision makers.

Stakeholders ML developers, and their need for
interaction with domain experts
and model owners.

Domain experts, model owners, model users, de-
cision/data subjects, and broader impacted stake-
holders (e.g., families of the decision subjects).

ML lifecyle Development stage. Deployment, production, monitoring, updating.
Domain of
application

No particular domain. Repeating similar analysis within specific domains
would lead to additional reasons for the re-
search/practice gaps, and additional needs.

Types of
data, model,
and applica-
tion

Deep-learning based image classi-
fication tasks; tabular-data based
classification and regression tasks.

Other types of data (e.g., text, video); other types of
models (e.g., newest deep learning models such as
ChatGPT); other types of tasks (e.g., recommenda-
tion, generation, translation).

HCI re-
search goal

Surfacing practices around fair-
ness and robustness; developing
and evaluating usable explainabil-
ity tools for model debugging.

Investigating methods for eliciting harm-related re-
quirements.

Goal of our
technical so-
lution

Harm discovery and characteriza-
tion.

No investigation of appropriate metrics for harms;
no investigation of the link between output errors
and the harmful impact they might have; no de-
velopment of fully automated methods to identify
model harms and their causes; no development of
method for mitigating harms.

Technical &
design solu-
tions

Development of explainability
method and supporting tool.

Besides explainability methods, other methods are
proposed for model debugging and fairness, that
could all be benchmarked and made more usable.

Others Policy implications [62]. Educational, cultural, regulation, factors.

in accuracy— but rarely researched, they are urgent to tackle. They are highly connected
to unfairness issues in the outputs of models, as these often result from a distribution
shift between the training data and the ideal, “fair” or “unbiased” data distribution (if
this exists) [796].

In practice, the conditions in which hazards become harmful cannot be understood
solely within the outputs of the model, but only come to be in relation to the way the
model is used in its environment. For instance, certain failures in the outputs of the
models might not be harmful depending on the mode of human-ML collaboration [747],
such as when a decision-maker oversees the outputs and can detect certain types of fail-
ures; or when some failures –false positives or false negatives– are less dangerous than
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others for the application [418, 725], e.g., if someone without disease receives extra-care
because of being wrongly identified as sick, this might be less impactful than for some-
one actually sick who does not receive this care). Besides, the bugs causing these harms
might manifest early in the ML lifecycle, e.g., unfairness might be observed from the out-
puts of a model, but it can already arise from the features selected to train the model and
to make inferences on new data samples [315]. Because of this intricate nature of haz-
ards, harms, and their causes, we study together hazards that are typically mentioned
around model outputs, but we account for their complexity in terms of sources and real
impact. For instance, while explainability is often argued to provide a useful set of meth-
ods to identify model output errors without considerations around unfairness in mind,
we argue that it is useful also for unfairness as it allows to identify model features that
are potentially causing the outputs unfairness. That is to say, in ML, there is no clear
distinction between the failure, its harmful impact, and the bugs causing it, and hence
we cannot study them in isolation.

Types of causes of hazards for which we develop a solution. We cannot develop a so-
lution for all types of output issues, nor for all the obstacles that are faced by develop-
ers and that we identify when studying practices. For instance, developers face chal-
lenging organisational factors (typically related to the model owners and model clients)
when building ML systems, but we do not investigate deeply solutions to these factors.
In this thesis, we focus on a fundamental, technical problem, when developing solu-
tions: model diagnosis during model development, i.e., identifying and characterizing
hazardous failures and their sources. We do not propose solutions to mitigate these fail-
ures, this would merit another thesis. Specifically, we tackle hazardous failures coming
from model outputs and from problematic features.

Besides, as we detail in the list of research questions tackled, in terms of possible so-
lution, we especially focus on explainability algorithms as a potential helper for model
debugging against certain types of output issues. We acknowledge the existence of other
technical methods towards debugging (e.g., the automatic machine learning testing meth-
ods mentioned earlier), but cannot tackle all of them in a single thesis. We choose to
focus on explainability because of the amount of research it currently receives, and its
arguable advantages, e.g., in terms of transparency it brings, and in terms of potential
for identifying harms related to various output failures and their underlying bugs.

ACKNOWLEDGING THE BREADTH OF THIS PROBLEM

Stakeholders & domains of application. In terms of stakeholders, we primarily focus
on the practitioners developing the ML models and data science pipelines (e.g., data
engineering pipelines). We discuss the primary interactions reported by these ML de-
velopers with other stakeholders, however, we do not extensively discuss challenges for
each of these stakeholders, except in Part III where we delve deeper into supporting the
interaction with the domain experts, as this appeared to be one of the main challenges
for developers to debug their models.

Stages of the machine learning lifecycle. The ML lifecycle is extremely broad, and di-
verse across teams and organisations [24]. Its representations also vary across research
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papers and research communities. For instance, while some focus on the core technical
activities of the lifecycle, others look more broadly also at the aspects related to socio-
technical aspects [920]. In our work, we primarily focus on the pre-deployment phase.
We consider this phase the first crucial phase to avoid harms from happening, as it is
after this phase that the model is put into production and harms can happen. We ac-
knowledge still that many additional phases happen after the development of the initial
model, but have not received as much attention as the development.

Within the pre-deployment phase, despite the data-centric approach currently ad-
vocated [42], we do not focus on data solely, —or model specifically as often done in the
purely technical works—, but look at both. Indeed, we note that in practice, different
practitioners might adopt a strong focus on one or the other, or consider them together,
especially due to the highly iterative process of the ML pipeline development (cf. Part II).
We also discover later on (cf. Part III Chapter 10) that developers can use explainability
methods both as a mean to investigate data bugs, but also as a tool to investigate model
training bugs, or bugs due to a wrong combination of dataset and model design (e.g.,
overfitting). Hence, it is not possible to study them independently.

Data and model type. Finally, as mentioned above, ML is a vast domain, with many
different applications areas and specificities of the technology across data types. While
we do not operate a strong distinction between these types of model, we primarily fo-
cus on models for computer vision applications. We make this choice because, while a
large breadth of technical works apply to these models, socio-technical works have con-
ducted much fewer investigations on them. Hence, we want to address this gap in the
literature. Yet, we note many parallels between research on computer vision applica-
tions specifically and tabular data works, hence we survey the literature on both as it can
bring sources of inspiration. Finally, as developers typically envision issues of physical
safety relatively easily for computer vision models, but issues of social harms more eas-
ily for tabular data applications, we also interview developers working on tabular data in
relation to social harms, to still get a good understanding of their challenges and needs
towards social harms.
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1.3. RESEARCH METHODOLOGY: DEVELOPER-CENTERED ML
RESEARCH

There appears to be a misalignment between research and practice, as the former in-
creases but the number of accidents in practice does not decrease [40]. Better under-
standing this problematic phenomenon naturally calls for a better characterization of
practice on one side, and of current research lines on the other side, in order to charac-
terize the (mis)alignment, and the subsequent hazards and harms. Understanding prac-
tices in turn calls for research questions, contributions, prior information, and method-
ologies that we should borrow from other well-established fields, such as philosophy,
sociology, law, and design.

The problem of systems creating new harms or reinforcing existing harms, and es-
pecially identifying, characterizing, and mitigating these harms, is not purely technical,
but socio-technical. While physical harms might be considered less debatable and easily
identifiable, what is a non-physical harm is a subjective question. Non-physical harms
can only be understood by investigating the complex societal or economical impacts of
the systems. Hence, one should critically investigate current research lines and prac-
tices, bringing in insights from other fields, while acknowledging the socio-technical
nature of the problem, instead of assuming a clear, well-understood, and fixed idea of
harm, that could be easily, once and for all, translated into a mathematical formulation
on which one can simply propose optimization methods or evaluation procedures. This
complexity and subjectivity of the problem calls for interdisciplinary work, for instance
borrowing existing philosophical concepts and theories to envision the potential harms
caused by the systems, and to understand the moral philosophy theories behind devel-
opers’ conceptions of these harms, and bringing the few existing regulations to identify
additional harms.

In conjunction with conceptually understanding the problem of harms and the ways
in which developers envision them, one has to first, actually surface the developer’s prac-
tices and conceptions of harms. This asks for adopting qualitative methods from fields
such as sociology.

Once the problem is understood conceptually and in terms of developers’ practices,
in order to propose solutions, one should adopt a rigorous approach with a sound design
of the solution and a rigorous evaluation. This brings the need for additional, qualitative
methods, borrowed from other fields, such as design, to both design and evaluate the
solutions. Evaluation could also call for quantitative work. Yet, this is not always feasible
as the population sampling of ML developers working on specific types of models and
that would accept to participate to our studies is not necessarily large.

All in all, as suggested by our stated goals and the above explanations, for this thesis,
we need to adopt a developer-centered, mixed-method, interdisciplinary approach, that
borrows knowledge and methodologies from other disciplines. We describe further this
approach and these disciplines in the next subsection.
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1.3.1. MAIN STAGES OF THE APPROACH: NEEDS FIRST, TECHNOLOGY LAST

Investigating the resesarch-practice gap Proposing solutions

Surveying research 
directions

Characterizing the gap

Designing a solution Evaluating the 
solutionInvestigating practices

Part I Part II Part III

Figure 1.5: Overview of the two-stage approach adopted in this thesis.

OUR TWO-STAGED ITERATIVE APPROACH

We take an approach (cf. Figure 1.5) that relies on the regular scientific method in or-
der to develop solutions for making ML systems less harmful. Instead of assuming a
specific problem to solve (based on technical limitations of existing technical research)
and working towards proposing a solution and evaluating it, we first apply the scientific
method to the investigation of the problem itself, and only later on apply this scientific
method to propose solutions to the identified problem. This way, we aspire to tackle
problems that are urgent for developers and that would better support them in develop-
ing less hazardous ML models. To do so, we depart from an algorithm-focused approach,
to go to a human-centered approach, where we do not necessarily identify areas with a
lack of technical research, but remain open to identify challenges in terms of usage of the
technical research outputs by developers. Naturally, one should later on iterate over any
proposed solution, and over the two-stages of the approach once practices or research
directions change.

This two-stage approach, where we first investigate the problem and then the solu-
tion, follows the double diamond model of the design process, proposed by the British
design council21 following investigation of a myriad of design projects. In the thesis, we
first investigate the current problem broadly, then delve deeper into understanding one
of the sub-problems identified, and later on develop solutions to this sub-problem.

AN APPROACH ADOPTED IN ADJACENT DISCIPLINES

The most relevant adjacent fields. Besides design research, this iterative, two-staged,
approach has already been discussed in other disciplines that also face a misalignment
between research and practice, making it particularly adapted to our problem. Espe-
cially, in human computer interaction (HCI), Norman [586] argues that the differences
in skills required by a researcher or a practitioner and in the interests they have are some
of the primary contributors reinforcing the research/practice gap. According to Norman,
the widely-spread research trend that follows the precept "Technology First, Needs Last",
indeed reinforces the gap. There, one typically performs research either to improve an
existing product, or for the “fun” of research and developing fundamental knowledge
without a specific problem in mind. Yet, this approach does not allow for the creation of

21https://www.designcouncil.org.uk/our-work/news-opinion/double-diamond-universally-
accepted-depiction-design-process/

https://www.designcouncil.org.uk/our-work/news-opinion/double-diamond-universally-accepted-depiction-design-process/
https://www.designcouncil.org.uk/our-work/news-opinion/double-diamond-universally-accepted-depiction-design-process/
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innovative insights that answer a specific problem. Hence, Norman argues that some re-
searchers should also research problems and needs first, and later on solutions to these
problems —of course, developing solutions might in turn require fundamental research.
This “Technology First, Needs Last” trend is also the primary research trend we iden-
tify for ML, and that we do not follow, preferring the approach “Needs first, Technology
Last”. Norman concludes for the need of “translational developers” that would go from
research to support of its use in practice, and from practical needs to ensuring their re-
search. This is one of the roles we take in this thesis. We see the ML developer as the
designer of systems, that we, as translational developers, should investigate. Other HCI
researchers [190, 307, 847] have advocated for a similar approach, employing the idea of
emphasizing the need for efforts in trickling down research inputs to practitioners, and
bubbling up practitioners’ needs to researchers.

Besides, a former artificial intelligence researcher, Phil Agre [13] theorized in 1997
the lens of Critical Technical Practice after working on the technical aspects of artificial
intelligence, and noticing the limitations of current research trends. “A critical technical
practice will, at least for the foreseeable future, require a split identity – one foot planted
in the craft work of design and the other foot planted in the reflexive work of critique.”
He proposed to constantly iterate between two activities: 1) critically analyzing current
assumptions, methods, and research directions to generate new questions, and 2) de-
signing for these new questions. As we share similar concerns with the limits of current
ML research, our approach also reflects the critical technical practice advocated by Agre.
The first activity mentioned is what we do when we search for explanations for the mis-
alignment between research and practice, and more generally look for hidden assump-
tions from research. The second activity is what we do next when we propose potential
solutions, evaluate them thoroughly and discuss them further. Such lens has also been
adopted previously to investigate other harms related to ML, such as privacy [322] and
explainability [244].

While each of these disciplines has a slightly different objective (e.g., solving a prob-
lem by designing appropriate solutions, critically examining a problem and its solutions
to redirect the research about the problem or its solutions towards more relevant ones),
the approach they take is similar. We also follow a similar approach, as it is adapted to
our research goal. Especially, as the research/practice misalignment is still not well un-
derstood, taking this approach allows to investigate it broadly, keeping the field of possi-
bilities open, in case one or multiple objectives of these disciplines reveal more relevant
than others for our problem.

How about ML research? Prior research in ML has rarely adopted such a reflexive,
developer-centric approach, e.g., the evaluation of explainability methods is typically,
solely quantitative, lacking user-studies focusing on the use of the methods by the in-
tended developers [871, 413, 931]. Yet, a few works have already been conducted along
those lines. These works are typically proposed in conferences such as FAccT, AIES, CHI,
or CSCW, and often summarized as the field of HCI+ML or STS and ML (cf. Introduc-
tion Chapter 1.2.1). Empirically, some researchers have studied practices and needs
revolving around ML, using various qualitative methods, such as semi-structured inter-
views on the participants’ own use-cases [369] or given use-cases [220], or ethnographies
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[620]. Others have proposed to shift from algorithm-centered research to data-centric
work with data excellence (the underlying idea being that data quality is the main driver
of ML harms) [42, 714, 110]. Conceptually, others have critically analyzed the way re-
search is currently organized, i.e., the research directions taken [46], the assumptions
made [557, 457, 603, 450], the methods adopted for evaluating solutions [659, 738, 500]
or even for writing a research paper with reflexivity [771] —we will especially focus on
the assumptions. Finally, other researchers [457, 244] have designed new initial solu-
tions and paradigms to be further evaluated and iterated upon, such as Ehsan et al. [244]
who adopted Phil Agre’s Critical Technical Practice lens to propose new explainable ML
research directions. This thesis complements the efforts of these works.

1.3.2. MIXED METHODS ACROSS STAGES, GROUNDED IN THE PRACTICE

We now delve deeper into the methods we adopt for each stage of our approach. Nat-
urally, surfacing practices, identifying major research directions, understanding the re-
search/practice gap, and proposing and evaluating solutions, do not all call for the same
methods. Hence, we adopt a mixed-method approach [202] in this thesis. We conduct
structured literature surveys [37] to understand research directions, and qualitative stud-
ies to understand practices, and critically reflect on the research/practice gap [501, 586].
Later on, we take a research through design approach [789], with system co-design, sys-
tem technical implementation, quantitative system evaluation in terms of technical ca-
pabilities, and qualitative system evaluation in terms of non-functional requirements
and usefulness to the developers. In each stage of the approach, we make sure to ground
our work with developers by questioning current practices, surfacing technical litera-
ture that might relate to developers or that assumes certain practices, and evaluating the
solution not only technically but also with the developers.

CHARACTERIZING THE PROBLEM

A number of computer science research areas have already discussed the gap between
research and practice, notably software engineering [501, 398], and human-computer
interaction [586, 189].

In software engineering, Ivanov et al. [398] for instance investigated the broad re-
search/practice gap of software engineering by interviewing practitioners and asking
them directly what they focus on in their practice and what are their needs, and compar-
ing this to current research directions, identifying a misalignment in research lines but
also a lack of knowledge from practitioners about potential useful resources from prac-
tice. They argued that researchers, having much less resources than industry, should be
more strategic in choosing their research directions, and (partially) follow what practi-
tioners care about, in order to produce impactful work. Lichter et al. [501] observed
specifically that software engineering literature was extensively describing benefits of
prototyping before building a full industry software system, yet it was unclear whether
practice was recognizing the same advantages and more broadly whether practice did
understand the activity of prototyping (e.g., categories of prototyping, goals of and meth-
ods for prototyping) in a similar way to the literature. To investigate these questions,
they interviewed practitioners across various projects about the ways they perform pro-
totyping, and extracted insights by performing comparisons with the literature. Others
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have extended their considerations to the gap between the needs of software engineer-
ing practice and software engineering education —that remains connected to software
engineering research as one of the vectors between research and practice— [594, 280],
e.g., through surveys of students, industry requirements, etc. While this is not a topic in
which we delve deeper, it could be relevant in the future in terms of ML education and
practice, as education is one of the factors we identify as limited towards developing less
hazardous models (cf. Part II Chapter 7).

In human computer interaction, conceptually, several researchers [190, 307, 847]
have theorized further the gap (a multi-directional gap between theoretical and applied
research, and with practice) and proposed solutions. They especially argued for explor-
ing design practices via qualitative methods such as ethnographies or research through
design activities [282, 789], and for bridging the gap via co-producing boundary objects
via, e.g., via workshops [847]. Colusso et al. [189] for instance further characterized the
gap by interviewing HCI practitioners directly questioning their reasons for not using
academic research, and identified a number of translational resources (e.g., actionable
design guidelines, design patterns, keyword mapping, etc.) needed to bridge the gap.

Our method. Acknowledging these adjacent works, the amount of ML research, and
the diversity of ML practices, we divide the first stage into two intertwined activities.
We propose to thoroughly understand the state-of-the-art via rigorous surveys of the
literature [37], and we identify ML practices via qualitative methods. While performing
both of these activities, we extract insights towards our goal by critically reflecting on
the misalignments between the identified research trends and the identified challenges
and needs of developers, and identifying limitations in existing practices by critically
comparing them to existing research outputs.

In terms of qualitative methods, we use grounded theory methods, i.e., “systematic,
yet flexible guidelines for collecting and analyzing qualitative data to construct theories
’grounded’ in the data themselves.” [166] Especially, we conduct semi-structured inter-
views of a breadth of developers, that we analyze through both inductive and deductive
coding approaches. We synthesize our codes and resulting comparisons with the liter-
ature into diverse conceptual frameworks. Other methods such as ethnographies could
also be used in the future, but were not feasible in the time imparted for the thesis.

CO-DESIGNING AND EVALUATING HUMAN-CENTERED SOLUTIONS

The next stage after characterizing the problem and selecting one specific sub-problem
is the iterative development and evaluation of solutions. For this, we adopt a human-
centered approach to the solutions. We do not necessarily create entirely novel, com-
plex, technical methods, but evaluate thoroughly existing methods via user-studies, and
adapt and expand (e.g., combining various prior research areas such as explainability,
data mining, and crowdsourcing) the relevant methods (e.g., explainability) to fit the de-
velopers, the problems they encounter, and their needs in context (e.g., cost). For that,
we conduct qualitative and quantitative user-studies of existing and proposed solutions
to investigate the usability of these solutions. We also evaluate the performance of our
solutions in terms of correctness and richness of their outputs via ad-hoc quantitative
evaluation procedures and qualitative thematic analysis of the outputs. To develop our
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solutions, we adopt a research through design method [282, 789]. Our goal is simulta-
neously to build a solution useful to the developers, and to use our prototype solution
to further understand these developers, their needs, background knowledge, challenges,
etc. There, we especially proceed to formative research steps with desk research and de-
veloper interviews, and co-design sessions [792] to arrive to high-fidelity prototypes of
solutions that we later implement and evaluate. Both the formative studies that lead to
design the solutions and the evaluation of the implemented solutions contribute new
research insights in the realm of the intersection between ML practices and needs, and
ML hazards.
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1.4. RESEARCH QUESTIONS & ORIGINAL CONTRIBUTIONS
Based on the stages of our approach and the methods envisioned to conduct the research
for each of the stages, we organize our research work and the present thesis in three parts
(cf. Figure 1.6). Part I serves to identify current research directions and research insights
in terms of machine learning (ML) harms and their mitigation via robustness and fair-
ness technical approaches. Part II first serves to understand ML developers’ practices
with regard to these harms and proposed technical approaches, and then to character-
izing the research / practice gap by comparing the insights of Part I to those of this Part.
Finally, Part III serves to propose and evaluate initial solutions to some of the manifesta-
tions of the research / practice gap. Below, we detail further the research questions and
contributions of each part.

Investigating the research-practice gap

Proposing solutions

Surveying research directions Characterizing the gap

Designing a solution Evaluating the solution

RQ1 ML harms

ML fairness

ML 
robustness

RQ2

RQ3

Conceptual 
understanding

Technical 
solutions

Limitations of the 
solutions

RQ4

RQ5 Workflows

Conceptions of 
the problem

Impacting factorsRQ6

Investigating practices

Flaws

Lack of research & 
usable tools

Lack of knowledge 
& support

Model learned mechanism 
extraction method

Model expected mechanism 
extraction method

Mechanism & explanation 
user-interface

Mechanism & explanation 
usages

RQ7

RQ8

RQ9

Figure 1.6: Summary of the research questions addressed in this thesis (orange), in relation to the main stages
of our approach (black and blue), main objects of focus (green), and main insights (grey).

1.4.1. PART I: UNDERSTANDING STATE-OF-THE-ART
In the first stage of our approach, we investigate the causes for the research / practice
gap, which requires us to study both existing scientific literature and practices. In Part
I, we proceed to the study of the literature. In particular, we ask the following research
questions in each of the corresponding chapter:

• RQ1: How does the literature conceptualize harms that machine learning might cause,
and their technical sources within the machine learning lifecycle? (Chapter 2)

• RQ2: How does the literature on machine learning robustness propose to tackle haz-
ardous output failures? What are the known limitations of these propositions? What
does this literature tell us about the (mis)alignment between research and practice in
terms of using robustness-related solutions? (Chapter 3)

• RQ3: How does the literature on machine learning fairness propose to tackle haz-
ardous output failures? What are the known limitations of these propositions? What
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does this literature teach us about the (mis)alignment between research and practice
in terms of using fairness-related solutions? (Chapter 4)

The original contributions of Part I are the following:

• An overview of the current state of technical knowledge on two main output hazards
of machine learning, namely fairness (discrimination) and robustness (brittleness), in
terms of proposed formalisations of the problem, causes of the problem, and mitiga-
tion methods.

• An overview of the conceptual and practical limitations of the above technical research
envisioned by the interdisciplinary community, and the outline of future research di-
rections in terms of future technical and design contributions.

• An overview of the (limited) knowledge about practices of machine learning develop-
ers in relation to fairness and robustness issues.

Part I is based on extracts22 of the following publications:

• A full paper published at the Transactions on Social Computing 2021 [70] (Agathe Bal-
ayn, Jie Yang, Zoltan Szlavik, Alessandro Bozzon).

• A full paper currently under evaluation at the ACM Computing Surveys 2023 [825]
(Andrea Tocchetti, Lorenzo Corti, Agathe Balayn23, Mireia Yurrita, Philip Lippmann,
Marco Brambilla, Jie Yang).

• A full paper published at the VLDB Journal 2021 [66] (Agathe Balayn, Christoph Lofi,
Geert-Jan Houben).

• A technical report written for the European Digital Rights organisation (EDRi) in 2021
[62] (Agathe Balayn, Seda Gürses).

1.4.2. PART II: SURFACING PRACTICES & ANALYSING THE RESEARCH / PRAC-
TICE GAP

In Part II, we proceed to the study of practices of ML developers and to contrasting these
practices with the state-of-the-art research identified in Part I, in order to characterize
the nature of the research / practice gap and its causes. We ask the following research
questions:

• RQ4: How do machine learning developers debug their models for robustness issues
in development? How does the research/practice gap manifest in this step of the ma-
chine learning lifecycle? What are the main challenges and limitations in these prac-
tices? (Chapter 5)

22We did not modify the text of the publications, except when reconciling terminology across chapters of the
thesis. We also did not modify the order of the sections in the publications. We removed sections or para-
graphs from the original publications that were bringing an unnecessary deep level of details, without further
contributing to the storyline of our thesis.

23The first three authors are co-first authors.



1

24 1. INTRODUCTION

• RQ5: How do machine learning developers envision and tackle unfairness issues and
other harms that might arise from the models they develop? How does the research/practice
gap manifest in this step of the machine learning lifecycle? What are the main limita-
tions of their practices? (Chapter 6)

• RQ6: What are the main underlying factors that impact the attitudes and practices
of machine learning developers, and that might represent challenges leading to the
persistence of harms? (Chapter 7)

The original contributions of this part are the following:

• A detailed account of current attitudes and practices for developing a machine learn-
ing model, both in terms of goals the developers have, workflows they execute towards
these goals, and methods they exploit to do so, in terms of robustness broadly, and in
terms of fairness and other social harms.

• An account of the (mis)alignment between research and practice, with specifically a
list of the limitations of current practices identified by a comparison with existing lit-
erature on the topic, and a list of limitations of current technical work in supporting
ML practices.

• A reflection on the nature and reasons for the research/practice gap that lead to these
limitations, with the identification of various human and contextual factors impacting
the gap, and a discussion of future research directions necessary to tackle the gap.

Part II is based on the following publications:

• A full paper published at the CHI 2023 conference [68] (Agathe Balayn, Natasa Rikalo,
Jie Yang, Alessandro Bozzon).

• A full paper currently under evaluation at the CHI 2024 conference [61] (Agathe Bal-
ayn, Ujwal Gadiraju, Jie Yang).

• A full paper published at the AIES 2023 conference [71] (Agathe Balayn, Mireia Yurrita,
Jie Yang, Ujwal Gadiraju).

1.4.3. PART III: BRIDGING THE GAP: A MODEL MECHANISM DIAGNOSIS TOOL
After our broad inspection of the research/practice gap, we delve deeper into one issue
identified. We tackle the challenge developers face in developing non-hazardous models
and evaluating the harmfulness of their model during development time without having
access to production data. We propose for them to shift from using accuracy metrics on
test datasets to estimate the harmfulness of their model —limited because the test ac-
curacy might not reflect production accuracy due to distribution shifts between test and
production data—, to exploiting information about the mechanisms the model uses to
make predictions on test data. We define a model mechanism as a rule a model uses to
associate a data sample to its predicted class label, this rule taking the shape of features
of the data sample the model identifies and correlates to the predicted label. Mechanism
accuracy is more informative than test (prediction) accuracy in terms of potential harms
a model might cause in production as a model might make correct test predictions using
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a wrong mechanisms, that would lead to wrong predictions in production, and test ac-
curacy does not allow to identify these signs of wrong production predictions. In order to
develop mechanism-based harm estimation, we ask and answer the following research
questions:

• RQ7: How can one collect easily-interpretable mechanisms learned by a model for
making predictions? (Chapter 8)

• RQ8: How can one collect the mechanisms the model is expected to learn according
to human reasoning? (Chapter 9)

• RQ9: How can a developer use our mechanism information to diagnose a model’s out-
put failures? How useful is this information in comparison to the one provided by ex-
isting explanability methods? (Chapter 10)

The original contributions of this part are the following:

• A method, its implementation, and its evaluation for collecting the mechanisms learned
by a model.

• A game with a purpose for collecting tacit knowledge of crowd workers efficiently, that
could be translated into expected mechanisms for a model.

• A co-created user-interface displaying our mechanism-based information and other
types of explanations extracted from a model, that can be used by practitioners to di-
agnose their models for output harms.

• A user-study that investigates the utility and usability of the user-interface, and re-
search insights for the design of new supportive tools for practitioners.

Part III is based on the following publications:

• A full paper published at the Web Conference 2021 [69] (Agathe Balayn, Panagiotis
Soilis, Christoph Lofi, Jie Yang, Alessandro Bozzon).

• A full paper published at the Web Conference 2022 [64] and a demo paper at the HCOMP
2021 conference [63] (Agathe Balayn, Gaole He, Andrea Hu, Jie Yang, Ujwal Gadiraju).

• A full paper published at the CHI 2022 conference [67] (Agathe Balayn, Natasa Rikalo,
Christoph Lofi, Jie Yang, Alessandro Bozzon).
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In the first stage of our approach, we aimed at understanding the causes for the re-
search / practice gap in machine learning (ML), which requires us to investigate both
existing scientific literature and practices, and contrast them. In Part I, we proceed to
the study of the literature, via rigorous literature surveys. Later on, in Part II, we will
tackle the study of practices and contrast those with the literature, and in Part III, we will
start proposing solutions to certain causes for the gap. As our goal is to understand the
research about machine learning harms comprehensively in order to analyse practices
later on, we have to survey two sets of research publications. We survey the literature that
describes harms and surfaces their causes —this is typically socio-technical research as
harms can only be understood by looking at the technology, its functioning and outputs,
and its impact in the real-world—. We also survey the literature that proposes solutions
to identify and mitigate these harms —primarily technical research—, and that discusses
potential limitations of these solutions.

In Chapter 2, we specifically ask:

RQ1: How does the literature conceptualize harms that machine learning might
cause, and their technical sources within the machine learning lifecycle?

To answer this question, we first take the concrete example of one technology, auto-
matic offensive language detection systems, in order to identify a number of harms that
have been discussed for this technology, and the sources of these harms. As other re-
search papers discuss additional harms without focusing on specific machine learning
applications, we then expand the scope of machine learning harms by surveying addi-
tional, interdisciplinary, publications. This chapter is based on an extract from a publi-
cation accepted in the TSC journal [70], and an extract of one section of a report written
for the European Digital Rights organisation (EDRi) [62]. Specifically, we only keep from
these publications the most relevant information about harms, without going into too
extensive depth in the descriptions of these harms, and without providing an unneces-
sary large number of concrete examples, as this is not necessary to answer our research
questions.

From the literature about offensive language detection system, we find that most
harms consist in the negative social impact, e.g., in terms of unfairness and discrimina-
tion, that errors in the outputs of a model can have. These harms are typically caused
by problematic dataset and model design, and find deeper sources into the limited, am-
biguous, requirements outlined for the systems. From the rest of the literature, we find
the same harms and their sources, as well as additional harms that are not directly re-
lated to the outputs of the systems: harms directly caused by the design of the machine
learning task and dataset (e.g., offensive prediction labels), as well as harms caused by
the production of the systems and especially their infrastructure (e.g., environmental
impact).

When looking for research publications that propose solutions to harms stemming
from errors in the outputs of the machine learning models, we identify two lines of tech-
nical solutions: solutions to ensure the robustness of machine learning models, and oth-
ers to ensure the fairness of the models’ outputs. We do not explore solutions proposed
towards the other types of harms, as they are very rarely published into the literature,
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and typically do not consist in technical contributions (the solutions typically consist in
rethinking the entire system design or not deploying the system).

In Chapter 3, we investigate the first line of research. We specifically ask:

RQ2: How does the literature on machine learning robustness propose to tackle
harms? What are the known limitations of these propositions? What does this litera-
ture tell us about the (mis)alignment between research and practice in terms of using
robustness-related solutions?

This chapter is based on an extract from a publication under revision for the ACM
Computing Surveys [825], that rigorously surveys the literature on machine learning
robustness. Considering the length of the contribution in the survey and the broader
scope, we decided to only retain content directly related to the rest of the content in the
thesis, i.e., sections that provide a broad overview of the field with its main technical re-
search directions, and that discuss perspectives for future work, with a human-centered
lens. Despite the potential usefulness of these technical research directions, the devel-
opers interviewed in Part II never referred to any of them and only rarely referred to
robustness failures in any case, rendering their detailed, technical understanding un-
necessary for answering our research questions.

In Chapter 4, we investigate the second line of research. We specifically ask:

RQ3: How does the literature on machine learning fairness propose to tackle
harms? What are the known limitations of these propositions? What does this lit-
erature teach us about the (mis)alignment between research and practice in terms of
using fairness-related solutions?

Here, we survey the machine learning literature that deal with this topic, but also the
related data management literature, as Chapter 2 showed that many harms are caused
by the way training and test datasets are created. Besides, we also account for the grow-
ing set of interdisciplinary, critical, science and technology studies papers, that identify
conceptual but also practical limitations of the proposed machine learning fairness so-
lutions. This chapter is based on an extract from a publication accepted in the VLDB
Journal [66], and an extract of one section of a report written for the European Digital
Rights organisation (EDRi) [62]. Specifically, we kept from these publications only the
minimum level of detail that allows to answer our research questions.

From these two lines of research, we identify a large set of metrics and mitigation
methods that are proposed to tackle unfairness and brittleness issues of the machine
learning models. These two types of issues are sometimes tackled together due to their
interdependence, as for instance distribution shifts that cause brittleness might also in-
crease the unfairness of a model that seemed fair on its training dataset, or because a
method that increases a model’s robustness might also decrease its fairness. We also
identify a number of conceptual and practical limitations to these metrics and meth-
ods. For instance, the practical applicability to real-life scenarios and usability are ques-
tioned, e.g., the proposed methods assume access to datasets or model parameters that
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machine learning developers cannot reach in practice, and the conceptual frame of the
methods does not account for the complexity of the harms they aim at targeting, e.g.,
although unfairness mitigation methods allow to reach a certain level of parity in treat-
ment of different individuals in a population (e.g., equal rate of output errors across
groups of population), they do not encompass the different ways in which a same model
output might impact differently each individual. In terms of the (mis)alignement be-
tween research and practice however, we primarily identify a lack of research on the
perception and use of the technical solutions by machine learning developers. We es-
pecially do not know to what extent they are considered by these issues and the harms
they might cause, whether they use the technical solutions, and if so, how they are able
to tackle their limitations. These are research gaps that we investigate in Part II, in order
to identify the most pressing needs to be tackled in Part III with further research work.

To summarize, this part contributes three rigorous surveys of the literature, one about
harms, their causes, and their treatment within automatic offensive language detection
systems [70] and other types of machine learning based systems [62]; one about techni-
cal approaches for mitigating robustness failures of machine learning models and limi-
tations of current research [825]; and one about technical approaches for mitigating un-
fairness issues [66], and the limitations of these proposed approaches [62]. From these
contributions, our main realization was that despite the complexity of the problem of
hazardous machine learning failures, the amount of technical research tackling both ro-
bustness and fairness failures towards hazardless machine learning is not yet equalized
by research on the limitations of these approaches and on the practices of developers
who might try building hazardless systems –potentially with these approaches. We es-
pecially mitigate the the lack of research on practices in Part II of this thesis.
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ON ALGORITHMIC HAZARDS,

HARMS & THEIR SOURCES

2.1. INTRODUCTION
In this chapter, we begin our investigation of harms and their sources. We start by focus-
ing on one specific use-case, the automatic detection of conflictual languages, because
it tackles an interesting intersection between machine learning and its application to
one field, allowing for more precisely envisioning harms1. We then investigate broader
literature that identifies additional harms, that might not occur in the above use-case.
Harmful, aggressive, abusive and offensive languages in online communications are a
growing concern [251, 291, 873]. They constitute a threat to Freedom of Speech [829],
damage the dignity of the targeted individuals [857], and prevent healthy and fruitful
conversations [538]. The recent hearings [470] of the biggest social network’s platform
(Facebook) CEO also testify of the growing public attention on the issue.

Manual moderation is still the most reliable method for content filtering [491, 632,
469, 443], but it suffers from several issues. Content moderators cannot handle the del-
uge of user generated content fast enough not to endanger anyone. Moreover, they are
continuously exposed to hurtful content, which induces mental issues and can lead to
self-harm acts [775]. Under the societal and political pressure [387, 263], online plat-
forms are urged to find computational solutions to detect conflictual languages [272].
Machine learning approaches are considered the best solutions [263], due to their promise
to achieve reasonable detection performance at scale. In practice, error rates still de-
mand for extensive manual moderation. For instance, Arango et al. [35] show the fre-
quent drop of performance for machine learning models evaluated on deployment data
(e.g., a model which achieves 70 F1-score on its test dataset, can only achieve 21.1 F1-
score on another dataset).

1We left out from the original publication [70] the subsections that provide extensive descriptions of the survey
methodology, of the differences between this survey and prior work, of the disentanglement of definitions
around conflictual languages that we had operated, and of additional research challenges not directly tied to
algorithmic harms.
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Classification errors can raise various harms, and especially concerns of discrimi-
nation [807]. For example, models might systematically misclassify certain populations
more often than others, for instance more often associating tweets written in African-
American English to negative classes than tweets written in Standard American English [567],
or misrepresent their identities due to stereotypical associations between certain con-
cepts and sensitive attributes [119]. The causes of these errors can be summarized un-
der the broad term of bias. When the training dataset is biased towards certain (latent)
characteristics, the model is implicitly taught a biased representation of the conflictual
languages. While these biases are technical artifacts, we argue that their root causes and
solutions cannot only be found in the technical realm. Issues at the conceptual level in-
duce these biases and the challenges in tackling them. Through this survey, we show
the existence of several mismatches between the typical formalisation of conflictual lan-
guages in the computer science literature, and how people perceive and experience such
languages in reality. Mismatches first manifest at a terminological level, as publications
often use an incorrect term to refer to the conflictual language they study; but they fur-
ther deepen into semantic and contextual levels. For instance, psychology literature
highlights that the perception of conflictual languages depends on various contextual
factors [178], such as one’s prior experiences (e.g., someone who is frequently subject
to racial prejudice might perceive sentences as hate speech more strongly), or the di-
rect context of a sentence, e.g., its author and target. Failing to acknowledge such rich
characterisation has obvious implications for the correctness and effectiveness of the
deployed system. Consider, for instance, the widely-used practice of keyword-based
sampling in training data construction, i.e., collecting conflictual text based on certain
keywords. This method implicitly teaches a model that conflictual languages contain
specific words, and leaves out offensive texts with more subtle – or “coded” language
that, in practice, makes the resulting system ineffective.

In this survey, we aim at surfacing and systematically characterising these mismatches
and the technical biases that reinforce them, to highlight relevant research challenges.
Figure 2.1 summarises the research fields and technical aspects addressed in our survey.
By interrogating psychology literature, we drive an informed analysis of trends in com-
puter science papers, and propose a consolidate taxonomy for conflictual languages.
Then, we identify the biases that arise from prior conceptual mismatches. By adopting
a data-centered view, we show that many issues in the outputs of the systems originate
from problematic choices in the design of data engineering pipelines.

The computer science literature on the automatic detection of online conflictual lan-
gugaes focuses on a few languages: hate speech [263, 727], cyberbullying [702, 18, 392,
17], flaming [528], offensive [713], and aggressive language [468]. We compare all these
languages, and focus on their most common manifestation, text. We believe that re-
search on one language might benefit research for another language, and that a precise
and organised terminology is needed to improve the quality and applicability of auto-
matic solutions [849]. We employ the term Online Conflictual Language (OCL) to refer
to the overarching category of online language that subsumes all these types. We use the
term “language” instead of “speech” (used in computer science to refer to hate speech
[263, 221]) because the latter implies the spoken nature of the sentence [723]. In con-
trast to terms with specific meanings (e.g., “aggression” implies the intention to harm),
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Figure 2.1: Dependencies which influence the design of online conflictual language detection systems. Tech-
nical works in NLP and machine learning, and possibly works from psychology and politics determine the
inference task. Datasets are then developed (or selected) according to the task, in a way that is also informed
by data mining and crowdsourcing literature.

we use the term “conflict”, defined as “the occurrence of mutually antagonistic or oppos-
ing forces, including events, behaviors, desires, attitudes, and emotions”. We use “Online
Conflictual Language” also to avoid ambiguity and confusion, as the term has not been
previously used in psychology, linguistics, or computer science.

In summary, we make the following contributions:

1. A discussion of the psychological aspects related to OCLs (section 2.3) that uncov-
ers conceptual mismatches with automatic detection works, and a reflection on the
experimental practices that could contribute to computer science research.

2. A comprehensive review of the typical data engineering pipelines used for building
datasets (section 2.4), and of their technical biases (e.g., usage of disagreement met-
rics for evaluating the annotation quality of subjective OCL) that can be harmful and
participate to the low generalization abilities of the systems.

3. A quantitative review of conflictual language detection models (section 2.5), and an
analysis of their limitations in terms of performance, leading to the identification of
additional biases. Guided by our OCL taxonomy, our work offers a principled charac-
terisation of differences, similarities, limitations and opportunities in computer sci-
ence approaches. The lack of features relevant to individual OCL and the integration
of social biases are pressing issues, for which future research could draw inspiration
from literature in psychology, machine learning fairness, and explainability.

4. An extensive discussion of open, technical and structural, research challenges, with
actionable suggestions for future work inspired by various psychology and computer
science domains, and informed by our systematic literature analysis (section 2.6).

5. In a last section, we will provide an overview of other harms caused or reinforced by
machine learning systems, but that have not been necessarily related to OCL detec-
tion systems (section 2.7).

2.2. METHODOLOGY
To achieve the aforementioned contributions, we take a multi-step approach including,
(1) retrieving relevant terms about OCL, (2) literature search and analysis, (3) taxonomy
of terms creation, and (4) analysis of the research challenges. More details can be found
in the original publication [70].
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2.3. CONCEPTUAL MISMATCHES TOWARDS TECHNICAL BIASES
In this section, we argue for the existence of profound conceptual mismatches pertaining
to the focus of computer science literature on the development of algorithmic pipelines,
mostly due to lack of consideration for the application context –contextual mismatch–
, or for the specific properties of the targeted OCL –semantic mismatch. We provide an
overview of the insights about OCL that can be found outside computer science research,
and compare them to high-level findings from our systematic survey of computer sci-
ence literature.

2.3.1. EXTERNAL INSIGHTS ON ONLINE CONFLICTUAL LANGUAGES

SEMANTIC KNOWLEDGE FROM PSYCHOLOGY

Researchers in psychology have extensively studied conflictual languages, beyond the
context of Web communication platforms. We summarize here the major insights rele-
vant for the prospect of detecting these OCL.

Three main types of variables influence how OCL is perceived by external observers
(see Table 2.1): the language content, including the properties of a person or group tar-
geted by OCL; the language context; and characteristics of the observer.

Table 2.1: The factors identified in psychology literature that influence OCL perception, organised in 3 cat-
egories (internal characteristics of the observer, characteristics of the sentence content and of the sentence
context), and the approach taken to measure these variables.

Category Variable Measure Paper

Observer Gender Question [318, 235,
198, 199]

Observer Ethnicity Question [198, 199,
877]

Observer Education Question [198, 199]
Observer Age Question [198, 199]
Observer Liberalism inclination Question (scale) [235]
Observer “Individuals’ attributions of intent”, angry and

anxious dispositions
Not investigated [318]

Observer Sense of mastery, self-esteem Question [635]
Observer Frequency to which people are subject to racial

prejudice, “beliefs about the appropriateness of
expressing racial prejudice”

Question (scale) [591, 877]

Observer Membership esteem to the offended group Question (scales) [114]

Context/ContentTargeted group or person Scenario [198, 199,
114, 353]

Content Category of hate speech Info in dataset [353]
Content Prejudice, sentence properties In the dataset [223, 198]

Context Public or private sentence Scenario [198, 199]
Context Received response to the language Scenario [198, 199,

200]
Context Author, its characteristics, race, gender Scenario [203, 639]
Context Hierarchical level of perpetrator and victim Question [821]
Context Internet community Info in dataset [779]
Context Social status of a group Question [353]



2.3. CONCEPTUAL MISMATCHES TOWARDS TECHNICAL BIASES

2

37

Internal characteristics of the observer. The perception of certain OCL depends on
the internal characteristics of someone who observes the language. This hints at the sub-
jective nature of many online conflictual languages. For instance, Guberman et al. [318]
observe a difference in aggressiveness ratings of tweets depending on gender (women
rate tweets more often as aggressive than men) and mention the tendency that some
people have “to interpret ambiguous stimuli as being intentionally aggressive” and the
dispositions of people to become angry and anxious. Downs et al. [235] identify that gen-
der and liberalism inclination influence how harmful a hate speech is perceived. Sim-
ilarly, Cowan et al. [198, 199] point out that the ethnicity, gender, education, and age of
the observer influence the perceived offensiveness of hate speech. Besides, attention
is called on the distinction between the perceived offensiveness and harmfulness [200],
with for example ethnicity being a main factor in the perceived harmfulness. This high-
lights the importance of clearly and precisely defining the OCL to detect, in order to ac-
count for the correct variables of importance.

Works focused on racial hate speech also pinpoint the frequency to which people are
subject to racial prejudice and people’s “beliefs about the appropriateness of expressing
racial prejudice” [591], and ethnicity [877] (e.g. people of color who are more often sub-
ject of racial aggression perceive Web memes as more offensive, unlike White people).
This speech triggers various emotional responses (fear, anger, sadness, outrage), and
people with high membership esteem react more strongly to threats to their group than
low identifiers [114].

Sentence content and context. The syntactic and semantic properties of the sentence,
e.g. length, usage of profanity, and its context –author [203] and how its direct target
behaved and felt [200], targeted group, whether it is public or private, and whether it
received a response [198, 199]– influence how offensive it is perceived [203, 353, 198].
For instance, the perception of profanity depends on the community [779] as different
communities use profanity with different frequencies and contexts and judge the words
differently. Besides, a speech toward a single individual is seen as more offensive than
a speech toward a group of people [114]. Also, a speech is offensive when it presents a
property of an individual (“personal characteristic, belief”, etc.) in a certain way which
does not need to be hateful [36], as the wrongfulness comes solely from the aim of its au-
thor: “attempt to denigrate, humiliate, diminish, dishonour, or disrespect the other”. The
context is particularly relevant when distinguishing between languages that are harm-
ful – which damages someone’s interests – from languages that are hurtful (offensive) –
which causes mental distress.

These three types of variables implicitly include finer-grained characteristics of the
language: the focus towards certain types of population and specific targets, the type of
language used, the author, its intent and the effect on the targets.

CONTEXTUAL INFORMATION AROUND OCL DETECTION SYSTEMS

Context of application of the systems. The application domain of an OCL detection
system determines its context of operation (e.g., a social media primarily used by chil-
dren within a single country using a single language, or used by a specific political com-
munity to discuss political opinions on specific subjects). Context consists in the type
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of platform (e.g., social media, conversational agent) on which OCL should be detected,
the type of end-users and their backgrounds, the type of communities and populations
that are present on the platform or interact with this agent, the topics that are frequently
tackled, and the natural language typically employed (which can be different from of-
fline language). These characteristics might impact how someone perceives OCL [849].
Understanding this impact would allow to scope the context in which systems can be
used, and would determine how to collect datasets for training, and how to develop and
test algorithms.

Laws and regulations, either governmental or from social media platforms, further
constrain the type of online conflictual languages to be detected. They focus on certain
properties of language, such as intent or targets (identified in the previous section) that
are often more specific or nuanced [112]. For instance, the British government decided
after many debates on “protections only against intentionally threatening expressions of
religious hatred, not against those that were merely abusive or insulting, nor those that
are reckless and likely to stir up hatred”. Philosophy also studies when OCL should be
limited and similarly defines criteria to make a decision, by analysing case-by-case past
events of OCL on social media [319]. Especially, it should be limited when “it is reason-
able and feasible to assume that an act of Internet speech will cause harm to others”, and
more specifically when “targeted hate speech that carries with it immediate harm (capa-
bility to carry out the violence), individualized harm (capability to assault the target),
and capability to carry out the threat (actualized means of committing the violence)”. As
our investigation in the remaining of the paper shows, such nuances are not necessarily
reflected in the ways datasets and models are developed, yet would be of importance,
for instance, not to unintentionally restrict freedom of expression.

Hard technical requirements for the applications. The applications in which OCL de-
tection systems are implemented also impose hard technical requirements (e.g., OCL
posts should be removed from a platform within a certain amount of time). While these
requirements do not necessarily impact the nature of the OCL to detect, they might
impose constraints on the detection pipelines (e.g., cost of data collection, speed of
machine learning inferences with or without the possibility to involve humans-in-the-
loop), and trade-offs with the system accuracy (e.g., scalability vs. accuracy). However,
these requirements are not often accounted for in the literature, which instead focuses
on accuracy. Only 4% of surveyed publications mention the scalability of their sys-
tem, mainly the time efficiency to detect online conflictual language (OCL), and only
6% tackle the creation of a full system in opposition to a detection method. These num-
bers are small considering the need for efficient solutions, since leaving OCL public for
too long might have psychological consequences for the readers.

The systems are ought to perform well continuously over time. Yet, only few systems
continuously collect datasets, whereas this would shed light on the evolution of OCL
along time, the changes in the users of platforms, and how they impact a model’s per-
formance, etc. Efforts to develop systems such as MANDOLA [618] or the Online Hate
Index2 would greatly contribute to progresses in the field.

2https://www.adl.org/resources/reports/the-online-hate-index

https://www.adl.org/resources/reports/the-online-hate-index
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2.3.2. COMPUTER SCIENCE STUDIES ON OCL
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Figure 2.2: Summary of the entities of importance in the understanding of OCL, as identified by computer
science studies.

Researchers in computer science have conducted studies on the use and spread of
OCLs on the Web. They perform both manual analysis and statistical observations on
datasets collected for the studies, and discover properties of the languages which could
be used to tune the features employed by automatic detection methods. These studies
serve as a source to identify the entities studied in computer science literature, their re-
lations, and their properties (summarized in Figure 2.2). These entities are primarily the
author of a language –its behavior, intentions and emotions–, the language content itself,
be it a single sentence or an entire paragraph –the language used, the targeted property
of a person or group, and implicitly the focus of the language since only sentences con-
taining expressions of hate are studied– and its context –how it affects the target person
or group.

Hateful behaviors are characterized with perpetrators internal characteristics –their
account creation dates, e.g., hateful users might be often banned; the amount of the
users’ activity on the media; the position of the users in the network graph; whether the
users are identified as spammers–, and the characteristics of the sentences they write –
the lexical content and sentiment of their posts and hashtags [676, 168, 148]. ElSherief et
al. [247] also identify various personality traits of both authors and targets of hate speech.

Other studies target media sessions, i.e., a conversation between several individu-
als. This is the case for cyberaggression, where both text, images and possibly users are
studied –e.g., the role of the author in the cyberbullying–, sometimes with a temporal
dimension [375, 92].

Certain studies [559, 197, 753, 215, 865, 444, 323, 933, 822, 779, 357] characterize the
language itself, through the sentence content (i.e., the used vocabulary); the targets; the
context (how the language is perceived); the relation between the type of target and the
type of content employed [246]; and the effect of users’ anonymity and users’ geogra-
phy. These properties are compared across platforms [459]. One study focuses on why
and with which intensity a language is perceived as conflictual by an observer, using
questionnaires: a sentence is seen as cyberbullying when it contains threats of physical
violence, harassment and profanity terms [224].



2

40 2. ON ALGORITHMIC HAZARDS, HARMS & THEIR SOURCES

2.3.3. COMPUTER SCIENCE FRAMING OF OCL
In the remaining of this section, we identify conceptual mismatches that translate into
technical biases in the design of automatic OCL detection systems. To do so, we com-
pare the formulation of detection tasks in computer science publications to the above
insights. We also provide an outline of the works on biases, and contrast them with our
previous insights.

FRAMING OF AUTOMATIC DETECTION TASKS

Here, we present how classification tasks are generally framed, and show the diversity of
the classes and entities used across tasks.

Table 2.2: Type of entity per online conflictual language (OCL), accounted for in computer science classifica-
tion tasks.

Aggression Offensive Abusive Harmful language

Media sessions 6 0 0 0
Sentence 83 75 12 1
User 13 1 1 0
Words 3 0 1 0

Entities We find a strong imbalance across entities targeted by classification tasks (Ta-
ble 2.2). Sentences are the most studied. A few works also detect single words corre-
sponding to a specific online conflictual language (OCL), or identify users, public ac-
counts and media sessions which comport OCL, based on the detection of sentences
and words. Retrieving data for media sessions or users is technically more challenging
than for words or sentences. Media sessions are only studied for aggression because they
allow to analyze the users’ behaviors that emphasize user intention, a characteristic spe-
cific to aggression. Studying sentences allows to access certain properties of OCL (e.g.,
language type, focus and possibly intention.), but leaves out information relevant for
certain types of languages, such as the effect on the reader for offensive languages, or
possibly the intention of the author.

Classes. The number of classes targeted in the classification tasks is imbalanced. Most
tasks use 2 classes (77.7%) (e.g., is hate, is not hate language) or 3 classes (15.6%) (e.g., is
positive, is neutral, is hate language), which corresponds to the basic requirement of the
systems. The tasks with more classes (4 to 13) reflect the intensity of an OCL language,
which is more challenging to detect. As we discuss in the next subsection, binary classes
do not necessarily reflect the understanding of OCL obtained from our previous analysis.
For instance, psychology pointed out to the dependency of certain OCL perception on
various contextual factors, left out when binary classes are predicted for bare sentences.

MAIN BIAS CONCERNS

We report here the types of biases studied explicitly in relation to automatic OCL detec-
tion. These mainly relate to certain inherent contextual properties of OCL identified by
psychology literature, and to a few properties specific to the online context –in certain
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cases using the term “bias” directly–, but also to the potential discriminatory impact of
OCL detection systems. We also investigate how these bias concerns compare to the
semantic and contextual information identified in the previous subsection.

Inherent contextual biases. Works on cyberbullying detection have shown how dif-
ferent authors of OCL –difference based on gender [206], age, profanity history [208] or
intent [10]– shape differently their sentences. A few properties of the target or observer
of the language have also been indirectly studied, mostly through the properties (espe-
cially the gender) of the employed dataset annotators (e.g., workers from crowdsourcing
platforms) [721]. Yet, the actual observers (e.g., social media users) do not necessarily
resemble the annotators of a crowdsourcing platform, and hence studies might not fit
the perceptions of actual users. The conversation context, specifically replies to OCL, has
also been investigated in a few works [495, 626].

Biases related to the online context of the systems. The contextual characteristics
identified in the previous subsections are often not mentioned in papers developing de-
tection methods, except for the platforms from which datasets are collected. The sim-
ilarities and differences in the natural language written across platforms is sometimes
investigated by measuring the generalizability performance of models trained on one
platform and one dataset across platforms and across datasets [12, 316], as a proxy for
the intensity of the differences. Besides, no work was found to study the diverse percep-
tions of OCL of users across platforms.

Similarly, only few works discuss the end-user related information that should drive
the development of a system. Arango et al. [35] show that many datasets suffer from user
biases. Few users constitute the authors of the majority of OCL in common datasets,
thus identifying OCL could translate into identifying the author of a text sample. leading
to overestimating models’ performance. Besides, only the user social network [416] is
investigated as user contextual cue, while it is shown to increase detection accuracy of
models relying on it.

Discrimination-related biases. Recent papers employ the term “bias” to study system
artifacts that might create discriminatory harms. Such harms are identified by compar-
ing the performance of a system for different subpopulations of users, e.g., based on
gender [613], or other sensitive information [56], e.g., sexual orientation [181]; and pos-
sibly on intersectional attributes of the users, e.g., gender and political orientation [439];
or racial biases based on dialects [721, 213]. These biases rely on properties of the end-
users, and their translation into natural language in the applications (e.g., the back-
ground of the end-users imply a dialect). These harms are explained by imbalances of
various nature in training datasets (e.g., more sentences written by male authors than by
authors of other genders). Sun et al. [807] provide a review of the formalization of these
biases in natural language processing tasks, not specifically related to OCL detection.

Computer science works that account for biases do not yet encompass all kinds of
relevant contextual and semantic information. We take a systematic approach in the re-
maining of this paper to identify the technical biases that occur from the non-consideration
of this information. That is what we discuss in greater extent in the next subsection.
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2.3.4. TOWARDS THE TECHNICAL MISMATCHES
We identified the main properties of online conflictual languages as defined by social
sciences and the applications’ context, and the ones integrated into computer science
works. We now synthesise these properties to surface mismatches in computer science
research. These mismatches relate to the inherent properties of OCL and to the subjec-
tivity of certain OCL, left out from both datasets and machine learning models.

MISMATCHES AND CHALLENGES IN THE EXPLOITATION OF THE CHARACTERISTICS OF OCL
Mismatches in the selection of variables. The three types of variables that influence
the perceptions of online conflictual languages (OCLs) identified from social science
(subsection 2.3.1), i.e., the internal characteristics of the observer, the sentence con-
text and its content, are similar to the ones found in computer science studies (sub-
section 2.3.2). However, the exact characteristics investigated vary. Computer science
studies focus on properties directly measurable or that can be inferred from information
available on the online platforms, while psychology works rely on additional individual
questionnaires.

Besides, only few detection methods use these specific characteristics of the lan-
guages. For instance, it is recommended to use a sentence context in a media session,
and possibly the interactions of the sentence author with other users. It was also shown
that the aggregation of hate messages from multiple sources creates stronger harms
than a single message from one unique source [486]. However, only individual sen-
tences are usually collected, without any meta-data on context. Psychology also points
out to specific language uses, such as euphemism in harassment [286], or humour for
hate speech [884], e.g., humour affects the perception of offensiveness for certain types
of hate speech (here racism or sexism). However, these are often cited as future work
in computer science, except for Magu et Luo [525] who study euphemisms within hate
speech, or the recent works on sarcasm in ACL workshops.

Mismatch in the choice of target entity to detect. Psychology and computer science
studies highlight the importance of looking beyond sentences, and at single user’s be-
haviors or at entire scenarios, and of distinguishing between certain specific OCL. How-
ever, current setups do not focus on these factors (subsection 2.3.3), which could lead
computer science researchers to target research objects that are ill-defined. Hence, we
recommend to refer to the social science literature around the targeted OCL to identify
the important elements to include in datasets or algorithms for automatic classification
of each OCL.

Challenges in data collection. The above gaps constitute socio-technical challenges:
the social science insights need to be translated into accurate quantities measurable in
practice in the technical systems. For instance, considering context in computer science
is challenging due to the difficulty in scoping and collecting it, e.g., links in posts are
often outdated, finding characteristics of the authors or receivers might be intractable
and privacy infringing. This could –ideally– be solved when building training datasets
by interrogating users on their perceptions and intentions, but it would be impossible
in deployment where users could not be solicited for each post. This shows again the
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necessity to identify requirements of applications precisely, as they shape the constraints
for training and deployment.

The relevant variables that impact the perceptions of OCL need to be identified more
exhaustively as psychology studies do not necessarily tackle OCLs on the Web, but also in
real life scenarios. Also, certain online conflictual languages (OCLs) are rarely addressed
in psychology research, certainly due to their exclusive online nature (e.g., flaming).

The validity and importance of certain properties about the context of the language
used only in computer science (e.g., user account creation date, amount of her activity
on the media, her position in the network graph) could be further explored by adopting
the methodology followed in psychology. Certain properties might be proxies for some
of the psychology variables, e.g., they could help to identify the intent of the author of a
post. This leaves the opportunity for computer scientists to work with psychologists to
bridge the gap between these domains, and to more precisely define the concepts they
study.

SPREAD OF THE MISMATCHES INTO THE CLASSIFICATION PIPELINES

The development of OCL detection systems follows the general development of machine
learning applications [24, 812]. First, requirements are defined and specified into char-
acteristics for the data, machine learning model and its evaluation. Then, data are col-
lected, cleaned and labeled by annotators. Features are extracted, a machine learning
algorithm is developed and trained. The resulting model is evaluated and later deployed
and monitored. Certain steps might be iterated over to approach closer the initial re-
quirements, and possibly to revise these requirements.

Shortcomings in the systems arise from these steps. Under-defined requirements
(mentioned in previous subsections) propagate into the next data-oriented and algorithm-
oriented steps of the pipelines. Tuning pipeline components even for well-defined re-
quirements is challenging. For instance, a system might be asked to perform equally
well for children and adult users. However, with the subjectivity of certain OCL, build-
ing datasets with single, binary labels for each data record, and models that predict single
labels, does not fit this requirement.
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Figure 2.3: Distribution of computer science literature focusing on OCL

We identified 5 research directions in the computer science literature, that integrate
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the different steps of the pipelines (literature surveys, statistical studies, classification
methods, creation of datasets, and crowdsourcing tasks to collect labels), with a strong
bias towards classification methods (Figure 2.3). There are especially few papers inter-
ested in crowdsourcing methods despite the challenge of obtaining high-quality OCL
labels with such ambiguous and subjective OCL [318]. This hints at many research op-
portunities, especially around the biases contained in datasets, and studies to better un-
derstand OCL.

Next, we investigate the biases in detection pipelines. We pass current practices
through the new requirements coming from the semantic and contextual mismatches
to identify limitations, challenges and potential solutions. To further substantiate our
critical analysis, we situate literature on machine learning biases and unfairness [812] in
the present pipelines.

2.4. DATASET CONSTRUCTION FOR THE DETECTION OF OCL
We now analyse the datasets and data engineering pipelines used in online conflictual
language (OCL) detection systems. While the process of creating a dataset is long and
costly, out of the 194 publications for which experiments have been conducted, only
33% of them use an already-existing dataset (5 do not specify the dataset used). Such
numbers motivate the need to understand the specificities of data pipelines, which do
not seem standardized. We critically reflect on the pipelines, and their biases. In light
of the recent research on data excellence [201, 623, 872], this surfaces new challenges to
adapt the pipelines to the types of OCL targeted and the various applications in which
the systems might be applied.

2.4.1. DATA SAMPLE COLLECTION

DATA RETRIEVAL

Data sources. Data samples are collected from various sources on the Web (Table 2.3).
Twitter is used in majority due to its popularity and the easiness to get data, while other
social media (Formspring, YouTube, MySpace, Wikipedia and Facebook) are used less
[537]. Various sites such as the news website Gazzetta.it [625] usually specialized in
one topic like sport or politics and discussion forums such as voat, 4chan or reddit are
also investigated. Table 2.4 shows the distribution of languages in the publications, and
highlights a strong unbalance between English (74.4%) and the other languages present
only in 1 to 6 papers.

Yet, recent works exhibit efforts towards the diversification of the objects of study.
Datasets are created for less studied languages such as Hinglish [421, 181], Bengali [458]
and Arabic [183, 324], revealing new challenges pertaining to the particular language
structures (e.g., in Hinglish, the grammar is not fixed, the written words use Roman
script for spoken works in Hindi [421]); and for less common social media platforms
(e.g., YouTube comments [458, 183]).

Following these works, we consider worth building new datasets to investigate more
sources and languages, and increasing the research on cross-sources for more adaptabil-
ity of the models [316]. Machine translation models in conjunction with English-based
classifiers could also be investigated, especially for datasets that mix multiple languages.

Gazzetta.it
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Table 2.3: Dataset sources distribution.

Data source Count

Twitter 98
Formspring 18
News site 16
YouTube 14
MySpace 14
Forum 13
Wikipedia 12
Facebook, individual or group conversations 11
Instagram 9
Yahoo 8
Other content-sharing social media 7
AskFM 7
Website (non social media, e.g., Tumblr, Whisper) 6

Table 2.4: Datasets Language Distribution.

Sample language Count

English 157
Indonesian 6
Japanese 6
Dutch 5
Spanish 4
Portuguese 4
German 4
Arabic 3
Hindi 3
English-Hindi 3
French 2
Korean 2
Greek 2
Italian 2
Bengali 1
Russian 1
Turkish 1

Data mining methods. Most datasets are collected by retrieving samples which con-
tain specific elements, such as abusive words [386], hashtags and keywords from contro-
versial politics sites [118], or offensiveness dictionaries [675]. Several papers use snow-
ball sampling [652, 373] or variations such as first retrieving tweets based on hashtags
and then all the other tweets from their authors [817]. Others are retrieved by crawl-
ing entire pages selected for their likeliness to contain online conflictual language (OCL)
(e.g., anti-Islam pages [831], offensive blog posts [221], public celebrity pages [250]), or
by crawling and randomly sampling social media feeds [584, 753]. Additional filtering
based on keywords or negative vocabulary is sometimes applied to maximize the num-
ber of OCL samples [641]. Similarly to psychology studies, the authors of [692] manually
create cyberbullying scenarios from which students write an entire discussion used as
dataset.

15% of the classification papers simplify the detection task by distinguishing smaller
tasks of sub-topics that share similar properties. Researchers use datasets for specific
OCL sub-type (e.g., datasets on sexism and racism for hate speech [638, 868, 933, 647,
614, 274, 867], on hateful speech towards black people, plus-sized individuals and women [703],
or towards refugees and Muslims [933, 131]), or domains (e.g., news, politics, entertain-
ment, business for insult detection [778] or disability, race and sexual orientation for
hate speech [144]).

Introduction of biases. Each parameter set-up for data collection biases the dataset.
The choice of data source, keyword for retrieving initial sets of samples, and languages
for these queries directly impact the type of users for which the subsequent trained
model will show good performance. Less obvious choices also skew the data distribu-
tion. For instance, through the selection of random samples from a forum history; or by
selecting only the first posts. In both cases, the topics discussed might be more or less
detailed, or the authors of posts might use more or less strong OCL. Skews are also intro-
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duced by a crawler’s (human, or automatic) browser setting, e.g., due to the geograph-
ical region, or search habits. Poletto et al. [640] discuss further certain of these biases
in their survey. The period of time when the dataset is collected is also of importance.
This concern is highlighted in computer vision, such as for the Pascal VOC dataset [368],
reportedly collected in January, and composed of an above-average number of Christ-
mas trees, as images in Flickr (the media they used) were ordered by recency. Machine
learning models for OCL detection are especially sensitive to the events contained in the
data [262], as these events shape the type of language and topics the models can inter-
pret. Ptaszynskia et al. [645] recommend regularly collecting samples to update datasets
with the most recent vocabulary. Sampling per keyword also introduces biases in the
datasets [264]. The samples retrieved often contain words considered rude, while more
subtle forms of OCL might not be accounted for. Founta et al. [264] instead propose to
collect data by combining random sampling and tweets retrieved using keywords.

These biases become harmful when they skew the data distribution away from the
expected one, or enforce discriminatory associations between attributes. According to
the bias framework of Suresh et al. [812], representation biases manifest when the train-
ing data distributions integrate few information around underrepresented populations,
leading to low model performance. This definition could be expanded to over-represented
populations, for which a model might learn spurious correlations, and to “population”
as either individuals or other kinds of concepts such as conversation topics.

Various fields (e.g., linguistics) study the different strategies employed in order to ex-
press OCL; for instance, when expressing hate [47]: othering, stereotyping, conceptual
metaphors, implicitness, constructive and fictive dialogues. Linguistics identifies these
strategies for individual topics – e.g., “conceptual metaphors in comments related to mi-
grants in Cyprus”; or media studies, –e.g., “in the case of racism, it was found the use
of vicarious observation, racist humor, negative racial stereotyping, racist online media,
and racist online hate groups. The online hate against women tends to use shaming. [..]
flaming, trolling, hostility, obscenity, high incidence of insults, aggressive lexis, suspi-
cion, demasculinization, and dehumanization can inflict harm” [163]. This information
could be exploited in order to verify the diversity and representativeness of the samples
collected in a dataset.

Dataset collection parameters are not always aligned with insights from psychology.
While psychology puts forward context as important for classifying OCL, most posts are
stripped down from their meta data and conversational context. Pavlopoulos [626] did
not find any interaction with the title and the previous sentence of a post, yet context
can be broader, e.g., the whole discussion, and merits further investigation. Multiple
challenges in reference to this mismatch are discussed in subsection 2.3.4.

DATA PROCESSING

Data augmentation methods. Figure 2.4a shows the distribution of the number of
training data employed in the classification tasks, with a majority of datasets around
1000 and 11000 samples. As expected, deep learning approaches make use of larger
datasets (about 10000 samples) than traditional machine learning approaches (about
5000 samples) – Figure 2.4b.

Despite needing large datasets, only 14% of the classification papers mention explic-
itly data augmentation techniques, mainly to balance datasets. This is common as Web
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Figure 2.4: Distribution of the number of training data employed in classification tasks.

platforms contain a majority of non-OCL text (e.g., abusive tweets only represent 0.1% to
3% of tweets [264]). This extreme unbalance explains why certain papers further retrieve
data using OCL seed words, instead of performing synthetic data augmentation. Out of
the 69 papers whose figures are available, 39% have a balanced dataset.

Data augmentation is performed either by over-sampling or by under-sampling cer-
tain classes or both. 9 papers randomly duplicate the minority class samples and 8 re-
move samples from the majority class. 6 papers employ the Synthetic Minority Over-
sampling Technique (SMOTE) for over-sampling by creating artificial data samples in
the feature space. 2 create synthetic data with two-way sample translation and sliding
windows [700], or with random sample generation with a character encoding and intro-
duction of known online conflictual language (OCL) words in these sequences [733].

The different data augmentation methods do not all perform well for each classifica-
tion task [171]. Thus, we not only recommend to investigate data augmentation further,
but we also propose to create a list of large datasets for each type of OCL so that re-
searchers have common benchmark datasets for evaluation, as suggested for abuse de-
tection by Jurgens et al. [415]. Poletto et al. [640] propose a review of existing benchmark
corpora that supports the identification of missing text corpus. Existing datasets could
be merged together to augment their size. Deep generative models are also recently in-
vestigated to synthesize new data samples automatically, with promising results [886].
Further investigation of their conditions of applications, and of the choice of hyperpa-
rameters, would be beneficial.

Next to balancing a dataset, Park et al. [613] augment their dataset by substituting
female entities to males ones and vice-versa, to reduce gender bias. The validity of the
synthesized data samples would merit being further investigated in relation to the spe-
cific types of OCL of each use-case, especially when studying multiple sub-categories of
OCL.

Introduction of biases. As a sign of representational biases, Grondahl et al. [316] show
that models performing well on a dataset with the same distribution as the training
dataset, perform poorly on other datasets; but perform equally well when they are re-
trained on a dataset with this other distribution. This suggests that the architecture of
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the model is not the primary factor for the resulting performance, but that the datasets
themselves all contain their own biases, hindering generalization to other datasets.

Data augmentation and processing reinforce or introduce representational biases.
For instance, most data instances that are representative of a certain OCL might deal
primarily with a certain topic. Augmenting the dataset for the OCL class would then
reinforce the presence of this topic in association with the OCL label. Also, basic pre-
processing activities such as stemming and lemmatization can remove useful indica-
tions, e.g., gender word endings in gendered languages, skewing the data towards one
single type of representation. The curation of misspellings might skew the represen-
tation of populations that frequently use such spelling. Grondahl et al. [316] experi-
mented with natural-looking adversarial perturbations –which could be misspellings–
and showed that models are not robust to those. Besides, misspellings are not all spelling
mistakes, but can be meaningful, and vary the interpretation of a sentence from the
“clean sentence”. Curating the data then prevents a model to learn such new types of
interpretations.

In other domains such as computer vision [667, 351, 568], models are made less
brittle by augmenting the datasets with natural or adversarial perturbations that could
arise at deployment time. We suggest to test similar solutions in the context of OCL.
Especially, brittleness to natural perturbations such as voluntary or unintentional mis-
spellings might be partly due to the ways data are processed: when misspellings are re-
solved, the models are not trained on such diverse, possibly adversarial inputs, increas-
ing their brittleness.

DATA SPLITTING

Dataset splitting is not standardized in the OCL detection pipelines. Arango et al. [35]
showed it can lead to overestimation of models’ performance. When it is done after fea-
ture engineering (or after data augmentation and curation), information from the test
data is leaked into the training data as the feature extraction methods might rely on data
distributions, resulting in obtaining high performance in laboratory settings but low per-
formance in deployment.

This highlights general issues with the management of data in research settings. If
the data are studied along time, it is important not to sample them randomly but fol-
low this temporal sequence, in order to observe how generalizable a dataset from one
time window is to another time window. These and more issues are also identified in
the general data management literature for machine learning [726]. The implementa-
tion of common benchmark structures respecting these data management rules would
support the propagation of good practices in the preparation of datasets for the training
and evaluation of models.

2.4.2. DATA ANNOTATION COLLECTION
Here we discuss how dataset annotations are collected. Annotation refers to the labeling
of data instances (e.g., a sentence or a tweet) that might contain online conflictual lan-
guage (OCL). These annotations are usually collected by aggregating the inputs of multi-
ple annotators into a single label, in order to ensure its quality. 95% of the 80 papers with
available information go through this human annotation phase. A few papers instead
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use machine learning [148], inference from data context [817, 703], or semi-supervised
learning [276] to infer labels. Notably, some works mentioned by Fortuna et al. [263],
build lexicons of OCL [242, 876] to train better classification algorithms. We do not in-
clude them here as they do not correspond to the annotation of evaluation datasets, and
do not detail their crowdsourcing setup.

SET-UP OF THE ANNOTATION PROCESS

Instructions to the annotators. A binary question is typically asked to the annotators
(the answer “undecided” is sometimes added), potentially with a rating [143, 170]. How-
ever it is argued in psychology literature that rating comments on a valence scale is too
vague for the annotators, who prefer binary questions [778, 777]. Closer to psychology
which asks annotators to rate several propositions, Guberman et al. [318] investigate per-
ceived violence of tweets through an adapted version of the multiple proposition Buss-
Perry Aggression Questionnaire (BPAQ). Using 6 annotators on Amazon Mechanical Turk
and 14 gold questions (12 correct answers required), they still found 30% disagreement
that they partly explain with the non-adaptation of the questionnaire to tweet violence.

Out of 74 papers using crowdsourcing, only 32% mention giving a definition of the
concept to annotate to the annotators, such as detailed offensiveness criteria 34 and hate
speech definition5. Gamback et al. [274] through several crowdsourcing tests provide a
detailed question to the annotators 6. Not providing clear definitions is an issue because
the annotators might have different definitions of online conflictual language (OCL) in
mind, leading to collected data labels that would not be suited to the application.

Data annotators. The annotation tasks are conducted on crowdsourcing platforms or
programs created by the authors of the publications. Certain papers show that the type
of annotators employed influences the quality of the annotations. CrowdFlower (now
Appen.com), expert and manually-recruited annotators are equally used (23.7% each),
while students of universities (13.8%) and Amazon Mechanical Turk (15%) are less. The
expert category comprehends authors themselves, researchers of similar fields, special-
ist in gender studies and “non-activist feminist” for sexism annotations, persons with
linguistic background, trained raters, educators working with middle-school children,
and people with cyberbullying experience.

3“A tweet is offensive if it 1) uses a sexist or racial slur; 2) attacks a minority; 3) seeks to silence a minority; 4)
criticizes a minority (without a well-founded argument); 5) promotes, but does not directly use, hate speech
or violent crime; 6) criticizes a minority and uses a straw man argument; 7) blatantly misrepresents truth or
seeks to distort views on a minority with unfounded claims; 8) shows support of problematic hashtags. e.g.,
"#BanIslam", "#whoriental", "#whitegenocide"; 9) negatively stereotypes a minority; 10) defends xenophobia
or sexism; 11) contains a screen name that is offensive, as per the previous criteria, the tweet is ambiguous (at
best), and the tweet is on a topic that satisfies any of the above criteria.” [868]

4“tweets that explicitly or implicitly propagate stereotypes targeting a specific group whether it is the initial
expression or a meta-expression discussing the hate speech itself” [276]

5“the language which explicitly or implicitly threatens or demeans a person or a group based upon a facet of
their identity such as gender, ethnicity, or sexual orientation” [275]

6“Does the comment contain a personal attack or harassment? Targeted at the recipient of the message (i.e.
you suck). Targeted at a third party (i.e. Bob sucks). Being reported or quoted (i.e. Bob said Henri sucks).
Another kind of attack or harassment. This is not an attack or harassment.”

Appen.com
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Annotation aggregation. Among the 50 papers for which the information is available
(out of the 74 papers using crowdsourcing), 49 papers aggregate the annotations from
multiple annotators into binary labels. 78% use majority-voting, 10% filter out samples
for which there is no full agreement between annotators, 8% create rules which define
how to aggregate according to different scenarios of annotations (e.g., majority-voting
and removal of the samples with the highest disagreement rates and the samples for
which the annotators agreed they are undecided [142]). One paper uses a weighted
majority-vote scheme [373]. Only Wulczyn et al. [885] derive percentage from the an-
notations.

Annotation quality control. 32.4% of the papers mention techniques to obtain high-
quality labels. Within the annotation task, they investigate using precise definitions and
clear questions to remove ambiguities [689]. After the task, annotations are aggregated
to resolve disparities between annotators’ opinions, and low quality annotations or an-
notators are filtered, with quality scores computed over the history of the annotators, the
time they take to answer each question, or their answers to gold questions [375].

Half of the tasks have 3 annotators, 15% make use of 5 annotators and 22% of 2 an-
notators. Using an odd number of annotators enables to break ties in annotations with
majority voting, while using 2 annotators is cheap and fast. The rest of the tasks employ
1, 4, 6 or 10 annotators. The papers using more than 5 annotators per sample are rare,
most probably because of the cost. Using only the cases of full agreement among am-
ateur annotators produces relatively good annotations compared to expert annotators,
and they suggest to use experts only to break the ties of the amateur annotators [867].

Different metrics are employed to evaluate the annotation quality by measuring the
agreement between annotators (Figure 2.5). Most papers use Cohen’s Kappa for 2 anno-
tators and Fleiss’ Kappa for more. 22.9% of the papers mention “inter-annotator agree-
ment” or “kappa” scores without further precision. Krippendorff’s alpha and the per-
centage agreement are less adopted, the second one making a possibly wrong assump-
tion that the majority is correct [545]. In the publications, we notice a high proportion of
low Cohen’s Kappa and Fleiss’ Kappa scores (under 0.6) for tasks with 3 or 5 annotators,
which proves the difficulty to design unambiguous tasks and hint at the subjectivity of
the concepts to rate.

BIASES IN THE ANNOTATION PROCESS

The data annotation process introduces various types of biases.

Identification of mismatches. Here we take the hypothetical scenario of developing a
dataset for aggression language. Certain definitions of aggression highlight the need for
looking at the context of a sentence, at the behavior of its author, and at the person judg-
ing this language, to understand how a sentence would be perceived, e.g., aggression is
“neither descriptive nor neutral. It deals much more with a judgmental attribute” [572].
Psychology identified the variables that influence this judgement, mostly “cultural back-
ground” [139], the role of the judge, i.e. aggressor, target, observer, etc., “norm deviation,
intent, and injury”, but also “the form and extent of injuries actually occurring” [513]. To
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Figure 2.5: Distribution of the metrics used to evaluate the annotations.

obtain a controlled and realistic dataset and reduce ambiguity, these pieces of informa-
tion around the annotators of the language would be needed, the annotators role (e.g.,
victim or observer) should be decided, and the context of the sentence (e.g., harm caused
by a sentence) displayed. A similar example is the perceived offensiveness of group-
based slurs, which depends on the perception of the status of the target group [353]. In
this case, both the context and observer are of importance since the social status of a
target group could be uncovered from context knowledge but can also depend on the
perception of the observer.

These issues resonates with the historical biases in machine learning ethics litera-
ture [812]. In the dataset, there is a mismatch between the judgements of the annotators,
the judgements of the actual targets of a OCL, and the judgements from external ob-
servers. Consequently, the dataset is not aligned with what the machine learning model
is expected to learn.

Missing context information. Psychology literature showed that for many conflictual
languages, the sample context influences the perception of a sample. Most crowdsourc-
ing tasks however do not specify it, neither in the instructions nor within the sample
presented to the annotator [167, 727]. Guberman et al. [318] put forward the insufficient
context which leaves many aspects of the text to interpretation, as a reason for disagree-
ment in harassment annotations. Golbeck et al. [296], while not including any context
in their corpus, acknowledge this limitation and develop precise annotation guidelines
that aim at removing ambiguities stemming from the absence of context. Ross et al. [689]
provide a definition of the OCL to annotate, and find that the task remains ambiguous,
suggesting that even for objective tasks, context information might be missing to provide
an objective rating.
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The type of context to include and its framing (e.g., a conversation, structured infor-
mation about multiple characteristics) remain to be investigated to address ambiguities,
while controlling the cost of the annotations. Pavlopoulos et al. [626] have shown that
annotations with conversational context (post and its parent comment, as well as the
discussion title) significantly differ from annotations without it. Sap et al. [721] have
primed annotators with dialect and race information explicitly to reduce racial biases in
annotations (more samples written in African American English than in general Amer-
ican English are labeled as offensive). Creating datasets that tackle single specific con-
texts such as “hate speech against immigrants” is also a direction to investigate [86].

Lack of annotator control and information. Psychology highlights that many OCL are
subjective. Linguistics also shows the diversity of interpretation of OCL by different com-
munities or within a same population [47]. For instance, a study shows that in Malta,
participants typically identify homophobic comments as hate speech, but not necessar-
ily xenophobic ones, and explains it with the recent acceptance of the LGBTQ commu-
nity in the Maltese society, while “migrants are still very much left on the periphery”.
Similar studies in other regions of the world would probably lead to different conclu-
sions, illustrating the importance of the annotator background. Hence, choices in the
crowdsourcing task design that impact the pool of annotators (country of origin of the
annotators, language, expertise, educational background, and how they are filtered) in-
tegrate implicitly biases in a dataset.

Psychology indicates characteristics of an individual that impact one’s perception of
a sentence relative to an OCL. Some of these characteristics are also observed in com-
puter science papers, such as the differences of annotations based on gender [318]. Com-
munication studies also investigate the characteristics of an individual that impact their
willingness to censor hate speech, and identify age (e.g., “older people are less willing
to censor hate speech than younger people”), neuroticism, commitment to democratic
principles, level of authoritarianism, level of religiosity and gender [466]. Such factors
could possibly also impact one’s attitude toward annotating hate speech. While the de-
sign choices do not map to these characteristics, creating schemes to control or at least
measure them, is a valuable research direction. Certain crowdsourcing frameworks [79]
are a first step towards this control. Verifying that the same characteristics apply in the
online and offline contexts is also important following previous contradictions, e.g., one
computer science study observed that annotators from both genders usually agree for
clear cases of misogyny and disagree for cases of general hate speech [880], contradict-
ing findings in psychology literature.

Additional properties of the annotators, not investigated in psychology, can bias the
datasets. For instance, annotators from crowdsourcing platforms, who have no training
on what hate speech is, are biased towards the hate label, contrary to expert annota-
tors [867]. Research is hence also needed in assessing the level of education around OCL
that annotators have, in educating them, and in maintaining them engaged for more
annotation tasks.

Simplification of the annotations. The way the annotations are processed creates bi-
ases. Aggregating the annotations into single labels does not allow for subjectivity and
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skews datasets towards certain types of perceptions, generally the majority opinions [58].
This might raise issues of unfairness –non-inclusion of certain opinions–, and reinforce
filter bubbles. For instance, Binns et al. [103] show that a toxicity detection algorithm
performs better on annotations from male users than from female ones and is conse-
quently unfair to women. This reflects aggregation biases [812]: a single dataset to train a
single machine learning model for a whole platform is collected, whereas different pop-
ulations need adaptation.

Subjectivity brings new challenges in measuring and obtaining “high-quality” an-
notations. Measures of quality are now centered around agreement –the lowest the dis-
agreement, the highest the quality–, and post-processing methods use the majority opin-
ion, yet the majority is only one perception of a subjective OCL. Instead, methods should
filter out annotations that are obviously incorrect –often due to spams– or erroneous for
different individuals, while accounting for the existence of multiple relevant and dis-
agreeing judgements. For that, works from the human computation community, such as
CrowdTruth [43] which provides metrics for the quality of annotations and annotators
without assuming the existence of a unique ground truth, could be investigated. More
annotators might be needed, and schemes to infer relevant clusters of annotators could
be investigated to trade-off between quality and cost considerations. Mishra et al. [554]
noted that in digital media, a small amount of users frequently give their opinions, rank-
ing positively highly offensive posts –a form of bias towards the opinion of these few
users. The researchers propose a semi-supervised method in order to identify these bi-
ased users and correct the ratings.

Leveraging psychology and human computation methods. Research from other fields
could be adapted to improve OCL annotation pipelines, as recommendations from crowd-
sourcing literature or psychology are not necessarily followed for now. Only 32% of pa-
pers mention methods to ensure a level of quality (e.g., golden questions, annotator
quality score, precise definitions of the terms, etc.) and few papers employ more than
5 annotators per sample, whereas crowdsourcing literature encourages that. Taking in-
spiration from psychology and judgement collection methods can also be a promising
direction. Psychology studies use multiple questions with scales, whose answers are ag-
gregated to collect the perception of each person (e.g., 10, 6, 3 propositions on [1;9],
[1;6], [1;12] scales [591, 114, 200]). To measure offensiveness, participants rate images
visualising a scenario along how comfortable, acceptable, offensive, hurtful, and annoy-
ing they are on a 7-point Likert scale [877]. Cunningham et al. [203] show scenarios with
4 situations to participants, who select the most offensive one. Example scenario and sit-
uation are respectively attending a men’s basketball game and “A Caucasian, female said:
"Of course we lost. We played like a bunch of girls."” While these studies are not specific
to online conflictual languages (OCLs), the general method could be used, and the spe-
cific questions investigated. The challenge of asking such questions while maintaining
the cost low would become important.
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2.5. CLASSIFICATION MODELS FOR THE DETECTION OF OCL
In this section, we discuss the algorithmic methods used for online conflictual language
(OCL) detection. We focus on the features extracted from data, on the algorithms, and
on the selected evaluation procedures. We aim at identifying implicit biases integrated
into the design choices of the detection pipelines.

2.5.1. FEATURES FOR CLASSIFICATION

TYPES OF FEATURES EXTRACTED FROM THE DATA
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Figure 2.6: Type of information used by the classifi-
cation methods according to the OCL concepts.
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Figure 2.7: The textual features per OCL coarse-grained
concept used in the classification papers.

Features employed in the classification models use four main types of information
detailed below, and summarized in Figure 2.6.7

Textual features. Advantages and disadvantages of the features are explained in [263].
Textual information is represented differently depending on the classification methods.
Word n-grams, bag of words (BoW) and embeddings are employed in majority because
they are adapted inputs to machine learning classifiers. Word n-grams represent more
information (order of the words) than BoW, which improves the classification perfor-
mance, while word embeddings are recently developed for deep learning. Certain fea-
tures are rarely investigated (common-sense matrix [225], tf-icf (Inverse Category Fre-
quency) [485], pointwise mutual information score [582]), and merit more research in
the future. The distributions of the textual features used across online conflictual lan-
guage (OCL) coarse-grained concepts (Figure 2.7) are mostly similar, which indicates a
potential lack of adaptation of the individual features to each task at hand.

Information about the users (emitter and reader). This is the second most used in-
formation for classification. It includes the user popularity in the social media based on

7Interested readers can refer to Schmidt et al. [727] and Fortuna et al. [263] for an extensive explanation of the
properties of each feature.
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the number of followers and friends, the user activity based on the number of posted
and liked tweets [942, 264, 207], her gender [867], age [207] and location [339, 868],
the subscribed lists and the age of the account [264], and information extracted from
the conversation history such as the frequently used terms [867], the tendency to use
OCL [638] or the Second Order Attributes representation of the link between documents
and users [33]. These characteristics might be studied for a user across social media
platforms [209].

Information about the network of the users. Often it consists in measuring how much
a user reciprocates the follower connections she receives, “the power difference between
a user and his mentions, the user’s position in his network (hub, authority, eigenvector
and closeness centrality), as well as a user’s tendency to cluster with others” [264], but
also graph metrics computed over the combined social networks of the sender and re-
ceiver [380, 784].

Conversation context. This is the conversation [88] or the set of questions and an-
swers [686, 588] surrounding the data samples, the images found with the textual sam-
ples in the social media [373] and their captions [374], information about the parent-
child relationships of the samples in the conversation [495], or information about the
samples themselves such as the popularity of a post among its social media [816, 374] or
its publication time [374].

FEATURE SELECTION

Certain papers start with a large amount of input features and then decrease the dimen-
sionality to improve the classification performance.

For this, 12% of papers use feature selection methods: Chi-square [118] (5), Singular
Value Decomposition [225] (5), information gain [605] (3) or mutual information [730]
(2) based selection, Fisher score [939], recursive elimination with logistic regression (train-
ing a classifier with all the features but one, and eliminating the one leading to the worst
performance) [730] or simply evaluating a classifier on different subsets of features and
selecting the one with the best performance [323], backward selection (removing vari-
ables with high correlation) [374], test statistic (Student t-test) [730], PCA [196], Latent
Semantic Analysis [373].

Feature weighting is used with SVM scores [642], logistic regression weights [730], or
by computing a score which represents the easiness to falsify the outputs of the classifier
with one feature and selecting features based on this score [278].

Yoshida et al. [910] compute an entropy score indicative of whether a word corre-
sponds to a sentiment and define a set of rules to select the words to keep, and Lee et
al. [485] compute the less common words in a set of documents.

INTRODUCTION OF BIASES

Measurement bias. The choice of features automatically biases the model towards us-
ing certain types of information, and biases its outputs towards specific types of errors.
This is a measurement bias [812], where the choice of features might leave out factors
that are relevant for inference. In the following, we identify various measurement biases.
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Mismatch with psychology. We identify measurement biases in the way features are
engineered. The inputs to the classification methods are mostly textual information.
Although psychology shows that the context surrounding text also impacts OCL percep-
tion, only 23% of papers use additional information (Figure 2.6). Non-textual features
are mostly used for the classification of aggression language, possibly because it is char-
acterized by the behaviour of users, however the other types of languages are also im-
pacted by context. The way the feature dimensionality is reduced also impacts the type
of information used by a model.

