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INTRODUCTION

Saccharomyces cerevisiae is a time- tested and widely 
applied host in the biotech industry. Its central status 
as a cell- factory is rooted in an extensive knowledge 
base, advanced and facilitated genetic engineering, un-
problematic valorization of biomass as a byproduct and 
foremost, robustness to diverse industrial conditions 
(Nielsen, 2019). The latter is based on the yeasts' ability 

to adapt to a wide array of ecological niches (Goddard 
& Greig, 2015; López- Maury et al., 2008), which is both 
a blessing and a curse for bioprocesses development. 
While ample adaptation mechanisms made the yeast 
a preferred platform organism for many bioprocesses, 
its flexibility comes at a price. Bioprocesses are typ-
ically developed in a homogeneous environment in 
lab- scale studies. In contrast, the industrial habitat is 
characterized by imperfect mixing since maintaining 
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Abstract
In fed- batch operated industrial bioreactors, glucose- limited feeding is com-
monly applied for optimal control of cell growth and product formation. Still, 
microbial cells such as yeasts and bacteria are frequently exposed to glucose 
starvation conditions in poorly mixed zones or far away from the feedstock 
inlet point. Despite its commonness, studies mimicking related stimuli are 
still underrepresented in scale- up/scale- down considerations. This may sur-
prise as the transition from glucose limitation to starvation has the potential 
to provoke regulatory responses with negative consequences for production 
performance. In order to shed more light, we performed gene- expression 
analysis of Saccharomyces cerevisiae grown in intermittently fed chemostat 
cultures to study the effect of limitation- starvation transitions. The resulting 
glucose concentration gradient was representative for the commercial scale 
and compelled cells to tolerate about 76 s with sub- optimal substrate supply. 
Special attention was paid to the adaptation status of the population by dis-
criminating between first time and repeated entry into the starvation regime. 
Unprepared cells reacted with a transiently reduced growth rate governed 
by the general stress response. Yeasts adapted to the dynamic environment 
by increasing internal growth capacities at the cost of rising maintenance 
demands by 2.7%. Evidence was found that multiple protein kinase A (PKA) 
and Snf1- mediated regulatory circuits were initiated and ramped down still 
keeping the cells in an adapted trade- off between growth optimization and 
down- regulation of stress response. From this finding, primary engineering 
guidelines are deduced to optimize both the production host's genetic back-
ground and the design of scale- down experiments.

 17517915, 0, D
ow

nloaded from
 https://sfam

journals.onlinelibrary.w
iley.com

/doi/10.1111/1751-7915.14188 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [27/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

www.wileyonlinelibrary.com/journal/mbt2
https://orcid.org/0000-0001-5130-8556
mailto:﻿
https://orcid.org/0000-0001-5837-6906
http://creativecommons.org/licenses/by/4.0/
mailto:takors@ibvt.uni-stuttgart.de
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1751-7915.14188&domain=pdf&date_stamp=2022-12-08


2 |   RESEARCH ARTICLE

equal mean broth circulation time with increasing tank 
volume poses an infeasible endeavour (Junker, 2004; 
Uhl & Von Essen, 1986). Resultant dynamic gradients, 
for example, of primary nutrients, constantly chal-
lenge the adaptive capacity of the cells even leading to 
non- expected regulation phenomena that may cause 
the deterioration of expected TRY (titre, rate, yield) 
criteria (Crater & Lievense, 2018; Enfors et al., 2001; 
Takors, 2016). This mirrors the interaction of multi- level 
regulation programs covering allosteric enzymatic con-
trol, transcriptional, translational and post- translational 
responses finally leading to physiological changes. 
Notably, each regulatory level possesses inherent re-
sponse and relaxation times which overlap finally creat-
ing the integral response on external stimuli (Delvigne 
& Goffin, 2014; Wehrs et al., 2019). Hence, scale- up 
effects are the outcome of the complex interactions be-
tween production- scale hydrodynamic heterogeneities 
and multi- level yeast responses.