The information used often does not correspond to the variables identified by psy-
chology, which might explain performance issues [380, 933, 626]. Measurement biases
also reflect the non-consideration of subjectivity. Adding to the common features other
features describing users would allow to personalise inferences, what would render the
models more inclusive of various opinions. One main challenge here would be to define
precisely which information should be extracted from the datasets into features, and
how to represent it effectively.

Lack of OCL-dependent features. Several experimental studies show the difficulty for
machine learning models to distinguish between different OCL [530, 850] (e.g., difficulty
to differentiate between hate speech and profanity [530]). Also, our systematic survey
shows a lack of adaptation of the features to each specific OCL. While feature engineer-
ing might not seem entirely relevant with deep learning, we suggest to study the intro-
duction of hand-crafted features to differentiate between these OCL, inspired from the
psychology literature and our categories in ??. For example, someone interested in of-
fensive language could explicitly integrate the identification of the targeted individual or
community in a language sample, instead of letting the machine learning model eventu-
ally discover these characteristics. This comes hand in hand with creating more adapted
datasets where the different types of OCL have to be well-represented, and the necessary
information present.

Recent works show promising results in this direction. Training word embeddings
on a hate corpus and appending manually-crafted features specific to the target class
achieves higher accuracy performance than pre-trained embeddings or more traditional
features (e.g., n-grams), for the classification of various intensities of islamophobic hate
speech [850]. Zhang and Luo [935] extract more informative features than classic ones
like n-grams, by using deep learning structures that learn relations between words.

Low classification performance also come from the lack of adaptation of the features
to the specific ways people use online conflictual language (OCL) in different social me-
dia, such as making spelling “mistakes”, mixing languages in informal language [386,
461], using language which follows evolving trends over time [584, 461], using implicit
OCL [478]. We recommend to specifically investigate how to integrate these character-
istics into future models. For instance, Alorainy et al. [22] extract features specifically
to identify othering language, Bansal et al. [76] and recent publications in ACL work-
shops [53] focus on humour and sarcasm.

Discriminatory features. Recent concerns have been voiced around the discrimina-
tory character of certain features, especially those ones coming from word embeddings.
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Caliskan et al. [155] adapted a psychology test (Implicit Association Test) to measure bi-
ases in word embeddings, and showed that these embeddings reproduce historical hu-
man biases. Garg et al. [279] showed that training embeddings on text corpora from
different time periods incorporates in these embeddings the job-related biases from the
various periods. Methods exist to debias such embeddings [119, 936, 135]. Although not
focused on OCL, they could be investigated as some of them rely on training word em-
beddings to extract adapted features. One might search for the biases introduced when
word embeddings are trained on OCL corpora, instead of general natural language pro-
cessing corpora.

2.5.2. METHODS FOR CLASSIFICATION
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Figure 2.8: Quantitative analysis of the classification methods

We note three main trends in the classification methods: rule based models, machine
learning models –that we define as simple classifiers–, and deep learning models. 4.7%
of the papers combine several models with ensemble and boosting methods. Although
computer science papers report performance measures, it is difficult to tell which are
the “best” methods as the measures are not obtained from the same datasets.

The use of machine learning methods has increased over years since 2012 (Figure 2.8a),
following the general increase of OCL research. Research on deep learning for OCL started
in 2016 with the general increase in deep learning research, and its amount increased
quickly, almost catching up with machine learning research. Research on rule-based
methods has been constant over years and rarely adopted.

Among these 3 categories, various methods are used. A majority of machine learn-
ing papers use Support Vector Machines (SVM), tree-based classifiers (decision trees and
random forests), Naive Bayes classifiers (NB), Multi-Layer Perceptron (MLP) and Logis-
tic Regression (LR). Deep learning papers mainly investigate Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNN) and their combinations. Figure 2.8b
shows that regular deep learning, SVM, tree-based and rule-based classifiers concern
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every type of OCL, while research on naive Bayes classifiers, composition of classifiers
and optimization of application-tuned objective functions has been sparsely conducted
especially for harmful and abusive languages.

TRAINING PROCESS

Most publications follow the same pipeline: dataset collection and model creation. How-
ever, 5% of the papers diverge. During the training process, they perform active learn-
ing [554], or semi-supervised learning where part of the training data samples do not
have labels but these samples are still used (often by label inference) [910, 657, 554].
They perform feature selection and classifier learning simultaneously [947]. Certain pa-
pers employ transfer learning by incorporating a learned word probability distribution
in the target domain to the classifier for training efficiency [604, 12, 733], or to reduce
gender biases [613].

Besides, a few papers compare the performance of models trained on the whole
dataset, or trained by cutting the dataset into domains and by learning a multi-class
classifier (one class per domain) (e.g., cyberbullying related to race, sexuality and in-
telligence [225, 226]). Other papers detect the sub-types of the concept instead of sim-
ply detecting the coarse-grain concept (e.g., detecting cyberbullying by classifying curse,
defamation, defense, encouragement, insult, threat and sexual talk [839], detecting misog-
yny by classifying discredit, sexual harassment, threats of violence, stereotype and objec-
tification, dominance, derailing [32]).

INTRODUCTION OF BIASES

The choice of classification algorithm and its hyperparameters participates in the intro-
duction of various biases in the outputs of classification models.

Aggregation bias. Such bias is defined by the development and application of a single
machine learning model on various distinct populations [812]. This practice is problem-
atic for subjective OCL. A solution could be to learn distinct models on sets of annota-
tions from different populations, possibly also taking into account the context of appli-
cation and learning distinct models for different platforms for instance. Sharing some
information across models while fine-tuning them for specific context remains to be in-
vestigated in order not to require too large amount of data and too large computational
resources.

Mitigating discriminatory biases. A large body of literature on machine learning for
structured data highlights unfairness issues for decision-making systems, propose met-
rics [848], mitigation methods [268], and toolkits [91] to explore the causes of unfairness,
and to support industry practitioners in integrating these formalisations of fairness into
their practices. Recent works have introduced different methods to debias the outputs of
NLP models, e.g., by transforming the features employed, by modifying the optimization
objective employed to train a classifier (e.g., adversarial training of deep learning mod-
els with a regularization term corresponding to the protected attributes at hand [888]),
or possibly by transforming the outputs of the classifier [807]. A more extensive account
of such works is given in [807]. In certain cases, the training process is also modified to
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involve a bias expert [181]. Few recent works propose sample weighing methods to ac-
count for dataset biases respectively in toxicity or hate speech detection tasks [922, 567],
and integrate knowledge bases to correct datasets from biases by substituting words in-
dicator of identity by more general entities [56].

Most works are not specific to OCL and need adaptation. For example, some works
do not easily translate to classification tasks of more than two classes, but this becomes
necessary for OCL. Trade-offs between discriminatory biases and performance mea-
sures [613] nudge for works at the intersection of natural language processing and human-
computer interaction to understand how to set acceptable thresholds for the metrics.
Toolkits could also be developed. Besides these more usual notions of unfairness, a new
type of unfairness with regard to the social network centrality of a potential victim of
cyberbullying is also exposed in Singh et al. [762], and would merit further investigation.

Debugging biases and other errors. Investigating how to apply interpretability meth-
ods to OCL classification tasks could enable to understand specific causes of the low
performance or unfairness of the classifiers for specific samples. Little effort has investi-
gated such direction until now: Risch et al. [681] with usual interpretability methods and
Cheng et al. [176] with the causality angle for performance, and Kennedy et al. [429] for
biases.

Human-in-the-loop methods could be developed to identify the shortcomings of
trained models, by asking humans to generate samples that lead the model to a wrong
prediction. This could serve to identify more social biases, or simply to make the model
more robust to tricky samples. In this direction, Dinan et al. [227] asked crowdwork-
ers to generate sentences that would break their offensiveness detector, and noted that
crowdworkers identify samples of a nature which is rare in the original dataset, with less
obvious profanity but more figurative language and language that requires background
knowledge to be interpreted.

2.5.3. PERFORMANCE EVALUATION

EVALUATION DATASET

Data samples. To evaluate the models, the dataset is divided into training and test set,
and performance metrics are computed on the test set. Some works now also evaluate
their models on other datasets which have different distributions, to understand how
generalizable the models are. This emulates the production set-up, where new data sam-
ples are continuously inputted, for which the distribution might differ from the training
one when new users and new context are added. Few works [584] evaluate the classifi-
cation performance along time.

Ground truth. While most papers consider binary labels as ground truth, some ag-
gregate the crowdsourced labels into continuous scores to investigate whether a model
learned the distribution of judgements or the majority labels. A distinction between the
data samples whose labels received full consensus and the data samples of lower con-
sensus is also sometimes made [478] for explanation’s sake, i.e. better understanding
where errors come from.
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EVALUATION METRIC

A small number of metrics is used: F1 score (macro, micro or average) (23.8%), recall
(22.9%), precision (20.5%), ROC-AUC (7.9%), accuracy score (14.3%), true negative, false
negative and false positive rates (4%). Accuracy is discouraged because its measure is
impacted by unbalanced datasets. Accuracy, precision and recall are calculated on aver-
age for all the classes or for the different classes separately. Few papers use the Cohen’s
Kappa score [703, 226], the Kappa statistic [701, 225, 167], the Spearman correlation [885,
624], the precision-recall curve with the precision-recall breakeven point [278, 509, 778]
and the Hamming loss [700] as an evaluation metric. Others use error calculation based
metrics such as the mean squared error [217, 575, 167, 554], the root mean square fore-
casting error and the mean absolute percent error [642]. Park et al. [613] use the False
Positive and False Negative Equality Differences to quantify gender biases.

Some publications assess the time taken to train the models or the time to detect
the online conflictual language (OCL) [911, 531, 684, 651]. Some papers further study
the performance of the models by investigating in detail the types of sentences usually
missclassified.

ACCOUNTABILITY AND TRANSPARENCY

There is generally no common dataset and evaluation metric to compare models. Bench-
mark datasets would ideally include context information and information about the an-
notators, and state clearly the scope of the dataset. Using the same metrics across publi-
cations which target the same goal would be helpful. The advantages of the less frequent
metrics should be investigated. Reporting the pipeline used to build the datasets would
allow to better understand their limitations and biases. As suggested by literature on
transparency, datasheets [283] could support the controlled use of the datasets, both in
research and industry. This relates to deployment bias [812], when a model is used for an
application it was not built for.

REFINEMENT OF THE METRICS

Most frequent metrics reflect the accuracy of a model, which is not necessarily aligned
with what end-users deem important. For subjective OCL, evaluations could be per-
sonalised to the different perceptions of users depending on their background [597]. To
measure user satisfaction, metrics inspired from the machine learning fairness litera-
ture [848] could be adopted, e.g., measuring the accuracy of the model inferences for
groups of users, and computing their ratio. These issues are termed evaluation bias [812],
where the metrics employed or the scope of the evaluation dataset do not correspond to
the type of samples or the goals for which a model would be used in practice.

Unfairness issues in datasets and classification outputs also need systematic inves-
tigation, for instance using existing fairness metrics. Yet, it is important to accurately
interpret these metrics, as they might simplify too much the actual discrimination is-
sues, and optimizing for them might not lead to fair results in practice [603, 731].

Critical studies [830, 99] have been published in computer vision, evaluating bench-
mark datasets and issues with performance metrics (e.g., top-1 accuracy might under-
estimate the performance of a model while multiple labels could be relevant), showing
how they lead to correct or wrong conclusions. Inspiration could also be taken to de-
velop better mental models of the functioning of the OCL detection systems.
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2.6. BROADER CHALLENGES AROUND OCL RESEARCH
In this work, we used online conflictual languages (OCL) to refer to the multitude of hate
related languages. We gave an overview of these concepts from a psychology and a com-
puter science point of view. We then proceeded to a systematic survey of the classifica-
tion methods and dataset collection methods used in computer science. We identified
the main trends in the design of these methods, and reflected on the main biases that
are incorporated into the detection systems, by drawing on the new insights from psy-
chology literature and the consideration around the online context. We highlighted nu-
merous implicit biases related to the semantic and contextual nature of many OCL, but
also simply to the importance of a language’s content in its interpretation.

To conclude, we now summarize these biases and reflect at a higher level on the
causes of these errors, and the issues they reinforce. We identify additional challenges
both of technical and structural nature. We particularly discuss various socio-technical
research opportunities for the future, and question the structures that developed these
biases within computer science research.

2.6.1. SUMMARY OF BIASES
In Table 2.5, we summarize the technical biases identified along the survey. These biases
often arise from under-defined online conflictual languages in terms of semantic prop-
erties and contextual properties, or from technical difficulties in accounting for these
properties. While the biases arise from different parts of the data and model pipelines,
their harmful impact generally stems from the outputs of the machine learning models
applied to real use-cases.
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n Sample retrieval Source & time → contextual bias; Keyword and rank biases; Topic & lan-
guage biases; Representation bias; Collection of context information

Dataset processing Data augmentation bias; Pre-processing biases
Dataset splitting Information leakage → Evaluation bias
Sample annotation Annotator OCL knowledge; Annotator background; Annotation instruc-

tion; Presentation of context; Annotation aggregation

M
od

el Feature engineering Measurement bias (context, psychology); Discriminatory features
Classification algorithms Aggregation bias; Discrimination bias
Performance evaluation Evaluation bias; Data representativeness; Metric relevance

Table 2.5: Summary of biases introduced in the online conflictual language detection systems through the
design of the data collection pipelines and of the classification models.

2.6.2. TECHNICAL CHALLENGES

ISSUES STEMMING FROM THE TECHNICAL BIASES

The biases identified resonate with multiple domains of machine learning research, es-
pecially unfairness, robustness to natural perturbations and to adversarial attacks, and
model failures that come from the distribution mismatch between the training data and
the data in deployment. Most issues are ultimately questions of ill-defined requirements.
Developing methods to better identify the requirements of the systems prior to their de-
velopment, and to test for such requirements, would allow to foresee such issues and
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possibly correct for them [69]. A recent study (not from the OCL domain) refers to ad-
jacent problems as underspecification of machine learning models [204], i.e. models
trained on the same dataset with the same architecture but various seemingly “unim-
portant” hyperparameters (e.g. initialization seed) provide similar performance on a
test set, but diverging performance on the deployment data.

As for natural perturbations, it remains to be defined what the nature of such per-
turbations is in the context of OCL. In computer vision, natural perturbations are gen-
erated artificially with prior knowledge of usual transformations of the data samples,
and a model is trained and evaluated with the worst-case perturbation, or the average
perturbation [351]. The equivalent in natural language could be spelling mistakes or in-
tentional misspellings, variations of languages within a sentence, grammatical mistakes,
etc. As for model failures, identification methods exist especially in computer vision,
and rely on a human-in-the-loop approach to make sense of data samples, and cluster
them into meaningful groups [75]. Similarly, designing tasks that crowd workers could
perform in large scale for OCL needs attention, especially if their subjectivity is taken
into account while attributing labels. Besides, a redefinition of model error formaliza-
tion might be needed to adhere to this subjectivity. For computer vision and tabular
data, bias mitigation methods are developed, often transforming the latent representa-
tions learned by the models [297], once the biases are identified. These methods could
be similarly applied to OCL detection.

OTHER ISSUES

Similarly to other machine learning-heavy fields, OCL detection might be concerned
with issues of privacy, explainability and accountability. Studying them for OCL might
present new challenges. For instance, concerning explainability, an author might want
to know why their text was flagged (local explanation), while a platform user would want
to know about the general types of content flagged for them (global explanation). An
unintentional author of OCL might need indications to express their ideas in a non-
problematic way (to the extent this is), which could be inspired from works on recourse
in machine learning. Few works answer these challenges in natural language processing.

As for privacy, issues could arise from the need for large datasets, or from the use of
machine learning models. The sources of the datasets and the way they are stored might
raise privacy issues if for instance, posts are collected from social media users –even
though these posts are made public [124]. The annotation activities might also create
privacy issues in cases where the data samples contain private information that the data
annotator would be exposed to. A model trained on a dataset containing posts from spe-
cific individuals might also be “attacked” to identify which individuals were contained in
the training set [844].

HANDLING OCL
OCL content can be handled in various ways. Besides filtering out the content –which
might infringe freedom of expression–, or countering it, another recent avenue is to pro-
vide a warning to the recipient of OCL [833]. This could prevent harm of waiting for
verification and removal, while not infringing freedom of expression. Gorwal et al. [301]
list additional political issues with content removal, such as the opacity of the procedure,
that could be handled by making transparent each decision.
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2.6.3. STRUCTURAL CHALLENGES
Many of the technical, contextual and semantic challenges identified all along the survey
find their causes in the ways research and development on OCL have been structured.
While structural issues are not changed easily, it is worth enumerating some of them.

Disconnection between machine learning and social science research. While setting
up interdisciplinary collaborations is difficult, the survey showed research opportuni-
ties for each discipline. For instance, while computer science would benefit introduc-
ing contextual information from psychology works in datasets and models, psychology
research has not yet studied all variations of OCL , and computer science tools could
facilitate this work [742].

Disconnection between research and real-world scenarios. Datasets often remain large-
grain on the context of OCL and on the annotations. However, delving into specific
OCL, possibly engaging with the communities involved, especially with the authors of
OCL and their targets, would allow to better understand the requirements that a system
should verify. Participatory design, recently raising in ML works [456], while not be-
ing the entire solution [768], would benefit the area of OCL, and the comprehension of
human-aligned requirements. Yet, an obstacle might generally be the stronger interest
for algorithmic works than for dataset works in computer science conferences.

Finally, computer science research can benefit from the tradition of social science
work that usually begins with the definition of the concepts studied. For instance, psy-
chology researchers who identify the individual and group targets of hate speech point
out categories of people with similar socio-demographic attributes (race, religion, dis-
ability, sexual orientation, ethnicity, class, gender, behavioral and physical aspects [753],
as well as moral [589] and mental status [353]). Clarification as such can help scope the
work and avoid conceptual confusions even with disagreement on the definition. Sim-
ilarly, computer science works on biases and unfairness can benefit from a clear state-
ment about the biases and harms they study. Blodgett et al. [113] provide an extensive
review of the study of biases in natural language processing publications, and provide
recommendations on that end.

2.7. HARMS BEYOND THE ALGORITHMIC FAIRNESS FRAME
There are many harms due to the integration of machine learning (ML) into digital ser-
vices that are not captured in the bias / algorithmic fairness identification and mitigation
approach to data and design of algorithms that we briefly mentioned in the previous sec-
tions, and not necessarily discussed within the context of automatic conflictual language
detection systems. In particular, by locating potential harms in datasets and algorithms,
bias mitigation approaches fail to capture the impact of ML more broadly on discrimi-
nation and social inequities. This is what we outline in the remaining of this section. We
argue that to avoid trivializing the problem of harms, researchers should go beyond a fo-
cus on abstract concepts like datasets and algorithms as they pertain to decision making.
While these are some of the main abstractions computer scientists use in ML research,
they do not account fully for the material manifestation of ML in the world. Similarly,
framing systems in terms of automated decision making emphasizes a socio-technical
view, but leaves out the many ways in which ML is used to produce digital services and
that may raise similar concerns around social inequities. In order to go beyond seeing
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ML as a technique in decision making, we sketch alternative views on ML that help to
highlight its broader impact, with a focus on discriminatory effects and inequities. We
propose an ML-pillar and a production view on ML. We hope that these framings can
provide directions for the development of more robust research and policy-making to
address the potential harms of ML.8

2.7.1. THE MACHINE LEARNING-PILLAR VIEW

Setting up systems requires the design and use of a number of entities, especially al-
gorithms, training data, and protected attributes (in case one wants to apply fairness
metrics and mitigation methods), etc. These entities are implicitly presented as unques-
tionable as they are necessary to the functioning of the technology. However, they can
also be problematic. ML systems for instance use datasets with various attributes de-
scribing individuals (e.g., skills, background, etc.) and target decisions (e.g., granting a
loan or not), in order to extract data patterns within these. Implicitly, this assumes that
the attributes are relevant to the target decisions, and that new decisions can be made
simply by comparing a new individual to individuals in the dataset. These are strong as-
sumptions that might lead to unfairness. Here, we surface such potentially problematic
assumptions, that can lead to question the use of ML itself in certain contexts.

DUBIOUS OPTIMIZATION TASK DEFINITION

It is worth taking a step back from the focus on datasets, models, and their biases, and in-
terrogating whether the envisioned task can be performed using ML, whether the labels
and data that are put forward are scientifically sound for the task, and whether relevant
data can actually be found. ML relies on principles that might not be discussed often
enough as they might seem obvious, but that do shape a task in possibly harmful ways.
We pinpoint these principles and their issues below.

The principle of reproducing historical data patterns. ML systems performing clas-
sification or regression tasks rely on the identification of patterns in training data that
reflect past behaviours, in order to learn an inference behaviour. Making inferences
by mimicking past behaviours and comparing the new samples that describe the new
inference subjects to past training data (generally corresponding to past subjects of a
decision) can be harmful in various ways. Are the past behaviours desirable, and is it
desirable to simply repeat them? This is something to question in the different contexts
of application of ML. Besides, if certain types of populations were not encountered in
the past, the systems might make irrelevant inferences for them. If the past behaviours
were problematic or discriminatory, the new inferences would reproduce problematic
behaviours. For instance, Raghavan et al. [653] question the idea of using ML for job hir-
ing decisions. The ML process would inherently skew the task of identifying satisfactory
candidates towards finding candidates resembling those who have already been hired,
leaving out new, different, qualified candidates that have not been encountered before

8This section is based on one publication [62]. We extracted relevant subsections that explain types of harms
that were not mentioned in the previous section. We removed any detail or examples about these types of
harms that do not directly contribute to our exposition of the harms.
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by the companies. Accounting for the new candidates would require a human to fore-
see all their characteristics, and to possibly build data items representing them and their
desired label. This would be directly opposed to the ML principle of learning patterns in
the data and automatically repeating them. Besides, “do we want to make this decision
simply by comparing this individual to others?” is a question that is implicitly answered
positively when making the choice of using an ML model. Yet, certain notions of justice
are not comparative, in which case it is not valid to use ML to make a decision [254].

Scientific soundness of the system’s task or objective. How sound is it to learn pat-
terns between the input data available and the target label? ML relies on the assumption
that there exists a relation (formalised as a pattern) between the input data and the target
label. While this relation might not have to be of causal nature, the existence of correla-
tions is also sometimes questionable [201, 901]: is the existence of correlations backed
up by prior scientific evidence? Are we making an assumption that might lead to ran-
dom and harmful predictions. A burgeoning critique of ML systems has therefore fun-
damentally been to question the scientific validity of the underlying assumptions and
stated objectives of the system, before the examination of the reliability or accuracy of
the system [248]. The increasing reliance on pseudo-scientific assumptions for certain
systems, including lie detection, emotion detection and biometric categorisations sys-
tems necessitates an initial, broader analysis of whether the stated objectives of certain
systems are even scientifically valid. However, we also caution that science or academia
is not protected from accepting ways of categorizing and ordering populations that are
very much based on power, majority consensus, or colonial histories. These may nor-
malize oppressive beliefs as scientifically valid disadvantaging, for example, minorities
or racialized others, as has been evident in eugenics and phrenology and the way they
make a reappearance in ML [108, 19].

Desirability of the task. Even when the task is sound and its repetitive nature is ac-
ceptable, it still remains important to ask whether this task is desirable, i.e., whether the
creation of an automated decision system would indeed automate a desirable task, or
whether it serves to obscure a questionable one. Let’s imagine a system which would
equally allocate bad working conditions to different job seekers. While being fair for all
its users, it would also be harmful as it would be allocating negative resources [457, 432].

SOUNDNESS OF THE DATA SCHEMA DESIGN

Once a task is agreed upon, the ML setup imposes the creation of a dataset. What does
creating a dataset entail for the desired inference task? To what extent do the ways
datasets are formalized reflect the real case? Building a dataset requires defining a set
of attributes and discretizing the values they can take, and to collect data reflecting such
attributes. These activities impact the inferences made by the ML model trained on the
data, in ways which can be harmful outside the fairness framing [85, 401].

Problematic definition of attributes. The choice of attributes constituting the dataset
impacts how well the model trained on this dataset performs its intended task. An in-
correct choice might be harmful. The selected set of attributes might be incomplete, not
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providing enough information to properly perform the inference task, such as not pro-
viding the amount of a loan one has applied for in order to predict one’s likelihood to
repay it. The attributes chosen might also not be relevant for the task at hand, such as
using the number of siblings one has to predict whether one is likely to repay a loan. Col-
lecting data on certain attributes might even be considered unfair and possibly illegal.
This can be because they are not the result of volitional decisions (such as the age or race
of an individual) to decide on jail time contrary to potentially volitional decisions like the
number of prior offenses; or because they are privacy-infringing [315, 653]. The choice of
certain attributes for the models might also prevent certain stakeholders from recourse
over inferences, such as when the attributes are immutable, conditionally immutable, or
should not be considered actionable [834]. Other attributes do not necessarily have to
do with unfairness but with offensiveness [201].

Besides the attributes to train the model, the decision space for a decision-maker
refers to the choice of target labels [557]. This choice defines the set of actions or deci-
sions that a decision-maker can take with the help of the corresponding ML model. This
choice might greatly impact the environment in which the ML model is implemented.
It might reduce the number of possible decisions taken compared to a situation where
humans make decisions without any system support. For instance, loan lending systems
often decide either to accept or reject a loan application, recidivism prediction systems
infer whether someone is likely or not to reoffend in order to decide whether to put or
keep one into prison or not. A decision-maker could foresee other possibilities, for ex-
ample, Mitchell et al argue that a decision maker may consider “a loan with different
interest rates and loan terms” [557], one could also consider proposing reinsertion pro-
grams for the detainees.

The choice of erroneous data to populate the attributes. While the task could possibly
be sound, it might be that the data used in practice are not valid for populating a chosen
attribute, for various problematic reasons. Essentially, either the phenomenon the data
should reflect is not measurable or only with inaccurate proxies, or a satisfactory proxy
might exist, but errors might arise from the way this proxy data is collected.

In terms of proxy, depending on the nature of the proxy, this can raise various harms.
If the proxy is too approximative of the real data or not even scientifically related to the
phenomenon, then the ML model might learn to perform well solely on these inaccurate
data. This is often the case when it is hard or impossible to collect the needed data as
the phenomenon is not measurable easily or at all. For instance, the detection of emo-
tional expression is a popular task in ML, that has been performed using different types
of proxy data for the true, interior, emotional state of an individual. Yet, some of these
proxy data, such as facial expression or heart rate, see their relevance contested follow-
ing existing research on emotions, as their accuracy and suitability for emotion is limited
[790]. Using such proxy for performing an inference task would then lead to prediction
errors that might be harmful depending on how the system is used.

The data samples that are included in the dataset might reflect an incomplete view
of the world due to limitations in the design of the sampling arising from practical rea-
sons or human biases. For instance, in the recidivism case, only individuals who were
actually released and not in jail and then followed over two years could be included in
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the datasets, biasing the set of individuals in the training data, as we cannot know accu-
rately what the individuals in jail would have done if they had been released. Mitchell et
al. [557] also mention that the human process leading to the inclusion of individuals in
the dataset or not may reflect oppressive social structures (e.g., overpolicing of certain
minorities). In relation to that, the collected data might be wrong due to similar practi-
cal constraints. Historical human decisions might indeed be biased (such as for jail time
decisions that judges might have made) and consequently can be considered wrong for
certain data samples and inference tasks. In such case, the training data labels collected
are flawed from the beginning. Such sampling and errors raise concerns once the dataset
becomes the basis for model training and future decision-making, as it takes away from
the discussion and normalizes these prior questions.

2.7.2. THE PRODUCTION VIEW
ML is not only a scientific field, but also a business. It is typically not just developed
for the sake of creating ’intelligent machines’, for some notion of intelligence, or solely
for relieving end users of laborious tasks. As a business proposition, ML brings about
other considerations that are typically not considered in computer science research. For
example, deploying ML systems requires setting up production processes and associ-
ated computational infrastructures to collect, process and maintain datasets, as well as
to train ML models and deploy them [341]. These pipelines and infrastructures, and
their production, not only pose hard engineering problems, but are deeply shaped by
the business logic surrounding them. However, the political economic considerations
are typically abstracted away, despite the constraints this may pose for the application
of fairness mitigation methods. By considering ML as if it exists independent of the busi-
ness of computing that underlies its deployment, many of the inequalities arising from
the production of ML become invisible.

Example of one use-case: chatbot-based services. ML is especially shown to be effec-
tive when applied to day-to-day operations of an organization, solving complex resource
allocation or logistical problems, or improving production lines in many sectors ranging
from manufacturing to creative industries9. This means that many applications of ML
will take place in Business to Business (B2B) contexts, and not just in consumer facing
(B2C) applications. In B2B applications, ML is considered a viable business proposition
as long as it provides either greater or new forms of revenue, or cost cuts. To give an
example, we look at the use of machine-learning-based chatbots for customer service.
Chatbots can be deployed to cut costs by aiding customers in solving their own prob-
lems. A successful chatbot is one that can keep customers from contacting a call-center,
reducing the cost that can accrue with each call.

In the context of chatbots, a policy approach narrowly focused on algorithmic fair-
ness would aim to provide services to customers from different sub-populations equally,
assuming the only harm of interest is that of fairness in market services. However, here,
algorithmic fairness leaves out considerable factors driving inequalities between differ-
ent populations and organizations implicated in production processes. More and more

9https://www2.deloitte.com/content/dam/insights/us/articles/4780_State-of-AI-in-the-
enterprise/DI_State-of-AI-in-the-enterprise-2nd-ed.pdf

https://www2.deloitte.com/content/dam/insights/us/articles/4780_State-of-AI-in-the-enterprise/DI_State-of-AI-in-the-enterprise-2nd-ed.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/4780_State-of-AI-in-the-enterprise/DI_State-of-AI-in-the-enterprise-2nd-ed.pdf
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institutions delegate their fundamental operations to scaled-up ML-services and ML ser-
vice providers, for whom profitability depends on the externalization of costs of contex-
tual needs, failures, or damages, by design, to others. For example, when chatbot ser-
vices are adopted, costs and harms due to removing human support may be passed onto
customers who use the chatbot. Cost-shifting of this nature unfairly burdens particular
populations of customers, such as people with disabilities or accessibility requirements.
The cost and risks also shift from the ML service providers to the requesters of the chat-
bot, and create intrinsic dependencies between the requesters and service providers.
Apart from cost shifting, there are also labor implications. The use of chatbot services
may involve swapping call center jobs with gig workers who train chatbot algorithms
with computers purchased at their own expense and who work in their homes, subject-
ing their household to surveillance8, potentially with even less labor protections than a
call center worker 10. Hence, besides investigating how a chatbot interfaces with end-
users (e.g., focusing on matters of data accuracy, safety etc.), there is also great value
in examining the way chatbots–or other ML services–transform consumer relations, or-
ganizations and labor conditions, or redistributes risks to the weakest parties in their
production cycle, such as gig workers doing menial tasks and end-users. The economic
pressures on the business of computing therefore also impacts the ability and willing-
ness of tech companies to address their potential societal harms.

HARMS RELATED TO DATA USAGE

Due to market and cost-saving pressures, ML service providers can reduce costs by dis-
regarding privacy concerns or data protection considerations when collecting data sam-
ples [457]. Most companies skirt privacy considerations by scraping public data from the
Web, such as image datasets [110] and text datasets. This may not always be legal, and
even if so, might not be enough to fully address customers’ normative expectations of
privacy and meaningful consent. Given that multiple data points can be combined from
diverse sources, revealing new information about individuals that was hidden from a pri-
mary dataset, ML services have the capacity to produce undiscovered privacy concerns
[547]. Users usually give their consent for a specific context where they publish the data
(often a social media), but they are not aware of the other potential uses [124]. There
are also more coercive scenarios in which public data are collected without user consent
and then used to develop AI systems. Raji et al. also point out that the methods to collect
samples might be dubious, taking the example of a startup which signed an agreement
with the government of Zimbabwe to collect face images from its population through
various camera infrastructures, without the consent of the population itself [660].

HARMS RELATED TO THE COST OPTIMIZATION OF THE ML LIFECYCLE

ML pipelines go beyond obtaining datasets. They also require complex processes and
computational environments for the efficient development, testing and maintenance
of the models and the systems they are part of. For any organization that is moving
into ML, these are significant costs, often in the form of labor costs or capital expenses

10Olivia Solon, Big Tech call center workers face pressure to accept home surveillance, NBC News,
https://www.nbcnews.com/tech/tech-news/big-tech-call-center-workers-face-pressure-
accept-home-surveillance-n1276227

https://www.nbcnews.com/tech/tech-news/big-tech-call-center-workers-face-pressure-accept-home-surveillance-n1276227
https://www.nbcnews.com/tech/tech-news/big-tech-call-center-workers-face-pressure-accept-home-surveillance-n1276227
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associated with computing machinery. The optimization of these costs can result in the
development of new harms, that we describe further here.

Exploitation of workers. Crowdsourcing is employed in multiple activities of the ML
pipelines, such as for data annotation, data filtering and, in some cases, even data collec-
tion. Similarly, when users have troubles with workflows managed using ML, organiza-
tions turn to low-paid micro-workers to make up for the failings of these systems. Micro-
workers, for example, are tasked with content moderation, technical support, customer
relations, and responding to consumer contestations. Companies/organizations save
money on labor costs in these low-end jobs in part by neglecting to care for workers or
address harms to workers. A study across 75 countries with 3500 workers found that
despite micro-workers being necessary for the production of ML, “workers and their
jobs remain invisible, poorly regulated and paid, seemingly not directly employed by
the corporations that construct and run such systems” [95, 394, 561]. Multiple concerns
expressed by various human-computer interaction and social science literature revolve
around the treatment of micro-workers within crowdsourcing platforms. Crowdsourcing
tasks are designed to prompt workers to be very fast at their job, to accept a large number
of tasks per day, while they are paid low payout, and depend on this job to make a living
[690, 611]. This leads to exploitative behaviours by the annotation requesters. Workers
have low flexibility in time organisation [909], they are automatically considered as un-
reliable if they refuse tasks, and their work is not valued. Besides, the crowd workers not
only sell their labor, but companies also require the exploitation of their personal assets
(computer, car, bike, rented apartments, etc.), and the data captured is integrated as pro-
duction data to increase the efficiency of the service providers operations and optimize
worker productivity and labor costs, at times to the point of cruelty [404, 838]. Finally, to
this day, crowdsourcing platforms’ accessibility for disabled workers, elderly people, etc
is low [948], and privacy of the crowd workers is often at risk [887].

Exploitation of resources. Besides workers, the production pipelines reinforce the ex-
ploitation of resources, as these are fundamental to developing and deploying ML. Most
ML systems require large amounts of data and computational power. These systems in-
tensify reliance on fossil fuels11. Besides, natural resources are exploited in order to de-
velop the hardware components, energy resources, and infrastructures needed to build
and deploy both the data engineering pipelines and the computational infrastructures
for ML [327]. The production of compute-heavy systems that depend on cloud and
mobile computation reinforces environmental issues in areas of the world where re-
sources are exploited, where data are hosted, and where computations are done [132,
234, 93]. The damage from these range from “water usage, pollution from backup gener-
ators, supply chains for the rare earth minerals used in hardware, and the toxic materials
involved in the production of this hardware” 12. The ever-increasing need for energy

11Sarah Griffiths, Why you internet use is not as clean as you think? BBB Smart Guide to Climate Change, 6.
March 2020. https://www.bbc.com/future/article/20200305-why-your-internet-habits-are-
not-as-clean-as-you-think

12Ingrid Burrington, The Environmental Toll of a Netflix Binge, The Atlantic, 16. December 2015. https:
//www.theatlantic.com/technology/archive/2015/12/there-are-no-clean-clouds/420744/

https://www.bbc.com/future/article/20200305-why-your-internet-habits-are-not-as-clean-as-you-think
https://www.bbc.com/future/article/20200305-why-your-internet-habits-are-not-as-clean-as-you-think
https://www.theatlantic.com/technology/archive/2015/12/there-are-no-clean-clouds/420744/
https://www.theatlantic.com/technology/archive/2015/12/there-are-no-clean-clouds/420744/
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for computing, especially amplifies existing inequalities and climate injustice. Namely,
politically, culturally and economically marginalized populations will suffer the conse-
quences of climate change more severely, and they will do so even though they use vastly
less fossil fuel–based energy, bear far less responsibility for creating environmental prob-
lems, and do not enjoy the benefits of technological innovations [337].

Costs hindering due diligence. The production view also draws attention to engineer-
ing and management costs and their relationship to social, political, and economic in-
equalities. In fact, the costs of ML rise due to the ways in which ML systems func-
tion (e.g., use of data in development and deployment) [115], are employed in practice
(e.g., centralized model for making predictions over many individuals, personalization
of model outputs through fine-tuning of a central model into many individual decen-
tralized models, etc.), and are developed (e.g., need for numerous training iterations
and experimentations). All of these cost factors and the complex production line they
bring about have a direct impact on the application of unfairness mitigation methods.
The cost of ML production is likely to either deter companies from catering to concerns
about ML and discrimination, as this would require more computation, or reduce it to
injecting a minimal unfairness mitigation method into their pipelines for compliance
purposes. The complexity of these pipelines further raises serious concerns about the
feasibility of effectively applying fairness mitigation methods across all of these opti-
mization steps, a matter not yet considered even in research.

2.8. CONCLUSION
In this chapter, we took the example of one usage of machine learning (ML) —ML for
the automatic detection of online conflictual languages. From this example, we identi-
fied a number of harms that flawed outputs (i.e., output failures) of an ML system might
cause —these harms especially revolve around questions of discrimination and unfair-
ness. Taking a look at broader literature on ML and harms, we also identified other cate-
gories of harms that ML systems might cause. Besides potential unfairness from flawed
outputs, using an ML system for a certain task might not be desirable as it might rein-
force historical biases or allow for harmful activities; the training dataset schema and its
population, used to train the model, might be problematic (e.g., encoding offensive rep-
resentations of populations); and the production process of the ML system might cause
environmental harms, reinforce poor labour conditions, etc.

In the chapter, we also identified causes for these flawed outputs (and resulting harms).
At the technical level, they might arise from the (flawed) configuration of the ML algo-
rithm and its training process, or from the (flawed) configuration of the training and
test datasets. At a research-community level, it might also be that current research di-
rections in computer science are not acknowledging enough prior works from other re-
search communities, that could be useful to design more appropriate ML systems. This,
in turn, might be due to structural issues in the organization of research activities. Hav-
ing knowledge of certain potential harms and their causes, we can now investigate in the
next two chapters the types of solutions proposed by the research community.
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3.1. INTRODUCTION
In this chapter, we start investigating one first trend of technical solutions to the algo-
rithmic harms identified in Chapter 2: machine learning (ML) robustness. Indeed, one
of the core principles for building trustworthy (ideally hazardless) ML systems [720] is ro-
bustness [261], defined as the insensitivity of a model’s performance to miscalculations of
its parameters [583, 921]. Examples like Tesla’s Full Self-Driving mechanism erroneously
identifying the moon as a yellow traffic light,1 or Autopilot being fooled by stickers placed
on the ground,2 show that ML systems might not be robust, but be susceptible to errors
and vulnerable to external attacks. This may result in undesired behavior, decreased
performance [891], and various physical and social harms.

In response to these issues, a growing body of literature focuses on developing and
testing robust ML systems. Methodologies towards robust ML have addressed every
phase of the ML pipeline, going from data collection and feature extraction, to model
training and prediction [891]. Such methodologies have been applied to a wide range of
tasks and application areas, including (but not limited to) image classification [802] and
object detection [173] in Computer Vision, or text classification in Natural Language Pro-
cessing [463]. Considering the increasing efforts devoted to this field within trustworthy

1https://www.autoweek.com/news/green-cars/a37114603/tesla-fsd-mistakes-moon-for-
traffic-light/ (access 13.10.2022)

2https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_
Autopilot.pdf (access 13.10.2022)
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ML, we analyze the progress made so far and give a structured overview of the suggested
solutions. Furthermore, we also aim at identifying the areas that have received least at-
tention, highlighting research gaps, and projecting into future research directions.

Our work differs from similar efforts in three main ways. (1) As opposed to some
previous work [891, 298, 159], we do not limit the scope of our analysis to adversarial
attacks. We argue that, as suggested by [236] or [745], natural (i.e., non-adversarial) per-
turbations constitute a common real-world menace that needs further attention. (2) As
far as the application area is concerned, and contrary to surveys solely focusing on tasks
like Computer Vision [236] or architectures like Graph Neural Networks [745], we do not
limit our survey to any technology in particular. We rather conduct our search in a task-
agnostic way. Such an approach helps us identify the most prominent trends within the
field and compare the differences in effort and interest across applications as part of our
survey. (3) Most importantly, we adopt a human-centered perspective for highlighting
the technological challenges and opportunities in the field of robust ML. We argue that
previous work, which is predominantly algorithm-centric, fails to identify the potential
of human input when crafting robust algorithmic systems. We also emphasize the need
to understand current human-led practices in order to integrate robustness into exist-
ing workflows and tools. To this end, we advocate for a multidisciplinary approach and
bring insights from human-centered fields, such as explainable ML, crowd computing,
or human-in-the-loop ML. We, therefore, make the following contributions3:

1. We give an overview of the main concepts around robust ML. We consolidate the ter-
minology used in this context, disentangling the meaning and scope of different con-
structs. We pay special attention to identifying the commonalities and differentiating
aspects of the used terms.

2. We systematically summarize 380 papers on robust ML and related concepts and
arrange them in three different taxonomies. First, we group papers that improve
robustness by working on different aspects of the ML pipeline. We identified three
main aspects that the selected studies work on: input data, in-model attributes, and
model post-processing aspects. Second, we focus on distinct architectures and ap-
plication areas of robust ML systems and define robustness for specific architectures
(e.g., Graph Neural Networks), specific tasks (i.e., Natural Language Processing and
Cybersecurity), and systems conceived within other fields of Trustworthy ML (i.e., ex-
plainable and fairness-aware systems). We focus on these particular architectures,
systems, and fields as they have comparatively received little attention in previous
surveys despite the importance of robustness as a desired property.4 Third, we create
a taxonomy related to the assessment of robust ML systems.

3. We identify and discuss disparate research efforts in each of the established fields
and identify research gaps. Specifically, we make a special in-depth analysis of the

3This chapter is an extract from one publication [825]. We only retained from this publication the overview
of the technical research on robustness, and the limitations identified around this research. We left out the
methodology, the main insights on technical methods from the survey, part of the future work discussion,
and the conclusion, as they were not necessary for understanding the rest of the chapters in the thesis.

4Refer to the full paper for an extensive overview of those robustness metrics and brittleness mitigation meth-
ods [824]. For the sake of brevity and storyline, we do not include those in this thesis.
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opportunities brought by one of the identified research gaps: the absence of human-
centered work in existing methodologies. We highlight the multidisciplinary nature
of the robust AI field and provide an outlook for future research directions, bringing
insights from human-centered fields.

3.2. OVERVIEW OF THE CONCEPTS SURROUNDING ROBUSTNESS
From our collection of papers, we evinced that the notion of Robustness is ill-defined. A
number of machine learning sub-domains refer to robustness from different viewpoints.
We clarify the relations between these domains in subsection 3.2.1. We also identify that
a number of concepts directly related to robustness are used in different ways across
research papers (Figure 3.1). We disambiguate the interpretation of related terms in
subsection 3.2.2. Finally, our analysis of the papers surfaced a few recurring themes,
introduced in subsection 3.2.3, and used to organize our survey.

Robustness

Certified 
Robustness

Natural Robustness

Perturbations

Distribution Shifts
Noise

Generalization

Adversarially Robust Generalization

Non-Adversarial

Generalization

Test Set 

Performance

Adversarial 
Robustness

Adversarial 
Attacks

Lp Robustness

Fairness

ML 
Explainability

ML Testing

Unknowns

Figure 3.1: Main concepts found through our analysis of the literature on Robust AI.

3.2.1. THE VARIOUS SHADES OF ROBUSTNESS

Given the broadness of the literature on robustness and the variety of contexts in which
it is considered, addressed, and analyzed, we discuss and provide a common ground
about the definitions of robustness and its associated concepts. Particularly, robustness
is generally defined as the insensitivity of a model’s performance to miscalculations of its
parameters [583, 921], with Nobandegani et al. [583] stating that robust models should
be insensitive to inaccuracies of their parameters, with little or no decline in their perfor-
mance. Two main robustness branches have been identified: robustness to adversarial
attacks or perturbations, and robustness to natural perturbations.

ADVERSARIAL ROBUSTNESS

Adversarial Robustness refers to the ability of models to maintain their performance un-
der potential adversarial attacks and perturbations [940]. Adversarial perturbations are
imperceptible, non-random modifications of the input to change a model’s prediction,
maximizing its error [814]. The result of such a process is called an adversarial example,
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i.e., an input x ′ close to a valid input x according to some distance metric (i.e., simi-
larity), whose outputs are different [160]. Such data is employed to perform adversarial
attacks, whose objective is to find any x ′ according to a given maximum attack distance
[173]. The literature presents different classifications of adversarial attacks: targeted and
untargeted [172], and white-, grey-, or black-box [562]. Targeted attacks generate adver-
sarial examples misclassified as specific classes, while untargeted attacks generate mis-
classified samples in general. The main difference between white-, grey-, and black-box
attacks is the attacker’s knowledge about the model or the defense mechanism.

A similarity metric is often defined when generating attacks or evaluating robust-
ness. Depending on the input domain, different metrics can be applied. These metrics
are built as a function of a parameter (usually denoted with the letter p) whose value
influences its computation. For example, Carlini et al. [160] define a generic p norm
from which different metrics with different meanings are derived. In their case, when
p = 0 (L0 distance), the number of coordinates for which the valid and perturbed input
are different is measured; when p = 2 (L2 distance), the standard Euclidean distance be-
tween the valid and perturbed input is computed; when p = infinite (L∞ distance), the
maximum change to any coordinate is measured. A particular type of robustness is Cer-
tified Robustness that guarantees a stable classification for any input within a certain
range [188].

NATURAL ROBUSTNESS

Natural Robustness (a.k.a. Robustness against natural perturbations) is the capability
of a model to preserve its performance under naturally-induced image corruptions or
alterations. [236]. Natural Perturbations (a.k.a. Common Corruptions [351] or Degra-
dations [290]) are introduced through different types of commonly witnessed natural
noise [863], e.g., Gaussian noise in low lighting conditions [351], and represent condi-
tions more likely to occur in the real world compared to adversarial perturbations [236].
Temporal Perturbations are natural perturbations that hinder the capability of a model
to detect objects in perceptually similar, nearby frames in videos [737]. All these pertur-
bations result in a condition where the distribution of the test set differs from the one of
the training set [448]. This condition is typically referred to in the literature with over-
lapping concepts, namely distribution shift [820, 229], Out-of-Distribution data (OOD)
[745, 295], and data outside the training set [634].

GENERALISATION

Generalisation is another widely used term in the robustness literature. In general, it is
defined as the model’s performance on unseen test scenarios [617] or as the closeness
between the population (or test error) to the training error, even when minimising the
training error [580]. Two other types of generalization are also reported: adversarially
robust [919] and non-adversarial generalizations [881, 937, 634, 295]. While the first one
refers to the capability of a model to achieve high performance on novel adversarial sam-
ples, the second one is evaluated on non-adversarial samples (e.g., natural perturbations
[881, 937], distribution shifts [634, 295], etc.).
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PERFORMANCE

Across the inspected literature, the term performance is employed with a broad variety
of meanings. Depending on the aspect of interest, it may refer to accuracy [236], robust-
ness [472], runtime [758], or precision [905]. Given such variety, the actual meaning of
performance will be addressed only when relevant to understand the concepts explained
in the core survey.

3.2.2. DOMAINS ADJACENT TO ROBUSTNESS
Machine learning (ML) explainability, fairness, trustworthiness, and testing, are four re-
search domains recurring across robustness literature. While there is no agreed upon
definition of each of these fields and their goals, and we acknowledge it is not possible
and desirable in the scope of this survey to provide a complete overview of these fields,
we provide here explanations that are sufficient to understand the relation these fields
bear to robustness.

EXPLAINABILITY

ML explainability is the field interested in developing post-hoc (explainability) methods
and (inherently explainable) models that allow the internal functioning of ML systems
to be understandable to humans [162]. We identify three types of relations between the
explainability and robustness fields. A number of papers investigates how explainability
methods can be used in order to enhance the robustness of models. Another set of papers
investigates how robust existing explanability methods are to various types of perturba-
tions. A last set of papers instead studies how existing methods for enhancing robust-
ness trade off with the explainability of the models, and especially with the alignment
between the model features, and the features a human would expect the model to learn.

We also consider the field of (un)known unknowns [532] close to robustness, as they
are typically caused by OOD samples. In this field, methods to identify and mitigate
the presence of such unknowns are developed and, while these methods typically fall
within explainability [840, 741], they are directly applicable to increase the robustness of
a model.

FAIRNESS

ML fairness in the broad sense is the field interested in making the outputs of an ML
model non-harmful to the humans who are subject to the decisions made based on these
outputs. Researchers in this field have developed a number of fairness metrics [848]
and methods for mitigating unfairness [546]. We identify two types of relations between
this field and robustness, similar to the relations between explainability and robustness:
robustness of fairness metrics and methods to different types of natural and adversarial
perturbations and trade-offs caused by the application of robustness methods.

TESTING

ML testing [924] is a field emanated from software testing. It consists in developing
methods and tools to identify and characterize any discrepancy between the expected
and actual behavior of a ML model. While this field bears a broader scope since brittle-
ness to different perturbations represents one of the many types of unexpected behavior
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Figure 3.2: The three themes and their sub-categories that shape our survey.

of a model, it is also narrow as it is solely interested in detecting the issue, but not its
mitigation. Naturally, methods developed in this field could potentially be adapted in
the future to better detect robustness-related issues.

3.2.3. THEMES IN RELATION TO THESE ROBUSTNESS SHADES

Analyzing the collected publications through a thematic analysis approach [127], we it-
eratively and collaboratively identified three primary themes and three recurring cate-
gories within each of these themes (nine categories in total) that were deemed worth
emphasizing (summarized in Figure 3.2).

ROBUSTNESS METHODS

The most studied methods to achieve robustness are categorized according to the stage
of the ML pipeline to which they apply, that is either the processing of the training dataset,
the model creation stage, or the post-processing of the trained model. Within each of
these stages, the approaches vary across publications, and were further clustered into
groups based on types of robustness (e.g., adversarial or natural perturbations), and
specific ML component (e.g., training procedure or model architecture) they apply to.
For each of the groups, we further delved into sub-groups based on the types of trans-
formation applied to the component (e.g., different loss functions or regularizers), and
investigated the main similarities and differences across transformations, e.g., in terms
of technical approach and performance.
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ROBUSTNESS IN PRACTICAL FIELDS

While a majority of papers concentrate their studies and the evaluation of their robust-
ness methods around computer vision or do not mention a specific field, we also identify
a consequent number of papers that bear different focuses. We separated these papers
from the ones discussed above, because they present particularities that are worth in-
vestigating. We categorized these papers broadly based on their research fields. Within
each of the categories, we investigated the most researched sub-types for which we re-
trieved the most literature. Particularly, we identified focuses relating to specific model
types (Graph Neural Networks and Bayesian Learning), specific application areas (Natu-
ral Language Processing, and Cybersecurity), and specific concepts within the trustwor-
thy AI domain (explainability and fairness). The latter is particularly interesting because
it differs from other works in its objectives. Contrary to all other papers which investigate
model performance under perturbations, it instead investigates evolution of the fairness
and explanations of a model under the effect of perturbations.

ROBUSTNESS ASSESSMENT

The last theme we identified revolves around the assessment of the robustness of a sys-
tem. Particularly, the importance of developing procedures (methodologies, benchmarks,
and metrics) to evaluate robustness emerged from the papers and these procedures re-
vealed to vary greatly across publications (be it publications whose primary contribu-
tion is an evaluation procedure, or a robustness method that requires to be evaluated
through a defined procedure). We also identified a set of publications whose primary
objective is to perform studies to evaluate existing robustness methods and collect in-
sights to further characterize in which conditions each type of method performs best.
Finally, the last recurring theme was trade-offs, as many papers that propose or evaluate
robustness methods tackle trade-offs while striving to achieve other objectives, be it the
model performance or the other trustworthy ML concepts identified earlier.

3.3. LIMITATIONS: INVOLVING HUMAN WORKERS FOR MORE

INTERPRETABLE ROBUSTNESS
The survey showed a number of ways where human agents (often crowd workers) might
be necessary or meaningful to involve towards making machine learning models more
robust. Yet, the survey also showed a lack of investigation in their modes of involvement.
We discuss next avenues for future work in that sense.

3.3.1. DEEPENING THE RESEARCH ON HUMAN INVOLVEMENT FOR EXIST-
ING ROBUSTNESS METHODS

A number of papers we surveyed implicitly involve humans to instantiate the methods
they propose, either to assess or enhance a model’s robustness. Yet, they do not delve
deeper into the challenges for a human agent to perform their task, which constitutes
an obstacle to the development of methods and frameworks for overcoming these chal-
lenges. This merits further investigation as such human involvement is essential to the
success of the methods. Especially, we identify two main areas where human involve-
ment is necessary but lacks research.
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EVALUATING ROBUSTNESS

To design appropriate perturbations or attacks on which a model should be robust, one
often needs human knowledge. For instance, [410] and [462] generate adversarial attacks
on text samples, that have to verify a number of human-defined constraints for them to
be deemed realistic by humans. Yet, designing such constraints and empirically evaluat-
ing (through user studies) to what extent the samples transformed by the corresponding
constrained attack align with the human idea of “realistic" sample, has not been investi-
gated extensively, despite how crucial that is for engineering “good" attacks.

In a similar fashion, works on robustness to natural perturbations should ideally de-
fine a comprehensive set of domain-specific perturbations relevant to the problem at
hand and its context. However, to the best of our knowledge, existing works that develop
benchmarks or robustness-enhancing methods [448, 351] with regard to such perturba-
tions have not investigated ways to be more comprehensive. While we believe in the
impossibility to reach comprehensiveness (previously unheard-of perturbations can al-
ways arise), one could develop tools to support the definition of relevant perturbations.
For instance, we envision the usefulness of fine-grained, actionable taxonomies of per-
turbations (e.g., Koh et al. [448] talk about subpopulation shifts and domain general-
ization, but this might vary in different domains and types of tasks); collaborative doc-
umentation of domain-specific perturbations; libraries to generate such perturbations
semi-automatically; and frameworks and metrics to uncover new types of perturbations
in the wild, potentially involving humans in the runtime.

INCREASING ROBUSTNESS

Various methods that aim at increasing robustness implicitly employ humans, without
extensive focus. [410], for instance, collect potential adversarial examples by executing
a sequence of engineered steps, that could be refined by the practitioner who would
leverage existing tools for, e.g., identifying synonyms and antonyms, ranking word im-
portance, etc. [634], [165], [574], and [581] respectively show that one can train more
robust models by leveraging human uncertainty on sample labels instead of using rec-
onciled binary labels, by integrating human rationales for the labeling process into the
training process, or by actively querying the most relevant levels of perturbations from
an expert during training. While these are promising research directions, these works
could further be improved by exploiting existing works on human computation assess-
ing the quality of crowdsourced outputs [391], or designing crowdsourcing tasks that
remove task ambiguity and lead to higher quality outputs [259], especially in the context
of subjective tasks. This could serve to understand the nature of uncertainties and define
rationales that are relevant to robustness.

3.3.2. INVOLVING HUMANS IN OTHER PHASES OF THE ML LIFECYCLE
Broader ML literature has proposed other approaches to involve humans and make "bet-
ter" models. Yet, none of these approaches has considered making the models more ro-
bust. Instead, they focus on increasing the performance of the model on the test set.
Hence, we suggest to investigate how to adapt such approaches to increase model ro-
bustness.
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ML WITH A REJECT OPTION

While ML models typically make predictions for all input samples, this might not be rea-
sonable and turn dangerous in high-stake domains, when the predictions are likely to
be incorrect. Accordingly, a number of research works have developed methods to learn
when to appropriately reject a prediction, and defer the decision about the sample to
a human agent [349]. Proposed rejectors can either be separate rejectors placed before
the predictor, that select the input samples to input to this predictor; dependent rejectors
placed after the predictor and re-using its information (e.g., confidence metrics) to de-
cide which predictions not to account for; and integrated rejectors that are combined to
the predictor, by treating the rejection option as an additional label to the ones to pre-
dict. Each type of rejector bears advantages and disadvantages based on the context of
the decision, and would merit being adapted to robustness, as we only found few works
towards that direction [608, 426, 801].

HUMAN-IN-THE-LOOP ML PIPELINES

Human-in-the-Loop (HIL) ML [843] is traditionally concerned with developing learn-
ing frameworks that account for the noisy crowd labels [672], or “learning from crowds”,
through models of the annotation process (e.g., task difficulty, task subjectivity, exper-
tise, etc.). Such frameworks often rely on active learning to reduce annotation cost [897,
900]. Recent works around HIL ML also devise new approaches to build better model
pipelines by involving the crowd, such as to identify weak components of a system [590],
to identify noise and biases in the training data [899, 377], or to propose potential data-
based explanations to wrong predictions [149]. While we could find a few works that
investigate the intersection between active learning and adversarial training [552, 751,
764, 551], we could not find any work that looks more broadly at the different types of
robustness, and the different ways of bringing humans in the ML pipeline. These inter-
sections are yet promising as they constitute more realistic scenarios of the development
of ML systems and they succeeded in making models more accurate in the past.

3.4. LIMITATIONS: A CONSPICUOUS ABSENT FROM THE LITER-
ATURE, THE ML DEVELOPER

Our rigorous survey revealed one prominent research gap: the absence of human-centered
work in proposed approaches, and the lack of technologies and workflows to support ML
developers in handling robustness. In this section, we discuss relevant research litera-
ture, and future research directions regarding this topic.

3.4.1. ROBUSTNESS BY HUMAN-KNOWLEDGE DIAGNOSIS
One of the most notable absentee from the retrieved papers is robustness by human-
based diagnosis. Existing works focus on generating out-of-distribution data, in order
to make a model fail, and later expose this model to this data during training to make
it more robust. Especially for robustness to natural perturbations, this means that one
should always characterize the type of data the model might encounter before being able
to generate such data. This is not always possible in practice, e.g., due to contractual and
privacy reasons, cost, temporal variability of contextual application of the model, etc.
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To circumvent this issue, a major, promising research direction surfaces from compar-
ing the surveyed robustness methods to existing works in other computer science fields.
This direction revolves around developing complementary, hybrid human-machine ap-
proaches, that would leverage research progress in human-centered fields, essentially
explainability, crowdsourcing and human-in-the-loop machine learning (ML), as well as
knowledge-based systems, to estimate model performance on more realistic data distri-
butions without requiring such distributions.

EXISTING APPROACHES

Only few related works leverage human capabilities to identify and mitigate potential
failures of a model. In particular, explanations for datasets [716] have been proposed,
that could be leveraged by a practitioner to identify data skews that might impact the
model performance. In this vein, Liu et al. [506] introduce a hybrid approach to iden-
tify unknown unknowns, where humans first identify and describe patterns in a small
set of unknown unknowns, and then classifiers are learned to recognize these patterns
automatically in new samples. Departing from datasets, Stacey et al. [787], and [41]
have trained models whose features are better aligned with human reasoning (with the
assumption that alignment leads to stronger robustness), by leveraging human explana-
tions of the right answer to the inference task and controlling the features learned by the
model during training to align with these human explanations.

ENVISIONED RESEARCH OPPORTUNITY

The above approaches reveal that instead of looking solely at the outputs of a model and
its confidence in its predictions, one can leverage additional information such as the
model features or training dataset, to estimate the model’s robustness. Especially, even
when a model prediction is correct, the model features might not be meaningful. Hence,
assessing model features and their human-alignment can allow to shift from solely eval-
uating the correctness of the predictions on the available test, to indirectly assessing the
robustness of the model to OOD data points. Moreover, understanding characteristics of
the datasets that led to such learned features could later on serve to mitigate unaligned
features.

Surfacing Model Features using Research on Explainability and Human Computation.
To surface a model’s features, one can rely on a plethora of explainability methods [716].
Certain models are built with the idea of being explainable by design [928, 809], while
others are applied post-hoc interpretability methods [677, 800, 69], with different prop-
erties (e.g., different nature of explanations being correlation or causation -based, dif-
ferent scopes be it local or global, different mediums be it visual or textual, etc.) [773,
497]. It is now important to adapt such feature explanations to allow for checking their
alignment with human expected features.

In that regard, the push towards human-centered explanations for ML developers is
highly relevant. Existing explanations often leave space for many different human in-
terpretations, for which the developers do not always have domain expertise to disam-
biguate the highest-fidelity features. For instance methods that output saliency maps
[754] or image patches [437, 289] do not pinpoint to the actual human-interpretable fea-
tures the model has learned. Yet, one might need clear human concepts to reason over
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the alignment of the features [67]. Hence, further research on semantic, concept-based
explanations acquired via human computation is needed [359, 69].

Leveraging Literature on Knowledge Acquisition for Identifying Expected Features.
To reason over feature alignment, one also needs to develop an understanding of the
model expected features. While very few works have looked into this problem [741], ex-
isting works on commonsense-knowledge acquisition [917] could be leveraged to that
end. These works propose to harvest knowledge automatically from existing resources
such as text libraries, or through the involvement of human agents, e.g., through efficient
and low-cost interactions within Games with a Purpose [64, 854, 683], or other types of
carefully designed crowdsourcing tasks [379, 722]. One would need to investigate how to
adapt such approaches to collect relevant knowledge, and how to represent this knowl-
edge into relevant feature-based information.

Comparing Features via Reasoning Frameworks and Interactive Tools. Finally, de-
velopers need tools to check the alignment between the model and expected features.
Interactive frameworks and user interfaces [67], e.g., Shared Interest [116], take a step in
that direction as they enable manual exploration of model features, with various degrees
of automation for comparing to expected features. Inspired by the literature on AI di-
agnosis, such as abductive reasoning [191, 680], automated feature-reasoning methods
could also fasten the process while making it more reliable.

3.4.2. SUPPORTING ML DEVELOPERS IN HANDLING ROBUSTNESS
Looking beyond the research world towards the practice, it is always an ML practitioner
who builds the ML system. Hence, it is not sufficient to develop methods that can work
in theory, but it is also important to understand the obstacles developers actually en-
counter in making their systems robust. While studying the gap between research and
practice has revealed highly insightful in the past for various ML contexts [365, 498, 371,
454, 637], to the best of our knowledge, it has not been studied in the context of ML ro-
bustness. Possibly the closest work is the interview study of Shankar et al. [735] that
investigated MLOps practices beyond the development of a model towards production
and monitoring of data shifts or attacks.

UNDERSTANDING PRACTICES AROUND ROBUSTNESS

The human-computer interaction community (HCI) has performed qualitative, empir-
ical, studies, typically based on semi-structured interviews with ML developers, to un-
derstand how these developers build ML models with certain considerations in mind.
These considerations revolve around the different steps developers take, e.g., challenges
of collaboration for each step [454, 637], and the use in certain of these steps of tools such
as explainability methods [365, 498, 371] or fairness toolkits [679, 481]. These studies
have resulted in frameworks modeling the practitioner’s process, lists of challenges, and
discussions around the fit of existing methods and tools to answer these challenges. We
argue that adopting similar research questions and methodologies (e.g., semi-structured
interviews with hypothetical scenarios or practitioner’s own tasks, ethnographies, etc.)
would also reveal useful to better direct robustness research in the future. For instance,
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Liao et al. [498] have constituted an explainability question bank that highlights the
questions developers ask when building a model by exploiting explainability, and that
can serve to identify research opportunities through questions still difficult to answer. A
robustness question bank would similarly provide a structured understanding of what is
still lacking. Moreover, HCI research investigating practices around ML fairness [220] has
shown a major gap in terms of guidance for developers to choose appropriate fairness
metrics and mitigation methods. Acknowledging the plethora of robustness metrics and
methods, we envision that user-studies around robustness would reveal a similar gap,
that could be filled by taking inspiration from the fairness literature.

INTEGRATING ROBUSTNESS INTO EXISTING WORKFLOWS

Some works have also focused on developing workflows and tools to support developers
in model building. These works often revolve around user interfaces to more easily in-
vestigate a model and its training dataset, and identify failures or bugs [578, 67]. Other
works build tools, e.g., documentation or checklists, [125, 31, 556, 283] and workflows
[770] to support making and documenting relevant choices when building or evaluating
a model. We argue that robustness research should not only focus on algorithmic evalu-
ation and improvement, but also aim at developing new supportive tools and integrating
them into existing solutions. In relation to that, and possibly closest to supporting de-
velopers in handling robustness, [744] propose the idea of establishing trust contracts,
i.e., contract data distributions and tasks that define the type of task and data that is in-
and out-of-distribution. Yet, this remains challenging as there is no appropriate way to
formalize such contracts.

3.5. CONCLUSION
Machine learning non-robustness (or brittleness) is one of the main issues a machine
learning system might suffer from, and that might cause harms once the system is de-
ployed. Hence, in this chapter, we reviewed the technical methods towards measuring
machine learning robustness and mitigating potential brittleness. We also investigated
limitations of these methods and avenues for future works to overcome these limitations.
Next to a set of technical approaches that could be developed towards more robustness,
we identified that humans are often not involved in the works. However, they could
be involved in different ways, as annotators to bring more interpretability to proposed
techniques, and as practitioners that might use the techniques. We especially identified
one important research gap that testifies of the research/practice disconnect: we do not
know until now how machine learning developers handle the task of making a model ro-
bust, what challenges they face, and what their main needs are. We will investigate and
answer these questions in Part II of the thesis. Beforehand, we first investigate in Chapter
4 the second research trend for achieving less hazardous ML systems, ML fairness.
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4.1. INTRODUCTION
In this third chapter of Part I, we focus on the second technical research trend for tackling
hazards of machine learning (ML) systems: ML (un)fairness caused by ML systems, and
arising from uncontrolled biases injected in these systems. For instance, the Amazon
screening system exhibited an unfair gender bias, while the COMPAS system was ac-
cused of being racist [161]. ML-based systems have a data management component and
a data analytic component, which typically utilizes ML models. One of the main sources
of the unfairness of such systems lies in biases within the data on which the models
are trained [329]. The ML model of the COMPAS system might have been trained on a
dataset imbalanced with respect to a protected attribute such as race, and hence the de-
cision model trained on it makes more errors for the underrepresented minority class.
The Amazon system might have been trained on a dataset of previous hiring decisions
where men have a higher chance of receiving positive decisions, and thus the decision
model also exhibits a skewed distribution towards men. These biases are often not de-
tected unless a deployed system behaves unfairly towards a subgroup of the population.

Works stemming from the ML and data mining communities have started to tackle
unfairness from certain angles like evaluating the outputs of trained models [946]; and
mitigating unfairness by post-processing the outputs of the system [336, 195, 158], or
modifying the training process of the inference algorithms [445, 804, 97, 287, 757, 195,
417, 631], or pre-processing the training data [516, 926, 255, 331, 332]. Nonetheless,
most of these approaches do not focus on the root cause of unfair systems –uncontrolled
biases in the training data– but on the data analytics aspects. Furthermore, it is pointed
out that they are not easily accessible and applicable by developers to real-life cases [369,
783]. We believe that more extensive works on bias should be undertaken by the data
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Figure 4.1: Overview of the chapter structure. After performing a survey of the state-of-the-art in various com-
munities tackling issues of fairness and bias in some relation to machine learning, we identify research gaps
and propose a set of research challenges for the data management communities.

management community, and this paper highlights the research gaps towards that goal.

To do so, we survey data management and other computer science literature on fair-
ness separately. For this, we highlight and discuss: 1) quantitative overview of the re-
search, 2) research topics, 3) methods and their limitations. We continue with a gap anal-
ysis that outlines issues and possible solution spaces to tackle unfairness from a data-
management perspective, arguing that bias and unfairness should be a central topic
in data management. Additionally, we propose a novel approach addressing several of
these gaps by introducing requirements-driven bias and fairness constraints into database
management systems. In Figure 4.1, we summarize in details the steps that we take.

With this survey1, we aim to foster the interest of the data management community
in unfairness in ML systems by presenting state-of-the-art literature in various fields.
We also identify gaps in current data management research which, if addressed, should
bring systems closer to a fair state. We discuss those gaps and provide directions for
future data management work. In summary, we make the following contributions:

1This chapter is based on two publications. From the first one [66], we only retained the descriptions of techni-
cal works to handle harms related to fairness, and the descriptions of limitations in these works. We removed
sections that describe the problem further, as this was done in previous chapters. We also removed extensive
descriptions of certain technical works, in order to solely keep a level of detail sufficient to understand the
rest of the thesis. Finally, we removed suggestions for future work that do not deal with harms caused by the
outputs of an ML system. From the second publication [62], we only retained discussions around the most
important limitations of the algorithmic fairness paradigm, and a few examples to illustrate these limitations.
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• We outline the state-of-the-art of computer science domains actively working on bias
and algorithmic unfairness (section 4.3, section 4.4).

• We systematically survey existing research on bias and unfairness issues related to data
management (section 4.6)

• We identify bias and unfairness-related research gaps (section 4.7) in data manage-
ment, and propose new research directions and challenges (section 4.8).

• We outline the conceptual limitations of the proposed algorithmic unfairness works
surveyed above (section 4.9), that a developer should acknowledge when developing a
model with considerations of harms in mind.

4.2. DATA ANALYTICS: METHODOLOGY
In this section, we explain how we proceeded to the survey of research on bias and un-
fairness outside data management, research that mainly focuses on the data analytics
aspects of data-driven decision-support systems.

4.2.1. METHODOLOGY FOR THE SELECTION OF PAPERS
Our survey is based on a list of the different computer science domains that we consider
to be working on topics related to the unfairness of decision-support systems, either be-
cause they use such systems, or because they have parts of such systems as an object
of their research. This list is the following: machine learning, data mining, computer
vision, natural language processing, recommender systems, computer-human interac-
tion, human computation, software engineering, data management, and the interdisci-
plinary FAT (Fairness, Accountability, Transparency) conferences (i.e., FAT* and AIES).
For each of these domains, we retrieved papers of the main conferences (e.g., NeurIPS,
KDD, CVPR, ACL, CHI, HCOMP) related to unfairness using two search engines (Google
Scholar and DBLP). The approach to this was two-fold: 1) using unfairness-related key-
words and the name of the domain, 2) using unfairness-related keywords and restricting
the search to a list of the main venues of each domain. The list of keywords can be found
in section 4.6. We reviewed the retrieved research papers from the different domains,
compiled a list of major research topics currently addressed, and identified the main so-
lutions proposed and their limitations. In this section, we do not cite all of the papers
but only a selection of popular ones as there would be too many publications.

4.2.2. GENERAL OVERVIEW
The literature on bias within data-driven decision support systems spans a wide range
of topics. The applications of these systems are diverse. These can be to support making
decisions about individuals (e.g., deciding whether an offender’s jail sentence should be
extended based on its likelihood to recidivism, deciding whether to give a loan to some-
one based on their likelihood to reimburse it, etc.). In these cases, the systems are often
trained on structured data about the individuals to make a decision on (e.g., data about
the number of previous reimbursed loans, data about the number of crimes the offender
previously committed, demographic data, etc.), but also sometimes on image or text
data (e.g., deciding whether someone should get a treatment based on the description



4

86
4. TECHNICAL APPROACHES FOR DIAGNOSING & MITIGATING ALGORITHMIC

UNFAIRNESS

of their symptoms, deciding whether a scene is violent and police should be sent based
on an image of the scene). It can also be to provide new knowledge for a later decision on
someone or something, generally based on images (e.g., classifying whether someone is
a doctor or a nurse based on their picture) or text (e.g., deciding whether a sentence is
toxic). In the next section, when it is not mentioned, we report works that mostly tackle
applications using structured data, as research on unfairness for other types of data is
more recent, and hence not all research outcomes are directly applicable to such data.

4.2.3. MAIN RESEARCH DIRECTIONS

From our analysis of literature, we identified six main directions of research on unfair-
ness and bias, which generally correspond to the perspective that different research
communities have on the issue. While research starts with both the machine learn-
ing and data mining communities to define, formalize and measure unfairness, it then
splits into two main directions –even though certain approaches are overlapping–: either
identifying cases on unfairness in datasets, or developing ways to mitigate the unfairness
when such datasets are used jointly with machine learning techniques for data analytics.

Stemming from the software engineering community and its recent interest in machine-
learning-based systems, testing unfairness in the outputs of software is another devel-
oping direction. Finally, the human-computer interaction and the crowdsourcing com-
munities started as well to develop an interest in the topic, respectively in understanding
how humans perceive the unfairness of data-driven decision-support systems, and in in-
vestigating how humans might create certain of the biases that are found in the outputs
of the systems.

As no other research community was identified with other research directions rel-
evant to any case of data-driven decision-support systems, that is following these six
directions that we organize our survey. In the last subsection, we mention other works
that have not been widely adopted by computer science research yet.

4.3. DATA ANALYTICS: STATE OF THE ART
The goal of this section is to provide an overview of the current research topics and re-
lated state-of-the-art in the general computer science literature on bias and unfairness.
We perform this survey through the lens of decision-support systems where bias and un-
fairness problems are currently most prevalent, i.e.„ where decisions suggested by the
systems can be perceived as unfair or discriminating by certain stakeholders.

This section will serve as a foundation for our survey into bias in data management
introduced in section 4.6, where we map the topics found in general computer science
literature to the common data management workflow of most decision-support systems
to identify research gaps.

4.3.1. DEFINITIONS AND METRICS

Most works first propose definitions and metrics to quantify unfair situations, often based
on definitions of discrimination in law2.

2A survey and comparison of these definitions is in Zliobaite [946].
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OVERVIEW

The mathematical definitions vary depending on the type of decision-support system:
classification, ranking, regression, recommendation, etc.; but also based on underlying
fairness notions like group fairness, individual fairness, or causal fairness [848]. Recently,
new notions of fairness (e.g., multi-sided fairness [141]) involving more than one type of
stakeholder and protected group were proposed for recommender systems: recommen-
dations could be fair not only for the clients but also for the reviewers or providers of a
service [471], or also for items presented in the system [406, 422, 776, 941].

New fairness notions could be identified from social sciences in order to make the
systems more aligned with actual fairness values. Many of the proposed fairness defi-
nitions and metrics have multiple limitations [383]. For instance, group fairness does
not account for unfairness within a given group and hence individual fairness was later
proposed by Dwork et al. [241]. The fairness definitions are mostly based on equality
notions of fairness but others might be more relevant for certain use-cases (e.g., affir-
mative actions [566], equity, need [285]). Besides, the identification of unfair situations
through causality is also exploited by Madras et al. [524]. Indeed, most definitions rely
on notions of correlations and not causation, whereas the ultimate goal of the systems
and the metrics is to support making decisions ideally based on causal arguments.

FAIRNESS METRICS

All definitions and metrics assume the preliminary definition of a protected and a non-
protected group of records (usually each record refers to a different individual) defined
over the values of one or multiple sensitive attributes (also called protected attributes).
For instance, in the aforementioned bank example, each record would represent a client
of the bank with the attributes representing the information about this client. A sensitive
attribute could be the gender, nationality, or age of the client. A protected group could
be defined as all the clients whose age is between 15 and 25 years old, or as all the female
clients whose age is in this interval. In the rest of this section, for the sake of clarity, we
will take as a non-protected group the male clients, and as a protected group any other
client. Most existing metrics only handle having one protected group and the rest of the
records being aggregated into the non-protected group.

The definitions and metrics also require knowing the label the classifier predicted for
each record (e.g., a positive prediction when a loan is granted and a negative prediction
otherwise). Most definitions rely on the comparison of statistical measures, and more
specifically on checking equality of multiple probabilities, while the unfairness is quan-
tified either by computing the difference or ratio of these probabilities. The definitions
and metrics differ in the underlying values of fairness that they reflect, and on the exact
measures and information required to compute them.

CONFLICTING PERCEPTIONS OF FAIRNESS

While there exists all these mathematical fairness definitions and metrics, they tend to
be conflicting and it is impossible to comply with all of them simultaneously, as shown
by Chouldechova et al. [182]. Consequently, few papers [883, 483, 482, 81, 305] study how
the fairness of data-driven decision-support systems is perceived in order to choose the
most relevant definitions taking into account stakeholders’ preferences and mathemat-
ical trade-offs. Srivastava et al. [786] show that one simple definition of fairness (demo-
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graphic parity) solely matches the expectations of users of hypothetical systems. Con-
versely, Lee et al. [483, 482] and Grappiolo et al. [305] show that different stakeholders
might value different and possibly multiple notions of fairness (e.g., efficient, egalitar-
ian, or equalitarian allocations).

Biases of the end-users of the systems are also investigated since their decisions in-
formed by the predictions impact the (un)fairness of the systems. For example, Zhang et
al., Solomon et al. and Peng et al. [932, 774, 630] study how cognitive biases of the sys-
tems’ users influence how they use the outputs of the systems to make the final decision.
Peng et al. [630] show in the context of candidate hiring that the final human decision
might be gender-biased by the proportion of male/female candidates exhibited by the
algorithm.

4.3.2. IDENTIFICATION OF BIAS AND UNFAIRNESS

DATA MINING RESEARCH

Many data mining papers, dating from 2008 to 2016, deal with discovering and mea-
suring discrimination within datasets, the results being potentially useful for “debug-
ging” the datasets for later training machine learning models. They investigate scenar-
ios of direct and indirect discrimination, further complicated by additional privacy con-
cerns [695] and cases where the protected attributes are unavailable.

Methods. At first, methods relied on learning rules based on the dataset features po-
tentially used for making the decisions, and on identifying features leading to discrim-
ination [627, 696]. Later, situation testing was used to account for justified differences
in decisions concerning individuals from different protected groups [516]. “Unlike hy-
pothesis testing, where a statistical analysis is adopted to confirm a predetermined hy-
pothesis of discrimination, the aim of discrimination discovery is to unveil contexts of
possible discrimination.” [685]. Certain papers combine data mining methods with ad-
ditional statistical testing in order to verify the potential discrimination situations dis-
covered [698].

Example. In our bank example, rules would be mined from the available dataset with
the target label as consequent and other dataset attributes as antecedent.

A rule would be potentially discriminatory with direct discrimination if the antecedent
contains one or more protected attributes. Actual direct discrimination would then be
verified by setting a threshold α, and comparing it to the difference of rule confidence,
for rules with and without the protected attributes –if the difference exceeds α, that
would mean that the protected attributes have a strong effect on the rule and hence
there is direct discrimination.

Let’s use the following highly simplified rules for the sake of giving an example: (per-
manent job, low amount loan → medium risk not to repay, confidence 0.1) and (perma-
nent job, low amount loan, woman → medium risk not to repay, confidence 0.6). If the
difference between the two confidences (here α = 6) is deemed important with regard
to discrimination, then the second rule would be deemed directly discriminating: for
instance if α= 3, then it is not discriminatory, while with α= 7, it is.



4.3. DATA ANALYTICS: STATE OF THE ART

4

89

As for indirect discrimination, it manifests in certain cases when a rule is not po-
tentially discriminatory as its antecedents do not contain a protected attribute. If back-
ground knowledge is available about the context of the data, and protected attributes are
shown to be connected to the antecedents within this knowledge, then the rule might be
indirectly discriminating.

An example of such would be if a rule such as permanent job, low amount loan, dis-
trict1234 → medium risk not to repay was found with high confidence, and from prior
human knowledge, we would also know that the rule district1234 → Black community
holds with high confidence. Then, proposed algorithms could estimate the confidence
of the rule permanent job, low amount loan, district1234, Black community → medium
risk not to repay, and identify it as discriminatory.

RESEARCH ON MULTIMEDIA APPLICATIONS

Natural language processing. Natural language processing (NLP) [807] focuses on so-
cial, undesired biases usually related to gender or race. For example, text completion
models are shown to perform better on text from majority languages such as Standard-
American English than on text from socially-restricted dialects such as African-American
English. These works usually identify undesired biases from their knowledge around the
context of the application, and propose methods to quantify these biases, often through
the use of semi-synthetic datasets.

Computer vision. On the contrary, in computer vision, most papers tackle system-
atic dataset biases that are not necessarily related to human values but to properties of
the world, such as image extrinsic properties like illumination [539, 895] or image qual-
ity [765], or intrinsic properties like the background when classifying the sentiment of
a picture [607] or the actions represented in images [494], or properties of the object to
detect such as face orientation [449], or object scale in scene recognition [356].

Some works however investigate the diversity of the samples with regard to their cul-
tural provenance for object detection tasks [736] or to protected attributes (e.g., gender
bias in text for image captioning [348]). For instance, facial recognition models were
shown to be trained on datasets which do not necessarily reflect the diversity of the pop-
ulations on which the models are applied to, leading to an imbalance of accuracy for
the different populations [793, 138]. It is shown that these bias issues impact the perfor-
mance and generalization of the trained models to new samples [435, 828].

4.3.3. MITIGATION OF BIAS AND UNFAIRNESS

WORKS DEALING WITH TABULAR DATA

Mitigation methods decrease the unwanted biases in the outputs of the decision-support
systems, consequently decreasing unfairness. When the input consists of tabular data,
these methods can be divided into three categories that focus on different parts of the
systems [84]: dataset pre-processing, in-algorithm treatment, and post-processing of the
outputs. While the literature does not provide guidance in the selection of the method
to apply, it seems to primarily depend on the notion of fairness to optimize for, and on
the actual context of the application. For instance, certain developers might only have
access to the machine learning models and then would apply in-algorithm methods,
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while data engineers might have the opportunity to transform the data before any kind
of learning, which supports an earlier tackling of biases.

Mitigation through dataset pre-processing. For pre-processing, Luong et al. [516] pro-
pose a method that is inspired from situation testing, an experimental legal procedure
to identify discrimination, in order to identify and later modify discriminative data la-
bels. Zhang et al. [926] bring the ideas to use causal graphs to identify significant cases
of unfairness, and to remove unfairness in the data through constrained optimization
in order to maintain both utility and fairness of the dataset. Feldman et al. [255] pro-
pose data repairing methods. Hajian et al. [331, 332] target simultaneously fairness and
privacy preservation in datasets through an optimization algorithm.

Mitigation through in-algorithm treatment. Algorithmic modifications of the train-
ing process mostly focus on adjusting the loss function of machine learning models
through the addition of regularization terms to include the selected notions of fairness,
for classification [195, 417, 631], for ranking [287, 757], for matching tasks [445, 804], but
also recently in the context of recommender systems [97].

Mitigation through output post-processing. Post-processing relies on the idea that
model’s predictions can be made fair by defining specific thresholds that transform the
continuous outputs of the inference model into binary labels [336, 195]. Specific meth-
ods vary in order to adapt to the specific group fairness metrics to optimize for, and
sometimes to provide the option to defer the decision to the human operator [158].

WORKS DEALING WITH MULTIMEDIA DATA

In multimedia data research, we mainly identify two types of methods for mitigating
biases. These are either pertaining to dataset pre-processing, or to in-algorithm treat-
ment. These works are generally more recent and less numerous than for tabular data.
In computer vision, in order to make the outputs of the systems less biased, datasets
are often modified to increase the diversity of present objects and extrinsic properties
(e.g., collection or transformation of data samples, creation of synthetic datasets [449]).
However, the goal of these efforts is typically to improve model performance, not neces-
sarily fair treatment of certain classes. This is for example addressed by Amini et al. and
Quadrianto et al. [26, 649] who introduce fair feature representations that hide protected
attributes. Directly controlling fairness in computer vision datasets is not a major topic
yet [901, 238]. Natural language processing [807] typically modifies the training dataset
(semi-manual data augmentation or annotation of samples with protected attributes),
the embeddings of the samples as these have been shown to integrate unwanted biases
from the large corpora of text on which they are trained, or the inference models. A more
detailed account of these methods is given in [807].

4.3.4. TESTING FOR BIAS AND UNFAIRNESS

TABULAR DATA

Few works focus on evaluating the fairness of machine learning-based data-driven decision-
support systems at deployment time, i.e., when ground truth for the new data samples
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is not known.

Galhotra et al., Angell et al., Udeshi et al. and Aggarwal et al. [273, 30, 832, 11] propose
test-suites to evaluate the fairness of software that relies on machine learning models,
focusing on individual unfairness and developing methodologies for auto-generation of
test inputs. For instance, the Aequitas framework [704] first proceeds to a random sam-
pling of the input space to generate test cases, then the samples that are identified as
discriminatory are used to further generate more test cases, by adding perturbations to
these samples. In this case, it is not needed to know the ground truth, only the com-
parison between the model’s inferences for the similar generated samples is important.
Certain methodologies can identify more or fewer discrimination cases.

In contrast, Albarghouthi et al. [16] adopt a programming language perspective: they
propose a way to formally verify whether certain decision-making programs satisfy a
given fairness criterion (group or individual fairness) through encoding fairness defini-
tions into probabilistic properties.

MULTIMEDIA DATA

For multimedia data, the same metrics are used as for tabular data. The difference lays in
that the required information to compute the metrics, such as the protected attributes,
are often not readily available, and often impossible to extract easily solely from look-
ing at the data samples (for instance, it is questionable whether race or gender can be
annotated simply by looking at the picture of someone without knowing the person).
Additional context or expertise might be required, such as in the cases of annotating the
dialects employed in text samples or the race of the person who wrote the samples.

In computer vision, a few manually created benchmarks such as Gender Shades of
Buolamwini et al. [138] are used to test specific applications like face detection. In natu-
ral language processing, biases are quantified either by measuring associations between
terms related to protected attributes, or by computing the prediction error of the data-
driven decision-support system for the different subgroups represented by the protected
attributes [807]. This often requires generating data samples where the protected at-
tribute is controlled to perform a systematic evaluation, especially because a large set of
protected attributes can be considered in these spaces.

4.3.5. BIAS IN CROWDSOURCING

Crowdsourcing is an essential component of many machine learning data-driven decision-
support system workflows. It allows to collect data samples, or to label these samples so
as to create ground truth labels to train the machine learning models on. From our anal-
ysis of existing works, we identify two meanings and research directions around bias in
crowdsourcing. Closer to our topic, bias here refers to the way labels are attributed to
data samples by annotators who project their own biases in the annotations [601, 602,
600]). Another meaning however refers more to unfairness, and the pay inequality of var-
ious annotators among each other or compared to the minimum pay in their respective
countries [533, 79].
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4.3.6. OTHER FOCUSES
Analysing the publications we retrieved from our systematic survey, we identify a few
other emergent research directions, that have been developed to less extent until now,
but that we believe are relevant to our topic, since they indirectly inform on issues around
bias and unfairness either in the general development of the systems or in the data that
could be used for these systems.

“FAIR” SOFTWARE ENGINEERING

Other lines of work within computer science research are also interested in fairness. We
specifically highlight works on designing methods to develop fairer software [856, 487],
coping with software designer biases [440, 711, 154, 390, 866, 669], fair processes to de-
sign software [285, 654, 106]. For instance, German et al. [285] see code reviewing as
a decision process where codes from different categories of population might be more
or less often accepted, Rahman et al. and Bird et al. [654, 106] point out that bug-fix
datasets are biased due to historical decisions of the engineers producing data samples.
Other papers such as [619, 383, 731, 294, 94, 78, 104, 841] reflect on how projects (data
science process, creation of fairness definitions) are conducted and how unfairness is
seen and might arise in general from the problem formulation perspective.

Inspired by these works, in section 4.8, we also propose expanding the software en-
gineering process of data-driven applications with additional fairness requirements.

APPLICATION-FOCUSED ADAPTATION OF THE WORKS ON BIAS AND UNFAIRNESS

Certain works focus on bias and unfairness identification and mitigation methods
for specific applications such as text analysis –e.g., Diaz et al. [222] address age bias in
sentiment analysis–, social media news and existing polarization biases [228], fairness
in self-driving vehicles [370], text processing [476]), web information systems and biases
arising from them [712, 211, 579, 499, 616, 682, 563, 650, 782].

Certain of these works are especially important for the goal of developing fair decision-
support systems since they raise awareness of potentially biased sources of data, that are
later used to train the machine learning models. For example, Das et al. and Quattrone
et al. [211, 650] show that user-generated content on Web platforms is biased towards
certain demographics of the population due to the varied proportions of activity these
demographics have (e.g., OpenStreetMap contributions are mostly from male users). We
foresee this will have an impact on decision systems trained on datasets crawled from
these platforms since the samples would be biased.

HUMAN-COMPUTER INTERACTION RESEARCH

Certain researchers from the human-computer interaction community work on identi-
fying the needs of data and machine learning practitioners in relation to new unfairness
issues that arise from the application of data-driven decision support systems in real-life
scenarios both for public and private sectors [369, 846].

Besides, the Fairness, Accountability, Transparency (FAT*) community is also inter-
ested in problems related to social sciences, like the impact of publicly pointing out bi-
ases in company software [658], or the influence of decision-making systems on popula-
tions [566]. These works outline new research challenges for which technical processes
and tools could be further developed.
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4.4. DATA ANALYTICS: LIMITATIONS

In this section, we highlight the main limitations of current works on bias and unfair-
ness, as they are argued by different research communities.

4.4.1. LIMITATIONS WITHIN EACH RESEARCH DIRECTION

The topics of the previous subsections each bear certain limitations and research chal-
lenges. Methods for identifying, testing, and mitigating biases do not allow for the de-
velopment of fully fair and accurate systems and do not enable understanding where
the unwanted biases come from in the systems for each of the different unfairness met-
rics. Besides, these methods are only adapted to increase fairness scores as measured
by current metrics, but a system fair according to one metric might not be fair for hu-
mans, as existing fairness definitions do not align fully with human perceptions of un-
fairness. Also, due to the impossibility theorems between multiple metrics, there is cur-
rently no solution to build systems that are considered fair with regard to multiple met-
rics, whereas the combination of multiple metrics might be closer to the human notions
of fairness. Methods do not all handle well intersectionality –when fairness is defined
over the combination of multiple protected attributes–, whereas this is a closer notion of
fairness than formalizations over single protected attributes. Finally, existing methods
almost all assume the prior knowledge of the protected attributes but this assumption
might not hold in practice. As for crowdsourcing works, not all biases coming from crowd
workers are known from researchers or dataset developers until now, and hence they are
not all dealt with when creating datasets.

4.4.2. LIMITATIONS IN THE CHOICE OF DIRECTIONS

Besides the above challenges tied in with the current approach of the issue that centers
around machine learning algorithms, more general limitations are highlighted by certain
works. Mainly, the human-computer interaction community [369] suggests conducting
more research to bridge the gap between existing machine learning methods and their
applicability by industry practitioners. Works with professionals have been conducted
to understand industry needs to deal with unfairness and bias and compared to exist-
ing research, showing that both bias mitigation and evaluation methods might not be
adapted to real uses. Also, the software engineering community suggests taking a step
back on the development of the systems to consider fairness in all development and de-
ployment steps. We discuss these gaps in more details below.

ALGORITHMS AND TOOLS FOR DATA BIAS MITIGATION

Holstein et al. [369] point out that certain practitioners have more control on the data
collection and curation steps than on the machine learning algorithm development, but
that existing methods primarily focus on mitigation in the algorithm. Thus, we later
advocate focusing on the data aspect of biases and unfairness.

Also, frameworks to help the selection of appropriate unfairness mitigation methods
accounting for trade-offs with other performance measures are needed.
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SUPPORT FOR EVALUATION

Practitioners also lack tools to facilitate the building of representative evaluation datasets
and to identify and apply adapted metrics.

Most metrics are adapted for cases of allocative harms, that can arise when the goal
of a system is to allocate resources to multiple stakeholders. They are however not often
adapted for representational harms that arise from the classification of individuals in dif-
ferent categories, or from the association of individuals to (stereotyped) characteristics.
This would be especially relevant in natural language processing (e.g. word embeddings
denoting females are more closely associated to a number of job categories like maids
and janitors contrary to the male embeddings) and in computer vision (e.g. images rep-
resenting Black persons are more often classified as containing violence than images
representing White persons). Also, most metrics assume knowledge of individual-level
features whereas for privacy reasons this knowledge is often absent.

Besides, many unknown unknowns such as identifying before implementation or
deployment the populations that could suffer from unfairness remain. Most research
assumes the knowledge of the protected categories of population, generally coming from
legislations, but there might be additional alarming context-dependent unfairness cases.

GUIDANCE IN SOFTWARE ENGINEERING

Many research opportunities are foreseen in the software engineering process in order to
build ethics-aligned software. Roadmaps to develop ethical software are proposed [54,
134], where the needs for methods to build ethical software, to evaluate the compatibil-
ity of the software with human values, and to help stakeholders formulate their values
are highlighted. In this direction, Hussain et al. [382] and the IEEE Global Initiative on
Ethics of Autonomous and Intelligent Systems [446] respectively argue for a collabora-
tive framework to create software design patterns including social values (such values
would be unwanted biases and different types of unfairness in our case) and for stan-
dards on algorithmic biases in order to provide a development framework that could
support the creation of value-aligned algorithmic software. We believe this is also highly
relevant for the data management community as, for instance, the data schemas devel-
oped in discussion with stakeholders need to be aligned with the values to integrate into
the decision-support systems.

4.5. DATA MANAGEMENT: METHODOLOGY

In this section, we first explain our survey methodology for bias and fairness research
specifically in data management, and establish a quantitative research overview. This
will serve as a starting point to identify research gaps in the next sections. Especially, in
the previous sections, we established the general state-of-the-art in computer science
research, and in the next sections, we compare it to data management works. Partic-
ularly, we investigate the extent to which data management research has differentiated
until now from other research, with the intuition that more data management-specific
activities should be investigated in the future. Besides, we map the data management re-
search to the workflow of decision-support systems to identify important research gaps.
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4.5.1. SURVEY METHODOLOGY

We surveyed a selection of data management venues for articles dealing with unfairness.
This was conducted between August 2019 and December 2020, using two search engines
(Google Scholar and DBLP). We retrieved papers using the keywords “bias”, “fair”, “dis-
parate”, “discrimination”, “responsible”, “diversity” and “coverage” combined with OR
clauses, appended with constraints on the publication venues, covering the full publi-
cation history of the venues. The keywords were chosen to encompass as diverse pub-
lications as possible, as we noted that “fairness’ is not the only term used for describing
related works, but also notions of “discrimination”, “bias”, “diversity”, or more general
notions of ethics and responsible computing are employed.

In particular, we included publications from the ACM TODS, VLDB and TKDE jour-
nals, CIDR, ICDT, ICDE, SSDBM, EDBT, SIGMOD/PODS proceedings and the Data En-
gineering Bulletin 3. With snowball sampling, we also selected the data management
papers cited by the initially retrieved papers. We filtered out the ones not actually ad-
dressing fairness topics of systems where some kind of decision is made, which relates
to human individuals. Excluded papers mostly concern the fair allocation of computing
resources or tasks between components of a computing system.

4.5.2. QUANTITATIVE OVERVIEW

From the quantitative analysis of data management papers concerning unfairness and
bias, we first of all notice that only 34 papers focus on the problems of biases in data-
driven decision-support systems (DDSS), of which only 17 full papers; other than those,
we see that mainly demos (5), tutorials (3), review papers (3) or vision papers (2) are
presented, next to short papers (2), workshop paper (1), panel discussion (1), keynote
(1). Most of these works have been published in the last 2 years.

This number is rather low compared to other research domains in computer science
like machine learning, human-computer interaction, or data mining where unfairness is
a common topic since 2010 and where there are more than a few hundred papers. While
this observation is hardly surprising as most issues related to unfairness stem from the
application of automated, often machine learning-based, data analysis techniques to
human-related data, we argue that there should also be algorithm-agnostic bias consid-
erations on the data management side.

4.5.3. MAIN RESEARCH DIRECTIONS

All of the papers that we retrieved from data management venues, searching for a wide
range of publications related to unfairness, fall into one of the topics also addressed by
research outside of data management introduced in section 4.3. However, two topics
identified in section 4.3 are not covered at all in data management (perceptions of fair-
ness and testing of data-driven decision-support systems).

Yet, it is also important to note that several works are interested in questions of fair
rankings, set selections, and data coverage, that are not discussed specifically in other
disciplines. These questions are of importance for machine learning workflows where
the pre-retrieval of “unbiased” datasets from databases could be necessary. These works

3The Data Engineering Bulletin has a full special issue on fairness. [137]



4

96
4. TECHNICAL APPROACHES FOR DIAGNOSING & MITIGATING ALGORITHMIC

UNFAIRNESS

can also be used independently of any machine learning model, simply as data analytics
tools that provide decisions on data samples, such as for the tasks of ranking or selecting
a limited number of candidates for job hiring.

The application areas are diverse; most of the times, the proposed methods are of a
general nature, but sometimes specific to selected use-cases such as fair web page rank-
ing [180], fair OLAP queries [706], fairness and trust in multi-agent systems [874], or fair
urban mobility [896].

4.6. DATA MANAGEMENT: STATE OF THE ART
Here, we discuss current related research topics worked on in the data management
community, map them to the topics discussed in the previous sections, and outline the
main existing approaches.

4.6.1. DEFINITIONS
Three papers propose formal definitions of fairness, expanding on existing machine
learning and data mining literature. Yang et al. [903] propose measures of fairness in
ranking tasks, whereas Salimi et al. [710] propose a fairness definition for classifica-
tion tasks to overcome limitations of previous definitions solely based on correlations
or causality. Farnadi et al. [252, 253] introduce fairness definitions, a first-order logic
language to specify them, and mitigation methods. They argue that fairness is a concept
depending on relations between the individuals within a dataset.

4.6.2. IDENTIFICATION
We identify multiple works that relate to the identification of undesired biases in datasets.
These works divide into three main categories depending on the approach they follow,
and the problem conditions that they define for themselves. While the first category
of works is close to the data mining topics discussed in prior sections, the other two –
coverage and unbiased query results– are specific to the data management community.

DATA MINING APPROACHES

Similarly to other data mining works, some papers aim at identifying biases seen as dis-
crimination within datasets. The context ranges from datasets of potentially discrimina-
tive historical decisions [927, 330], with methods potentially encoded into the database
system [697], to datasets of ranking scenarios [245, 288] where unfair treatment towards
specific groups might arise (these groups are not predefined), and to text datasets [912]
where the semantics of certain user-generated comments might be discriminatory.

COVERAGE

Another topic related to the identification of biases within datasets more specific to data
management literature is the notion of data coverage. Coverage relates to the idea that
data samples in a dataset should sufficiently cover the diversity of items in a universe
of discourse [51]. Without adequate coverage, applications using such datasets might
be prone to discriminative mistakes. For example, certain computer vision models of
Google performing image classification and object detection have been reported to have
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mistakenly labeled a Black woman as “gorilla”, likely because the original training dataset
did not cover enough images of Black women.

Dataset coverage characterization and mitigation methods. Asudeh et al. [51] first
proposed a formalisation of the coverage problem. They also present and evaluate meth-
ods both to efficiently evaluate the coverage of a dataset with respect to thresholds set
by a practitioner for each dataset attribute, and to identify the type of data samples that
are preferable to collect to solve the coverage issue accounting for the cost of data collec-
tion. These methods are based on the idea that representing a dataset as a pattern graph
allows pruning a large amount of insufficiently covered data patterns represented as pat-
tern relationships. Their link to coverage can then be exploited efficiently, instead of lin-
early traversing the whole dataset to identify uncovered patterns and to reason about
their relationships.

Moskovitch et al. [565] take a different approach, aiming at efficiently estimating the
number of items fitting different patterns in a dataset. This is based on pattern profiling
and caching their statistics under resource constraints. Estimation functions estimate
the count of any selected pattern with trade-offs between accuracy and efficiency based
on those cached statistics. Lin et al. [505] argue that one of the main limitations of many
previous works is the assumption that the considered dataset is constituted only of a
single table. Applying existing methods to a realistic multi-table setup is shown pro-
hibitively expensive. Instead, the authors propose a new parallel index scheme and ap-
proximate query processing to explore dataset coverage efficiently.

Coverage-informed database queries. The previous approaches aimed at identifying
coverage issues in a dataset that was “found” in a general fashion (as opposed to col-
lected for a specific application in mind). Other methods focus on a setup with data
present in a data warehouse, and propose to retrieve a subset of the data in such a way
that the data verify a specific application-oriented coverage objective. In this context,
Accinelli et al. [3] propose a method to rewrite queries whose results would violate a
specific coverage constraint into a similar query whose results now fulfill the constraint.
In a similar fashion, Salimi et al. propose a way to identify biased results of OLAP queries,
and rewrite similar queries to obtain unbiased results [706, 705].

Dataset nutritional labels. Some works promote the idea of creating nutritional la-
bels for datasets, similar to the machine learning community which proposes to make
datasheets to report on the creation of datasets [283] or to describe machine learning
models [556]. In machine learning, these datasheets are intended for accountability,
easier auditing of models, or for understanding of the limitations of models or datasets
with respect to generalization abilities to extended tasks. Nutritional (data) labels in data
management take a lower-level and more in-depth look at the datasets, and allow prac-
titioners to interactively explore dataset distributions to identify diversity and coverage
issues within the datasets themselves.

Particularly, Sun et al. [806] develop MithraLabel, which aims at providing flexible
nutritional labels for a dataset to practitioners, showing the distributions of each se-
lected attribute, functional dependencies between attributes, and the maximal uncov-
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ered patterns. When a dataset is added to the system, a set of dataset labels that summa-
rize information about the dataset are shown, such as how representative of minorities
the data is, how correlated the different attributes are (especially with respect to the pro-
tected attributes, the number of errors (e.g. missing values), etc. In addition to showing
such data, its back-end optimizes for the trade-off between the amount of information
given (through the widget), and the space the widgets use, by “learning” how prefer-
able each widget is for different tasks based on logs of practitioners’ use. Additionally,
MithraCoverage [411] allows interaction with aforementioned coverage methods, e.g. to
filter out the invalid patterns, but also to fix the parameters of the method such as the
coverage threshold, or the attributes the practitioner wants to investigate particularly.

UNBIASED QUERY RESULTS

Most previously presented works focus on retrieving a fair or diverse set of data tuples
from a single dataset. Orr et al. [599] adopt a different setup and problem. They as-
sume that existing databases are biased in a sense that they might not accurately reflect
the world distributions of samples, and that practitioners can have additional access to
aggregate datasets which contain information that might reflect the real distributions.
From this new framing of the bias problem, they propose Themis, a framework that
takes as input the original dataset, the aggregate dataset, and a practitioner’s query, and
outputs results that are automatically debiased by learning a population’s probabilistic
model and reweighting samples accordingly. This is the first work in the area of open-
world databases that aims at debiasing query results in that sense of bias.

4.6.3. MITIGATION

Mitigation methods focus on modifying datasets, e.g. for classification tasks [710, 815,
465], or ranking tasks [48, 465, 317]. Most methods are seen as data repair methods
where the tuples or labels are modified, and would merit being unified with other data
cleaning methods as their application might influence unfairness [815].

We identify three main trends in mitigation methods, that focus either on data or
feature representations. Data works consist in transforming data for classification tasks
by relying on causality notions [707, 708, 709], or in tackling the problem of retrieving
fair, possibly ranked, data subsets [50, 903, 797]. Feature representation works aim at
learning data representations for which the outputs of classification tasks are fair [465].

4.6.4. CROWDSOURCING

Unfairness in crowdsourcing is also investigated, similarly as in the other domains stud-
ied in the previous sections. Works either look at unfairness towards the crowd work-
ers, such as Borromeo et al. [122] who propose a list of axioms to guide the creation of
fair and transparent crowdsourcing processes –task assignment, task completion, and
worker compensation–; or look at resolving unwanted biases in labeled data. It is ar-
gued that such biases in labels can stem from personal preferences or differing expertise
of crowd workers [925], from labeling “trends” [355, 560], or from the subjectivity of the
object to review in evaluation systems [473].
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4.6.5. DATA SCIENCE WORKFLOW

Different from works in the other domains, a few recent works are interested in devel-
oping tools at the intersection of data management and machine learning. For instance,
Schelter et al. [726] note that the existing tools developed for fairness do not support
practitioners (and researchers) fully in developing the whole data science workflow re-
sponsibly. Instead, they simply let them apply various fairness metrics and bias mitiga-
tion methods without being aware of their interaction with other parts of the workflow
such as data cleaning, separation of the datasets into independent training and test sets,
etc. They build FairPrep, a framework on top of the existing IBM toolkit AIF360, in or-
der to fill this gap: practitioners input data and their desired pre-processing methods,
as well as choose a machine learning algorithm, and the framework automatically pro-
cesses this information, trains the model and outputs its complete evaluation based on
both performance and fairness measures. This allows avoiding errors in building the
workflow, such as for instance leaking data information from the training to the test set
when handling data errors such as missing values, when engineering features or tuning
a model’s hyperparameters, etc. Besides, experiments with their framework show the
lack of consideration of existing fairness works from the machine learning community
for critical data engineering activities such as data cleaning.

With the same idea that the data pipelines might unintentionally inject biases, Yang
et al. [902] developed a tool that automatically extracts a directed acyclic graph repre-
sentation of the data pipelines and data flows from the code of the pipelines, and pro-
vides information on the way each vertex impacts the distribution of samples based on
protected attributes and target labels. By generating a report with the graph and this
information, a practitioner can investigate potential bias issues of its pipelines.

4.7. DATA MANAGEMENT: RESEARCH GAPS
In this section, we identify research gaps between data management research on bias
and unfairness (section 4.6), bias and unfairness research in other fields of computer
science (section 4.3), and typical development practices of data-driven decision-support
systems. These gaps are summarised in Figure 4.2. This is the basis for developing a new
approach to the issue in the next section.

4.7.1. METHODOLOGY

Approach. To identify these gaps, we first outline all activities performed over the full
lifecycle of a data-driven decision-support system, from development to deployment.
This list provides us with the basis to reflect on potential research gaps, as it encom-
passes the necessary set of activities to develop the systems, and these activities are by
design both the sources of bias and unfairness and the opportunities to solve these is-
sues. These activities can be associated with one or multiple general unfairness-agnostic
research areas, usually stemming from machine learning and data management. For in-
stance, the construction step of a decision-support system consists of building both a
data management and a data analytics set-up. Data management activities at this step
map to multiple research areas within data management such as data integration or data
curation.
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Figure 4.2: Activities relevant to bias and their amount of bias-related research (white: no research; light to
dark blue from few to plenty of research). Data management activities are bold.
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Then, we map the research activities identified in the previous sections onto the
aforementioned mapping. This allows investigating the extent to which the different
unfairness-agnostic research and non-research activities are covered by unfairness-related
research. In cases where an activity is not covered, it might be because it does not inter-
act with unfairness at all, or because it has not been studied yet. In any case, we ana-
lyze it because it could still be useful to resolve certain unfairness issues. Such analysis
brings us to identify three main gaps, either related to data management activities for
addressing unfairness, or to data management activities that create unfairness, or more
generally to whole stages in the lifecycle that have not been thoroughly investigated.

Lifecycle of a data-driven decision-support system (in orange). The development pro-
cess of a data-driven decision-support system is divided into five main stages as de-
scribed in [643]: 1) the initial data gathering, 2) the design and mapping of the data store,
3) the loading and testing of the data, 4) the building and testing of the system, and 5)
its rollout and inclusion of feedbacks from its users. These stages are easily mapped to
the typical software engineering process [123]: 1) requirements engineering, 2) system
design, 3) system construction, 4) system testing, and 5) maintenance of the system af-
ter deployment. While the description of the lifecyle of the decision-support systems
focuses on the distinction between data and other aspects of the system, the software
engineering description mostly focuses on the general stages of development.

Activities performed during the lifecycle (activities placed in boxes, we differentiate
between data-related activities in bold, and other ones). We identify the specific ac-
tivities performed in each stage of the lifecycle. To do so, software engineering litera-
ture [123] indicates the activities which are general to any kind of software. These activ-
ities span the requirement engineering stage (requirement elicitation, analysis, specifi-
cation and validation), the design stage (system and user-interface design), and both the
testing and maintenance phase (these last two stages are not detailed for simplicity and
because they might not be applied thoroughly yet for the specific case of data-driven
decision-support systems).

Data management literature presents activities or topics that are specific to the data
aspects of the lifecycle. These are extracted from the common list of research topics in
data management venues 4. For the design stage, we identified data models, query lan-
guages, schema management and design, meta-data management, user interface and
visualization, data analytics, and specific issues on spatial, temporal, and multimedia
databases. For the construction phase, we found data mining, data cleaning, informa-
tion integration, data discovery, and crowdsourcing.

Additional activities that are specific to machine learning [24] are found in the design
stage (inference model design), and in the construction stage where we identify data col-
lection (shown as data mining because of the overlap with data management literature),
data labeling (shown as crowdsourcing for the same reason), feature engineering, and
inference model training. In the testing stage, only model testing is added. For the main-
tenance stage, model monitoring and model update are identified. These last two stages

4List from https://vldb2020.org/research-track.html.

https://vldb2020.org/research-track.html
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are further subdivided. Testing is composed of the choice and application of perfor-
mance definitions and metrics, the constitution of evaluation datasets (these two are for
experimental testing), and the formal verification. For the maintenance phase, we found
mining new training data, inference model retraining, application of performance met-
rics, and constitution of new evaluation datasets, since the context of application of a
system might shift or expand, and hence new data must be collected, and the machine
learning model must be retrained to account for this shift.

Mapping to current research on bias and unfairness (colors of boxes). We map cur-
rent research on unfairness (from light to dark blue, representing the quantity of current
literature on that topic) outlined in sections 4.3, 4.6 to these activities (the topics identi-
fied in the previous sections are in italic for easy identification). This enables to identify
where research is focusing and where it is lacking. In the following, we explain the find-
ings of this analysis, grouped by their topics.

4.7.2. BIAS-AWARE REQUIREMENTS

A first observation is that some stages of the development process are more researched
than others. Specifically, the design and implementation of inference models are the
most covered topics [402], along with metrics or definitions for fairness. There is also a
shorter line of work on data mining, mostly focusing on structured data and text data.

In contrast, works on requirement engineering and subsequent database design (elic-
itation, translation to specifications), system testing, and maintenance (continuous test-
ing with respect to the identified requirements) are much fewer. These limitations are
also partly highlighted within the Human-Computer Interaction (HCI) and the Software
Engineering communities, as explained in section 4.4. Yet, many researched methods
mostly focus on bias mitigation in the algorithmic part. Hence, developing tools to
model, design, and construct better datasets should be a priority.

4.7.3. BIASES IN DATA MANAGEMENT ACTIVITIES

A second observation is that for many traditional data management activities which
might introduce unwanted biases, there is little to no research investigating their im-
pact on biases at the output of the system. This covers for example data cleaning, data
discovery, or data integration [49]. On that note, Stoyanovich et al. [796] encourage the
exploration of the possibilities to mitigate biases early in the data life cycle of the deci-
sion support systems. Abiteboul et Stoyanovich [2] further outline that several principles
from regulations about responsible data-driven systems, possibly outside the scope of
bias and fairness such as the right to “data portability”, would require investigation and
adaptation of the data management community. For instance, ensuring “the right to
be forgotten” for an individual would mean investigating how this right translates in ev-
ery layer of a database, while accounting for possible dependencies with the data tuples
representing this individual and other connected individuals.

We could not identify any significant effort on bias and unfairness considerations in
data modeling, schema design, and data provenance topics, even though these activities
define the information on which the inference model and decisions are based.
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4.7.4. DBMS ACTIVITIES FOR BIAS MITIGATION

A third observation is that part of the encountered research efforts in data management
mirrors the works in other domains on bias and unfairness for data-driven decision-
support systems (section 4.3) with similar approaches and limitations. Especially, there
is also a focus on definitions, metrics, and mitigation at the algorithm level. However,
further re-purposing or adapting some of the approaches developed in other data man-
agement works could serve to identify or mitigate certain biases already in the datasets.
This holds especially for data cleaning methods like error detection and data repairing,
data analytics and efforts in data modeling, and also research on multimedia data.

Only a small part of current data management research makes use of such methods.
The idea of mitigating unwanted biases through data repair methods is similar to those
proposed in data mining, but tends to be more general and agnostic with respect to the
employed analytic methods as presented by Salimi et al. [707]. Two vision papers are of
note on the topic. The first one proposes to unify data pre-processing and inference sys-
tems arguing that fairness, accountability, and transparency could be seen as database
system issues before applying ML and outlining how a platform for data analytics could
help solve these issues [795]. On the other hand, Stoyanovich et al. [794] claim that meth-
ods to automatically attribute labels to datasets and ML models (meta-data) to prevent
their misuse are needed to prevent the creation of additional biases.

Asudeh et Jagadish in a tutorial [49] suggest that works around data profiling and
provenance could be adapted to fulfill the need of practitioners for tools to explore bi-
ases in data. Besides, Abiteboul et Stoyanovich. [2] discuss how various regulations such
as the GDPR in Europe advocate for responsible development and use of data and data-
driven decision support systems, and make the case there that the data management
community could support progress on principles like transparency by adapting exist-
ing works for instance on data profiling to better expose the data statistics for a richer
interpretation of the systems’ outputs.

Orr et al. [598] proposed an in-DBMS method for practitioners to query a database
and retrieve results which are automatically cleared from dataset sampling biases intro-
duced during the data collection step. This work is the closest to the approach we ad-
vocate in the next section since it aims at helping practitioners to mitigate biases within
the database, although it is not made for the purpose of further training an ML model.

4.8. LIMITATIONS: ROADMAP FOR FUTURE TECHNICAL RESEARCH

OPPORTUNITIES
In the previous sections, we identified both limitations and gaps stemming from the
current approach to tackle unfairness of data-driven decision-support systems, i.e. ap-
proaches focused on the machine learning algorithms themselves, and general research
gaps stemming from existing data management activities. The main limitations are the
difficult application of existing algorithmic methods by practitioners, and the fact that
such methods do not allow to build fully fair systems. In this section, we reflect on a
way forward to overcome these limitations. Particularly, the limitations hint at a possi-
ble research shift in order to solve existing unfairness issues: not only should we develop
algorithms robust to unfairness but also data methods to mitigate unfairness, and prac-
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tical tools to support and ensure the use of such methods by practitioners. In the next
section, we discuss the challenges arising from this way forward.

4.8.1. ELICITING AND ENFORCING FAIRNESS REQUIREMENTS
We advocate focusing on eliciting and enforcing bias and fairness requirements already
early in the system design workflow. This allows to clarify the goals of a system in relation
to fairness, and then brings the possibility to guide practitioners along the system devel-
opment cycle to create a system that verifies these goals. Thus, the fairness requirements
serve as a foundation of a bias-aware data-engineering pipeline. Here, we outline how
such bias and fairness requirements can be applied conceptually and how they integrate
into existing database management system architectures.

PROPOSED WORKFLOW

We propose a new workflow for practitioners building data-driven decision-support sys-
tems, encouraging fairness-by-design.

Ideally, before designing and building a system, a practitioner would define a list of
requirements, including fairness requirements.

These requirements would then be translated into constraints on both the data used
for training the system and inputted at deployment time. These constraints would im-
pose statistical conditions with regard to defined protected attributes that would ensure
that a dataset could be considered fair for the requirements at hand. At training time,
this would increase the likelihood that the outputs of a model trained on such dataset
are fair (note: an “unbiased” training dataset does not guarantee an unbiased result-
ing system since new unwanted biases might arise from the machine learning algorithm
used or small unwanted biases in the data might be reinforced by the machine learning
model, but helps); while at deployment time, it would monitor whether the predictions
made for new data points are fair. Constraints at training and deployment time might
differ depending on the initial fairness requirements, the associated characteristics that
a training data should bear, and the appropriate slack for such training data characteris-
tics needed to ensure reasonable fairness measures.

Continuous checks of bias constraints on the system’s outputs are needed, analo-
gously to continuous testing in software deployment, since the fairness of the system
might vary in case a distributional shift happens between the training data and deploy-
ment data.

In cases where the data would not follow such constraints, either data curation meth-
ods could be employed to remedy such issue at training time, or this would be an indica-
tion that it is mathematically impossible to verify simultaneously the multiple fairness
requirements and other requirements, and hence the system should not be developed
or the requirements should be reviewed. At deployment time, the constraints not be-
ing verified would indicate the necessity to defer the decision to a human agent, or the
necessity to retrain the model on updated data.

ADDRESSED LIMITATIONS

This new approach considers the quality of the data as a core issue. Our intuition is that
it would overcome multiple challenges that are typical concerns of different research
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communities, besides unfairness, and that interact with unfairness considerations: cost,
time, robustness and practicality for the machine learning and software engineering
communities, societal impact and trust for the human-computer interaction commu-
nity. They are the following challenges:

Fairness. The main source of biases is data, hence investing research to understand,
detect, and control bias in data allows to build less biased datasets with regard to specific
fairness requirements and consequently to train fairer systems.

Robustness. Modifying optimization functions of machine learning algorithms or post-
processing decisions can have unforeseen effects in cases where the application context
and data would change. In contrast, we argue that enforcing inspection of data biases
in the early stages of development and during deployment would result in more robust
systems since potential issues would be identified earlier.

Practicality. Practitioners might understand issues and methods in the data stages of
the development of a data-driven decision-support system better than those related to
the inference model. For example, obtaining extra training data to balance a dataset
might be easier than adjusting machine learning algorithms; hence, data-focused tools
could be more applicable than current methods. Considering that transfer learning is
becoming a common practice (i.e. using pre-trained general models and then fine-
tuning them for a specific application), the availability of ”unbiased” data for the fine-
tuning phase is crucial.

Cost and Time. By ensuring that training data has no bias issues, the resulting trained
models will likely behave in a more desirable fashion, thus fewer costly training and re-
training cycles are needed to achieve the desired system behavior. Ultimately, the pro-
cess would be more effective and less costly.

Societal Impact. Establishing requirements would encourage considering societal im-
pact already in the initial stages of development. Past cases which did not explicitly state
and enforce their fairness requirements showed the potential negative impact of build-
ing these systems without accounting for potential issues: Microsoft’s chatbot Tay be-
came racist after its deployment because it was constantly retrained on data fed to it
by layman users and had to be shutdown [403], while the automatic CV screening tool
of Amazon was shown to be discriminating against women after release [408]. Many of
these issues could have been foreseen and mitigated if undesired bias identification and
fairness were central design goals of these systems.

Trust and Informed Decision-Making. Finally, by explicitly communicating bias and
fairness design goals and validating systems respectively, trust can be facilitated between
the system and stakeholders or users who will have a better understanding of its behav-
ior. This can also support building an accurate abstract model of the capabilities of a sys-
tem. This will lead to better decisions, as the performance of a human decision-maker is
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dependent on his/her mental models of the problem and of the system and on tools at
hand [630].

4.8.2. REQUIRED DBMS EXTENSIONS
By shifting the focus from the algorithms to the data, we foresee the need for two new
core extensions to database management systems, that would support the application
of the proposed workflow.

Bias Data Constraints. Fairness requirements identified in the requirements elicita-
tion phase need to be formalized such that they can guide the system’s development.
Furthermore, they need to be validated or verified across the system’s lifecycle. New bias
data constraints, expanding on existing data constraints, could be used to encode and
enforce data-related bias requirements.

Bias Curation Methods. Data curation methods addressing bias by transforming, adding,
or removing data instances would be needed in cases where the constraints are violated.
While also algorithmic mitigation techniques (see section 4.3) can be used, we argue that
data curation is often more effective or practical [369]. If the constraints are violated, the
system designers would be warned to take action or prevented to train the models.

Embedding into the DBMS. To support and enforce the use of bias constraints and cu-
ration methods, existing database management systems should be extended to integrate
them, an idea also suggested in [49]. This will be important as checking bias constraints
can be very data-intensive. By embedding this into the database management system,
we can take advantage of existing components like indexes or system catalog informa-
tion, allowing for more efficient implementation. The creation and integration of these
components bring a multitude of data management research challenges that we high-
light in the next section.

Here we highlight the specific research challenges which need to be addressed for
realizing the bias and unfairness-mitigating extensions proposed in the previous section.

4.8.3. FORMALIZATION AND MODELLING CHALLENGES

BIAS-AWARE SCHEMA DESIGN

While selecting fairness notions for a specific use-case is not an easy task, defining the
exact attributes and their allowed values to base the constraints on and the subsequent
design of the database schema is also complex. Formally understanding how the gran-
ularity and ranges of the values in the database schema influence performance of the
system and measurement of its bias remains to be investigated. For example, let’s as-
sume that the loan attribution model should not discriminate against young black men,
and that the dataset contains gender and race as categorical attributes and age as an
integer. After choosing a fairness definition, deciding how to transform age into a cat-
egorical attribute can have direct bias consequences. Defining protected classes (male,
black, [10-23]) or (male, black, [10-25]) as protected attributes would both surface and
measure different biases. Different mappings of age to its protected class “young” can
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create different system behaviors: the granularity of the categories chosen would influ-
ence both the performance and fairness of the trained inference model. This gets even
more complex when the bias constraints are defined over several attributes to transform.
Similarly, this transformation might have an impact on the similarity measures used in
the constraints for individual fairness since tuples similarity depends on their attributes.

PREDICTING THE FEASIBILITY OF A DATA-DRIVEN DECISION-SUPPORT SYSTEM

At the start of the workflow, determining whether bias constraints can be verified along
with other requirements (e.g. accuracy performance, cost, amount of data) and other
data constraints before designing and implementing a system would enable to save a
great amount of time and computing power, while it would also allow to possibly refine
requirements and resources allocated for a system. For instance, in case a practitioner
has a specific amount of loan data and wants to build a data-driven decision-support
system to automate the decision of giving out a loan, knowing before building the sys-
tem and training a model that it will not be able to reach a minimum required accuracy
and fairness would save efforts. Until now, few theoretical works [442, 182] have been
proposed that investigate such feasibility of requirements. Existing results focus on the
diverse fairness notions that can contradict each other.

Using impossibility results for fairness notions [182], certain impossible scenarios
can already be determined analytically. Predicting a measure of each requirement, po-
tentially via simulation through the training of simple inference models could also give
empirical indications of the feasibility.

4.8.4. ALGORITHMIC CHALLENGES
There exist few bias curation methods from the data mining and machine learning com-
munities, however, they are still limited in scope (e.g. the intersectionality of multi-
ple protected attributes is not usually handled by current methods). More research is
needed to establish approximation algorithms that would guarantee bias constraint sat-
isfaction on the training data. These algorithms could transform existing data (like data
resampling, data label modification, or variants of database repairing methods [707])
possibly with inspiration from existing data cleaning methods, synthesize new ones, or
guide the collection of additional records.

Additionally, nearly all data-driven decision support systems rely on elaborate data
engineering pipelines for preparing, transforming, integrating, cleaning, and finally in-
gesting training data, test data, and live data. Bias curation needs to be integrated within
such data engineering pipelines. Also, existing steps of data engineering pipelines might
have unforeseen and insufficiently understood consequences and effects on data bias.
For instance, cleaning a dataset from its outliers might remove data from the protected
minority class and hence a bias curation method would not have access to such data
anymore, missing-value imputation methods might skew the dataset towards the pro-
tected or non-protected group and hence might add unwanted biases, so new methods
would be needed to allow for the application of the bias curation methods, etc.

Only the interaction between bias and data cleaning has received preliminary at-
tention [815, 726]. Hence, future work needs to investigate the impact of the previous
activities on data biases, and the interaction with the bias curation methods. This would
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lead either to providing guidelines on the workflow to follow, or to the creation of new
algorithms that would integrate curation and integration or cleaning simultaneously.

4.8.5. SYSTEM-ORIENTED CHALLENGES
Adapting existing mechanisms in database management systems for supporting the bias
constraints exhibits multiple challenges. The bias constraints would bear some simi-
larities with existing database constraints, but also differences that would make their
implementation and use not straightforward. We develop here the comparison with tra-
ditional constraints and highlight foreseen challenges.

CONSTRAINT EXPRESSION

Translating fairness metrics into SQL constraint language, possibly by additionally using
user-defined functions, is the first step and challenge to allow the support of bias con-
straints. The way to encode these constraints would need to be as flexible as possible to
accommodate most definitions of fairness and possibly new ones.

Certain constraints would be specified on protected attributes, other attributes of
the data, and possibly on the decision attributes (actual decisions and/or predictions).
The exact test of the constraint could cover statistical tests for undesired biases such as
unwanted correlations between protected and other attributes or checking for poten-
tial “wrong” decision labels (e.g. [696]). For instance, in case fairness towards groups is
important, the acceptable data distributions for each protected class can be specified.
In many cases, these would be egalitarian distributions [848], but also non-egalitarians
constraints could be relevant. For example, an AI-assisted hiring tool might want to pos-
itively discriminate against female applicants to address issues with employee diversity.

Inspiration from existing ways to encode data cleaning rules could be taken to ex-
press the bias constraints. For instance, denial constraints which are declarative spec-
ifications of rules a dataset should respect [186], could be investigated, especially for
individual fairness which relies on the similarity between tuples.

CONSTRAINT CHECKING MECHANISM

A new set of challenges in order to implement bias constraints efficiently using current
database technologies is the result. The use of triggers could be investigated as a tool to
check for the constraints.

Because the constraint functions are expensive to compute, an envisioned research
direction is to investigate how to incrementally compute the statistics that make the con-
straints over multiple batches of data, in order to avoid the whole re-computation at each
check. Possibly existing system catalog statistics used for query optimization could allow
to speed up such computation while reducing the resource consumption.

Bias constraints could be checked when a sufficiently larger number of records has
been added or modified. Several policies for monitoring them would be useful: check-
ing for constraint violations after initially populating the database, checking for viola-
tions when training data is retrieved for training an inference model, or when adding a
large number of training tuples during system maintenance phases, and finally checking
for violations when a significant number of new decisions are suggested by the system
before accepting them.
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4.8.6. GUIDANCE FOR DBMS USERS
As a major practical challenge, we identify the need for guiding a practitioner through the
process of specifying fairness requirements and bias constraints. Certain applications
might rely on country-specific regulations, while others might not have well-established
policies. As there are a plethora of different fairness definitions, choosing the correct
metric and setting the correct parameters is far from trivial due to the abstraction gap
between application (fairness as an abstract norm) and constraint model (fairness as a
mathematical object). Therefore, we envision a guidance component that could come
in form of wizards, or an IDE that can provide suggestions based on data profiling of
potential biases and on existing regulations.

A human-in-the-loop approach could highlight these biases, and then from feed-
back provided by the practitioners about the biases, it could uncover the undesired ones
and automatically infer related fairness requirements, bias constraints and their priori-
tization. User studies could also be conducted to understand the actual difficulties and
questions that practitioners would like to address.

Similarly, practitioners could be helped by having guidance frameworks and inter-
faces for deciding on bias curation methods to apply, that would visualise their impacts
on different categories of population and on the other important factors in the require-
ments (e.g. cost, time, accuracy, etc.).

4.8.7. MULTIMEDIA DATA-BASED CHALLENGES
Applications using multimedia data such as images, texts or videos have typically the
same aforementioned challenges, but additional difficulties arise.

For instance, for checking bias constraints, it is difficult to extract protected attributes
or other semantically interpretable features from an image or text. Hence, it is difficult
to generate necessary meta-data to apply the constraints, and to generate new represen-
tative test cases to check for the constraints. This task is currently performed manually
for images and semi-automatically for text which hampers scalability and real-world ap-
plicability.

A similar issue arises when curating data for bias. Structured data algorithms would
not be easily applicable since no interpretable attributes would be available to reason on.
One direction to investigate could be to transform multimedia data into structured rep-
resentations on which to apply the aforementioned algorithms. Possibly, crowd workers
could be asked to annotate protected attributes, to produce or collect new related sam-
ples following certain templates (such as in [840]), or new automatic methods like GANs
(Generative Adversarial Networks) could be used conditioned on meaningful attributes,
in order to generate data with specific meta-data.

4.9. LIMITATIONS: THE NARROW, UNPRACTICAL FRAME OF AL-
GORITHMIC FAIRNESS

In this chapter, we provided an overview of the state-of-the-art computer science works
that address algorithmic unfairness issues of machine learning systems. While we showed
that these works focus primarily on developing definitions and metrics for unfairness,
and algorithmic approaches to mitigate this unfairness in the underlying machine learn-
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ing models, we also observed that there are still only few works emanating from the data
management community that exploit existing data management research to approach
unfairness. This led us to highlight research gaps that future data management research
could fill. We then argued for a new data-centered approach. Realizing such approach
would present novel data management research challenges that we described further.
Finally, we also investigated and outlined the research works that have identified vari-
ous types of conceptual limitations of the algorithmic fairness paradigm, and especially
of proposed metrics, and of certain mitigation methods. Our proposed data-centered
approach would need to acknowledge these limitations.

Next, facing the lack of research around the practices of developers who are the main
stakeholders typically handling algorithmic harms, especially via the use of the technical
algorithmic unfairness methods we identified, in Part II, we investigate to what extent
these developers use the proposed technical methods to reach algorithmic fairness, what
challenges they face in doing so, whether they are aware of the conceptual limitations of
these methods, and if so, how they handle them.

Besides the limitations of algorithmic fairness research highlighted until now in terms
of the lack of a data-centric approach, the literature has also discussed a number of addi-
tional practical and conceptual limitations in existing methods. Especially, the use-cases
for these methods are limited, the proposed conceptualisations of fairness can oversim-
plify matters of discrimination, and the effectiveness and usability of mitigation meth-
ods and auditing tools are yet to be established. Researchers have further criticised that
fairness mitigation employs both a techno-centric lens (as opposed to socio-technical
or community-centric approach [629]) and a theoretical research lens (as opposed to a
practical one [231]) on issues of discrimination in ML. As a result, it is possible to argue
that algorithmic fairness tools are not yet adapted to tackle discrimination in broader
terms and in practice due to this current algorithmic-centered view.

4.9.1. THE SCOPE OF ALGORITHMIC FAIRNESS

The distinction between ML and ADM. Policy documents refer to any kind of ML sys-
tem when they discuss discrimination and bias (or at least they do not mention or use
more specific typologies of ML techniques). Instead, most computer science research on
algorithmic fairness targets automated decision-making systems (ADM) that rely on ML
techniques to make decisions about individuals, or decisions that can impact individu-
als directly. Yet, AI-based systems might create discriminatory harms due to a variety of
applications, that do not fit in the mold ADNs. ML can be used throughout digital ser-
vices, for example to optimize the performance of a chatbot to improve efficiency, to test
the colours on buttons to increase usability, or to recommend the film that will generate
the greatest engagement from users, etc. –which are not examples of ADMs but still rely
on ML. Overdorf et al. [603] for instance mention that ML and inequality are not limited
to employment, income, and housing allocations. As an example, the game Pokemon Go
was shown to place less Pokemons in rural areas and low-income neighbourhoods with
racial minorities, creating a disparate “allocation of resources”. This reflects assump-
tions about who has leisure time and how it is spent. This system leads to inequities, not
due to automated decisions applied to individuals, but due to the optimization of the
distribution of seemingly trivial digital objects.
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The range of applications and domains studied. With bias and algorithmic fairness,
computer scientists refer to a very specific set of problems and techniques. Such prob-
lems typically involve the allocation of resources in finance (e.g., loan application accep-
tance/rejection), justice (e.g., recidivism prediction for jail time/bail decisions), or hiring
(e.g., selection of a candidate for a job), or the association of representational character-
istics onto images or text (e.g., gender identification from facial images). Despite the
plethora of fairness metrics proposed until now, it is not always the case that a metric
exists for a specific ML task, and that a mitigation method has been developed for it
[369]. Certain issues do not receive as much interest as the issues that directly relate
to individuals. For instance, conversational AI or image captioning need a manual, te-
dious identification of what would serve as a protected attribute in sentences or images,
instead of more automatic methods. For example, one could define the association be-
tween gender (as apparent on the image –which is questionable) and various job-related
captions as problematic (e.g., systematic association of images showing women to the
label “nurse” or “housewife” and of men to the label “doctor” or “chef”), which would
require to identify both gender and the potentially problematic labels in relation to that.

4.9.2. SIMPLISTIC CONCEPTUALISATIONS OF FAIRNESS

Algorithmic fairness methods aim at making the outputs of a system “fair”, “unbiased”,
“non-discriminative”. With technical definitions, it means that individuals who are sim-
ilar based on protected characteristics should be treated similarly by the system, i.e.,
should receive the same outputs. Yet, having different outputs is not necessarily what
makes discrimination. Instead, it is often more the way these outputs impact differ-
ently the different individuals (potentially of a same protected characteristics) in the en-
vironment. Yet, algorithmic fairness relies on conceptualisations that cannot capture
the complexity of discrimination due to the limitations of the ML set-up. Researchers
develop methods centered solely around the inputs and outputs of the ML models. How-
ever, when the system is used in an actual environment, its outputs might be used differ-
ently by different stakeholders, and the actual outcomes of the system might be differ-
ent for different elements of the environment. Focusing on outputs instead of outcomes
cannot then accurately reflect the discrimination issues that take place. Such simpli-
fications are necessary when taking a techno-centric approach to the problem of dis-
crimination in order to allow for the operationalisation of bias. Yet, they leave out the
real social context of the systems, and might reinforce harms more than address them in
certain cases.

MODEL-CENTRIC VIEW OF DISCRIMINATION

We expect that the focus on ML model’s outputs in fairness metrics is due to pragmatism.
Computing fairness metrics typically requires accessing the outputs of the models (and
possibly the ground truth information about data samples) and the sensitive attributes
associated to each data sample. In other words, it only requires accessing the smallest
set of information that is almost readily available to developers. The fairness metrics rely
on checking some simple notions of parity between aggregates on this information (e.g.,
equal rates of getting a positive output across two groups of population corresponding to
two sensitive groups), which does not require any additional contextual information. In-
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stead, if one would try to check for certain inequality between aggregates (e.g., the rates
of getting a positive output should be twice as high for one group than the other), they
would first need to establish a value for this inequality by translating contextual informa-
tion into a meaningful and mathematically relevant value –which can be a challenging
task to perform. While such metrics are practical, they do not reflect the different stake-
holders’ desired conceptualisations of fairness. That is what we explain further in the
next subsections.

Parity as the unconditional desired outcome. The metrics fail to account for appli-
cations where parity (technically defined as equality of outputs for similar individuals
or groups of individuals) is not necessarily wanted for certain stakeholders [515]. Also,
there is no direct, obvious mapping between the outputs of a system and the benefits
it creates [553]. Instead, the benefits depend on the users, on their perceptions of the
outputs in their own context [369], and on how the outputs impact them [557]. Parity
might be more harmful for certain populations than others. By equalizing an error rate
between groups, the disadvantaged groups for which detrimental errors are made might
have less time and abilities to ask for recourse over erroneous decisions [361, 553].

Besides, equalizing an output distribution across groups does not mean that the out-
comes within the groups are fair. This is why individual fairness metrics which focus on
the similarities between individuals while ignoring the protected attributes have been
proposed. However, these metrics are also limited, first due to the subjectivity and diffi-
culty in defining what similarity means for various use-cases. Besides, similar individu-
als, even though treated similarly, might all be treated in unjustified ways [571]. For in-
stance, all highly qualified university candidates having studied a specific field could be
rejected, while the individual fairness metric would return a fair measurement. What’s
more, arguing for having fair models with individual fairness metrics where the similarity
measure does not include protected attributes, implicitly makes the assumption that it
is equally easy for different groups to obtain the same output [105]. Yet, this assumption
is often wrong due to the existence of structural disadvantages.

Mutually exclusive notions of fairness. Within a single application, different stake-
holders might deem as important different notions of parity. However, parity notions
are shown to be mutually exclusive in the ML setup (impossibility theorems [182, 442]
say that multiple fairness metrics cannot get high measures simultaneously in an ML
model), due to the statistical functioning of ML models and the unavoidable inference
errors it leads to make. This forces to choose to prioritize one stakeholder. When mul-
tiple metrics are considered important, due to the impossibility theorems, either the re-
quirements of the system should be revised, or one needs to accept that it is not possible
to fulfil the requirements for fair outcomes in an automated manner and the deploy-
ment of the system needs to be questioned. In the current literature, the impossibil-
ity theorem is addressed in a simplistic manner. Authors necessarily make a choice on
the fairness metric to mitigate the unfairness of the model. This means that, from their
vantage point, they get to determine the trade-offs with the other notions of fairness
and accuracy relevant to the model. This choice unavoidably biases the model towards
harmful outcomes for certain populations to the benefit of others. This decision about
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the requirements and/or the non-implementation of the system should not be up to the
technologists alone, especially given its societal implications. Instead, individuals or in-
stitutions who are more aware of the context in which the system will be deployed could
possibly make an informed judgement.

The questionable definition of protected attributes. Most fairness metrics and sub-
sequent mitigation methods rely on the definition of protected attributes. However, the
act of defining protected attributes and the values they can take is reductive and harmful.
Certain attributes cannot be reduced to a simple fixed vector as their conception might
be more complex, possibly ambiguous and with multiple definitions. For instance, race
attributes in existing data reflect only few aspects of the multidimensional concept of
race [335]. The ways in which the values of an attribute are defined (e.g., gender as a
binary concept) might ignore certain populations completely, or force individuals into
non-representative values. Besides, the phenomenon an attribute is expected to reflect
might not necessarily be fixed in time, location or context e.g., notions of gender or age
might change over time depending on how a person identifies at different moments,
and might be multidimensional in nature [694]. However, current data schema and data
management infrastructures for the datasets do not support the multidimensionality
and the flexibility of the concepts (e.g., once the data is collected, it is not easily modifi-
able anymore). In turn, when ill-defined attributes are used for unfairness assessments
or mitigation, an incorrect or incomplete notion of fairness is tackled. For instance, a
system might seem not to be gender biased according to one definition of the protected
attribute gender, but this definition might be missing certain values (e.g., non-binary
genders), which, if included, could lead to a different conclusion.

A SYSTEM’S VIEW OF DISCRIMINATION

When enlarging our view of ML models from their outputs to how these outputs are used
in practice by different stakeholders, we identify a further misalignment between actual
discrimination issues and their conceptualisations in computer science. This misalign-
ment is a real obstacle to ensuring non-discrimination in practice. In many cases where
parity could seem fair in theory, its realization fails to account for the whole context.
The ML setup on which parity is verified is insensitive to the decisions individuals ac-
tually make based on the outputs, and to the specificities of individuals for which these
systems are actually not beneficial [194, 457, 515, 557].

The misalignment between system’s outcome and decisions. Contrary to the assump-
tion that fairness metrics make, the user of an automated decision-making system does
not necessarily take the decision suggested by the system’s output [846]. For instance,
not all judges follow the recommendations of recidivism prediction models, and not all
doctors follow the diagnostics outputted by XRay-based disease classifiers, since they do
not all trust the systems in similar ways. Consequently, the predictions outputted by the
model might be considered unbiased according to certain metrics, but the following hu-
man decisions could be biased [731]. Conversely, claiming that a system is unfair due to
biased outputs is not always adapted since the final human decisions might re-establish
“fairness”.
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The limited impact of fairness mitigation on causes of discrimination. Equally re-
allocating a resource often fails to address the causes of the inequalities. It might serve
as a satisfying patch for discrimination in the short-term, but it might also reinforce
certain harm that cannot be formalized with fairness metrics [571]. Fazelpour and Lip-
ton [254] take the example of college admissions in the US, where students of different
sensitive groups are disproportionately represented for various reasons (historical and
institutional discrimination). Unfairness mitigation methods would enforce equal ad-
missions for all groups. However, they might reinforce existing biases such as gender
stereotypes. They might identify women based on certain sub-fields they are more likely
to choose and increase the number of women in these sub-fields specifically to achieve
admission parity, while keeping a lower number of women in the sub-fields where they
are already in minority —whereas more might apply recently.

Discrimination short of intersectionality. In order to analyse unfairness in the case of
intersectional discrimination [718], researchers and practitioners employ fairness met-
rics. For that, the different protected attributes that form the intersectional issues are
simply combined into a single attribute with which a protected and a non-protected
group can be defined, e.g., gender and race would be the two axes of discrimination,
which would be collapsed into a single attribute whose values indicate different permu-
tations of gender and race in the dataset. This approach fails to address the complexity
of the intersectional forms of discrimination people face in the environment of the sys-
tem [361]. Intersectionality, originally developed to expose the specific ways in which
the discrimination of Black women in institutions and social relations are not recog-
nized, is not so much about belonging to a subgroup which receives different outputs or
less correct outputs than other subgroups. A large body of theory and empirical studies
identifies the different and complex modes of discrimination that threaten people who
sit at the intersection of different oppressed groups. They expose the ways in which in-
tersectional discrimination is produced in interactions and is socially contingent [361].
By treating intersectionality as a comparison of subgroup outputs, the complex mani-
festations of intersectional discrimination are flattened out, and the possibility to con-
test them is eliminated. By misunderstanding intersectionality as the sole membership
in subgroups, fairness metrics ironically stipulate exactly that what intersectionality in-
tends to dispute: that discrimination is one and the same for all.

The erasure of broader externalities. A system is made up of the “machine” in which
the models are integrated and an environment in which this machine is deployed [400].
While fairness metrics do not account for such broader environment (except the end-
users of the “machine”), the environment can also be negatively impacted. Selbst et
al. [731] highlight that introducing a technology into an environment necessarily im-
pacts the initial environment, its organisation, and possibly its values. Verifying that a
system is fair with the current focus on models’ outputs is then not enough, as we also
need to analyse the negative impact the new system might have on the entire, original
environment —this is what they term the ripple effect. Especially, the fairness metrics
create “unbiased” systems for the “end-users” of the models (i.e., the inputs of the mod-
els). Doing so, they leave out other stakeholders and entities in the environment of the
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systems, that can also be indirectly impacted by the models. Particularly, various neg-
ative externalities remain unconsidered in bias and fairness frameworks. For instance,
routing applications might fairly route their users (e.g., each of them have similar travel
time), while neglecting other issues caused by the applications such as congestion and
damages on roads that are often recommended [603].

4.9.3. PRACTICAL LIMITATIONS OF ALGORITHMIC FAIRNESS
It is reasonable to ask how well, how efficiently and how effectively algorithmic fairness
methods address the issues for which they were made? How usable are these tools, and
how feasible are their applications in practice? In case of a gap with expectations, to what
extent does this gap affect the initial objectives? We tackle these questions and show that
many obstacles render the application of algorithmic fairness approaches questionable
in practice.

PERFORMANCE LIMITATIONS

Even under ideal conditions where any practical issue would be resolved, algorithmic
fairness methods exhibit limitations in their performance. They do not necessarily al-
low to reach a fully “unbiased” model, and they often come at the expense of a model’s
accuracy.

As we mentioned earlier, there are necessary trade-offs to be made between various
metrics, not only with regard to fairness metrics but also to performance metrics. For
instance, fairness through unawareness consists of removing protected attributes and
their proxy attributes from a dataset. It has been shown to not achieve high accuracy
performance, and high fairness for most fairness metrics [460], due to the limited infor-
mation available within a dataset, and the limited control given by not having the pro-
tected attributes available. It is statistically impossible in many scenarios to have both
an entirely fair and accurate model. While this can be due to incorrect datasets that do
not perfectly reflect the expected outputs or the diversity of population, it is also often
due to the statistical nature of ML algorithms. The way ML algorithms function imposes
a trade-off between the diversity of data patterns to learn, and the complexity of the se-
lected algorithm.

Systems might also appear unbiased in development but reveal to be biased when
deployed on the new data inputted to the system in deployment. Yet, there exist no
principled method to deal with such arising biases. Such biases are due to differences
in data distributions between development and deployment time (data shifts), that can
arise for multiple reasons. The populations on which the models are applied might sim-
ply change over time. The data engineering pipelines themselves might also differ be-
tween training and deployment due to external constraints, making the data inputted to
a model different from the training ones. For example, a government might install a data
capture setup to perform facial recognition, that is different from the one used to cap-
ture the training dataset, for practical, cost, or scale reasons. Besides, what the model is
expected to infer might also change over time, due to changes in the ways humans think
and behave (concept drift). These changes would potentially decrease the accuracy and
fairness of the system’s inferences [759].
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PRACTICAL CHALLENGES IN SETTING UP METRICS AND MITIGATION METHODS

Fairness metrics and mitigation methods both require choosing a fairness metric, and
then either applying the metric to the outputs of a model for evaluation, or applying a
corresponding mitigation method for making the outputs “fairer”. In practice, it is often
challenging to proceed in each of these activities.

This can be due to the difficulty in anticipating potential harms, and translating con-
textual information about discrimination into a formal metric [369]. In many cases, the
process functions backwards. The potential harms are identified after the system is de-
ployed, and after the system has negatively impacted certain populations, and this will
be reported to the service provider. For instance, Raji et al. [660] mention that transgen-
der Uber drivers have not been able to log onto the application as the facial recognition
models did not perform well for them, but this issue was not identified by bias audits.

It can also be due to the difficulties in accessing relevant data about a specific ML
system, or about specific individuals to apply the metrics or mitigation methods. Audi-
tors or even developers, either internal or external to the system’s creators, might lack
information about the individuals on which the system makes inferences (the infer-
ence subjects) [653], especially because the pool of inference subjects might evolve over
time. Hence, it is complicated to know the kind of samples to collect or create. Besides,
both auditors and developers might be in a situation where they need to collect addi-
tional data samples, which can be challenging. For example, there are naturally less data
readily-available representing minority populations. The datasets, especially the ones
used to train ML models, might be scraped from the Internet, which is inherently bi-
ased as certain populations have an easier access to the Internet, and have more data
representing them than others. It is hence naturally more difficult to include under-
represented minorities in the datasets [216]. Certain populations might also generally
not provide certain data for several reasons, e.g. overweight people might not commu-
nicate their actual weight to insurance companies in cases where they could be incrim-
inated for it. In this case, collecting such data would be harmful to these people, as the
ML models trained on this data could make inferences that disadvantage them. Para-
doxically, auditing, while aiming at monitoring the fairness of a model’s outcomes for
unprivileged, often minority populations, raises further harms for them, since collecting
more data leads to over-policing minorities and mass-surveillance.

4.9.4. THE DEPENDENCE ON SERVICE PROVIDERS

One last hurdle for performing “accurate” audits or “effective” unfairness mitigation as
envisioned by the technical measures of bias is the willingness of the service providers.
Since unfairness mitigation and auditing require access to data and models, only willing
service providers can grant such access. The service providers could also easily perform
misleading actions when auditing their system, in order to make the outputs of their
systems look unbiased [718, 653]. Externally regulating the audits or verifying that un-
fairness mitigation has been performed is challenging, since it is close to impossible to
define and collect appropriate datasets for arbitrary use-cases. The recent ban that Face-
book imposed on researchers who collected data about the platform in order to study its
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ad system illustrates this difficulty5.

4.10. CONCLUSION
In this chapter, we provided an overview of the state-of-the-art computer science works
that address algorithmic unfairness issues of machine learning systems. While we showed
that these works focus primarily on developing definitions and metrics for unfairness,
and algorithmic approaches to mitigate this unfairness in the underlying machine learn-
ing models, we also observed that there are still only few works emanating from the data
management community that exploit existing data management research to approach
unfairness. This led us to highlight research gaps that future data management research
could fill. We then argued for a new data-centered approach. Realizing such approach
would present novel data management research challenges that we described further.
Finally, we also investigated and outlined the research works that have identified vari-
ous types of conceptual limitations of the algorithmic fairness paradigm, and especially
of proposed metrics, and of certain mitigation methods. Our proposed data-centered
approach would need to acknowledge these limitations.

Next, facing the lack of research around the practices of developers who are the main
stakeholders typically handling algorithmic harms, especially via the use of the technical
algorithmic unfairness methods we identified, in Part II, we investigate to what extent
these developers use the proposed technical methods to reach algorithmic fairness, what
challenges they face in doing so, whether they are aware of the conceptual limitations of
these methods, and if so, how they handle them.

5https://www.theverge.com/2021/8/4/22609020/facebook-bans-academic-researchers-ad-
transparency-misinformation-nyu-ad-observatory-plug-in

https://www.theverge.com/2021/8/4/22609020/facebook-bans-academic-researchers-ad-transparency-misinformation-nyu-ad-observatory-plug-in
https://www.theverge.com/2021/8/4/22609020/facebook-bans-academic-researchers-ad-transparency-misinformation-nyu-ad-observatory-plug-in




II
PRACTICES TOWARDS HAZARDOUS

FAILURE DIAGNOSIS

119





4

121

In Part I, we identified the main machine learning (ML) harms and the main research
directions (ML fairness and robustness metrics and mitigation methods) proposed to
solve these harms, as well as their potential limitations. We found a lack of understand-
ing of the practices of ML developers in relation to these harms and technical solutions.
Hence, according to our approach outlined in the introduction to this thesis, we now
investigate the practices and attitudes of ML developers. Such understanding allows
for contrasting to current research directions. This allows to characterize the research
/ practice gap, and to identify the most urgent research problems to solve. This is what
we do in the next chapters. Specifically, respectively in Chapters 5, 6, and 7, we ask:

RQ4: How do ML developers debug their models for robustness issues in development?
How does the research/practice gap manifest in this step of the ML lifecycle? What are
the main challenges and limitations in these practices?
RQ5: How do ML developers envision and tackle unfairness issues and other harms
that might arise from ML models? How does the research/practice gap manifest in
this step of the ML lifecycle? What are the main limitations of their practices?
RQ6: What are the underlying factors that impact the attitudes and practices of ML
developers, and that might represent challenges leading to the persistence of harms?

To answer these research questions, we adopt the following grounded theory method-
ology. We conduct semi-structured interviews with over 50 ML developers, and analyse
the resulting transcripts with inductive and deductive coding methodologies. During
the interview sessions, we describe to the developers ML scenarios, and prompt them
to walk us through their typical workflow to tackle these scenarios. Then, we analyse
the reported workflows and their rationales, and the factors that seem to impact those
workflows and rationales. We conceptualise the main goals and steps taken by the devel-
opers. We study the methods and tools they use along the workflows and whether they
are aligned with propositions from research publications. We also identify limitations in
the workflows and rationales, that might cause harms, based on the knowledge brought
by the surveyed literature in Part I. Finally, we surface various factors that drive the work-
flows and limitations, for instance in terms of practical challenges developers face, often
due to a lack of research supporting the design choices they have to make, or in terms
of social factors, such as organisational and educational ones. The main methodological
differences across the research questions revolve around the scenarios proposed to the
developers, and the focus of the interviews’ analysis. These scenarios respectively call
more easily for a focus on robustness issues (RQ4) or on other types of issues that might
cause harms (RQ5, RQ6), and the analysis either focuses on workflows (RQ4, RQ5) or on
factors impacting these workflows (RQ6). Having distinct scenarios are necessary as we
noticed that the developers are not necessarily able to reflect both on robustness, fair-
ness, and other harms altogether if not prompted specifically about those concepts (and
it is not possible to discuss all these within the scope of a single interview).

Chapter 5 stems from a publication at CHI’23 [68]. There, we investigate practices
related to ML robustness during the development phase of a model. As we realized that
debugging an ML model is a complex procedure that has not been investigated in terms
of practice despite the amount of technical research proposing various solutions, we
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focus on model debugging in development (once an initial data engineering pipeline
and model have been developed, until the deployment of this model). Among other
findings, we find that most developers do not make use of any input from research, such
as explainability methods, in order to debug their models. We also identify that certain
of these methods could fit the needs we identified from the interviews. We also find that
they typically do not envision all types of issues (failures and bugs) their models might
suffer from, despite their potential for harm, and that both education and guidance tools
could potentially support them in becoming aware and tackling those issues. This is
what we focus on in Part III.

Chapter 6 and Chapter 7 stem from a manuscript submitted at CHI’24 and another
one accepted at AIES’23. There, we investigate specifically practices related to ML fair-
ness and broader harms that are not covered by the fairness literature according to Part I.
We especially find a large diversity of conceptions of harms and methods to tackle these
harms, that developers adopt. Among those, certain conceptions (e.g., the fact that ML
fairness issues only stem from dataset biases and not from flawed model design) and
methods (e.g., fairness through unawareness) are flawed according to the literature in
Part I. Other conceptions and methods we identify had not been mentioned in the lit-
erature as of now (e.g., the fact that certain issues can be mitigated by varying the way
input data samples are collected, instead of by solely employing so-called fairness miti-
gation methods). We also find a number of activities developers conduct to tackle harms,
that had not been mentioned in previous literature, and that are only conducted when
developers reflect about harms (they are less present in reflections around robustness
solely). Besides, we identify a plethora of factors that impact the conceptions and meth-
ods the developers adopt to tackle harms. Their attitudes towards harm vary, and these
attitudes are especially impacted by internal human factors such as their knowledge and
willingness to address the harms as well as the inherent subjectivity of the perception of
harms, and by the developers’ environment, their organisation, the tools they have ac-
cess to, etc. These findings open up the way to a diversity of future research directions,
be it technical in order to better characterize conceptions of harms and develop well-
adapted methods to tackle those, design and HCI to further support the developers in
the human challenges they face, or policy and regulatory efforts in order to face certain
of the environmental challenges. In Part III, we develop technical and HCI tools, that we
hope can better support the developers in their reflections about robustness, that might
cause certain of the harms they identified in these interview sessions.

In summary, we contribute three qualitative studies about the practices of ML de-
velopers, that result in a rich characterisation of the research/practice gap in ML. While
one study focuses on practices around ML robustness [68] and the other around ML fair-
ness [61], the last one provides further information about the factors that impact these
practices [71].6 In all the studies, we find that developers have incomplete or flawed con-
ceptions of ML failures and of the ways one can mitigate them, and that existing research
does not necessarily support them in overcoming the technical challenges they face, let
alone the under-explored human and contextual factors we identify. In Part III, we will
tackle the development of supportive tools towards the technical challenges.

6We do not make any modification to the corresponding publications, except in terms of reconciliation of
vocabulary across publications, and small changes to the introductions and conclusions.
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PRACTICES FOR DIAGNOSING &

MITIGATING MODEL ROBUSTNESS

5.1. INTRODUCTION
In this chapter, we investigate the practices of machine learning (ML) developers around
ML model robustness, specifically for computer vision models. Deep learning models
are the basis for many computer vision applications12. Yet, safely using these models
is still challenging, as they suffer from issues such as spurious correlations, brittleness,
and overfitting, leading to erroneous and harmful outputs [656]. Plenty of recent ac-
cidents testify of this challenge. For instance, models that distinguish between benign
and malignant moles have been found to be inaccurate when used in practice for dark
skin colors due to data biases [428], even though they seemed to be correctly built and
perform well in the development phase.

The computer vision lifecycle is composed of many activities that might all introduce
or mitigate faults in the models. While we cannot study all these activities at once, we
note that growing efforts from machine learning, data management, human-computer
interaction, and software engineering communities focus on proposing materials for
“debugging” the failures of a model, i.e., testing the presence of potential issues, and
mitigating the ones of interest, before deploying this model [293]. These materials are
frameworks to test the performance of a model or to automatically mitigate inference
errors [924, 152, 671, 519, 419], tools to trace issues in the outputs of the models back
to problems in the code [514, 304], user-interfaces that highlight issues during model
development [923, 875, 673, 729, 728, 25], and explainability methods [677, 437, 289, 69,
810]. It remains unknown how much these materials are used in practice, and to what
extent they fit the hitherto unknown needs and processes of developers. It is even un-
clear whether the stated goal of these materials (typically increasing model accuracy)

1https://www.grandviewresearch.com/industry-analysis/computer-vision-market
2https://www.globaldata.com/media/thematic-research/global-computer-vision-market-
will-reach-nearly-33-billion-2030-driven-larger-data-sets-advanced-deep-learning-
models-says-globaldata/
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is aligned with the goals of developers. Hence, in this paper, we focus on practices for
handling failures in the first crucial phase of a model: its development phase until the
decision of deploying it.

One could argue that no research on failure handling practices in computer vision
models has been conducted because there already exists works around software debug-
ging [34, 328, 475, 541, 179, 265, 479], and computer vision applications are a type of
software. Yet, identifying and mitigating failures in computer vision models is poten-
tially more challenging than for non-data driven software systems, due to the opaque
nature of the inference process, and the unlimited set of inputs to the models [924, 488,
395, 858]. Hence, we shall study specific difficulties with computer vision failure han-
dling. In this work, we ask: (RQ5.1) which goals (i.e., types of failures to prevent) do devel-
opers aim at fulfilling before deploying their models?; and (RQ5.2) how do they proceed
in terms of workflows, artifacts, and tools to do so? These questions allow to reflect on
the limitations within existing practices, on the challenges faced by developers, and on
the (mis)alignment between research and practice. We perform 18 semi-structured in-
terviews with machine learning developers having different levels of experience in com-
puter vision, but all currently working in industry or public organisations as data scien-
tists, data engineers, or software engineers for machine learning, for at least three years.
We task them to investigate a hypothetical model to decide on deploying it or on mit-
igating its failures. We investigate their objectives, workflows, challenges, and needs,
summarized through the questions they answer in the process. We further analyse the
extent to which they use existing methods and tools, and limitations in their practices,
which allows us to surface opportunities for future work.

Our results reveal that the process of making a model ready for deployment is subjec-
tive and not standardized, and that it is not a lonely process but involves various stake-
holders. Our results also show that machine learning “debugging” literature is not known
by most developers despite its potential usefulness for certain steps of their process. de-
velopers can identify and correct failures and bugs to a certain extent, yet pain-points
and limitations, e.g., missed model bugs, are often observed. While we do not argue
for standardization as the process is highly use-case dependent, our work highlights the
need for more guidance and more comprehensive failure handling tools addressing var-
ious bugs (e.g., dataset content bugs) and failures (e.g., brittleness). These observations
also highlight changes needed to support an education on aspects broader than machine
learning algorithms, and to facilitate the communication of relevant information to the
stakeholders involved in the process.

In summary, our work contributes: a) a structured understanding of computer vision
model failure handling practices towards model deployment, synthesized into a frame-
work (Figure 5.3) and a list of questions one might ask during the process (Table 5.4); b)
an analysis of the relation between existing methods for failure handling such as explain-
ability methods, and the practice of handling failures in computer vision model; and c)
a critical reflection about the needs of developers highlighting several design opportu-
nities.
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5.2. RELATED WORK
In this section, we present key works on model failure handling, from which we extract
the main concepts (Table 5.1), and working assumptions (summarized in Figure 5.1, and
highlighted in bold in the text) we investigate next. We also relate our work to studies
around software debugging and machine learning practices.

Table 5.1: Main concepts identified around failure handling in computer systems.

Concept Description

Failure The observable manifestation of an issue (difference between expected and ob-
served behavior). [434, 27]

Bug The cause of the issue, and hence the place where to correct for it. “Any im-
perfection in a machine learning item that causes a discordance between the
existing and the required conditions.” [924]

Artifact Tangible information one might use in order to search for a bug or verify its va-
lidity. The approaches from literature all rely on various artifacts. [923, 875, 673,
149, 87, 152]

Precautionary
attitude

The attitude that one has when performing failure handling, geared solely to-
wards explicit failures, or also searching for less obvious failures. [34, 328, 475,
541]

Workflow The steps taken in order to identify and mitigate a failure. [475, 541, 34]

5.2.1. FAILURES & BUGS IN MACHINE LEARNING SYSTEMS
Similarly to software engineering, in this paper, we talk about a model failure to desig-
nate “an external, incorrect behavior [of the model] with respect to the requirements.”
[434, 27], and about a bug or fault to designate the root cause of a failure. The literature
on machine learning failures discusses multiple types of failures and bugs. When a script
doesn’t execute, the failure is due to a program implementation issue [924, 152, 823, 930,
808, 488]. Instead, when a script runs, according to the machine learning testing liter-
ature [924], one can observe failures that revolve around inference outputs (correct-
ness, robustness, fairness) or around processes (security, privacy, efficiency). In this
case, the failure has two possible causes reported in the literature: a faulty configura-
tion of the data and of the machine learning model itself, or a faulty translation from the
intended data and model configuration to the implementation [622, 396] (e.g., uninten-
tionally transforming the image features that represent the inputs to the model into the
wrong format).

We focus on issues of the configuration nature, as they are arguably challenging to
handle and novel compared to software engineering, and to existing literature on model
failure handling practices. Configuration issues [924, 488] relate to the design of the
model architecture, i.e., the choice of architecture itself and its hyperparameters. For
example, convolutional neural networks –CNNs– are often used for image classification
applications; there are several CNN architectures one can choose from, each bearing
different (dis)advantages depending on one’s goals and constraints [433]. Other config-
uration issues relate to the design of the training datasets (e.g., too small dataset for the
model architecture leading to overfitting, different ways of pre-processing and filtering
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the data might impact differently the accuracy of a model [655]); or the choice of training
procedure through which the training dataset is used to train the weights of the model
architecture (e.g., a number of training "tricks" and "tweaks" can significantly improve
model performance [344]). Typical terminology to designate configuration-bugs include
structural bugs (“sub-optimal model structures such as the number of hidden layers,
the number of neurons”), and training bugs (“the mis-conducted training process, e.g.,
using biased training inputs”) [519, 396].

We investigate whether developers do consider these different kinds of failures and
bugs, and more broadly how they judge that their process has reached a satisfaction
point making the model ready for deployment. This is especially important to investi-
gate because the scientific literature proposes different types of failures that can often be
measured via different metrics, yet does not guide developers in choosing the eventual
metric and its value under which one would consider the model failing. For instance, in
terms of correctness, a model can never be completely accurate, and one needs to define
in practice under which accuracy metric, threshold, and evaluation dataset, they would
consider their model failing, or ready for deployment. Besides, one might account for
broader information than solely metrics evaluations.

5.2.2. APPROACHES FOR FAILURE HANDLING
As we did not find any study on configuration failure handling practices for computer
vision models (only studies around program failures [930], or general machine learning
with end-users [258]), we focus on failure handling methods and tools. In our study,
we investigate the process followed by the developers, and whether they are aware of
and use tools or relevant artifacts that are similar to those proposed in the literature,
as literature assumes these could potentially be useful for their processes. In case they
are not used, this would bring a number of future research opportunities to understand
precisely the reasons for this, e.g., unawarenesss, technical or practical inadaptability.

End-to-end methods. Methods are developed to support various model configuration
failure handling activities. To identify failures, existing works propose methods to gen-
erate test inputs that are likely to break a model [924], or to monitor its outputs based on
human-defined assertions [419]. To identify components of a system that might cause
model failures, Lourenco et al. [514] develop a framework to systematically test differ-
ent versions of the model training pipeline. Between the identification of failures and
their bugs, Singla et al. [763] support the human exploration of training bugs: they help
identify problematic model features by finding visual attributes in the data that lead to
poor performance. To correct failures, Ma et al. [519] automatically identify neurons re-
sponsible for certain inference errors, and gather relevant training samples that should
increase the model performance.

Tools & corresponding artifacts. A few user-interfaces [923, 875, 673, 149, 87] and
other tools [152] have been introduced to support the handling of correctness failures
(although not necessarily for computer vision applications). They rely on displaying or
automatically checking diverse artifacts of a machine learning system, that might lead
to a failure or bug. Around the model structure and training, UMLAUT [729] guides de-
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velopers in proactively identifying failures through warnings about the choice of training
and model hyperparameters, while Cockpit [728] visualises curves and statistics of the
trained model, that can indicate bugs in training hyperparameters. On the dataset side,
ModelTracker [25] visualizes interactive distributions of images to facilitate the identifi-
cation of bugs in the data, and Deblinder [149] provides tentative explanations for each
misclassification observed. Symphony [87] allows for further data and model analysis
through interactions with various visual exploration components such as an interactive
confusion matrix, and various functionalities to process the training data. The Amazon
SageMaker Debugger [671] monitors a list of artifacts in different parts of the system
design (e.g., poor initialization or too small updates for model weights, vanishing or ex-
ploding gradients, etc.) that help to reason about the existence of potential bugs.

Explainability. Within our study, we give particular attention to the realm of explain-
ability methods, that we assume would be one of the prominent tools stemming from
research and used in practice. Indeed, they represent a consequent amount of research
papers both in machine learning and human-computer interaction conferences, and
they are recurrently argued to be useful tools for handling model failures (explanations
can then be seen as a type of artifact). Besides, some studies [889, 365, 371, 100, 810]
discuss “debugging” and model “validation” as purposes of explainability, however al-
most no work [677, 67] has rigorously verified such a claim. Researchers have conducted
user-studies around explanations for certain stakeholders and data types [23, 889, 409,
174, 185, 427], but none involves computer vision failures. Explainability methods can
be categorized in various ways [45, 773, 503, 497], based on their scope (e.g., a local ex-
planation [754, 302, 595, 366] explains a prediction for a single input data sample, and a
global explanation [437, 289, 69] explains the overall behavior of a model), medium (e.g.,
visual or textual hints), audience (e.g., developers of a model, model users, decision-
subjects, etc.), faithfulness (explanations are known not to be equally accurate [766]),
etc. We study for what purpose and to what extent developers use explanations for fail-
ure handling, and which categories of explanations are used.

Adopting mild precautionary attitude towards failures

Reactive, proactive, software understanding

Preventing output and inference process failures

Process: Security, privacy, efficiency
Output: Correctness, fairness, interpretability, robustness

Diagnosing & mitigating all types of bugs

Structural (architecture), training (data, hyperparameters)

Adoption of the software debugging workflow

1) Hypothesis formulation, 2) hypothesis instrumentation, 3) 
hypothesis testing, 4) hypothesis correction or solution application

Investigation of various artifacts as signals for failures & bugs

Training curves, performance metrics, heuristics, 
data statistics, data samples, inferences, explanations

Associations / contrasts / causality
Scope: local / global

In-/out- of domain
Static / interactive

Complexity
Faithfulness

Use of different explanation typesUse of methods & tools stemming from research outputs

End-to-end methods, user-interfaces, and other tools

RQ1: Which goals do practitioners aim at 
fulfilling before deploying their models?

RQ2: How do practitioners proceed 
in order to make sure their models fulfil their goals?

Reaching satisfaction point based on failure rates

Figure 5.1: Summary of the research questions, and of the related insights from literature used as initial guides
for the exploration of the research questions, and as working assumptions to assess. Each working assump-
tion (bold text in the light blue boxes) involves one major concept of the debugging literature (in italic) and
its different instances (plain text in the white boxes), and is formulated solely based on the assumptions the
literature seems to implicitly make about practices.
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5.2.3. STUDIES OF DEBUGGING PRACTICES

Software debugging. Software engineering literature around debugging practices pro-
vides an additional lens to analyse our interviews. In terms of debugging goals, it de-
scribes three levels of precautionary attitude towards failures: reactive correction of
program implementation bugs when a failure is identified [34, 328], proactive debug-
ging when developers look for the existence of bugs while no explicit failure manifests,
and broader software understanding for later on identifying failures [475, 541]. In terms
of debugging approach, this literature describes a debugging workflow that consists of
four steps [475, 541, 34] (the usual scientific approach): 1) gathering context to generate
and formulate hypotheses, 2) instrumenting and 3) testing the hypothesis, 4) correcting
the initial hypothesis, or applying a solution. We investigate further whether these ob-
jectives and workflow are reflected within computer vision practices. For instance, while
it is well-known that developers pay attention to explicit correctness failures through the
use of accuracy metrics [83], it is not as clear whether developers might proactively in-
vestigate less visible failures, such as unknown unknowns or problematic features the
model might have learned (cf. subsection 5.4.1).

Machine learning model building. Recent works [578, 365, 31, 889, 220, 498, 371, 920,
454, 637, 149, 125] investigate practices of developers in different steps of the machine
learning or data science lifecycles. Yet, they primarily focus on machine learning model
building, but not on failure handling. Besides our method inspired by these works, rele-
vant discussion points are outlined, such as the types of stakeholders involved in the life-
cycle [920, 371] and the challenges of the communication between them [149, 637, 454],
or the complexity of evaluating models, e.g., for unfairness [220]. We investigate specif-
ically (configuration-type) failure handling during model development, and specifically
for computer vision applications, as this is a type of model, failure, and lifecycle stage
that might present particular challenges and methods, that have not been investigated
yet. For instance, while research has focused on the behavior of machine learning mod-
els based on tabular data [427], that can be assumed to be relatively-easy to interpret
thanks to the directly interpretable features these models are trained on, it remains un-
clear to what extent and how the behavior of computer vision models is understood and
its validity checked, as one cannot easily make sense of the model features (raw pixels).

5.3. METHODOLOGY

We conduct our study in three steps. We study literature to understand the state-of-the-
art research around computer vision failure handling (section 5.2). This provides us with
working assumptions related to our research questions, whose validity in practice is to
evaluate. We then perform semi-structured interviews to collect practices, test the as-
sumptions, and identify broader themes that answer our research questions. Finally, we
analyse the results to synthesize a failure handling framework, and to surface limitations
in practices, and research opportunities.
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5.3.1. SEMI-STRUCTURED INTERVIEW PARTICIPANTS

We recruited our participants through our network and searches on professional social
networks, and by snowball sampling strategy. Their experiences span a wide variety of
fields, from automated diagnostics based on X-Ray images, to the automated surveil-
lance of luggage at the airport, to applications in banking and business analytics, and
automatic fraud detection with natural language processing. They have at least three
years of experience within industry or public organizations, e.g., hospitals, (17 different
ones in total) currently working as data scientists, data engineers, or software engineers.
We made sure that they all have experience with machine learning classification tasks,
for them to understand the basic concepts around model failures. In total, we recruited
18 participants (13 males, 5 females), and categorized them based on their level of expe-
rience with computer vision (CV). Low-CV experience participants (4) have developed
a CV model only a few times; mid-CV experience participants (7) have less than 4 years
of model development experience; and high-CV experience participants (7) have more.
We span such diversity of experiences not to bias our study towards highly-experienced
developers, as the level of experience is one of the factors impacting failure handling
practices. Before each interview, we asked the participant for agreement on recording
the interview. We then transcribed the recordings into anonymized transcripts, and de-
stroyed the recordings. The interview process has been approved by the ethics com-
mittee of our institution. No financial compensation was given to the participants, who
were intrinsically motivated to participate to our work.

5.3.2. INTERVIEW GUIDE

We performed semi-structured interviews that lasted around one hour each, and went
as follows. Step 1. After briefly introducing our project, we enquired about the machine
learning-related background of the participants. Step 2. Then, we presented the partici-
pants with a design brief of a failure handling scenario, and asked them to describe out
loud the approach they would follow to answer the brief (RQ5.2), and the reasons for this
method, as well as how they would decide the model is ready for deployment (RQ5.1).
We further questioned the reasons for focusing on certain types of bugs and failures. Step
3. At the end, we looked back at their workflow, and questioned assumptions and gaps
that had not been discussed. Especially, we questioned neglected steps of the debugging
process, reasons for using failure handling tools, and explainability methods. We also
showed slides with examples of model explanations (cf. Figure 5.4) to elicit further uses
of explainability, e.g., saliency maps [754], SECA [69], TCAV [437]. We also prompted the
participants for additional remarks, e.g., challenges they have to overcome, imaginary
tools that could improve their process. The design brief and questions were finalised af-
ter performing two pilot studies. These studies informed us on how well the participants
could relate to our brief and the way to present it in a concise manner, on the type of
information about the machine learning model (e.g., data processing methods, previous
experiments performed, etc.) the participants expect to know, and on questions useful
to prompt the participants about their workflows.



5

130 5. PRACTICES FOR DIAGNOSING & MITIGATING MODEL ROBUSTNESS

Context:
A company wants to develop a system to support blind people in understanding the spaces in which they live.
An intern has already developed a deep learning model for scene classification (bathroom, bedroom, dining
room, kitchen, living room). For this, he created a dataset by scraping images from the Web using Google
search engine, and applying some typical data augmentation methods (e.g. flipping and cropping images,
brightness transformation). He then fine-tuned a ResNet model pre-trained on ImageNet on this data.

Prediction: kitchen / GT: kitchen Prediction: kitchen / GT: kitchen Prediction: dining room / GT: kitchen

Prediction: dining room / GT: dining room Prediction: dining room / GT: dining room Prediction: kitchen / GT: dining room

Prediction: living room / GT: living room Prediction: bedroom / GT: living roomPrediction: living room / GT: living room

Prediction: bedroom / GT: bedroom Prediction: bedroom / GT: bedroom Prediction: living room / GT: bedroom

Your task:
Unfortunately, his internship has ended. The company asks you to take over his model, and
investigate whether the model can be deployed, or whether it needs improvement. In this case,
what issues should be improved on, and how? To start up your analysis, it is providing you
already with the test accuracy, the confusion matrix of the model, and examples of test data
(below).

Figure 5.2: Top: our design brief, inspired by the multitude of computer vision works on scene recognition, as
support for visually-impaired individuals to create mental maps of their environment [7, 321, 835, 399, 177].
Bottom: example images of four dataset classes shown to the participants, next to their ground truth (GT) and
the class inferred by the model (prediction). These examples indicate feature errors in the model. For instance,
among all the kitchen images, only the one which received an incorrect prediction contains stools. This
hints at the potential use by the model of this concept with a higher weight than for more relevant kitchen
features such as the oven.

DESIGN BRIEF

Our design brief (described in Figure 5.2) presents a scenario where one is developing
a model, and has to decide whether it can be deployed or whether failures should first
be handled3. Our brief is inspired from prior studies [729, 214] on the development and
debugging of machine learning models, where the researchers build a simple model in
which they inject various kinds of bugs, that the study participants are tasked to explore.
The brief is typical and simple enough for participants to reflect on their own practices
without envisioning entirely new workflows. Choosing a scene classification model al-
lows for an easy discussion without requiring domain expertise. The brief is kept vague
voluntarily to investigate what developers naturally do when asked to decide whether
a model is ready for deployment, or to “debug” it for potential failures. This brief con-
veniently prompts for both reactive and proactive “debugging”. Next to the brief, we
presented the participants with a blank template (see Figure 5.5) to trigger them to think
about their workflow. We also showed them example dataset images (e.g., images in Fig-
ure 5.2), along the corresponding model predictions and ground truth. We describe in
the following how these images are created.

MACHINE LEARNING MODEL

The dataset images are selected with the idea of simulating explicit (low accuracy) and
implicit (e.g., irrelevant model features) failures and bugs. While no prior study has fo-
cused extensively on different types of configuration failures and bugs, we select the
kinds of bugs to inject into the model based on the gathered scientific literature (sec-
tion 5.2), and follow proposed procedures for dataset skewing to inject these bugs. Fea-

3Scene classification is a common task in the computer vision literature with application to accessibility [7,
321, 835, 399, 177], although we recognize the existence of a multitude of assistive tools for visually-impaired
individuals beyond vision-based techniques.
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ture bugs are introduced by simulating a) potential data shifts between training and de-
ployment data [448], and b) statistical biases in the data [69, 214, 741, 67, 437]. For a), we
hint in the brief and images shown at a distribution shift between the training dataset
(fancy-looking scenes, high-resolution images) that is not realistic for the target applica-
tion, and the deployment data (pictures of simpler rooms taken from simple cameras).
During the sessions, we only show training dataset images, but insist on the fact that
they were collected from the Web (a Web query retrieves higher-resolution, professional
images), and that the deployment data would come from daily-life pictures taken by the
users of the system, in order to observe whether the participants reflect on the content
of the datasets and the distribution shifts. For b), content biases are both around class-
specific features (e.g., all living room images with a television and none of the other
classes with one in training, and changing this in deployment), and less-specific features
(e.g., cats present in all the pictures of certain classes). Other typical errors are also in-
cluded, e.g., living room images wrongly predicted as bedroom all contain a bed-like
sofa. This allows to investigate the awareness of the developers towards a diversity of
issues.

5.3.3. ANALYSIS OF THE RESULTS

We analyse the results of the interviews by coding the answers in a mix of inductive and
deductive thematic analysis following the process outlined by Braun and Clark [127]. We
defined initial categories of codes based on the structure of the interviews, for instance
the background of the participant, on our working assumptions and additional infor-
mation related to the research questions that appeared during the interviews, and on
our broader readings of the literature, e.g., stakeholders. Within each category, subcate-
gories of codes are annotated inductively by identifying the response declinations rela-
tive to each interviewee (e.g., not considering structural bugs), and grouped into broader
meaningful themes (e.g., limited attention towards specific bug categories). For that, the
two interviewers independently coded the 10 first interviews, and discussed to recon-
cile the codes (e.g., choice of more or less fine-grained codes), and refine them. They
then went on to re-code all the interviews, and discussed new emerging codes. Overall,
we created the codes to be all-inclusive, not excluding any part of the response decli-
nations, and mutually exclusive, as each example could not fall into two declinations of
the same category. Multiple categories of codes were applied simultaneously to show
the chronology and co-occurrence of process steps, goals, artifacts, and stakeholders. A
total of 197 codes are identified, clustered into 30 groups, that are themselves grouped
into 14 themes. The resulting codes are analysed with a focus on co-occurrence within
steps, main failure handling concepts, and in relation to specific typologies of users.

5.4. RESULTS

In this section, we describe the themes resulting from our interviews, that we organize
into four macro-themes (each subsection) in relation to the two research questions. We
start with the goals of the participants in terms of failures and more broadly how they
decide the model is ready for deployment (RQ5.1), and then describe the workflows
they followed and artifacts they used to address these failures, with a specific focus on
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the use of explainability methods (RQ5.2). We mark with an asterisk * the themes that
(in)validate working assumptions from section 5.2.

5.4.1. RQ5.1 - GOALS: DISPARITIES IN IDENTIFIED FAILURES AND BUGS
Overall, our participants focused on a few types of machine learning failures, with vari-
ous, arbitrary, subjective, qualitative judgements about their importance. Besides, they
did not all choose to tackle the same instances of failures within each failure category,
showing the existence of relevant sub-types that we outline below.

* FAILURES: MODEL CORRECTNESS.
As found in scientific publications, the primary focus was on correctness of the infer-
ences, as this is the principal evaluation of the quality of the models. For instance, P3
high-CV4 started by searching where the model makes wrong predictions “The confusion
matrix is where I start. This can give an idea of where the network might fail.” Differences
appeared for the exact failures to handle. Most participants focused on high-rate fail-
ures (P10 low-CV) “I’m looking at this confusion matrix and think about which class is
the most error-prone.” Instead, two experienced participants started with rare issues as
these pinpoint hard challenges for the model, and solving these issues could solve the
high-rate ones (P16 high-CV) “I look at the rarest events, where the most information lies.
It is handy because you can analyze everything going through the images.” A last partic-
ipant saw both frequent and rare issues as fundamental (P17 mid-CV) “I focus on the
extremes, the very good ones and the very bad ones. It helps me to find features of interest.”