Carbon- limited fed- batch strategies are widely ad-
opted to ensure efficient conversion of substrate to 
product, for instance, in a baker's yeast production. 
Feed rates are designed to allow fast growth while 
avoiding resource spillage through overflow metabo-
lism. As a consequence, consumption times for highly 
diluted substrates may be shorter than the convective 
supply of said substrates leading to substrate deple-
tion in poorly mixed zones of the bioreactor or far away 
from the inlet point (Lara et al., 2006). Inherently, sub-
strate gradients (e.g. for glucose) creating excess and 
scarcity are likely to occur as confirmed experimentally 
and by simulation investigating the industrial bioreac-
tor (George et al., 1998; Haringa et al., 2017; Sarkizi 
Shams Hajian et al., 2020). Saccharomyces cerevisiae 
senses variable substrate supplies via a plethora of 
multilayered and interconnected signalling cascades. 
Extracellular glucose levels are detected via the Gpr1/
Ras2- cAMP- dependent protein kinase A (PKA) and 
Rgt2/Snf3- protein kinase B (PKB) nutrient kinases 
(Busti et al., 2010; Kim, Roy, et al., 2013). The sens-
ing of intracellular glucose pools is directly mirrored 
by hexokinase activity and indirectly by the adenylate 
energy charge, AEC, through the Snf1/AMP- activated 
protein kinase (AMPK) network (Coccetti et al., 2018). 
The status of low ATP availability, that is, low AEC, is 
transduced via Snf1 to the rapamycin kinase complex I 
(TORC1) which regulates the growth rate together with 
PKA (Kunkel et al., 2019; Wullschleger et al., 2006). 
Further downstream, these regulatory nodes orches-
trate the phosphorylation status of central transcription 
factors (TFs) finally translating external stimuli into well- 
adjusted microbial responses (Petrenko et al., 2013; 
Plank, 2022).

What determines the biological output from the 
above regulatory network is the combination of am-
plitude, frequency and dwell time with respect to 
the exposure to a certain glucose concentration. 

Responses may be subtle, short- termed but well- 
buffered energetic imbalances or even fatal growth 
arrests (Bisschops et al., 2017; Verma et al., 2013). 
In any case, they are likely to deteriorate the pro-
ductivity of engineered cells to produce the tar-
geted product. Knowledge- driven downscaling aims 
to mimic related scenarios already in lab- scale for 
identifying proper prevention strategies (Delvigne & 
Noorman, 2017; Straathof et al., 2019; Takors, 2016). 
As a prerequisite of modern approaches, production- 
scale information is deduced from computational 
fluid dynamic (CFD) studies (Haringa et al., 2016; 
Lapin et al., 2004). Adding the biological phase to 
the flow field via cellular reaction dynamics (CRD) 
models, which are derived from stimulus– response 
experiments (SRE), enables the in silico charac-
terization of relevant environmental stimuli (Penia 
Kresnowati et al., 2005; Zieringer & Takors, 2018). 
Finally, coupled CFD- CRD simulation results govern 
the quantitative design of both, realistic scale- down 
reactors and strains with increased process robust-
ness (Haringa et al., 2017; Kuschel & Takors, 2020; 
Wang et al., 2020).

More and more studies highlight the prevalence of 
starvation zones in bioreactors that occurred distant 
from the feed zone in fed- batch processes (Haringa 
et al., 2016; Ho et al., 2022; Kuschel & Takors, 2020; 
Nadal- Rey et al., 2021). Remarkably, SRE- data cov-
ering the transition between carbon limitation and 
starvation are scarce, whereas the opposite, that is, 
sudden shifts towards glucose excess, were exten-
sively studied in the past (Kresnowati et al., 2006; 
Suarez- Mendez et al., 2017; Theobald et al., 1997; 
Verhagen et al., 2022; Wu et al., 2006). The latter 
may reflect the fundamental interest in the Crabtree 
effect and its relevance for multiple metabolic sce-
narios (de Alteriis et al., 2018). However, such stimuli 
studies do not mimic the predominant conditions in 
large- scale bioreactors. Consequently, we set out 
to complement the current database with kinetic 
studies investigating the endometabolome after 
glucose shifts from limitation to starvation (Minden 
et al., 2022). In the referenced work, the metabo-
lome of S. cerevisiae revealed a short- term strategy 
optimized to uphold anabolic needs at the expense 
of catabolic capacities when entering famine zones. 
Significantly increased biomass- specific energy 
demands after repeated exposure to the same glu-
cose gradient raised the question how the stimulus 
is propagated in the eukaryotic regulatory network. 
Using next- generation- sequencing data, this study 
investigates gene- expression dynamics to answer 
two questions: (i) How does a yeast population re-
spond to the first- time occurrence of glucose scar-
city and (ii) how is the regulatory landscape shaped 
after complete adaptation towards the dynamic pro-
duction environment?
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EXPERIMENTAL PROCEDURES

Strain maintenance and seed culture 
conditions

Saccharomyces cerevisiae CEN.PK 113- 7D (Nijkamp 
et al., 2012) was kindly provided by Royal DSM N.V. and 
preserved as a 30% (v/v) glycerol stock at −70°C and 
maintained on yeast extract peptone dextrose (YPD) 
agar plates at +4°C. Seed cultures were prepared by 
inoculating 5 ml YPD broth with single colonies in a 
glass vial followed by an 8- h incubation at +30°C on an 
orbital shaker operated with 120 rpm. The whole culture 
was pelleted and transferred to 110 ml of a synthetic 
medium in a 1000 ml baffled shake flask and incubated 
under identical conditions overnight. The medium was 
modified from Verduyn et al. (1992) to support carbon- 
limited growth in continuous culture with 22.5 g L−1 glu-
cose. In brief, the referenced salt concentrations were 
increased threefold and the trace element and vitamin 
stock solutions were increased twofold.