* FAILURES: OTHER FAILURES.
Other types of output or process failures (e.g., model robustness to natural perturbations
or adversarial attacks, privacy, unfairness, unknown unknowns), although discussed in
the literature, were mentioned by just a few developers. For instance, only two high-CV
participants were concerned with the robustness of the model to natural perturbations,
i.e., distribution shifts occurring unintentionally in the data [448] (e.g., the brightness of
the training images is much higher than the one of deployment images, where users of
the system might not be able to ensure a level of brightness for the pictures they take) (P4
high-CV) “I will find another dataset to check the model performance again. These images
are always very bright. But this might not be the case in practice. It could be like using the
phone to take the images. Also, if the weather was cloudy, the images would be very dark.”,
(P9 high-CV) “The data in deployment (houses of people) may be different from the ones
in your training dataset, probably from catalogs. So I would not expect the model to work
well.” Some failures were also considered without explicit naming with the "technical"
term, such as for unfairness discussed in the following terms by P13 high-CV “What is
called the dining room and what is called the kitchen is person and culture dependent. So,
whether a prediction is wrong, that is heavily dependent on what use-case we are talking
about”5.

4We denote participants by “PX k-CV” with X the index of the participant and k the level of experience of the
participant with computer vision.

5While most examples of algorithmic unfairness from the outputs of a machine learning model consider dis-
parities between errors rates for different categories of populations [848], other works [216, 859, 736] have
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Other developers did not envision the existence of these failures, e.g., only six partic-
ipants were concerned with unknown unknowns that can be seen as a subset of correct-
ness failures (data samples for which a model makes wrong predictions while displaying
a high confidence, hence particularly challenging to identify in production) [506, 938,
52]. A last set of developers considered them unimportant (e.g., several developers men-
tioned not caring for distribution shifts as they would anyway try to obtain a "represen-
tative" training dataset); or irrelevant for this use-case (e.g., P8 high-CV said unfairness
issues are not a concern, yet this is questionable as one could imagine that the different
scenes the model should recognize would look different in different parts of the world
[736]).

FAILURES: MODEL FEATURES.
While this is absent from the machine learning testing literature, some participants were
also concerned with the meaningfulness of the features learned by the model. They
identified feature failures by scrutinizing specific samples (see subsection 5.4.3) (P4 high-
CV) “The overall test accuracy is 80%. This accuracy for the initial model is fine. Next, I
use a visualization method like T-SNE to see if this model truly learned something.” They
talked about failures when the model did not seem to have learned any relevant feature
looking at the overall shape of a few saliency maps, or when the model did not display
specific, expected features for specific samples (e.g., the model classifies correctly an im-
age as a kitchen, but does not seem to use the presence of a fridge or oven for that,
while a human would have looked at these elements). This shows the duality of model
features, seen either as goals here or as means to explain and solve correctness failures
(see subsection 5.4.4).

Other participants explained not knowing or recalling that the model can reach cor-
rect inferences using questionable features. They would however handle the features af-
ter the correctness failures considered more urgent (P14 high-CV) “That’s a second step.
I focus at the beginning on the errors. When I understand globally why and how, then I go
through the correct answers. And I investigate if the model understood the classes.” A few
participants also never handle feature failures, arguing that handling correctness failures
automatically solves the relevant feature issues. They first evaluate the model with new
samples representative of the deployment data, and if the error rates are higher there,
the model might use wrong features. Otherwise, irrelevant features are not considered
errors: while not relevant for humans, they are acceptable as the model makes correct in-
ferences. This approach does not always hold depending on the use-case requirements,
and the feasibility of collecting a representative dataset (e.g., due to contractual or pri-
vacy issues).

* PRECAUTIONARY ATTITUDE: DIFFERENT ATTITUDES ACROSS LEVELS OF EXPERIENCE

We note a disparity between participants in their level of precaution towards failures.
Participants with low-CV experience spent more time on general understanding as they
did not know where to focus. Later, they focused on reactive debugging (explicit correct-

considered broader algorithmic harms, where the model would not perform equally well on a same type of
object or scene that presents different representations across geographical locations or cultures. Hence, we
(and a few of the developers) consider potential unfairness issues in our scenario.
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ness failure) when choosing specific correctness errors. Proactive debugging as a work-
flow objective, i.e., the idea of searching proactively for non-obvious model failures, such
as the use of wrong features by the model, was not a familiar concept to the participants,
who did not envision the existence of such implicit failures. Proactive debugging is es-
pecially useful given that the distribution shifts cannot lead to explicit failures when one
evaluates their model on an evaluation dataset taken from the same data distribution as
the training dataset: one could proactively reflect on the eventual distribution shift and
the type of additional training data that could be needed to solve it. Participants with
mid-CV experience focused primarily on obvious manifestations of correctness failures,
and experts discussed all goals. However, 75% of these mid- and high- experience partic-
ipants only discussed proactive debugging when prompted. This disparity is concerning
considering that our design brief was implying a strong distribution shift (the fact that
the training data were collected from the Web but the deployment data would be pictures
taken by visually-impaired individuals in everyday environments) calling for proactive
debugging.

* BUGS: REFINEMENT OF BUG CATEGORIZATIONS

Overall, the bugs addressed by developers were both structural and training ones. Yet,
similarly to failures, we observed differences in the bugs identified by developers of dif-
ferent expertise, differences that we discuss further when explaining the specific failure
handling workflows.

Coding the interviews, especially the goals of the participants, and the explanations
they were providing for identified failures, led us to propose a more fine-grained cate-
gorization of these latter bugs. We distinguish between dataset bugs further sub-divided
into data-statistics bugs (e.g. distribution of data samples across classes) and data-content
bugs (e.g. distribution of specific visual elements appearing across samples and classes),
data-engineering bugs (e.g. how the data samples are scaled, filtered, augmented, la-
beled, etc.), and training-parameter bugs (e.g. loss function, batch size, etc.). This dis-
tinction should allow developers to be more structured in their reasoning about bugs,
but is also useful for researchers to develop bug-specific debugging methods. For in-
stance, to the best of our knowledge, data engineering bugs are not discussed in the
machine learning literature6 while addressing them early could avoid retraining models.

5.4.2. RQ5.1 - GOALS: DISAGREEMENT ON THE SATISFACTION POINT FOR

DEPLOYMENT

While the participants were focusing on diverse types of failures along their process, we
explicitly asked them to clarify how they would judge the model ready for deployment.
We discuss their process here.

AMBIGUITY

The point of satisfaction at which the participants stop their process was ambiguous.

6Possibly because data engineering typically belongs to the data management literature, inadequately discon-
nected [66, 304] from the machine learning one.
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Trade-offs between failures. Along their process, the participants mentioned various
types of failures with minimum requirements on the absence of certain failures (e.g.,
overfitting was unacceptable for P8 high-CV), and needed trade-offs across the different
categories. For instance, P13 mid-CV did not consider meaningful features (feature fail-
ures) as important as long as the accuracy is high (correctness failures) “The accuracy is
what counts the most for lots of my projects. If something hits 99.9% accuracy, I don’t look
at the saliency maps anymore.” (P10 low-CV) “We cannot even interpret how our brain
works. So why we are so focused on interpreting how the model works?” These trade-offs
were also made for specific instances of failures within a category, as discussed in sub-
section 5.4.1. Yet, none of the participants expressed a precise way to judge how severe
each failure is, and to establish when the trade-offs are acceptable.

* Disconnect between failures and metrics. The participants also based their decision
on the values of certain correctness-related performance metrics. A direct mapping be-
tween such metrics and the failures implicitly appeared from the low-CV participants,
as they considered correcting failures as the mean to their goal (increasing performance
metrics). Instead, for participants with more expertise, the relation between failures and
metrics was perceived as less clear.

Expert participants were cognizant of the limitations of using metrics, and used them
as a preliminary indication of the model’s quality, before observing inferences on indi-
vidual samples. This was the case a) when the test dataset is erroneous (e.g., wrong la-
bel) or ambiguous leading to over- or under-estimating the model “If you’re talking about
hard labels, there is an error. But if I understand why the network classifies this kitchen
as a dining room, I no longer consider it an error.” P3 high-CV; b) when a mistake could
also be made by a human (P7 mid-CV) “it is confusing even for humans to classify these
images. So I tolerate some error.”; c) when the mistake is rare (P14 high-CV) “it’s not a fun-
damental but understandable mistake. I will be OK with it. This kind of bathroom, there
are one out of 1,000,000.”; d) when the error has a high confidence (a few expert partic-
ipants used the model confidence to judge an error’s gravity (P14 high-CV) “I check the
probabilities that the model gives to see if it’s really wrong or a bit wrong. If it’s 60% dining
room and 39% kitchen, then I say OK.”; or e) in cases when an expert would judge the
error acceptable7.

* VARIABILITY IN CHOICES AROUND METRICS

The way correctness metrics and the threshold of acceptability were selected greatly var-
ied across participants. Some participants made an intuitive choice (P11 low-CV) “My
goal is to have as much accuracy that I can get.” Or they deferred the choice to domain
experts or model requesters, judged more qualified or responsible (P14 high-CV) “What
would the business be happy with? As a system that they would put into production, there
is a definition of good enough.”

Others emphasized that errors are not avoidable, and adopted a nuanced, class-
based evaluation, accepting errors on certain classes to balance correctness for other
classes (P7 mid-CV) “One cannot be perfect in all cases. Let’s say you are more interested
in classifying images about kitchens. If you confuse the dining room with the living room,

7a) to d) can be questionable when the model has high-stakes.
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then you are okay. Then, you reach high recall classifying kitchens. You would be satisfied.”
Two thirds of these participants recognized that different use-cases require emphasis on
different metrics (P10 high-CV) “It depends on the application. If I want as many kitchens
as possible, then recall is more important. But for autonomous cars, recall is not as im-
portant as precision.” As for the choice of threshold, some developers proposed absolute
numbers based on the characteristics of the task and their background knowledge (P4
high-CV) “The accuracy should be higher than 95% because this model is for the blind
people so safety is the top priority.” Others chose based on the performance of existing
baseline models (P9 high-CV) “I don’t know how hard this task is, so I don’t know what ac-
curacies can be considered acceptable.”, or on human disagreement (P7 mid-CV) “When
you know whether people would agree, you know the human accuracy. Then, you would
not beat yourself up if your model doesn’t reach an accuracy higher than the human one”.

5.4.3. RQ5.2 - PROCESS: DRAWING THE FAILURE HANDLING WORKFLOW

* A WORKFLOW SIMPLER THAN FOR TRADITIONAL SOFTWARE SYSTEMS

The participants followed a trial-and-error workflow similar to the one for debugging tra-
ditional software systems. However, they often simplified the workflow, and typically did
not test their hypotheses rigorously before acting, or even did not formulate specific hy-
potheses before experimenting on different models. As the software debugging literature
does not directly apply to each step of the workflow within the machine learning context,
in the following subsections, we describe further how our participants conducted each
step —when they did conduct it— (we detail bug correction strategies in Appendix).

IDENTIFYING A MODEL FAILURE

Depending on their type of precautionary attitude, participants did not adopt the same
approach to start tackling a failure. Reactive debugging starts by exploring the confusion
matrix and identifying areas with low or high error rates (subsection 5.4.1) (P3 high-CV)
“The confusion matrix is where I start from. [..] Also regarding class overlap, I would expect
that classes that are closer, are also closer together in the network embedding space, and
that it would lead to increased errors.” Then, the workflows described next are employed.

Proactive debugging follows the same workflows, the difference being that the fail-
ure first needs to be detected. Participants interested in feature failures scrutinized the
features through saliency maps to reflect on their validity. To find failures due to dis-
tribution shifts, they compared the training dataset to imaginary deployment data ((P9
high-CV) “The domain of the dataset where you train the model can be distant from the
house the blind person enters, so I’m not sure if solving the current model issues would
solve the problem of the blind person.”), or when feasible searched for more diverse im-
ages, to identify potential limitations in what the model learned. Often, the participants
did not purposefully identify these implicit failures. They discovered them serendipi-
tously during reactive debugging, when scrutinizing samples or features with incorrect
predictions.

GATHERING CONTEXT AND FORMULATING HYPOTHESES FOR NON-DATA BUGS

Overall, the participants tackled the gathering of context and the formulation of hy-
potheses around bugs differently based on their experience with computer vision.
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Skewed sets of envisioned bugs. Experts participants took a sequential, bug-elimination
approach. They always started with structural and data-statistics bugs, later on turning
to data-engineering or training-parameter bugs, and to dataset-content bugs as a last
resort. They took this approach for practical reasons. (P8 high-CV) “Looking at the im-
ages is the last step. If the training is poor, there are things you can do before. For example,
dining room and kitchen might share many pieces of furniture and because of that, it’s
harder to distinguish between them. This, I can assume without looking at the pictures,
from prior knowledge.” They also assumed structural bugs to be limiting factors for a
model (P14 high-CV) “When I reach some performance [with experimentations on the
model], the main problem is not in the architecture: the model is learning but in a bad
way. Then, I check the augmentation of images, or try other datasets.”

In the rest of this subsubsection, we describe the way these high-CV participants
investigated the first batch of bugs (non-data bugs). Less-expert participants took a less
structured approach, and focused on the bugs they were most familiar with, essentially
dataset ones (described in the next subsection) (P6 low-CV) “hopefully if it has stronger
data, it can learn something deeper. And if not, the model itself should change, but I’m
not so familiar with CV and how you can improve it from the model perspective.” They
sometimes wrongly assumed that mitigating dataset bugs can serve to correct all failures
forgetting to account for the bias-variance trade-off, e.g., if more training data is added,
the model hyperparameters might not be adapted to the dataset anymore, leading to
underfitting (P5 low-CV) “My first step would be to pick one angle: either the data (because
the model performs only as good as the data it was trained on), or the system parameters
(some learning rate or model hyperparameters).”

Truncated and oriented context and hypotheses. To deal with structural and training-
parameter bugs, expert participants tried multiple models with different architectures,
training hyperparameters, and data processing (P3 high-CV) “Going a step back, I would
employ augmentation techniques to see if I can get higher performance, and I would use
a method to further regularize the model to make sure that it’s not falling into the overfit-
ting regime.”, (P3 high-CV) “I suppose that the input has been sufficiently preprocessed? I
would normalize, typically by the max value if we are talking about standard RGB images.
I would also standardize the data, so force inputs to have zero mean and unit variance.”
until they reached the “best” model among these tests (P14 high-CV) “There is something
that I do dumbly at the beginning: I try different architectures to see if there is a problem
of this kind. I’m not sure that the architecture is the main issue. But it can help to add
more dropout, or change the architecture, especially when I have a problem of overfit-
ting.” Developers have learned through experience typical “good” hyperparameters that
they test in priority (P3 high-CV) “One thing that could lead to increase performance is
to force those classes to be more separated by employing another form of loss, like the con-
trastive loss.” This process truncates the software debugging workflow as it directly con-
sists in testing various potential “solutions” to improve the model performance, solely
with an implicit hypothesis (non-data bugs: the model hyperparameters have not been
explored) and no gathering of context for hypothesis formulation.
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* Supporting artifacts. During this process, participants mentioned monitoring a sub-
set of the artifacts discussed in the literature such as learning curves, and overall shapes
of saliency maps that might indicate model overfitting, to orient further the search of
the “best” model (P3 high-CV) “I will see some training curves. The optimal case would
be that the further the training process is, the lower the training and validation losses go.
This means that the model is learning something without sign of overfitting.”, (P9 high-
CV) “I would see how the training curves look like with the Tensorboard, to see if the model
is overfitting on the training set. If that’s the case, you can add some regularization or aug-
ment the training set.” We did not delve deeper into these bugs during the interviews, as
only expert participants discussed them, and existing research primarily provides sup-
port with similar artifacts for these bugs.

GATHERING CONTEXT AND FORMULATING HYPOTHESES FOR DATA BUGS

Artifacts as context. Data bugs were typically connected to correctness, robustness,
or feature failures. They were specified by investigating test set images and/or saliency
maps for recurring visual elements the model might have learned as features, rare visual
elements that might confuse the model, or signs of problematic data processing (image
size, resolution, unrealistic data augmentation). The link to the activities that led to such
bugs was then made, and bug correction strategies were devised. For that, participants
used different sets of images. a) The images corresponding to a confusion matrix cell
(P14 high-CV) “There are a lot of false positives of dining room and kitchen. Let’s see in the
images what kind of situations cause these mistakes. I would plot heatmaps. Probably it
would put the salient part here, and that’s the problem.” b) The images that received cor-
rect inferences for the classes at stake, searching for common concepts with the wrongly
predicted images (P7 mid-CV) “I focus on cases where the model made a mistake and the
ones where the model is correct. I figure out the pattern that was correctly detected.” c)
One participant looked at a random sampling of images of a class to understand how di-
verse the dataset is, and compared it to mis-classified images of the class (P17 mid-CV)
“My goal is to understand how diverse are the images of kitchen visually and how well they
capture the essence of a kitchen. There might be some similarity metrics to use.”

Diversity of hypotheses. Participants formulated five types of hypothesis (cf. Table 5.2)
around model features and data content, using the above artifacts and their background
knowledge (P2 high-CV) “I would compare a true positive and a false positive from these
classes, apply some domain knowledge, and see if there are elements which should be used
for a specific class.” The first one was however not formulated by participants with low-
CV experience as they did not think features can be wrong, or did not know how to iden-
tify features. For all these hypotheses, the notion of granularity is important, i.e., differ-
ent levels of description of the visual elements a model has learned. For instance, the
participants often mentioned the style of an object the model is expected to use for clas-
sifying an image (P14 high-CV) “I make an assumption by trying to understand why it
makes these mistakes. This bed is not classic, so maybe the dataset needs more not-classic
beds.”, parts of an object, and remarkable textures and colors of these objects.
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Table 5.2: The diverse hypotheses formulated by the participants around model features and data content.

Participants’ hypothesis Explanation

Irrelevant features (P1 mid-CV) “The model might learn wrong rules, like the presence of a sink
to predict a living room”, (P7 mid-CV) “Once we know the wrong patterns the
model learned, we add more examples that reflect the wrong behavior in the
training data for the model to learn the extreme cases.”

Incomplete features The model has not learned enough features to correctly make inferences for
certain images. Incomplete and irrelevant features are always mapped to
dataset biases (P17 mid-CV) “What comes into my mind is rules, but it will
defeat the purpose of having machine learning. I model what’s a kitchen in a
symbolic fashion like "needs an oven, stove". And then I make sure that the data
set is reflecting those adequately.”

Over- or under-
emphasized features

(P7 mid-CV) “The first step is to use an interpretability method to detect what
the model has learned. For example, when the model classifies kitchens, it does
not look for a sink or cooking stove. It looks for under-relevant patterns like
tables that can be used for other classifications like dining rooms.”

Unknown unknowns Three participants related the incorrect or incomplete features to unknown
unknowns (P7 mid-CV) “knowing what to expect from the model and what
it learns allows to identify unknown unknowns”, (P12 high-CV) “A blind-spot
happens because of systematic data biases. You have to see how the data dis-
tribution looks like to figure out whether there is a blind spot. You should use
crowdsourcing because automatic methods are not reliable.”

Absence (presence) of
(ir)relevant ele-
ments in images

This makes the model confuse the ground truth for another class (e.g., the lack
of a bed in a bedroom makes it being classified as a kitchen) (P7 mid-CV) “This
image is missing hot spots.”

INSTRUMENTING THE HYPOTHESIS

Most participants did not instrument and test their hypotheses. Instead, other proxy
methods were employed when feasible.

• Artifacts for hypothesis invalidation. Between the observation of a failure (e.g., false
negatives for a certain class) and the identification of its potential causes i.e., the bugs
(e.g., overfitting on other classes) and remedy (e.g., decreasing the number of layers),
participants often used intermediate artifacts (e.g., training curves, data statistics) for
context gathering. These artifacts were serving both to search for the potential bug,
and to quickly check that no other information about the model would invalidate their
hypotheses.

• Correction as instrumentation. Instrumenting the hypotheses was often about making
a correction and checking for a positive change in the model, followed by further fine-
tuning the correction (see subsection 5.4.3).

• Hypothesis testing. Only three participants tested their hypotheses with other instru-
ments, even though it is probably more efficient than retraining a model for each hy-
pothesis. They searched for data samples or transformed available samples to present
only the features (or anything but the features) of interest, and check whether the in-
ference of the model matches expectations (P17 mid-CV) “I take a perturbation ap-
proach. Once you see commonalities, let’s say "white", you mask out the non-white
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thing, and see if the probability is increasing. If so, I may be looking in the right direction
and need more non-white kitchens.” Such activity needs more support as participants
argued it is challenging.

5.4.4. RQ5.2 - PROCESS: EXPLAINABILITY FOR FAILURE HANDLING

* NARROW SUBSET OF EXPLANATIONS

Our participants typically did not mention any tool or method inspired from the ones we
identified in the literature. Our participants only mentioned using saliency maps among
other explainability methods, except P4 high-CV who also mentioned T-SNE [837] for
faster image exploration through image clustering. A few participants without experi-
ence with explainability described the desire to have explanations that correspond to
saliency maps, without being aware of their existence. A few participants wished for
other types of explanations. For instance, they would like to automatically obtain statis-
tical summaries of visual elements across images to fasten their hypothesis formulation
and validation process (P6 low-CV) “I want to see the entire distribution of objects, and
subdivide these 25 mislabeled dining rooms into smaller segments that I can understand,
like photographs of dining rooms with the kitchen in the background.”. They also in-
sisted on getting textual explanations besides visual ones to query whether the model
has learned expected or known problematic features (e.g., a participant mentioned that
the models shouldn’t pick up on potential pace-makers), or to quickly explore the train-
ing data distribution.

DIVERSE PURPOSES FOR EXPLAINABILITY

From the interviews, we also found out that the use of explainability methods is not stan-
dardized. The purpose for and way of using the saliency maps (the primary explainabil-
ity method that was employed) varied across participants. Overall, we identify four uses;
non-expert participants only focusing on the first one.

• Artifact for data content or data engineering bugs: Saliency maps were used to identify
problematic features, and to further investigate potential solutions for correctness fail-
ures. This was done by scrutinizing the image patches highlighted by saliency maps,
and reflecting on the points in Table 5.2. Certain participants disagreed that it is fea-
sible to look into the actual data content because it is hard to define what one would
expect a model to pick-up on (P4 high-CV) “In a bathroom you expect the bath to be
highlighted. You expect the dining room table in the dining room, but in the kitchen
there can also be a table, so it’s not convenient.”

• Artifact for bias-variance trade-off : Saliency maps were used to make sure the model
learned something meaningful, and is not over- or under-fitting. For that, participants
analysed the shapes of the maps across images, and their coverage of pixels reflecting
human-interpretable concepts (P4 high-CV) “I first see if this model truly learned some-
thing (the objects, not some nonsense). Saliency maps are really tiny: it over-trains. It’s
about the general aspect of the map, more than what it’s highlighting.” This was used by
expert participants who have formed over time an idea of a meaningful saliency map,
and how it relates to model failures (e.g., overfitting).
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• Final verification: Certain participants used saliency maps as a last step to quickly
validate the relevance (P15 high-CV) “I first fix my model, then my data. Once I’m sure
this is the model I’m going to use, I check that images are analyzed fairly according to
what we expect. I see the actual visual clues that the computer bases its decisions on.”
and possibly fairness of the model features in a random subset of saliency maps (P9
high-CV) “It is very important if you’re afraid the model is biased towards categories
with ethical implications.”

• Stakeholder communication: Most participants used saliency maps for communicat-
ing about the model performance (P9 high-CV) “You measure the success from the ac-
curacy. If successful, you understand what the model is looking at with explainability.
It is nice to explain to your clients why the model works and what it looks.”

5.5. DISCUSSION & IMPLICATIONS AROUND THE RESEARCH /
PRACTICE GAP

Our interviews brought new insights into computer vision model failure handling prac-
tices (summarized in Table 5.3), that are corroborated by the few HCI studies that com-
pare non-machine learning practitioners with machine learning experts [906]. Instead
of relying on the (potentially useful) theory, methods, and tools published in literature,
the developers in our study develop an error-prone workflow based on their prior ex-
periences with machine learning, and they do not systematically address every machine
learning failure and bug. This is concerning as other stakeholders within an organization
might also not be aware of and in charge of these failures. We now discuss implications
of these results for future research.

5.5.1. SURFACED DESIGN DIRECTIONS

Our results led to identify obstacles for developers to correctly handle failures. These
obstacles can serve as design principles or challenges to further support developers. In
relation to these, we discuss a few avenues for future work.

1. Challenging need for workflow diversity. Failure handling requires diverse workflows,
as it is a highly use-case dependent task (use-case, stakeholders, structure of an orga-
nization and allocation of responsibilities, etc.), and no one-size-fits-all process has
been developed. Hence, we do not argue for standardization, but emphasize the need
for a plurality of workflows, that brings about new research challenges to create sup-
portive methods and tools.

2. Confusing fluidity of concepts. One surprising insight was the fluidity of the concepts
in the participants’ workflows. While we had envisioned identifying independent sets
of failures, bugs, artifacts, and steps, related by how one serves to identify or solve the
other, we realized these sets are permeable. For instance, features can either be con-
sidered failures when they are irrelevant or incomplete according to human judge-
ment, or an artifact to identify the dataset bugs that caused correctness or robustness
failures (same observation for overfitting). Bug correction was also either the actual
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Table 5.3: Summary of the insights obtained through our study.

Category Insight

RQ5.1: Stated and verified goals of the failure handling process.

*Failures Failure handling practices for computer vision models often focus on a narrow set of failures
(compared to literature), centered on output correctness, with however model problematic
features as an additional, typically understudied, failure.

*Bugs Developers address the same bugs as discussed in the literature, with more refined bug cat-
egorizations (structural, dataset, data-engineering, training).

Satisfaction
point

Ambiguous decision boundary, made of trade-offs between various failures and correctness
metrics, to declare the model ready for deployment.

Differences
across
developers

Participants have disparate knowledge about “debugging” concepts, and limited attention
towards different bugs: sequential bug-elimination approach for high-CV participants, in-
correct trade-offs between bugs for low-CV participants. They also show disagreement on
the importance of correctness and feature failures, and disparate precautionary attitude.

RQ5.2: Failure handling process.

*Workflow An ad-hoc, trial-and-error workflow that is simpler than for traditional software system de-
bugging is adopted. Typically hypothesis instrumentation is missing, as well as hypothesis
formulation for non-data bugs. Its steps are based on developers’ experiences.

Hypotheses Hypotheses related to data bugs are around problematic features: incorrect or incomplete
features, over- or under-emphasized feature importance, absence/presence of ir/relevant
visual elements in images.

Corrections Various correction methods: modifications of dataset, training parameters, model structure,
and way the model is setup.

*Artifacts Next to known model artifacts, primarily visual content across images is used. Need for
domain knowledge is polemical.

*Methods
& tools

None of the methods or tools developed in the literature are used. Only TensorBoard [152]
has been mentioned.

RQ2: Use of explainability methods for failure handling purposes.

Purposes Diversity in purposes: scrutinizing dataset bugs, bias-variance trade-off, stakeholder com-
munication, and final verification.

*Types A narrow subset of explanation types (saliency maps) is used in practice. Wishes for global,
textual, query-able explanations about the model and potentially the data are unfulfilled.

correction step taken by the practitioners, or one way to test their hypothesis. Con-
cept fluidity is already known for certain non-functional, trustworthiness-related, re-
quirements of machine learning systems, such as fairness [571], interpretability [427],
and contestability [517]. This fluidity brings confusion to the research and practice,
and should be acknowledged, e.g., to clarify the available tools and steps, and to reas-
sure developers about their process. One can take inspiration from these other works
to handle the fluidity of the failure handling concepts, for instance by proposing a
comprehensive overview of the different uses of the terms by different developers and
research communities (e.g., also highlighting the dissimilarities with traditional soft-
ware engineering), as a boundary negotiation object [571].

3. All developers are not equal in confidence and effectiveness. Low-CV participants lacked
a clear workflow, spending a large part of the interview on model understanding, in-
stead of reactive or proactive debugging. A few of these participants expressed not
being confident in their process, discussing a (P5 mid-CV) “very empirical process”
that “reflects a human feeling of what’s going on”. They posed that this way “the suc-
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cess of debugging is left to the sensitivity of the expert”. Participants with more expe-
rience were instead more confident, faster, and effective. This result displays simi-
larities with the way people working on non data-driven software develop an ability
to debug their software, with experts learning debugging heuristics, the effective use
and application of debugging tools, etc. [542]. The development of new tools should
hence bear in mind the various levels of AI literacy of the developers and their confi-
dence. AI literacy literature [164] refers to four literacy dimensions (technology, work,
learning, and human-machine -related dimensions) that should all be considered to
tailor the tools to their users.

4. Difficulties in using new tools. The participants had difficulties envisioning uses of
new tools. When we showed low-CV participants saliency maps or global explana-
tions, they could not envision how to employ them. Similarly, when showing more
experienced participants explanations they were not familiar with (global, textual ex-
planations outputted by the SECA method [69]), only half of them could envision us-
ing them.

Besides, Liao et al. [497] built an explainable AI question bank where each question
reflects a need for explainability. Inspired by this bank, we built a failure handling ques-
tion bank for computer vision models in Table 5.4, that summarizes the information
needs developers might have when handling failures. For that, we reviewed the tran-
scripts and workflows described by our participants, and extracted their explicit ques-
tions and questions that were implicitly answered by the actions they took. Compared
to the XAI question bank, we added new categories of questions, revolving around the
algorithm design and the way the model was trained, around iterations of the model,
and expectations on the model behavior (reflecting the need for domain knowledge).
These questions revealed to be essential to tackle structural and training bugs, and to
understand when the model is satisfactory. We also refined the questions about model
features, their nature, relevance, completeness, as features were an essential artifact to
judge the validity of the model and to identify correction methods. The question bank
can be used by developers as inspiration to identify the relevant questions (and whether
methods for getting answers exist) to ask for handling failures in their model, and by re-
searchers to identify important research directions that have not been tackled until now.

5.5.2. OPPORTUNITIES FOR THE DESIGN OF NEW SUPPORTIVE TOOLS

NEED FOR GUIDANCE

We argue that developers need more guidance on the process. Proposing high-level (se-
quences of) steps and intermediate objectives for structuring the workflows in relation to
different failures, associated artifacts, examples of bug correction methods and pitfalls,
would allow for a more effective and efficient process. The exact form of this guidance
requires further investigation, e.g., a tutorial, a checklist, an interactive framework, a tool
suggesting a workflow and artifacts, etc. Previous works around software debugging and
machine teaching provide hints for its design, highlighting the importance of structured
steps [622, 590]; structured documentation [283, 556, 31, 346, 125]; or warnings against
graphical user-interfaces [906]. Research is also needed to balance this guidance with
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Table 5.4: Questions developers ask when handling failures of models. In bold the ones also found in the XAI
question bank [497], and with a triangle △ the ones that have not received extensive attention in terms of
study of practices or technical solutions. Questions without a triangle are formatted in italic when they can be
(partially) answered using existing explainability methods, the others being answered using other debugging
artifacts.

Topic Question

Input What kind of data does the system learn from? (and all related questions of the XAI question
bank)
To what extent is the data diverse enough to represent each class? To what extent is it balanced
over the different classes?
△Does the test dataset cover the complete range of situations the model can encounter in de-
ployment?
What do the samples look like for each class? What are the difference between these two classes?
How have the data been processed? and augmented? Is it easy to augment the dataset by col-
lecting new data?

Model performance How well does the model perform generally? Where does the model typically make errors?
for what type of images? into which classes does it incorrectly classify them?
Does the model make errors with high or low confidence? △Are there unknown unknowns?

Expectations △What is the expected performance for the model? for which metrics? Can we consider the
model to be fair and unbiased?
△Is this inference really incorrect? or can we accept it? What should the model pick up on to
distinguish these two classes?

Model structure What is the structure of the model? How were the parameters set?
How was the model trained? What loss function was used? what were the training hyperparam-
eters?

Model training Is the model overfitting or underfitting? Is the model too large/small for the task? compared to the
training data?
Is the training dataset of the pretrained model relevant for the target task?
Does the performance improve when simply adding training samples?

Features (global - how) Has the model learned anything relevant? Does the model use (or not use) this feature?
Which visual elements does the model use to predict this class? Which visual elements does the
model generally use? Which visual elements does the model use to make (in)correct inferences?

Features (local) What features of this instance lead to this inference?
Why is this sample predicted P instead of Q? Which visual elements might have triggered this
wrong inference?

Features (compari-
son)

What are the features used for both classes? What are the features different for the two classes?

Why are instances A and B given the same/different predictions?
What are the top features/rules used by the model? How does the model weigh different fea-
tures?

Questionable features Are these visual elements relevant for this sample? or class? What features do we expect it to learn
for this class?
△Should the model pick up on more visual elements for this image/class? △Should it learn
additional features?
Does the model make correct inferences using wrong features? Are the features fair to use?

Inferences (what if) What would the model predict if this sample is changed to ...?
What would the model output for a sample with these visual elements?

Iterations △How to improve the model? △Should I focus on the data or algorithm and training hyperpa-
rameters?
How well does the model perform after doing X? Have the features changed after doing X?

the freedom developers need for failure handling, and to leave the flexibility to envision
usages of new artifacts.

There is no comprehensive resource accessible by developers to learn about failure
handling. We suggest the community to build an open, collaborative repository of prac-
tices to share heuristics (similarly to UMLAUT [729]), methods and tools, as well as the-
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oretical knowledge8 (e.g., list of failures, bugs, relations to artifacts). Such library should
provide both general information, and information that is specific to certain types of
use-cases, models, etc., since the participants regularly referred back to previous use-
cases they encountered with similar considerations. Research on software debugging
again provides recommendations for the design of such library, with lists of relevant in-
formation to include—e.g., patterns [549], debugging diaries [633]—, and methods to
collect this information [542]. As a first step towards establishing such a library, we pro-
pose a failure handling framework (Figure 5.3) designed by synthesising our participants’
practices. It summarizes the various objectives, main steps, and artifacts of the failure
handling process.

Figure 5.3: Summary of the failure handling practices identified through the interviews. In orange, we show
the stakeholders that can intervene in each step of the failure handling process.

NEED FOR ADDITIONAL TOOLS

Our study and especially our failure handling question bank point out to specific needs
and wishes from developers, that would merit further research at the intersection be-
tween machine learning and human-computer interaction. On one side, the questions
in our bank are partially overlapping with the ones of the XAI question bank [498], re-
inforcing opportunities for explainability works to serve in the failure handling process.
On the other side, the questions that are not present in the XAI question bank can serve
as invitations for researchers to build new methods and tools, requiring algorithmic re-
search (e.g., “should I focus on the data or algorithm and training hyperparameters?”), or
human-computer interaction research especially to facilitate communications between
stakeholders (e.g., “is this inference really correct? can we accept it?”) and data visual-
isation (e.g., “does the model make errors with high or low confidence?”). We discuss a
few of these research opportunities.

Novel types of explanations. Certain developers mentioned desiderata sometimes
similar to existing but rare explanations. These insights corroborate the results of Hong

8Similarly to existing initiatives, such as https://docs.microsoft.com/en-us/security/engineering/
failure-modes-in-machine-learning

https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
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et al. [371] on potential uses of and needs for explainability. In previous works [931],
these explanations are summarized as global textual [69, 67] or visual concepts [437,
289], examplars [438] (samples that contrast or are similar to others), and cues (hint on
the main differences or similarities). From the identified workflows, it seems that global
explanations could greatly speedup certain steps of their process, textual explanations
could lead to more accurately identify bugs and support communication between stake-
holders, and interactivity could help navigating these explanations.

Data & feature exploration. Our participants spent a large amount of time explor-
ing the dataset for understanding what it represents, to identify potential biases, un-
known unknowns, shifts, etc, and to identify and judge model features (with the help of
other stakeholders). They (wish to) do so through various types of interactions, e.g., get-
ting random samples for each class in the dataset, clustering images with similar visual
content, querying samples with various visual elements, etc. Interactive visualisation
tools could greatly support them in easily accessing such information. Existing tools
for data exploration in the context of machine learning [367, 116] could be refined for
the specific needs identified. Particularly, facing the diversity of hypotheses one can ex-
tract from explanation artifacts (subsection 5.4.3), it appears highly relevant to develop
user-interfaces for feature exploration, allowing the search of model features at different
granularities, the comparison of feature importance, and the matching of model features
with expected ones, to investigate the dissonance between human features and machine
learned features [934, 116]. One key challenge would be the uncertainty within these
features —expected ones are not always known, while learned ones are never entirely
known due to the interpretability gap for existing explainability methods [69]—, requir-
ing constant fine-tuning [555]. This highlights the importance, despite the complexity
of it, of involving domain experts in the failure handling process, as they can support the
developers in identifying additional failures by reporting on their own experiences with
challenging edge-cases, and with priorities in terms of correctly-classified data samples
and meaningful features, etc. Prior works, especially in the medical context [151], have
shown the potential ease in designing a library of test cases, that should be further in-
vestigated not only for supporting the responsible use of models by end-users, but also
for developing appropriate models.

Model comparisons. The iterative process requires to frequently retrain the model
and compare it with its previous versions in terms of performance, features, and other
artifacts. Yet, few practical tools [87] support such comparison. As retraining deep learn-
ing models is computationally intensive, methods are needed to provide estimates of the
changes in these artifacts, e.g., by building simpler surrogate models that would be less
heavy to retrain.

Hypothesis testing and bug correction. Hypothesis instrumentation and testing are
the main steps our participants skipped compared to the traditional software debugging
workflow, due to the lack of methods existing to do so efficiently. Yet, this could certainly
save further training time. Recent works such as Deblinder [149] or an explainability-
based debugging framework [67] start to propose support, by displaying model failures
to the developer who has then several options for generating and testing hypotheses, yet
targeted bug correction is still not supported by any tool. We recommend to develop
such functionalities to allow for faster testing.
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5.5.3. INCREASING CLARITY IN THE FAILURE HANDLING GOALS & PROCESS

Our study showed the importance for our participants to access various types of knowl-
edge during the failure handling process. Hence, clear communication with various
stakeholders or clear documentation appeared necessary (more information in Appendix
5.7). These results reflect previous works around the data science lifecycle [454, 920, 637,
220, 371]. The information needs and associated communication challenges in these
studies and ours are overlapping (e.g., misaligned vocabulary and knowledge). We list
below additional challenges.

DESIGNING METRICS FOR CLARITY

The participants rightfully recognized that a model cannot make perfect inferences, and
consequently that not all misclassifications should be considered failures but instead
that certain should be treated as acceptable. Differently from software engineering, the
end-point criteria for deploying a model revealed to be subjective. This subjectivity has
been illustrated in prior studies [151], where, similarly to model developers, model users
decide on the acceptability of model misclassifications based on their expectations for
the model, especially in relation to their own locus of expertise to allow for a success-
ful collaboration between them and the model. Our participants however did not tend
to extensively account for this notion of human-model collaboration to decide on fail-
ures and the model readiness for deployment, despite the increasing number of research
works on the topic [929, 860, 73]. The end-point criteria was also ambiguous, e.g., expert
participants, while not considering all model errors equal, did not have a clear process
besides trying to attribute different levels of severities to ad-hoc categories of observed
failures. Ethnographic work in a data science team has similarly shown the equivocal na-
ture of performance metrics both for the developers and other stakeholders judging the
trustworthiness of the models [620], our work expanding these findings to models that
are not built in order to discover new insights from data but to automate a process that
can typically be performed by humans. This was also observed in prior studies where
participants implicitly attributed “cost” to the different wrong predictions [906, 258], and
pointed out to the discrepancy between the perceived performance of a model, and its
performance as measured by a metric [609, 724, 786, 338]. We suggest to develop met-
rics or frameworks that would document and account for these various costs. Recent
research directions on disaggregating evaluation metrics [83, 521] could include these
concerns in their propositions. This would especially allow to adhere to new concerns
for accountability and transparency, facing the subjectivity in defining an end-point.

Feature issues are not discussed in machine learning testing research, and only men-
tioned sparsely within literature around statistical biases in dataset [828, 826], or ex-
plainability methods [69, 754, 763], despite their importance (discussed by 17 out of 18
developers). The absence from research could be explained by the lack of metrics to
evaluate them, yet one prior study [620], although in a different context, also identified
the importance of valid model explanations for stakeholders to decide on using a model
in practice. Recent works such as Shared Interest [116] constitute a first step towards
quantifying feature failures. Its categorization of samples depending on the correctness
of model predictions (proactive or reactive debugging), and whether the model features
are aligned with human expectations, is highly reflective of the feature hypotheses iden-
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tified in Table 5.2. We however also identified a discussion around the features’ weights,
not addressed in the literature.

INCREASING TRANSPARENCY BETWEEN DEVELOPERS

Our results, especially certain questions in our question bank, showed the need for de-
velopers to communicate with each other. Documentation, although often not used
by the interviewed developers beyond model versioning, seems like the right avenue to
facilitate such knowledge sharing across developers, similarly to what previous studies
also concluded [220, 346]. Next to detailing how a dataset was created [283] or the per-
formance and scope of a trained model [556], future documentations should also focus
on “intermediate models” and on logging the experiments conducted across models for
a single system and the reasoning behind the choices of experiment. While this could
be saved as code, making the steps clear in the form of textual descriptions [678] could
fasten the process. E.g., the participants asked what kind of data processing had been
conducted, which could be answered without looking into the specificities of the code.

5.5.4. BEYOND FAILURE HANDLING: ADDITIONAL CHANGES NEEDED

LACK OF COMMUNICATION BETWEEN RESEARCH AND PRACTICE

Our participants do not use the methods and tools stemming from research publications
(except a few explainability methods, and common code development tools such as Ten-
sorBoard [152]) due to a lack of awareness. This does not necessarily hint at a technical
problem, but at a structural one. It highlights a lack of knowledge or time, from certain
developers to search for these materials. Hence, disseminating further the outputs from
research to developers appears to be an avenue for future work.

AI EDUCATION

The challenges identified also reveal limitations in the way computer vision is learned.
Our participants, while having followed a computer vision course and/or learned com-
puter vision through reading resources around the Internet, primarily build their failure
handling process over time by discussing with colleagues (P15 high-CV) “I never learned
computer vision in school. I learned it from the Internet and I had few experiences in
internships.”, reading about practices (P16 high-CV and P3 high-CV mentioned specific
blog posts about failures and bugs [424]), and through practical experiences (P9 low-CV)
“To improve performance, it would be horizontally (you add more lines to a dataset), or
vertically (more columns, that is more features). I’m speaking out of my experience about
records. For images, more lines could be data augmentation, more columns could be fea-
tures that correspond to specific objects.” None has been taught a failure handling process
in a curriculum (P5 low-CV) “I did the deep learning course in the Masters and then some
computer vision projects. From that, I learned the basic tools and common libraries for
deep learning.” This corroborates prior observations around machine learning practices
[24, 788], and debugging of software [549].

Developing education around failure handling for computer vision models could
benefit developers, as is suggested by position papers [739] and successfully experi-
mented with in research on teaching debugging. Particularly, research around software
debugging teaching [549, 542, 596], and data science teaching [474, 292, 788, 869, 805,
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512, 504] proposes teaching through exercises with examples of workflows or hierarchi-
cal lists of questions to ask for correctly “debugging”. Computer vision developers could
also exploit online communities to get further training (none of our participants men-
tioned using these frequently), similarly to data science developers [749]. Failure han-
dling tasks could be shared online and executed in collaboration. Yet, one would need to
investigate how to share relevant materials (e.g., trained model, datasets), information
(documentation about the task and model), and solutions.

5.6. LIMITATIONS & THREATS TO VALIDITY
There are several limitations in our study. While we do not think they impact the valid-
ity of our results, tackling them in the future would improve the generalisability of our
findings. We used one simple scenario, that enabled our participants to easily describe
their usual practices, as the various examples the participants brought from their own
use-cases and some comments testify, e.g., (P13 high-CV) “My very first thought was:
this is a very realistic use case”. Yet, using such scenario might obfuscate specificities
of their own use-cases, such as competing incentives they might encounter (they pri-
marily referred to constraints around data collection). However, using a different use-
case per participant would have not allowed to fairly compare practices, and would have
posed confidentiality issues. Freeing them from competing incentives places them in a
more ideal situation to discuss their process. Besides, our scenario presented the par-
ticipants with information about the model to “debug”, without the actual development
code —that they did not ask for. A task where they would be presented with the training
code could provide additional insights, but would require longer interview sessions. Our
methodology inspired from previous works [220, 365, 67] already provided us with main
challenges.

We focused on failure handling in development. Practices might differ after deploy-
ment, as other failures and constraints might occur, and additional stakeholders might
be involved. We looked primarily into correctness and feature failures that are still un-
derstudied. Yet, many more types of failures might arise. We interviewed a considerable
amount of participants and devoted our efforts to cover practitioners with various levels
of experience. Such qualitative approach can never completely assure that we gathered
all failure handling practices that exist. In the future, one might want to perform studies
with other methodologies, e.g., ethnographic work for in-context practices, code-based
studies, different focuses, and in specific domains of application, to complement our re-
sults. Finally, we focused on models for image-based computer vision applications, and
hence we cannot conclude certainly on the applicability of our results to other types of
models. We can however mention that our discussion on the organisation of the field
echoes prior discussions around other applications such as the ones relying on tabular
data [427]. Besides, the design opportunities we highlight are applicable to other appli-
cations as they are not application-specific. However, the required technical work would
differ to leverage the relevant artifacts, that are different across applications —and more
or less researched until now (e.g., more research on explainability for tabular-data based
applications has been performed than for image-based applications). Whether these de-
sign opportunities are necessary for practitioners developing these other applications,
should be investigated in the future, and our work can provide inspiration to do so in
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terms of insights to look for. It is fair to assume that certain of the insights would hold as
our participants and other practitioners have typically received the same training, and
many machine learning models across applications share similar properties.

5.7. CONCLUSION

In this work, we conducted 18 semi-structured interviews to outline the practices of
machine learning (ML) developers for ensuring robustness of computer vision models
and handling the failures of these models (Figure 5.3). We showed that, while practices
broadly follow the traditional software debugging workflow, they differentiate by the am-
biguous way the model requirements are defined, by the type of hypothesis formulation
and instrumentation activities performed in the machine learning context, by the arti-
facts employed to facilitate the workflow, and by the fluidity of the relevant concepts.
Besides, failure handling workflows are typically performed manually and in collabora-
tion without resorting to methods developed specifically for machine learning models
(Table 5.4). Finally, developers tend to have a narrow understanding of the failures and
bugs that any machine learning model might suffer from, skewed by their prior experi-
ence. This understanding yet includes problematic model features that are not typically
investigated in scientific literature. These insights point out to various limitations and
challenges in the current failure handling process, that should be tackled through both
structural changes and socio-technical research. Especially, we drew a list of research
opportunities at the intersection between HCI and machine learning, going from the
creation of a collaborative library of best-practices, to the development of failure han-
dling methods and user-interfaces, and of support for communication between stake-
holders. Besides, we identified a gap between the research that develops certain types of
explainability methods, and the practice where developers sometimes express the need
for a different type of explanations that would better support them in diagnosing model
failures. In Part III, we aim at bridging this gap, by proposing new types of explanations,
and investigating to what extent they do support the developers further. For now, in the
remaining of Part II, we zoom in on specific types of harms caused by the use of ma-
chine learning models, algorithmic unfairness (and a few other societal harms), and we
study how developers tackle such harms. We also investigate further what are the deeper
factors that impact developers’ practices.

APPENDIX

RESEARCH METHOD

Figure 5.4 and Figure 5.5 respectively present example explanations and the workflow
template shown to the participants during the semi-structured interviews.

ADDITIONAL RESULTS

CORRECTING BUGS TO SOLVE THE FAILURES

The participants used one of four strategies (followed by model retraining) to correct
bugs, depending on the bugs, and on their familiarity with the models.
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Example image Corresponding saliency map Semantic concepts

bed

shelves

desk

oven

ceiling, wall

wall

door

Sofa AND Television-> Living room (0.9)
Bed -> Bedroom (0.8)
Door -> Bedroom (0.6)

Oven -> Kitchen (0.9)
Oven AND Ceiling -> Kitchen (0.7)
Toilet -> Bathroom (0.7)

Global explanations (SECA method)

(relevant and irrelevant)

Figure 5.4: Example explanations (local visual and textual explanations, and global textual explanations)
showed to the participants, when they would mention them, or at the end of the interviews to trigger fur-
ther reflections about them.

Figure 5.5: Example template provided with the design brief, and filled in by one participant. The template
shows empty circles and arrows representing objectives, actions, and transition triggers, reflecting each step of
the failure handling process, and helping the participants to structure their thoughts.

Dataset transformations. Participants with no experience in explainability and ex-
perts who do not wish to engage deeply with the data content tried to resolve correct-
ness failures through typical data augmentation methods such as applying mirroring,
rotation and colour contrast algorithms. “I employ some augmentation techniques or ar-
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tificial data to see if I can get away with this. This would be a method to further regularize
the model to make sure that it’s not overfitting.” P3 high-CV. P5 low-CV also mentioned
“applying some dirty labels (for instance I would apply the label of "kitchen" to "dining
room" pictures) to create a positive perturbation and rebalance the number of samples”.

Other participants mentioned feature-specific transformations: adding or removing
images with specific features, or obfuscating irrelevant information from images. “If
there are cats only at dining rooms, I should do cat recognition and mask them.” P11 mid-
CV. The hypotheses of these participants revolved around the relevance of the model
features, and/or the existence of unknown unknowns. Transformations of the data en-
gineering process were also mentioned by some experts as simple steps (e.g. increasing
image size, changing scaling) along model modifications.

Modifications of the training parameters. Expert participants transformed the loss
function to penalize classes with higher error rates: “It is easier that the model learns
to base the classification on different things than when you add more data” P9 high-CV.
They also gave more importance to training samples erroneously predicted “It’s like the
Bootstrap algorithm where you keep re-feeding falsely predicted samples into the model,
assigning higher weights for the last computation.” P3 high-CV. This method is used by
participants with computer vision experience, as they are more familiar with the func-
tioning of the models. “It allows me to avoid using a parameter so that the classification
of two classes becomes more diverse, and the optimization of the training based on a more
relaxed representation.” P14 high-CV. A few participants with some experience also dis-
cussed tuning training hyperparameters. “What I found is that setting the right param-
eters, especially learning rate or batch size, can help the model avoid certain biases” P7
mid-CV.

Model transformations. Hyperparameter tuning (e.g., changing the model architec-
ture) was the main solution of high-CV experience participants, which sometimes came
hand in hand with simple dataset transformations. “The network didn’t learn the task. It’s
the famous bias variance. You have to see whether it cannot generalize, which means that
it has been overfitted to the training set. If you have a lot of data available, you just throw
more data at your model hoping that it can generalize better. If the data is scarce, let’s
say you are in medical imaging and each MRI is from a patient, you cannot collect more
data. You have to change your model and that’s more expensive because a machine learn-
ing expert needs to work on it. Instead, for data, you can just crowd source it via Amazon
Mechanical Turk, it’s much cheaper. There are also scientific insights: if the task is simple,
adding more complex model doesn’t make sense, but usually for computer vision task, it’s
complex enough that you can have a complex model.” P16 high-CV. Low-CV participants
did not engage in such activity as they were not familiar enough with the functioning
of computer vision models “That’s where I’m hitting a wall. I would change something
about the model. But I need to understand that model a little better.” P4 low-CV.

Changes in the model setup. Certain participants with low-CV experience proposed
additional solutions based on their own experience. These solutions are not mentioned
in literature, but useful in practice. They would a) build separate models for the most
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confused classes, b) create additional classes for the ones that are too diverse in terms
of image content, or c) append a rule-based model, to correct inferences with heuristics
defined on the content of the images. “Establishing rules means to modify the model
decisions manually. It’s not something that you should do, but if it’s a requirement, it can
be done. Let’s say this is towards 60% confidence, it’s a weak prediction. The probability
of being a dining room is lower than average. So, once you have the combination of low
probability of being a dining room and you also have the presence of a metal component
intertwined with black glasses, then you can push it to the kitchen classification.” P8 low-
CV. d) Others proposed to engineer features based on visual information identified in the
images “Most bathrooms have a mirror, then it’s really good if we can classify if there’s any
mirror. From specific elements that you discover, you arrange other features.” P8 low-CV. e)
One participant mentioned deferring difficult cases to humans, or using active learning
to fine-tune the model. “The way to proceed is through the human eye: you leave extreme
cases to workers to annotate. The model can learn about the general cases and leave you
the extreme ones.” P7 mid-CV.

COLLABORATION BETWEEN STAKEHOLDERS FOR HANDLING FAILURES

Results. As it appeared along the previous subsections, for most participants, failure
handling was not a lonely process. Practitioners frequently mentioned communicating
with other stakeholders during the process.

• With other “developers”. The practitioners often need to discuss with other individuals
who took part in the model development process, dataset creation, etc. to obtain more
information about choices and previous experiments. Especially, expert practition-
ers implicitly had a list of steps they always perform when developing a model (e.g.,
training with different architectures and hyperparameters), and a list of necessary op-
erations (e.g., normalization and standardization of the dataset, data augmentation,
etc.) (P3 high-CV) “I suppose that the input has been sufficiently preprocessed? I would
normalize, typically by the max value if we are talking about standard RGB images.”

• With model requesters. To clarify when the model is satisfying, the practitioners also
rely on the model requesters (subsection 5.4.2) who are the final judges of the accept-
ability of the model (and the requirement providers) (P14 high-CV) “the final decision
on how much you should improve the model is given by somebody else (the client, the
model owner, ...) given whether it is a critical situation.”

• With domain experts. Domain experts are involved by the practitioners (when reach-
able) to better understand the target task and potential pitfalls, and to judge how ready
the model is, to identify feature expectations, and to reason on the relevance of certain
features when searching for model bugs and feature failures (P14 high-CV) “the part of
saying whether it’s ok that the model makes a specific mistake, it’s not up to me. It’s up to
the experts.” P7 mid-CV also mentioned questioning the experts who are the end-users
of their model to resolve data ambiguities, whether they are inherently ambiguous, or
whether one specific class can be attributed to the samples (P7 mid-CV) “Give it to
people who are as close as possible to the end-users and say: what do you think? Is this
a bedroom or a living room?”
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• With potential end-users. The developers have to convince the model requesters and
users (who are often the experts) of the validity of the models. P14 high-CV explained
“You are the person that can communicate the density of information to a specialist like
a doctor. When we have a meeting, we show the model understood the class.”

Implications. Our results identify additional communication needs from the devel-
oper to non-developers, especially for defining when a model is suitable for deploy-
ment, whether specific failures on single samples are acceptable, and which features
one should expect [133, 371, 620]. Since the accessibility of domain experts was one of
the main problems for the developers, research should investigate how to facilitate col-
laborations around these specific concepts, potentially with the development of remote,
asynchronous tools, and common languages (possibly inspired from existing knowledge
elicitation methods [431]), e.g., to indicate relevant features. Existing works that facilitate
the cooperation between domain experts or end-users, and a machine learning model,
could be adapted to these specific concepts [455, 149, 916].
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PRACTICES FOR DIAGNOSING &

MITIGATING SOCIAL HARMS

6.1. INTRODUCTION
In this chapter, we continue our investigation of the practices of machine learning (ML)
developers. Differently from the previous chapter (Chapter 5) where we investigated
model development and diagnosis practices broadly, this time we prompt the developers
specifically about the social harms their ML models might cause.

As described in Part I, in reaction to algorithmic harms, different research commu-
nities have focused on ensuring distributive fairness around the outputs of the mod-
els. They have focused on developing algorithmic unfairness metrics [848], mitigation
methods [268], and toolkits [107, 91, 704, 842, 205]. Another line of research has taken
a critical and interdisciplinary stance on the concept of algorithmic fairness. It has ex-
plored broader algorithmic harms, i.e., issues arising from the development or deploy-
ment of an ML model, around not only distributive fairness, but also the questionable
desirability of using ML for a task, the use of inappropriate training datasets, the nega-
tive impact of model training on the environment, or the poor labor conditions of the
crowd workers involved in system construction [62, 557]. The complex and negative so-
cial and environmental impact of these issues has been argued to be inaccurately (and
incompletely) reflected by the proposed algorithmic fairness metrics and consequently
inadequately addressed by the mitigation methods [508, 718, 361, 457, 870]. Algorithmic
fairness concepts, in particular, that are still nascent are said to represent only a narrow
simplification of distributive fairness (cf. section 6.2). Hence, it has been recently argued
that while one can employ these concepts towards building non-harmful models, they
should maintain a critical attitude to avoid techno-solutionism [543, 254].

In parallel to these theoretical works, the HCI community has adopted a tangential
lens. It has begun investigating how ML developers build (fair) models by relying on the
algorithmic fairness concepts, and what challenges they meet when using the algorith-
mic fairness tools and toolkits that ought to support these practices [369, 846, 220, 679,
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481, 666, 521, 619]. It has also studied a gap between current formalisations into algo-
rithmic fairness metrics and user perceptions of distributive fairness, pointing out the
contextual nature of fairness [791, 836, 786, 864, 338, 425]. However, relatively little work
has considered how ML developers approach, perceive, and tackle the broader worrying
algorithmic harms caused by ML models and the gap between algorithmic fairness and
distributive fairness —especially since these harms and the gap might not necessarily
be visible to the developers via existing toolkits. Developers are often the first, some-
times the only, and always important stakeholders who can act on algorithmic harms
through the various design choices they make. It is, therefore, vital to understand how
developers perceive downstream harms caused by ML models they deal with, how they
choose to handle potential harms, and whether their perceptions and practices are frag-
mented. Addressing this knowledge gap is a crucial step towards questioning the broad
and potentially negative impact of algorithmic fairness solutions shrouded in techno-
solutionism. Thus, we frame the following research questions: How do machine learning
developers envision and tackle unfairness issues and other harms that might arise from
the models they develop? How does the research/practice gap manifest in this step of the
machine learning lifecycle? What are the main limitations of their practices?

To answer this research question, we conducted a think-aloud study followed by
semi-structured interviews with developers (N = 30). We recruited developers through a
combination of snowball [300] and convenience sampling [352], corresponding to vary-
ing demographic and educational backgrounds and varying levels of experience with ML
and algorithmic fairness. We first tasked developers with investigating two ML problems
that merit various considerations of harms, by providing them access to existing algo-
rithmic fairness toolkits, and observing their practices and reasoning around the harms.
Next, we conducted semi-structured interviews with the developers by asking them why
they prioritized certain harms, envisioned impact of the activities in their ML lifecycle,
and foreseen challenges in the given task. This resulted in transcripts spanning 2207
minutes, which we analyzed using inductive and deductive coding.

We found a new set of activities performed by developers to tackle harms, that had
not been reported in prior empirical studies of the ML lifecycle. Across the develop-
ers, we observed fragmented conceptions of harms and practices towards algorithmic
harms, the way they are prioritized and handled. We identified different misconcep-
tions and various ways in which harms are mishandled. Our results corroborate findings
from existing works on the use of algorithmic fairness concepts, while extending their
generalisability to another set of domains of application in an effort to methodologically
triangulate results. Importantly, our work provides an extensive understanding of the
considerations about and approaches for broader algorithmic harms, where developers
typically follow a similar, often intuitive but not always substantiated reasoning process.
Where some developers are satisfied trading off accuracy with fairness and ticking algo-
rithmic fairness checkboxes that build up a false sense of fairness, others recognize the
complexity of the socio-technical issue, and the diverse unsolvable concomitant ten-
sions. This calls for various theoretical and empirical investigations, to guide developers
in their design choices. Apart from advancing the current discourse around ML prac-
tices to curtail algorithmic harms, our work also has broad implications on the design of
fairness toolkits and the fostering of reflexive practices among developers.
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6.2. RELATED WORK

6.2.1. CONCEPTUAL UNDERSTANDING OF ALGORITHMIC HARMS

ALGORITHMIC UNFAIRNESS

Each step of the ML lifecycle might create or reinforce distributive unfairness [546, 811].
Unfairness might come from biased training data, and from the choice of ML algorithm
and the tuning of its parameters, and it can be reinforced by feedback loops. Works
around algorithmic unfairness develop fairness metrics that aim at measuring distribu-
tive unfairness in the outputs of the final model or in a dataset, and unfairness mitigation
methods that ought to improve the model distributive fairness as defined by the metrics.

To date, there exists three types of fairness metrics [848] (statistical group metrics,
similarity-based individual metrics, and causal metrics) characterized by the type of in-
formation they require to be computed. Research has shown various impossibility re-
sults between metrics, e.g., stipulating that any two of the group metrics cannot be sat-
isfied simultaneously [442]. Trade-offs with other optimization objectives such as differ-
ential privacy [646, 893] have also been explored. These tensions constitute a challenge
for ML developers to choose the appropriate targets for their task. In an effort to clar-
ify this choice, the fairness metrics have been shown to account for different moral and
political philosophy theories and especially a variety of normative egalitarian consider-
ations on which one might align [104, 477, 254].

Unfairness mitigation methods are classified into three types (pre-, in-, and post-
processing) depending on the components of the ML pipeline on which they act [268,
66]. They are adapted to specific fairness metrics, and only applicable to specific types
of data [268], numbers of protected attributes, and tasks. Practically, these methods bear
limitations in terms of performance and especially of their brittleness to small variations
in the model training process (e.g., data splits) [268] and data processing activities [726,
256], to imperceptible variations in training frameworks [648], to the application of ad-
ditional model optimization methods like model pruning [372], or to distribution shifts
[767, 759].

BEYOND ALGORITHMIC UNFAIRNESS

A few works have looked beyond algorithmic fairness to identify other harms of ML [62,
557]. We do not aim at a comprehensive account of these harms but present a few (cf.
Appendix Figure 6.2), that are highly worthy of consideration according to the literature.
To the best of our knowledge, practices around these harms have not been investigated
extensively in prior studies.

Some harms reveal by considering the conceptual limitations of algorithmic fairness
metrics and methods. Looking at output distributions, algorithmic fairness cannot re-
flect the contextual factors that influence what is considered fair (distributive justice).
For instance, it wrongly assumes that parity is always desired in the model outputs [508],
it does not account for the impact one same output has on different receivers of this out-
put [557], and simplifies intersectionality issues [718, 361], while also not accounting for
indirect impact on non-data subjects [457]. Besides, looking at the process to reach algo-
rithmic fairness (procedural justice), the metrics and mitigation methods do not ensure
that the way in which the unfair situation is addressed is aligned with moral principles
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[870]. For instance, a model can reach low disparate accuracy by treating all individ-
uals or groups unjustifiably [571], or differently (e.g., post-processing method allocate
different decision thresholds for different groups) which consists in direct discrimina-
tion [308]. As a result, algorithmic unfairness can be artificially solved, but the structural
causes of the initial unfairness might remain [254, 571].

Three other categories of harms have also been discussed, that rise from the use of
machine learning (ML) techniques. ML requires to use datasets whose schemas and sam-
pling can be harmful. For instance, certain attributes and their values might be offen-
sive [132, 110] or inappropriate [546], e.g., use of non-volitional or privacy-infringing
attributes [315, 834]. They might neglect the complexity of the concept they ought to
represent (e.g., the race attribute [335]), or force populations in non-adapted categories
(e.g., binary gender) [694]. The dataset distribution, despite a correct dataset schema,
might present biases [557, 878, 570], e.g., leaving out of consideration certain popula-
tions. Research also questions the desirability of the prediction model in the first place,
its use for potentially undesired applications [558, 376, 432, 557], and how it impacts the
current structures in place [257]. Using ML for certain tasks might be questioned, for
instance because it means making decisions for people by comparing them to others in-
stead of following the principle of individual justice [105, 254], or because it only allows
to reproduce historical, potentially harmful, data patterns [653]. Certain researchers also
question the negative externalities caused by the production process of ML applications,
such as the environmental impact of data centers and model training [132, 93], the poor
labor conditions of crowd data workers [690, 909, 948, 887], the privacy-infringing data
that are often used for training [660], etc.

6.2.2. STUDIES AROUND ML PRACTICES AND ALGORITHMIC FAIRNESS

Several studies have investigated ML practices around algorithmic fairness. Topics of
focus are specifically around general challenges met by developers [369, 846, 666, 521,
564, 719, 619, 878, 612], focusing on obstacles and limitations for the application of al-
gorithmic fairness paradigms in general, and of fairness toolkits more specifically [679,
481, 220]. Most of these studies consisted in asking ML developers to report on their
perceived challenges. Instead, similarly to Deng et al. [220], we conduct one of the first
task-based studies to observe practices and identify potentially unreported challenges.

Findings typically outline the need to support developers to concretely use algorith-
mic fairness paradigms, challenging due to their context dependence and the current
lack of guidance [369, 521], and due to the need for adapting existing metrics and meth-
ods incompatible with targeted tasks [369]. Additional factors such as business incen-
tives, are also further characterized and shown to be obstacles to develop fair models
[666, 521, 523]. Interviews [220, 679, 481] also show the beneficial use of fairness toolkits
for developing fair models and learning about algorithmic fairness. Yet, they also show
their limitations in terms of support provided to developers for designing the right algo-
rithmic fairness evaluation, noting that participants often inappropriately change their
modeling task definition to fit existing tools. We discuss how each of our results relates
to and corroborates these studies in section 6.4.

While all these studies are important for helping developers build more ethical sys-
tems, they do not provide an outline of the concrete steps through which ML developers
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build (ideally harmless) ML models, nor do they consider the known limitations of the
algorithmic fairness metrics and methods and other harms that ML systems might pose.
We fill this void by investigating developers’ understanding and practices towards the
broader socio-technical harms.

6.3. METHODOLOGY
Interview Procedure. To identify the nuances through which developers understand
and handle harms, we adopted an empirical and qualitative approach via 30 semi-structured
interviews. When participants were already familiar with ML fairness and fairness toolk-
its, the interviews lasted around one hour, revolving around one model development
Task T1. For the other participants, the interviews lasted around two hours each, involv-
ing three stages (Task T1, a tutorial about one fairness toolkit described in more detail in
the Appendix), and Task T2). For this second batch of participants, we studied their prac-
tices without and then with a brief tutorial on algorithmic fairness tools. This mimics
real-world scenarios where they may or may not come across a fairness toolkit, and ex-
periment with it while working on their own harm-sensitive use-cases. In Figure 6.1, we
show the workflow of the interviews with the questions asked in each stage, for the two
groups of participants. We asked three types of questions: background experience ques-
tions (demographics, experience with ML and algorithmic fairness); reflection questions
around algorithmic fairness, harms, or toolkits, and around general comments, wishes,
doubts, and challenges the participants might have about their workflow or harms; and
process questions to understand the reasoning behind each participant’s activities during
the tasks, especially in relation to harms that might be impacted by these activities. In
total, we collected and transcribed 2207 minutes of recording.

Participant 
recruitment

Task 1 
(hospital 

readmissions)

Tutorial on 
algorithmic 

fairness toolkit

Task 2 
(service 

utilization)

Q: demographics

Q: experience 
with machine 

learning

Q: experience 
with algorithmic 
fairness & harms

Q: general 
reflections about 

ML & harms

Q: about the 
reported process

Q: about missed 
process (activities 

& harms)

(30)

Already exp. w/ 
FairLearn (11)

Already exp. w/ 
AIF360 (9)

No prior exp. w/ 
alg. fairness (10)

Task 1 
(hospital 

readmissions)

Previously no exp. 
w/ FairLearn (5)

Previously no exp. 
w/ AIF360 (5) Q: about the 

reported process

Q: about the 
reported process

Figure 6.1: Interview procedure for the participants already experienced with one of the two fairness
toolkits, and for the participants who did not have any prior practical experience with algorithmic fair-

ness and harms. In blue, we represent the main steps of the procedure , and in orange we represent the

questions posed in each step.

Participants. We recruited our participants between April to June 2022, by means of
personal networks, targeted requests on social media (35% of positive responses), calls
for participation on the official Discord or Slack communication channels of fairness
toolkits, and snowball sampling. The participants received no financial compensation,
and their contributions were voluntary. Our institution’s ethics committee approved the
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study. All participants signed an informed consent form acknowledging the risks in-
volved with participating, as well as agreeing to the interview being recorded (all inter-
views were conducted online), transcribed, anonymized, destroyed, and consented to
the results being used in scientific publications. 30 participants were recruited across
research and industry institutions, and across application domains such as healthcare,
finance, and predictive maintenance. Manual sampling was performed to make sure
that all participants have (a) responsibilities in ML model development, deployment, or
evaluation; (b) varying levels of prior experience with ML, ranging from 2 to 15 years;
and (c) varying experience with algorithmic fairness. The participants differ in terms of
demographic (nationality, gender, and age) and educational background.

Materials. We chose two use-cases, the first one involving the prediction of hospital
readmissions within 30 days for individual patients [798], referred to as Task T1, and the
other involving the prediction of low or high medical services utilization [342], referred to
as Task T2. We pre-processed the two corresponding datasets in order for them to have
similar characteristics (similar, tractable number of attributes, and number of records),
and to be prone to similar kinds of harms. Table 6.1 illustrates harms in the two use-
cases. We chose the domain of healthcare because it is prone to various harms, requires
expertise to be handled correctly (we could check whether the participants mentioned
the limits of their knowledge), several corresponding datasets were available, and these
are not the most frequent use-cases in the algorithmic fairness literature which should
allow each participant to investigate them for the first time. These design choices rep-
resent realistic scenarios where ML developers often have to develop or deploy models
without having an extensive expertise in the domain of application (only 4 out of the 30
participants reported having some healthcare knowledge, among which only one had
more extensive, practical experience).

For each task, we shared a Google Colab notebook with the participants, which in-
cluded a design brief with one of the two datasets pre-loaded. The design brief men-
tioned that a hospital (or an insurance company) wanted to optimize their cost and ser-
vices (or their prices), and therefore wanted to investigate whether ML could help them
predict readmissions (or utilization, respectively). The institution tasked the participant
to investigate this feasibility possibly using the dataset they had collected, and to report
on their findings by speaking outloud. For the interviews with developers who had used
a fairness toolkit in the past or with the ones whom we introduced to a toolkit, we loaded
a specific toolkit (FairLearn [107], or IBM AIF360 [91]) into the notebook, that they were
most familiar with.

Analysis of the Transcripts. We analysed the transcripts using a combination of in-
ductive and deductive coding. The first author identified the segments reporting on
the main themes we wished to discuss (e.g., harm conceptions, identification, and han-
dling), and coded any other emerging themes (e.g., factors that developers trade-off
when developing ML models) in close collaboration with four other researchers. In a sec-
ond round of analysis, this author studied each higher-level theme in detail, and identi-
fied the response declinations of each participant (e.g., choice of fairness metrics based
on expert advice, or applying all of them). In a third round of analysis, the author, in dis-
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Table 6.1: Examples of potential harms introduced in the two use-cases presented to participants.

Category Task 1: Hospital readmissions Task 2: Medical services utilization

Desirability of the ML model
Task encoding
desirability

Over-simplified and potentially irrelevant
target labels (unjustified threshold of 30
days).

Potentially unethical task where insurance
prices would be computed based on esti-
mation of medical services utilization.

Distributive unfairness
Biased dataset
causing unfair-
ness

High imbalance for various potentially sen-
sitive attributes (e.g., race: 74% Caucasian,
20% African American and the rest divided
in 4 other categories).

High unbalance of race (white at 80%, oth-
ers at 20%).

Sensitive at-
tributes

"Classic" sensitive attributes (e.g.,
gender), and rarer, potentially sensitive
ones (e.g., marital status, weight).
Proxies (region synthesized to be highly
correlated with race).

Same with race, sex, age, and ques-
tion of marital status, military
service. Proxies (e.g., race highly corre-
lated with poverty status).

Conceptual lim-
itations of met-
rics

Consequences of the model output not
only for the patients but also for their fam-
ily, not measurable.

Consequences of the model output not
only for the insured but also for their fam-
ily, not measurable.

Harmful datasets (focus on attributes and their potentially inappropriate nature)
Attribute infor-
mation

Utility and ethics of using the marital
status to predict hospital readmissions.

Same for marital status, and military
service status.

Encoding Gender encoded as binary, age encoded
into three categories.

Race encoded as binary (white, non-
white).

Impact of various core technical ML activities onto these harms (especially onto algorithmic unfairness)
Missing data Synthetically introduced to correlate with

specific values of the weight and medical
speciality attributes.

21% of synthetically introduced missing
values for the weight attributes with pri-
marily values corresponding to gender fe-
male, which would lead to gender imbal-
ance if dropped.

Outliers Synthetic injection of outliers in the num-
ber of lab procedures attribute

Outliers introduced within one synthetic
attribute corresponding to an aggregation
of several other attributes.

Duplicates No visible duplicates. 20% of synthetically introduced duplicates,
that would cause target label imbalance if
dropped.

cussion with the other authors, reconciled redundant codes, reviewed the consistency
of codes across granularity levels, and identified additional transversal themes from ex-
isting codes (e.g., prioritization of harms or requirements). This process resulted in 276
codes. Based on our preliminary analysis of the literature about algorithmic harms, we
critically reflected on the codes. We identified participants’ perceptions or approaches
that are incomplete or invalid while accounting for the recency and subjectivity of the
knowledge built on the topic, where such information was available. Note that we do
not believe there is a single, correct, approach to perceive or tackle harms. Further de-
tails about the interview participants, materials and questions, and the resulting codes,
are included in Appendix. All our materials, resulting data, code and analysis will be
shared publicly for the benefit of the community and in the spirit of open science.1

1https://osf.io/dmr82/?view_only=a00e68796f494fbb9776cf9a95fb7051

https://osf.io/dmr82/?view_only=a00e68796f494fbb9776cf9a95fb7051
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6.4. RESULTS
We present the findings of our study following the stages of the ML developers’ process.
We first discuss how ML developers recognized potential harms, how they analysed them
to decide whether to tackle them, and finally which approach they adopted for mitiga-
tion. We contrast the identified practices with those reported in literature on algorithmic
fairness and harms to identify alignments between the practices and the research, and
the corresponding limitations.

6.4.1. RECOGNIZING ALGORITHMIC HARMS: DISPARATE REFLECTIONS AND

(MIS-)CONCEPTIONS

A RICH SET OF HARMS ENVISIONED BY DEVELOPERS

Our analysis of the interviews resulted in the identification of three conceptual layers of
considerations about harms. The first layer corresponds to macro-categories of harms,
where the four macro-categories identified in the literature (cf. subsection 6.2.1) match
with those discussed by developers (we color-code the considerations based on their
macro-category, and underline them based on the layer they belong to). P28 “We need to
look at the bigger picture to see if our work is ethical. That can go for the carbon footprint,
the sustainability, the impact this may have on the labour market, and in warfare.” The
second layer corresponds to the sub-categories of harms identified per macro-category.
There, we identified a number of harms that haven’t been discussed in-depth in the liter-
ature. For instance, during the development process of an ML system, P6 discussed their
concern for equally sharing resources (e.g., GPU clusters) across those of an organisation
who might need them. About the desirability of an ML system, multiple developers dis-
cussed the modes of human-ML collaboration that the system should be designed for to
be considered acceptable. They suggested that although ML can serve to remove human
biases, one should remain cautious when using the outputs of an ML system, and ensure
human oversight –this shared control is often not discussed in the context of harms but
solely accuracy [74]. The third layer corresponds to the complementary and opposing
conceptions of specific harms. We identify a diversity of considerations, that are not all

discussed within the literature. For instance, while several works argue that one should
consider the ethicality of the goal an (ML) system is built for [558, 432], and then reflect
on whether using ML for this goal is appropriate –considering what ML entails, e.g., in
terms of repeating previous patterns [718], or explainability of the outputs [145]–, it ap-
pears that research has not considered the practical concerns of P3. P3 argued that one
should not employ ML in a system in contexts where the functioning and outputs of the
system need to be updated at a fast pace to avoid certain harms. Indeed, P3 explained
that ML-based systems are not considered flexible enough for quick updates, as ML de-

velopers shy away from modifying them. P3 “Everybody is afraid of changing something
"if you change this, it breaks this". So we usually start with: what is the problem that
you are trying to solve? could it be solved by simple query, by business rules, or statistical
model? If not, by machine learning? It’s not about amplifying the buzz and having AI ev-
erywhere. It’s about the real value of using it.” The different conceptions of harms across
layers are exhaustively listed in Table 6.4 and Table 6.5 in the Appendix.
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A HIGH DIVERSITY IN THE BREADTH AND DEPTH OF REFLECTIONS

During the interviews, each developer touched upon different categories and sub-categories
of harms. For example, in terms of categories, certain developers did not mention any
harm at all before being introduced to the fairness toolkits, while others reflected on
a large diversity of them; only 3 developers discussed crowd workers’ labor conditions.
Many participants mentioned concerns around privacy infringement in training data,
yet, at the conceptualisation level, most of them envisioned issues specifically with ei-
ther consent for data use or with data anonymisation, but not both. Similarly, several

participants engaged in critical reflections about the appropriateness of the data schema,
but not all of them discussed both the completeness of the set of attributes, the meaningfulness

of each attribute, and of their encoding. This highlights the importance of delving into

the layers of harms and fostering concrete discussions, since developers may stop at the
first or second level in their considerations, and may not foresee the deeper issues.

DISAGREEMENT AND (MIS-)CONCEPTIONS

Disagreement on what constitutes a harm is natural due to the inherent subjectivity
in the perception of harms. Disagreement is clearly illustrated by the reflections of
our participants around the third layer, where we identified potentially opposing
considerations. For instance, in terms of the goals of the system, not all participants
reflected on all stakeholders, but instead adopted the lens of a single stakeholder,
e.g., declaring the system desirable as soon as it benefits the organization that de-

ploys it, or considering the morality of the goal towards society, which might not

always lead to the same conclusion. P16 “It’s appropriate and relevant for the busi-
ness. They want to save money or to reduce time of the workers.” In terms of feature
sensitivity, developers disagreed on the exceptions making a sensitive feature not
harmful, e.g., exception as soon as the feature is related to the target label, or if it is

volitional and related to it. Even when developers agreed on the sensitive features, they

did not envision the same ideal use of these features for the system to not be harmful.
Some mentioned that such features should not be used in any case, whereas others

proposed exceptions, e.g., when the model does not attribute high-importance weights

or when its output does not display disparities across them. These opposing con-

siderations also surface across the macro-category layer. For instance, certain
participants’ conceptions of harms were found to be contextual and extremely rel-
ative, as they considered the environmental impact of model training non-harmful
as long as the ML system was desirable for society or that it would somehow

allow to save some energy somewhere, while others solely saw the potential for harm.

We also found subjectivity around questions of distributive fairness. Different de-
velopers mentioned different conceptions of the ideal output distribution, that can
be attributed to different moral assumptions and theories in political philosophy
[104]. For instance, they referred either to notions of predictive parity or to notions of
statistical parity that reflect different cases of equality of opportunity [347].

Certain considerations might be considered questionable according to existing re-
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search and regulations. For example, certain sensitive features are protected by law
in certain contexts and certain output distributions are demanded, yet developers dis-
cussed neither these nor questions of intersectionality. Research [361, 508] has shown
the limitations of considerations of parity in output distributions, that were only envi-

sioned by three developers. Besides, while 63% of developers discussed the need for
changing current data distributions to reflect algorithmic fairness, 30% of developers in-
correctly assumed that a distribution representative of the real world will always lead
to train a fair, non-harmful, model (and that "debiasing" a dataset is not desirable) as
one should not distort the way the world is (WYSIWYG –What You See Is What You Get
[267]). Yet, literature [546] has shown that for building fair models, one should account
for existing historical biases (WAE –We Are All Equal) in data.

VARIABILITY IN THE UNDERSTANDING OF THE ACTIVITIES THAT MIGHT CAUSE HARMS

Prior work [381, 714, 256, 726, 878] has highlighted a wide spectrum of challenges sur-
rounding some of the data and model activities of the ML lifecycle, that can impact al-
gorithmic unfairness and other data-related harms. In the interviews, developers dis-
cussed such activities and others that they perform — data processing, data cleaning,
crowdsourcing-based data labeling, dataset splitting, and model building. However,
most developers did not envision any harm that these activities might cause or rein-
force. They also did not discuss the potential negative implications of more-well known
issues such as distribution shifts between deployment and training, be it in terms of ac-
curacy (more familiar) or algorithmic unfairness [674]. Only 3% to 10% of the developers
acknowledged potential harms from these activities (e.g., P5 for data outliers, P21 for
missing values, and P1, P29, P30 for other preprocessing activities), mentioning skews to
the datasets that the activities might cause, which would lead to algorithmic unfairness
in the outputs and/or silencing certain populations in the dataset.

Some envisioned connections between the activities of the ML lifecycle and harms
went beyond what is discussed in the literature. For instance, prior work [726] has dis-
cussed processing of data errors as an activity that can impact algorithmic fairness. Yet,
P29 suggested thinking beyond the technological handling of the errors, to their mean-
ing for the data subjects and the design of the system beyond the algorithm. “In South-
ern California where there’s a large Hispanic population, when testing a model to allocate
poverty benefits to low-income individuals, they found that Hispanic applicants were re-
jected at higher rates, just because these applicants aren’t fluent in English [mentions data
outliers]. They’re having trouble with the application form. So the solution to make this
system fair was just to offer the form in Spanish, you don’t do anything with the model.”
Cf. Table 6.6, Table 6.7 for the ML activities and envisioned harms.

6.4.2. ANALYZING HARMS & SETTING GOALS: GOAL DIVERSITY BASED ON

VARIOUS ENVISIONED TENSIONS

ENVISIONING TENSIONS & IMPOSSIBILITIES

A recurring theme along the developer’s process is tension and trade-off. Along the
ML lifecycle, factors that developers account for and that trade-off with considerations
around harms trickle down. Some of these tensions already emerged when conceptu-
alising when to consider something harmful (subsection 6.4.1). Others are discussed
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when deciding whether (e.g., how important the harm is compared to system objec-
tives) and how to handle a harm (e.g., mitigating distributive unfairness by collecting
more data might be privacy infringing). We identify five types of such tensions. Devel-
opers take into account requirements concerning the ML model capabilities (e.g., accu-
racy, explainability), the system infrastructure (e.g., computational power for training),
and the development process (time). They also bend to external constraints, especially
around the data, e.g., feasibility and cost of collection. Finally, solving certain harms is
inherently in tension with other harms (e.g., impossibility results about various fairness
metrics [442]). Many of these tensions are not accounted for in the literature.

Developers do not envision all these factors that might be at play when making a
choice about a harm. For instance, some developers first chose a type of algorithm to
build an ML model focusing on explainability power, and only later considered algorith-
mic fairness without questioning the initial choice, incorrectly assuming independence
of explainability and fairness [90]. Besides, the tensions they account for are not all valid.
For instance, nine developers wrongly envisioned the acontextual existence of a fairness-
accuracy trade-off [192, 239, 526], especially because they did not reflect on data biases
that might render measures of accuracy invalid. One developer considered a feature
harmful to be used by the model, but argued for not dropping it, incorrectly believing
they would not be able to monitor for output bias (incorrect as the training and test set
can be different). All identified tensions are listed in Table 6.12.

PRIORITIZING AMIDST TENSIONS

Because of the tensions, developers have to prioritize certain objectives or harms. We
do not identify the same priorities across developers. For instance, while some devel-
opers reported being ready to use smaller models and datasets resulting in less accu-
rate models in order to reduce environmental or labor impact of model training, others
judged model performance as the highest priority to optimize the model for. The thresh-
olds of satisfaction for the different objectives also differed across developers, resulting
in accounting for different objectives and harms to different extents. P27: “In an ideal
scenario, you want the system to be fully fair and accurate, but if you increase one, you
decrease the other, and conversely. So we want to cut in half the burrito, like an optimal
trade-off.” However, we did not find any precise criterion for the developers to judge the
satisfaction of a system in relation to harms. Instead, they either relied on the judgement
of other stakeholders (e.g., data subjects, model requesters, or domain experts), their
own intuition and the amount of effort needed to handle the harms, or on comparisons
with prior algorithmic or human baselines. Their prioritization was mainly informed by
how important and severe they considered each harm individually, and relatively (when
they perceived a tension), the feasibility and effort needed to address the harm, and var-
ious cost-benefit trade-offs (e.g., utilitarian view vs. libertarian view).

DEFINING VARIOUS GOALS

Developers who consider important to handle a harm, do not all take upon the same op-
erationalization goals. Most of them undertook to mitigate the harm. Yet, others did not,
because of other priorities and potential tensions, or the lack of (awareness of) method
for mitigation. Instead, they mentioned keeping track of the harm (e.g., when a popu-
lation is silenced if the corresponding records are erased from the data) as a memo to
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carefully use the system (potentially working around the harm, e.g., by having human-
decisions for the non-supported populations), or explicitly and solely deciding pragmat-
ically not to address it. A last solution three developers proposed is not to deploy the
system, or making the harm transparent for the decision maker to take such executive
decision. P1 “if you really need the mitigation approaches for the model to be accurate
or have a good selection rate, you should question whether ML makes sense to use in this
scenario.” P6 “I would have this conversation with the hospital. I could say where we’re
confident and where we’re not.” All goals are listed in Table 6.11.

6.4.3. ACTING ON HARMS: PLURALITY OF OPERATIONALISATION PRAC-
TICES

A MORE COMPLEX WORKFLOW FOR HANDLING HARMS

Eight activities that ML developers perform specifically to handle harms emerged from
our analysis, in addition to the usual ML lifecycle activities that can impact harms. Works
[569, 920] that have identified ML activities do not highlight these activities, and even
when they look beyond the inner loop of technical ML work (dataset collection and
cleaning, model design and monitoring), they remain more abstract [454, 637]. These
are 1) understanding the allocation of responsibilities and power relations within the
project and organisation where they work in order to identify potential obstacles and
needs for them to tackle harms; 2) envisioning potential harms the project might cause
(subsection 6.4.1); 3) identifying invisible tensions and often first uncovering ambigu-
ous objectives and external constraints that constitute these tensions (subsection 6.4.2);
4) prioritizing harms or other factors (subsection 6.4.2), and setting up realistic goals
for each harm (subsection 6.4.2); 5) identifying, adapting/developing, and applying al-
gorithmic unfairness identification and mitigation methods (see below); 6) identifying,
developing, and applying strategies to account for the other harms ML models foster
(see below); 7) actively warning the stakeholders empowered to deploy the ML model
about the harms; and 8) working to develop re-usable toolkits and responsible AI pro-
cesses within their organization (often voluntarily). Not all developers performed each
step, e.g., as they would not necessarily realize the existence of tensions, would not feel
concerned by harms in their systems, or would not have the desire or opportunity to de-
sign harm-related processes for their organisations — increasing the potential for harm
of the ML system. Certain activities occur in different orders, = in iterations, e.g., 5) and
6) are often performed simultaneously, and potentially serve to update on 3) and 4). We
now discuss 5) and 6) in more depth as they are crucial to ML harm practices.

A DIVERSITY OF APPROACHES FOR HANDLING HARMS

When developers decide on handling a harm outside the distributive fairness category,
they either do not deploy the system, bring additional constraints onto the development
process (e.g., on the dataset size, schema, or computational power), engage into addi-
tional data engineering and model engineering efforts (e.g., deletion or re-collection of
data), or envision restructuring the learning task and the broader system design and in-
teractions with users. To the best of our knowledge, such approaches have not been
reported and studied in prior works in relation to algorithmic harms. When developers
handle a harm related to distributive justice, they employ various approaches to iden-
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tify, quantify, and tackle it, resulting in a variable mitigation of these harms. For in-
stance, they considered one or multiple fairness metrics simultaneously, often selected
among either group performance or group distribution, but sometimes among individ-
ual fairness (causal fairness metrics were only mentioned by one developer). P2 “because
this model will work in hospital with patients where fairness is important, we check all
the group fairness metrics of FairLearn.” Similarly, for mitigating unfairness, they either
proposed various manual or semi-synthetic transformations of the dataset, or applied
different fairness mitigation methods across the three existing categories of methods.
While most approaches revolve around data and algorithmic changes related to miti-
gation methods from the literature, some system design-level transformations are also
proposed that are not extensively discussed in the literature (but might be effective).
For instance, P28 brought the need to develop a different, more usable, interface for the
decision subjects to enter their data (avoiding dataset under-representation from mi-
nority individuals not familiar with the technology or input language), five developers
proposed to leave out under-represented populations from the dataset and model, and
five others modeled a new learning task. P6 “We actually have enough data that we might
be able to train separate models. So you might not even use the normal FairLearn strategy,
which is to train one model that works well across populations.” Table 6.9 and Table 6.10
list the ways with which distributive unfairness is identified and mitigated.

MIS-HANDLING?
Some approaches employed are not appropriate, either because they do not have the in-
tended effects, or because they can cause new harms in certain contexts. For instance, in
order to reach algorithmic fairness, three developers proposed to simply drop the sensi-
tive attribute that presents unequal distributions, overlooking the limitations of "fairness
through unawareness" [241] and especially the existence of proxy attributes that might
skew a model. 30% of developers did not realize the (almost unavoidable) need for data
sampling transformations to reach algorithmic fairness, not realizing the existence of po-
tential measurement biases, or not envisioning that when the model sees too little data
about certain groups, it might not be able to learn to make correct predictions on those
groups. P23 “Some of the bias comes by nature, like the data given the situation happening
in the real world. That’s not something you can change, it’s happening by nature.” Other
developers decided to aggregate data of different underrepresented groups to create a
more equally-distributed dataset (in comparison to the majority group) without envi-
sioning that relevant differences between these groups might still prevent algorithmic
fairness [260]. Finally, other developers filtered out under-represented populations to
reach parity across a smaller number of groups. This can lead to an even lower accuracy
and harms for the silenced groups — an aspect several developers did not realize.

A DIVERSITY OF CRITICAL REFLECTIONS AROUND HANDLING OF HARMS

We investigated to what extent developers engaged in reflective practices, and observed
epistemic or practical limitations of their process. Since most developers did not en-
gage in such reflections, we prompted them directly. Most developers were not able
to envision any limitation. When some did, the limitations identified matched those
brought up by prior literature. For instance, they talked about conceptual limitations in
accounting for individual differences when receiving wrong outputs or accounting for
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the impact of the systems on non-decision-subjects stakeholders. For mitigation meth-
ods, they discussed that some approaches might not be considered ethical, or that they
reflect techno-solutionist trends where the solution allows to reach parity in numbers
but does not solve the societal cause of the problem. In the face of such limitations, the
developers were often at loss in knowing how to react. They were not aware of better so-
lutions and they reported to be satisfied with their approach, or chose a different fairness
metric or mitigation method, without realizing that the alternatives were also limited.

6.5. DISCUSSION & IMPLICATIONS AROUND THE RESEARCH /
PRACTICE GAP

6.5.1. POSITIONING THE RESULTS: RENEWED EVIDENCE OF DIVERSE AND

FLAWED CONCEPTIONS AND PRACTICES

Our results highlight that there is no standard practice among developers. We identified
a multitude of (mis)conceptions of harms, different ways to prioritize harms and other
objectives, and to set concrete goals, and various potentially flawed approaches to quan-
tify and handle harms. Our study complements prior works, and unveils novel insights.

CONCEPTUAL RESEARCH ON HARMS

Theoretical works have demonstrated results about algorithmic fairness, tensions [105,
315, 397, 748], and ML lifecycle activities as a cause of unfairness [256, 726, 878]. Others
have formalised issues around flawed assumptions made by developers or researchers
[846, 731, 630, 313, 492], and have discussed the underlying philosophical theories of dif-
ferent algorithmic fairness tools such as the conceptualised opposition between two vi-
sions of the world (WYSIWYG and WAE) reflected in datasets [267, 870]. These works are
aligned with our findings: they bring rigorous frameworks to describe (mis)conceptions
that our participants fell into. For instance, apparent trade-offs between group and in-
dividual fairness metrics [105] or distributive and procedural fairness [315], or between
accuracy and algorithmic fairness [397], are in reality nonexistent in certain contexts.
Yet most participants believed in a strict opposition between objectives as they did not
understand the intricacies of these objectives and relevant approaches.

We could not identify literature to characterize each conception, prioritization, and
handling approach we identified, especially around algorithmic harms beyond distribu-
tive questions. We suggest to investigate each finding independently, e.g., by conducting
empirical studies, theoretical proof-based works, or conceptual reflections, to better un-
derstand their ins and outs, and advise developers. Our results outline a multitude of
factors that are unspoken in the research community, e.g., conflicting ML performance,
infrastructure requirements, or external data constraints (except the conflicting busi-
ness/developer goals [621, 521, 612], and lack of metrics and mitigation methods for cer-
tain contexts [369]). As these factors are inherently in tension with algorithmic harms,
they unavoidably have to be accounted for by developers, and further research is re-
quired to better understand how to make choices around these seemingly unsolvable
tensions.
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EMPIRICAL RESEARCH ON PRACTICES AROUND HARMS

Our results validate, corroborate, and extend empirical works that have identified flawed
perceptions, practices, and obstacles around algorithmic fairness. We bring further con-
firmation and hint at generalizability of the results as we performed our study on differ-
ent use-cases, with different, and larger numbers of participants. For instance, the prob-
lematic belief developers have in fairness through unawareness [220], the subjectivity of
choices based on personal experiences [220, 666], and misconceptions towards fairness
metrics [175] had already been pointed out in different contexts. Besides, Muller et al.
[570] have surfaced harmful forgetting practices in a multitude of activities of the ML
lifecycle, discussing for instance data silences and the flawed WYSIATI (“What You See Is
All There Is”) assumption. These literature-based results on biased data work echo our
empirical finding that developers routinely conduct data activities that might erase cer-
tain populations, and decide not to deploy the ML models for these populations, without
deeply reflecting on the consequences for them.

Our results also extend the list of (mis)conceptions and (mis)handlings to broader
algorithmic harms, where there is insufficient guidance for developers. We could not
find any work that investigated in detail practices towards harms beyond distributive
fairness. Yet, we note great similarities in how one approaches the other harms and dis-
tributive fairness, or more generally how the data science workflow is approached by
developers, via constant negotiations between amorphous objectives and unambiguous
problem formulations without explicit normative considerations [619]. Besides, only few
works have brushed over practices around the gap between distributive fairness and al-
gorithmic fairness, while our results delved deeper into identifying the traps and good
practices participants fall into or follow. These traps were discussed in prior concep-
tual works [731], and now observed in practice: the formalism trap that directly refers to
the gap, and the framing trap that relates to the other harms, differently handled across
developers. The portability and ripple effect traps were not envisioned by most develop-
ers, yet a few mentioned the possibility for their models to be dangerously repurposed,
or discussed how the original system functions in terms of decisions and what kind of
shared control should be established between the decision maker and the model. The
solutionism trap was solely considered by a few developers when they referred to the
technical solutions to algorithmic unfairness not being enough, e.g., they mentioned
that identifying biased outputs indicates a deeper structural issue that cannot be solved
through an ML model. The sociotechnical system (STS) lens [731] proposed to circum-
vent the traps should be revisited to better guide developers while accounting for our
new insights on their practices.

6.5.2. WHERE DO WE GO FROM HERE?
Our findings corroborate the lack of standardization observed in ML practices around
algorithmic harms. It is tempting to argue for more standardization to curtail the per-
petration of harmful models, by enforcing specific definitions of concepts, clear harm
prioritization and handling approaches, and a uniform source of information for practi-
tioners. These are the advantages brought about by attempts at standardizing ML pro-
cesses (e.g., MLOps [20, 819]) or algorithmic fairness processes specifically [8]. Yet, is it
really possible to standardize processes? The problem is socio-technical and complex
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due to its context-dependence and recency. HCI research [136] has argued that stan-
dardization cannot account for the issues and constraints imposed by the context of the
work. And this has been demonstrated by the mild impact AI ethics standards seem to
have [945]. It is not possible to propose definitions or metrics for all factors to account
for, nor approaches cognizant of all these factors, but the involvement of various stake-
holders is evidently necessary.

SUPPORTING REFLEXIVITY

Instead of standardizing, the research community should support flexibility of practices,
and invest efforts into changing the mindsets of developer, and particularly foster con-
textualisation and reflexivity activities [548, 156], which are not commonplace. Future
research can explore how to train developers in performing such activities, or how to
guide them specifically around harms and the design choices they have to make. Col-
laboration with more adapted practitioners should also be encouraged. For instance,
when a tension occurs, interdisciplinary insights are needed to understand how to pri-
oritize factors, e.g., by uncovering and negotiating preferences of different stakeholders
[836, 146, 484], and when not to deploy models. It is now well-known that collaboration
in the ML lifecycle is often needed [220, 920, 637, 454]. In this study, we also found that
diverse stakeholders were sometimes involved in the activities we synthesized, e.g., to
identify inappropriate attributes and task encoding, or to select fairness metrics and de-
fine satisfactory thresholds. P6: “There’s a question of what is an acceptable difference in
performance. It’s a difficult question to answer, and that’s something you talk to all the
stakeholders about.” Yet, prior work has shown that tackling questions around algorith-
mic harms is still predominantly the job of ML practitioners alone [920, 521, 882], a find-
ing that was echoed in our study. For instance, the elicitation of requirements around al-
gorithmic harms and their prioritization were typically left out from stakeholder involve-
ment and the stakeholders themselves did not proactively involve themselves [637, 803,
846, 803] whereas it could be considered their responsibility. We join the recommenda-
tions of such prior works that call for facilitating collaboration between stakeholders in
these new socio-technical activities.

GUIDING VIA ALGORITHMIC FAIRNESS TOOLKITS

We acknowledge recent debates arguing whether ML developers are the right individ-
uals to address socio-technical problems of ML (myth of ML practitioners as "ethical
unicorns" [662]). Recognizing that ML developers are thrown into this role, we empha-
size the pressing need for future work to better support activities of these developers.
Since fairness toolkits are one of the primary sources of information and tools develop-
ers use to handle harms, but considering that we still identified flawed conceptions and
practices, we propose to extend existing toolkit rubrics with broader and deeper consid-
erations of algorithmic harms to guide developers better. Aligned with the idea of AutoAI
tools as collaborators in organising a work plan [862], existing fairness toolkits could re-
mind developers not to leave out certain harms and to consider the new activities we
identified. Toolkits could also aim at facilitating the identification and proper handling
of these harms with awareness of the limitations of algorithmic fairness concepts. One
could potentially leverage the (mis-)conceptions we collected, and the attached theo-
ries, in order to outline anti-patterns to avoid at each step of the ML lifecycle. Enhancing
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toolkits will be a challenge as existing warnings in FairLearn [107] are not always con-
sidered by the developers. Besides, one should keep in mind that toolkits should aug-
ment ML developers but not automate their work [862, 882], and remain cautious not to
make the toolkits checkboxes, but instead make them foster critical thinking on topics
for which knowledge is still incomplete. There is an opportunity to develop other tools
than toolkits, such as guidance frameworks [915].

INVESTIGATING THE DEEPER FACTORS THAT IMPACT PRACTICES

While we identified the landscape of (mis-)conceptions and (dubious) practices around
harms, we did not investigate what causes such a diverse landscape. This would be nec-
essary in order to understand where to focus our efforts in the future, e.g., in fostering
developers’ due diligence through education [220, 719, 454], or enforcing structural in-
centives via the establishment of organisational processes [666]. Particularly, from the
analysis of the interviews, many factors emerged, around developers’ perceptions and
knowledge of harms and potential solutions (e.g., only P4 and P30 admitted their lack
of knowledge P4: “For hyperparameters like learning rate, I can’t see the connection with
harm: it just influences accuracy. But I’m hesitant to say it doesn’t affect it at all because
you never know with these things.”), and their aptitudes and attitudes for reflecting about
them, that are themselves impacted by numerous individual traits and the developers’
environments (e.g., incentives from the organization, available mitigation tools, etc.).
Despite all these factors being relevant, and considering the diversity of developers we
interviewed, not all of these factors have been studied thoroughly in existing literature.
Some of our findings also differ from prior works. For instance, Deng et al. [220] asked
developers without experience in algorithmic fairness how they would evaluate the fair-
ness of their model given a fairness toolkit and a college admission scenario. They found
that these developers recognize the limitations of their knowledge and wish to receive
help from domain experts, which was only the case for a few of the developers we in-
terviewed on a different scenario and with varying experiences with fairness. Hence,
identifying potential factors and potential impact on harm conceptions and practices,
and then quantitatively studying those is a meaningful direction for future work.

6.6. LIMITATIONS & THREATS TO VALIDITY
Despite leading to a large amount of insightful results, our experimental setup bears
limitations that might hinder the generalisability of our findings. While we strived for
recruiting a diverse set of participants in terms of demographics, experience with ML,
and algorithmic fairness, it was not possible to obtain a larger sample for each cate-
gory. Several of our observations, however, corroborate findings from previous studies,
hinting at their validity through methodological triangulation. Yet, focusing on other do-
mains and less-represented segments of population using targeted recruitment methods
would be important in the future. In terms of interview sessions, not all developers had
the time to answer our entire set of questions for each harm identified prior to the inter-
views. Hence, we cannot provide quantitative results around unreported harms (due to
not having time, forgetting, or simply not considering it an harm). Finally, we acknowl-
edge our own unavoidable subjectivity in identifying and characterizing potential harms
and flaws.
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6.7. CONCLUSION
Our study represents a testimony of the constant socio-technical negotiations [619]
needed to build and deploy a machine learning (ML) model. Our results echo previ-
ous studies on algorithmic fairness, and complement them with new evidence of the
complex and potentially worrying state of ML practices around broader harms. We con-
tribute to the effort of triangulation of results in HCI research [520] and especially in the
relatively recent field of ML practices. Particularly, our results contribute a deeper and
more comprehensive understanding of the (mis)conceptions and (mis)handling around
algorithmic harms, which calls for theoretical, design, and HCI works to ultimately guide
developers in the development of unharmful models. We believe that the FAccT commu-
nity is uniquely positioned to tackle these challenges with the growing interdisciplinar-
ity of research efforts, an indisputable pre-requisite to make real progress. In the next
chapter (Chapter 7), we investigate the factors that might lead to the fragmentation of
conceptions and practices identified across ML developers. Knowledge of these factors
is extremely important to understand the deeper reasons for the subsistence of certain
limitations and challenges identified in this study, and to propose additional remedies
to such limitations and challenges.

ADDITIONAL DETAILS AROUND RELATED WORKS
Fairness toolkits. To facilitate the adoption of metrics and mitigation methods, var-
ious companies and public institutions have built fairness toolkits. These toolkits are
typically code repositories that allow an easier implementation of the metrics and meth-
ods. Examples of these toolkits are FairLearn [107], AIF360 [91], Aequitas [704], Lift [842],
Themis-ML [77], ML-Fairness Gym [205], TensorFlow Fairness Indicators [892], etc.
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Figure 6.2: Taxonomy of harms investigated in our study. In orange we represent

the limitations of algorithmic fairness , i.e., the current, flawed, solution to distributive unfairness,

and in blue we represent the other types of harms.
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ADDITIONAL DETAILS ABOUT OUR METHOD
DETAILED DESCRIPTION OF PARTICIPANTS’ BACKGROUND

Cf. Table 6.2.

Table 6.2: Background of the participants in our study. Note that some participants reported multiple educa-
tional backgrounds.

Dimension Values (and number)

Demographic information
Nationality US (6), Netherlands (6), India (4), Iran (2), Russia (2), Romania (2), Sint

Maarten (1), Canada (1), Brazil (1), Slovakia (1), Poland (1), Greece (1), Spain
(1), Ukraine (1)

Gender male (24), female (6)
Highest education BSc (2), MSc (21), PhD (7)

Experience with machine learning
Work type applications (14), research (8), both (8)
Application domain healthcare (4), finance (3), recommender systems (related to human re-

sources) (3), predictive maintenance (1), others
Education computer science (25), mechanical engineering (3), business or economics

(3), sociology (1), psychology (1), accountant ethics and compliance (1)
Years of experience 2 or less (13); 3 to 5 (15), 15 (2)

Experience with algorithmic fairness
Years of experience 18 (1), 3 (3), 2 (7); 1 (2), 0.5 (7); 0 (10)
Type of experience long-term research (6), short-term research (4), frequent use (7), irregular use

(3), none (10)
Toolkit no exp. then FairLearn (5), no exp. then AIF360 (5), exp. with FairLearn (11),

exp. with AIF360 (9)

DETAILED DESCRIPTION OF THE QUESTIONS ASKED TO THE PARTICIPANTS DURING THE

INTERVIEWS

Questions on background experience. We started the interviews by giving a brief
overview of our research to the participants, and by questioning them about their back-
ground (demographics and machine learning experience). Once all required tasks were
completed by the participants, we asked final questions about their fairness experiences,
how they learned and work with algorithmic fairness/harms, and reasons for using a cer-
tain toolkit, as well as their broader knowledge of the responsible machine learning field.
We made sure not to ask any question related to their algorithmic fairness experience at
the beginning of the interviews not to bias them towards thinking of particular topics.

Questions on higher-level reflections. At the end of the interviews, we also asked gen-
eral reflection questions about any other considerations they might have when building
models, any additional harm they could envision, their experiences with the fairness
toolkits that we had introduced (for practitioners who previously did not know these
toolkits) and potential changes they would like to see in these toolkits, about algorith-
mic fairness and whether it can be solved as well as on the limits of fairness metrics and
mitigation methods (when not mentioned earlier), about their responsibility in consid-
ering algorithmic harms, and about any other wish, doubt, or remark.
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Questions on the process. While the participants were working on the tasks, we asked
them questions about their process, in order to understand the reasons for performing
each exploration activity, the thoughts they had when seeing the results of an explo-
ration, and the actions they would take based on these results, as well as to make sure
they had not forgotten any activity. We especially questioned them on activities that
might have a connection to algorithmic harms (e.g., observing data distributions and
rebalancing the dataset based on the target labels). After the two tasks in the case of
the participants inexperienced with toolkits (not to bias the participants towards certain
reflections when looking at the second task), and after the first task for the other partic-
ipants, we further questioned them on the algorithmic harms they had not investigated
(whether they usually consider them, why or why not, how they would handle them)
during their exploration of both tasks, and on the harms that could be resulting from the
activities they mentioned. We identified the harms we posed questions on through our
analysis of the literature subsection 6.2.1 Table 6.1, and we also coded any other harm
they could mention. We made sure to first ask vague questions (e.g., what can be issues
with the activity of labeling data with crowd workers), before going onto more specific
questions (e.g., what do you think of potentially poor labor conditions of crowd workers),
so as to see to what extent the practitioners actively think about these harms.

OTHER MATERIALS

Tutorial. The tutorial consisted in presenting the concept of algorithmic fairness,
the ways different fairness definitions are computed and different mitigation methods
are applied (concepts of data pre-processing, model in-processing, and output post-
processing), as well as illustrating the use of one of the toolkits to apply these definitions
and mitigation methods. We gave the tutorial with a third use-case dealing with the pre-
diction of credits default [363, 908]. This use-case was chosen for its popularity within
tutorials on algorithmic fairness and toolkits, so as to be as close as possible to what a
machine learning practitioner might see first when learning about algorithmic fairness.

To give the tutorial, we shared our screen with the participants, showing a Jupyter
notebook we had prepared with these concepts and examples of application of the tools
on the credits default dataset. We especially presented the computation of some of the
metrics on a simple logistic regression classifier, and on the same classifier to which
various mitigation methods (e.g., the threshold optimizer and grid search algorithms of
FairLearn, as well as the reweighing and prejudice remover algorithms of AIF360) are ap-
plied. We made sure to answer any question the participants had during the tutorial and
later when provided with their second task. At the end of the tutorial whose aim was to
give the participants a basic introduction to algorithmic fairness and toolkits, we asked
for verbal validation from the participants to confirm we achieved our goal.

Notebooks. When working on these tasks, we made sure to reassure the participants
that they did not have to code the entire exploration they would perform (only if they
wished to), but they could also simply speak out-loud and report on what they would do.
We had already prepared additional notebooks with code snippets that the participants
might want to use, and we shared these snippets with them whenever they would men-
tion a certain exploration activity that would correspond to the snippet. This allowed to
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reduce the complexity of the session for the participants, to accelerate the process, as
well as to see them reflect about concrete results of the exploration activities.

Pilot Studies. Before performing the interviews, we performed two pilot studies with
practitioners working at our institution. These two studies allowed us to check for the
understandablity of the tasks, to refine our questions to prompt about the different
harms, to better time each task, and identify relevant reflection questions, as well as to
make sure that we had prepared enough code snippets to help the practitioners.

RESULTING THEMES AND CODES

The coding process resulted in 13 high-level code categories (e.g., data schema consid-
erations) with 3 to 6 intermediate levels of codes within each category (e.g., sensitive at-
tributes, inappropriate attributes), and 8 to 34 finer-granularity codes (e.g., automatic or
expert-supported identification of attributes) that represent the different response decli-
nations. In total, this represents 276 finer-granularity codes (summarized in Figure 6.3).
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distributive fairness

Data distribution 
considerations (14)
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Fairness mitigation methods 
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is any consideration of topics such as 
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Type of metrics employed

Envisioned conceptual and practitical 
limitations, and attitudes towards them

Reasoning over the choice of metrics, including 
involvement of stakeholders, traded-off 
factorsm and attitude towards activity

Type of methods employed, including typical 
mitigation methods and other activities

Reasoning over the choice of method, including 
other factors to trade-off, and attitude towards 

activity
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Process harms (18)
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appropriateness, attribute sensitivity
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Handling these issues, including reasoning for 
choosing a method (e.g., involving 

stakeholders)
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appropriateness, system usage and automation

Attitudes towards these issues, including 
trading off their importance with other factors
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as privacy, distribution shifts

Attitudes towards these issues, including 
trading off their importance with other factors, 
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outlier) (25)

Other data activities (17)

Model building activities (18)

Model evaluation activities (8)
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(collected from other codes) 
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Figure 6.3: Summary of the main themes (in orange) resulting from our study, the main categories of code (in
green with the total number of code per category in parenthesis), and the main relevant results (in blue). We
show (in light blue) how we surfaced new themes from certain categories of codes.
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DETAILED RESULTS FROM THE CORE OF THE MANUSCRIPT
ON ALGORITHMIC HARMS

We list in Table 6.4, Table 6.5, and Table 6.3 the different categories and sub-categories
of harms discussed by the developers.

Table 6.3: The various conceptions of one macro-category of harms: around the ideal output distribution (i.e.,
distributive fairness). We do not include when the developers are not aware of or lacking precise information
to discuss the harm, as this applies for each of these harms.

Harm Conception Example

Output distribution (distributive fairness)

Id
ea

ld
is

tr
ib

u
ti

o
n

&
d

is
tr

ib
u

ti
ve

fa
ir

n
es

s No mitigation be-
cause the data rep-
resents the world
(unfair or not)

P23 “some of them come by nature, like the data given the situation happening in the
real world. So you get that bias into data, and that’s not something you can change
actually, it’s by nature happening.”

Distribution repre-
sentative of the real
population

P5 “ what is the statistical characteristics of the real world scenario and what are the
statistical characteristics of the scenario that you see here. When I say statistical char-
acteristics, I’m actually speaking about this set of data across parameters. I focus on
protected category variables.”

Equal accuracy
across sensitive
features via equal
distribution

P28 “if you want to have the same probability of giving a correct answer for all societal
groups, you need to be training with the dataset that is one divided by the number of
social groups that are considered.”

Middle ground: none
of the two distribu-
tions is feasible to
collect

P11 “For all of these distributions, I would consult either a specialist or literature from
medicine to see from all the hospital patients or just diabetes patients: does the distri-
bution look somewhat like that?”

Ambiguous judge-
ment of acceptable
slack

P28 “ I would say the data static between female and male is quite balanced. You can
try to make it 50, 50, but it might be the case that make it 50, 50 doesn’t change much in
the accuracy of the whole model because it’s quite similar the number of data points.”

Acknowledging his-
torical biases in joint
distributions

P2 “I would also look at the selection rates in historical data. Has it really been unfair
in history? And do we have to fix?” (P2, P11, P12, P20, P21, P23)

Rare consideration of
intersectionality

P21 “checking whether we have any groups that are specifically underrepresented if we
take a look at the combination of the demographic features, that’s possibly something
to take into account.”
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Table 6.4: The various conceptions of two macro-categories of harms: around the desirability of the system
and the development process. We do not include when the practitioners are not aware of or lacking precise
information to discuss the harm, as this applies for each of these harms.

Harm Conception Example

Desirability of the system

G
o

al
o

ft
h

e
sy

st
em Broad ethical considera-

tions (society)
P28 “We need to look at the bigger picture to see if our work is ethical. And that
can go for the carbon footprint, the sustainability, the impact this may have in the
labour market, and in warfare.”

Morality (society) P17 “That’s a big problem. Everybody as they get older, they have more health costs,
so that’d be price gauging, the hot button issue of building based on pre-existing
conditions. For health insurance, I think that’s unethical.”

Utility for the organiza-
tion

P16 “It’s appropriate and relevant for the business. They want to save money or to
reduce time of the workers.”

Impact on organization P25 “even the organisation where the model was employed might be affected.”
Impact on society and
"silenced" individuals

P6 “we might ask what are the consequences of some people having access to this
model and others not? Some might say this will have knock on effects in a broader
scope where there are bigger consequences, where people of some descent might not
trust us. So in the overall picture, it’s a harm to society for us to deploy it.”

E
m

p
lo

yi
n

g
M

L Appropriateness/ethics P1 “I would question whether we should be using ML at all? question all the as-
sumptions that are being made.”

Complexity & flexibility P3 “Everybody is afraid of changing something [with deep learning models] because
if you change this, it breaks this. So we start with: what was the problem you are
trying to solve? could it be solved by simple query or simple statistical model, or
by business rules and statistical model? If not, by machine learning? It’s not about
amplifying the buzz and having AI everywhere. It’s about the real value of using it.”

Right to explanations P27 “at least if a computer tells the person you’re not getting a loan, explain why.”

A
u

to
m

at
io

n
m

o
d

e Removing human bias
collaboratively

P27 “cause people can also have biases. It should be a doctor and in addition, this
model. I don’t think we should just believe the output of the model, but things
should be used hand in hand with an expert.”

Suggesting to human
decider

P4 “It’s possible to automate, but it’s not wise to let the model do all the work. It’s
important to have another medical professional opinion.”

First filtering tool P29 “Do I think the hospital can fully automate this? No, I think you can use it as
a recommendation or triage tool. You don’t have unlimited healthcare resources,
unlimited doctor availability, so it’s sort of a triage.”

Ta
sk

d
es

ig
n Meaningfulness P1 “Think whether the problem was formulated in a way that makes sense, for ex-

ample why is 30 days the cut off? Was it just chosen out of the data?”
Alignment with goal P17 “A better way would be pay per probability, so if there’s a 0% chance they’re

getting re-admitted, we’re going to pay you more, but as there’s like a 50% chance,
we’re going to pay you a little less, and 100% chance, we’ll put the full penalty.”

Informativeness P17 “we’re just trying to classify you and say “are you someone that is going to use a
lot of health care services or not?” I wouldn’t do it this way. You’re not going to get
a lot of information. I’d rather use a regression.”

Development process
Labor Crowd exploitation P1 “Crowdsourcing is very important from an exploitative point of view.”

E
n

vi
ro

n
m

en
ta

li
m

p
ac

t Only around training P8 “You need a big amount of CPU time, GPU time, to train a big model. It’s bad
energy-wise.”

Training and inference P15 “ it is a very big growing problem in the whole computer science community
because you have these very big models like GPT 3 which all the big companies are
doing. But then you need a whole lot of compute power for them.”

Only for large deep
learning models

P9 “From my understanding, that only happens at the scale of a really large lan-
guage model, the things which literally have like trillions of parameters.”

Balancing with benefits
of the application

P4 “I have thought about this in terms of climate AI. I have read that training a
model to tackle AI is actually counterproductive because it harms the environment.”

Scale: Not relevant as
models are beneficial

P2 “I wouldn’t consider that. I think automating anything would make stuff more
efficient, so I think it would save energy somewhere else.”

Other systems are worse P8 ‘There are better ways than reducing model training to improve environment.”
Privacy Consent for data use P18 “You need to make sure that everyone is ok with data being collected and

used.”P19 “look at whether the Clients are OK with their information being shared.”
Anonymisation of data
subjects

P7 “Since the data are not publicly available, we need to take care of masking the
data set not to release any personal information, not to release any sensitive infor-
mation within the training.”

Team Resource sharing P6 “This was a university cluster that we shared with others. I didn’t want to hog the
whole cluster for myself.”
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Table 6.5: The various conceptions of one macro-category of harms: around the dataset schema and its pop-
ulation. We do not include when the developers are not aware of or lacking precise information to discuss the
harm, as this applies for each of these harms.

Harm Conception Example

Dataset schema

Fe
at

u
re

d
es

ir
ab

il
it

y Relevance through
causal relation or
correlation

P5 “I would primarily try and understand what’s the merit in using these numbers.
Without a specification on the positive correlation to, or the causality link to the out-
come, it may not merit directly being used.”

Use-case depen-
dence

P1 “This is tricky because it may or not make sense depending on what you’re using this
model for.”

Acceptability as
proxy

P1 “it would be better to have a feature for your socioeconomic status. But race could be
a proxy.”

Completeness P13 “My first thought would be that the dataset doesn’t have a bunch of information
regarding the patient exams. I think it would be cool to include it to be more precise
regarding the target feature.”

Fe
at

u
re

se
n

si
ti

vi
ty

Sensitivity based on: *
Regulations

P7 “In the credit adjudication use-case [..], one of the regulations was that the sensitive
features should not be used as a predictor in the training of the model.”

* Ethicality (sensitiv-
ity, relevance, offen-
siveness, privacy)

P13 “If I use gender to try to predict something that is not related to gender, for example
whether this person would be a good employee, the sensitive features to predict these
labels, that would be bad.”

* Exception if causally
related to target label

P13 “I don’t know if race or gender is important to predict the diabetes. If this feature
would be important for this problem, it wouldn’t be a sensitive feature.”.

* Exception if causally
related to target label
and volitional

P17 [looking at dataset features: e.g., demographic, military service, employment,
poverty status, heart diseases, etc.] I wouldn’t want to be biased on any of them. The
only one that society has said it’s OK to be biased on is smoking because it is probably
the only one on which you can make a conscious decision.”

Confusion with pri-
vacy infringement

P15 “I would think that there are personal information. I mean their history, their age,
gender and all those things apart from the things that hospital needs to note down.”

Confusion with a pa-
rameter of a tool that
would (magically)
avoid discrimination

P30 “Marital status and region: those are things that could be removed. And protected
that would be more the tricky ones like sex, employment status. I’m curious to see if there
will be a difference between protecting a sample and removing it.”

Forbidden to: * use P7 “The sensitive features should not be used as a predictor in the training of the model.”
* receive high model
feature importance

P2 “I would check which coefficients have the highest weight. Just to see on what at-
tributes is the model predicting on, And those shouldn’t be the sensitive attributes.”

* display model out-
put disparity

P12 “your boss just asks you to make a classifier that works fairly for some feature.”

Sensitive proxy: at-
tribute correlated to a
sensitive one

P3 “Getting back to the financial use-case, if you know the ZIP codes, it could be really
sensitive features as well because ZIP code could predict for example your economic sta-
tus.”

Sensitive proxy: not
accounted due to
impossibility to "un-
bias" the model for
all attributes

P21 “We are going into territory where fairness becomes almost impossible, because
it could well be that Medicare and Medicaid are a proxy for demographic features:
whether minorities are, for example more likely to take Medicare and Medicaid.”

E
n

co
d
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g

m
ea

n
in

gf
u

ln
es

s Silenced "values"
(i.e., individuals)

P15 “You would also have other races, there’s not just two races. Then those kind of com-
munities, for instance. Also for gender, I would say that to include more other genders.”

Doubtfully aggre-
gated values (incor-
rect representation)

P20 “It’s white and non white here. From the start, it’s a bad feature. The people that
are not white also are different between them. This should have been a category feature
with all the races that are here.”

Informativeness of
values

P27 “"Other" isn’t really informative here. You see, ideally you don’t want other and
missing and all that. Those kind of values in your data. This is really not informative.”

Correctness of values P1 “Let’s look at the race column. We have mostly Caucasians, a bit of African American,
unknown, Hispanic, other, Asian. Always interesting to see how race is Hispanic: that’s
not a race, it’s just false.”

Concept representa-
tion & measurement
errors

P1 “I would want to know how this data was collected. Like who determines the race
and gender columns?” P24 “I will try to understand what each column means, and
whether or not there have been mistakes in encoding the data and maybe reach out to
the people responsible and say hey, what’s up?”
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ON THE ACTIVITIES OF THE MACHINE LEARNING LIFECYCLE

Table 6.6: Summary (part 1) of the ways the activities performed during the machine learning lifecycle are
conceived in relation to harms (in green) and other trade-off (in grey), and handled (in red).

Activity Conception Example

D
at

a
d

u
p

li
ca

te
s No envisioned harm P10 “I would delete one or the other, because I don’t think it would make any effect.”

Percentage of dupli-
cates within dataset

P4 “It’s important to have them because they represent the distribution. But it depends: if
there’s a lot of the same occasions, you might want to trim it down a bit.”

Removing duplicates
in any case

No awareness of the different natures of duplicates (real or apparent) P10 “I would delete
one or the other, because I don’t think it would make any effect or any changes.”

Understanding the na-
ture

P2 “it depends also on the use case. Why are there duplicates? How do those duplicates get
into the data? It could be really similar people and then you would leave them .”

D
at

a
o

u
tl

ie
rs

Cause of dataset bi-
ases and algorithmic
unfairness (only P5)

P5 “I would be cautious of eliminating outliers as it can cause bias. I would focus on sta-
tistical characteristics to know what’s the proportion of outliers. If the outliers are related
to one of the variables, I would consider whether to eliminate it.”

Cause of population
silences (only P21)

P21 “I would look at whether we have any important outliers in the data. What could be a
problem is say you know five people in this big dataset of 100,000 records spent in hospital
100 days and you know all the others spent less than 20. Then you know the question would
be whether the model that I built is at all applicable to such people. I would say probably
not so maybe it’s best to remove records which seem to have very strong outliers. And have
that caveat that you know the model shouldn’t be applied in some very rare cases.”

Indirect sign of de-
ployment issues, in
turn causing potential
algorithmic unfair-
ness (only P6)

P6 “ it is useful to see if there are outliers, as a way to detect if there is input issues. If
someone is listed as being 10 pounds, then you know that’s an issue where someone entered
it wrong and then I would look at why was this entered in wrong? Is there a manual process
somewhere that this is the result of? Now that I’ve been confronted with this fact that there’s
manually entered data, then I’d have to go back and think about what are the consequences
of that at inference time?”

Dataset size, impact of
removing outliers on
model accuracy with
or without experiment

P28 “deleting points just because they are outliers, that’s not the right approach, because
those outliers could be those that have the most information, while the ones that are lo-
cated in the median in this case, or the mean, they are more common and provide less
information.”

Understanding prove-
nance to handle out-
liers

P2 “If you have weird outliers, I would look at those rows because they’re often something
parsed wrongly. Then you can remove those. If there’s enough data and there are some
outliers, they could just be outliers, so we would keep them in.”

Adopting one of the
three default ap-
proaches in any case

P18 “If we’re talking about use cases where the outliers are really purely of an anomalous
nature, you can just get rid of them. For example, having a person in our data set being 400
years old. Well, that’s to my estimate, at least unlikely.”

M
is

si
n

g
va

lu
es Causes dataset biases

and algorithmic un-
fairness (only P21)

P21 “I wouldn’t drop them. People from specific backgrounds are less willing to answer
some demographic questions. For instance, people from some minority group would be
less willing to admit that they are using state insurance. If not dropping, I would say im-
putation. That depends how much time we have.”

Silences populations Only P29.
Depends on dataset
size

P2 “Depends on how much is missing. I would impute it if there’s not a lot of data missing.”

Stakes of the system P15 “If this problem is critical, I would not introduce averaging or some interpolation for
imputating the missing data, because it has to be as accurate as possible.”

Handling by dropping
records or imputing
them or dropping at-
tribute, depending on
other factors, or taking
one default approach

P11 “I would look at which columns have excessive amount of missing values like one third,
then I would remove this variable from the dataset. After removing columns that have a lot
of missing values, I would remove all rows that have missing values so that this dataset has
no missing values. The data is quite big (over 100,000 records), so if we have to remove two
or three variables with missing values and then we will remove all other rows that contain
any NaN, we still have quite large datasets.”

D
at

a
d

is
tr

ib
u

ti
o

n
sh

if
ts Ensuring the popula-

tions seen in deploy-
ment are represented
in training

P15 “Is this really representational of the general situation of diabetes? For instance, some-
times these things are taken from very specific hospitals, very specific region, and that re-
gion might have very specific distribution of diabetes. It’s not representative of the entire
country.”

Ensuring the model is
adapted to any distri-
bution shift happen-
ing after deployment

P3 “Usually, the biggest problem is a huge difference between production and training
data. When you get more sensitive medical devices, the way the data is distributed also
changes, because the bad quality medical devices will have much more noisy data and if
you optimise everything and re-calibrate to make sure that this data will be processed in
this way, then you will be literally fucked up if the quality of medical devices will be better.”
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Table 6.7: Summary (part 2) of the ways the activities performed during the machine learning lifecycle are con-
ceived in relation to harms (in green) and other trade-off (in grey), and handled (in red), potentially influenced
by other factors. Overall, participants do not envision harms from these activities.

ActivityConception Example

P
re

p
ro

ce
ss

in
g Cause of dataset bi-

ases and algorithmic
unfairness (only for
data splitting, data la-
bel rebalancing –P1,
P29, P30–, and data
annotations)

P5 “ Training-test split, I would prefer to make it absolute, looking at it in terms of propor-
tion. The split is going to be random and the split may not be an unbiased split, so that is
something that I would standardize.” P11 “if we have this re-admit that is a false negative
committed by the humans that decided. That’s exactly what you want to avoid that the model
repeats this behavior. If this proportion fits with what medical experts say, then it might be
fine. It’s like a cognitive bias, so I would look at these kinds of variables. And make sure that
it’s all representative and makes sense to experts.”

Accuracy and data-
model compatibility

P25 “There are algorithms which take both. You can input the range value and then feed cat-
egorical data. Otherwise, these range values need to be converted into categorical manually.”

D
at

a
la

b
el

in
g Impact on model ac-

curacy /no harm
P15 “Labels are very important: the source of annotation can be noisy. The label itself can be
noisy, so there can be misinterpretation of: OK I am a labeler and how do I interpret this?”

Cause of dataset bi-
ases and algorithmic
unfairness (label
unavoidable subjec-
tivity)

P20 “This is a very important source of bias, because if it’s not something objective like doctors
looking at X rays but something like insurance, and people manually label this based on their
experience, they’re 100% introducing bias. Maybe someone which is a minority would take
into account bias more. But anything that is subjectively labeled is inherently biased. Because
I think all the people are inherently biased.”

Label "quality" vs
quantity

P9 “There is a very large graph of everywhere that you can have a fairness issue in a machine
learning pipeline and labeling was one of them. So you have to decide for yourself whether
the possible biases of the people labeling your data are more important.”

Improving "quality"
with the labelers

P24 “I acknowledge that there can be labeling bias. And this is again Specific on the case. in
the hospital, I think I would reach out to the doctors who actually labeled the patients .”

No action due to
unavoidable subjec-
tivity

P5 “I need a comfort on the quality of data. Once I have a reasonable comfort, I’ll go ahead
because there’s no end point to trying to understand data labeling or data annotation, there
will always be bias in it.”

M
o

d
el

b
u

il
d

in
g No envisioned harm P25 “In terms of building the model, considering fairness? Didn’t we consider all of these

things already? like we removed all the features, stuff like that.”
Harms only come
from data

P2 “I don’t think that giving a parameter a certain value can lead to harmful implications. I
think it’s mostly caused by the data, not really by the model.”

Cause of algorithmic
unfairness

P5 “there may be models where you choose hyperparameters. And the choice may induce
bias. I would do a grid search for all combinations of my dataset/model. And run them to
know which has a higher propensity of bias. There may be impact caused by multiple other
factors including the batch size, the epochs, the learning rate”.

No awareness but
benefice of the doubt

P4 “For hyperparameters like learning rate, I can’t see the connection with how it might harm
people because it just influences accuracy. But I’m also hesitant to say it doesn’t affect it at all
because I feel you never know with these things, so you should always be cautious.”

Accuracy, model ex-
plainability, privacy,
expected output type,
cost of training, easi-
ness of maintenance

P3 “For me, the simpler is the model, the easier it will be to deploy, the easier it will be to
monitor, and the easier will be to retrain. So if there is a choice between doing something
with deep learning and doing something with logistic regression with properly engineered
features. I’m gonna go with logistic regression, because it will be just easier and less expensive
to run in prod.”

Algorithmic fairness
as the second stage
of model building

P9 “The first iteration will always be to investigate even the feasibility of the accuracy, ’cause
the second you start trying to incorporate other things like privacy or fairness into your mod-
els, you will immediately start making accuracy tradeoffs like in privacy.”

M
o

d
el

ev
al

u
at

io
n Meaningfulness of

the learned features
P2 “ I would check which Coefficients have the highest weight. Just to see on what attributes
is the model predicting on? And those shouldn’t be the sensitive attributes.”

Algorithmic fairness
when the use-case is
sensitive

P9 “when we talk about automating a task, you can create an arguably false dichotomy be-
tween sensitive tasks and insensitive. For example, you’re going to pay far more attention
if you’re trying to automate something in college admissions, versus trying to use machine
learning to automate the protocol for handwriting recognition.”

Fairness when people
involved

P2 “ when the use case is about making decisions for people, and especially when it’s for
demographic of people. Fairness issues can really disturb groups in society.”

No fairness Algorithmic fairness not mentioned during the evaluation.
Accounting for al-
gorithmic fairness
implicitly without
knowing the concept

P28 “accuracy is only a certain perspective. The performance of the model can say it’s 99%,
but it’s not telling you how accurate it is for different groups of society. Perhaps, for instance,
it could be very inaccurate for African Americans, very accurate for caucasian, and that’s not
reflected only in accuracy.”

Representativity of
the test set

P6 “When we evaluate accuracy on subgroups: do we have enough data to say that we have
that accuracy? False confidence is a big danger.”
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ON ALGORITHMIC FAIRNESS

A comprehensive analysis of the concepts related to algorithmic fairness can be found
here, with summaries of their practices related to fairness metrics in Table 6.9, and fair-
ness mitigation methods in Table 6.10, as well as how they handle via (simpler) ap-
proaches sensitive features and data distributions in Table 6.8.

Table 6.8: Practices around data issues towards algorithmic fairness (sensitive features and data distributions):
simple approaches to identify and to handle them (in grey explicit trade-offs).

Conception Example

Identification of sensitive features
Mandatory according to external entity
(guidelines, regulations, client, model
owner)

P11 “I know that these are legally defined. So, the EU for example, has a
guideline on what are sensitive attributes. I will look at that as a baseline.
Anything that’s in there is protected or sensitive.

Based on the existence of human discrimi-
nation on certain attributes

P11 “Weight: obesity is common among people that have diabetes, so people
are misjudged by doctors if they are comparatively thin.”

Based on intuition P16 “I would say, the most obvious sensitive features are race and sex. But
also status of veteran is important for me. It can also be kind of sensitive.”

Based on experience P3 “ I already see the alarms such as race, gender and age as well.”
Based on personal reflection P21 “What is for me important to consider is just thinking where that data

comes from, or trying to imagine what could have influenced the initial fair-
ness of the data.”

Based on information collected from other
stakeholders or from the literature

P8 “With the help of someone having domain knowledge because even
though it could be that an expert has some unknown bias thinking “oh, we
should probably look into this group”, it is also domain knowledge.”

Identification of proxies based on intuition P16 “ Pregnant status would be very sensitive because it’s related to the sex”.
Identification of proxies based on statistical
tests

P28 “I will check what is the correlation of each variable to each other. Ba-
sically, having a correlation matrix and checking if there is a higher local
relation to those that we have protected.

Identification of proxies: ambiguous corre-
lation threshold definition

P28 “Marital status. It’s quite a big negative correlation. Age, there’s a de-
cent correlation. I would consider something as positive or negative cor-
related when it’s magnitude is higher than 0.25. That’s a value that I take
from personal experience with my own research.”

Handling of sensitive features
Dropping attributes: because they are for-
bidden/sensitive

P7 “We had to remove the sensitive features in the training set, and then feed
the training set into the modeling and model training.”

Dropping attributes: to train "unbiased"
model

P3 “I also make sure that if even I decide to drop these sensitive features,
there is no more of this information ingrained somewhere in the data.

Dropping attributes: not appropriate due to
proxies

P17 “You could argue you get rid of race and sex and just make your models
blind to this sort of stuff. But it might not be truly blind because you can
have like satellite features. Or like indirectly related features.”

Dropping attributes: not appropriate when
they are informative of the target label

P16 “I see the correlation between these attributes and target columns. I
expect to see some correlation between some of them. We could keep it as it
is, and we will understand the importance of different features later.”

Dropping attributes: not appropriate in or-
der to monitor algorithmic fairness

P10 “These are my sensitive attributes. it’s important to leave those in. I
keep it just to check if it has a weird distribution.”

Handling undesired data distribution
Grouping the values that are too underrep-
resented into a larger group (P2, P8, P28)

P8 “other groups, for instance, these bottom four are really low in number,
so in order to get some insightful results, you might want to group them.”

Leaving out under-represented populations
(P2, P6, P15, P21, P25)

P15 “if I have to make a model out of this, then you have to account that the
dataset itself has very few points for this category. I would leave out some
percentage of data set which is not representational in a way.”

Dropping the attributes which display prob-
lematic distributions

P23 “For example for some variables, if it’s very biased, you should avoid
using those.”

Transforming set of samples: Collecting ad-
ditional data, artificially augmenting data,
undersampling (P20, P25)

Naturally, all practitioners discussed the possibility to collect more sam-
ples, and some mentioned avoiding undersampling not to lose informa-
tion.

Strategy depends on amount of data P2 “If there’s only 3 Asians in the whole dataset, it wouldn’t make sense to
make up for that: it is not enough data to equalise over this. So I would only
equalise over Caucasian and African American. Or maybe even combine
others as the minority group and have Caucasian as the majority group.”
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Table 6.9: Conceptions and practices around algorithmic fairness metrics.

Conception Example

Used notions
Group accuracy (e.g., equalized odds) P28 “I would compare accuracy for the races "0" and "1", and see whether the

results are similar.”
Group output distributions P22 “I look for statistical parity and disparate impact because those are not de-

pendent on the target.”
Individual fairness P21 “We can have fairness between groups, not necessarily meaning that similar

individuals will get the same outcome.”

Reasoning for selecting metrics
All available metrics (P2, P9, P10, P11,
P14, P16, P18, P19, P26, P27, P28 )

P2 “because this model will work in hospital with patients where fairness is im-
portant, we check all the group fairness metrics of FairLearn.”

Metrics applicable for both data and
outputs (output distribution based)

P13 “I chose disparate impact ratio because it is a metric that can be applied
before and after the training of a model.”

Prioritizing group accuracy or group
output distribution metrics based on
data correctness

P15 “demographic fairness is very important. But sometimes, you pick a very
obscure data set, then demographic fairness is not the answer if your dataset or
representation is fundamentally not correct.”

Prioritizing group accuracy or output
distribution metrics based on existence
of causal relations between sensitive
and target attributes

P6 “Demographic parity wouldn’t be used because it’s possible that because of
many factors, Caucasian people should be discharged at a higher or lower rate
than African American, and so we don’t want those to be set to be equal. We want
the error rates to be roughly the same, not the selection rates.”

Prioritizing group accuracy or group
output distribution metrics based on
use-case type (e.g., distribution of re-
sources, hiring) (8 participants)

P1 “It’s important that the model is accurate if resources are being distributed,
like whether you actually receive care. So it really depends. In some cases, you
really care about whether the model is accurate. In some cases you care more
about whether the same proportion of people get a particular resource.”

Prioritizing specific group accuracy
metrics based on the weighing of differ-
ent errors (9 participants)

P6 “False negatives and false positives are both damaging. I’d have to really think
of the costs of those two sides, that informs what fairness criteria you would
choose.”

Involving external information (experts
or laws) (P1, P4, P6, P8, P12, P19, P22,
P28, P29)

P8 “Depending on domain knowledge, you want to know what metric you want
to look at. Just by myself, I wouldn’t really have an idea what would be in this
case the best metric. A doctor would know. This is either some legal stuff or just
some ethical stuff that we want to make sure that’s OK. ”

Using their own intuition P11 “I know there are a million different metrics. I would compute statistical
parity for sure. And then I would probably go down the list.”

Mentioned limitations of the metrics
No limitation envisioned P19 “I think for fairness these metrics work well.”
Limitations of certain metrics said to be
fulfilled by others (P8, P10, P21, P24)

When asked whether one metric such as demographic parity is enough, they
answer no but instead they can use another metric like equalised odds.

Limited to reflect underlying injustice
(P1, P2, P3, P9, P18)

P9 “In the college admission example, due to historical factors, we see correla-
tions between certain races, socioeconomic classes, and education. Should peo-
ple of different races be given equivalent outcomes? I don’t think so. You have to
consider and fix the underlying factors first. You can’t just fix it at this top level
and expect it to be done. So I can’t call demographic parity enough.”

Limited to reflect certain notions of
fairness

P6 “If we look at the broad range of people, people have views on fairness that are
defined on very different criteria than the ones we can see in these numbers.”

Limited to account for the impact on
other stakeholders

P19 “it depends on the situation, but mostly it’s not only me who could be af-
fected, but people around me can also be indirectly affected by whatever it is. In
the case of health, if I was to be discharged without being supposed to, I would
be directly affected, but also my family or people that I’m surrounded by.”

Limited to account for individual out-
comes (impact of outputs on each indi-
vidual)

P18 “If I don’t get a credit score, it’s no problem because I’m young, I have a lot of
opportunities ahead for myself, but then if I were 50 and I have 4 kids and I know
I’m gonna be homeless, then maybe it’s worthwhile giving me the credit.”

Limited to account for exploitation of
outputs by decision-makers

P3 “it reminds me of this famous child benefit scandal, when the problem was
not a model, but the people who were using these predictions. They were literally
doing this manual post processing of predictions according to their beliefs.”

Dangers of fairness metrics to be used
as checkboxes (P3, P6, P9, P13, P29)

P6 “It’s easy to think: we checked the fairness box because we implemented this
specific library, or this constraint when really fairness is a much broader topic.”

Dangers of fairness metrics to remove
critical attitude (P3, P6, P9, P13, P29)

P13 “Responsible AI is an AI built with high quality processes, not only regarding
fairness, but regarding using the best metrics, not doing something like “My met-
ric is good, so my model is good”. No. Have a critical point of view.”
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Table 6.10: Conceptions around algorithmic fairness mitigation (in grey explicit trade-offs).

Conception Example

Used methods
Data balancing, attribute dropping
Scoping out populations (P2, P9,
P15, P25)

P9 “You can choose to limit the scope of your classifier and use this one on people
who are over the age of 60. That’s one way of making sure that you’re not having false
positives or false negatives on these underrepresented data.”

Modeling a new task (P4, P6, P15,
P17, P28)

P6 “we have enough data to train separate models. So you might not even use the
normal FairLearn strategy –training one model that works well across populations.”

Data preprocessing method P22 “we would use some of this re-weighing or adversarial debiasing kind of tech-
niques.” (reweighing 10 participants, correlation remover 5 participants)

In-processing method (12 partici-
pants)

P2 “After [computing fairness metrics], I would do some in-processing mitigation.”
(e.g., grid search and Lagrangian classifier)

Post-processing method (P1, P2,
P3, P12, P21, P29)

P3 “You have threshold optimizer. So for example, for logistic regression, the decision
threshold by default is 0.5, and you also can play a little bit with the threshold that
defines whether this data point belongs to this class or to that class.”

Reduction method P6 “what we’ve done internally, it is doing this reductions approach in FairLearn.”

Selection
Based on speed P6 “the major downside to the reduction approach is that it can take a long time.”
Based on amount of available data P6 “we actually have enough data that we might be able to train separate models.”
Based on applicability to specific
model

P12 “the cons are that they are not model agnostic: it depends on each kind of model
you apply. You’ll need to know all of them where they can be applied.”

Based on compatibility with de-
ployment constraints

P12 “When you are in production, in some cases, you won’t be able to do a lot of
changes. So post processing is good, you’re just changing the labels and given a mini-
mal loss of accuracy, you may just make it fair.”

Based on image it brings to the
company

P13 “[talking about post-processing methods that flip certain model outputs] They
kind of imply a bias in the process. It would be a problem for the company to say that
they are doing this: if I am a company and I am saying publicly that I am imputing
bias on my model, how would society react to it?”

By experimenting P21 “try out a few of those algorithms which are still applicable.”
Preference for not simulating new
data

P22 “if possible, we want to re-sample the data instead of simulating data. I typically
prefer if they can get the data from the source corrected, as much as we can.”

Preference for changing the data
(P9, P15, P16, P19, P20, P24)

P9 “if you can get fair data, that is the best way to make sure that your classifier is
going to be accurate on all representations of people. More data has always been the
best way to make a machine learning model more accurate.”

Admitting not knowing P11 “I would just like read up on it so that I know about this strategy is better.”

Mentioned limitations of the mitigation methods
Non-applicability to certain types
of tasks / algorithms

P7 “we needed to somehow mix up some approaches in order to customize them and
modify them. In some cases, there is absolutely no methodologies to tackle individual
fairness mitigation, that can be applied on the loan adjudication use case.”

Impact of one method on different
fairness metrics

P21 “Optimizing for one type of fairness will make another type of fairness worse. If I
optimize for fairness between individuals, fairness between groups will suffer.”

Does not fix structural causes of
injustice

P2 “I think about demographic parity, about making the decisions equal for everyone
in population. It depends a lot on the way you do this, because you can also positively
discriminate to get these outcomes, and it differs by use case if this would be fair. Or
you can get a population fair by making the model work less good for the majority
group and then it would be demographic parity. I wouldn’t consider that fair.”

Approach might not be ethical P1 “One thing that people very commonly do is use different decision thresholds for
different groups, and that’s a very easy way to get different selection rates, but what
does it imply in practice? You literally put people to a different standard. Whether
that’s justifiable or not, it depends on the scenario.”

Inadapted solution to the cause of
the unfairness

P29 “When they were trying to test out a model to allocate poverty benefits to low in-
come individuals, especially for food banks, Hispanic applicants were being rejected
at a higher rate, and that’s just because these applicants actually aren’t fluent in En-
glish. They’re having trouble with the application form, and so the solution to make
this system more fair: just offer the form in Spanish.”

Biases users to take technical
mitigation approaches when they
might need to be structural

P29 “If you find some disparity, what does that mean in the real world? Then what is
the intervention you take? If you don’t understand the harm, you can’t take an inter-
vention to stop the harm. That part is very important because there are plenty of cases
where there’s an intervention that isn’t technical.’ ’
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6.7.1. ON GOALS AND ENVISIONED FACTORS IN TENSION WITH HARMS

Table 6.11: Goals formulated by practitioners along the interview sessions.

Type Example

Modes of handling harms and potential impossibilities
Not deploying the system (P1, P29, P17) P1 “if you really need the mitigation approaches for the model to be accurate or

have a good selection rate, you should always question whether machine learn-
ing makes sense to use in this scenario.”

Transparency for the decision makers
to make the informed choice to deploy

P6 “That would be a conversation I would have with the hospital. I could say
where we’re confident, and where we’re not confident.”

Transparency for the decision makers
to account for it in deployment

P20 “I would certainly voice my concerns towards the Fairness of a problem and
how people plan to solve it”

Not accounting for the specific issue P6 “There’s a question of what is the current performance. We’re comfortable
deploying something if it improves the baseline performance, maybe it’s OK if
the data is not perfect.”

Mitigating this issue instead of priori-
tizing another objective

P17 “I think they could automate it. But it’s just those other concerns that I’ve
addressed. You need to understand how it’s affecting people and what you could
do if you were getting really poor performance on one of our smaller subsets.”

Examples of rationales for prioritization of harms and other objectives
Making the least-bad choice around
impossibility (with intuition or external
inputs)

P30 “ if I decide to optimise for demographic parity or equalised odds, it’s im-
possible to optimise for everything, so I need to pick up specific metric that I’m
going to look.” P21 “This boils down to being able to make a rational, reasonable
choice of what are we actually trying to optimize at the early stages? And then
you know, keeping in mind that making some sort of fairness metric better, even
a lot better, it can still negatively influence other metrics.”

Compromising on certain aspects hop-
ing to solve other issues

P2 mention that an attribute is sensitive when it should not be used for decision
making, but considers that one can train a model with it as long as the model
does not learn to rely too extensively on it. Some practitioners recognize that
one cannot aim for equal data distributions across groups and that a middle
ground is acceptable.

Neglecting the issue to focus on other
objectives such as model performance

P18 “This would not really be of my concern as in having to include, for sex, I
don’t know, 20 categorical options. Because I feel like at the end of the day, we’re
not doing politics here, but we’re trying to solve a problem. But if the results that
we obtain are really poor because of the fact that we did not take into account
these attributes or variables, then we should include them. ”

Not accounting for (impossible?) limi-
tations of fairness metrics because they
are better than nothing

P8 “if you don’t depend on metrics then how are you going to evaluate your
model? You need to have at least some metrics to be able to say a) my model
is fine, and b) my model doesn’t have any harmful applications.”

Judging when the metrics values are satisfying
Ambiguous P2 “the difference between African American and Caucasian, their balanced ac-

curacy is pretty equal. False negative rate is also pretty good. So, I think this
model is for them equal. So I would not be worried about these numbers.”

Value higher than (human) baseline P6 “We’re comfortable deploying if it improves the baseline performance.”
When one has tried mitigating as much
as possible

P20 “I strongly believe that there is no way we could achieve absolute fairness
because we are biased by nature. You should try your best, and you stop when
you run out of ideas and after you’ve done your best.”

Acceptability for the data subjects P29 “Absolute fairness is not possible to achieve. It could be: yes, there is some
disparity, but the impacted communities sort of feel fine about that.”

Acceptability for the model requesters P19 “I don’t think it’s possible to remove the entire unfairness. But that depends
on the people that they’re making the model for, and how they react to it.”

Acceptability for experts P6 “There’s a question of what is an acceptable difference in performance and I
think it’s a difficult question to answer, and that’s something you want to talk to
all the stakeholders about.”



6.7. CONCLUSION

6

185

Table 6.12: Other factors that might impact harms (in grey the ones that are accurately envisioned).

Type Example

Requirements on model objectives
Accuracy, type of output, infer-
ence time // impact algorithm

P15 “ do I want the probability of hospital readmissions? —I would guess that is what
I want then probability-based classifiers are good.”

Model explainability for decision-
maker

P8 “For the algorithm, like in such a hospital case, you would prefer a non black box
algorithm so you can have a look at: how does every feature influence my results?”

Rare consideration of model ex-
plainability for data subject

P27 “You should not base the output only on the model. It should also be an expert, so
that’s not a black box who tells the person "you’re not getting a loan" and that person
would be really confused of why.”

Necessity to trade-off these re-
quirements

P2 “I would first check different classification models and which one has the highest
AUC value. If there is a more explainable model that just lacks a bit of accuracy or
AUC, then I would choose that one over the bigger models that are not explainable. ”

Typically no requirement on algo-
rithmic fairness and other harms

P7 “We had a company involved in paper recycling. In that case, we definitely need to
make sure that the amount of data that we are requesting or any other request that we
have from the client wouldn’t have any side effect on the environment.”

Requirements on system infrastructure
Deployment requirements such as
easiness of deployment, easiness
of update, and easiness of monitor-
ing, and running time

P29 “do you want it to be a simple model so that you could retrain it properly? Do you
want something that’s very small, so you can deploy it on like a AWS or on Azure” P3
“The simpler is the model, the easier it will be to deploy, the easier it will be to monitor,
and the easier will be to retrain”

Computational power and cost for
deployment

Impact algorithmic choice, dataset size, and trade-off with model accuracy P29 “Do
you want something that’s very small, so you can deploy it on like a AWS or on Azure?”

Computational power in relation
to environmental impact (only 2
practitioners)

P15 “We have 20,000 GPUs and it gives a very high accuracy like human level. On the
flip side, you have this much power and then how do you obtain this same accuracy
within any alternative algorithm with much less compute power?”

Requirements on the development processes
Time pressure P22 “Everybody has deadlines and this is going to add to the work.”

Data constraints
Availability of data, feasibility
of collecting data samples &
attributes // impact dataset, algo-
rithm, model performance

P5 “One of the first things I would do is to see whether this dataset is sufficient for
running a model. Sufficiency comes from 2 perspectives. One is what kind of model I
want to use. If the dataset is not large enough, I cannot use a neural network, I would
end up using a linear model which would basically have its own limitations.

Data types impact choice of algo-
rithm

P25 “There are algorithms which take both (continuous and categorical). You can
input the range value and feed categorical data and the model will work.”

Features for higher accu-
racy/fairness models // feasibility
and practicality constraints

P6 “Right now, we have 100,000 records. If we decide that we want another feature, we
have to wait a long time before we get all the data on that feature again. So we always
try our best and see if it’s good enough.”

Trading-off the appropriateness of
the target label with the above data
constraints

P1 “In ML, people choose a target label based on what’s easy to get rather than when
you think about more statistical inference, then it’s typically much more well thought
out. Many of the issues with fairness can come from mismeasurement.”

Inherent statistical and theoretically clashing impossibility around algorithmic fairness and absence of harms
Inherent statistical impossibility
in reaching algorithmic fairness if
considering all sensitive proxies

P21 “Fairness becomes almost impossible, because it could well be that Medicare and
Medicaid are a proxy for demographic features: whether minorities are, for example
more likely to take Medicare and Medicaid.”

Inherent statistical impossibility
in reaching fairness because all at-
tributes are possibly sensitive

P17 “The only one that society has said it’s OK to be biased on is smoking because it
is probably the one that you have conscious decision about although you could argue
that depending on where you’re born, it is probably different probabilities.”

Inherent statistical impossibility
in reaching algorithmic fairness si-
multaneously for multiple metrics

P21 “optimizing for one type of fairness will suddenly make another type of fairness
worse. if I optimize for fairness between individuals, it’s possible that the fairness
between groups will suffer, but also even one level lower, if I optimize for predictive
parity, it’s possible that the disparate impact will suffer.”

Theoretically clashing objectives
around algorithmic fairness and
absence of harms (e.g., privacy
around data attributes and their
encoding, fairness, and accuracy)

Impossibility in reaching or measuring algorithmic fairness without accessing sensi-
tive attributes traded off with the law forbidding to exploit these attributes P9 “Is the
dataset collected in a way that had the informed consent of people in the data set? Or
are we collecting hospital records and using that data to do something that patients
were not made aware of? You’re under health care data constraints like HIPAA.”

Theoretically clashing objectives
around the use of ML and the ab-
sence of harms

Employing ML itself might be the subject of trade-off, as it might be useful for var-
ious stakeholders to deploy an ML model, but this model would require privacy-
infringing data (P19), or might negatively impact the environment (P28).





7
FACTORS IMPACTING PRACTICES

TOWARDS ROBUSTNESS & HARMS

7.1. INTRODUCTION
Following on the previous chapter (Chapter 6) where we identified a fragmentation of
considerations and practices around algorithmic harms from machine learning (ML)
developers, we now investigate the causes of this fragmentation. Particularly, consid-
ering that fairness toolkits are becoming a defacto standard means of tackling questions
pertaining to algorithmic fairness1 and potentially of teaching “ethical ML” to develop-
ers [117, 536], it is important to understand the extent to which developers rely on such
toolkits, and whether and how toolkits shape their practices. Addressing this knowledge
gap is a crucial step towards questioning the broad impact of fairness toolkits. A major-
ity of past studies [369, 846, 220, 679, 481, 665, 522, 619] that have focused on the prac-
tices and challenges of developers in using the fairness toolkits have already identified a
number of limitations of the toolkits in terms of design and technical specifications, that
might hinder their adoption. However, such studies fall short in two major ways.

Fairness toolkits allow to implement algorithmic methods for handling algorithmic
unfairness. Yet, it is now well understood that these methods bear conceptual limita-
tions [62, 557, 508, 718, 361, 457, 870]. Algorithmic unfairness is only a simplified rep-
resentation of distributive unfairness (what the metrics aim at quantifying), mitigation
methods might themselves cause harm or not address the root causes of distributive un-
fairness, and other harms (beyond distributive unfairness) caused or reinforced by the
use of ML systems are not accounted for by this framework (e.g., the purpose of the sys-
tem itself might considered harmful, independently of the system’s outputs being fair or
not)2. None of the studies around practices and toolkits has however investigated how
ML developers might conceive and overcome these limitations. It is especially unclear

1https://www.borealisai.com/research-blogs/industry-analysis-ai-fairness-toolkits-
landscape/; https://www2.deloitte.com/de/de/pages/risk/solutions/ai-fairness-with-
model-guardian.html

2In the remaining of the paper, we use algorithmic harms to refer to any harm that ML systems might cause
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whether the toolkits narrow down developers’ activities towards algorithmic unfairness
and broader harms. These insights are necessary to envision where to focus future re-
search efforts in terms of algorithmic harms beyond algorithmic fairness.

Besides, prior studies do not report on differences of practices and challenges across
developers, and the factors that cause these differences. Yet, identifying these differ-
ences, and grounding these differences into the factors that impact the fragmentation
would allow to identify the root causes of potential flawed practices and of certain chal-
lenges. This would allow to envision more appropriate future solutions. In other words,
explicitly looking into factors would allow to answer the following questions: should fair-
ness toolkits be our object of study to foster practices for handling algorithmic harms, i.e.
are toolkits really the most important factor that supports and impacts practices around
algorithmic harms (they would be if we would find a coherent set of practices across de-
velopers using a toolkit in comparison to those who do not)? Or are they only technical
mediators of practices, that are impacted by deeper factors beyond the availability and
design of the tool?

Hence, in this study, we ask: what are the main underlying factors that impact the
attitudes and practices of machine learning developers, and that might represent chal-
lenges leading to the persistence of harms?. More specifically, we divide the question
into two sub-questions: 1) How effective are toolkits in enabling developers to reflect
about algorithmic harms and to handle them? 2) Which are the factors that affect the
(in)effectiveness of toolkits in shaping developers’ practices around algorithmic harms?

In order to answer these questions, we conduct 30 semi-structured interviews3 with
developers of various backgrounds. We compare practices before and after a developer
is introduced to a fairness toolkit (within-subject experiment), and practices between
developers who do not use a fairness toolkit to those who do (between-subject experi-
ment), in order to understand the potential role of toolkits in shaping up practices. Be-
sides, we further analyse qualitatively the interviews, and compare practices across de-
velopers, and across the two toolkits selected for this study, in order to identify potential
additional factors that might impact practices.

We find that toolkits do increase awareness and use of algorithmic methods towards
algorithmic fairness, do not impact considerations of algorithmic harms, yet can foster
a checkbox culture with absence of reflexivity around the limitations of algorithmic fair-
ness. More than solely toolkits, we also find that various human factors, such as types of
training, and psychological and socio-demographic traits, as well as contextual factors,
and especially organisational incentives, interact to shape up how developers make use
of the toolkit, how reflexive they are around the limitations, and whether they conceive
and tackle broader algorithmic harms. These factors, while they have been mentioned
scatteredly across research publications that deal with perceptions of algorithmic harms
[405] or the governance models of organizations around algorithmic fairness [665], had
not been analyzed in detail in terms of their impact on the practices for the development

or reinforce, among which are distributive unfairness harms (related to the unfair ways in which resources
are allocated following the recommendations made by the outputs of an ML system). We use algorithmic
unfairness to refer to the limited conceptualisation of distributive unfairness in the lens of algorithmic metrics
and methods developed by the scientific community.

3All our materials, resulting data, code and analysis will be shared publicly. https://osf.io/dmr82/?view_
only=a00e68796f494fbb9776cf9a95fb7051

https://osf.io/dmr82/?view_only=a00e68796f494fbb9776cf9a95fb7051
https://osf.io/dmr82/?view_only=a00e68796f494fbb9776cf9a95fb7051
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of ML systems (with harms in mind). We then further discuss the implications that our
findings bear when fostering reflexivity among developers towards avoiding algorithmic
harms, e.g., in the form of design guidelines for fairness toolkits, as well as educational
programs, and for further enforcing policy efforts towards making algorithmic systems
less harmful.

7.2. RELATED WORK

7.2.1. FAIRNESS TOOLKITS FOR DEALING WITH ALGORITHMIC UNFAIR-
NESS

ALGORITHMIC UNFAIRNESS

Each step of the machine learning (ML) lifecycle might create or reinforce distributive
unfairness [546, 811]. Theoretical works have primarily developed algorithmic fairness
metrics [848] that aim at measuring distributive unfairness in the outputs of the final
model or in a dataset. These works also propose algorithmic unfairness mitigation meth-
ods [268, 66] that ought to improve the model’s algorithmic fairness as defined by the
metrics. Facing the diversity of metrics, the challenge for a developer is to choose the
appropriate one for their task.

Several studies have investigated how ML developers work with algorithmic fairness
metrics and mitigation methods. Topics of focus revolve around general challenges met
by developers [369, 846, 665, 522, 564, 719, 619, 878, 612], and obstacles and limitations
for the application of algorithmic fairness methods. Findings outline the need to sup-
port developers to concretely use fairness methods, as this use is challenging due to the
context dependence of methods, the current lack of guidance [369, 522], and the need
for adapting methods that are incompatible with targeted tasks [369].

EFFECTIVENESS OF FAIRNESS TOOLKITS

To facilitate the adoption of algorithmic fairness metrics and mitigation methods, vari-
ous companies and public institutions have built fairness toolkits. These toolkits are typ-
ically code repositories that allow an easier implementation of the metrics and methods.
Examples of these toolkits are FairLearn [107], AIF360 [91], Aequitas [704], Themis-ML
[77], ML-Fairness Gym [205], TensorFlow Fairness Indicators [892], etc.

Various works [220, 679, 481] have shown through interviews the beneficial use of
toolkits by developers for developing fair models and learning about algorithmic fair-
ness. Yet, they also show their limitations in terms of support provided to developers for
designing the right algorithmic fairness evaluation, noting that participants often inap-
propriately change their modeling task definition to fit existing tools. These works also
identify obstacles to the application of the toolkits in terms of compatibility with other
ML frameworks and usability, summarized into toolkit checklists that should inform the
design of future toolkits. We will show that our results corroborate and complement
these insights. Indeed, to the best of our knowledge, our work is the first to investigate
(or report) whether the toolkits do impact practices contrary to a situation where no
toolkit would be available, whether there are differences in practices of different devel-
opers using a same toolkit, or whether different toolkits lead to different practices.
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7.2.2. FAIRNESS TOOLKITS FOR REFLECTING ON HARMS BEYOND ALGO-
RITHMIC UNFAIRNESS

ALGORITHMIC HARMS

A few theoretical works have looked beyond algorithmic fairness to identify other harms
of ML [62, 557]. We now present a few of these harms that are highly worthy of con-
sideration according to the literature. Algorithmic fairness metrics and methods bear
conceptual limitations, that do not allow to comprehensively gauge the distributive un-
fairness they are aimed at addressing. By limiting harms to the frame of output distri-
butions (distributive justice), algorithmic fairness cannot reflect the contextual factors
that influence what is considered fair. For instance, it assumes that parity is always de-
sired in the model outputs [508], it does not account for the impact one same output
has on different receivers of this output [557], nor for the indirect impact on non-data
subjects [457]. Looking at the process to reach algorithmic fairness (procedural justice),
the metrics and mitigation methods do not make sure that the way in which the unfair
situation is addressed is aligned with moral principles [870]. For instance, individuals or
groups might see low disparate accuracy by all receiving unjustified treatment [571], or
by all being treated differently (e.g., post-processing methods allocate different decision
thresholds for different groups) which consists in direct discrimination [308].

Three other categories of harms have also been discussed. First, ML requires to use
datasets whose schemas and sampling can be harmful. For instance, certain attributes
and their values might be offensive [901, 110] or inappropriate [546], e.g., use of non-
volitional or privacy-infringing attributes [315, 834]. Second, research questions the de-
sirability of the ML model in the first place, its use for undesired applications [558, 376,
432, 557], and how it impacts structures in place [257]. Using ML for certain tasks might
be questioned, for instance because it means making decisions for people by compar-
ing them to others instead of following the principle of individual justice [105, 254], or
because it reproduces historical, potentially harmful, data patterns [653]. Third, certain
researchers question the negative externalities caused by the production process of ML
applications, such as the environmental impact of data centers and model training [132,
93], the poor labor conditions of crowd workers [689], the privacy-infringing training
data [660], etc.

EFFECTIVENESS OF FAIRNESS TOOLKITS

Besides investigating the effectiveness of toolkits in enabling reflexivity around algorith-
mic unfairness, it is important to acknowledge the known limitations of the algorithmic
fairness methods and the existence of other algorithmic harms that ML systems might
pose. To the best of our knowledge, no work has investigated practices in relation to
these limitations. We do not know to what extent the use of fairness toolkits —that fos-
ter the use of the algorithmic fairness methods— impacts considerations of algorithmic
harms and of the limitations of algorithmic fairness (that are typically obfuscated from
the toolkits). It is unclear whether fairness toolkits, that do not deal with these harms,
might lead developers to “forget” them.
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7.2.3. FACTORS AFFECTING THE USAGE OF TOOLKITS

The effectiveness of fairness toolkits in enabling reflexive practices among ML develop-
ers around algorithmic unfairness and harms is conditioned by factors that shape the
usage of these toolkits. Research into the characterization of these factors is still scarce.
It is important to understand which factors make developers choose one metric or the
other, and more broadly, to identify the factors that impact the decision of developers to
try quantify unfairness, and later to mitigate it. The factors that lead a developer to han-
dle broader algorithmic harms have also not been investigated in the past. Knowledge of
these factors could allow to better understand the deeper nature of the challenges faced
by developers, and to provide more personalised support to these developers.

Up to now, studies have solely identified organisational factors, that are further
shown to be obstacles for developers to develop fair models [665, 522, 523, 846]. Con-
trary to our work, previous studies had not accounted for human factors in their study
design or in their result analysis, such as Deng et al. [220] who only reported on coarser-
grain practices (e.g., they reported that the developers they interviewed recognize the
limitations of their knowledge and wish to receive help from domain experts, but do not
specify any difference across these developers). In our study, we find such factors, and
also investigate the existence of technical ones.

7.3. METHODOLOGY
To characterize the effectiveness of fairness toolkits in enabling reflexive practices, and
to identify the factors that might impact and fragment those practices, we adopted an
empirical and qualitative approach via 30 semi-structured interviews with ML develop-
ers. By comparing practices within-subjects (participants are observed before and after
receiving an introduction to fairness toolkits), we observe the extent to which toolkits en-
able or hinder reflexivity. Additionally, by comparing practices in-between subjects who
bear different characteristics (e.g., background and prior experiences) and who use dif-
ferent toolkits, we characterize the fragmentation and delve further into the contributing
factors.

7.3.1. PARTICIPANTS

We recruited our participants in the period of April-June 2022, by means of personal net-
works, targeted requests on social media, calls for participation on the official Discord
or Slack communication channels of the toolkits, LinkedIn, and snowball sampling. The
participants received no financial compensation, and their contributions were volun-
tary. Our institution’s ethics committee approved the study. All participants signed an
informed consent form acknowledging the risks involved with participating, as well as
agreeing to the interview being recorded (all interviews were conducted online), tran-
scribed, anonymized, destroyed, and consented to the results being used in scientific
publications.

A total of 30 participants were recruited across research and industry institutions,
and across application domains such as healthcare, finance, and predictive mainte-
nance (cf. supplementary material). Manual sampling was performed to make sure that
all participants have responsibilities in ML model development, deployment, or evalua-
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tion; varying levels of prior experience with ML, ranging from 2 to 15 years; and varying
practical experience with algorithmic fairness and fairness toolkits (11 participants al-
ready had experience with FairLearn, and 9 with AIF360). The resulting participants dif-
fer in terms of demographic background (nationality, gender, and age), level of highest
education, educational background, and type of training received around ML. Besides,
participants already experienced with algorithmic fairness presented variations in terms
of how they learned about the topic, the kind of experience they have had, and for how
long they have worked with these issues (from 0 to 18 years).

7.3.2. INTERVIEW PROCEDURE

The interviews with participants already familiar with a toolkit lasted one hour each, go-
ing through Task T1. The interviews with the other participants lasted around two hours
each, through three stages (Task T1, a tutorial about one fairness toolkit, and Task T2).
These three stages were designed to identify how the use of toolkits might impact prac-
tices around algorithmic harms. Comparing practices between participant groups with
or without prior familiarity with the toolkits allowed us to unveil other influential factors,
such as the type of training received around harms. In total, we collected 2207 minutes
of recording. In Figure 7.1, we show the workflow of the interviews with the questions
asked in each stage, for the two kinds of participants. We asked three types of ques-
tions: background experience questions (demographics, experience with ML and algo-
rithmic fairness); reflection questions around algorithmic fairness, harms, or toolkits,
and around general comments, wishes, doubts, and challenges the participants might
have about their workflow or harms; and process questions to understand the reason-
ing behind each participant’s activities during the tasks (cf. supplementary material for
details on tutorial and questions).

Participant 
recruitment

Task 1 
(hospital 

readmissions)

Tutorial on 
algorithmic 

fairness toolkit

Task 2 
(service 

utilization)

Q: 
demographics

Q: experience 
with ML

Q: experience 
with algorithmic 
fairness & harms

Q: general 
reflections about 

ML & harms

Q: about the 
reported 
process

Q: about missed 
process (activities 

& harms)

(30)

Already exp. w/ 
FairLearn (11)

Already exp. w/ 
AIF360 (9)

No prior exp. 
w/ alg. 
fairness (10)

Task 1 
(hospital 

readmissions)

Previously no exp. 
w/ FairLearn (5)

Previously no exp. 
w/ AIF360 (5)

Q: about the 
reported 
process

Q: about the 
reported 
process

Figure 7.1: Interview procedure for the participants already experienced with a fairness toolkit, and for
the participants who did not have any prior practical experience with algorithmic fairness. In blue:

the main steps of the procedure ; in orange: the questions posed in each step.

7.3.3. MATERIALS

Use-Cases. We chose two use-cases, the first one involving the prediction of hospital
readmissions within 30 days for individual patients [798], referred to as Task T1, and the
other involving the prediction of low or high medical services utilization [342], referred



7.3. METHODOLOGY

7

193

to as Task T2. We pre-processed the two corresponding datasets for them to have similar
characteristics (number of attributes and of records), and to be prone to similar harms
(cf. supplementary material). By employing comparable domains and datasets without
re-using the exact same use-case for the two tasks of the interviews, we aimed to mini-
mize learning effects. We chose the domain of healthcare because it is prone to various
harms, requires expertise to be handled correctly (i.e., we could check whether the par-
ticipants mentioned the limits of their knowledge [220]), several corresponding datasets
were available, and these are not the most frequent use-cases in the algorithmic fair-
ness literature which allows us to minimize the confounding effect of familiarity with
the domain of application. Our choice also allows to mimic a realistic situation, where
oftentimes, developers have to develop or deploy models without having extensive ex-
pertise in the domain of application. In such cases, developers’ decisions might lead to
harms, that fairness toolkits are meant to empower developers to reflect about.

Tasks, Toolkits, and Notebooks. For each task, we shared a Google Colab notebook
with the participants, which included a design brief with one of the two datasets pre-
loaded. The design brief mentioned that a hospital (or an insurance company) wanted
to optimize their cost and services (or their prices), and therefore wanted to investigate
whether ML could help them predict readmissions (or utilization, respectively). The in-
stitution tasked the participant to investigate this feasibility possibly using the dataset
they had collected, and to report on their findings by speaking outloud. Along the inves-
tigation, when participants mentioned some code-based exploration, we shared corre-
sponding code snippets prepared before the interviews to speed up the process.

For the interviews with developers who had used a fairness toolkit in the past or with
the ones we introduced to a toolkit, we loaded a specific toolkit (FairLearn [107], or IBM
AIF360 [91]) into the notebook, that they were most familiar with. We consider these
toolkits because they contain a large number of functionalities around algorithmic fair-
ness; they are the most studied toolkits in research [481, 220] and appear to be popular
among developers. Cf. Appendix for details about our interview materials.

Analysis of the Transcripts. We analysed the transcripts using a combination of induc-
tive and deductive coding. The first author identified the segments discussing the main
themes we wished to discuss (e.g., the harms, their conceptions, identification, and han-
dling, and toolkit use), and coded any other emerging themes (e.g., other factors that
developers trade-off when developing ML models) in collaboration with four other re-
searchers. Then, the author in discussion with the other authors, reconciled redundant
codes. Finally, this first author studied each of these codes based on their associated
participants. While we cannot certainly identify which factors cause observed variations
in terms of conceptions and practices based on our qualitative study, certain develop-
ers explicitly mentioned potential factors that we report. We also explore quantitative
differences based on the background information we have about the developers (yet, all
the factors are impacting practices in different ways, that we cannot explore within our
study).
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7.4. RESULTS

7.4.1. ON THE EFFECTIVENESS OF TOOLKITS

In terms of algorithmic unfairness, developers reported the toolkits to be extremely use-
ful for them to quantify and mitigate unfairness, what was confirmed by our observa-
tions. Yet, we also identify drawbacks of the toolkits for distributive unfairness, that we
describe next. In terms of algorithmic harms beyond distributive unfairness, we did not
note any evidence of positive or negative impact of the toolkits on developers’ consider-
ations and practices.

EFFECTIVENESS OF TOOLKITS

Among toolkit-inexperienced developers, toolkits fostered a positive shift in practices
around algorithmic fairness between task T1 and their introduction in task T2. Before
being introduced to the toolkits (T1), it was not natural for the developers to reflect about
algorithmic fairness. After our tutorial (T2), they began discussing potential unfairness
caused by the outputs of their models and trade-offs between different fairness metrics
and with accuracy, to judge which model is satisfactory (even if superficially on occa-
sion). They also started envisioning approaches to mitigate the potential issues with the
outputs. Hence, toolkits, for these developers, represent a means to foster awareness
around distributive unfairness and its causes. P19: “Just seeing how it worked, made me
realize that it’s not only about the dataset, but there’s bias everywhere.” It also represents
a means to learn about existing solutions to mitigate unfairness, and a prompt to start
actively tackling the issue (being readily-available code repositories, toolkits lower the
entry-barrier to the problem). P17: “If it’s quick and easy, run a quick check. ‘Oh, there is
something there I didn’t think of. I need to explore that.’ I could see that happening.”

As for toolkit-experienced developers, they primarily use toolkits to speed-up their
processes around algorithmic fairness, and to foster communication with other stake-
holders. P11: “I talk to business people and this is how they can connect to this topic from
the technical side because they can’t code or anything.”

UNDESIRABLE CONSEQUENCES OF TOOLKITS: REDUCING HARMS TO ALGORITHMIC FAIR-
NESS

Despite their perceived utility, toolkits can be misleading, and create a gateway to a nar-
row view on distributive justice. 6 out of 10 participants who were inexperienced with
fairness, 4 out of 9 relatively experienced ones, and 2 out of 11 experienced ones took
the toolkits at face value. They applied all fairness metrics available through the toolk-
its without considering their meaning and appropriateness, declared a model satisfying
if certain values of (often arbitrarily picked) fairness metrics were reached (sometimes
operating a non-informed balance between accuracy and fairness metrics) without re-
flecting on their limitations. P13: “With the use of toolkit, I don’t think my view changed.
[Before having the toolkit,] I already believed in what the techniques could do. So if the
toolkit correctly implements techniques, I have faith in it.”

55% of developers who were more experienced with fairness explicitly expressed
concerns surrounding the toolkits. Toolkits might narrow down critical thinking around
what is measured in relation to distributive fairness and be misleading, limit reflections



7.4. RESULTS

7

195

on broader socio-technical concepts, and foster techno-solutionism triggered by the de-
velopment of unfairness mitigation methods. P22: “You cannot rely on the toolkit. You
need to understand the problem and the domain knowledge. I can easily see these toolkits
like before metrics like precision, recall were just thrown at random without knowing the
actual meaning. Things like statistical parity difference, as they become more common, I
can see them being misused because a lot of people don’t even know their definitions. It’s
easy for people to misinterpret them.” developers also felt that toolkits encode biases in
their setup. P23: “These libraries can introduce some biases that you are not aware of, so
you don’t need to put all the chances on those libraries, you should look into data yourself
to see what type of bias data contains.” All in all, toolkits might illegitimately serve as
a checkbox. P3: “Fairness for many companies is just a small checkbox, and sometimes
people put their mark without any question. I hope there will be a time when they un-
derstand that fairness is not about code and just picking up one toolbox. [..] The toolkits
would constrain your view if you’re using them blindly.” This is in direct contradiction
with the way a few participants perceive the toolkit as an opportunity to realize and con-
vey the complexity of the distributive justice problem P21: “The recurring theme of our
conversation is that fairness is difficult, and this realisation is what the toolkits achieve.
They give a large variety of options to make fair models, but their biggest positive impact
is helping developers realize that this is not a topic where we just do the same five steps
and we have a fair model, but it’s something that requires a lot of consideration.” This is
evidence that beyond the toolkit itself, there are additional factors that impact practices
–we discuss them next.

TECHNICAL FACTORS: DIFFERENCES ACROSS TOOLKITS

We do not find any notable difference in the conceptions of harms between developers
who used different toolkits, irrespective of their experience with fairness. While in prac-
tice some functionalities (metrics and mitigation methods) are only supported by one of
the toolkits, this did not appear to be a major obstacle to the developers, who seemed
to use other methods when needed (some developers also mentioned having to design
novel methods to tackle their problems). This could however potentially be dangerous
for beginner developers who learn about algorithmic fairness solely through the toolkits,
and may revert to sub-optimal metrics and methods.

developers did mention factors that impact the adoption of toolkits: compatibility
with existing frameworks and code, frequency of maintenance and open source nature,
ease of adoption and learning curve, transparent implementation and documentation,
amount of functionalities and adaptability to various use-cases, and socio-technical
questions the toolkits foster (cf. supplementary material for details about these factors
and the others we identify). Interestingly, these mainly refer to non-functional require-
ments. While developers agree on these requirements, the evaluation of the satisfac-
tion of a requirement for a toolkit was sometimes contradictory across developers when
choosing one toolkit over the other (oftentimes, developers did not know both toolkits,
but used similar arguments for explaining the choice of one over the other), e.g., they
mentioned choosing AIF360 or FairLearn both because of their compatibility with exist-
ing coding frameworks.
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7.4.2. HUMAN FACTORS

Finding out that the toolkits are not the only factor that substantially fragments prac-
tices, we turn to the human factors and the specificities of each developer to understand
observed variations.

EXPERIENCE IN ALGORITHMIC HARMS

As already mentioned, the amount of prior experience with algorithmic fairness (which
includes experience with fairness toolkits) seem to impact practices on average. Rela-
tively experienced developers typically think of less harms and reflect on issues with less
critical attitude, and more often solely relying on their intuition, than the more experi-
enced developers. Most participants who are just entering the realm of distributive fair-
ness through a toolkit are not very critical about algorithmic fairness. P20: “Using it this
way seems to be one of the best ways, taking into account what I knew before, and what
I learned today about the toolkit.” They become more critical if they accumulate more
practical experience and knowledge by further exploring the toolkits’ guidelines. Hence,
more than the mere amount of experience, the type of prior experience with algorith-
mic fairness is a factor that seems to strongly impact practices. For instance, practices
among the most experienced developers do vary, with some also relying solely on some-
times flawed intuitions, while others systematically involved external sources of infor-
mation and rigorous computations (e.g., other stakeholders, laws, guidelines, business)
and potentially make use of statistical tests.

WAYS OF LEARNING ABOUT ALGORITHMIC HARMS

Types of Interactions with Others. The developers who displayed a more critical at-
titude discussed having learned about distributive fairness through interactions with
various stakeholders. For instance, half of the participants who have learned about the
metrics primarily through the code and 70% of the inexperienced participants who only
briefly learned about the metrics during our interview discussed observing all metrics
without reflecting on their meaning, while all the ones who have had more interactions
with the research community (7 participants) or other interdisciplinary teams (3 partic-
ipants) judged choices based on use-cases. These interactions (discussions, workshops,
and conferences) often involve colleagues, clients, or researchers in AI ethics that high-
light potential limitations and critical attitude to keep, or illustrate the subjectivity of
the topic. P3: “We invited one developer of FairLearn to run workshops. Her message
was clear: you can ingrain fairness in code, but if you don’t understand what you’re do-
ing, you will be in the world where we are already.” Similarly to previous results show-
ing that discussions can positively impact fairness considerations [636, 544], the partic-
ipants we introduced to the toolkits also mentioned the benefits of our discussion (to
make them conscious of potential harms and of the limitations of their own, often non-
critical practices), more than the one of the toolkits. P20: “[Do you feel like your perspec-
tive on algorithmic harms changed after after seeing the toolkit?] Yes, I mean more after
this discussion altogether. I personally wouldn’t have taken some of them into account
myself if I weren’t pointed in the right direction by your questions.” Our participants re-
flected about the choice of fairness metrics and mitigation methods, once we explicitly
prompted them about specific use-cases and actual meaning of different choices. P28:
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“You also mentioned proxy. And I realized that just protecting some variables doesn’t mean
that you have removed completely that bias.”

Types of Courses. Other developers learn about various harms and algorithmic fair-
ness by reading literature (e.g., P9 mentions the diagram from the Algorithmic Justice
League) or by following courses on ML in general, on AI ethics, or on ethics of technol-
ogy. The way the course is taught seems to impact practices, as one developer discussed
having been trained through use-cases and was able to identify a number of harms,
while four others mentioned a few ML ethics courses with toolkits introduced during
the courses but did not reflect on any harm during the interview.

Importance of the Design of the Learning Material. While developers learn and de-
velop their experience with ML and algorithmic harms via various means, leading to
various practices, they also seem to interpret differently the same material, sometimes
leading to misconceptions. While we discuss in a later subsection relevant human fac-
tors, we emphasize here the importance of the framing of the materials around harms.
For instance, certain initiatives, although having a legitimate aim —warning against is-
sues or proposing relevant approaches— sometimes had the inverse effects, and nar-
rowed down the view of the developers towards related harms. This was especially the
case for the recent "data first" approach advertised by different research communities
[42], that led certain developers not to understand that model design might also cre-
ate algorithmic unfairness; P22 “I talk about the data quality first like Dr. Andrew Ng
says. Data-driven ML is becoming very prominent.” Similarly, P9, P16, P23 learned about
model energy-consumption issues by reading the "Stochastic Parrot" paper [93], lead-
ing them to acknowledge these issues solely for large language models, but not for other
types of simpler ML models.

Next to the framing of harms, the vocabulary employed (e.g., “bias”, “sensitive fea-
ture”, “protected attribute”) also revealed to be a source of confusion and flawed prac-
tices. For instance, certain fairness-inexperienced developers only conceived "biases" as
statistical skews without relations to, e.g., sensitive attributes or harms P30 “with medi-
cal instruments, for a specific machine, there is some specific noise in the data. If you know
which machine measured the blood pressure, then you know the bias in the data.” Some
expert developers even warned about issues with loaded terms.

DISCIPLINARY EXPERIENCE

ML Experiences. The amount of experience with ML also seem to be an impacting
factor for practices around algorithmic harms. We observed that developers who have
longer experience with ML (independently of having experience or not with algorith-
mic harms) reflect about more harms, more in-depth, and often envision more diverse
mitigation methods than less experienced developers. For instance, three of those de-
velopers without experience around fairness were able to envision potential harms from
the model design, and naturally evaluated the model based on subgroups of population
without knowing the concept of equalized odd, whereas developers relatively inexpe-
rienced in ML with some algorithmic fairness training often did not account for this.
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Three participants who had extensive experience with data science but were inexperi-
enced with fairness and three mildly experienced ones were also more critical about the
toolkits. P18: “You always need to question existing tools and practices to be able to im-
prove and innovate.”

Experiences with other Fields. Three developers who have not only studied ML or
data science emphasized the potential benefits of their background: a participant
trained as an ethicist; another trained in industrial design P1: “This is my industrial en-
gineering background talking. Let’s map out the process to see, if we would be using a
model, where it would fit in the current process and what requirements might be there? Is
this supposed to be a fully automated system? How are people going to use this system? [..]
For that, I talk to people. Can you imagine yourself saying that? [sarcastic remark about
computer scientists]”; and a last one in sociology P29: “that’s why they hired me: some-
one who’s both good on the computer science side and on this sociology side.” These par-
ticipants indeed identified more relevant harms and presented a more critical attitude
towards their own activities, reinforcing the importance of involving multiple stakehold-
ers with a diversity of backgrounds when the ML developers themselves do not have the
relevant education.

PERSONAL FACTORS

As we hinted at earlier, developers might behave differently even when presenting sim-
ilar prior training and experience, within similar contexts. This hints at the existence
of additional human factors that impact practices. Especially, non-volitional, socio-
demographic factors were explicitly reported by developers as drivers of certain prac-
tices, such as gender, nationality, and culture that impact their ways of perceiving harms.
Belonging to a minority might also change the lived experiences and efforts put onto
harm mitigation. P13: “I felt my obligation because I participate in many unprivileged
classes. So I would like another person to do it for me.”

Although not always directly observable via our interviews, other factors (e.g., psy-
chology traits, abilities, and the resulting personal interests) appeared to be at play. For
instance, when asking the developers to envision potential limitations of fairness met-
rics and mitigation methods, many of them could neither envision any conceptual one,
nor see the potential risks of distribution shifts (that is a more technical and well-known
topic –mentioned by only 20% of the participants). Similarly, when we prompted the par-
ticipants to reflect broadly about their approaches, many did not envision or acknowl-
edge any potential limitation. Yet, some participants showed more reflexivity, accurately
recognized being biased and having to make subjective, uninformed choices, and ac-
knowledged the complexity and subjectivity of the choices they make. P20: “I’m sure
that there is a possibility to create bias if I create features based on my interpretation of
the data or what I think in my subconscious about people that get ill.” A few (also rec-
ognized not really knowing the potential impact but potentially keeping the benefice of
the doubt. P4: “For hyperparameters like learning rate, I can’t see the connection with
how it might harm people because it just influences accuracy. But I’m hesitant to say it
doesn’t affect it at all because you never know with these things, so you should always be
cautious.”
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7.4.3. CONTEXTUAL FACTORS
Along the interviews, developers also mentioned a number of organisational factors that
represent obstacles or impetus towards handling questions of algorithmic harms.

INCENTIVES AND SUPPORT

Several participants discussed monetary incentives (financial compensation) and non-
monetary incentives and opportunities (possibility to get dedicated time for investigat-
ing harms), or the lack thereof, provided by their organization, that impact their con-
siderations and actions. P14: “the challenge is that, from a legality compliance and the
organization perspectives, the appreciation should be there for you to spend the time.”
Several participants mentioned engaging in volunteer work in their organization, in or-
der to setup trainings and tools for tackling harms, or directly investigate harms for their
own ML projects.

Others also reported on the material support (or the lack thereof) provided to them
to facilitate tackling algorithmic harms. They especially mentioned the access to conve-
nient tools (such as the fairness toolkits), and education around the topic (e.g., via the
participation to workshops and seminars ordered by the organisation). Human support
was also reported, especially the facilitation of the access to various relevant stakehold-
ers (e.g., domain experts, decision-subjects, researchers) who might be able to give indi-
cation on the existence of potential harms and the way to solve them.

PROCEDURAL OBLIGATIONS

Procedural obligations were also reported by participants, as wishes to foster algorith-
mic harm considerations. In terms of requirements or guidelines for the ML system
to be built, they reported that, oftentimes, the organisation did not specify any harm-
related requirement, and that certain requirements would come in opposition to the
mitigation of harms (due to existing impossibility results; limited access to data, e.g.,
due to cost, etc.) —a clear hindrance towards harm mitigation. For instance, P16 and
P19 described that their decision to develop a system is based primarily on the system’s
usefulness (time and cost saved) for the business that requires it, leaving out questions
about harms towards data subjects P16: “It’s appropriate and relevant for the business.
They want to save money or to reduce time of work.” Subjective norms (the vision that
the society might have on the organisation, or the belief that the organisation has on the
way of handling harms of other organisations) also played a role in the establishment of
requirements by the organisation. In certain cases, it made the organisation push the
developers towards investigating harms, while in other cases it refrained them to do so
—for instance, P13 mentioned that if the public knew about a certain harm mitigation
approach, they would not accept the ML system deployment P13: “[talking about post-
processing methods that flip certain model outputs] They imply a bias in the process. It
would be a problem for the company to say that they are doing this: if I am a company
and I am saying publicly that I am imputing bias on my model, how would society react
to it?”

Next to inexistent, ambiguous, or contradictory requirements, the allocation of re-
sponsibilities towards harms was described as structurally unclear for the developers.
Very few developers mentioned clear allocation of responsibilities by their organisation
(e.g., existence of an ethics committee). This represented one more challenge for the



7

200 7. FACTORS IMPACTING PRACTICES TOWARDS ROBUSTNESS & HARMS

developers, as that did not necessarily provide them with the needed power to make
choices towards harm mitigation. Particularly, participants often discussed that they
can strive to make harms transparent within their projects, but that the model requesters
have the final say in deployment decisions.

7.4.4. INTERACTIONS BETWEEN FACTORS
Here, we provide a short description of the main interactions we identified between fac-
tors, that reveal the importance of psychological traits and other human factors, and
reinforce the need to account for the entangled nature of these factors.

PERCEIVED OR ACTUAL RESPONSIBILITY

We described that organizational factors might leave responsibility around harms am-
biguous. In such situation, different developers react differently (hinting again at the
importance of human factors): they perceive their responsibility differently, and engage
to different extents in activities that are not promoted by the organizations in order to
tackle harms. Certain developers argued that as data scientists that know the most about
the system, they are the ones responsible for identifying and reporting harms (if not also
for making decisions on system requirements and deployment) P17: “It needs to be the
responsibility of the developer, or have a developer that is some sort of fairness compliance
person, that’s doing some peer reviews of code, because once you get to the developers’ boss,
they don’t know code.”; that the model requesters are the ones deciding for any require-
ment; that the C-level and managers should be responsible to incentivise the engineers
and to make choices where developers do not have knowledge P19: “As much as I would
probably want to, I don’t think I have all the necessary background for that.”; or that a
committee within the organization should be responsible as it would gather more di-
verse expertise P16: “We have a committee of ethics. If we have any questions, we can go
there to understand their opinion, it will not be the decision of one person but a collective
decision.”

OBSTACLES AND EFFORTS

We mentioned that developers might lack resources (e.g., access to relevant stakehold-
ers) and knowledge to tackle harms. In such cases, we identify different attitudes to-
wards the challenge. While it is well-known that collaboration in the ML lifecycle is often
needed for the developers [220, 920, 637, 454], prior work and our study both show that
tackling questions around algorithmic harms is still predominantly the job of ML devel-
opers alone. Except for certain highly-ML experienced developers, most of them did not
mention putting proactive extensive effort into reaching out to relevant stakeholders. In
terms of knowledge, many of the participants who admitted lacking knowledge to iden-
tify or mitigate harms, concluded by reporting that they consequently do not put effort
into acting on harms. P10: “I am slightly aware of it but I wouldn’t be able to say how
to make changes towards that. I don’t have any experience.” Instead, others mentioned
searching into research papers to identify appropriate methods. For instance, P15, P18,
P24, P27 proposed to look into research that trades-off model size (assuming a smaller
model would be less energy-consuming) and accuracy performance to reduce environ-
mental impact. Some developers explained potentially having a higher propensity to put
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effort onto fairness challenges because they have research experience, and hence can
search within publications for relevant methods P7: “I’m interested in research. When
you try to apply these tools, that is connecting the academic world to the business side.”
Similarly, when participants mentioned that no method exists yet to tackle a harm, cer-
tain would attempt to create a new one, while others would wait for research to progress.

7.5. DISCUSSION & IMPLICATIONS AROUND THE RESEARCH /
PRACTICE GAP

7.5.1. THE RENEWED IMPORTANCE OF FACTORS

SUMMARY OF OUR FINDINGS

In our study, we found that a complex set of interdependent human and organisational
factors interact, and result in diverse practices of machine learning (ML) developers
around algorithmic harms. For instance, we identified that, overall, developers who have
little experience with ML and have not received practical and critical training around
algorithmic fairness often stop at the application of a few fairness metrics and mitiga-
tion methods. The more experienced developers and those with an interdisciplinary
background present a more critical attitude, attempt to go beyond what fairness toolk-
its permit (e.g., by envisioning non-algorithmic ways to avoid algorithmic unfairness),
especially when they had opportunities to discuss these topics with experts. Next to
these prior experiences, organizational constraints and incentives also represent drivers
or obstacles towards deeply tackling harms, that, in interaction with psychological and
socio-demographic traits, result in a diversity of trade-offs made between algorithmic
harms and other business considerations.

While it is natural that such types of factors impact practices in the context of ML
model development and algorithmic harms, no investigation of such factors had been
performed. This study provides a first qualitative investigation that bear broad impli-
cations, and whose output validity should be later investigated through quantitative
studies. As toolkits cannot serve as straightforward recipes for the developers, devel-
opers should also be supported in exercising due diligence. We argue that this should go
through the development of better means for knowledge dissemination and training, the
design of supportive materials and new organizational processes, and the consideration
of organizational factors.

A LUKEWARM PERSPECTIVE ON TOOLKITS

Our results bring evidence confirming the results of prior works on the use of various
documentation and code toolkits, that have shown that these toolkits can indeed sup-
port ML developers in finding more algorithmic harms than without a toolkit [125, 220].
Yet, our results also bring more nuance to the benefits of toolkits, and show the risks of
using those. These nuances had not been demonstrated in prior, empirical works on
toolkit practices, as they did not focus on the impact of toolkits on algorithmic harms,
but only on the correct implementation of algorithmic fairness methods. Our results
also provide empirical evidence for prior broader works that argued against the techno-
solutionism of algorithmic fairness [309], demonstrated the potential dangers of ethics
washing [102], and more broadly warned against automating ML processes, e.g., through
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AutoML [890].
Prior work [220] had not discussed major differences in usage of different fairness

toolkits. We corroborate such findings. Besides, the factors we find developers mention-
ing as important for selecting a toolkit are well aligned with the insights of prior works
on the use of these toolkits [220, 481, 679]. These works have developed, among others,
rubrics for the design of better toolkits, including similar functionalities (compatibility
with various models, inclusion of diverse fairness metrics, guidance along the entire ML
lifecycle, facilitating interdisciplinary conversations, etc.) and non-functional require-
ments (e.g., learning curve, compatibility with common coding frameworks, etc.). We
especially echo the recommendations they make to better guide developers along socio-
technical considerations [882], in order to avoid the pitfalls emphasized by our partic-
ipants. These prior works however had not discussed the contradictory evaluation of
toolkits by developers, that we found in our interviews, and that would merit further
investigation.

THE IMPORTANCE OF HUMAN FACTORS

Although prior works have sparsely investigated human factors that impact attitudes to-
wards algorithmic fairness, we find a number of prior results that align with ours, and
hint at the validity of our results. While these studies do not investigate ML developers
specifically (but computer science students, or decision subjects), they are still relatable,
as perceptions of fairness impact follow-up practices towards harms. Besides, our work
expands on these prior results in that it looks at a broader range of harms, and at different
types of individuals.

• Toolkit. A few works [220, 481] show the potential usefulness of toolkits and their cur-
rent practical limitations. No study mentions potential negative impact that we iden-
tified.

• Experience. Kleanthous et al. [441] identified the impact that the level of computer sci-
ence education has in understanding fairness issues along an ML pipeline, that we also
identified. Yet, no study reveals the importance of the type of educational background
and the type of prior ML experience and fairness training.

• Socio-demographic factors. Quantitative studies [405, 636] have shown the impact
of gender on students’ considerations of ML fairness, privacy, and non-maleficence.
Prior work has also shown the effect of gender and race on judgements of fairness
metrics [314, 338]. While this is not a result we could explore due to the imbalanced
distribution of participants we had, all our female participants also displayed a critical
attitude towards their practices and acknowledged various harms, whereas the results
were more disparate across male participants.

• Non-volitional factors. Others [314, 544] found that non-volitional factors, e.g., polit-
ical views and experiences with identity-based vulnerability, are relevant. Our results
also hinted at the importance of non-volitional factors, as multiple developers referred
to their personal interest in the topic, or being part of discriminated minorities, as mo-
tivating factors.
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While the studies above align with our work, other studies seem contradicting. Some
studies have not found impact of socio-demographic or other human factors on the per-
ception of different fairness metrics [786, 314], and the results of other studies are con-
tradicting each other in terms of fairness perceptions, as detailed in [338]. For example,
Wang et al. [864] identified that people with higher computer literacy perceive algorith-
mic decision-making fairer than people with lower levels of literacy, and that age, gender,
race, and education level do not have a significant impact. Contrary to these findings,
others [405, 636] pointed to the impact of gender, and our work showed the variability
in perceptions of fairness among all our participants who were highly computer literate.
We argue that these contradictions are due to the absence of detailed investigation of
the impact of the human factors we identified, or to the lack of relevant intersectional
considerations across factors.

CONTEXTUAL FACTORS: OBSTACLES OR VECTORS

Our study identified various clashing constraints and objectives that developers have to
take into account during the ML lifecycle. Some of these points have already been high-
lighted in previous empirical works, such as the conflict between business goals (e.g., the
system should work for a majority of cases but not necessarily for edge cases to have a
competitive advantage) and developers’ goals (making sure to have high accuracy on all
kinds of population) [621, 521, 612], or the lack of organisational support [665] (time and
cost allocated, development of tools and guidelines, etc.), that result in individual efforts
instead of organizational processes. Other factors had not been discussed until now to
the best of our knowledge, in the context of practices for handling algorithmic harms.

7.5.2. REFLEXIVITY VIA RENEWED EXPERIENCES

Facing the importance of various factors, one should take those into account in the fu-
ture development of support structures for ML developers to tackle algorithmic harms.
Support should be personalised to the relevant types of developers we identified.

GUIDELINES FOR THE DESIGN OF TOOLKITS

While fairness toolkits mildly contribute to enacting reflexive practices around algorith-
mic harms, they still represent an almost inevitable medium for algorithmic fairness.
They appear as double-edge swords according to our results. This is where the danger
of breeding a “Checkbox Culture” can manifest among developers with respect to han-
dling algorithmic harms. Our work especially shows the need for pointers to relevant
activities and resources within toolkits [480], while emphasizing the complexity of the
problem and its context-dependence. Toolkits should also be adapted to the type of
stakeholders that use them, based on their prior training, experiences, and other human
factors, showing pop-up warnings, enforcing attention checks towards harms, allowing
for different functionalities, or proposing trainings before using the toolkits. This will
be a challenge as existing warnings in FairLearn [107] do not seem to always be consid-
ered by the developers. Besides, we need to make sure the toolkits do not become new
checkboxes, but instead foster critical thinking.
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DUE DILIGENCE THROUGH EDUCATION

Topical Education. Since our results highlighted the importance of the type of train-
ing and experience developers have received about ML and harms, we join prior studies
in advocating for more education of ML developers [220, 719, 454]. Many works [121,
269, 281, 662, 436, 117, 147, 362, 536] have discussed ways to provide a responsible AI
education to developers, and we recommend to refer to their insights (e.g., modular ap-
proaches to responsible AI education for easy integration into courses, including events
reported in news articles). We also recommend to rely on insights from farther domains
such as data science teaching [474, 292, 788] (perhaps even more worrying than our
results, low-ML-experienced developers also failed into well-known, non-harm-related
traps, such as not reflecting on the limitation of accuracy as a performance metric),
ethics and HCI [270, 249], or even ethics of long-established fields such as medicine
[157], which have tackled tangential questions. We emphasize the importance of ac-
counting for the breadth of the topic (only Garrett et al. [281] noticed the absence of
certain harms like environmental impact from existing courses), its complexity, and the
importance to raise awareness about the issues and to train on tackling them.

Change of Attitudes. Next to teaching about algorithmic harms, it is important to de-
velop the moral sensitivity [121], the critical attitude, and the reflexivity of future de-
velopers, in this highly-subjective context (Green et al. [311] talk about an algorithmic
realism approach, acknowledging the contextual, porous, and political nature of these
harms and objectives) where no easy solution to algorithmic harm can be prescribed.
Three concrete mediums of good practices surfaced from our interviews: discussions
with diverse stakeholders to develop awareness around the subjectivity of the problem,
warnings to develop a critical attitude towards existing theories and tools, and use-cases
to experience potential challenges in the responsible use of tools. These should be incor-
porated in the trainings. We envision that trainings using close-to-real-world use-cases,
starting from the beginning of the ML lifecycle (problem formulation) to the end (deploy-
ment and monitoring), with various stakeholders to interact with, and varying degrees
of challenges (e.g., having all harm-related and other constraints explicit or proactively
identifying them), could be beneficial. Markus and al. [535] insist on accounting for
organisational dynamics in such trainings.

Terminological Considerations in Education Material. The terminological confu-
sions we identified align with prior works [571] that highlight disciplinary confusions
in the task of making a model fair, and works that studied the impact of terminologi-
cal choices [467] on one’s perceptions of an ML system. Mulligan et al. [571] promote
the value of shared vocabularies and reconciling taxonomies that facilitate discussions.
We echo these recommendations and the ones of P29 who suggested to move away from
loaded terms towards more specific words, e.g., characterizing the type of bias in relation
to the harm it creates, arguing that these materials should not only contain definitions
such as it is currently done [518], but should also make concepts clear to the extent of
pointing out to the different related theories behind them.
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While these factors are often unspoken in the research community, they have to be ac-
counted for by developers, as they are inherently in tension with handling algorithmic
harms, but most developers currently face the dilemmas alone. We argue that the re-
search community and policy makers should account for these factors further, and sup-
port —sometimes empower— developers in the decisions they have to make along the
ML pipeline. Interdisciplinary research is needed to understand how to prioritize tack-
ling the different harms (beyond distributive fairness), accounting for realistic trade-
offs that have to be made across stakeholders and acknowledging practical constraints.
Relevant directions are the understanding of preferences of stakeholders beyond well-
studied preferences across fairness metrics [314, 338], the development of frameworks
to uncover and negotiate preferences between stakeholders [836, 146, 484], and the cre-
ation of guidance for developers to navigate the trade-offs.

Knowledge and due diligence are not enough when developers do not receive struc-
tural incentives. P18 mentioned “Practice is different from the ethical goals of the world.
I had an interview. I said it’s important to recommend people music that is worthwhile
listening to. The manager told me these are idealistic thoughts, not how the real world op-
erates, this company is all about revenue. So fairness at a company level, it depends on the
culture and ethics of the people.” Hence, we join [665] in the idea of developing organi-
zational processes to foster the development of good practices: the design of guidelines
[523], e.g., for identifying responsibilities and appropriate requirements, the facilitation
of interdisciplinary collaborations [882, 662], and the establishment of structural incen-
tives and principles such as slowness [615]. Development of regulations, that explicitly
account for organisational obstacles (e.g., making sure some employees of an organi-
zation are well-equipped to investigate algorithmic harms, have time dedicated for it)
could also incentivise these organizations [299, 772, 845].

7.5.3. RIGOROUSLY INVESTIGATING THE FACTORS

The factors we identified should be quantitatively explored in the future to validate our
results (identified conceptions for each harm could serve as dependent variables). This
would inform the design of trainings and supportive tools (e.g., the categories of individ-
uals to tailor them to), and the constitution of ML development teams, accounting for
the perceptions and abilities of each member. We foresee challenges in the design of a
rigorous experimental setup: difficulties to quantify human factors, need to account for
interactions between them, and need for specific scales around each harm, their differ-
ent perceptions, and mitigation approaches. Apparent contradictions among results of
prior works seem to be due to subtle differences in what is measured, who is the experi-
ment subject, and potential interactions between multiple factors, which are differences
that one should aim at controlling in future studies.

Existing research could be used to overcome these challenges. A measurement has
been developed to quantitatively measure undergraduate student’s attitudes towards the
ethics of AI [405], that could be useful to evaluate how these factors are impactful. Yet,
one should first complete this instrument to account for the types of harms that are cur-
rently left out from the instrument and for which we identified a variability of concep-
tions, and not only for attitudes towards harms but also towards their mitigation. The



7

206 7. FACTORS IMPACTING PRACTICES TOWARDS ROBUSTNESS & HARMS

insights and methods from social psychology studies about human processes of taking
actions, such as the theory of reasoned action or the theory of planned behavior [14,
333], could also be adapted to further analyse results, as they hint at a diversity of factors
and their co-existence, for action taking. We already see correspondences, for instance
in the subjective norms and perceived control mentioned by these theories, and that our
interviewed developers also discussed, e.g., when mentioning the image ML ethics give
to an organization.

7.6. LIMITATIONS & THREATS TO VALIDITY
While we strived for recruiting a diversity of participants in terms of demographics, ex-
perience with ML and fairness, we could not obtain a significant sample for combined
categories. Impossibility came from the relatively small amount of developers tackling
these issues in the world (e.g., few developers could be found working regularly with the
AIF360 toolkit), the duration of our interviews, and the controversial character of the
topic. Yet, since several of our observations are corroborated with previous studies, one
can suppose some generalisability of our results. This also indicates future challenges in
quantitatively investigating the factors.

Due to time considerations, developers could not extensively explore the toolkits be-
yond our tutorial. Letting them familiarize themselves further with algorithmic fairness
before conducting task T2, would possibly provide a few different results on the impact
of experience and toolkits on practices as practices evolve long-term. For instance, Fair-
Learn provides warnings about algorithmic harms that the participants did not see dur-
ing the interviews, but that could change their attitudes. Yet, the interviews with de-
velopers experienced with toolkits allowed us to somewhat control for this, and did not
show related differences.

Finally, our participants were not placed into a specific organization and did not have
access to different stakeholders. While this was useful for us to fairly compare practices
across participants, we foresee the importance of further studies, e.g., with the develop-
ers’ own projects, to identify additional factors.

7.7. CONCLUSION
Our study led to an extended characterization of the complex, intertwined, factors (tech-
nical, toolkits, human, and organizational) impacting the differences of conceptions and
practices about algorithmic harms that surface across ML developers. These results do
not only align with prior works that surfaced a few factors in relation to algorithmic fair-
ness, but also extend and complement these works with information around a more
comprehensive consideration of algorithmic harms. Particularly, we found that the use
of fairness toolkits does not necessarily lead to its envisioned impact, and can at times
promote a checkbox culture, if it is not accompanied by a distinction of the background
and prior training the user of the toolkit received, as well as of the pressures their organ-
isations puts on them. In summary, our study constitutes a strong testimony that ML
developers are not as much “ethical unicorns” [662] (i.e., developers who ensure a com-
prehensive handling of algorithmic harms of the ML systems they work on), than sub-
jective unicorns encaged in an organization. Such findings bear strong implications for
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future research opportunities around the refinement of the toolkits and of educational
programs, accounting for these human factors, and for potential regulations to address
organizational concerns. In the next Part (Part III) of this thesis, we will develop initial
technical solutions to support ML developers in diagnosing some of the hazardous fail-
ures in the outputs of their ML models. We leave it to future work to tackle the other
factors that we identified in this Chapter.

APPENDIX

DETAILS ON THE METHODOLOGY

INTERVIEW PARTICIPANTS

Table 7.1 introduces the distribution of participants to our interviews.

Table 7.1: Background of the participants in our study. Note that some participants reported multiple educa-
tional backgrounds.

Dimension Values (and number)

Demographic information
Nationality US (6), Netherlands (6), India (4), Iran (2), Russia (2), Romania (2), Sint Maarten (1),

Canada (1), Brazil (1), Slovakia (1), Poland (1), Greece (1), Spain (1), Ukraine (1)
Gender male (24), female (6)
Highest education BSc (2), MSc (21), PhD (7)

Experience with machine learning
Work type applications (14), research (8), both (8)
Application do-
main

healthcare (4), finance (3), recommender systems (related to human resources) (3),
predictive maintenance (1), others

Education computer science (25), mechanical engineering (3), business or economics (3), so-
ciology (1), psychology (1), accountant ethics and compliance (1)

Years of experience 2 or less (13); 3 to 5 (15), 15 (2)

Experience with algorithmic fairness
Years of experience 18 (1), 3 (3), 2 (7); 1 (2), 0.5 (7); 0 (10)
Type of experience long-term research (6), short-term research (4), frequent use (7), irregular use (3),

none (10)
Toolkit no exp. then FairLearn (5), no exp. then AIF360 (5), exp. with FairLearn (11), exp.

with AIF360 (9)

INTERVIEW USE-CASES

Table 7.2 introduces the harms we included in the two use-cases.

QUESTIONS ASKED TO THE PARTICIPANTS DURING THE INTERVIEWS

Questions on background experience. We started the interviews by giving a brief
overview of our research to the participants, and by questioning them about their back-
ground (demographics and machine learning experience). Once all required tasks were
completed by the participants, we asked final questions about their fairness experiences,
how they learned and work with algorithmic fairness/harms, and reasons for using a cer-
tain toolkit, as well as their broader knowledge of the responsible machine learning field.
We made sure not to ask any question related to their algorithmic fairness experience at
the beginning of the interviews not to bias them towards thinking of particular topics.
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Table 7.2: Examples of potential harms introduced in the two use-cases presented to participants.

Category Task 1: Hospital readmissions Task 2: Medical services utilization

Distributive unfairness
Biased dataset
causing unfair-
ness

High imbalance for various potentially
sensitive attributes (e.g., race: 74%
Caucasian, 20% African American and
the rest divided in 4 other categories).

High unbalance of race (white at 80%, oth-
ers at 20%).

Sensitive at-
tributes

"Classic" sensitive attributes (e.g.,
gender, race), and other, rarer, po-
tentially sensitive ones (e.g., marital
status, weight). Proxies (region
was synthesized to be highly corre-
lated with race).

Same with race, sex, age, and ques-
tion of marital status, military
service. Proxies (e.g., race highly corre-
lated with poverty status).

Conceptual lim-
itations of met-
rics

Consequences of the model output not
only for the patients but also for their
family, not measurable.

Consequences of the model output not
only for the insured but also for their fam-
ily, not measurable.

Harmful datasets
Inappropriate
attributes

Utility and ethics of using the marital
status to predict hospital readmis-
sions.

Same for marital status, and military
service status.

Inappropriate
attribute encod-
ing

Gender encoded as binary, age en-
coded into three categories.

Race encoded as binary (white, non-
white).

Desirability of the ML model
Task encoding
desirability

Over-simplified and potentially irrele-
vant target labels (unjustified thresh-
old of 30 days).

Potentially unethical task where insurance
prices would be computed based on esti-
mation of medical services utilization.

Impact of technical ML activities onto harms (especially unfairness)
Missing data Synthetically introduced to correlate

with specific values of the weight and
medical speciality attributes.

21% of synthetically introduced missing
values for the weight attributes with pri-
marily values corresponding to gender fe-
male, which would lead to gender im-
balance if the corresponding records were
droppped.

Outliers Synthetic injection of outliers in the
number of lab procedures attribute

Outliers introduced within one synthetic
attribute corresponding to an aggregation
of several other attributes.

Duplicates No visible duplicates. 20% of synthetically introduced duplicates,
that would decrease dataset size conse-
quently as well as create certain target label
inbalance if dropped.

Questions on higher-level reflections. At the end of the interviews, we also asked gen-
eral reflection questions about any other considerations they might have when building
models, any additional harm they could envision, their experiences with the fairness
toolkits that we had introduced (for practitioners who previously did not know these
toolkits) and potential changes they would like to see in these toolkits, about algorith-
mic fairness and whether it can be solved as well as on the limits of fairness metrics and
mitigation methods (when not mentioned earlier), about their responsibility in consid-
ering algorithmic harms, and about any other wish, doubt, or remark.
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Questions on the process. While the participants were working on the tasks, we asked
them questions about their process, in order to understand the reasons for performing
each exploration activity, the thoughts they had when seeing the results of an explo-
ration, and the actions they would take based on these results, as well as to make sure
they had not forgotten any activity. We especially questioned them on activities that
might have a connection to algorithmic harms (e.g., observing data distributions and
rebalancing the dataset based on the target labels). After the two tasks in the case of
the participants inexperienced with toolkits (not to bias the participants towards certain
reflections when looking at the second task), and after the first task for the other partic-
ipants, we further questioned them on the algorithmic harms they had not investigated
(whether they usually consider them, why or why not, how they would handle them)
during their exploration of both tasks, and on the harms that could be resulting from
the activities they mentioned. We identified the harms we posed questions on through
our analysis of the literature, and we also coded any other harm they could mention.
We made sure to first ask vague questions (e.g., what can be issues with the activity of
labeling data with crowd workers), before going onto more specific questions (e.g., what
do you think of potentially poor labor conditions of crowd workers), so as to see to what
extent the practitioners actively think about these harms.

OTHER MATERIALS

Tutorial. The tutorial consisted in presenting the concept of algorithmic fairness,
the ways different fairness definitions are computed and different mitigation methods
are applied (concepts of data pre-processing, model in-processing, and output post-
processing), as well as illustrating the use of one of the toolkits to apply these definitions
and mitigation methods. We gave the tutorial with a third use-case dealing with the pre-
diction of credits default [363, 908]. This use-case was chosen for its popularity within
tutorials on algorithmic fairness and toolkits, so as to be as close as possible to what a
machine learning practitioner might see first when learning about algorithmic fairness.

To give the tutorial, we shared our screen with the participants, showing a Jupyter
notebook we had prepared with these concepts and examples of application of the tools
on the credits default dataset. We especially presented the computation of some of the
metrics on a simple logistic regression classifier, and on the same classifier to which
various mitigation methods (e.g., the threshold optimizer and grid search algorithms of
FairLearn, as well as the reweighing and prejudice remover algorithms of AIF360) are ap-
plied. We made sure to answer any question the participants had during the tutorial and
later when provided with their second task. At the end of the tutorial whose aim was to
give the participants a basic introduction to algorithmic fairness and toolkits, we asked
for verbal validation from the participants to confirm we achieved our goal.

Notebooks. When working on these tasks, we made sure to reassure the participants
that they did not have to code the entire exploration they would perform (only if they
wished to), but they could also simply speak out-loud and report on what they would do.
We had already prepared additional notebooks with code snippets that the participants
might want to use, and we shared these snippets with them whenever they would men-
tion a certain exploration activity that would correspond to the snippet. This allowed to
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reduce the complexity of the session for the participants, to accelerate the process, as
well as to see them reflect about concrete results of the exploration activities.

Pilot Studies. Before performing the interviews, we performed two pilot studies with
practitioners working at our institution. These two studies allowed us to check for the
understandablity of the tasks, to refine our questions to prompt about the different
harms, to better time each task, and identify relevant reflection questions, as well as to
make sure that we had prepared enough code snippets to help the practitioners.

ADDITIONAL RESULTS

RESULTS ON THE FAIRNESS TOOLKITS

Table 7.3 introduces the properties of the fairness toolkits (functional and non-
functional requirements) that practitioners reported as important when choosing which
of the available toolkits to adopt.

RESULTS ON PRACTICES AND VARIABLE RATIONALES AND FACTORS

Table 7.4 describes the types of rationales our participants express when handling algo-
rithmic harms. These rationales hint at different factors that impact the practices. Tables
7.5, 7.6 describes the types of challenges and impossibilities our participants envision
when handling algorithmic fairness, showing the diversity practitioners have in the way
of thinking about these problems.
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Table 7.3: Properties of toolkits highlighted by the practitioners.

Property Example Comparison and contradictions

Compatibility
with coding
frameworks

P3 “FairLearn is natural to use for those who work with scikit
learn because it is the same API. But a lot of models work
with a huge amount of data, using MLLeap, SparkMLleaP,
here FairLearn will be much harder to implement.”

P13 “AIF is a really good library because it
has Scikit learn. This library has this kind
of compatibility with the pipelines that I al-
ready use.”

Compatibility
with produc-
tion

P12 “it is not being updated often, it has the dependencies
of older versions of Scikit where something was changed. So
it is not perfectly maintained. So every time you add some-
thing to your production, you’ll want something that will be
updated often or don’t have many dependencies.”

-

Maintenance P3 “if I want to use something, I look in which stage it is.
Although AIF360 has many stars, the amount of issues shows
it is less handled than FairLearn. So I prefer FairLearn: if
there is a bug, it will be fixed earlier.” P13 “First, it’s taken
care of by other people, not by the company that I am.”

-

Open source P28 “In my next models that I will train, if there is a free
(open source) tool, I will check it out and try to apply it to
get more insight about how the tool works.”

-

Ease of use
/extension

P1 “AIF360 uses this ridiculous data structure that Doesn’t
allow you to. I mean, have you tried to put in your own data
set in F 360? How easy was it?”

AIF360 is mentioned as more complex to ap-
ply than FairLearn.

Functionalities P7 “AIF360 is more complete because it has most of the Fair-
Learn functionalities and a few more mitigation algorithms
for the group fairness and individual fairness, that is very
new” P21 “FairLearn is somewhat more limited in terms of
fairness enhancement because it doesn’t have anything that
affect the model during training”

FairLearn is often mentioned to have less
metrics and mitigation methods available,
yet one practitioner mentions its advantage
in presenting disaggregated metrics.

Adaptability
to algorithms
and tasks

P2 “it’s designed for tabular data mostly so there are a lot of
different types of data, it’s a work in progress.” P7 “in the
financial industry, some of those techniques that are pub-
lished as a paper or announced in some standard packages
and libraries, may not be very applicable for your problem”

Mentioned for both toolkits.

Learning
curve

P21 “ for fairness, you’ll have a lot of problems during your
job and you can’t have someone who you’re hiring and they
will need a week or two to learn the toolkit. The learning
curve is quite high.”

-

Transparent
implementa-
tion

P3 “ Fairlearn was more natural because it’s simpler and the
majority of the things there are not black boxes. With AIF360,
there are lots of things based on threshold optimizer or things
that are machine learning models, biased as well. So I would
prefer to work with somethingmore transparent.”

FairLearn would be more transparent (only
one practitioner discussed this point).

Documentation P6 “ they invested a lot in their tutorials and and all the other
their guides and that that was really nice to see. and they
made it very easy to use.”

FairLearn tutorials are often mentioned P29
“An issue I have with AIF360, they don’t
have a lot of documentation on how to do
this.”, but one participant mentions prefer-
ring AIF360. P21 “AIF is definitely better with
a lot more guidance materials.”

Socio-
technical
considera-
tions

P29 “Our choices are more deliberate about what we encour-
age or not, because there is this danger of giving people many
tools and not educating them about what they mean. That’s
a big limitation of AIF360: if you use this tool with some def-
initions of fairness, then you will be able to solve your prob-
lems with very business solutions.”

FairLearn argued to provide more socio-
technical information.
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Table 7.4: Conceptions around algorithmic fairness metrics and mitigation methods, and their handling. These
conceptions and practices reveal the fragmentation that takes place across practitioners around harms.

Conception Example

Rationales for selecting metrics
All available metrics (P2, P9, P10, P11,
P14, P16, P18, P19, P26, P27, P28 )

P2 “because this model will work in hospital with patients where fairness is im-
portant, we check all the group fairness metrics of FairLearn.”

Prioritizing group accuracy or group
output distribution metrics based on
use-case type (e.g., distribution of re-
sources, hiring) (8 participants)

P1 “It’s quite important that the model is accurate if resources are being dis-
tributed, like whether you receive care. So it depends. In some cases, you care
about whether the model is accurate. In some cases you care more about whether
the same proportion of people get a resource.”

Prioritizing specific group accuracy
metrics by weighing different errors

P6 “False negatives and false positives are both damaging. I’d have to think of the
costs of those two sides, that informs what fairness criteria you would choose.”

Involving external information (experts
or laws) (P1, P4, P6, P8, P12, P19, P22,
P28, P29)

P8 “Depending on domain knowledge, you want to know what metric you want
to look at. Just by myself, I wouldn’t really have an idea. This is either some legal
stuff or just some ethical stuff that we want to make sure that’s OK. ”

Using their own intuition P11 “There are a million different metrics. I would probably go down the list.”

Judging when the metrics values are satisfying
Acceptability for the data subjects P29 “Absolute fairness is not possible to achieve. So it could be: yes, there is some

disparity, but let’s say the impacted communities sort of feels fine about that.”
Acceptability for the model requesters P19 “I don’t think it’s possible to remove the entire unfairness. But I think that’s

dependent on the people that they’re making the model for, and how they react.”
Acceptability for experts P6 “There’s a question of what is an acceptable difference in performance, it’s

difficult to answer, that’s something you talk to all the stakeholders about.”

Rationales for selecting mitigation methods
No mitigation can/should be done be-
cause the data represents the world

P23 “some biases come by nature, like the data given the situation happening in
the real world. That’s not something you can change, it’s by nature happening.”

Based on image it brings to the com-
pany

P13 “[talking about post-processing methods that flip certain model outputs]
They imply a bias in the process. If I am a company saying publicly that I am
imputing bias on my model, how would society react?”

By experimenting P21 “try out a few of those algorithms, see if they maybe work better.”
Preference for not simulating new data P22 “if possible, we want to re-sample the data instead of simulating data. I

prefer if they can get the data from the source corrected, as much as we can.”
Preference for changing the data (P9,
P15, P16, P19, P20, P24)

P9 “if you can get fair data, that is one of the best ways to make sure that your
classifier is accurate on all types and all representations of people. More data has
always been the best way to make an ML model more accurate.”

Admitting not knowing how to choose P11 “I would just like read up on it so that I know about this strategy is better.”

Mentioned limitations of the metrics
No limitation envisioned P19 “I think for fairness these metrics work well.”
Limitations of certain metrics said to be
fulfilled by others (P8, P10, P21, P24)

When asked whether one metric such as demographic parity is enough, they
answer no but instead they can use another metric like equalised odds.

Limited to account for exploitation of
outputs by decision-makers

P3 “it reminds me of this famous child benefit scandal, when the problem was
not a model, but the people who were using these predictions. They were doing
this manual post processing of predictions according to their beliefs.”

Dangers of fairness metrics to be used
as checkboxes (P3, P6, P9, P13, P29)

P6 “It’s easy to think: we checked the fairness box because we implemented this
specific library, or this constraint when really fairness is a much broader topic.”

Dangers of fairness metrics to remove
critical attitude (P3, P6, P9, P13, P29)

P13 “Responsible AI is an AI built with high-quality processes, not only regarding
fairness, but regarding using the best metrics. Have a critical point of view.”

Mentioned limitations of the mitigation methods
Non-applicability to certain types of
tasks / algorithms

P7 “we needed to mix up some approaches in order to customize them and mod-
ify them. In some cases, there is absolutely no methodologies to tackle individual
fairness mitigation, that can be applied on the loan adjudication use case.”

Impact of one method on fairness P21 “Optimizing for one fairness will make another type of fairness worse.”
Does not fix structural causes of injus-
tice

P2 “About demographic parity, you can positively discriminate to get these out-
comes, or you can make the model work less good for the majority group. I
wouldn’t consider that fair.”

Approach might not be ethical P1 “One thing that people commonly do is use different decision thresholds for
different groups. What this means is that you literally put people to a different
standard. And then whether that’s justifiable or not, it depends on the scenario.”

Biases users to take technical mitiga-
tion approaches when they might need
to be structural

P29 “If you find some disparity, what does that mean in the real world? what is
the intervention you take? If you don’t understand the harm, you can’t take an
intervention to stop it. Often there’s an intervention that isn’t technical.”



7.7. CONCLUSION

7

213

Table 7.5: Examples of impossibilities mentioned by practitioners along their process, that reveal fragmenta-
tion of practices across practitioners, and various types of factors impacting practices.

Type Example

Inherent statistical and theoretically clashing impossibility around algorithmic fairness and absence of harms
if considering all sensitive proxies P21 “We are going into territory where fairness becomes almost impossible, be-

cause it could be that Medicare and Medicaid are a proxy for demographic fea-
tures: whether minorities are more likely to take Medicare and Medicaid.”

because of all attributes being possibly
sensitive

P17 “I guess the only one that society has said it’s OK to be biased on is smok-
ing because it is probably the only one that you have conscious decision you can
make about although you could argue that depending on where you’re born, it is
probably different probabilities.”

simultaneously for multiple metrics P21 “optimizing for one type of fairness will suddenly make another type of fair-
ness worse. if I optimize for fairness between individuals, it’s possible that the
fairness between groups will suffer, but also even one level lower, if I optimize for
predictive parity, it’s possible that the disparate impact will suffer.”

theoretically clashing objectives
around algorithmic fairness and
absence of harms (e.g., privacy around
data attributes and their encoding,
fairness, and accuracy)

P9 “Is the dataset collected in a way that had the informed consent of people
in the data set? Or are we collecting hospital records and using that data to do
something that patients were not made aware of? This healthcare case is sort of
limited with what you can do because you’re under health care data constraints
like HIPAA.”

Theoretically clashing objectives
around the use of ML and the absence
of harms

Employing ML itself might be the subject of trade-off, as it might be useful
for various stakeholders to deploy an ML model, but this model would re-
quire privacy-infringing data (P19), or might negatively impact the environ-
ment (P28).

Objectives clashing with harms See below for these objectives.

Requirements on model objectives:
Typically no requirement on algorith-
mic fairness and other harms

P7 “For example, we had a company involved in paper recycling. In that case,
we definitely need to make sure that the amount of data that we are requesting
or any other request that we have from the client wouldn’t have any side effect on
the environment.”

Requirements on system infrastruc-
ture: Deployment requirements, e.g.,
easiness of deployment, of update, and
of monitoring, and running time

P29 “do you want it to be a simple model so that you could retrain it properly?
Do you want something that’s very small, so you can deploy it on like a AWS or
on Azure” P3 “The simpler is the model, the easier it will be to deploy, the easier
it will be to monitor, and the easier will be to retrain”

Computational power in relation to en-
vironmental impact (only 2 practition-
ers)

P15 “We have like 20,000 GPUs and it gives a very high accuracy like human
level. On the flip side, you have this much power budget and then how do you
obtain this same accuracy within any alternative algorithm? Can you achieve
the same with much less compute power?”

Data constraints: Availability of data
samples/attributes, feasibility of col-
lecting new data records, feasibility of
collecting new data attributes // impact
training dataset, choice of algorithmic,
resulting model performance

P5 “after I do this, one of the first things that I would consider doing is to see
whether This data set is sufficient enough For running a model. sufficiency test
comes from 2 perspectives. One is What kind of Choice of model that I want to
use. if the data set is not large enough, I cannot use a neural network, I would
End up using a Linear kind of a model which would basically have its own limi-
tations. I would want to be Clear of that.
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Table 7.6: Examples of impossibilities mentioned by practitioners along their process, that reveal fragmenta-
tion of practices across practitioners, and various types of factors impacting practices.

Type Example

Impossibility due to the complexity of the concept of fairness
complexity of the concept of fairness P6 “I don’t think you can reach a fair model because it’s hard to measure.”
complexity in accounting for the im-
pact on other stakeholders

P25 “[would you consider how different people might be Affected by the same
output?] Should be considered, but I don’t have a way to consider it in terms of
improving the model.”

complexity in accounting for the im-
pact on individuals

P18 “This is something that we should take into account. I’m not really sure how
to take those into account. Maybe we could add the number of children or add
more features in the data to make sure that these decisions actually. To account
for those specific differences, I think that’s really hard and really subjective.”

Impossibility due to the subjectivity of the concept of fairness
Some practitioners seem to think that
despite their subjectivity, there is in
theory one appropriate solution that
could be defined for a certain context or
at a certain level (e.g., a single country)

P28 “I wouldn’t say that someone has to have a different insurance premium
when we talk about sex or race. So we would make those variables as protected.
I would also say potentially age since at the end of the day, if you make it a con-
stant that will make lives for people easier. But I think our society accepts the
fact that there are different premiums if you are older. If you are in your working
years or if you are young adult or you were just recently born.”

As fairness is subjective (e.g., on the
culture-level or individual-level), it is
difficulty or impossible to envision a
one-size-fits-all approach at any level

P6 “I think you can ever say that you’re absolutely fair. And I don’t think you can
ever agree between two people what their definition of fairness is. So I don’t think
you can reach it and I think it’s because it’s hard to measure and it’s hard to agree
what the criterion should be.”

As interests are clashing across types of
stakeholders, it is impossible for all to
be satisfied simultaneously

P21 “Ultimately, everyone cares for a model that performs well. The problem is
that a model which performs well for the hospital is not necessarily a model that
will perform well for the Asian people who go to that hospital.”

Subjectivity not only for algorithmic
fairness but also for harms like feature
encoding

P16 “[talking about gender being binary in our dataset] I believe that everyone
can be whatever they want to be. So the data itself should respond on this society
request. So I mean it is a science request and we have very complex society. And
if we have an issue with describing ourselves, we need to somehow mitigate it.”

Impossibility due to the "limits" of the practitioners (assuming algorithmic fairness is reachable in theory)
due to limited knowledge of the prac-
titioners and lack of guidance / regula-
tions

P21 “ a person who would like to learn how to build a model and is confronted
with a choice of 17 different mitigation techniques will know which one to
choose? Probably not” P29 “This healthcare case is sort of limited with what you
can do because you’re under health care data constraints like HIPAA, but I think
there’s a lot of other use cases where there is no regulation about what companies
can do with the data they collect, and that led to a lot of issues.”

due to biases of the practitioners and
domain experts

P8 “most of the time with the help of someone having domain knowledge because
even though it could be that an expert has some unknown bias thinking “oh, we
should probably look into this group”, it is also domain knowledge.”.

due to biases of the tool developers P16 “someone decided that we’ll go this way with these metrics. Because of dif-
ferent cultures, let’s say a group of people who decide that equality between men
and female is irrelevant, what we will do with this toolkit?”

due to lack of tools available for the
practitioners

P11 “I would make weights protected. It’s a bit tricky ’cause it’s continuous, and
I don’t know if there are fairness metrics for that.”

(Process) Impossibility due to the lack
of incentives and time given to the
practitioners from their company or
model requesters

P14 “the other challenges is that, as I told you, from a legality compliance and
from the organization perspective, the appreciation should be there for you to
spend the time. I don’t feel like it’s still there.” P22 “Everybody has deadlines and
this is going to add to the work. But it is important in the long run.”

Handling impossibilities
Making the least-bad choice (with intu-
ition or external inputs)

P30 “It’s impossible to optimise for everything, so I need to pick a specific metric
that I’m going to look.” P21 “This boils down to making a rational choice of
what are we trying to optimize at the early stages? And then keeping in mind
that making some fairness metric better, even a lot better, it can still negatively
influence other metrics.”

Neglecting the issue and focusing on
model performance

P18 “This is not of my concern as in having to include, for sex, 20 categorical
options. At the end of the day, we’re not doing politics, we’re trying to solve a
problem. But if the results that we obtain are poor because we did not take into
account these attributes or variables, then we should include them.”

Not accounting for limitations of fair-
ness metrics because they are better
than nothing

P8 “if you don’t depend on metrics then how are you going to evaluate your
model? You need to have at least some metrics to be able to say a) my model
is fine, and b) my model doesn’t have any harmful applications.”
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After our broad inspection of the research/practice gap in Part I and II, we now pro-
pose solutions to this gap, to support developers in developing less harmful models. In
Part II, among others, we found that explainability methods partially align with the needs
that the machine learning developers have when debugging their models, but that they
do not provide all the information needed (e.g., developers need domain expertise to un-
derstand when a model is failing), or do so in a non-interpretable manner (e.g., while de-
velopers need global explanations about the models’ behavior, local explanations could
potentially provide such explanations but necessitate too-high cognitive load for the de-
velopers to extract them). This calls for algorithmic and design research for the develop-
ment of novel, more adapted, methods to extract the required information and present
it in a usable manner to the developers.

In Part III, we address the development of supportive methods and tools for debug-
ging models in terms of robustness issues. Specifically, we tackle one of the most ur-
gent challenges identified. Developers cannot accurately estimate the brittleness of their
model during development as they do not have access to production data —instead, they
can only evaluate the potential for output failures of their model on the training data,
that might suffer from distribution shifts in comparison to the production data—, but
explainability methods seem to have potential to provide them with some relevant infor-
mation towards this objective. This challenge bears repercussions both for output fail-
ures that can translate into physical harms, and for biased output failures that translate
into unfairness and other social harms. This challenge calls for technical research en-
quiry and for human-computer interaction research, types of research we aimed at per-
forming in this thesis. Note that we do not deal with evaluating the harmful impact that
different types of output failures can have, but with evaluating the potential the model
has to output any type of failure. We leave for future work to bridge the gap between the
failures and the harm they cause. We also leave out for future work the other issues con-
stituting the research/practice gap identified in Part II, such as the lack of awareness of
developers around relevant technical solutions or the potential for harm of their choices,
or the lack of incentives to tackle the harms due to, e.g., business pressures, unclear re-
sponsibilities, etc. These issues call for the development of education programs to teach
developers how to make appropriate choices in relation to harms along the machine
learning lifecycle, and the creation of policies and regulations to overcome the organisa-
tional obstacles, that would be the subject of a different thesis.

As a start, we tackle the challenge in the context of deep-learning based computer vi-
sion models, for which numerous explainability methods have already been developed.
Our main proposition consists in shifting from using accuracy metrics on test datasets
to estimate the harmfulness of models —limited because the test accuracy might not re-
flect production accuracy due to distribution shifts between test and production data—,
to exploiting information about the mechanisms the model uses to make predictions on
test data. We use the term mechanism to refer to the association between the various
concepts present in an input sample, that a model uses to output a label prediction for
this sample. We argue that mechanism accuracy is more informative than test (predic-
tion) accuracy in terms of potential harms a model might cause in production. Indeed,
a model might employ a same (wrong) mechanism for making predictions on multiple
samples, and while the predictions about test samples might be correct using this mech-
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anism (high prediction accuracy), they might be incorrect when dealing with production
samples (low prediction accuracy). Hence, identifying mechanisms based on the test set,
and assessing their correctness from the test set, can already prevent more prediction is-
sues, that looking only at the prediction themselves that would present a high prediction
accuracy. Note that focusing on the prediction mechanisms of a model also allows to
estimate additional harms beyond the ones related to a model’s outputs. These addi-
tional harms are the ones related to improper features (e.g., offensive, inappropriate,
non-volitional, illegal features) that might be used by a model to make predictions, as
a model’s mechanisms reflects the features of a computer vision model. To achieve our
vision of mechanism-based harm estimation, multiple challenges need to be overcome,
that we investigate in the next chapters.

When investigating literature for potential mechanism identification methods, we
have identified a plethora of works that propose explainability methods, that should al-
low to identify a model’s mechanisms. Yet, when listing the requirements for the nature
of mechanisms that would be useful for harm estimation, we do not find any explanabil-
ity method that fulfills these requirements. Hence, in Chapter 8, we ask:

R7: How can one collect easily-interpretable mechanisms learned by a model for
making predictions?

We propose a new approach to collect such mechanisms, that builds on top of exist-
ing explanability methods and extend them, to make them fit our requirements. Espe-
cially, the explanations we provide are textual and global about the model mechanisms,
instead of typical visual, local explanations, allowing for this higher interpretability. This
chapter is based on a publication at the Web Conference 2021 [69].

In Chapter 9, we realize that in order to estimate the harmful power of a model, one
needs to reflect on the appropriateness of the mechanisms the model has learned. In
order to do so, we should contrast the model mechanisms with mechanisms a human
would expect the model to learn. That is why we ask:

RQ8: How can one collect the mechanisms the model is expected to learn accord-
ing to human reasoning?

To answer this question, we propose a Game with a Purpose that allows to efficiently
collect tacit knowledge, that could later on be translated into expected mechanisms. This
chapter is based on a publication at the Web Conference 2022 (nomination for best paper
award) [64], and a demo publication at HCOMP 2021 (best demo award) [63].

Finally, in Chapter 10, we need to evaluate the usability and usefulness of our pro-
posed approach for model harm estimation. We ask:

RQ9: How can a developer use our mechanism information to diagnose a model’s
harmful power? How useful is this information in comparison to the one provided by
existing explanability methods?
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To answer this question, we adopt a research through design approach. After a for-
mative study, we co-create with 20 developers a user-interface that presents relevant in-
formation useful to diagnose a model’s harmful power, and especially our mechanism
information (both expected and learned mechanisms) next to explanations collected
from other explainability methods. We then exploit this user-interface as a probe, in or-
der to understand how developers can use this information, what challenges they face,
and what other information would be needed for improving their harm estimation pro-
cess. This study shows the utility of the mechanism information we provide to the de-
velopers. This study also allows us to collect new insights for the development of more
usable user-interfaces to support developers in debugging their models –insights that we
list for future work. This chapter is based on a publication at CHI 2022 [67]. We do not
make any modification to the publications used in this Part, except in terms of recon-
ciliation of vocabulary across publications, and small changes to the introductions and
conclusions.

All in all, we propose a novel approach to estimate the robustness of a model, and
allow for its instantiation by contributing a novel, human-in-the-loop, cost-efficient,
method for identifying a model learned mechanisms [69], a game with a purpose for
identifying a model expected mechanisms [63, 64], and a user-study to investigate to
what extent and how developers can make use of this novel information in practice [67].





8
OBTAINING LEARNED

MECHANISMS

8.1. INTRODUCTION
In Part II, we identified the need for machine learning developers to have different types
of explanations of the machine learning models they develop and especially of their
learned mechanisms, in order to better understand where these might fail, and for which
reasons, so as to correct their models later on. We also noted that several types of expla-
nations the developers were asking for have not been developed until now. This is the
need that we address in this chapter.

To be effective, explainability methods must: (1) present interpretations that match
humans’ mental representations of concepts [6, 668, 534] as humans understand the
world through concepts associated with observable properties. Human brains process
visual information from low-level concepts such as color, contrast, to mid-level ones
such as shapes, textures, and to more abstract semantic representations of an object. For
example, an ambulance is “a car-shaped object that has a red cross or blue star symbol
on it”. And, (2) allow for the satisfaction of interpretation needs aimed at both model
behavior validation and exploration.

A typical validation scenario occurs when a model developer (or auditor) tests pre-
cise hypotheses on the workings of automated decision making to ensure the system be-
haves as intended. In an ambulance recognition example (Figure 8.1), an auditor could
ask “In the classification of ambulances, does the model focus on the red cross and
the flash lights; or does it focus on unrelated background concepts like the blue
sky?”. In an exploratory scenario, the developer would be interested in understanding
the classification behaviour of the model, but without a precise hypothesis to test. To
support both scenarios, an interpretability method should be able to test for the pres-
ence, combination, or absence of multiple concepts with varying granularity –e.g. a model
might learn to use an ambulance’s overall shape (coarser granularity), or the sign on
the frame and the flash light (finer granularity).
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Does the model rely on cross sign and flash light, or the
blue sky for classification of ambulances?

What are the image concepts the model relies on?

Local interpretability method outputsGlobal interpretability method (ACE) outputs

Van Images

SECA outputs
Validation

Exploration

Exploration Question ?

Validation Question

VanAmbulance

Concept Relevant Class
cross sign AND flash light yes ambulance
blue sky yes ambulance

Ambulance Images

Ambulance Van

Concept Class
cross sign AND flash light ambulance
black-wheel AND white car view van
grey-road AND black car-chassis van
orange stripe AND side window AND cross sign ambulance

Figure 8.1: SECA generates (multi-concept) interpretations for both model behavior validation and exploration.
In contrast, state-of-the-art global (e.g., ACE [289]) or local interpretability methods do not support multi-
concept interpetability need, and generate image patches or saliency maps (for exploration only) that require
manual interpretation.

Despite the recent advances in explainable machine learning [437, 289, 898, 677,
55], existing methods addressing image classification fall short in meeting the above
requirements. We focus on post-hoc explainability methods, which, in contrast to in-
herent explainability methods (see a detailed discussion in Section 8.2), can be applied
to any existing classification model. Among post-hoc methods, global explainability
methods [437, 289] support exploration needs by automatically producing “patches”
from multiple images in the dataset (ACE [289]) that should represent one visual con-
cept inferred to be important for classification; or, for validation purposes, require users
to provide a set of images (patches) as examples of visual concepts (TCAV [437]). Both
approaches have shortcomings. First, they require manual analysis and interpretation
to associate image patches with understandable concepts and properties [289], or re-
quire an input set of example images that cleanly capture the interpretation hypoth-
esis the user wants to verify (e.g., images of ambulance with a cross sign but without
a sky background) [437]. Besides, such methods do not easily support the validation
and exploration of multi-concept interpretation. On the other hand, local interpretabil-
ity methods analyse individual images [754, 918] and produce image-specific saliency
maps, i.e. a highlight of the most important pixels for the classification of a given image.
Local methods can be adopted for global interpretability, but with significant cognitive
demand on users, both for validation and exploratory interpretation needs: multiple im-
ages must be individually analysed to associate image regions with intelligible concepts,
and the respective concepts need to be reconciled globally and interpreted against the
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classification behaviour of the model.
Arguably, a better explainability method would combine the ability to analyse classes

of images and support multi-concept interpretation for both model validation and ex-
ploration purposes without imposing high cognitive load to its users to make sense of
interpretation outputs. With this in mind, we designed SECA, a human-in-the-loop SE-
mantic Concept extraction and Analysis framework that supports global analysis of ma-
chine behavior for multi-concept questions. SECA generates interpretation with a rich
set of semantic concepts easily comprehensible by users. It fuses local interpretability
methods to identify image patches that are relevant to the prediction for individual im-
ages, with human computation to annotate those patches with semantic concepts, i.e., vi-
sual entities with types and attributes. Using the entities, it then builds a model-agnostic
structured representation of dataset images, on which statistical analysis techniques can
be applied to answer both validation and exploratory interpretability questions. The
combination of local interpretability methods, crowdsourcing, and statistical analysis
techniques allows for scalable extraction and analysis of relevant concepts from a large
number of images to facilitate validation and exploration of a model’s behavior.

We demonstrate the correctness, informativeness, and effectiveness of SECA through
several interpretability scenarios and evaluation protocols. To deal with the lack of
ground truth of model behavior (a common issue in interpretability literature [233]), we
design controlled experiments where several types of pre-defined model biases are in-
duced, ranging from simple visual entities to complex ones related to image scene un-
derstanding. We further conduct empirical studies to understand the cost/effectiveness
trade-off with varying number of images, granularity of annotations, and crowd involve-
ment. In summary, we make the following key contributions:

• A novel human-in-the-loop explainability framework that allows for statistical analysis
of global model behavior through rich multi-concept explainability questions.

• A benchmark for evaluating global explainability methods for multi-concept ques-
tions, including explainability scenarios across three image classification tasks with
different types of biases.

• An extensive evaluation of the framework, demonstrating its effectiveness for both
model validation and exploration, and analyzing its configurations for optimal
cost/effectiveness trade-off.

A replication package containing code, datasets, and unabridged experimental re-
sults is available on the companion page1.

8.2. RELATED WORK
We first provide an overview of existing explainability methods, then focus on ap-
proaches specific to image classification, and finally discuss works on human-in-the-
loop machine learning.

1https://sites.google.com/view/webconf21-whatdoyoumean-balayn

https://sites.google.com/view/webconf21-whatdoyoumean-balayn
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8.2.1. MACHINE LEARNING EXPLAINABILITY

Existing explainability methods can be categorized in two ways: i) local vs. global,
depending on the scope of data instances interpreted being individual instances or
class of instances; or ii) post-hoc vs. inherent explainability methods, depending on
whether the goal is to provide interpretations for an existing model or constructing self-
explanatory models. Inherent explainability is achieved by adding explainability con-
straints in model learning to enforce feature sparsity [266], representation disentangle-
ment [928], or sensitivity towards input features [809]. Another popular approach is at-
tention mechanisms, which identify parts of the input that are attended by the model for
specific predictions [894, 57]. Turning an existing model into an inherently interpretable
model might be costly for users and might lead to a drop of model performance. In
contrast, post-hoc explainability methods can be applied without model modification
or retraining, and have therefore attracted growing attention. Our SECA is a post-hoc
explainability method.

A key challenge in post-hoc explainability is interpretation fidelity, i.e., ensuring that
the generated interpretation accurately describes model behavior. This can be achieved
in several ways. Koh and Liang [447] propose a perturbation-based method that identi-
fies training instances most responsible for a given prediction through influence func-
tions, which estimate changes in model parameters as an effect of changes in the train-
ing instances. Gradient-based methods calculate the gradient of the output with respect
to the input to derive the contribution of features [754, 688, 29]. Ribeiro et al. [677] fit
a simpler model (with interpretable features) around the test instance to ensure local
consistency between the interpretation and model prediction. A simple interpretable
surrogate model can be learned to approximate the original model’s predictions on a
representative sample of the data [800]. Our approach is inspired from this last idea, as
it generates interpretations using statistical tools such as association rule mining and
decision trees (on human intelligible concepts) that are self-explanatory.

8.2.2. INTERPRETING IMAGE CLASSIFICATION

The most extensively studied explainability approach for image classification is saliency,
a local explainability post-hoc method that highlights the most important pixels of an
image for model decisions in what is called a saliency map [754]. “Importance” is de-
fined as the sensitivity of decisions to the pixels with respect to a specific class. It is
measured either by computing the gradient of the activation function for that class with
respect to every image pixel [754, 732], or by passing the activated features of each layer
of the model backwards into a reverse neural network model until the activations are
mapped to the actual inputs of the model [55, 750]. Those approaches are likely to
generate noisy results highlighting irrelevant pixels. To deal with that, methods such
as SmoothGrad [769] and the Integrated Gradient [809] have been proposed.

Due to the intrinsic lack of semantics in pixels, global explainability is challenging in
image classification. Kim et al. [437] introduce TCAV on top of their notion of Concept
Activation Vectors (CAVs), which represents the translation from the internal states of
a model to human-understandable concepts. The importance of a concept for model
predictions is measured by calculating the directional derivative w.r.t. the corresponding
CAV, i.e., the sensitivity of model predictions to changes in inputs towards the direction
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of the concept. A main disadvantage of such an approach is that CAVs are obtained
by training a linear classifier between a concept’s examples and counterexamples; as
a requirement, users need to provide sets of (50-150) example images for the training.
Such a process is not only expensive, but sometimes also infeasible when the concept
for testing comprises multiple concepts: users need to prepare a number of example
images that each cleanly captures the multiple concepts that the user wants to verify.
Moreover, the method is designed for model behavior validation; exploratory analysis is
possible, but clearly expensive.

Ghorbani et al. [289] introduce ACE to automatically extract visual concepts, by ag-
gregating related local image segments across the data. It relies on automatic image
segmentation and clustering to obtain image patches potentially representing the same
concept, and then uses TCAV to test for its importance. The quality of generated inter-
pretations is highly dependent on the effectiveness of image segmentation and cluster-
ing: our experiment shows that ACE is prone to identify patches representing a concept
related to low-level visual information (e.g., color), and that it fails at identifying patches
of concepts comprising multiple concepts (Section 8.5.2 and 8.5.3). What is more, im-
age patches generated by TCAV are not self-explanatory, and need to be analysed and
interpreted by users.

By a combination of local explainability and crowdsourcing techniques, the
SECA framework can address both issues of fidelity and cognitive load by 1) relying on
human annotations to present semantic concepts at different conceptual granularities,
and 2) by enabling multi-concept model validation and exploration.

8.2.3. HUMAN-IN-THE-LOOP MACHINE LEARNING

Human-in-the-loop machine learning [843] has been traditionally concerned with
crowdsourced training data annotation [219] and crowd-collected samples [80]. A
closely related line of work is “learning from crowds”, where researchers study models
that can learn from noisy crowd labels [672]. Unlike the conventional learning setting,
these models are concerned with learning parameters of the annotation process (e.g.,
annotator expertise, task difficulty) and inferring true labels from noisy ones, possibly
by incorporating (deep) active learning to reduce annotation efforts [897, 900].

Recent works address the use of human computation to debug machine learning sys-
tems. Nushi et al. [590] use crowdsourcing to identify weakest components of a machine
learning pipeline and to propose targeted fixes. Yang et al. [899] introduce a human-in-
the-loop system for debugging noisy training data using an automatic method for infer-
ring true labels and crowdsourcing for manual correction of wrong labels. Hu et al. [377]
introduce a crowdsourcing workflow for detecting sampling biases in image datasets.

The use of human intelligence for interpreting machine learning models has been
limited to involving humans as users for evaluating the explainability methods, e.g., by
observing if the interpretations help users choose a better model [677, 233]. Unlike those
methods, SECA involves human computation as an integral component to identify rele-
vant concepts, which is of crucial importance to make interpretations intelligible and to
support multi-concept queries.
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8.3. DESIGN PRINCIPLES AND CHOICES
We design SECA with the following key requirements in mind: (1) Intelligibility, the
generated interpretation output should be comprehensible by its users; (2) Effortless-
ness, the cognitive load imposed on users should be minimal; (3) Utility, the framework
should support both confirmatory or exploratory questions for model validation and ex-
ploration; (4) Fidelity, the generated interpretation should correctly and comprehen-
sively describe the model behavior; (5) Scalability and cost-effectiveness, the framework
should be scalable and effective under reasonable cost. In the following, we describe our
design choices following from each of the above requirements.

8.3.1. INTELLIGIBILITY

To cater for intelligibility, we draw inspirations from the cognitive psychology literature
on human reasoning and concept creation. Aerts [6] considers that concepts can be as-
sociated with observable properties, and the degree of association, called typicality, can
be measured, by asking humans to rate it on a Likert scale. For instance, the concept
ambulance can be associated with the property cross sign. Clearly, a property could
be a concept itself, or be composed of multiple concepts [5]. The Representational The-
ory of Mind proposes a compositional semantic [534], where two or more “noun” con-
cepts, or “noun” and “adjective” concepts can be combined using syntactic rules.

In this work, we consider interpretability needs aimed at analysing the degree of as-
sociation (typicality scores) between concepts appearing in images (e.g. cross sign)
and the classification labels –also concepts (e.g. ambulance)– that a machine learning
model assigns to them. Those concepts correspond to entity types (nouns, e.g. cross
sign) or entity attributes (adjectives, e.g. red) drawn from a vocabulary. Interpretability
needs are expressed as textual queries over concepts, possibly using logical operations
–conjunction (AND), disjunction (OR), and negation (NOT). An example of query (sec-
tion 8.5) is: “orange-stripe AND light AND NOT chassis”.

8.3.2. UTILITY AND EFFORTLESSNESS

We represent images and classification labels through the list of concepts, i.e. entity types
and attributes they contain. Without loss of generality, we consider only classification la-
bels related to a single concept (e.g. male/ female). We only consider a binary represen-
tation of a concept’s relation to an image (presence/absence of a concept); a weighted
representation (e.g. a value between 0 and 1) is an extension that we leave to future work.
By explicitly identifying concepts on a per-image basis, we can apply a set of statistical
analysis tools to identify the importance of concepts (individual or combined) across
images in relevance to model predictions. This lessens the users cognitive load –many
other global interpretation approaches rely on human user to identify relevant concepts
across several images–, and allows to investigate more diverse model behavior.

8.3.3. FIDELITY AND SCALABILITY

To ensure interpretation fidelity, we use only relevant concepts. To do so, we rely on
existing local interpretability methods: we compute the saliency maps for (a subset of)
images on which a model makes predictions, and create semantic descriptions of the
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entity types and attributes in the areas highlighted in the maps.

Road
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Car

Bus,
van

Male / femaleAmbulance / van

Sky

Truck

Road
Person

Road
Wall

Road

Car

Person

Figure 8.2: Automatic semantic segmentation with DeepLabv3. The truck and ambulance (left) appear as
single segments while more specific entities like stripes and flash light are probably used by the model.
The silhouettes of the individuals (right) form a single segment and the background another, whereas a model
likely uses finer-grain entities (e.g. hair length, face shape).

This annotation process cannot currently be automated, as state-of-the art segmen-
tation and object recognition methods are not accurate enough to uncover entities or
attributes relevant to a model’s decisions. In Figure 8.2 examples, the granularity of the
segmented entities is large and the annotations vague. For instance, an ambulance is
segmented as one entity and annotated as bus.

Hence, SECA adopts a crowdsourcing approach, where crowd annotators are asked
to identify and describe with a textual annotation each entity in the salient image areas.
Such approach can provide high fidelity and, while incurring some unavoidable costs, be
scalable. Section 8.4 describes how SECA tackles obvious issues of annotation coherency
across images. In the experiments of section 8.5 and section 8.6, we empirically study
fidelity and cost-effectiveness, showing the quality and feasibility of the approach.

8.4. PROPOSITION: THE SECA FRAMEWORK
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Figure 8.3: Overview of the SECA framework.

Figure 8.3 presents an overview of SECA (SEmantic Concept extraction and Analysis).
Given as input (1) a trained image classification model and (2) a dataset, SECA can an-
swer interpretability questions for validation and exploration purposes. (C1) Images in
the dataset and their corresponding predicted labels are passed through a local inter-
pretability method. The method generates saliency maps that indicate pixels relevant
for the model prediction. (C2) All maps and corresponding images are sent to human
annotators, to collect semantic annotations about the types and attributes of entities
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represented by the salient pixels. (C3) Annotations across images are reconciled, and
(C4) a structured and consolidated representation of all images is built. Finally, (C5)
data analysis tools are applied, and single and multi-entity concepts and their typicality
scores (degree of association of the concept and a target label) are outputted.

C1: Saliency Map Extraction. Saliency maps extraction is necessary to provide accu-
rate interpretations while reducing annotation effort: clearly, annotating an entire im-
age would be more expensive, and it could introduce concepts that are not germane to
a model’s behaviour interpretation. SECA is agnostic to the employed local interpretati-
bility method. We opted for SmoothGrad [769], which is sensitive to the parameters of
a model (thus catering for more accurate capturing of a model behaviour) while min-
imising noisy results (i.e., highlighting irrelevant pixels). To further reduce annotation
efforts, saliency map extraction is performed only on a random sample of all images. An
appropriate setting of the number of sampled images depends on the complexity of the
machine learning task, e.g., number and diversity of relevant concepts. We study the
quality/cost trade-off related to this number in section 8.6.

C2: Saliency Maps Annotation. The annotation task combines two typical crowd-
sourcing activities: drawing bounding boxes and labelling (parts of) images. We ask
workers to (1) identify, for each salient pixel area, the entity types corresponding to rec-
ognizable object shapes, and the entity attributes characterizing the area, e.g., its colors,
textures or object property; (2) draw bounding boxes around the pixels corresponding
to these types and attributes (we use bounding boxes instead of continuous curves as
it is easier and faster for crowd workers); (3) provide a textual description (one word) of
the identified types and attributes. For example, if the saliency map focuses on the blue
cross image area on the trunk of an ambulance, the annotation would be type: cross;
attributes: blue; for a gender classification task, a saliency map focusing on a person’s
short black hair results in type: hair; attributes: black, short. Entity-attribute infor-
mation per salient image area is relatively easy to create by annotators, relevant to inter-
pretation (as they are based on saliency maps of model predictions), and naturally in-
telligible for model developers and auditors. We ask annotators to provide fine-grained
annotations, as fine-granularity entities can be later aggregated. Automatic checks are
implemented to ensure that each image has at least one bounding box, and each bound-
ing box has at least one entity type and attribute annotated. We employ multiple crowd
workers per task to maximize the number and diversity of relevant annotated concepts.
We retain concepts annotated by workers who spend more than a pre-defined amount
of time on each image. The annotation task design is available on the companion page.
Parameters of the C2 component that affect the cost-effectiveness of SECA are annota-
tion granularity and annotator type (e.g. experts vs crowds). We study their impact in
section 8.6.

C3: Annotations Reconciliation. Annotation reconciliation is required as no pre-
defined vocabulary of entity types and attributes is imposed on annotators, thus lead-
ing to diversity in vocabulary and/or granularity. First, we correct spelling mistakes with
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spell-checkers 2, normalize the annotations by removing white spaces and converting
all characters to lowercase, and rename synonyms or highly similar annotations using
a reconciled term. The reconciled term is obtained by automatically clustering all the
collected terms represented by word embeddings (pre-trained FastText embeddings),
and picking the one closest to the centroid of each cluster. We use K-mean clustering,
where k is chosen by identifying the value that leads to distributions of Silhouette score
per cluster that do not exhibit negative values and that are as much uniform as possible
across clusters. Features for the tabular representation are then built by mapping each
annotation to one cluster or the association of multiple clusters. E.g., wheel is associated
to the cluster containing this term, while front light is associated to the super cluster
that combines the clusters of front and light. Annotation errors should not propagate
as we later retain only interpretations that are statistically significant. In future work, we
plan to look into (dynamically) controlling for vocabulary in the annotation task.

C4: Tabular Image Representation. The reconciled annotations of the salient areas of
each image are stored in a de-normalised form. We create a binary-value column for en-
tity type-attribute combinations (like hair-short-black), but also columns for each
component (hair, and short, and black). For each image, we store which entity types
and attributes pairs have been connected to any of their salient pixel areas. This denor-
malized storage helps with further statistical analysis and querying: for instance, a user
could investigate three hypotheses: is the cross logo indicative of ambulances identi-
fied by a model predictions? Are orange crosses even more relevant? Has the model
learned to check solely for the color orange (strongly correlated with ambulances)?
The entity type cross can address the first question, the pair cross-orange the sec-
ond, and the attribute orange the third.

C5: Query Answering. This component generates interpretations to fulfill both inter-
pretation needs of model validation and exploration. The interpretations take the form
of tuples corresponding to a) a concept, b) a prediction label, and c) a typicality score
that measures the importance of a concept in predicting the label by the model. The
tuples are then ranked based on the typicality scores.
Statistical tools. The most relevant concepts to include in output are identified through
statistical tests assessing the correlation between each concept (i.e. column) present in
the tabular representation and the predicted labels. We use the Chi-Square indepen-
dence test [944], to check whether a concept and the label are independent. We re-
tain concepts that are not independent significantly (p-value < 0.05). We compute the
Cramer’s V test [4] (a test commonly used in interpetability literature) on the retained
concepts to obtain a typicality score that measures their degree of association with the
labels. We also perform a frequency analysis of each concept per class, to identify con-
cepts relevant for multiple classes simultaneously.

To facilitate exploratory needs, we pre-compute combination of concepts as follows:
for each concept found significant, we add to the tabular representation a column with
the complementary of the original column of the concept –this encodes the NOT operator

2SymSpell: https://github.com/wolfgarbe/symspell

https://github.com/wolfgarbe/symspell
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of the concept, i.e. its absence. We also add columns that encode the logical AND com-
bination of concepts (e.g. if wheel and light are found significant, we append a wheel
AND light column). We then repeat the process of computing the statistical tests to
identify the significant concepts among these new columns. Obviously, it is possible to
explore all possible combinations of concepts; without loss of generality, in this paper
we limit to pairwise combinations.

For model validation purposes, users can query over the concepts present in the tab-
ular representation, possibly using logical operators. If not existing, the query is trans-
lated into a new column encoding the queried (multi-entity) concept. Statistical tests
are then applied to establish the significance of the new column.

Rule extraction tools. The set of concept combinations is extended through rule extrac-
tion methods, uncovering multi-entity concepts that involve more than one AND or NOT
logical combination. We employ association rule mining algorithms and decision tree
classifiers. Association rules provide indications on the co-occurrence relationships be-
tween concepts within the rules. We apply the Apriori algorithm [9] on the original tab-
ular representation, and constrain it to generate rules where the rule bodies are image
concepts and the rule heads are the prediction labels. We use the lift score (a measure of
the importance of a rule) as the typicality score of the rules. Unlike association rules that
only captures co-occurrence relations, rules extracted from decision trees [128] con-
tain numerical threshold for each concept. We use accuracy and frequency of the rule
as its typicality scores. Decision trees require sufficient training data to be employed, so
their applicability is conditional to the amount of considered images, but their output is
richer.

8.5. EXPERIMENTAL SETUP & RESULTS: PERFORMANCE EVAL-
UATION

We evaluate the interpretation performance of SECA by investigating two questions: Q1:
how correct are interpretations provided by SECA for uncovering biased behaviors?, and
Q2: how informative are those interpretations in comparison to other interpretability
methods?

8.5.1. EXPERIMENTAL SET-UP
To date, no benchmark exists to measure the performance of interpretability methods for
multi-concept questions. Inspired by previous evaluations [437], we design the following
procedure.

EVALUATION PROCESS

Correctness. We consider interpretations correct if they highlight the concepts used by
a model to make its predictions. Correctness is assessed by comparing these interpre-
tations to a ground truth in controlled experiments. As such ground truth is not readily
available, we generate it by biasing the models’ behavior, i.e. we force models to “focus”
on certain types of concepts that are exclusive of different classes. We create this bias
either by injecting visual entities into images (e.g. adding time stamps to each image of
a selected class), or by re-sampling the dataset based on existing entities (e.g. making
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sure that all images of a class present an object from an angle different from images of
other classes). We verify that the trained models learn these biases by computing the
training accuracy: accuracy close to 1.0 indicates the models fit the data very well, prob-
ably thanks to the bias which is easy to pick up on. To further evaluate the correctness
of SECA, we check its ability to highlight differences in “less obvious” (or less skewed)
variations of model behaviors that are due to differently (less) biased composition of
training datasets, or to the variations in the model architectures, under the assumption
that these models should rely partly on different concepts to make their predictions. All
these interpretability scenarios are summarized in Table 8.1.

Informativeness. Interpretations are informative if they uncover concepts that are di-
verse – presence of single and multi-entity concepts with various logical connections,
and actionable for model debugging – concepts that show a potential issue and that are
enough informative to act on them, e.g., by modifying the distributions of the corre-
sponding visual entities in the training dataset.

EVALUATION DETAILS

Learning tasks. We select three classification tasks from two popular datasets for com-
puter vision benchmarking: a gender classification task (T1) from pedestrian images us-
ing the PA-100K dataset [510]3; a three-class “fish” classification task (T2) containing lob-
ster, great white shark and tench images; a two-class vehicle classification task (T3) with
moving van and ambulance images from the ImageNet ILSVRC-2012 dataset [699].4 We
crop and rescale the dataset images to input them to the machine learning models. We
balance the data for equal representation of the classes (49000 images for T1, 4500 for
T2, 3000 for T3).5

Machine learning models. We experiment with Inception V3 [813] (M1) and
VGG16 [755] (M2), both pre-trained on ImageNet, and fine-tuned on the evaluation
datasets. Those models were shown to learn different feature representations [934].

Bias injection in Data. Inspired by Yang and Kim [904], from the PA-100K we create
4 experimental datasets by injecting text as visual entities into the pedestrian task data:
Date dataset (D1): date stamps on the female images and datetime stamps on the male
ones – the model should rely on the presence or absence of the entity type time stamp;
Color dataset (D2): white and yellow dates respectively on the female and male images
–the model should rely on the white and/or yellow color attributes; Date City dataset
(D3): date, or datetime and city name in the female images, datetime, or date and
city name in the male images –the model should rely on combinations of entity types;
Colored-Date dataset (D4): white dates or yellow datetimes in the female images,
and yellow dates or white datetimes in the male images –the model should rely on
pairs of color and entity types. In Orientation dataset (D5.2), we resample images of
PA-100K (D5.1) by imposing a class-specific pedestrian orientation – all male images

3We acknowledge the limitations of a binary gender, but no other dataset was found.
4This task is inspired from [529] that hints at biases in background of these images.
5Our pre-processed dataset will be made available upon acceptance of the paper.
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Table 8.1: Summary of the interpretation scenarios.

Task Bias injection

T1: gender D1-D4: text and color visual entities
D5.1 / D5.2: original data / orientation bias

T2: fish BM1.1 / BM1.2: original data / fine-tuned model

T3: vehicle BM2.1 / BM2.2: original data / fine-tuned model

ML model M1 / M2: Inception V3 / VGG16

have a front orientation (i.e. the pedestrian face is seen), and all female images
a back orientation. Models trained on it should learn concepts characterizing the
front and back of a person. These datasets should bias the model towards diverse con-
cepts based on different entity types, attributes and their combinations, exactly what an
interpretability method should uncover.

Bias injection in Model Architectures. We create different model behaviors to com-
pare by using the pre-trained models to make predictions on the fish (BM1.1) and vehicle
tasks (BM2.1), and by fine-tuning these models solely on the target classes of these tasks
(i.e. training the models further only with the data of these classes) (BM1.2, BM2.2).
Fine-tuning should bias the behaviors towards background concepts as these classes
bear strong skew towards background entities (e.g. sharks are almost all in the ocean,
tench with a fisherman next to a forest or grass, lobsters on a plate).

Baseline. We compare SECA interpretations to the only automatic interpretation ap-
proach in literature, ACE [289]. We do not consider TCAV [437] because it requires input
“query” concepts. The study on the relationship between input patches and interpre-
tation performance is beyond the scope of this paper. ACE outputs sets of 10 image
patches, that should be interpreted by the user as single concepts. We retain ACE’s sets
that have a p-value under 0.05. It is generally difficult to associate meaningful semantic
concepts to the sets, because their patches contain different entity types, thus making
the underlying concept hard to identify. E.g., the underlying concept for image patches
of grey water, grey shark fin, and grey shark stomach is ambiguous (could be
the grey color and/or shark body parts)6. We retain recognizable visual concepts that are
present at least in 5 of the 10 example patches of a set.

Annotation of Saliency Maps. To avoid confounding factors from crowd work ambigu-
ity, in these experiments trained annotators (the authors) annotated the saliency maps,
with agreement reached on the fine concept granularity. After experimenting on the
learning tasks, we setσ= 5, n = 10 for SmoothGrad. For every task, the annotators anno-
tated 300 images – as detailed in section 8.6, this amount is sufficient to cover concepts
relevant to model behavior.

6The companion page reports highly ranked non-recognizable concepts from ACE.
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Table 8.2: Example interpretations of SECA on the pedestrian classification task with simple injected biases.

Bias type Output interpretations (rank - Cramer’s value)

date (D1) hour, NOT hour, minute, NOT minute (1-.93), hour AND minute(2-.9), day AND minute(4-
.47), day(10-.24)

color (D2) yellow-year(1-.96), yellow(2-.94), white(3-.83), yellow-day(4-.82), yellow-month(5-.81),
white-year(6-.72)

date city (D3) NOT city AND NOT minute(1-.5), NOT city AND NOT hour(2-.49), city AND NOT hour(3-.46),
city AND hour(4-.45)

colored date
(D4)

yellow-hour(1-.6), yellow-minute(1-.6), white-minute(2-.53), white-hour(3-.52), yellow-
day AND yellow-year(4-.37)

8.5.2. RESULTS: CORRECTNESS
In the following tables, we report the simple and multi-entity concepts that appear at the
top of the rank, from highest to lowest typicality scores, until 0.2 Cramer’s value (thresh-
old explained later). We denote in italic concepts identified by both SECA and ACE.

SANITY CHECKS

Table 8.2 provides an overview of the interpretations generated by SECA for the bias in-
jection datasets D1-D4. The results show that SECA identifies all those biases we injected.
For instance, for D1, concepts around hour and minute are correctly picked up by the
statistical tests, the mined rules and the decision tree and associated to the female class,
while the NOT operator provides the concepts corresponding to their absence in the male
class. The AND operator and the pairs of types and attributes identify the correct combi-
nations of concepts also in the colored date and date city cases. The output include few
possibly irrelevant concepts, always having Cramer’s value below 0.2. These concepts
are either outliers, i.e. concepts that impact the model’s behavior at a low frequency, or
noise from the saliency maps (concepts that are spatially close to the main salient visual
elements). For instance, the concept coat (not in the table, Cramer’s value 0.19) is sig-
nificant in D3, as it always appears next to the text elements, and it is present in 13% and
2% of the female and male images respectively.

CONCEPT CORRECTNESS

SECA also provides relevant concepts for the learning set-ups with biases induced by
resampling (D5, BM1.2, BM2.2), as shown in Tables 8.3 and 8.4. For instance, for BM1.2,
concepts matching the background bias are uncovered, e.g. water for the shark, grass
and trees for the tench, and plate for the lobsters, while these concepts are not
identified as relevant in BM1.1. For D5, identified concepts match with the orientation
bias such as hair-related concepts for females, and face-related concepts for males (e.g.
cheek, jaw, nose), while for the “unbiased” task, the concepts focus on the hairstyle. The
NOT operator exposes even more the bias, since concepts that combine the hair and NOT
an element of the face appear more typical than only the hair (e.g. hair AND NOT nose).
When comparing the two machine learning models M1, M2, 7 out of the top 10 concepts
are the same but with a different ranking, reflecting that the models learned similarly
but still with differences. For example, the shark fins and tench heads are used by
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Inception V3 and not VGG, which instead looked at the presence of a shark head with
a higher typicality score.

The typicality scores are also relevant, as they are similar for concepts that appear
with comparable frequency in the different classes. The scores evolve correctly when
comparing models’ behaviors: e.g., simple hair concepts have around 0.7 Cramer’s value
in the orientation bias data (D5.2) but are not even significant for the “unbiased” case
(D5.1) since the model needs hair length.

Table 8.3: Interpretations outputted by SECA using statistical testing and by ACE on the different learning task
set-ups. Concepts in italic are captured both by SECA and ACE.

Bias Met. Interpretations (rank - Cramer’s or TCAV value)

Fish (T2)
yes SECA tench_body(1-.9), lobster_claw(2-.83), blue-water, green, beige, water(6-.7), face

AND tench_body(8-.67), face(10-.65), grass(14-.58), green-grass(14-.58), trees(19-.47),
plate(25-.35)

ACE white OR light-grey(1-.99), white OR beige(2-.9)

no SECA lobster_claw(1-.9), tench_body(2-.86), shark_body(3-.82), grey-shark_body(4-.81), or-
ange(5-.8), orange-lobster_claw(6-.79), shark_fin(7-.69), tench_fin(9-.67), water, water
AND shark_body(12-.6), yellow-green(14-.57), white-plate(32-.31)

ACE orange-lobster, grey-blue water OR shark_body, grey-shark, blue- water OR blue-
shark_body OR grey-shark_body, blue OR grey OR green back, yellow OR grey(1-1.0), grey
shirt OR tench(2-.96), white-dish(3-.86)

Vehicle (T3)
yes SECA light(1-.61), blue-light(3-.53), orange blue(4-.46), blue-light AND grey-car_side(5-.45),

stripe-car_side AND orange-car_front(6-.43), cross, light AND cross(9-.39), road(10-.32),
chassis AND wheel, black-car under(11-.28)

ACE light_grey-car_side OR sky OR road, black-wheel OR back, grey-road OR car_side OR
car_inside(1-1), letters, black-chassis(2-.98), dark-grey OR black-wheel(3-.97), white-
back(4-.91)

no SECA stripe(1-.5), windowAND stripe(2-.5), stripe AND car_side(3-.46), stripe AND mirror(4-.44),
stripe AND tire(4-.44), orange, orange-stripe(5-.38), stripeAND chassis(6-.28), white(15-.2)

ACE black-bumper, black-tire OR gray-tire, black, orange OR red(1-1.0), gray-window OR gray-
bumper(2-.99), black-chassis(3-.69), black OR gray(4-.18), tire(5-.15), white-sky(6-.05),
orange-letters OR red-letters(7-.01)

CONCEPT COVERAGE

Compared to ACE as shown in Tables 8.3 and 8.4, SECA generally provides a more com-
plete set of correct concepts, allowing for a more accurate understanding of a model’s
behavior. ACE identifies mainly concepts that models rely on to classify images from ev-
ery class, thus not discriminative (e.g. wheel is used to identify both ambulances and
vans); these are also identified by our frequency analysis. SECA also uncovers certain
entity types present in single classes, that are missed by ACE (sometimes ACE outputs
some color attributes that might relate to them). For instance, in D5.1, ACE outputs
mostly colors that appear possibly in pair with entity types, e.g. brown color from hair
or background for the female class, white color with a shirt or background for the male
class, gray color for both classes. Our frequency analysis showed that these colors are
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salient in both classes rather equivalently (e.g. gray appears in 59% of female and 68%
of the male images, gray background in 22% and 30% respectively), meaning they are
not the solely used concepts. ACE does not provide any additional insights, but SECA
also uncovers concepts relevant for individual classes, primarily related to hair length
and presence of ear and neck for the male class –entities often hidden under the hair in
the female images.

8.5.3. RESULTS: INFORMATIVENESS

Table 8.4: Interpretations of SECA using statistical testing, rule mining and decision trees and of ACE on the
gender classification task with and without orientation bias.

Cl. Met. Interpretations (ranges of typicality score)

Orientation bias (D5.2)
F Stat. hair, black-hair(.7-.6), long, long-hair, black-hair AND long-hair(.6-.4), shirt AND hair,

medium-hair(.4-.2)

Rule long AND grayAND black, long-hairANDblack-hair, long-hair, long(1.8-1.6), black-hair AND
gray-back(1.4-1.1)

Tree long(.275), black, road, white, red(.06-.02)

ACE dark-gray hair OR shirt(1-.97), gray shirt OR back(.8-.6)

M Stat. neck(.7-.6), cheek, cheek AND neck(.6-.4), jaw, cheek AND jaw, face, neck AND jaw, nose, shirt
AND cheek(.4-.2)

Rule hair AND neck, black AND short, black-hair AND short-hair, short (1.6-1.4), neck, hair AND ear,
ear(1.4-1.1)

Tree car, neck, forehead, short, ear(.06-.02)

ACE gray, white OR gray shirt, gray sidewalk OR shirt(1-.97), light-brown skin(0.8-.6)

No injected bias (D5.1)
F Stat. long, long-hair, longANDblack, long-hair AND black-hair(.6-.4), long-hair AND gray-back,

gray-sidewalk-hair(.4-.2)

ACE gray-sidewalk, gray-back, brown-hair OR back(1-.97)

M Stat. short, short-hair, black-hair AND short-hair(.6-.4), short AND gray, neck, hair AND neck, short
AND brown, ear(.4-.2)

ACE white-shirt OR back(1-.97), gray-sidewalk(.8-.6)

The results obtained on the “unbiased” set-ups (BM1.1, BM2.1, D5.1) in Tables 8.3,
8.4 show that we not only obtain correct concepts, but these concepts are also highly
informative about a model’s behavior, whereas concepts identified by ACE provide fewer
and less actionable insights - the prevalence of color-related concepts over entity type-
related concepts makes, arguably, dataset modification more difficult. Particularly, the
interpretations provided by SECA are more clear and intelligible, more diverse, and more
precise.

CONCEPT INTELLIGIBILITY

ACE mainly highlights color related concepts that we can only sometimes associate with
entity type concepts. In contrast, our approach outputs more fine-grain concepts with
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diverse entity types. This is probably due to technical limitations of the clustering algo-
rithm used in ACE, that cannot precisely cluster entity types, but mostly color attributes.
For instance, in BM1.2, ACE highlights white, light gray (probably coming from the
plate, or from face or hand color), the gray color (shark skin or the background) for the
shark, etc. These concepts are probably all correct, but are difficult to interpret since
their provenance is not certain. Our approach on the contrary identifies the entity types
that these attributes are associated to (e.g. green-grass, blue-water), thanks to the en-
tity type-attribute pairs. Similarly, in D5.2 Table 8.4, ACE associates the female label to
dark (hair or background) and pale colors (clothe or background), and male to pale
and gray colors (clothe, background or faces). While it seems incorrect compared to
our approach, extrapolating with our knowledge of the task, we see that they partly re-
late to face or hair concepts (i.e. the injected biases). Consequently, our interpretations
are more actionable as concepts are traceable to visual entities in the dataset. Identify-
ing pairs of entity types and attributes allows to uncover surprising and spurious biases,
that are not clearly exhibited by ACE, but on which the dataset could be redistributed
to mitigate the biases. For instance, in D5.1, SECA shows that the model primarily relies
on the hairstyle, especially the stereotype of long / short hair, rather than pedestrian
morphology. It also exhibits strong correlations between hair and dark colors, due to
the low diversity of the dataset collected solely in Hong Kong.

CONCEPT DIVERSITY

The diversity in the nature of the concepts outputted by SECA, such as concept com-
binations and absence of concepts, allows to uncover richer behaviors than with ACE
in Table 8.3. For instance, in BM2.1, SECA shows that a) the co-occurrence of a vehi-
cle side view and a colored stripe indicates an ambulance, but the co-occurrence
of this view and a chassis indicates a van according to the statistical tests; b) the co-
occurrence of a white vehicle side, a black tire and an orange stripe indicates an
ambulance according to the mined rules; c) not having stripes and flashing light
or having stripes and no light are associated with the van respectively with 0.47 and
0.44 Cramer’s value (stripes are often indicative of ambulances), using AND and NOT
operators. ACE misses these correlations that require the identification of absence con-
cepts and the ability to calculate the significance of multiple concepts simultaneously –
it would require image patches with multiple concepts represented next to each other,
like a tire and a flashing light.

INTERPRETATION RICHNESS

The exploration tools of SECA allow to explore various, precise model behaviors that
other approaches do not uncover, and that might not be straightforward to query.

While the frequency-based analysis and the statistical tests identify simpler signif-
icant concepts (in validation, they allow the user to query combinations of concepts
however), association rule mining uncovers more complex combinations, e.g. Table 8.4
“long AND gray AND black” has the highest typicality. Simply by varying the configura-
tion of the rule mining algorithm, it is possible to focus on diverse interpretation goals,
such as finding frequent concepts by filtering out concepts with low support, or finding
complex concepts that are less frequent by lowering such threshold. E.g., in BM1.1, the
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rule tench head AND tench body AND tench fin has a top lift score but is fairly rare in
the data, hence it is outputted only with a support threshold under 0.2.

Decision trees discover complex behavior rules, and the information attached to
them tell how common they are. For instance, in D5.1, the tree shows that NOT long
AND NOT ear AND NOT background AND NOT black AND NOT road classifies males with
96% accuracy for 25 out of 300 records – which matches the intuitions about the data
obtained from the statistical tests. Concepts appearing in the higher parts of the trees
are accurately distinctive of the two classes (e.g. long hair is the first identified con-
cept). Concepts in lower level do not correspond to expectations for the unbiased tasks:
background elements appear as salient as parts of the body such as the ear or neck that
we found are more important using the other methods. Because there are many visual
elements but few rows in our tabular data (e.g. 78 elements for the pedestrian scenario
and 300 records), the tree overfits to the data – curse of dimensionality– as confirmed
by the low importance scores. Hence, only rules with high accuracy should be extracted
from the branches, accounting for their frequency, and only the first levels of the tree
should be used to extract individual concepts when few data are available.

8.5.4. DISCUSSION
Results show that SECA correctly identifies different types of biases in model behavior
–biases of visual entities, those arising from skewed data distribution and those from
model architecture– and that it generates a rich set of interpretations for exploratory
analysis of model behavior. Compared to ACE, SECA identifies a larger and more diverse
set of concepts that are useful to identify more (biased) behavior patterns of a model.
In particular, SECA identifies concepts with entity types and those comprising multiple
sub-concepts that are often missed by ACE. We also observe that the different analysis
tools of SECA allow to uncover various model behaviors.

A clear experimental limitation is the lack of an exact ground truth for what a model
learns, making it challenging to conduct a full evaluation (especially in terms of inter-
pretation completeness). We cope with this issue by setting up controlled experiments
with manually induced biases of various types, which allow to evaluate interpretation
effectiveness and informativeness from the bias angle. Another area of improvement
concerns the amount and diversity of learning tasks and datasets. However, we stress
that to date ours is one of the most comprehensive interpretability evaluation effort.

8.6. EXPERIMENTAL SETUP & RESULTS: COST PERFORMANCE

TRADE-OFF
In this section, we investigate Q3: how do the main parameters that configure SECA im-
pact the trade-offs between cost, correctness, and informativeness of the interpretations?

8.6.1. EXPERIMENTAL SET-UP

EVALUATION PROCESS

We study the impact that number of annotated images, annotation granularity, and the
type of annotators (i.e., crowd-workers vs. trained annotators) have on the correctness
and informativeness of the explanations generated by SECA. We use the same tasks as in
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the previous section.

Number of annotated images. As a reference, we use SECA to create interpretations
based on a high number of annotated images (400). As we have shown above, SECA can
generate satisfactory quality interpretations, i.e., interpretations that match the refer-
ence ones. We incrementally create interpretations from lower numbers of annotated
images (between 20 and 400, in increments of 10). Finally, we compute the precision
and recall of the concepts and the mean absolute error of Cramer’s values, comparing
the interpretations using smaller labeled image sets to the reference with 400 labeled
images.

We hypothesize that the complexity of a learning task, which depends on a dataset
characteristics, impacts the number of images needed to obtain similar correctness. The
more classes to learn (need to uncover behaviors for more classes), the more diverse
the visual entities and attributes per class (forces the model to use more concepts for
classification), and the more concepts co-occur across classes (a model might rely on
complex combinations of concepts), the more images should be needed to uncover a
model’s behavior. We investigate this by comparing the metrics computed on biased
and unbiased scenarios (variation of intra-class semantic content diversity), and across
tasks (more classes and lower inter-class concept co-occurrence in the fish task T2 than
in T1 and T3).

Annotation granularity. We vary granularity from large to fine grained for both en-
tity types and the attributes, defining different categories: for the entity type granu-
larity category E1, all visual entities inherently part of the class (e.g. a blue star for
the ambulance class, an antenna for the lobster class) are annotated as the class
name, and all background objects are annotated as “background”. In category E2, we
distinguish the different parts of classes (e.g. claw, antennas, legs, body, head for
the lobster), and we categorize background elements into large-grain categories (e.g.
nature, food). Finally, in category E3, we refine the background annotations (e.g. rice,
tomato, pavement) and the non-background ones when finer-grain entities can be iden-
tified. For the attributes, the category A1a combines color variations into seven main
colors, and textures into large categories; in category A1b colors are combined depend-
ing on dark or light aspects. In category A2 no combination is performed. We consider
the reference granularity being the finest-grain ones, i.e. E3 and A2 and compare the
resulting interpretations with coarser granularity categories.

Annotators. We compare the interpretations originating from saliency maps anno-
tated by trained annotators (the authors) with saliency maps annotated by crowd work-
ers, also computing the precision, recall, and mean absolute error.

EVALUATION DETAILS

Experiments on number of annotated images. For the three learning tasks, we anno-
tate 800 images, sample 400 images to form the reference interpretations, and sets of k
images among the 400 remaining ones to form the interpretations to compare. We repeat
this process 10 times to obtain statistically significant measures. We hypothesize that the
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precision and recall will be low for concepts with low Cramer’s value. To verify this, we di-
vide the reference concepts into 5 batches with Cramer’s values equally divided between
0 and 1 (i.e., between 0 and 0.2, 0.2 and 0.4, etc.), and compute the recall per batch with
all the concepts to compare with. We cannot do this for the precision as we cannot di-
rectly compare the reference batches to comparison concepts – small errors in Cramer’s
values would make the measures wrong (e.g. a comparison concept of Cramer’s value
0.61 would lower precision if its reference concept is in the batch 0.4−0.6). Instead, we
simply count the number of wrongly retrieved concepts in the comparison set. We also
compute the mean absolute error per batch as we hypothesize that low Cramer’s value
concepts are attributed less accurate values due to the sampling error.

Experiments on annotators. In this experiment, we compare annotations of trained
annotators to untrained crowd workers recruited on crowdsourcing platforms, focusing
on general annotation properties (like amount of bounding boxes, coverage of the salient
areas, amount of time spent, feedback questionnaires, etc.), and we investigate how the
provided concepts compare semantically. For this semantic comparison, we automat-
ically map concepts provided by crowdworkers to those provided by the trained anno-
tators by computing a similarity score between the concepts word embeddings, fixing
a threshold T and retaining as matching only the concepts with similarity above T . We
repeat this with the different annotation granularities. Assuming that the authors’ anno-
tations are indeed of high quality, we can now investigate the precision and recall of the
crowd compared to the authors. Furthermore, we investigate the effect of annotation
reconciliation (step C3 of our approach) which is necessary when multiple crowdwork-
ers provide annotations with varying vocabulary.

Crowdsourcing component implementation. We deployed the annotation task on
Amazon Mechanical Turk. Each HIT was composed of a set of ten images and their
saliency maps, and was assigned to three crowd workers7. The instructions encourage
the workers to search for domain knowledge to give precise annotations as a pilot study
showed diverse annotation precision. k = 125 clusters are used for the reconciliation
component as it provides the best Silhouette scores.
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Figure 8.4: Analysis of the number of image annotations required by SECA for the ImageNet Fish task. The
values in brackets correspond to the Cramer’s values of the reference concepts used to compute the corre-
sponding curves.

7We included workers from UK and USA with at least 5K approved hits, and a HIT approval rate greater than
85%.
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8.6.2. RESULTS: NUMBER OF IMAGES
Figure 8.4 shows an example of the curves obtained for the fish task BM1.1 (results for
other datasets are similar, and reported in the companion page). We observe that 300
annotations provide satisfactory concept sets and Cramer’s values, and only 200 anno-
tations are needed if we do not need to identify less significant concepts. We do not
observe significant differences across tasks and biases.

Recall. For all the learning tasks, concepts are retrieved with only 200-300 annotations.
Although the overall recall might not seem satisfying even for 400 annotations, the recall
for all concepts with Cramer’s value greater than 0.2, closely approaches 1 (and 0 stan-
dard deviation) with 300 annotations, and a minimum of 0.9 recall is observed with 200
annotations. Concepts of Cramer’s value between 0.4 and 1 are even retrieved with just
100 annotations. Lower Cramer’s values are indicative of less significant, possibly irrel-
evant concepts (see subsection 8.5.2), picked up by a model in lower frequencies, thus
they are more susceptible to sampling noise, and need more images to be retrieved.

Recall curves are similar across tasks. For instance, BM1.2 also needs 300 images
but with a standard deviation lower than BM1.1, probably because of its lower intra-
class complexity. D5.1 (pedestrian) just requires 20 more images to approximate a re-
call of 1 with a standard deviation lower than 0.02 –probably due to more inter-class
co-occurrences than BM1.1. Generally, this is because the impacts of the data charac-
teristics balance each other, e.g. although there are more classes in T2 (fish), the image
content in T3 (vehicle) or T1 (pedestrian) is more diverse.

Precision. The precision is also satisfying with only 200 images. The precision curve
decreases from 1 with 10 images to 0.93 with 200 images and 0.9 with 300 images, the
standard deviation remains constant at 0.04. A closer look at Figure 8.4b shows that,
once more, most incorrect concepts have Cramer’s values inferior to 0.2 when increas-
ing the number of images since such concepts are more subject to sampling noise. Not
accounting for these concepts allows to keep a precision higher than 0.9 for every num-
ber of images.

The curves are similar across tasks, with T1 and T2 having a larger standard deviation
around 0.1 and 0.07 respectively, verifying our hypotheses. Only tasks with many more
classes and higher visual entity intra-class diversity or inter-class co-occurence would
probably require to annotate more images.

Mean absolute error. The approximation of Cramer’s values is accurate even for less
than 200 annotations (again except for concepts of Cramer’s values below 0.2). The error
decreases rapidly with more images, going from 0.2 with 0.1 standard deviation for 20
annotations, to 0.026 and 0.001 standard deviation for 300 images and above. This is be-
cause having more annotations allows to approach the real joint distribution of concepts
and classes in the data, on which the Cramer’s values are computed.

8.6.3. RESULTS: GRANULARITY OF THE ANNOTATIONS
Entity types. We report the results on BM1.2 in Table 8.5 (results from other tasks point
to similar conclusions, and are reported in the companion page). With large grain anno-
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Table 8.5: SECA interpretations on the fish bias task for various Granularity of entity types. Granularity E3 is in
Table 8.4.

Gra. Interpretations (Cramer’s value)

E1 lobster(.95), tench(.92), shark(.83), back AND lobster(.89), tench AND back(.88), orange(.81),
grey-tench(.83), orange-lobster(.79), green-back(.78), light grey-back(.74)

E2 tench_body(.89), lobster_claw(.85), lobster_body(.73), orange-lobster_claw(.72), blue-
water(.75), water(.7), beige-human_body_part(.63), food(.46), table_tool, clothe(.4)

tations (E1 and A1a), the retrieved concepts are correct but poorly informative as action-
able insights. E.g., lobster, tench and shark are the most salient concepts, followed
by color concepts, combinations of the background concept and one of the previous
fish-related concepts, or pairs of color and fish concepts (e.g. orange-lobster). This
interestingly indicates that the model uses both concepts related to the classes and back-
ground concepts, but without more details we can neither conclude about the validity of
this behavior – certain background concepts could make sense, e.g. shark in the water,
nor identify visual background entities to redistribute in order to remedy to the potential
background bias.

Finer grain annotations bring more precise debugging information. For instance,
E2 uncovers the different parts of the concept classes (e.g. lobster claw) possibly in
combinations with colors (e.g. orange-lobster claw), and the background entities
(e.g. blue-water, beige-human body part) used by the model and based on which a
dataset can be transformed to mitigate biases. Further detailing background concepts
E3 provides even more detailed information, e.g. the face is the human body part the
most associated with the tench, the shirt is the most associated cloth.

Hence, depending on the interpretation need, the granularity of annotations needed
differs. The medium granularity is enough to explore the general functioning and va-
lidity of a model, while the finest-granularity provides precise information to mitigate
behavior biases. If the finest granularity is employed, we recommend to obtain a higher
level overview of the model’s behavior by querying combinations of concepts with an
OR logic connection –equivalent to aggregating concepts into larger grain ones. For in-
stance, the medium granularity uncovers shark-related concepts with Cramer’s values
around 0.65 or lower, while aggregated altogether the value increases to 0.83, above the
background concepts (0.74), showing the potential correctness of the model’s behavior.

Entity attributes. The granularity of attributes on the contrary do not lead to differ-
ences that impact the interpretations of the models. This is probably due to the limited
range of distinct colors that a human is able to annotate easily. Automatic annotation
methods using pixel values might bring additional insights on the color shades that are
the most important for classification.

8.6.4. RESULTS: CROWD VS. TRAINED ANNOTATORS

COMPONENTS’ QUALITY.
1) Annotations. Crowd workers took µ= 28m,σ= 11 minutes to execute the task. Quality
of annotation was good. Most workers who took less than 15 minutes provided 1-2 an-
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notations of simple salient areas per images, while the ones who took more time provide
2.8 annotations per image in average, with a maximum of 66 per HIT. The difficulty of
identifying salient areas, drawing bounding boxes and annotating entity types and at-
tributes was evaluated with an average of 3.3, 3.1, 3.1 and 3.3 respectively on a scale of 1
(easy) to 5 (difficult). Few annotators provide full coverage of the salient areas, either due
to not identifying certain entities, or due to not drawing boxes around the entire areas.
This has limited impact on interpretation quality, as having precise bounding boxes is
not important, and using multiple annotators proved to provide the needed coverage.

2) Annotation Reconciliation. The clustering approach used to determine reconciled an-
notations is satisfactory: most clusters are relevant for the interpretation task. They rec-
oncile wording differences (e.g. tooth and teeth), synonyms and terms that designate
similar concepts (e.g. belly, stomach). Mistakes are introduced by words with multiple
meanings, e.g. lobster antenna is grouped with network infrastructure words, because
no context is used to create the embeddings. Some terms that relate to different granu-
larities are grouped (e.g. hand, fingers and thumb), which might impact the interpre-
tations when the finest granularity is needed.

CORRECTNESS OF THE INTERPRETATIONS.
We report the results for the fish bias task. The interpretations from the crowd uncover
the main expected biases, e.g. presence of water for the shark images, grass, trees
and human body parts around the tench images, plates for the lobster images,
and only a few concepts do not appear, e.g. certain food concepts such as corn for the
lobster. However, we obtain only 0.48 precision, 0.61 recall and 0.18 mean absolute er-
rors of Cramer’s value on significant concepts retrieved for the finest granularity. The
medium and large granularity respectively reach a precision of 0.53, 0.57, a recall of 0.70,
1.0 and a mean absolute error of 0.19, 0.40. Only a few concepts are not mentioned by
the crowd (e.g. lemon), probably because they appear small in the background of the
images, behind the main objects. As hinted by these increasing values, this contradic-
tion is mainly due to measurement errors: differences in the vocabulary and granularity
of annotations cause errors in the mapping used in the evaluation process, which makes
precision and recall low. Most reference concepts that appear as missing from the crowd
interpretations are actually retrieved. For instance, the concepts from the trained an-
notators shellfish and sauce are annotated by the crowd with oyster, shrimp and
soup, liquid. The crowd annotations are often more fine-grained, which also lowers the
precision. For instance, heads annotated with boy head, man head, woman head and
some with human head instead of solely the latter like the trained annotators’, formed
two distinct clusters (human associated with animal and the others together), one ap-
pearing irrelevant. The average mean absolute error increases with larger granularity
because we modify only the granularity of the trained annotators’ concepts, while the
worker’s concepts remain distinct with lower Cramer’s values. Overall, employing the
crowd with simple post-processing methods provides interpretations of similar correct-
ness, with only few fine-grain concepts missing.

INFORMATIVENESS OF THE INTERPRETATIONS.
Certain interpretations obtained from the crowd are richer in terms of granularity than
those from the trained annotators. For instance, the crowd interpretations differentiate
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between the shark fins, e.g. caudal fin, dorsal fin, whereas only fin appears in
the trained annotators’ concepts. This is because certain workers provide precise vo-
cabulary (as encouraged in the instructions) that a trained annotator might not have
thought of (e.g. pectoral, caudal, dorsal fins, etc.), or for which a trained annota-
tor does not have domain knowledge like the species of fish labeled by the crowd (e.g.
muskellunge, carp, tench). This is the main advantage of using the crowd instead of
trained annotators. Having multiple, lower cost, annotators allows to mitigate individual
bias, as different persons focus on different entities, granularity and labels.

8.6.5. DISCUSSION
SECA can produce correct and informative interpretations already with few images an-
notated (300) using crowd workers. Significant concepts are well covered with even fewer
images (100, Cramer’s value above 0.4), with satisfactory performance. While finest-
grain concepts are useful to understand precise model behavior and debug it, medium-
grain concepts seem to be satisfying for model validation and general exploration pur-
poses. Crowd annotations generally align with those from trained annotators, but with a
richer vocabulary that allows to gain comprehensive understanding of model behavior.
While workers’ contributions are not always accurate, we stress the simplicity of our task
design. Experiments show that crowd workers can be systematically employed to sup-
port saliency map annotations, thus enabling an accurate, scalable, and relatively cheap
post-hoc interpretability method. We acknowledge though, that our experiment is lim-
ited to binary/three classes problems. Experiments on tasks with more classes can help
quantify the impact of the class number and diversity on cost effectiveness trade-off.

8.7. CONCLUSION
We presented SECA, a framework to support post-hoc, interactive explanation of ma-
chine learning models for image classification. SECA offers explanations based on eas-
ily understandable semantic concepts (entities and attributes). These concepts are ob-
tained via crowd-sourcing from local explainability saliency maps, and then reconciled
and consolidated into a unified and structured representation which allows the use of
different statistical mining techniques to discover or query for concepts relevant for
a model’s decision making. Extensive experiments showed that, compared to related
work, SECA can discover more informative and complete concepts, and that these con-
cepts are more interpretable and actionable to debug a model. Results show that using
crowd workers to provide semantics to annotate salient image areas provides results with
sufficient performance at lower costs, and that also smaller sample of annotated images
lead to actionable results. While we now know that SECA allows to collect high-fidelity
explanations of model learned mechanisms, it remains unclear to what extent these ex-
planations would be useful to machine learning developers. This is what we investigate
later in Part III Chapter 10. Beforehand, in Chapter 9, we develop a technical solution to
collect the expected mechanisms for a machine learning model, that developers could
potentially use together with the SECA’s explanations of the model learned mechanisms
when diagnosing their models.
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OBTAINING EXPECTED

MECHANISMS

9.1. INTRODUCTION
Part II showed us the need for machine learning developers to have domain knowledge
about the domain of application of their machine learning system, to be able to diagnose
its failures and bugs. Knowledge can be used as expected mechanisms to assess the va-
lidity of the “knowledge patterns” acquired by machine learning models (i.e., its learned
mechanisms) and highlighted by recent explainability works [717, 715] for various in-
ference tasks [489, 419]. Our interviews with developers also showed the challenges for
them to obtain such domain knowledge. Hence, in this chapter, we investigate how to
collect domain knowledge efficiently, with the aim of using such knowledge in future to
diagnose machine learning models.

Knowledge engineering is the area of research that focuses on developing methods to
gather knowledge [756]. Knowledge is gathered by interrogating humans through simple
interfaces or complex interactions such as games with a purpose, by mining existing
textual resources, or by logically reasoning about known facts to infer new ones [917,
364]. In light of the renewed need for knowledge, we have identified three important
gaps pertaining to these knowledge elicitation methods, that we address in this work.

Our understanding of the type of knowledge that can be gathered through these
methods remains shallow. Knowledge can be categorized using different typologies
of qualities depending on the domain and its envisioned use. It varies from explicit to
tacit, from general to specific, from conceptual to situational, from shallow to deep, from
commonsense to expertise, etc. Yet, previous works have not provided an in-depth char-
acterization of the knowledge they collected. This might be a barrier to leveraging such
knowledge in the context of AI tasks. For example, consider the question “What does one
gain from getting a divorce?”, and the choices –bankruptcy, sadness, depression, tears
and freedom. While the first four seem highly relevant to “divorce”, the mention of “gain”
indicates positivity, hence “freedom” is the right answer. Here, it is important to asso-
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ciate “gain” with something positive, which humans are capable of doing tacitly. Tacit
and commonsense knowledge –“knowledge about the everyday world that is possessed
by all people”[507], that has the qualities of being shared by multiple persons, and of
being fundamental, implicit, large-scale, open-domain [917]– has been heralded as a
pivotal ingredient for future AI systems [532].

Gathered knowledge remains limited and incomplete [451], leading to errors in cer-
tain tasks. Elicitation methods largely facilitate the creation of generative knowledge,
but neither discriminative, nor negative knowledge –despite the fact that novel AI tasks
require such knowledge, e.g., for discarding erroneous AI models [451, 39, 38]. Discrim-
inative knowledge allows to distinguish between two concepts (e.g., octopus, contrary
to fish, do not have fins) — as opposed to generative knowledge that qualifies a single
concept. Negative knowledge informs on the invalidity of a tuple to characterize a con-
cept or two compared concepts (e.g., man is not a profession). Leveraging human intel-
ligence and commonsense knowledge can allow to collect targeted knowledge beyond
what is found in existing resources. However, owing to a lack of understanding of types
of knowledge that can be elicited from humans (or online crowd workers), and the con-
comitant breadth of knowledge, typical knowledge acquisition methods are not readily
configurable to meet varying requirements (e.g., knowledge tacitness, specificity).

We position our work in the context of knowledge elicitation techniques involving
the crowd [851, 917, 364]. Herein, we draw inspiration from prior work in the realms of
games with a purpose (GWAPs), which have shown promise in collecting diverse knowl-
edge in an efficient manner. Popular GWAPs, such as the ESP game [852], Peekaboom
[855], and Phetch [853] have provided evidence to show the efficiency of this approach,
and its flexibility (e.g., use of gamification and mechanics such as taboo words to tune
the type of collected data). Combined with the development of crowd computing frame-
works [271], GWAPs can allow for large-scale acquisition of knowledge while engaging
humans using different incentives. To the best of our knowledge, however, no GWAP has
been developed or proposed to gather discriminative or negative knowledge. Hence, we
first design and implement a novel GWAP called ‘FindItOut’, to elicit plural knowledge
from players. We then characterize the diversity of knowledge that can be collected us-
ing FindItOut, and the utility of such knowledge in relevant AI tasks. We highlight the
suitability of FindItOut in encouraging players to combine explicit knowledge and ex-
ternalize relevant tacit knowledge. Finally, we demonstrate the efficiency of the game
subject to different parameters. We make the following contributions:

• A novel configurable GWAP1 that facilitates the collection of positive and negative,
generative and discriminative knowledge, while ensuring an enjoyable player expe-
rience.

• A structured set of dimensions through which one can characterize knowledge col-
lected through user interactions.

• A characterization of the types and quality of knowledge that can result from using
FindItOut and paid online crowdsourcing.

1https://github.com/delftcrowd/FindItOut
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• An extensive evaluation of the throughput and utility of the game for two machine
learning tasks.

Our results demonstrate that FindItOut is highly efficient in obtaining tacit, dis-
criminative and negative knowledge — absent from existing knowledge bases. We also
show that the configurability of the game allows to elicit knowledge that can be partic-
ularly useful for AI tasks like commonsense question answering and identification of
discriminative attributes.

9.2. RELATED WORK

9.2.1. KNOWLEDGE AS A TOPIC OF ENQUIRY

In the Social Sciences. Different typologies of knowledge have emerged [644]. One
of the most common ones considers explicitness. Explicit knowledge “can be articulated
into formal language [.. and] can also be readily transmitted to others.”[187]. Conversely,
tacit knowledge is hard to articulate. It “consists of informal, hard-to-pin-down skills, [..]
mental models, beliefs, and perspectives so ingrained that we take them for granted and
cannot easily articulate them” [585].

There is a higher chance that explicit knowledge already resides in available knowl-
edge bases, as opposed to tacit knowledge [388]. The game we propose involves human
players and pushes them to formulate statements about concepts they might not imme-
diately think of. We therefore hypothesise (and evaluate) that our game allows to collect
tacit knowledge in addition to the explicit kind.

The distinction between tacit and explicit knowledge has primarily been used to for-
malise the process of knowledge creation in organizations [585]. Particularly, combi-
nation [585] is the process of synthesizing explicit knowledge from the combination of
previous explicit knowledge. Our game realizes this by synthesizing explicit knowledge
about diverse concepts into a single knowledge repository. Externalization [585] is the
process of creating explicit knowledge from tacit knowledge, often using interviews and
questionnaire with experts, or expert’s self-analysis [577]. In our work, we evaluate the
extent to which our GWAP, FindItOut, can support and operationalize externalization
through the game mechanics.

In Computer Science. Recent machine learning inference tasks describe discrimina-
tive knowledge in contrast to generative knowledge. While generative knowledge broadly
corresponds to information about different entities, discriminative knowledge allows to
identify differences between these entities, which “allow to grasp subtle aspects of mean-
ing [.. and] contribute to the progress in computational modeling of meaning” [451]. Re-
cent works [39, 38] on knowledge inference under the open-world assumption also dis-
cuss the importance of negative knowledge. It may enhance knowledge bases for knowl-
edge exploration and question answering. Biswas et. al [111] also propose to leverage
negative statements as clues to help players find answers to specific questions. Con-
comitant with the growing interest in these types of knowledge, FindItOut is the first
GWAP that directly collects discriminative and negative knowledge, which can always be
turned into generative one via simple post-processing.
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9.2.2. GWAPS FOR KNOWLEDGE ELICITATION
Games with a purpose (GWAP) are used to collect large quantities of knowledge effi-
ciently from the crowd [851]. They have been shown to perform well to collect certain
types of knowledge.

Multiplayer GWAPs. Verbosity [854] was the first GWAP proposed for collecting com-
monsense knowledge. It is a two-player, Taboo-inspired, collaborative game, where a
narrator player gives hints to a guesser player who should guess the word the narrator
is hinting at. It uses a scoring system to incentivize players to provide the most rele-
vant inputs. A single-player version also exists in order to validate the collected knowl-
edge. The hints have a template format with a relation to fill in with additional words.
Common Consensus [502] is a competitive game inspired from FamilyFeud, that col-
lects goal-specific knowledge. It generates questions based on a list of goals and a list of
template-questions, and players enter as many possible answers (single words) as pos-
sible. Scores are computed based on the number of players with the same answers.

Single-player GWAPs. RobotTrainer [683] is a game, that collects knowledge rules,
ranks their appropriateness, and evaluates their validity. For this, it is organized in three
levels, where players get to write template-based rules that should serve to answer a
question about a given short story, or evaluate these rules. It is shown to provide similar
results to non-game based interactions, but with more engagement of the users. The 20
Questions game [781] requires the player to think about a concept, and the game sequen-
tially generates a list of 20 relation-template based questions to try guessing the concept,
questions that the player should answer truthfully. Despite a simple design, players were
found to enjoy this game more than a simple template-based input system. The Concept
Game [354] similarly generates rules that a player is asked to verify, in order to reduce the
cognitive load of players generating assertions. Other games have been proposed such
as Virtual Pet, Rapport, Guess What?!, OntoProto, SpotTheLink [756], that ask players to
agree on the relation between concepts, to guess concepts described by other concepts,
or to answer questions to extract knowledge.

In comparison to existing GWAPs: (a) FindItOut by design, has a higher throughput
than previous games. It operationalizes the idea of making both questions and answers
relevant to the creation of knowledge. This leads to collect more knowledge in compar-
ison to the aforementioned two-player games, since the two players contribute distinct
tuples of knowledge simultaneously, contrary to the other games where players interac-
tions allow for the creation of a single knowledge tuple. (b) FindItOut is the only game
that directly allows to collect discriminative and negative knowledge. Previous games
require either to directly input concepts in relation to a pre-existing characteristic, or
to fill in template. They do not leave the space for negative inputs, which also removes
the opportunity to indirectly elicit discriminative knowledge. (c) The knowledge that
FindItOut elicits is, by design, more diverse. While it re-uses the previous ideas of rela-
tion templates to fill in, and of scoring systems, it varies from 20 Questions and Common
Consensus in that the knowledge it creates is more varied since the rules within the tem-
plates are human-generated, and richer than single words (association of relation and
up to 5 words).
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9.2.3. ELICITATION THROUGH CROWD INTERACTIONS
Besides GWAPs, other interactive methods [917] exist for knowledge elicitation. A fun-
damental feature of FindItOut is its question answering workflow, which is inspired
from the offline game Guess Who?, and from crowdsourcing frameworks such as Curi-
ousCat [126], that collects contextual commonsense knowledge, by asking questions to
crowd workers that refer to their current environment (e.g., size of a restaurant they are
present in). Cosmos QA [379] and Socialiqa [722] are datasets collected by asking crowd
workers to formulate questions and answers that require commonsense knowledge, in
relation to textual descriptions of everyday situations taken from blogs or prior knowl-
edge bases (e.g., ATOMIC). We draw inspiration from these works and incentivize crowd
workers to formulate questions through the game mechanics.

9.3. PROPOSITION: DIVERSE KNOWLEDGE EXTRACTION
To elicit and collect discriminative and generative knowledge, that is both positive and
negative, we propose FindItOut [63] — a competitive 2-player game inspired by the
popular game “Guess Who?’. The functional and non-functional requirements that gov-
erned the design of the game are elucidated in the companion page 2.

9.3.1. KNOWLEDGE ELICITATION
In line with existing knowledge bases, we aim to collect knowledge in the form of rela-
tions between concepts.

Generative knowledge. A triple of generative knowledge that we collect corresponds
to a concept, a relation and a characterizing input, and takes two possible formats. It can
be a positive triple +<concept, relation, input> where the input is text entered by players
in the game. For instance, +<teapot,UsedFor,making tea> indicates that the concept
teapot can be used for making tea. We also collect negative knowledge as negative triples
—<concept, relation, input> that indicate that the relation and input do not apply to
the concept. For instance, –-<teapot,UserFor,running> indicates that the concept
teapot cannot be used for running.

Discriminative knowledge. We also aim to collect discriminative knowledge. This
knowledge is represented by positive quadruples +<concept#1, concept#2, relation,
input>, where the relation and its associated input apply to concept#1 but not to
concept#2, allowing to discriminate between the two. For instance, <teapot,shoe,
UsedFor,making tea> indicates that the concept teapot is different from the concept
shoe in that only the teapot can be used for making tea. Negative quadruples instead,
mean that the relation and input do not allow to discriminate between the two concepts.

9.3.2. GAME MECHANICS OF FindItOut
Initialisation. At the start of the game, both players are presented with a board of mul-
tiple cards, that represent different semantic concepts. Each card shows a picture that
illustrates the concept, its name, and its potential definitions when one hovers over the
card. Game boards can be configured and laid out based on target requirements. These
boards are generated with a greedy approach: once a few initial concepts are retrieved

2https://sites.google.com/view/finditout-www22/home

https://sites.google.com/view/finditout-www22/home
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for one board, other related ones are appended to the board, either by searching within
the WordNet taxonomy, or by adapting to the task at hand — when one wants to un-
derstand the difference between two pre-defined concepts, these two concepts can be
added simultaneously).

Figure 9.1: FindItOut main interface and workflow. (1) The Asker inputs a question. (2) The Replier selects
an answer. (3) The Asker flips relevant cards. Example collected knowledge from this turn is presented in the
right top corner of (3) (not in game).

The game randomly assigns a card on the board to each player as their IT card. The
main goal for each player is to guess the opponent’s IT card (before their card is iden-
tified) by iteratively asking questions and eliminating the possible candidates based on
the opponent’s responses. The game difficulty can be configured, affecting the number
of cards on the board. Game boards with more cards are expected to be more challeng-
ing, since they require players to think of questions that ideally discriminate between
more concepts simultaneously. We also expect that these boards push players towards
articulating more tacit knowledge.
Taking turns in questioning and answering. To balance out the opportunity to win
for both players and following the best practices for knowledge elicitation through
GWAPs [320], the two players take turns playing the roles of the Asker and the Replier.

Let Player One be the Asker for a given turn. They are given the choice between
two actions: ASKing or GUESSing. Choosing ASK prompts Player One to formulate a
question to ask Player Two. Player Two is then asked to answer Player One’s question, by
selecting one among four choices: “yes”, “no”, “maybe”, “unclear”. “Maybe” is an appro-
priate answer in cases where it is ambiguous whether a relation applies to a concept, or
if it applies only under certain conditions. Selecting “unclear” indicates that the ques-
tion needs to be reformulated by Player One, since Player Two failed to comprehend it.
Depending on the answer, Player One flips the cards on the board by clicking on them
to eliminate them from contention, and narrow down the possible candidates for Player
Two’s IT card. It is then the end of the turn, and Player Two becomes the Asker.

Choosing GUESS allows Player One to designate one card on the board as their guess
for being Player Two’s IT card. Then, Player Two is prompted for their own guess, after
which the game ends. Player One wins if their guess matches Player Two’s IT card,
otherwise they lose. This action can only be chosen after each player has asked either
2 or 3 questions depending on the easy or difficult game levels respectively. This design
choice dissuades players from attempting random guesses that would not contribute to
knowledge creation. Figure 9.1 illustrates this workflow and gameplay.
Question formulation. The questions formulated by the Asker follow a template
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<relation, input>. The relation is selected among a pre-defined set of relations, and
the input is a natural language proposition to be manually entered by the Asker limited
to 5 words (for ease of post-processing and to limit the potential for cheating).

We adopt this template-based question answering strategy since previous works
have demonstrated their potential efficiency. For instance, the OMCS project [761, 760]
identified that structured, relation-based templates are more efficient at collecting rule-
type knowledge and the results are more usable than relying entirely on natural lan-
guage. Thus, by using a combination of template-based and natural language question
formulation, FindItOut provides us with the configurability of tuning the potential tar-
get knowledge.

Taboo words. We employ taboo words to ensure that the questions asked by the play-
ers are not too simple, and allow to extract useful knowledge. We prevent players from
entering natural language inputs that contain words with the same root as the concepts
on the board. For example, if a concept on the game board is “bird”, a player cannot
ask “is my card a bird?”. New taboo words can be added over time to prevent collecting
redundant knowledge.

9.3.3. POST-PROCESSING THE RESULTING KNOWLEDGE

Extracting knowledge. We process each turn to create knowledge based on
heuristics. After receiving a response from the opponent, the asker’s flipping
card actions provide all information needed to gather new tuples in the form of
(+/–)<card?,relation,input>, where “card?” and sign (+/–) are inferred based
on whether the card is flipped. Specifically, when the answer to a question is received,
the relation and input in the question directly apply to batch A: reserved cards, i.e., the
batch of cards that were previously unflipped and that remain unflipped, with the sign
corresponding to the answer (yes is +, and no is –). The batch of cards that were pre-
viously unflipped and are flipped during the turn (batch B: flipped cards) receives the
inverse of the sign of the answer. For example, consider the sequence where the ques-
tion is “does my card have wings”, the answer is “no”, and then the Asker flips the “bird”
card, we build the knowledge triple +<bird, has, wings>.

Discriminative knowledge is extracted with two concepts in the batch (both A and B)
and with a quadruple template. Any concept pair can be gathered to generate discrimi-
native knowledge, which results in

(n
2

)
(n is the game board size) tuples of knowledge.

Considering one concept from each batch allows us to create positive discriminative
knowledge, while both concepts from the same batch result in negative discriminative
knowledge.

Quality control. It is in the best interest of the Replier to lie when replying to a ques-
tion, such that the Asker will be misled (rational game user model [320]). We tackle this
issue through our game design. At the end of a game, both players are shown the op-
ponent’s IT card and their own question history, and can report errors/wrong answers
or foul play for any turn. When extracting knowledge from turns, we filter out reported
turns automatically and identify outliers for exclusion manually (e.g., players who do not
flip cards as required, cheat in the game, ask meaningless questions).
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9.3.4. TECHNICAL IMPLEMENTATION

FindItOut is implemented as a real-time, responsive web app (see Appendix), for con-
venience and portability (the game can be served on any platform as long as it supports
a web browser). It supports interactions with both voluntary players connecting onto
the app, and with players recruited from paid crowdsourcing platforms.

Design choices. The card data are retrieved by querying WordNet for concept def-
initions, and Google Search for visual representations of the concepts. In the current
version of the game, we selected 8 relations, extracted from ConceptNet [507] (IsA,
HasA, HasProperty, UsedFor, CapableOf, MadeOf, PartOf, AtLocation) –see Appendix Ta-
ble 9.3–, based on their commonality, their applicability to nouns, and adaptedness to
the concepts displayed in the game boards. Currently, we propose two game difficulties:
easy with 8 cards on the board, and difficult with 16 cards.

9.4. EXPERIMENTAL SETUP

FindItOut is designed to be configurable and modular, and thereby to facilitate the elic-
itation of accurate and diverse knowledge (the concepts we collect knowledge about in
this study are chosen to be both abstract and concrete nouns). It is designed to create
an enjoyable experience for players, while serving as an efficient means to gather knowl-
edge. These are the objectives we evaluate next.

9.4.1. MEASURES AND METRICS

We evaluate FindItOut through a combination of qualitative and quantitative analyses
of the resulting tuples across the two difficulty levels. In identical conditions, no GWAP
with crowdsourcing can serve as a directly comparable baseline. Hence, we leverage
the standard evaluation lens used for knowledge collection systems [917], in addition
to a qualitative analysis of the knowledge and of the enjoyability of the game. These
measures are described below:

Efficiency of knowledge collection. We measure the number of tuples (positive and
negative triples and quadruples) resulting from the game, as well as the fraction of over-
lapping knowledge tuples generated by the two players across games and turns. By also
considering the average time and number of rounds that a FindItOut game lasts as well
as its cost, we can measure the throughput and utility of knowledge generation.

Qualities of collected knowledge. We analyze how correct and diverse each result-
ing tuple is. To this end, we leverage an objective measure — the types of relations that
are used during the games, and a subjective measure — we manually rate each resulting
tuple on several dimensions (meaningfulness, correctness and multiplicity of interpre-
tations, bias, typicality, specificity, tacitness).

Player experience. We use the player experience inventory questionnaire [1] to eval-
uate the experience of the players with FindItOut and discern the extent to which they
enjoy it. Players are asked to complete this questionnaire at the end of all the games that
they choose to play in a session. At this stage, we also collect open-ended comments and
remarks about the game from players.
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9.4.2. USEFULNESS OF COLLECTED KNOWLEDGE

Although the aforementioned measures can help us to understand and quantify the
characteristics of the generated knowledge, they do not directly highlight the usefulness
of elicited knowledge for concrete AI tasks. To address this, we investigate the useful-
ness of the generative and discriminative knowledge that we collect, by considering two
independent and popular tasks.
Coverage of the ‘Discriminative Attribute’ task. The discriminative attribute task was
introduced as a part of the 2018 SemEval challenge [451], and consists in “predicting”
whether one word allows to discriminate between two concepts (e.g., urine is a discrimi-
nating feature in the word pair of {kidney, bone}). This corresponds well with the discrim-
inative knowledge that we collect through FindItOut. Hence, we investigate the extent
to which populating boards in our game with the concepts of this task and having play-
ers interact with these boards allows us to collect such knowledge. We thereby compute
the coverage of the elicited knowledge with the discriminative words of the task.

Taking <concept1, concept2, feature> triples from the discriminative attributes (DA)
dataset as reference, we first retrieve knowledge tuples extracted from FindItOut that
share both concepts. Taking these tuples as candidates, we generate reference-candidate
pairs to be annotated. We spread the coverage evaluation (whether candidate tuple cov-
ers the reference triple) tasks to 5 volunteers, with 10% reference triples in overlap. To
make the knowledge tuples readable, we generate statements for both reference and
candidates.
Tacit clues for commonsense reasoning. Usefulness of generative knowledge is typi-
cally evaluated by measuring the performance gains in subsequent inference tasks, such
as question answering which requires rich commonsense knowledge [917]. We gener-
ate game boards to extract tuples for a subset of the commonsense question answer-
ing (CSQA) benchmark [818], and assess whether the extracted knowledge helps conduct
commonsense reasoning.

After generating knowledge tuples, we use SimCSE [277] as a retrieval toolkit to ob-
tain top-k (k = 5) relevant candidates for each question-choice pair. To retain candidates
which are highly relevant to questions, we filter out those with a similarity less than 0.5.
We only retain questions which have at least 10 candidates reserved for all choices, and
thereby obtained a subset of 179 questions. Next, we carry out a manual evaluation to
label whether candidate knowledge tuples are (1) correct, (2) highly relevant to the ques-
tion and possibly helpful to infer the answers, or (3) directly confirm the answer or dis-
card a distraction term. Furthermore, we assess whether the collected useful knowledge
tuples are covered by the primary existing commonsense knowledge base – ConceptNet.

9.4.3. PARTICIPANTS AND PROCEDURE

Players. We recruited participants from the Prolific crowdsourcing platform [606] to play
FindItOut. All participants were proficient English-speakers above the age of 18 and
they had an approval rate of at least 90% on the Prolific platform. We excluded partic-
ipants from our analysis if they do not flip cards as expected, or represented an out-
lier in terms of cheating in game (e.g., tell opponent their IT card or give wrong answer
quite often) or asking meaningless questions. All participants were rewarded with £2.5,
amounting to an hourly wage of £7.5 deemed to be “good” payment by the platform.
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To encourage participants actively play the game, we rewarded participants with extra
bonuses of £0.15 for every win. The players are randomly matched by our system when
entering the game, and do not know each other. Players are asked to play 5 mandatory
games, three at the easy difficulty level and two at the difficult level. The progressing
difficulty allows players to gradually familiarize themselves with the game mechanics.
After finishing these five games, the players can play additional games or leave with exit-
questionnaire.
Generating Game Boards. For the CSQA task, concepts that appear within a same ques-
tion are appended to one board (e.g., {aircraft, school, mexico, battle, human, band, fac-
tory, doctor}, or {countryside, painting, village, train, ground, mountains, rock, cottage}.
In case of the discriminative attributes (DA) task, concepts from a same triple and from
the same semantic field are chosen (e.g., {mirror, necklace, cigarette, lantern, candle,
scarf, lamp, chandelier}, or {father, king, daughter, son, prince, uncle, brother, cousin}).

Concepts from the DA task. To cover as many triples from DA dataset as possible with
a limited budget, we only consider triples which contain both frequent concepts (i.e., oc-
cur at least 5 times in positive discriminative triples). Using every concept as a seed, we
generated game boards with a greedy search strategy to maximize the triples possibly
covered. Considering that game boards of a good diversity can potentially create a bet-
ter game experience, we filtered out game boards which have overlapping concepts (with
a threshold of 2 for easy games and 6 for difficult games). Finally, 41 easy game boards
and 22 difficult game boards were generated.

Concepts from the CSQA task. We select the questions from the CSQA dataset [818]
that refer to at least 5 meaningful single-word concepts (both question concept and
choice concept), resulting in a subset of 864 questions. Similar to the generation of
boards for DA dataset, we utilized a greedy search strategy to maximize concepts that
occur in the same question to be placed in one game board. With this criteria, multiple
questions can be “merged” into one board (see Appendix 9.6). Finally, 115 easy game
boards and 70 difficult game boards were generated pertaining to the CSQA task.

9.4.4. QUALITATIVE ASSESSMENT OF KNOWLEDGE

Definition of qualitative dimensions. Owing to the lack of automated and standard-
ized methods to evaluate the quality of knowledge elicited through GWAPs, we carried
out a qualitative evaluation of the generated knowledge with respect to the ‘correctness’
and ‘diversity’ of the knowledge. We manually rated the factual correctness of a tuple
with either ‘correct’, ‘incorrect’, or ‘not sure’ (when in doubt). We followed an it-
erative coding process [799] to characterize the diversity of the knowledge based on sev-
eral dimensions informed by related literature in computer science and social science
—correctness, truth, bias, tacitness, typicality, specificity. Table 9.1 presents the dimen-
sions used to assess the knowledge tuples. Knowledge is by definition true [644], and it is
thus challenging to rate into more than a binary proposition. Hence, we do not use the
same Likert-scale dimension as previous works [761], but propose a multi-dimension
description of correctness.
Annotation procedure. We analyse the qualities of the generative knowledge by select-
ing and annotating a subset of samples collected from the game boards pertaining to the
DA task. We randomly sample 30 difficult games (leading to 1628 generative knowledge
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Table 9.1: Dimensions on which knowledge tuples are analysed. Labels correspond to the scales used to gather
annotations.

Dimension Description Label Example

C
or

re
ct

n
es

s Validity A valid tuple is comprehensible [879],
and the input is not the result of
cheating (e.g., description of visual
content on a card).

invalid +(tap, UsedFor, can your card used
home), +(mother, HasA, color brown in
it)

valid +(camel, AtLocation, in africa)

Truth
Indicates whether a tuple represents a
correct fact.

correct +(lamp, HasProperty, makes light)
incorrect -(mole, IsA, predator), -(squirrel, Used-

For, swimming)

Meaning(s)
Indicates whether the tuple can have

different interpretations (among
which at least one is correct), or a
single interpretation.

multiple +(tower, CapableOf, be used as home)
(high-rise building/Eiffel tower)

single +(avocado, HasProperty, green (most
part))

D
iv

er
si

ty

Bias
A tuple can be biased due to being true
only in certain contexts, since one can
biased by their own view of the world.

unbiased +(cucumber, IsA, fruit), -(dishwasher,
UsedFor, preserving food)

biased +(crab, HasA, big claws), -(trousers,
usedFor, mainly women)

Typicality
Indicates the perceived typicality of a

tuple from one’s point of view (so as to
acknowledge the subjectivity of
certain tuples).

high +(boat, AtLocation, on water), -(plug,
UsedFor, restraining something)

medium +(car, UsedFor, single person), -(finger,
AtLocation, on furniture)

low +(fan, IsA, mostly black in colour), -
(aunt, UsedFor, a married person)

Specificity
Indicates the level of details provided
by the input in the tuple. Negative
tuples are always specific as there can
be an infinite number of negative
examples.

high +(skirt, IsA, typically female clothing),
-(tap, UsedFor, restraining sth.)

medium +(zebra, AtLocation, in africa), -
(catfish, HasA, shell)

low +(lamp, HasProperty, makes light)

Tacitness
Indicates whether one would have a
hard time articulating the fact, and the
extent to which one tends to readily
think of this fact (or its “opposite” fact)
when discussing the concept in the
tuple

high +(crab, HasA, red shell when cooked),
-(bed, PartOf, kitchen appliance)

medium +(crocodile, AtLocation, jungle), -
(avocado, PartOf, group or bunch)

low +(elephant, IsA, herbivore), -(lion, IsA,
herbivore)

tuples), gather the concepts they cover, and then select all knowledge tuples collected
through easy games for which the boards include some of the previous concepts (147
games, and 2429 knowledge tuples). The discriminative tuples can be generated from
two generative tuples with different signs. Hence, the quality annotation for discrimi-
native tuples is covered by that of generative tuples. 5 authors of this paper annotated
50 generative knowledge tuples selected at random with respect to these dimensions,
and refined the codes together until complete agreement was reached. Following this,
each of the authors independently annotated 793 tuples, including a common subset of
95 tuples, allowing us to measure the inter-annotator agreement. The Krippendorff’s α
scores are respectively 0.91 for meaningfulness, 0.37 for correctness (with 0.38 and 0.45
for problematic sign and relation), 0.31 for bias, 0.23 for typicality, 0.39 for specificity
(0.51 when using only two values), 0.33 for tacitness (0.43 when using only two values).
Disagreement is due to the subjectivity of the task: knowledge and the veracity of a fact
vary depending on one’s own experience of the world.
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9.5. RESULTS & DISCUSSION

9.5.1. GAME EFFICIENCY
Knowledge quantity. Overall, 255 (164 easy, 91 difficult) and 242 (142 easy, 100 difficult)
games were played for the DA and CSQA datasets respectively. This led to collecting
75,491 and 85,923 knowledge tuples. For the DA dataset (and the CSQA dataset respec-
tively), 5.28% (4.39%) of the tuples are generative positive tuples, 6.38% (6.66%) gener-
ative negative tuples, 22.8% (20.4%) discriminative positive tuples, and 65.6% (68.5%)
discriminative negative tuples.

91.1% of the knowledge tuples pertaining to the DA game boards and 97% w.r.t. CSQA
boards consist of unique tuples, while the remaining tuples were generated multiple
times across turns or games. On average, easy games lasted 367.2s (SD=722.3) in case
of DA game boards and 377.8 (SD=192.3) for CSQA boards, and corresponded to 3.88
(SD=1.63) turns on average for DA game boards, and 4.09 (SD=1.41) for CSQA boards.
Similarly, difficult games lasted 397.5s (SD=201.4) for DA boards —resp. 428.4 (SD=204.3)
for CSQA boards—, and required 5.69 (SD=1.98) —resp. 5.78 (SD=1.63)— turns.
Throughput. Overall, for the DA dataset, 13.9 tuples are generated per minute, which is
ten times more than Verbosity [854]3.

We define the throughput of our game as the number of elicited tuples divided by the
time it took (in seconds) to elicit them. In Figure 9.4, Figure 9.5 (cf. the Appendix), we
report the throughput of our game for both the DA and CSQA tasks, depending on the
round of the game, and the type of knowledge tuple elicited. In both cases, the through-
put decreases over rounds as there are less uncovered cards in latter rounds, leading to
the generation of less tuples when flipping new cards. As expected, the throughput is
higher for difficult than easy games, especially for the first rounds of the game. Since
there are more cards on the game boards in difficult games, and players are incentivized
to ask questions that eliminate as many cards as possible, more knowledge is directly
elicited from the early rounds. That is also the reason why the difference between the
amounts of discriminative and generative knowledge is higher for these difficult games
than the easy ones (a “good” question for the Asker leads to an optimum number of
flipped/unflipped cards to generate many discriminative tuples). No major difference is
observed across datasets as the game mechanics remain the same.

Utility. We compute utility as the fraction of value extracted per unit of time (in seconds)
over the cost (in pounds). For the DA dataset, we consider the value extracted to be
the number of tuples elicited that are tacit, specific or atypical, as these are tuples that
cannot be easily collected from other sources. For the CSQA dataset, we consider the
value extracted to be the number of tuples that are correct and relevant for the CSQA
task. In Figure 9.2 and Figure 9.3, we report the normalized utility for the two datasets
depending on the round and difficulty of the game. The average utility does not vary
significantly over time for the two tasks, albeit with large standard deviations. This is
explained by the high variation in the type of knowledge that players elicit through the
rounds. Difficult games correspond to a higher utility of FindItOut for the DA task,
while easy games correspond to a higher utility for the CSQA task. In general, larger
game boards can aid the generation of more valuable knowledge tuples efficiently due

3According to the approximate numbers reported: 29.47/23.58 = 1.25 tuple per minute.
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Figure 9.2: Utility of FindItOut for the discriminative
attribute, and computed over different rounds and dif-
ficulty levels.

Figure 9.3: Utility of FindItOut in relation to the CSQA
dataset, and computed over different rounds and diffi-
culty levels.

to more cards being included. As CSQA game boards are generated based on questions,
the smaller the game board the higher is the probability to focus on specific questions.
This highlights the benefit of configurability of FindItOut.

9.5.2. ANALYZING KNOWLEDGE QUALITIES

Below, we report our results for the discriminative attribute dataset.

Correctness. Overall, 95.6% of the generative tuples elicited are meaningful. Among
these, 90.6% of the tuples are correct (88.8% and 92.1% respectively for positive and neg-
ative tuples). As comparison, Verbosity [854] reports 85% of correct generative tuples
elicited. Similarly, 76.2% of the discriminative tuples elicited are correct.

Qualitative study of diversity. As a first indication of the diversity of knowledge types
elicited through our game, we investigate the types of relations used by the players.
21.4% of questions employed IsA, 20.0% HasA, 13.9% UsedFor, 13.4% HasProperty,
13.1% CapableOf, and the other relations in proportions lower than 10%. As each re-
lation corresponds to a different type of information, this shows the diversity of tu-
ples our game collects. A chi-square test of independence to examine the relation be-
tween the relations employed by players and the rounds revealed a significant rela-
tion, χ2(77,4235) = 620.59, p < .000, implying that the relations employed evolved over
rounds. In earlier rounds, IsA is primarily used as it allows to ask simple, discriminative
questions. In later rounds, the frequency of the other relations increases, as more tacit
questions need to be asked to distinguish the unflipped cards.

Dimensions. Our qualitative analysis of the elicited knowledge tuples reveal a high
diversity in the type of knowledge collected. 86.3% of the tuples are unbiased, 38.3% are
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Table 9.2: p-values for Chi-squared tests of independence that were conducted to examine the rela-
tion between game rounds and each dimension of the qualitative analysis (†: significant relations).

Level Correctness Bias Typicality Specificity Tacitness

All 3.41e-15† 4.55e-08† 1.94e-05† 1.89e-06† 4.89e-04†

Easy 5.40e-17† 5.22e-04† 1.46e-03† 1.39e-03† 2.81e-02
Diff. 1.22e-05† 1.11e-06† 2.06e-08† 2.24e-03† 6.15e-06†

highly tacit (21.3% medium), 57.5% highly specific (16.9% medium), 7.98% are atypical.
These findings confirm that FindItOut allow for externalizing tacit knowledge, that is
typically not found in existing knowledge bases.

We investigate how the types of knowledge evolved over the rounds, with respect to
easy and difficult games, and overall. To this end, we performed Chi-square tests of in-
dependence between the annotations of each knowledge dimension and the rounds in
the game. To correct for error inflation due to multiple tests, we applied a Bonferroni
correction so that the significance threshold of α decreased to 0.05

15 = 0.003. In Table 9.2,
we report the p-values of these tests. Overall, we found that each knowledge dimension
evolves across the rounds in which the tuples were elicited. This is consistent across easy
and difficult games, except for the tacitness of tuples corresponding to easy games. In
Figure 9.8, we show the percentage of tuples per dimension collected for each round of
the game. This indicates the trend of evolution per round. We found that the number of
high typicality tuples decreases over rounds, while tuples with high specificity and high
tacitness tend to increase after the initial rounds. The reason for such observation is two-
fold. After several rounds of a game, reserved concepts are hard to discriminate with gen-
eral and explicit knowledge. Along the game and its active guessing and thinking mech-
anisms, players’ deeper insights and life experiences are activated/awakened [210].

9.5.3. USEFULNESS FOR AI TASKS
Coverage of discriminative attributes. With 41 easy game boards and 22 difficult game
boards generated for the DA dataset, we can cover 3948 triples at most. Due to a limited
budget, 55 participants were recruited to play these games, resulting in 3369 triples po-
tentially covered. To filter out noisy reference triples, we manually labelled their validity
and found 2987 valid triples (containing 1649 unique concept pairs). These 2987 valid
triples are considered as reference. For the annotations of coverage, 5 authors annotated
1102 common samples, and 9808 independent samples. The inter-rater agreement with
Krippendorff’s α was found to be 0.47, which is reasonable in a subjective task [169]. To
evaluate how the generated tuples go beyond the DA dataset, we analyse the correctness
of all the candidate tuples (5485) used in coverage annotation. 5 authors annotated 545
common samples, and 4940 independent samples. Inter-rater agreement with Krippen-
dorff’s α was found to be 0.43.

For every reference triple, we take all positive discriminative knowledge which have
the same concept pairs as candidates. Based on the annotations, we found that 859
(28.8%) of the reference triples are covered. Besides covering a part of the reference
triples, we also look into whether the collected candidates can discriminate concept
pairs. As manual annotations show, all 1649 concept pairs can be covered with our ex-
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tracted knowledge, which indicates the extracted knowledge is of high quality and can
even go beyond the scope of the DA dataset.

Commonsense question answering. Among 179 questions (every question has five
choices), there are 2.82 choices which can find relevant knowledge tuples (correct and
possibly useful) per question, and 0.52 choices which can find useful knowledge tuples
(correct and can confirm the answer or discard a distraction term). To further verify the
usefulness of our extracted knowledge, we find that 20 knowledge tuples (most are tacit
knowledge) among 96 unique useful ones (see Section 9.4.2 last paragraph) are not cov-
ered by ConceptNet 5.5. This further verifies the usefulness and necessity of tacit knowl-
edge extracted from FindItOut. As all game boards for CSQA subset are only played
once (due to a limited budget), we argue that with increased redundancy on the game
boards, even more useful knowledge can potentially be elicited.

As shown by previous work [388], existing large-scale commonsense knowledge
bases (e.g., ConceptNet [780] and CSKG [389]) are not capable of supporting common-
sense reasoning. FindItOut fills this gap, by generating both tacit and negative knowl-
edge that is absent from these knowledge bases. Besides reasoning, this negative knowl-
edge can also be leveraged in the future to discard ridiculous inferences and inference
mechanisms from machine learning models, which contrast with human commonsense
and ethics. This is of great potential to provide trustworthy and robust AI services.

9.5.4. PLAYER EXPERIENCE & ENJOYABILITY

Based on our findings from the player experience inventory questionnaire, the main
functionalities of FindItOut were well understood and appreciated by players. On aver-
age players rated the functional consequences (i.e., “the immediate experiences as a di-
rect result of game design choices”) with >1 on a scale of -3 to 3. The ease of control and
clarity of goals were the best rated dimensions by the players. These highly-rated func-
tional consequences translated into highly rated psychosocial consequences (i.e., “the
second-order emotional experiences, such as immersion or mastery”) as well, with an
average rating per dimension always above 0. This shows that FindItOut was enjoyed
by players, arose their curiosity by prompting them to think of topics (differences be-
tween concepts) that they probably do not typically think of.

9.5.5. CAVEATS AND LIMITATIONS

Considering that game boards play an instrumental role in shaping the nature of the
elicited knowledge, it is important that knowledge requirements are translated well into
populating the game boards with concepts. To increase the diversity in knowledge, in-
creased redundancy between game boards is required. In this work, we did not explore
how FindItOut can be extended to the voluntary player contexts where game elements
will play an important role. To generate useful and correct knowledge from FindItOut
automatically, further mechanisms need to be developed to avoid costs entailing human
annotations.
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9.6. CONCLUSION
In this paper, we developed a configurable game FindItOut to elicit plural knowledge
from human players, that could be used to obtain expected mechanisms for a machine
learning model. We evaluated and demonstrated the efficiency of the game, the enjoy-
able player experience it facilitates, the utility and usefulness of the resulting knowl-
edge, through two downstream AI tasks — commonsense question answering and the
identification of discriminative attributes. Results showed that our game can generate
high-quality discriminative knowledge which goes beyond an existing frame of refer-
ence. More importantly, FindItOut can generate tacit and negative knowledge which
is absent from most mainstream commonsense knowledge bases. FindItOut can be
easily configured to suit diverse requirements of downstream AI tasks by varying seed
concepts, difficulty levels, size of the game boards, the relation sets used for populating
question templates, the admissible length of the natural language input from players,
using text or image modes, expanding the taboo words that players cannot enter, among
other features. Now that we have a method to collect expected mechanisms for a ma-
chine learning model via FindItOut and another method to collected learned mecha-
nisms of the model via SECA, we can now investigate in the next chapter (Chapter 10) to
what extent these types of information can be useful for a machine learning developer
to diagnose hazardous failures of their models.

APPENDIX

ADDITIONAL DETAILS ON OUR GWAP
Design choice. FindItOut can be adjusted to fit different requirements. Here, its pa-
rameters (e.g., number of trials before a guess) were calibrated through pilot studies with
crowdworkers, geared towards effectiveness and enjoyability of the game. We selected
8 and 16 cards to vary the game difficulty as players managed to formulate interesting
questions with less or more effort, while still finding the game enjoyable. The relation-
based templates we used to formulate questions are shown in Table 9.3. For SimCSE,
relevant literature [277, 734] adopted top-k (k = 3,5,10) and filtered out low similarity
candidates. We set k = 5 and similarity threshold to 0.5 for the trade-off between anno-
tation efforts and evaluation quality.

Table 9.3: List of relations used in FindItOut.

Relation Explicit question

IsA Is your card a(n) ?
HasA Does your card have a(n) ?
HasProperty Is your card (property)?
UsedFor Can your card be used for ?
CapableOf Can your card ?
MadeOf Is your card made of ?

PartOf Is your card part of (a) ?
AtLocation Can your card be found at ?

Implementation. FindItOut’s backend API manages the game logic, and the frontend
renders the game screens. The communication between the two ends consists of classic
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HTTP REST API for user information, JWT authentication and WebSocket for game lob-
bying and gameplay, allowing for continuous and bidirectional data flow between the
server and client. It is written in Python and served with Flask owing to its simplicity
and fast setup. All game data are stored in a PostgreSQL database. The server/client
WebSocket communication is implemented using the Socket.IO library. The frontend
is written using React javascript library in conjunction with Redux state library, which
allows unidirectional data flow; making it predictable, easy to test and flexible.

GAME BOARDS

In our game, the design of game boards is of great importance. To keep the game in-
teresting, we adopted greedy search strategy to retrieve relevant concepts and gener-
ate game boards for Discriminative Attributes dataset. The algorithm to generate game
boards for DA dataset can be found in Alg. 1.

Algorithm 1 The algorithm to generate DA game boards.
Require: Triple set T , concept set C , game board size n.
1: Input: seed concept c0.
2: Output: Game board g .
3: initialize game board g = {c0}
4: for i = 1 . . . n −1 do
5: ci = MaximizeTripleCover(g ,C \ g ,T )
6: g = g ∪ ci
7: end for
8: return g

To generate useful knowledge for the question answering task, we based ourselves on
questions of the CSQA dataset to generate game boards. Based on concepts mentioned
in a question and its choices, we gather related questions and generate game boards
with clustering methods, which take every question as a node and overlap of concepts
between questions as edges. The algorithm to generate game boards for CSQA dataset
can be found in Alg. 2.

Algorithm 2 The algorithm to generate CSQA game boards.
Require: Question-concept connection set T , question set Q, game board size n.
1: Input: seed question q0.
2: Output: Game board g .
3: initialize game board g = ObtainQuestionConcepts(T , q0)
4: initialize covered question set Qc = {q0}
5: while Size(g ) < n do
6: qi = MaximizeConceptOverlap(g ,Q \Qc ,T )
7: g = g ∪Obt ai nQuesti onConcept s(T , qi )
8: Qc = FindQuestionCovered(g ,Q,T )
9: end while

10: g = FilterGameSize(g , n)
11: return g

ADDITIONAL RESULTS

Analysis of correctness. When tuples are incorrect, 62.3% a flipped sign, 29.9% a prob-
lematic relation, and 7.49% both a sign and a relation. Problematic relations are typi-
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cally explained by a) the fact that a relation and its corresponding natural language in-
put make sense in the question posed by the Asker of a round, but not necessarily in the
generated tuples where the concept of the game boards might not all be related to this
tuple, and b) the difficulty for some players to interpret the different relations. As for the
problematic sign, it is either due to ambiguities in the meaning of a concept, or due to
players forgetting to cover a card when they receive the answer to their question. Future
research would be needed to optimize the post-processing to automatically identify and
correct such errors, as well as to improve the user experience in order to support play-
ers in selecting the most appropriate relations, and to prompt them to cover all relevant
cards at each turn.

Game efficiency. Overall, 2.56% of the knowledge tuples collected within a game are
overlapping, and 8.9% of the tuples collected across game boards overlap.

Table 9.4 present the average time taken by round across game level for both the DA
and CSQA game boards. The high standard deviation for easy games in the first round is
explained by the time taken by the players to learn the rules of the game.

In Figure 9.4 and Figure 9.5, we report the throughput of our game for both the DA
and CSQA boards, depending on the round of the game, and the type of knowledge tuple.

Table 9.4: Average time (in second) taken to play a round of the game (round k = 4 for easy games and k = 5 for
difficult ones as more rounds are typically played for the latter).

Game board Level round 1 round 2 round k

DA Easy 176.5 (SD=735.3) 91.9 (SD=57.5) 74.0 (SD=40.8)
Difficult 85.8 (SD=33.9) 72.8 (SD=38.7) 66.0 (SD=36.4)

CSQA Easy 141.2 (SD=88.6) 100.3 (SD=68.3) 76.8 (SD=69.5)
Difficult 94.2 (SD=46.4) 81.7 (SD=43.9) 74.6 (SD=51.3)

Figure 9.4: Throughput computed over rounds of the game for the discriminative attribute dataset. Round 6
and over are aggregated as less players played them (amount players per round: easy 72, 75, 70, 60, 40, 21 /
difficult 51, 50, 49, 50, 44, 40).

Qualitative analysis. In Figure 9.8, we report the percentage of knowledge tuples falling
into each of the values of our qualitative dimensions, based on the rounds of the game.

We report in Figure 9.6 the distribution of relations used across rounds of a game.
Players tend to use explicit relations (e.g, IsA) to form the questions. After serveral
rounds, tacit relations (e.g, UsedFor, PartOf) are used more often.

Enjoyability. We report in Figure 9.7 the enjoyability of the game. Overall, players are



9.6. CONCLUSION

9

263

Figure 9.5: Throughput computed over rounds of the game for the CSQA dataset. Round 6 and over are aggre-
gated as less players played them (amount players per round: easy 70, 71, 72, 56, 33, 27 / difficult 59, 61, 55, 57,
59, 51).

Figure 9.6: Relation distribution along the game rounds.

Figure 9.7: Player Experience Inventory questionnaire.

Figure 9.8: Bar plot illustrating the distribution of each dimension in the qualitative analysis of FindItOut in
relation to the DA dataset, computed across different rounds.

satisfied with the functional consequences, where the average ratings is above 1.0 (scale
from -3 to 3).





10
EVALUATING THE USE OF

MECHANISMS BY ML DEVELOPERS

10.1. INTRODUCTION
In this last chapter of Part III, we investigate how the explainability method we devel-
oped (and other explanations) to obtain learned mechanisms of a machine learning
(ML) model, as well as the domain knowledge that our game with a purpose allows to col-
lect (that can be used to elicit expected mechanisms for a model), can be used in practice
by ML developers to diagnose their ML models for hazardous failures. Indeed, the ML
community develops various explainability methods, often arguing their usefulness for
model bugs identification [677, 437, 289, 69, 810]. However, few studies investigate their
concrete uses in this process. As a result, it is still unclear what types of explanations (e.g.
out-of-domain, global, or interactive [773]) can be useful, for which steps of the process,
and how. Hence, we ask: how could diverse explainability methods be used to support the
bug identification process of deep learning computer vision models? We focus on image
classification tasks, as they are prone to model misbehavior, and there is an established
body of (post-hoc) explainability methods to possibly support bug identification. Their
practical use has not been studied yet, contrary to the ones for tasks that rely on tabular
data [365]. We study the identification of model failures and bugs in development; later
steps like bug identification in deployment and bug correction are future work.

We draw inspiration from works situated at the intersection of ML and HCI that in-
vestigate how ML or related tools (e.g. explainability, debugging user-interfaces, etc.)
are used [578], or could be used [365], and how to design them [31, 889]. We build a de-
sign probe1 in the shape of a user-interface by performing literature studies, a formative
study, and co-creation sessions consisting of 18 interviews, to explore uses of explain-
ability for debugging. Using an implemented probe and a carefully-crafted use-case, we
then perform 18 user-studies with ML developers having different levels of experience
with computer vision in various domains.

1Code implementation: https://github.com/agathe-balayn/explainability_probe
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https://github.com/agathe-balayn/explainability_probe
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The user-studies show that a wide range of explanations are useful to identify bugs
(e.g., both textual and visual explanations, global and local, companion with domain
knowledge, etc.). These explanations are often not theory-heavy, but extremely informa-
tive when embedded into an interactive interface. Although they can sometimes be over-
whelming and misinterpreted (leading to identify wrong bugs due to confirmation bias),
these explanations also allow to identify the potential causes of various issues, and to
envision correction strategies. This reveals an urgent need for more research on the de-
sign of new explanations relying on diverse user-interactions adapted to different kinds
of developers.

10.2. RELATED WORK

10.2.1. BUG IDENTIFICATION IN SOFTWARE AND ML MODELS
To understand what bug identification means, we survey literature about machine learn-
ing testing (first step of the debugging process) and traditional software systems where
bug identification is more extensively studied.

Failures. Machine learning testing aims at detecting and characterizing differences
between current and expected functioning of a model [924]. These differences revolve
around inferences (e.g., correctness, robustness, fairness, etc.), data, or code [152, 671].
Main causes of failures are structural or training bugs [519]. Our formative study reveals
sub-types of training bugs around datasets or training hyperparameters. We mainly fo-
cus on correctness failures (wrong model inferences or features) and dataset bugs, in
relation to issues in the model features, as these are still overlooked research-wise de-
spite being the primary debugging goal of developers and directly related to explainabil-
ity methods. Software engineering distinguishes between reactive debugging (a failure
is explicitly identified) [34, 328]; proactive debugging (no explicit failure manifests); and
general software understanding (for later debugging) [475, 541], that we all study.

Methods. The software debugging workflow consists of four steps [475, 541, 34]: 1)
gathering context and hypothesis formulation, 2) instrumenting the hypothesis, 3) test-
ing the hypothesis, 4) correcting the hypothesis, or applying a bug solution. To the best
of our knowledge, there is no study of the bug identification practices for computer vi-
sion models. Instead, research focuses on developing methods for debugging models
[924, 519, 514, 419] without any human activity or explainability (except [763]). As our
formative study shows that none of the automatic methods is employed by developers,
we investigate how they could perform manual bug identification supported by explain-
ability.

User interfaces. A few user interfaces [923, 875, 673] support developers in debugging
models. None of the ones that make use of explainability methods are adapted to com-
puter vision. The applicable ones all focus on investigating the choice of model and
training hyperparameters [729, 728], or visualising the data used to train the model [25].
Our design probe instead presents diverse explanation artifacts designed for computer
vision models.
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10.2.2. MACHINE LEARNING EXPLAINABILITY
Explainability provides explanations on the functioning of a model. A framework [810]
characterizing explainability works identifies model debugging as one of their purposes,
and the following tasks developers might perform, e.g., “assessing reliability of a predic-
tion”, “detecting arbitrary behavior”, etc, that our study also identifies.

Categorization. Explainability methods and resulting explanations can be categorized
in various ways [45, 773, 503, 497]. One might want to differentiate them regarding the
explanation audience, the explanatory medium, the explanation scope, whether the ex-
planations are about data or models, their faithfulness, etc. Algorithmic research distin-
guishes between local or global explanations, depending on the scope of data samples
employed. Local explanations provide information on the reasoning a model follows to
infer the label of a sample, through saliency maps [754], visual counterfactuals [302],
or visualisations of activation layers [595, 366]. Global explanations indicate the gen-
eral features used by a model, presented as visual hints (e.g., TCAV [437], ACE [289]), or
textual information (e.g., SECA [69]). We use these categorizations to identify the expla-
nations relevant to include in our probe.

Usages. Researchers have conducted user-studies on the use of certain explanations
for certain stakeholders and data types [23, 889, 409, 174, 185, 427]. Yet, no extensive
work involves developers debugging computer vision models. Only Bhatt et al. [100] con-
ducted inquiry interviews where developers solely reported using saliency maps to un-
derstand wrong inferences, or to identify spurious features, and none mentioned other
explainability methods. Our work performs a human-grounded exploration where we
collect developers’ practices based on carefully-crafted debugging tasks.

10.3. METHODOLOGY: PROBE DESIGN PROCESS
The goal of our probe is to explore potential uses of explainability methods for bug iden-
tification. Design probes have three fine-grained goals [384]: “social science goal of col-
lecting information about the use and the users of the technology in a real world setting,
engineering goal of field-testing the technology, and design goal of inspiring users and
designers to think of new kinds of technology to support their needs”. Table 10.1 de-
scribes the requirements for our probe.

10.3.1. MIXED METHOD RESEARCH
To translate our requirements into a probe, we establish functionalities (Fx) to provide,
and orthogonal categories (Ox) that indicate how these functionalities can be realized.
Academic and grey literature analyses inform the list of explanations the probe should
contain (Rq2). However, it does not focus on developers’ experiences, and thus does not
inform on other information needed to identify bugs (Rq1). Consequently, we perform a
formative study in the shape of 18 semi-structured interviews with developers where we
investigate their practices, challenges, and wishes. We synthesize the literature and the
insights from the study to extract the functionalities (Fx) and orthogonal categories (Ox)
(Table 10.2). Finally, we perform iterative co-creation sessions where we present designs
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Index Requirement Description

Rq1 Completeness of functionali-
ties for bug identification

The probe should present the main information a developer might look at when
debugging.

Rq2 Completeness of explana-
tions

The probe should offer the main available types of explanations for computer
vision models.

Rq3 Clarity of the presented infor-
mation

To proceed to valid user-studies, the participants should understand clearly the
functionalities presented to them, without being overwhelmed by the offered
information.

Rq4 Flexibility and objective pre-
sentation of the information

The probe should not enforce a certain workflow within the tool not to skew
participants’ behaviors towards certain explanations, but instead make the in-
teractions as free as possible.

Rq5 Engineering feasibility The probe should be fully functional to exploit the explanations of an actual
model, and to let participants make use of the technology.

Table 10.1: List of requirements defined for the probe.

of the probe to developers, and collect feedback to fine-tune information visualisations,
and identify the minimum set of necessary interactions with these functionalities (Rq3,
Rq4). The probe is then implemented so as to create a valuable user-experience (Rq5).

Concretely, in the formative study and co-creation sessions, we present to the partic-
ipants a use-case involving the development of a deep learning model for a scene clas-
sification task. We describe an initial model that has been (hypothetically) built, and
show example of images from the training dataset with their ground truth and model
inferences. We make sure these examples present both cases where the model makes
right and wrong inferences, using relevant and irrelevant features (same approach as in
section 10.5). For the formative study, we then ask the participants to describe the ap-
proach they would follow to define whether this model is ready for deployment, and if
not, to characterize what the exact model failures to solve are. We analyse the results of
such sessions by extracting intermediate goals (in the shape of questions in Table 10.2)
the participants have while investigating the model, and types of information and tools
they use to fulfill these. For the co-creation sessions, we ask the same questions. Yet, we
additionally present the participants with mock-up user interfaces containing various
types of explanations, and prompt them to envision how they would use such interfaces
to answer the questions. We also ask them for feedback on the interfaces (e.g. missing, ir-
relevant, or unclear functionalities), and we iterate on the interfaces after each interview,
going initially from low-fidelity mockups, to high-fidelity ones in the last interviews.

10.3.2. PROBE FUNCTIONALITIES
We elicited the functionalities below needed for the probe. We illustrate them with the
scenario of the user-studies (section 10.5): building a model that classifies the species
of a bird displayed in an image. Importantly, our participants often referred to se-
mantic concepts in relation to relevant sample pixels or potential human-interpretable
model features, to reason about potential failures and bugs. These concepts were ei-
ther entities (e.g. cactus), attributes (e.g. green), entity-attribute combinations (e.g.
green-cactus), or their logical negation (e.g. NOT cactus, i.e. absence of cactus).

• F1: performance understanding: Understand overall and class-specific performance
of the model. Looking at metrics gives a first indication of the performance of the
model, and the type of errors to investigate. Participants use the class-specific metrics
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Table 10.2: Summary of observations from the literature and formative study, and their mapping to the probe
functionalities (Fx) and orthogonal categories (Ox).

Topic Provenance Description Fx Ox

Model input Interviews What kind of data does the system learn from? F2 -
To what extent the data is diverse enough to represent
each class?

F2, F9 -

What are the differences between these two classes? F2, F5, F8 -

Performance Interviews How well does the model perform for each class? Er-
rors with high or low confidence?

F1 -

Exp.
breadth/scope

Both The extent to which an explanation can be generalised
[773]. Participants of our formative study use a larger
range of breadth than local and global.

F3, F4, F8 O1

Local Both What features of this instance lead to this inference? F3
Global Both Which visual elements does the model generally use? F4
Intermediate Interviews What are the features used to distinguish these 2

classes?
F3, F4, F8

Comparisons Both [365] insists on allowing comparisons of explana-
tions across samples. Participants of our formative
study performed comparisons across samples but also
across classes.

F5, F6 O1, O2, O3

Why are instances A and B given the same/different
predictions?

F5, F3

How does the model weigh different features? F6, F3, F4

Exp. family Literature Sokol et al. [773] discuss a) associations between an-
tecedent and consequent, b) contrasts and differences
(using examples), c) causal mechanisms, as poten-
tially used types of explanations. Our participants pri-
marily relied on b), some also hinted at a) and c).

- O3

Associations The local and global explanations mentioned above
primarily refer to a).

F3, F4 -

Contrasts The comparisons performed with these explanations
refer to b).

F5, F6 -

Causal mecha-
nisms

Why is this sample predicted P instead of Q? What
would the model predict if this sample is changed to
...?

F7 -

Exp. domain
/medium

Both A mixed domain approach consists in explanations
within the original domain of inputs (images), and in
a transformed domain (essentially text such as in dia-
logues [72]). A few participants hinted at the potential
usefulness of having textual explanations.

- O2

Interactivity /pas-
sivity

Literature [773] distinguishes between static and interactive ex-
planations. While most explainability works do not
address interactivity, some [69, 437, 289, 365] propose
query interactions.

F8 -

This connects to varying the breadth and domain of
explanations, performing various types of compar-
isons, and exploring questions around causal mech-
anisms.

F5, F6, F7, F8 O1, O2, O3

Interviews Does the model use this feature? F8 -

Domain kno. Interviews What features do we expect the model to learn for this
class?

F9 -

Should the model pick up on more visual elements for
this image/class?

F9, F3, F4 -

to decide for which types of samples to improve the model first.

• F2: data-neighbor exploration: Understand and compare the content of data sam-
ples. Participants regularly explore the data to estimate the complexity of the task, to
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reason about causes for model failures, and identify features of the model. F1 and F2
can be supported with information about performance metrics and datasets.

• F3: local explanations: Understand how the model made an inference for a sample.
Participants scrutinize or wish to scrutinize saliency maps, to detect overfitting, or to
judge the relevance of model features. This can be facilitated with explanations of
single samples that show the connection between the sample content and its label
(e.g. the model classified this image as gila woodpecker by looking at the pixels of
the cactus the bird is standing on Figure 10.4).

• F4: global explanations: Identify the main reasons for the model to classify samples
into this class. Participants progressively achieve a global understanding of the model
by formulating a hypothesis based on a single sample, and iterate on it by evaluating its
validity across more samples. Some participants wished to have statistical summaries
of visual concepts across images (e.g. for 80% images classified as gila woodpecker,
the model looked at pixels representing a cactus) to speedup their process and im-
prove its results. For that, some participants suggested using crowdsourcing or object
detectors to annotate images at scale (similarly to what the SECA method offers [69]).

• F5: explanation comparison: Compare the reasoning of the model across samples
or classes. Comparisons serve to judge the validity of feature hypotheses, and to un-
derstand mis-classifications (e.g. the model classified this gila woodpecker image
correctly using the cactus pixels, but that one incorrectly using the wings).

• F6: explanation importance: Rank the explanations based on their frequency, or on
the type of (in)correct inferences they lead to. A few participants mentioned that it
would be convenient to automatically obtain a list of the most important features for
the model. We foresee they might want to query and rank explanations according to
different properties such as explanations that lead to correct or incorrect inferences
(e.g. 20% of times when the model used the breast and belly pixels, it made a correct
prediction, contrary to 90% for the cactus pixels).

• F7: counterfactuals: Ask "what-if" questions to see the type of reasoning and infer-
ence class received by a sample with/out these visual concepts. This family of expla-
nation was not directly mentioned as counterfactual, yet a few participants mentioned
testing transformations of images based on certain concepts to understand how they
impact the inferences (e.g. what would the model predict if there was no cactus in
the image?). As setting up such transformations is complex (Rq5), we propose proxy
textual-explanation based transformations (subsection 10.4.2).

• F8: explanation recommendation: Visualise explanations, or search for specific ones.
While participants do not talk about this as they are used to search for local explana-
tions by themselves, being able to query specific explanations might speed up their
process. This is also connected to the complexity of an explanation method. As par-
ticipants did not know about many explanations, they did not reflect further on their
complexity. Yet, they might want to delve deeper into the parameters of explainability
methods once they are more familiar with them.



10.4. PROPOSITION: RESULTING DESIGN PROBE

10

271

• F9: domain expertise: Know what a domain expert (e.g. an ornithologist) would con-
sider good reasons to classify a sample into a class. This functionality was contentious
among participants. A few participants did not use domain knowledge explicitly but
still relied on their understanding of the domain to understand potential wrong fea-
tures of the model, while others advocated for the necessity of understanding the do-
main even before looking into the model.

We identify the following orthogonal categories:

• O1: breadth: While literature refers to local and global explanations as the two scopes
of explanations, we see them as the two extremes of a scale. The participants did
not always look into a single sample (local) or the overall set of data and inferences
(global), but focused on various sets of classes (e.g. two classes or entire dataset), or
samples with correct or incorrect inferences.

• O2: medium: Participants are more accustomed to image-based explanations. Yet, a
few participants insisted on getting textual explanations to more easily receive feed-
back from domain experts on feature relevance, or to query learned features or images
of the training dataset.

• O3: granularity/type: Participants typically reasoned about semantic concepts to
identify issues with model features. Certain participants varied the granularity of these
concepts and went to fine-granularities when they could not identify a pattern of rea-
soning within higher-granularity ones (e.g. entire wing or sub-parts with different
colors).

10.4. PROPOSITION: RESULTING DESIGN PROBE
We first describe the main types of explanations in the probe (F3, F4, O1 - O3), corre-
sponding to the basic required functionalities. We then explain how we organized these
functionalities into a set of interactive tabs, to fulfill the other functionality requirements
(F1, F2, F5 - F9). In our user-study (section 10.5), developers will use the probe to debug
a model for the bird classification scenario.

10.4.1. MATERIALISATION OF THE PROBE EXPLANATIONS

LOCAL EXPLANATIONS (F3)
To vary the medium of explanations (O2), we provide both visual ones (saliency maps
Figure 10.2 (5a)) and textual ones (semantic features (5b)). We opted for SmoothGrad
to retrieve the saliency maps [769]. This method is sensitive to the parameters of a
model while minimising noisy results, catering for more accurate capturing of a model
behaviour. The semantic features are retrieved as by-products of applying the global
explainability method.

GLOBAL EXPLANATIONS (F4)
We choose the SECA framework [69] to extract explanations that reflect the overall fea-
tures of a model. It provides more complete explanations than ACE [289], it is more
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Table 10.3: Overview of the scores in the global explanations.

Score Example

Overall explanations
Percentage of times the features are used by the
model within the dataset.

If 100 images are in the dataset, and the model used
the feature “cactus” in 20 of them, then the score is
20%.

Percentage of times the features led to a correct pre-
diction across all images for which the model used
the features.

In the 20 previous images, if the model made 5 cor-
rect predictions, the score is 5∗100/20 = 25%.

Typicality score (from SECA): correlation between
the presence of the features and the predicted
classes, i.e. how strongly the features serve to dis-
tinguish one class from the others.

If cactus is associated to all gila woodpecker im-
ages, but to no image of any other class, then typ-
icality would be high since the correlation would
be strong, while wing which is used for all classes
would have a lower typicality score.

Class-specific explanations
Percentage of images that contain the features of in-
terest among all images with the predicted class.

If 100 images were predicted to be a gila wood-
pecker, and 20 of these images have a cactus, then
the score for cactus → gila woodpecker is 20%.

Percentage of images that received a correct predic-
tion among images that contain the features and
have this predicted class.

Among the 20 previous images, if 5 images were in-
deed gila woodpecker images, then the score is of
25%.

Typicality score (from SECA): indicates how strongly
the features serves to distinguish the specific class
from the others.

See above example for typicality.

tractable than TCAV [437] in an interactive mode (Rq5), and provides textual explana-
tions that participants wished for.

SECA takes as input images from each class of the dataset (we choose a balanced,
random set of samples of the test dataset). It extracts the corresponding saliency maps
and has them annotated by crowd workers. Then, it reconciles the annotations, and
transforms them into a table of semantic features. Post-processing techniques (e.g. rule
mining) finally identify combinations (logical conjunctions or disjunctions) of features
(entities and/or attributes) highly correlated with certain predicted classes. This ap-
proach provides explanations at different levels of granularity (e.g. wing, or primary
coverts, alula, etc.) depending on the granularity of the annotations requested to
the annotators (O3). The feature combinations are accompanied with six scores (see Ta-
ble 10.3) referring to overall explanations and class-specific ones. Overall explanations
represent the primary features used by the model to distinguish between classes (see
Figure 10.1 (3)). In class-specific explanations, the combinations of features are associ-
ated to a specific class (see Figure 10.1 (4)), and the scores indicate the relevance of these
features to this class. We represent these scores in bar plots for easy comparisons, as a
result of multiple iterations where participants indicated the difficulty in making use of
numbers (Rq3).

The user can rank (F6) or filter the global explanations according to the scores (Fig-
ure 10.1 (5)). To vary the explanation scope (O1), one can compute the scores on various
data subsets: (1) entire dataset: explains the general inference mechanisms a model fol-
lows; (2) samples that received a (in)correct prediction: identifies and compares mech-
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anisms for such predictions; (3) subset of the classes: identifies features used to distin-
guish between these classes. Where these choices can be made, we setup default param-
eters to reduce the complexity of the probe understanding (Rq3).

1

2

3

4

OVERALL CLASS-SPECIFIC

5

Figure 10.1: Query tab (left) and overall explanations tab (right). When querying (1) explanations, results are
displayed underneath (2). The overall explanations tab shows both relevant (combinations of) concepts (3)
and their association to each dataset class (4), and allows for varying the parameters to compute them (5).

Ground truth: American Golfinch (0.03) - Prediction: Pine Grosbeaks (0.92)
Bufflehead: 0.00, Downy Woodpecker: 0.00, Gila Woodpecker: 0.00, Hairy Woodpecker: 0.00, 
Hooded Merganser: 0.00, Lesser Goldfinch: 0.02, Mandarin Duck: 0.03, Monk Parakeet: 0.00

1

2
3

45

2.A 2.B 2.C 2.D

Figure 10.2: Confusion matrix interactions. Our probe allows for different interactions with the explanations.
E.g., when one clicks on a cell of the confusion matrix (1) corresponding to the predicted class A and ground
truth class B, she is directed towards the corresponding local (2) (images corresponding to the cells A-A, A-B,
B-A, B-B of the matrix) and global (4) explanations, as well as more performance indications (3). Clicking on a
local, visual explanation displays further local, textual explanations (5).
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10.4.2. THE TAB STRUCTURE OF THE PROBE
To avoid skewing the participants towards a particular workflow (Rq4), we organize the
primary functionalities into tabs, making them independent and equally important. In
the user-study, we inform the participants that there is no sequential dependency be-
tween the tabs. The tabs allow us to provide the higher-level explainability functional-
ities (F5 - F7), as well as the other necessary information about the model (F1, F2, F9).
F8 (recommendation) is provided all along the probe through the various parameters to
choose as well as the query tab.

WIKI TAB (F9)
This tab displays the domain knowledge about each dataset class, that an expert typically
possesses. It indicates relevant and irrelevant features for recognizing an image class.

QUERY TAB (F7)
This tab (Figure 10.1 (1)) allows to query global and local explanations, and images with
specific visual content, their predictions, explanations, and ground truth, allowing to a
certain extent to answer what-if questions.

The user is presented with text fields to fill in with features of interest, types of log-
ical combinations, and/or class. They choose to query explanations within all images,
or only in the correctly or incorrectly classified ones, or within specific classes (O1). The
results are displayed underneath. These can be a) scores of a queried explanation, b)
distribution of the presence of the queried features across the dataset, or c) samples as-
sociated to the local query. b) is displayed in a confusion matrix-like table (Figure 10.1
(2)) that shows, per cell, the percentage of images that have the features among the im-
ages of a cell, and the percentage of cell images that have the features among all images
that have this feature.

CONFUSION MATRIX TAB (F1)
This tab shows the accuracy and F1-score of the model, and its confusion matrix (see
Figure 10.2 (1)). Each cell presents two rates. One (bottom) is computed over the entire
dataset similarly to any confusion matrix. The other (top) is computed over the data of a
single row corresponding to the precision or recall per class depending on what the rows
and columns encode (ground truth or prediction). One can transpose these.

Users can click on the matrix cells to open a new page with the corresponding im-
ages (F2), as well as local and global explanations (F3, F4). The images and local expla-
nations (Figure 10.2 (2)) are organized into four columns corresponding to the 4 cells
of the matrix associated to the classes clicked initially, i.e. the ground truth A and pre-
dicted class B of the initial cell (A-B), as well as the corresponding diagonal cells of the
two classes A-A and B-B, and the opposite cell that would invert the ground truth and
prediction classes (B-A). This allows to compare these explanations (F3, F5). Clicking on
an image or saliency map allows to zoom on it, and its related textual, local explanations
(Figure 10.2 (5)).

The global explanations corresponding to the four cells (equivalent to considering a
binary classification task involving classes A and B Figure 10.2 (3)) are also displayed in
lists allowing for their comparisons (Figure 10.2 (4)) (F4, F5).
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GLOBAL EXPLANATION TAB (F4, F5, F6)
This tab displays the global explanations computed over the entire dataset. It shows both
the overall and class-specific ones (respectively Figure 10.1 (3), (4)).

DASHBOARD TAB

A few participants from the co-creation sessions wished to see all the main functionali-
ties on a unique page. The dashboard tab does so. Its top left part provides the perfor-
mance functionalities (F1, F2), and the top right the corresponding local explanations
(F3). At the bottom, the query functionality is enabled (F7). This organisation lets users
explore explanations for different images, and compare these with additional queried
information (F5, F6, F8).

10.5. EXPERIMENTAL SETUP: USER-STUDY
To study how developers would use explainability methods for bug identification, we
conduct 18 user-studies of one hour each. We prompt our participants to answer a de-
sign brief with the design probe. We ask them to explain out-loud what they do, and we
note their interactions with the probe (order of visited interfaces, functionalities used,
etc.). When they identify a potential failure and the related bug, we ask which action
they would take to solve it. Each session ends with an exit interview and a questionnaire
to collect ratings around the usefulness and usability of the interfaces. The questions
combine the short version of the User Engagement Scale [592], and 7-point Likert scale
questions around their likelihood to use the probe in the future. Before each session, we
ask the participants for their agreement for recording. We later transcribe the recordings
into anonymized transcripts, and destroy the recordings. The interview process has been
reviewed by the ethics committee of our institution. We analyse the results of the user-
study qualitatively in relation to the functionalities and orthogonal categories identified
in section 10.3, and quantitatively based on the questionnaires, the count of commonal-
ities in the steps followed by each participant, and the numbers of bugs identified.

Participants. The 18 participants were recruited through the networks of the authors,
searches on professional social networks, and by snowball within the contacts of the
first eight recruited participants. We only recruit participants who have experience with
machine learning, but not necessarily with computer vision (CV), as they should under-
stand the basic concepts around model failures. We categorize the participants based on
their level of experience with CV. Low-CV experience participants (6) have never or only
once developed a CV model, mid-CV experience participants (5) have less than 4 years of
CV model development experience, and high-CV experience participants (7) have more.

Design brief. The design brief presents a model bug identification scenario (Fig-
ure 10.3). It is typical and simple enough for participants to reflect on their own practices
without envisioning entirely new workflows. Bird classification might require domain-
knowledge, raising reflections on the need to have domain expertise for bug identifica-
tion. We scope the brief to the development setting as it encompasses a varied set of
activities, with both reactive and proactive debugging.
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BRIEF
Context: 
A company wants to develop a system to support bird lovers in identifying the birds they 
might see in their daily life. 

Current model:
An intern developed a deep learning model for 10-class bird classification.
For this, he created a dataset by scraping images from the Web using Google search 
engine, and applied some typical data augmentation methods (e.g. flipping and cropping 
images, brightness transformation). 
He then fine-tuned a ResNet model pre-trained on ImageNet on this data.  

Your task:
Unfortunately, his internship now ended. The company asks you to take over his model. It 
asks you to investigate whether the model developed by the intern can be deployed, or 
whether it needs improvement. In this case, what issues should be improved on, and how?

Gila woodpecker Lesser goldfinch American goldfinch

Hairy woodpeckerDowny woodpecker

Hooded merganser

Pine grosbeak

Bufflehead
Monk parakeet

Mandarin duck

Figure 10.3: Overview of the design brief. Examples of samples of each class the model to be analyzed was
trained on.

Model. We train the machine learning model to be debugged to classify 10 species of
birds. The training dataset is built with the idea of introducing both explicit (low test
accuracy and mitigated confusion matrix) and implicit model failures and various bugs
that explain these failures, as summarized in Table 10.4. To the best of our knowledge,
there is no established list of bugs and failures for computer vision models. We propose a
preliminary one, inspired by the literature on data biases [828, 826, 493], data shifts [350],
robustness to adversarial [15] and natural perturbations [351], models using wrong rea-
soning for making inferences [348], and from the bugs mentioned in the formative study.
Besides distribution shifts, we create wrong sets of features (incompleteness or irrele-
vance) that lead to correct or incorrect predictions, i.e. implicit or explicit failures. See
examples in Figure 10.4. To introduce these bugs, we vary the image content in train-
ing and test data, around class-specific features (e.g. bird appearance), and less specific
features (e.g. background).
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Gila Woodpecker images

Monk Parakeet images

background
green body

red bottle

red crown

background

cactus

Prediction: gila woodpecker

Prediction: monk parakeet

Prediction: pine grosbeak

Prediction: american goldfinch

Figure 10.4: Examples of implicit (green) and explicit (red) failures caused by irrelevant and incomplete fea-
tures, e.g. the model incorrectly uses the pixels corresponding to the cactus to correctly predict the gila
woodpecker class in the left image. The bounding boxes show the features of the model. We create the first
failures by making sure that cacti are present in all and only training samples of gila woodpeckers, while
the test images do not all contain a cactus. The second ones are created by making sure that only the monk
parakeet training samples present a green bird (and in a standard position), while the test samples are more
diverse.

Table 10.4: Bugs introduced in the models of our design brief.

Bug Description Example Creation method

Distrib.
shift

Large difference in training
and deployment images.

We mention that training data are scraped from the Web, and
a different context for the deployment data.

Simplistic/incomplete, relevant features
Explicit
failure

The features are relevant but
incomplete, and lead to in-
correct inferences.

The model learns the red
color for the pine grosbeak,
which is correct for the males,
but not for the yellow females.

We choose a subset of training
images (e.g. male images) that
give a partial view of the entire
class.

Implicit
failure

The model learns features
that are relevant, but insuffi-
ciently representing a class,
while still allowing for cor-
rect inferences.

The monk parakeet class is
identified by the model solely
through the color green.

We choose classes so that cer-
tain have a unique feature
compared to the others.

Spurious/irrelevant features
Explicit
failure

The model learns features
that are not semantically re-
lated to the species, and lead
to incorrect inferences.

The model recognizes gila
woodpecker by identifying
cactus in images, but there
is not always a cactus in the
image.

Training images of a class con-
tain an irrelevant feature, ab-
sent from other training sam-
ples and test set.

Implicit
failure

The model learns irrelevant
features, but still makes cor-
rect inferences.

The model learns the pres-
ence of water to identify
hooded mergansers.

Same as above, but with simi-
lar training and test sets.
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10.6. RESULTS
In this section, we present the results of our user-study, essentially the impact that the
explanations in the probe have on the bug identification process, and how they are used
in this process.

10.6.1. IMPACT OF EXPLANATIONS ON THE BUG IDENTIFICATION PROCESS

Figure 10.5 summarizes the number of bugs identified by the participants in relation
to the different types of model failures we introduced. We count one issue (1 point) as
completely identified when a participant identifies both a bug and a relevant correction
method, and give 0.5 point when the bug is well-characterized but no relevant correction
method is found. This way, we make sure that the bug is characterized well-enough for
the participant to propose a meaningful bug correction solution2.

Figure 10.5: Number of bugs and relevant correction methods identified by our different participants during
the user study.

SUCCESSFUL BUG IDENTIFICATION

The bug identification process of our participants was in majority successful, with 3.5
bugs and correction methods identified on average, and up to 7 bugs identified by expe-
rienced participants. For consistency, we first let the participants explore the probe and
failures they deemed important, and later discussed four specific failures. They were
typically able to reflect on these failures, but not at the same speed, explaining the large
standard deviations. Besides rapidity, three factors explain such deviation. 1) The low-
CV participants deemed certain low-rate failures not worthy to debug due to their rar-
ity. This can yet be wrong as high-CV participants discussed, since the error might be
rare due to the data distribution, but still harmful. 2) The rare failure (one single lesser

2We do not plot the numbers related to implicit, incomplete features because they are identical to the ones
for implicit irrelevant features: participants who succeed in identifying the latter always mention that the
features are irrelevant and by extension incomplete –other ones should have been used.
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goldfinch mis-classified as a hairy woodpecker) was challenging, and only two high-
CV participants proposed plausible bugs. The others pointed out to the lack of addi-
tional examples of this failure, preventing them from comparing local explanations. 3)
The participants did not think of the existence of implicit failures, except when nudged.

Overall, these results show that a probe presenting various types of explanations al-
lows to debug various feature failures, in relation to various dataset bugs. In order to
achieve such successful bug identification, participants used varied workflows to navi-
gate the different functionalities. These workflows are discussed in the next subsections.

DISPARATE RESULTS FOR DIFFERENT EXPLANATION AUDIENCES

Among these successful results, we observe a high disparity in the number of bugs iden-
tified between participants with different levels of experience in computer vision (CV).

Low-CV experience participants miss guidance. In general, participants with com-
puter vision experience identify more bugs than the ones without experience. The par-
ticipants without experience who identified zero or one bug did not know where to start
the process, how to proceed, and what kind of corrections to envision.

Misaligned mental models. Yet, three high-CV participants (removed from the plots)
identified less than two bugs. Their mental model of bug identification was not aligned
with our probe. They did not want to look into model features for bug identification,
and one was solely interested in unknown unknowns [938, 52, 506] (outside the probe
scope).

EXPLAINABILITY ALLOWS TO ENVISION VARIOUS, RELEVANT BUG CORRECTION METHODS

The probe led the participants to formulate bug correction methods that are diverse, rel-
evant, and to-the-point, thanks to the different kinds of explanations that allowed the
identification of highly specific data bugs. For instance, three participants discussed in-
appropriate data processing as a cause of failure, e.g. the image resolution is too small or
the bird/background ratio too large, making the differences between certain bird species
undetectable, suggesting for transforming the data pipeline. Five participants suggested
restructuring the inference task by adding more classes, as a result of better characteriz-
ing the source of bugs, e.g. they identified the color differences between male (red) and
female (yellow) pinegrosbeaks leading to high error rates for the female ones (confused
with the yellow american goldfinch), and suggested to separate them into two classes
to ease the learning. This is in line with other bug identification frameworks [763] which
report they support idea generation for bug correction. Particularly, we notice these en-
visioned correction methods are more precise and potentially more effective than in our
formative study where few types of explanations were mentioned.

PARTICIPANTS STILL MISSED CERTAIN BUGS

Incorrect features vs. correct inference. Participants focused on failures visible through
the confusion matrix, either when a percentage of a diagonal cell is low, or when out-of-
diagonal cell percentages are high. They often forgot that even classes with high accu-
racy might be based on problematic features. Some participants identified these issues
serendipitously when attempting to understand visible failures.

Confirmation bias. One participant identified a very general bug from a few images:
color bias of the model for most species. Confirmation bias led them to validate this bug
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by looking at images of different species, without going in more detail into the problem-
atic colors and species, or searching for other bugs. We discuss these results further in
section 10.7.

10.6.2. DIFFERENT CATEGORIES OF EXPLANATIONS FOR DIFFERENT USERS

AND BUG IDENTIFICATION STEPS
Figure 10.6 displays the perceived usefulness of each tab as rated by our participants.
Overall, all tabs are perceived useful with an average rating of at least 4 out of 7, yet the
mean rating and standard deviation vary across tabs. We discuss below these variations
in relation to the functionalities provided by each tab.

Figure 10.6: Perceived usefulness of the different tabs of the design probe. The ratings are displayed for each
category of participants.

LOCAL VERSUS GLOBAL EXPLANATIONS (F3, F4)
Hypothesis validation emphasized with the diversity of explanations. The participants
primarily used the local and global explanations from the dashboard and confusion ma-
trix, as testify the higher ratings for these two tabs (Figure 10.6). These explanations
served for generating bug hypotheses and validating them. This shows that proposing a
diversity of explanations nudges a more extensive bug identification process than with
fewer or no explanations where most participants skip hypothesis validation, as we ob-
served in the formative study.

Participants investigated explicit failures by entering different cells of the confusion
matrix. The implicit failures required more diverse entry points to be identified: 1)
Serendipitously, while investigating explicit failures. While investigating an explicit fail-
ure by looking at the four columns of images/saliency maps in the tab obtained from
clicking on a cell of the confusion matrix, they would notice that saliency maps would
highlight irrelevant features even in the A-A or B-B columns that present samples with
correct predictions. 2) By deciding to explore the global explanation tab (without having
a specific kind of failure in mind) and spotting clearly surprising features (e.g. water or
branch are not features one would expect the model to focus on when classifying bird
images. Instead, parts and characteristic colors of the bird would be expected for the
model to generalize to new images with more varied background for instance) for the
context, or features that were not sufficient (e.g. purple only for the mandarin duck,
whereas images displaying other birds might also have the purple color, e.g. in their
background). 3) By deciding to look into the diagonal of the confusion matrix (typi-
cally starting with cells that have low rates) and the corresponding explanations (saliency
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maps, and rankings of textual explanations by frequency). By looking into these specific
features, they would reflect on whether something is irrelevant or incomplete.

Local and global explanations are complementary. The choice of starting point does
not have a consistent motivation. Typically, participants who use local explanations to
generate feature hypotheses validate their hypotheses by looking at local explanations
for more images, or by verifying the presence of the features in the global explanations.
Instead, participants using global explanations for hypothesis generation validate the
features by making sure these features are reflected in a few local explanations across
correct or incorrect inferences.

Within hypothesis generation, many participants combined the two approaches as
the types of features and correction methods they lead to identify intersect but do not en-
tirely overlap. For instance, incomplete or irrelevant but frequent features were typically
identified from global explanations through the different ranking systems (F6). Instead,
infrequent failures and their correction methods were better understood by looking at
the actual images and saliency maps (F5). Global explanations were also used to identify
the features influencing the majority of classification (typically the correct ones), which
are in turn compared to the features used for incorrect inferences identified through lo-
cal explanations (F5: comparisons across explanation types). For instance, they identi-
fied that overall, the color red is used by the model to infer pine grosbeaks, and locally
understood that the only american goldfinch predicted as pine grosbeak was also
displaying a red feature due to the brightness of the picture. Such finding could not be
reached through a sole look at global explanations for which brightness is not reflected.

The choice of explanation type depends on the developers’ experience with explain-
ability. We do not identify a strong correlation between the categories of explanations
used by the participants and their expertise. Yet, most participants with high-CV expe-
rience are more reticent towards unfamiliar types of explanations, and use primarily lo-
cal, visual explanations, i.e. saliency maps (“the dashboard gives almost everything. I’m
more familiar with its explanations” Participant 4 high-CV ). Instead, the participants
with fewer experience operate smoother transitions between local and global ones, and
explore more types of explanations. This explains the higher ratings they gave to the tab
reached from the confusion matrix (that presents all types of explanations) compared
to the dashboard that only presents local explanations. Using global explanations can
be faster than using local ones, but it was also more tedious as participants need to get
accustomed to the scores and ways to interpret them. All participants argued these ex-
planations should be used particularly when many images present similar failures, as it
is not tractable to look at each image.

The use of local and global explanations led to incorrect bugs. Two types of errors are
typically done when using the local explanations for hypothesis generation. a) Partici-
pants wrongly assumed the local explanations for images that got correct inferences to
be relevant features for the model. This led them to automatically judge as irrelevant the
features of samples with wrong inferences, while this is not necessarily the case. Warn-
ing about this assumption enabled them to reflect further about the potential bugs. b)
Some participants formulated an incorrect hypothesis about a feature by looking at very
few images, and did not further verify it, leading to develop incorrect bug correction
methods. They mentioned that the global explanations could allow to avoid such er-
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rors. Global explanations were misleading when participants would identify interesting
features with very low support, not being representative of most images.

EXPLANATION DOMAIN AND MEDIUM (O2)
Participants intuitively prefer in-domain explanations. All but one participant preferred
using visual explanations than textual ones. They argued the cognitive load is lower and
it is faster to make sense of features by glossing over several local, visual explanations,
than textual ones.

The two types of medium are complementary locally. Yet, textual explanations were
also used. The participants mentioned that since they are not familiar with the task do-
main, they cannot easily interpret the saliency maps to identify meaningful features.
Hence, they look at the local, textual explanations (and map them to the visual ones)
to identify relevant bird features that one would expect the model to learn. They could
also directly relate the wiki information that displays expected features according to an
expert to these explanations. One participant also suggested a functionality that only
textual explanations support: giving the freedom to explore new features as combina-
tions of existing ones, to vary their granularity and create a taxonomy, e.g. combining
plants and leaves into a larger green background. While this is possible within the
query page, they would have liked to access this faster within the other interfaces, and to
visualise the created taxonomy.

The preferred, global medium depends on the familiarity with the task domain. Par-
ticipants mentioned a difficulty in interpreting the textual, global explanations as they
were not familiar with the domain of the task. They however said that if they would
know more about the domain, it would be easier to use as they could quickly get an idea
of what a feature means on an image and what might be problematic with it.

EXPLANATION SCOPE (O1)
Preference for explanations of binaries. Participants primarily focused on two-class ex-
planations. These explanations align with reactive bug identification for failures in spe-
cific cells of the confusion matrix. Reflecting on two classes is also easier than consider-
ing more classes: it is harder to relate overall explanations to model failures. Half of the
participants explained that overall explanations are also useful but less natural as they
start from the out-of-diagonal cells of the matrix. This shows clearly in the ratings given
to the dashboard or confusion matrix tabs that provide binary explanations, in compar-
ison to the ratings for the global-explanations tab.

Global explanations as a quick diagnostic tool. Yet, participants still find uses to the
global explanations computed on the entire dataset, as the large standard deviation tes-
tifies in comparison to the standard deviations for the other tabs. Participants prefer
using such global explanations for tasks whose domain is familiar, and for diagonal cells
of the confusion matrix. Simply by looking at these lists of explanations without hav-
ing to click on each cell of a confusion matrix, they get a good overview of the features
the model has learned per class, and can identify the pertinent, irrelevant or incomplete
ones. Five participants actually used these explanations and their background knowl-
edge to reflect on the validity of the features, e.g. they quickly spotted potential issues
with cactus or water concepts that one might not expect to classify birds, and with the
large number of color features while the model should also relate on shapes.
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Questioning the faithfulness of binary explanations. These explanations are comple-
mentary. Global explanations more accurately account for the features of the model and
allow for a faster spotting of problematic features. Yet, developers prefer to understand
specific cells of the confusion matrix with binary explanations, which might lead to er-
roneous feature interpretations (one feature might seem discriminative for two classes
but might not be important overall). A single mid-CV participant accurately reflected on
such limitation, that developers should be warned about. However, this reflection was
also problematic for our participant as it prevented them from obtaining insights from
the probe: the participant constantly worried that correcting a specific bug would create
new ones in other matrix cells.

USE OF DOMAIN KNOWLEDGE (F9)
Domain knowledge is used for successful hypothesis formulation and validation. This
knowledge serves to a) formulate hypothesis on relevant features the model should learn
for a class, and to compare them to the actual features, or b) to validate hypotheses about
problematic features. For instance, Participant 4 high-CV naturally started to use it for
specific confusion cases where the model accurately looks at the bird (according to the
saliency map) but apparently not at the right or complete bird features as it makes in-
correct inferences.

QUERY-RELATED EXPLANATIONS (F7)
All participants used the passive mode of exploring the explanations, since it is less
cognitively-demanding, and they are used to such explanations. Active querying is used
only by half of the participants. This shows clearly by the lower average ratings and
higher standard deviation the query tab got in comparison to the dashboard and confu-
sion matrix tabs. Active querying allows to validate potential hypotheses around prob-
lematic features. For that, participants query the matrix of percentage to verify that a
feature is only used for images that present specific miss-classifications. Three partic-
ipants mentioned that active queries are especially efficient once one is familiar with
the expected and the often problematic features. For instance, an expert participant
mentioned that in their own medical use-case where it is known that the model might
learn incorrect features relating to the background of X-ray images (e.g. a part of a pace-
maker), they would like to query background features directly.

INTERACTIVITY (F8)
Interactivity to speed up and augment the bug identification process. Besides having func-
tionalities that are currently not available (global explanations and query), the primary
advantage of the probe was its interactivity and practicality, aligning with results for tab-
ular data [365]. It was especially useful to compare diverse images (the four types of
images in a binary classification task) and explanations to estimate the feature’s relative
importance. For instance, some participants compared two queries where the only dif-
ference is the addition of one feature, to check how much this feature impacts the model
inferences. “If the tool is ergonomic, fast and malleable, it would definitely help me fas-
ten my process, and it would help combine more information that I don’t usually look at.”
Participant 8 high-CV. A third of the participants even suggested ways to have even more
interactivity and fast transitions between explanation types.
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Interactivity to select relevant explanations. To navigate global explanations, the par-
ticipants used one main interactivity feature, the choice of settings, to rank or filter expla-
nations (F6). They could identify a) frequent mistakes by ranking the explanations based
on the number of incorrect predictions they lead to, b) frequent features by ranking ex-
planations based on typicality scores and filtering out low-support ones, and c) features
that lead solely to correct or incorrect inferences by computing the explanations inde-
pendently on the set of samples which received correct or incorrect predictions. These
settings are necessary due to the amount of information the probe provides.

10.7. DISCUSSION

10.7.1. SUMMARY OF FINDINGS
Our user-study brought new insights on the use of explanations towards bug identifica-
tion, summarized in Table 10.5. While the most common explanations, i.e. local visual
explanations, were primarily used due to their simplicity and familiarity, our probe also
highlighted the importance to present diverse explanations. Global, textual, active, in-
teractive, and binary explanations, as well as domain knowledge, were also exploited
to achieve different objectives, e.g. identifying new hypotheses, or the same objectives
more efficiently. Yet, by acknowledging the disparity in the use of the functionalities and
in the number of bugs they led to identify, we can extract further implications for future
explainability, debugging and HCI research. We now discuss the limitations of our work
and these findings.

Table 10.5: Summary of the insights from our user-studies.

Category Insight

Impact of explanations on the debugging process.
Effectiveness Successful bug identification process. A few missed/incorrect bugs due to misinterpretations

of features and confirmation bias.
Variations Low-CV: need for guidance. High-CV: misaligned mental models.
Corrections More diverse and precise bug correction methods are envisioned.

Different categories of explanations for different users and debugging steps.
Local/global Complementarity. Emphasis on hypothesis validation. Preference based on developers’ ex-

perience with explainability.
Domain,
medium

Intuitive preference for in-domain explanations. Local level: complementarity of in- and out
of- domain explanations. Global level: preference depends on the familiarity with the task
domain.

Scope Preference for binaries. Global explanations as quick diagnostic tool. Lack of questioning
around the faithfulness of binaries.

Knowledge Domain knowledge used both for successful hypothesis formulation and validation.
Active
query

Low use despite usefulness for hypothesis validation.

Interactivity Speeding up and augmenting the debugging process. Selecting relevant explanations. Wish
for model comparisons.

10.7.2. LIMITATIONS
There are several limitations in our probe and study. While we do not think they impact
the validity of our results, they would need to be tackled in the future for more compre-
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hensiveness.

Scope of the probe. Our probe is adapted for a specific type of computer vision mod-
els: deep learning models that perform classification tasks and from which local, visual
explanations can be extracted. The global explanations can only be computed when
it is possible to annotate local explanations with semantic features, and can be costly
depending on the size of the dataset and number of classes. Hence, it can be challeng-
ing to use for certain applications. Adapting these explanations to other use-cases is a
challenge on its own. Balancing the trade-off between cost and faithfulness of the expla-
nations and making developers aware of it would also merit being investigated.

Scope of the study. While the work involved a considerable number of participants (18
for the formative study and co-creation sessions, and 18 for the user-study) with various
backgrounds, we cannot fully guarantee the generalizability of the results. Similarly, our
study employed a use-case that requires domain knowledge none of our participants had
(to bring consistency), and we made sure to provide the required knowledge. It would
be interesting to study how participants, familiar with a use-case, would go about bug
identification. This is however challenging as participants should share their data, it is
costly to annotate, and the use-case would not be consistent across participants. Scaling
our study to use-cases with more classes is also important as other works identify that
“as scale increases, interpretability and satisfaction decrease” [365].

Impact of the probe design. The results of our user-study are inevitably mediated by
the design, implementation and usability of our probe. As discussed in section 10.4,
we however made sure to allow for diverse workflows and interactions with the expla-
nations without biasing the users towards specific ones. As for usability, the answers
(Figure 10.7) to our exit questionnaire give an indication of how it might have affected
our results. Most factors received high-ratings, confirming that our participants appre-
ciated the functionalities within our probe, and were likely not negatively impacted by
them. Especially, they found it rewarding to use our probe and were eager to reuse it on
their own use-cases, saying that it was more convenient than their usual development
environment.

However, some participants felt overwhelmed at first by the amount of functionali-
ties (perceived usability ratings confirm this). While they got used to them, they would
have liked guidance from the probe in the process. We could not do so not to skew them,
yet this is an important indication for future tools. Similarly, they gave an average rating
to the attractiveness (mean of 3.31 out of 5 points) as they would appreciate the probe
having a more modern look.

10.7.3. IMPLICATIONS & FUTURE WORK

NEED TO DEVELOP USER-EXPERIENCES

Guidance. As some participants had a hard time envisioning uses of certain explana-
tions, future tools need to provide hints. Hints should be enough as simply explaining
ways other participants used the explanations led the participants in difficulty to suc-
cessfully identify bugs.
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Figure 10.7: Aggregated factors of the User-Engagement form (short version) presented in boxplots.

Besides, the current probe allows for any sequence of interactions with the differ-
ent types of explanations supported (in order not to skew our user-study participants
towards certain explanations and activities). Yet, further guiding these interactions by
suggesting potential sequences of activities would also support developers further in de-
bugging their model. Several participants mentioned that an ideal user-interface would
not leave them as much freedom as currently is, but instead narrow down possibilities
so as to simplify the debugging process and guide them towards the relevant activities
for each type of failures and bugs. Hence, future tools would benefit from identifying the
minimum set of user-journeys different types of developers and failures would require.

Participants with high-CV and explainability experience however require further in-
vestigation to understand when they would be ready to use less familiar explanations.
Especially, for these participants, our observations differ from explanation practices on
tabular data [365]. The GAMUT probe led to find a strong correlation between the level
of explainability expertise and the use of diverse explanations, result totally opposed to
ours. This could be motivated by the lack of practice, even for our high-expertise de-
velopers, with global, textual explanations for computer vision, contrary to developers
working on tabular data who are more familiar with both types of explanations.

Warnings around typical misinterpretations. Blindly following the explanations
sometimes leads to identify incorrect bugs. Yet, not all participants are aware of these
dangers, and trust the explanations similarly. Only two participants asked us how the
saliency maps were computed, and none reflected on the potential noise in the salient
pixels. As for the global explanations, only 4 participants questioned their faithfulness
and the fact that an annotation of salient pixels does not necessarily reflect what the
model actually looks at (i.e. colors, textures, or shapes, etc.).

These observations around trust in explanations are aligned with the ones for tab-
ular data, e.g. Hohman et al. [365] mention needing “healthy skepticism” from devel-
opers. They are also inline with the notion of misuse of explanations [427]: certain par-
ticipants would misinterpret explanations by taking a brief look at them simply because
they seemed to confirm their hypothesis. Future tools would merit displaying warnings
against these limitations and misinterpretations.
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Integration of structural and training bugs. Some participants tended to explain all
bugs with issues of data content or data pipeline, without elaborating on other potential
bugs, e.g. related to the model structure or training hyperparameters. They were either
skewed by the focus of our probe on such types of bugs due to the visualisation of data
content, or because they did not have in mind the other concerns. Some participants
envisioned to use our probe once other bugs are corrected, but others nuanced this view
arguing for a more iterative process, where all types of bugs might need simultaneous
considerations depending on the ways the bugs are corrected (e.g. data augmentation
for balancing might lead to overfitting and to increase the size of the model architecture).
This shows the need to investigate how to best combine the functionalities in our probe
to the functionalities around the other types of bugs (e.g. tools such as [728]), without
overwhelming a user.

USEFULNESS OF DIFFERENT EXPLANATION TYPES

Explanations for data enquiry. Explanations primarily served as artifacts for surfac-
ing feature failures, identifying data bugs and bias-variance issues. Similarly to obser-
vations made for explainability with tabular data [365], the explanations were also used
by four of the participants as an access point into the data. These participants used the
query functionality with specific features, ground truth and predicted classes, to bet-
ter understand what they look like within the dataset, and whether they are compre-
hensively represented. Such understanding was later used to refine hypotheses about
dataset bugs. Future interfaces would hence merit combining further the extensive ex-
ploration of training datasets to the model exploration, and facilitating common inter-
actions with the explanations towards that end.

Complementarity of explanation types. Our study showed that all explanation types
are useful for participants in different stages of the bug identification workflow to answer
different questions. Their use often depends on the degree of familiarity of the partici-
pants with the task domain, and with these types of explanations.

More research is needed to further develop these different types of explanations
since, so far, research focuses primarily on local, visual ones. Especially, attention on
textual explanations could benefit developers, e.g. for understanding how to best repre-
sent and query concepts and their combinations, taxonomies of concepts, etc. What-if
(causal) questions that were rarely expressed here could merit research on accessibility as
well. Finally, future tools could further combine in- and out of- domain explanations by
showing example image patches corresponding to any displayed textual explanations so
as to increase the learning rate of the developers. Two participants also suggested global,
visual explanations by automatically clustering similar-looking, salient image patches.
While this might be hard to realize in practice, this further shows their appreciation for
visual information, and the need for further research.

Interactivity versus complexity. Surprisingly, our study showed that rather simple ex-
planations can lead to successfully understand a large number of bugs: the global ex-
planations were simple statistics computed over textual annotations of the dataset, but
allowed for a global understanding of the model. While simple in their calculation, their
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interpretation was already complex enough for the participants not familiar with the tex-
tual and global explainability paradigms. We argue that these simple explanations were
useful thanks to the usability of the interactive interface and its focus on comparisons,
which allowed to identify many similarities and differences across images receiving dif-
ferent predictions.

This shows that it might not be urgent to develop highly complex explainability
methods yet, as they are new black-boxes for the developers who might trust their faith-
fulness too much, while having a hard time using them. Instead, more research on the
development of interactive interfaces could be more beneficial to the developers.

Manual exploration versus automation. Multiple participants suggested to automate
parts of the interface to speed up and direct the debugging process. For instance, they
would like to automatically be presented with explanations that reflect bugs, or at least
with a reduced set of potentially problematic features (the number of global explana-
tions is otherwise overwhelming) through an automatic comparison of the explanations
to the domain-knowledge.

Yet, we argue that extensive automation is not possible and desired. The relevance
of a feature to a model is sometimes ambiguous, e.g. relevance of the cactus for
gila woodpeckers, so the automatic comparison would lead to a skewed and non-
transparent result. Besides, attention should be put into not making the debugging tool
another black-box (besides the model to explain), as our participants already tended not
to question the completeness and faithfulness of the displayed explanations. A way to
limit automation could be to provide even quicker interactions, for instance to go from
binary explanations to global ones so as to accurately estimate their relevance.

Nevertheless, facing the amount of debugging methods developed in machine learn-
ing testing literature that are unknown to developers, it is important to also investigate
how much these methods are complementary to the manual process, and how to best
involve them in this process.

Reliance on domain knowledge. The study confirmed the importance of domain
knowledge. All but one participant (who did not reflect on features) used it (hence
the high ratings the wiki tab obtained). Unfortunately, investigating the wiki was not
consistently performed across failures, leading to miss certain bugs. For instance, two
participants who correctly understood the difference between the similar-looking bird
species gila and hairy woodpeckers (brown or white body respectively) and the
missing feature (body color), did not use the wiki page to inspect the pine grosbeak
and american goldfinch, missing the hint for another bug (difference of colors for fe-
male and male grosbeaks). Using domain knowledge merits more support. Studying
how to make developers and domain experts interact is important, i.e. the format in
which they can best communicate, the inputs developers need, but also the most effec-
tive way for domain experts who are often not familiar with technical terms to provide
useful information for the developers.
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10.8. CONCLUSION
In this chapter, we engaged in a formative study and a co-creation process to design a
probe for investigating the interaction between explanations of learned and expected
mechanisms of a model, and bug identification when developers aim at diagnosing fail-
ures of their models. We then performed 18 user-studies with this probe. Our partici-
pants varied in their bug identification workflows, but managed to identify a consequen-
tial amount of bugs. These results showed that explanations of learned and expected
model mechanisms can be used in various steps of the process for different purposes,
and especially for characterizing diverse types of feature failures. Different categories
of explanations (e.g., global, out-of-domain, active, and interactive) showed to be useful
and often complementary. Yet, our participants also struggled with various aspects of
the process, falling into certain explainability traps, or being shy to explore unfamiliar
explanations.

This shows the urgent need for more HCI research to provide the right amount of
guidance to developers engaged in bug identification activities and having access to ex-
plainability methods, while still allowing for freedom and adaptability of the process. Es-
pecially, the process should be supported through the use of interactive interfaces with
various types of interactions not only with data and explanations but also with other
artifacts to address non-feature failures. Additionally, our study points out to research
directions for other communities: specific types of explanations merit further develop-
ment by the machine learning explainability community, and the effectiveness of ma-
chine learning testing methods needs to be characterized in comparison to the one of
human debugging for future integration.

APPENDIX

EXAMPLE MOCK-UPS USED IN THE CO-CREATION SESSIONS

Figure 10.8, Figure 10.9, Figure 10.10.

Figure 10.8: Low-fidelity mock-up used in the co-creation sessions: query functionality and the result interface
after a query.
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Figure 10.9: Low-fidelity mock-up used in the co-
creation sessions: example display of important
concepts and rules for one class, and their co-
presence in other classes.

Figure 10.10: Low-fidelity mock-up used in the co-
creation sessions: another example display of impor-
tant rules and scores, in comparison to the scores of
related rules for other classes.

FIRST IMPLEMENTED PROTOTYPE FOR THE PROBE

Figure 10.11, Figure 10.12, Figure 10.13, Figure 10.14, Figure 10.15, Figure 10.16.

Figure 10.11: Display of the saliency maps within the probe.
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Figure 10.12: Display of further local expla-
nations.
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Figure 10.13: Overall performance information provided in the de-
sign probe.
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Figure 10.14: Query page with (1) query in-
put and (2) query results.

Figure 10.15: Local explanations presented as a result of clicking on a confusion matrix cell.
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Figure 10.16: Display of global explanations within our probe. (1) shows the overall explanations, (2) shows the
class-specific explanations, (3) shows the settings that can be tuned to compute the explanations. In (1), we
show the global explanations displayed within the interface: (a) shows the typicality score, (b) the frequency of
times the concept (or rule) is salient within the dataset, (c) the percentage of times when the image where the
concept is salient got a correct inference, (d) and conversely when it got an incorrect inference.
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Machine learning (ML) is a technology that shows promises in various sectors1, such
as agriculture, manufacturing, healthcare, and transport. Yet, similarly to every other
technology, its existence is not without potential harm to society [546]. What makes ML
unique however is its socio-technical nature [193, 230]. Where most technologies might
cause obvious physical harms due to errors happening in the technological systems (e.g.,
a plane crash due to a faulty engine), in interaction with their users (e.g., a plane crash
due to a wrong command of the pilot), or due to the goal of the technology itself (e.g., the
nuclear bomb), ML, besides those physical harms and this set of causes, might induce
surreptitious social harms.

Naturally, it is arduous to develop any other technology, and to make it non-
hazardous (when desired) because of their technical complexity and the required scien-
tific understanding of the natural phenomena whose control allow for the technologies
to develop (let alone the complexity of the user interactions with complex human fac-
tors). ML does not escape this technical complexity, as its foundation is a plethora of
complex optimization algorithms.

Additionally to that, we see ML as even more challenging, especially in the context
of automated decision making systems, because of the impossible separation of con-
cerns between the technical complexity and the social considerations in the design of
the technology before even imagining deploying it for practical use [230]. Indeed, the
optimization algorithms always encode human values [312]. As it is impossible to avoid
errors in the outputs of these algorithms, one, intentionally or unintentionally, encodes
a specific set of human values and trigger social harms for certain categories of the pop-
ulation when designing a ML algorithm [442, 182]. Next to the technical complexity of
designing a ML algorithm without any social considerations in mind, it is also challeng-
ing to identify and characterize the potential social harms of a ML system (as any social
harms also not coming from this technology), and to decide on a “fair” distribution of
this harm across a population (e.g., it involves considerations from other fields such as
political philosophy). It becomes even more challenging to bridge the connection be-
tween the social considerations and the technical design, both to technically represent
the harm accurately and to tune the algorithm to avoid this harm or allocate it according
to the defined, desired, fair distribution. It is a constant negotiation between the cur-
rent and envisioned technical capabilities of the algorithms, and the desired, potentially
ambiguous, and certainly subjective, social considerations to encode in them [619].

In this thesis, we have directed our efforts towards several types of contributions,
with the aim of supporting the design of less hazardous and harmful systems relying on
ML technology, accounting for this constant negotiation between social and technical
considerations. In this concluding chapter, we first summarize our contributions, and
then reflect on their implications for future work.

1https://www.fortunebusinessinsights.com/machine-learning-market-102226

https://www.fortunebusinessinsights.com/machine-learning-market-102226
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11.1. SUMMARY OF ANSWERS TO OUR RESEARCH QUESTIONS
We have tackled the design of less hazardous (and consequentially less harmful) ML-
based systems via three main angles: 1) the current state of the research characterizing
and mitigating ML hazards and harms and main future research directions (Part I); 2)
the practices, challenges, and needs, of the developers who design and build ML-based
systems (Part II); 3) potential solutions to the developers’ needs, i.e., the development of
technical and design solutions to certain of the identified challenges and the proposition
of broader re-directions of the research for other challenges (Part III). Each of the three
angles is addressed by an individual part of this thesis.

11.1.1. CHARACTERIZING THE STATE-OF-THE-ART RESEARCH (PART I)
To address RQ1, RQ2, and RQ3, we conducted four rigorous surveys of the literature. We
first investigated the ML harms and causes of harms envisioned by the research commu-
nity [70, 62]. We then delved deeper into the technical solutions developed to identify
and mitigate these harms within a ML systems, especially focusing on the realms of ML
robustness [825] and ML fairness [66]. We finally looked into critical reflections around
the limitations of these (primarily) technical solutions to address the harms [62].

RQ1: We found that an ML lifecycle is made of multiple stages, and that all these
stages are potential sources of harms as well as the loci to mitigate the consequent
harms. (Chapter 2)

RQ2, RQ3: We observed that the ML community has primarily focused on a few
of these stages, those around the algorithm (feature engineering, model training, post-
processing, testing) and the data processing aspects (data transformations or augmen-
tation). The rest of the technical stages revealed to be neglected, such as the creation
and cleaning of data, and the socio-technical stages as well, such as the establishment of
requirements and specifications for an ML system, the validation of the model, or the de-
sign of the stakeholder interactions with the systems. A number of limitations in the cur-
rent technical approaches appeared, in terms of their effectiveness towards their stated
goals, their usability for developers in organisations, and their conceptual inability to
comprehensively represent all harms of ML. Hence, we identified the need for technical
and socio-technical research to better translate the harms into mathematical formula-
tions (if that is even possible) and optimize against these harms, to build systems that
are more cognizant of these harms, to support developers in building less hazardous
models using the techniques stemming from research, and finally to continue identify-
ing new types of harms and sources of harms in those ML systems and organisations
that have not been investigated yet. Finally, we also noted the lack of research about ML
developers’ practices around questions of robustness and harms broader than fairness.
(Chapter 3, Chapter 4)

11.1.2. ANALYSING THE RESEARCH/PRACTICE GAP (PART II)
To address RQ4, RQ5, and RQ6, we conducted interviews with 50 ML developers. We
designed the interview sessions based on our analysis of the literature, especially based
on the main research directions that are currently followed in ML and on the insights
from other research fields (e.g., software engineering practices, political philosophy and
resource allocation), that could apply to ML. We then thoroughly analysed the interview
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transcripts to identify the main challenges faced by developers, and to characterize the
consequent misalignment between research and practice.

RQ4: We found that ML developers all adopt very different goals and approaches
when designing, implementing, and evaluating ML-based systems [68]. In terms of
goals, they do not all consider the same types of failures and bugs as important to solve,
and do not adopt the same reasoning to judge on the importance of each issue and to de-
cide when their system is ready for deployment. In terms of approaches, their workflows
vary, with more or less rigorous experimentation to test the goodness of their systems,
to proactively identify issues in their systems, or to mitigate identified issues. They do
not all use the same methods, tools, and artifacts to do so, with some developers having
experience with explainability methods or fairness toolkits, while others do not have.
(Chapter 5)

RQ5: Naturally, when analysing further these practices in terms of harms the result-
ing systems might cause, we found a set of bad practices, that should be changed in the
future, and that were surprisingly not always coming from the least experienced devel-
opers but also from more experienced ones [61]. For instance, certain developers did not
envision any harm of their systems; other developers envisioned vague unfairness issues
and operated arbitrary trade-offs between arbitrarily selected fairness metrics to declare
a system acceptable; while other developers unintentionally silenced certain popula-
tions from their systems by removing any data pertaining to them, leading to potentially
unsafe system predictions for these populations. (Chapter 6)

RQ6: Delving deeper into the reasons for these differences and potential flawed prac-
tices, we identified a multitude of relevant, intertwined factors [71]. As expected, we
found a lack of technical research to support developers in debugging or optimizing
their ML models based on the constraints they have, e.g., optimizing for output accu-
racy and fairness while not having access to a large number of informative training data.
We also identified that several research directions could be useful to the developers, but
are not known or usable by them, e.g., the explanations from explainability methods are
sometimes challenging to interpret for them, hindering their debugging process. We also
found many human factors, e.g., around past interpersonal or ML related experiences,
cultural background, education in computer science or other fields, education in ML or
ML fairness, and access to supportive tools or not, that impact the practices, the per-
ceptions of harms, and the approaches to tackle them. Finally, organisational factors,
e.g., business incentives, responsibility allocation, also impact the practices. These find-
ings call for efforts in various directions in the future, be it technical and design research
to support developers further with convenient tools, human factor research to better
understand how to personalise these tools for individual obstacles but also to propose
broader educational support, and structural changes, e.g., in terms of regulations, edu-
cation programs, or internal organisation functioning and principles. (Chapter 7)

11.1.3. PROPOSING SOLUTIONS (PART III)
In the last part (Part III), we decided to address some of the technical and design research
challenges identified above. To address RQ7, RQ8, and RQ9, we engaged in the design of
several methods and tools, that rely on our findings from the previous two parts. We pro-
posed a method for cost-efficiently extracting post-hoc, semantic, model learned mech-
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anism explanations [69]. We designed a game with a purpose to cost-efficiently extract
explicit and implicit knowledge humans have, that can serve to judge the relevance of
a model’s learned mechanisms [63, 64]. We co-created a user-interface, that gathers a
diversity of information relevant for debugging a model, among which various types of
model mechanism explanations [67]. Finally, we conducted empirical quantitative stud-
ies, and qualitative, user-studies in order to investigate the correctness, informativeness,
cost-efficiency, utility, and usability of these different artifacts [67].

RQ7: We showed that, while explainability methods are often not easily interpretable
by ML developers, we can enhance them a human-in-the-loop framework, that in-
creases their informativeness and interpretability while remaining cost-efficient. (Chap-
ter 8)

RQ8: We also showed that it is also possible to leverage the intelligence of the
crowd in a cost-efficient way, via a well-designed game, with carefully-crafted input data
formats and data processing heuristics, as well as well-selected, personalised-to-the-
information-need, data probing the game players. This game allows to collect various
types of rich data, with low or high typicality, specificity, and tacitness. All in all, these
two works showed that interacting with crowd workers from crowdsourcing platforms
can be extremely useful to develop more reliable models, going beyond the typical crowd
worker-ML interactions in terms of data sample annotations with ground truth labels.
(Chapter 9)

RQ9: Finally, we showed that the two types of information that we collect via the
above two contributions, are useful to ML developers in developing and debugging their
models. When the developers used our user-interface that combines these different ex-
planations, they engaged in successful debugging activities. This information was used
in combination to prior types of explanations by the developers in order to identify var-
ious types of failures in their models, to formulate hypotheses around bugs, or to test
these hypotheses. This represents a great proof-of-concept, from which to expand to
tools even more usable by developers. (Chapter 10)
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11.2. IMPLICATIONS & LIMITATIONS OF THIS THESIS
Based on our execution of the works summarized above and the analysis of our findings,
we conclude this thesis by discussing the implications of our research for future research
efforts, for society, and for various research communities2. We especially discuss impli-
cations of the results and related research challenges, and reflect on the approach we
adopted for this thesis.

11.2.1. IMPLICATIONS OF OUR RESULTS & DIRECT FUTURE WORK
In terms of implications of the results, we first discuss implications for the technical work
we performed to provide new theoretical methods, then implications for the practical
work performed to make the theoretical methods usable in practice, and finally implica-
tions for the socio-technical work we performed to investigate practices.

IMPLICATIONS FOR TECHNICAL WORK DEVELOPING THEORETICAL METHODS

Improving our contributions: Involvement of lay-persons in model diagnosis. Our
work (Part III) demonstrated the utility and feasibility of involving humans in different
stages of the model debugging process. Previous works around crowdsourcing and ML
primarily revolved around ground truth label annotation —how to design crowdsourc-
ing tasks for lay-persons to annotate data samples with their ground truth label, how
to identify data samples for which having their ground truth label annotated would al-
low for the largest increase in accuracy when training a model with it, how to allocate
the most appropriate tasks to crowd workers accounting for their expertise—. Yet, our
work shows that lay-persons can also be involved effectively and cost-efficiently in other
stages of the ML lifecycle. Future work would merit investigating which other stages of
the lifecycle, beyond training data annotation and model debugging, would benefit from
involving humans.

Besides, more investigation is needed to improve the design of our crowdsourcing
tasks to cost-efficiently collect needed data annotations for learned mechanisms, as well
as expected mechanisms. For instance, we noted that post-processing efforts are needed
to reconcile the annotations from the workers, who might use different vocabulary or
granularity of terms to designate related concepts, not allowing for a high-fidelity model
debugging. In order to reduce such effort, one could envision controlling further for the
crowd workers’ input discrepancies by design, e.g., by recommending to them potential
relevant vocabulary that was used by previous workers or that comes from relevant tax-
onomies, by structuring the breadth of vocabulary employed by previous workers into
an easily-queryable hierarchy, etc. It would be important while designing these transfor-
mations of the current tasks, to keep in mind the need for input flexibility, i.e., flexibility
in terms of inputs that the workers can provide. Indeed, in our experiments, crowd work-
ers brought new, relevant, insights that the ML models or us, the authors playing the role
of proxy-experts, had not thought of. Hence, serendipity in such crowdsourcing tasks is
important to promote.

While our results show that it is not necessary to automate every stage of the ML
lifecycle, and humans bring new relevant information to build less hazardous models,

2In the next and last section, we will discuss additional future work, beyond the scope of this thesis.
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avenues for future work in terms of partial automation could contribute to the cost-
efficiency of the process. Facing the amount of available pre-trained models or existing
knowledge graphs, one could envision complex workflows where human-annotations
would only be performed in cases where it is impossible to obtain high-confidence
machine-annotations. Naturally, this would be challenging because of the existence of
unknown unknowns, i.e., errors made by the machine with a high-confidence.

Finally, we note that the experiments we conducted all involved simple use-case sce-
narios that do not require domain expertise (except the bird species classification use-
case, where we had to acquire the expertise first). Hence, it was relatively easy to recruit
crowd workers from any crowdsourcing platform to conduct our experiments, and it is
possible to identify existing pre-trained models or knowledge bases to further automate
the task. Yet, it might not be as easy once the use-cases employed require domain exper-
tise. Hence, we pose that research is needed to understand to what extent and how crowd
workers can be employed for other use-cases, such as for models that make healthcare
diagnostics based on X-Ray images. One could for instance investigate whether it is pos-
sible to train the workers to perform the tasks, how to characterize the boundary be-
tween feasible and non-feasible tasks, or how to develop new crowdsourcing systems or
processes to involve domain experts in a more convenient fashion (it is well-known that
domain experts are costly and hard to access due to availability constraints).

Beyond our contributions: Tackling hazards more broadly. Our work revealed a mul-
titude of additional research opportunities. In a similar fashion to active learning, we
foresee the need for an active diagnosis framework, that would carefully indicate which
data samples on which both expected and learned mechanisms would be the most use-
ful to obtain, in order to progress on the diagnosis task in a cost-efficient manner.

Besides, we identified a strong boundary between various related areas of research
such as ML fairness, ML robustness, privacy-preserving ML, explainability, etc. We be-
lieve it is now important to bring them closer together. One should investigate how to
build ML models with multiple requirements and constraints in mind. The fairness lit-
erature has investigated trade-offs between fairness metrics and impossibility results. It
has also expanded with other trade-offs between fairness and other ethical objectives
such as privacy. We see the need to expand even broader to the additional requirements
developers have to respect (not necessarily ethics-related). While a few works have in-
vestigated how to identify unfairness in model outputs in contexts where ML robustness
is typically studied (i.e., distribution shifts between training and deployment data), more
works need to be done in order to further mitigate unfairness in such contexts. In rela-
tion to that, explainability methods have traditionally been investigated to broadly un-
derstand a model’s functioning, and we have proposed in Part III to extend their use to
robustness scenarios (around natural perturbations). It would be interesting and chal-
lenging to research how to use explainability to identify and mitigate unfairness issues,
in combination to robustness ones.

Finally, we support the current trend around data quality, as data is one of the main
challenges towards both model robustness and fairness, but has not been investigated
extensively (due to various reasons such as perceived prestige of such work). We argue
(Part I), that the ML research community and the data management community should
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be brought closer to identify where output fairness could be mitigated from within data
engineering pipelines, and how to re-purpose data processing techniques to do so.

Evaluating technical contributions: Developing more appropriate experimental
methodologies. One of the main challenges faced in Part III was the lack of rigorous
framework, dataset benchmark, or metrics for evaluating model explanations. We over-
came this challenge by creating our own evaluation procedure. We injected several types
of biases in ML models (via dataset skews or the comparison of multiple model architec-
tures with known resulting behavior differences) in order to obtain a proxy ground truth
about the model functioning, and check to what extent the outputs of the explainability
method would reflect these biases. This evaluation procedure revealed useful and rep-
resents an additional contribution of our thesis. Yet, it is not enough to further quantify
the quality of the explanations (it only provides support for a qualitative analysis of the
explanations). We pose that more work is necessary in terms of methodologies used by
the research community, and especially in terms of evaluation benchmarks, in order to
push research in the right direction.

Beyond model explanations, we also see the need for benchmarks of model diagnosis
and debugging methods. For instance, we proposed an explainability-based, developer-
centered, approach to model diagnosis. Yet, we also discussed the existence of fully auto-
matic methods for model diagnosis and debugging. While both present different advan-
tages and disadvantages, e.g., in terms of transparency, time-efficiency, etc., it could be
informative to compare the effectiveness of these two types of approaches. This would
bring new challenges, in terms of defining the rigorous, fair, evaluation procedure when
only one of the two approaches involves humans.

Next to procedures proposing quantitative evaluations, we also believe that more
user-based evaluations are needed. In Part III Chapter 10, a user-based evaluation en-
abled us to understand how useful the method we proposed was beyond its fidelity, and
to identify avenues for future work. We believe that frequent user evaluations to com-
pare multiple proposed solutions would be necessary. This would represent a number of
challenges in terms of establishing rigorous procedures for qualitative experiments. Us-
ing use-cases that are closer to reality would be particularly relevant there, but building
such use-cases would be challenging, e.g., due to necessary domain knowledge, confi-
dentiality issues, etc.

IMPLICATIONS FOR PRACTICAL TOOLS STEMMING FROM THEORETICAL WORK

Development of usable tools. Our work also bears implications for human-computer
interaction research. One of the main results in our study of practices was that many
of the tools that stem from research are not directly usable by developers (Part II). They
might for instance have a too-steep learning rate, they might not be adapted to their
workflows and needs, the technical implementation might not be compatible with their
development or production environments, etc. Hence, one important avenue for future
work is the study of the non-functional requirements for tools usable by ML developers,
next to the obvious need for identifying functional requirements. The use of co-creation
sessions as we did in Part III is particularly useful to do so.

Besides, we noted that despite proposing to the developers a tool that presents a
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plethora of relevant information for their diagnosis process, their process was not com-
pletely successful, for multiple reasons. The developers would either be overwhelmed by
the diversity and amount of information, or they would be novelty-averse and preferred
only using the type of information they were familiar with, or they would misinterpret
the information presented to them, e.g., because of confirmation bias. Hence, next to the
requirements mentioned above, we emphasize the need for understanding the human
factors that impact tool use, and proposing tool designs that cater specifically for these
needs. This calls for future research in collaboration between ML, human-computer
interaction, and design researchers. Developers were also confused by when to select
which tool available, or which metric, optimization method, etc. This shows that be-
fore designing these tools, the technical community should also strive to characterize
the technical methods, and develop heuristics to advise on their practical use.

Adapting tools to the needed collaboration between stakeholders. When studying
ML practices broadly and the use of explainability methods for diagnosis more specif-
ically, we noted that our participants often worked in collaboration with various stake-
holders, or required the knowledge of certain stakeholders. For instance, they obtained
requirements from model owners, they were advised on how important a failure is by do-
main experts and decision subjects, other developers informed them about prior design
choices, etc. Yet, most tools that have been developed until now to support the ML life-
cycle focus on a single stakeholder, always the developer. While this is natural as they are
the ones performing most of the works, it is important in the future to understand what
kind of interaction is necessary in which stage of the lifecycle, with which stakeholder,
and with which challenges. Later on, tools should be adapted to support the work of
these different stakeholders. For instance, when using our explainability method, we
noticed that the ML developers typically rely on domain knowledge to decide on the ap-
propriateness of a model mechanism. Obtaining a timely answer from a domain expert
is not only complicated, but the communication between these two types of stakehold-
ers itself can be challenging as they do not share the same mental model of the problem,
nor the same vocabulary. Investigating how they could collaborate via a tool or without
one is hence necessary for the future. Qualitative studies with an expert or a developer
performing the same task independently and later on together would be insightful to-
wards that end.

IMPLICATIONS FOR SOCIO-TECHNICAL, INTERDISCIPLINARY WORK

Supporting requirement engineering for model development. Another finding was
the surprising lack of research and practice around requirement engineering (Part I, II).
The developers we interviewed did not necessarily conduct any deep analysis of the re-
quirements for the ML systems they would build. This led to ambiguities in their pro-
cess and potential harms, since the resulting evaluation of the systems were not based
on rigorous requirements. Besides, the current ML research has not deeply investigated
how to formulate precise requirements, which does not support developers in doing so
themselves. Hence, we emphasize the need for future work in this direction.

Particularly, there is a clear need for investigating the requirements that developers
have to account for in practice. Even though they do not explicitly formulate such re-



11

302 11. CONCLUSION & DISCUSSION

quirements, it appeared from our interviews that they have more constraints to respect
in order develop their models, than the current research accounts for. For instance, their
objectives do not necessarily only revolve around output accuracy but also inference
speed, or training time, and they do not necessarily have access to many ground truth
labels for their data, contrary to what is regularly assumed in ML research. For that, we
foresee the need for qualitative studies via interviews but also field observations, to sur-
face and characterize these requirements and constraints.

We also envision that a language that would allow to express various types of require-
ments, e.g., in terms of model outputs, model inference process, etc., would be espe-
cially beneficial for making the developers’ process more structured and transparent.
In Part III where we focused on mechanism diagnosis, we identified that ML develop-
ers sometimes face challenges in comparing learned mechanisms to expected ones. We
pose that proposing a common formalism to express both types of mechanisms and per-
forming automatic comparisons would support the developers further in their process,
as it could provide them with potential debugging directions where the model might not
be working as expected. While not all requirements might be expressible in mathemat-
ical terms, attempting at such formalism when meaningful would also be a way to later
on investigate potential tensions across requirements.

Questioning the feasibility of abiding by every requirement. As we identified a num-
ber of tensions and impossibilities at the basis of ML systems and the need for negoti-
ations between stakeholders, it quickly appeared that one can never make an ML sys-
tem non-harmful to all relevant stakeholders. For instance, it is well-known that various
stakeholders (e.g., the different decision-subjects of an ML model) value different con-
ceptions of fairness and of other ethical values, that might be inherently contradictory,
and/or that might be at least technically unfeasible to simultaneously uphold due to
impossibility results that have been demonstrated between various fairness metrics or
between fairness and other objectives such as privacy or accuracy. Instead, if one does
want to employ ML, they will have to trade-off between various benefits and harms. This
brings deeper ethical questions to decide when to develop an ML technique, when to de-
ploy an ML system, on which basis to make the choice, and who should be the one mak-
ing this choice? When should one refrain from using technology to resolve a problem is
one important question, whose answer is subjective, but can once again take inspiration
from other areas to find preliminary, relevant directions. Techno-solutionism is indeed
not a trap that solely touches ML.

Accounting for non-technical factors. We also see direct implications of our work
in terms of structural changes that go beyond ML or human-computer interaction re-
search. In Part II, we identified a number of factors that impact practices positively or
negatively. Among those were human factors. For instance, we identified that many de-
velopers did not use relevant tools in their process simply because they were not aware
of their existence, while we also identified other developers lacking critical attitude to-
wards their own practices. This led us to identify that education is an important factor
that impacts how developers later on tackle a ML problem. We argue that revising edu-
cation curricula around ML, and developing more solutions for on-the-job learning will
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be important in the future, for ML developers to keep up-to-date with the outcomes of
research, share good practices between each other, etc. This is not a problem that only
concerns ML research, and hence one should get inspiration from other research areas
to do so. An additional relevant question there is whether one should standardize prac-
tices in order to guide developers within their workflow and avoid certain harms? We
argue that it is not possible and hence not desirable, facing the ever-increasing diversity
of ML applications, the diversity of harms, the subjectivity of the problem, the plurality of
constraints depending on organisations. Hence, one should investigate how to provide
appropriate and actionable education and guidance to developers, without narrowing
their views down to single, specific, problems and workflows.

What’s more, the adoption of ML in the public and private sectors is accelerating re-
cently thanks to the recent trend of democratizing ML [693, 21].3 Democratizing ML has
taken multiple meanings, such as making the governance of the ML systems and ML re-
search more democratic by involving the public in the design of the systems or of new
research directions, or making ML-powered services adapted to a large diversity of pop-
ulations [358]. Here, we refer to the idea of making the resources (e.g., storage, comput-
ing power, data, etc.) necessary to develop and deploy ML systems accessible to a large
number of developers, and lowering the entrance barrier to the development of such
systems by reducing the complexity of building models (e.g., data processing pipelines,
model architectures, etc.) via guidance tools or fully automated development processes,
e.g., AutoML [385] (even non computer scientists such as domain experts would be able
to develop ML systems). In light of these recent trends, accounting for these human
factors might become even more necessary and challenging, as anyone might get the
opportunity of developing models, even when they do not have a clear understanding of
the potential harms [325], and the AutoML tools might obfuscate relevant reflections to
have on design choices [861].

Similarly, we identified that a number of organisational factors also impact devel-
opers attitudes and practices towards harms. Even though the developers might have
all the knowledge necessary to appropriately eliminate a harm, they might not be sup-
ported by their organisation to do so. In such case, we pose that policies and regulations
are necessary to push changes forward.

11.2.2. REFLECTIONS ON OUR APPROACH
We now engage in a critical reflection on our choice of approach and methodologies in
hindsight. This is insightful not only for ML research, but also for any other technology-
based research that has potential to cause social harms.

SUCCESS OF OUR APPROACH

We adopted a two-stage, mixed-method, approach, where, for each stage, we made use
of various methodologies. In the first stage, we aimed at characterizing the research
/ practice misalignment to better understand the reasons for the persistence of harms
despite the amount of research on the topic, and to identify appropriate avenues for
developing solutions. For that, in Part I, we conducted four structured surveys of the
technical, interdisciplinary, and socio-technical literature dealing with ML and harms.

3https://www.turing.com/kb/ultimate-guide-to-democratization-in-ai

https://www.turing.com/kb/ultimate-guide-to-democratization-in-ai
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In Part II, we performed qualitative, empirical research via interviews with 50 develop-
ers and an interview analysis methodology from grounded theory. And we conducted
a critical analysis of the gap between practices and research directions by comparing
both, aided by insights from other disciplines. In Part III, to develop a new technical
solution that supports developers in investigating potential errors of their models that
might cause harms, we adopted a research through design approach with co-creation
sessions, technical implementations, and user-studies with 18 developers.

While it is impossible to evaluate at the time of writing the thesis how impactful our
work will be —it takes time for developers to adopt solutions stemming from research—,
we believe in hindsight that having adopted this approach was a good choice. Thanks
to the originality of the approach in the ML context, we contributed a diversity of re-
sults that had not been discussed extensively in the literature beforehand. We especially
identified a set of future research opportunities that could lead to important changes
in practices and in the research community. We believe that adopting a mixed method
was the key to our endeavor, as it provided flexibility in the depth of results to obtain.
Our discussions with developers testified of the potential utility of our present findings,
as they orally reported being very interested in the discussions they had with us, con-
cretely showed some changes in their practices around ML fairness after our discussion,
and more successfully handled failures in their models after interacting with our user-
interface. These results are encouraging for future work, and comfort us in the choice of
approach. We especially emphasize the importance of an iterative, agile approach in this
research space, both because it is impossible to build solutions that are perfect from the
first try, and because one should regularly assess the evolution of practices (other factors
might also impact practices).

RECOMMENDATIONS FOR FUTURE RESEARCH ADOPTING A SIMILAR APPROACH

It is important to recognize however that the approach we adopted was challenging for
multiple reasons, and not complete as of now. We discuss such challenges and recom-
mendations for future work here.

Challenging work with developers. Involving developers in our research was chal-
lenging in practice. The recruitment process led to around 1 in 12 positive responses
to our participation requests. The sampling of developers working with a specific tech-
nology, be it deep learning for computer vision or ML based classification on tabular
data, is not large in the world. The topics we questioned them over might be considered
confidential or sensitive for certain organisations, preventing them from participating.
The PhD happening during the COVID period, it was not possible to attend industry
events on ML to get to know more developers. Successfully recruited developers were
not necessarily available for a full hour, nor for a second interview, did not all agree for
recordings of the interview, and we had to tune the interview process to allow for on-
line interviews. Besides, ML in public or private organisation is a field in the making, for
which no well-established vocabulary exists, leading to adjustments to make to compare
practices across organisations as well as with research outputs.

While we do not think we could have avoided these challenges and they are impor-
tant to overcome due to the importance of this kind of research, one could envision de-
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veloping solutions in the future to allow for easier research with ML developers. For
instance, one could develop structured (and privacy-preserving) processes to take note
of organisations and developers that are more prone to participate to such interviews,
and tools to facilitate the on-boarding process, e.g., by keeping track of contacted devel-
opers, of reminders sent, of those developers who have yet to sign consent forms or to
share their availabilities to schedule an interview, etc. Structured and easily-queriable
glossaries could also be built iteratively while conducting the research, to adapt quickly
to the vocabulary of each organisation, in order to avoid mis-understandings (and po-
tentially identify new insights) during the interview sessions, between researchers con-
ducting the research, and with the terminology used by the research community.

We also recommend to adopt more diverse qualitative methods. Performing semi-
structured interviews, while insightful, did not allow us to collect a number of insights we
had envisioned at first. Within an one-hour interview where developers might not have
time to delve deeper into their prior code, it is not possible to enter in-depth into certain
activities of the developers, such as the exact type of functions they use to process their
data, the exact training methods for their models, etc. Besides, we circumvented poten-
tial confidentiality issues by providing developers with our own, made-up, hypothetical
scenarios, which did not always allow them to re-use relevant methods similar to those
they would typically use. It is also not possible to build an in-depth understanding of
their thought process facing each harm of the ML lifecycle, nor is it possible to observe
potential evolution over time of their practices facing our questioning or new tools we
introduce. For these reasons, we argue that other qualitative methods such as ethno-
graphies should also be used. They would allow to observe a practitioner over time, with
more attention to details such as code, within the context of their organisation that might
bring new insights on constraints and structural obstacles, and enable triangulation of
the already acquired information (e.g., by also accessing organisations’ documents).

Another question that imposed was the definition of a good sample of developers.
While qualitative methods talk about the “saturation point”, we had the challenge of
defining a scope within which to study practices. The relevant dimensions on which
ML practices might vary have not been made clear until now across research publica-
tions. We also note a high disparity on the level of details reported across such studies.
We propose to investigate these dimensions in the future, in order to make such research
more rigorous. For instance, we noted that practices across organisations differed (e.g.,
based on the organisation’s size, business model, resources, history, domains of appli-
cation, etc.), but also across roles within an organisation (e.g., a same job title across
organisations might have different implications), as well as across continents or coun-
tries (e.g., while our participant sample presents a skew towards employees of Dutch
startups, most publications hint at a skew towards employees of BigTech companies in
the United States of America, that might explain a number of different requirements and
practices we observed in comparison to those prior works), and of course across individ-
ual developers (e.g., based on their cultural background, education, etc.). While it is not
possible to sample a significant amount of developers along this plethora of definitions,
further indications of a meaningful sampling could be useful.
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A new socio-technical organisation of research and practice. Convinced that socio-
technical research around ML is important, we now consider the conditions to success-
fully approach such research area. In hindsight, the main driver of this successful re-
search was inter-disciplinarity. While computer scientists often do not receive training
to conduct qualitative research or critical technical work, it revealed to be necessary for
the present contributions. Knowledge and practice of the design process were also nec-
essary to develop and evaluate more usable solutions. To foster such lines of works, or-
ganisations might want to develop trainings for computer scientists, and foster interdis-
ciplinary collaborations, for which plethora of challenges are already well-known (e.g.,
difficulties in sharing vocabulary, aligning expectations, developing projects benefiting
all parties for instance in terms of research publications, etc.). While ethics statements
are becoming increasingly popular in technical research on ML, frameworks to encour-
age positionality and reflexive statements from qualitative ML researchers would also
contribute to the quality of the research, publications, and identification of avenues for
future work. While the human-computer interaction community has proposed the es-
tablishment of new roles at the intersection between research and practice to support
trickling down and bubbling up activities in an effort to bridge the research-practice
misalignment, we pose that such roles should also be established within the ML com-
munity, both among researchers (e.g., to avoid the lack of venues to publish such niche
work) and among developers (e.g., to foster reflections around harms in ML). Establish-
ing such roles would require making structural changes in both public and private or-
ganisations to incentivise employees in taking upon these new positions.

Next to fostering interdisciplinary collaborations with fields that are potentially
closer to practice, the ML community might also reflect on developing closer collabo-
rations with other technical fields (e.g., data management), as well as the social sciences
(e.g., Science and Technology Studies, law), and domains of applications. As we showed
in Part I, while these fields might remain disconnected, there are many potentials for re-
purposing solutions to solve ML issues, as well as adapting knowledge and methods to
understand potential limitations of ML and preferences for action over those limitations
(e.g., adopting a legal lens might bring to different conclusions on a problem than study-
ing preferences of decision-subjects). Studying specific domains also has the potential
to develop a broader understanding of a technology, the potential harms it causes, and
the various ways that can be used to solve those (not confined around the ML algorithm
itself, but broadening to the design of the user-interactions for example). Again, the in-
terdisciplinary challenges discussed above would apply here too.
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11.3. FUTURE WORK BEYOND THE SCOPE OF THIS THESIS
Next to the direct implications and future works stemming from the research reported
in this thesis, we also identified needs for research extending beyond the scope of our
thesis, that we had narrowed down in Introduction 1.2 (cf. Table 1.14). Hence, we discuss
below a broader scope that is necessary to investigate in the future.

Machine learning stakeholders. We focused primarily on the ML developers who de-
velop an ML model to be deployed. However, many more stakeholders intervene along
the ML pipeline. For instance, when conducting their work, ML developers might inter-
act with domain experts and model owners, or even decision-subjects and model users,
or the workers underlying the ML pipeline (e.g., crowd workers annotating data sam-
ples) [810]. Besides, the work of ML developers is often extended by the activity of data
engineers, ML engineers, or software engineers that build the entire system around the
model. We emphasize the importance of studying specifically each of these other stake-
holders, to understand further potential hazards and challenges to solve these hazards.

We did not focus on particular ML developers but interviewed more than 80 individu-
als from a breadth of educational and cultural background, and a breadth of amount and
type of experience with ML, in order to uncover a breadth of challenges and solutions.
More focus on the participant sampling could be necessary in the future, to investigate
less well-represented categories of developers and their particular challenges. For in-
stance, while we primarily interviewed developers working in European countries (and
sometimes in North America), it has been shown that practices, goals, and challenges
might differ on other continents [420].

Domain of application. Besides, we did not focus on particular domains of applica-
tions, but remained broad both when making experiments or interviewing developers.
We also did not focus on specific types of organizations in which developers work (e.g.,
big tech or startups; public or private; etc.), as it is often challenging to recruit a signifi-
cant amount of developers across categories. Again, focusing in-depth on a few domains
of applications and types of organisations would be useful in the future, to identify more
specific challenges and solutions.

Machine learning stages. Within the development phase, we focused primarily on the
model debugging stages. Yet, the process of developing a model is often iterative, where
iterations over the dataset collection and processing, and model design and training, as
well as ML pipeline debugging, are intricate. Hence, we cannot distinguish between de-
bugging and development fully. Still, we took a specific interest in how the model is eval-
uated and iterated over. We did not touch upon the different ways datasets are created,
but gave to our developers already-prepared datasets. Such stages of the ML lifecycle
would merit further investigation as they might present a breadth of challenges depend-
ing on the application and organisation where ML developers work. Besides, the stages
of the lifecycle beyond development, i.e., model deployment, production, monitoring,
and updating should also be investigated next, as they are also sources of harms.

4We describe here the dimensions that were not extensively discussed in the Introduction.
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The frontiers we draw of the ML systems we investigate remain narrow, and cen-
tered around the core ML pipeline. By that, we mean that while some hazards related to,
e.g., unfairness or physical safety, come not only from the outputs of the model but how
they are used in practice by decision-makers [73], we do not investigate this part of the
system. This would involve for instance the design of the interactions with the decision-
maker, via potential user-interfaces, educational programs, etc., that might skew them
towards certain patterns of decisions, and the human factors impacting this interaction.
Instead, we solely focus on aspects of the ML pipeline that stop at the model outputs.

Machine learning bugs. In terms of bugs, we focused on the ones due to a wrong con-
figuration of the ML pipeline, as these are still extremely challenging. These bugs are
typically coming from the design of the training datasets, but also from the design of the
model trained on such datasets, and finally on monitoring and updating the data engi-
neering and model training pipelines. We believe the other bugs, that are due to faulty
scripts can already partially be solved by the extensive amount of research on software
engineering debugging, while the ones due to a faulty translation between intended con-
figuration and code implementation might not require an extensive technical research.
Future research would still merit however to tackle those bugs.

Data and model type. We took a very narrow scope of model architectures. We pri-
marily focused on models based on deep learning algorithms, as these are the most re-
searched currently, and literature, e.g., on explainability, develops an extensive amount
of research related to them. Yet, especially for interviews of practitioners working with
tabular data, we did not exclude models relying on more traditional ML algorithms, as
this remains the main approach there. We did not focus on particular types of models
(e.g., GPT-3) and architectures however, as we noticed that this varies across practition-
ers. We focused on models performing classification tasks or regression tasks, in order
to scope down the problem, and because these tasks are the most commonly researched
and employed ones. Of course, other tasks such as segmentation, tracking, generation,
etc., would also be useful to investigate in the future. In the future, comparisons of prac-
tices across these applications could also be insightful.

Socio-technical objectives. We did not take upon all research directions that are cur-
rently investigated, or that we identified while studying the research/practice misalign-
ment. For instance, while a large amount of ML fairness research focuses on under-
standing what are the most appropriate fairness metrics for various contexts by empiri-
cally analyzing the perceptions of these metrics by proxy data subjects [786, 338], we did
not engage in such user-studies focusing specifically on metrics. Similarly, while many
publications investigate the perceptions of model explanations by data subjects [587],
we were not interested in this topic, and instead solely focused on direct contributions
to model diagnosis for avoiding hazards. We also did not engage in the conceptual iden-
tification of the appropriate metrics for relevant contextual factors. Yet, this research is
becoming necessary, as we noted that developers typically see the lack of guidance along
the ML lifecycle as an obstacle to building less hazardous models, or do not even realize
that the models they build are harmful.
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SUMMARY

Machine learning (ML) is an artificial intelligence technology that has a great potential
for being adopted in various sectors of activities. Yet, it is now also increasingly recog-
nized as a hazardous technology. Failures in the outputs of an ML system might cause
physical or social harms. Besides, the development and deployment of an ML system
itself are also argued to be harmful in certain contexts.

Surprisingly, these hazards persist in applications where ML technology has been de-
ployed, despite the increasing amount of research performed by the ML research com-
munity. In this thesis, we task ourselves with the challenges of understanding the rea-
sons for the subsistence of hazardous system’s output failures and of hazardous devel-
opment and deployment processes in practice, and of developing solutions to further
diagnose these hazardous failures (especially in the system’s outputs). For that, we in-
vestigate further the nature of the potential gap between research and the practices of
those developers who build and deploy the systems. To do so, we survey major re-
lated ML research directions, surface developers practices and challenges, and search for
types of (mis)alignement between theory and practices. There, among others, we find a
lack of technical support for ML developers to identify the potential failures of their sys-
tems. Hence, we then tackle the development and evaluation of a human-in-the-loop,
explainability-based, failure diagnosis method and user-interface for computer vision
systems.

In terms of current ML research directions in relation to hazardous failures, we find
that these directions revolve around: the characterization of harms caused by ML sys-
tems and their causes within the ML development lifecycle; the development of techni-
cal solutions for measuring and increasing the robustness of ML systems and algorith-
mic fairness in the outputs of ML systems (sometimes research on fairness and robust-
ness is intertwined); and the critical characterization of proposed solutions in terms of
the harms they might leave out or inaccurately reflect. We also find a great lack of un-
derstanding of developers practices in handling harms of their ML systems and in using
proposed technical solutions around robustness and algorithmic fairness.

In order to characterize the research / practice gap, we then investigate practices and
compare the above research directions and research insights to the challenges faced by
developers. We find three types of gaps. Technical gap: The current technical research
directions can be used to support certain needs of developers, but these developers also
have additional needs that are not yet answered by any existing (technical or not) so-
lution. Social gap: In comparison to existing research literature, developers might lack
awareness on certain types of hazardous failures and on available ways to handle them,
they sometimes mis-interpret and mis-use available tools to support the failure han-
dling process, and they do not necessarily reflect on the limitations of existing technical
solutions and tools and of their own conceptions and approaches of the failures. Note
however that there is no best way to envision and handle hazardous failures as it is a
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subjective concept, for which no clear solution exists. Organisational gap: Finally, de-
velopers might also face a number of contextual, organisation-related obstacles, that
might hinder them in handling harms.

These three types of gaps call for diverse solutions that we briefly discuss: the de-
velopment of technical methods; the design of developer-friendly tools that rely on the
technical methods; the creation of education process for the new tasks that developers
face in the context of ML and harms; and the proposition of new policies to further reg-
ulate the development and deployment of ML systems.

Finally, we tackle one of the technical solutions that revealed important to conduct
a rich model diagnosis based on a model’s learned features. We design a new explain-
ability method that could support developers in further diagnosing hazardous failures of
their ML systems by identifying human-interpretable features learned by the model; we
develop a game with a purpose to collect knowledge potentially needed for the diagnosis
process and especially for assessing the soundness of the model’s learned features; and
we build a developer-friendly user-interface that gathers the outputs of the explainabil-
ity method (model learned features) and of the game (domain information for assessing
model features) and prior explainability methods for supporting developers in their di-
agnosis process. We then evaluate these two methods and this artifact. We find that the
involvement of crowd workers and their knowledge is useful to collect rich information
useful for diagnosing hazardous failures. We also show that with this information, we
can support developers in identifying a more comprehensive set of hazardous failures.

This work paves the way for a breadth of technical, design, social, organisational,
and policy efforts to bridge the research / practice gap with the aim of developing less
hazardous ML systems. This work also constitutes one of the first in-depth reports of an
instance of a full-circle, mixed-method, research work in the context of ML hazardous-
failure diagnosis, on which we extract lessons learned and recommendations for future
research efforts.



SAMENVATTING

Machine learning (ML) is een technologie voor kunstmatige intelligentie die een groot
potentieel heeft om te worden toegepast in verschillende sectoren. Toch wordt ML nu
ook steeds meer erkend als een gevaarlijke technologie. Fouten in de output van een
ML-systeem kunnen fysieke of sociale schade veroorzaken. Daarnaast wordt ook gesteld
dat de ontwikkeling en inzet van een ML-systeem zelf schadelijk kan zijn in bepaalde
contexten.

Verrassend genoeg blijven deze gevaren bestaan in toepassingen waar ML-
technologie is ingezet, ondanks de toenemende hoeveelheid onderzoek uitgevoerd door
de ML-onderzoeksgemeenschap. In dit proefschrift stellen we onszelf voor de uitdaging
om de redenen te begrijpen voor het voortbestaan van gevaarlijke systeemuitvoerfouten
en van gevaarlijke ontwikkel- en implementatieprocessen in de praktijk, en om oplossin-
gen te ontwikkelen om deze gevaarlijke fouten verder te diagnosticeren (vooral in de uit-
voer van het systeem). Daarvoor onderzoeken we de aard van de potentiële kloof tussen
onderzoek en de praktijk van de ontwikkelaars die de systemen bouwen en inzetten. Om
dit te doen, inventariseren we de belangrijkste gerelateerde ML-onderzoeksrichtingen,
brengen we ontwikkelaarspraktijken en -uitdagingen in kaart, en zoeken we naar soor-
ten (mis)afstemming tussen theorie en praktijk. Daarbij zien we onder andere een ge-
brek aan technische ondersteuning voor ML-ontwikkelaars om de potentiële fouten van
hun systemen te identificeren. Daarom gaan we vervolgens in op de ontwikkeling en
evaluatie van een op verklaarbaarheid gebaseerde human-in-the-loop foutdiagnoseme-
thode en gebruikersinterface voor computervisiesystemen.

In termen van huidige ML onderzoeksrichtingen in relatie tot gevaarlijke fouten, vin-
den we dat deze richtingen draaien om de volgende aspecten: de karakterisering van
schade veroorzaakt door ML systemen en hun oorzaken binnen de ML ontwikkelings-
levenscyclus; de ontwikkeling van technische oplossingen voor het meten en verhogen
van de robuustheid van ML systemen en algoritmische eerlijkheid in de output van ML
systemen (soms is onderzoek naar eerlijkheid en robuustheid met elkaar verweven); en
de kritische karakterisering van voorgestelde oplossingen in termen van de schade die ze
mogelijk weglaten of onnauwkeurig weergeven. We vinden ook een groot gebrek aan in-
zicht in de praktijk van ontwikkelaars in het omgaan met schade van hun ML-systemen
en in het gebruik van voorgestelde technische oplossingen rond robuustheid en algorit-
mische eerlijkheid.

Om de kloof tussen onderzoek en praktijk te karakteriseren, onderzoeken we ver-
volgens de praktijk en vergelijken we de bovenstaande onderzoeksrichtingen en onder-
zoeksinzichten met de uitdagingen waarmee ontwikkelaars worden geconfronteerd. We
vinden drie soorten hiaten. Technische kloof: De huidige technische onderzoeksrichtin-
gen kunnen worden gebruikt om bepaalde behoeften van ontwikkelaars te ondersteu-
nen, maar deze ontwikkelaars hebben ook aanvullende behoeften die nog niet worden
beantwoord door een bestaande (al dan niet technische) oplossing. Sociale kloof: In ver-

367



368 SAMENVATTING

gelijking met de bestaande onderzoeksliteratuur zijn ontwikkelaars zich misschien niet
voldoende bewust van bepaalde soorten gevaarlijke storingen en de beschikbare manie-
ren om ermee om te gaan, ze interpreteren en gebruiken de beschikbare hulpmiddelen
ter ondersteuning van het proces van storingsbehandeling soms verkeerd, en ze denken
niet noodzakelijk na over de beperkingen van de bestaande technische oplossingen en
hulpmiddelen en van hun eigen opvattingen over en benaderingen van storingen. Ook
denken ze niet noodzakelijk na over de beperkingen van bestaande technische oplossin-
gen en hulpmiddelen en van hun eigen opvattingen over en benaderingen van storingen.
Merk echter op dat er geen beste manier is om gevaarlijke storingen in te schatten en te
behandelen, aangezien het een subjectief concept is waarvoor geen duidelijke oplossing
bestaat. Organisatorische kloof: Tot slot kunnen ontwikkelaars ook te maken krijgen
met een aantal contextuele, organisatiegerelateerde obstakels die hen kunnen hinderen
bij het omgaan met schade.

Deze drie soorten hiaten vragen om verschillende oplossingen die we kort bespre-
ken: de ontwikkeling van technische methoden; het ontwerp van ontwikkelaarvriende-
lijke gereedschappen die vertrouwen op de technische methoden; het creëren van een
onderwijsproces voor de nieuwe taken waarmee ontwikkelaars te maken krijgen in de
context van ML en schade; en het voorstellen van nieuw beleid om de ontwikkeling en
inzet van ML-systemen verder te reguleren.

Tot slot pakken we een van de technische oplossingen aan die belangrijk zijn geble-
ken om een uitgebreide modeldiagnose uit te voeren op basis van de geleerde kenmer-
ken van een model. We ontwerpen een nieuwe verklaarbaarheidsmethode die ontwikke-
laars kan ondersteunen bij het verder diagnosticeren van gevaarlijke fouten in hun ML-
systemen door het identificeren van door mensen interpreteerbare eigenschappen die
door het model zijn geleerd; we ontwikkelen een spel met als doel kennis te verzamelen
die mogelijk nodig is voor het diagnoseproces en in het bijzonder voor het beoordelen
van de deugdelijkheid van de door het model geleerde eigenschappen; en we bouwen
een ontwikkelaarsvriendelijke gebruikersinterface die de output van de verklaarbaar-
heidsmethode (door het model geleerde eigenschappen) en van het spel (domeininfor-
matie voor het beoordelen van modeleigenschappen) en eerdere verklaarbaarheidsme-
thoden verzamelt om ontwikkelaars te ondersteunen bij hun diagnoseproces. Vervol-
gens evalueren we deze twee methoden en dit artefact. We vinden dat de betrokkenheid
van crowdworkers en hun kennis nuttig is om rijke informatie te verzamelen die nuttig
is voor het diagnosticeren van gevaarlijke fouten. We laten ook zien dat we met deze in-
formatie ontwikkelaars kunnen ondersteunen bij het identificeren van een uitgebreidere
set van gevaarlijke fouten.

Dit werk maakt de weg vrij voor een breed scala aan technische, ontwerp-, sociale,
organisatorische en beleidsinspanningen om de kloof tussen onderzoek en praktijk te
overbruggen met als doel minder gevaarlijke ML-systemen te ontwikkelen. Dit werk is
ook een van de eerste diepgaande verslagen van een volledig, gemengd methodologisch
onderzoek in de context van ML foutdiagnose, waaruit we lessen trekken en aanbevelin-
gen doen voor toekomstige onderzoeksinspanningen.
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