Bioreactor setup and continuous 
operation mode

Aerobic, continuous fermentations were carried out in 
a stainless steel benchtop bioreactor (Bioengineering) 
with a liquid working volume of 1.7 L. The culture was 
supplied with sterile ambient air through a fumigation 
frit positioned at the reactor bottom with a constant 
flow rate of 0.5 vvm. Broth homogenization and bubble 
dispersion were ensured with two six- blade Rushton- 
type impellers operated constantly at 800 rpm equal-
ling a gassed, volumetric power input of 7.1 W kg−1 to 
yield a circulation time of 0.1 s (Appendix S1: Tables S1 
and S2). The relative dissolved oxygen concentration 
was determined with an optical pO2 probe (PreSens) 
and never decreased below 70%. Broth temperature 
was controlled at +30°C with electrical heating and 
water cooling rods and monitored with a Pt100 probe 
(Bioengineering). The tank was operated at an abso-
lute pressure of 1.3 bar, which was maintained with a 

needle valve attached at the off- gas filter element exit. 
Two molar potassium hydroxide kept the broth pH at 
5.00 using a Mettler Toledo probe. A continuous supply 
of Struktol J 674 antifoam agent (Schill und Seilacher) 
with a pump rate of 30 μl h−1 was realized with a LA- 
120 syringe pump (IDL GmbH) to pre- emptively avert 
foaming. Molar oxygen and carbon dioxide fractions 
in the off- gas were logged every minute with BCP- O2 
and BCP- CO2 sensors (BlueSens). All in-  and outgo-
ing liquid flows were conveyed with U- 120 peristaltic 
pumps (Watson- Marlow). Rapid sampling was ena-
bled using semi- automated sampling devices based on 
time- relay controlled opening of a pinch valve (Minden 
et al., 2022).

Bioreactors were inoculated with 100 ml seed culture 
and the continuous phase was initiated after a rapid in-
crease in the pO2 signal marked the end of the batch 
phase. During continuous operation mode, the medium 
was fed at a fixed rate of 2.83 ml min−1 to yield a di-
lution rate of 0.1 h−1 via mass balancing of the whole 
fermenter through the harvest pump. The feed medium 
was constantly homogenized with a magnetic stirrer to 
prevent gradient formation.

Experimental design

Both, non- adapted and adapted starvation response 
experiments were conducted in the same chemostat 
process according to the process design depicted in 
Figure 1. First, the reference steady state (RS) was 
sampled after five residence times of constant QO2

 and 
QCO2

 conjointly marking time point 0 min of the non- 
adapted time series. Subsequently, the feed was inter-
rupted for 2 min causing a transition from limitation to 
starvation back to limitation (LSL) and the stimulus– 
response was monitored for up to 6 h (denoted post  
s- LSL, s for single). Second, the dynamic steady state 
(DS) was characterized after five residence times of re-
peated LSL (r- LSL) transitioning. During this phase, the 
feed was operated in 9- min LSL- cycles with the feed 
inactive for 2 min and active for 7 min equalling a 9 min 
r- LSL cycle time. The active feed rate was adjusted to 

F I G U R E  1  Process design of the chemostat experiment. τ, residence time.
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3.64 ml min−1 resulting in a net dilution rate of 0.1 h−1. 
Samples for the adapted response were drawn over 
one representative 9- min cycle and steady- state DS 
was expressed as the average over one cycle.

Sample follow- up and analytical  
procedures

All samples were measured in groups of technical trip-
licates and values reported in this study are expressed 
as the arithmetic mean ± standard deviation of techni-
cal means from three independent fermentation ex-
periments. Carbon, nitrogen and available electron 
balances closed within ±3.6% at any sample point (see 
Appendix S1: Figure S1).

Dry matter of biomass (DMB) was quantified grav-
imetrically via vacuum- filtration of 5 ml degassed 
fermentation broth through desiccated and tared mem-
brane filters (Ø 47 mm, Type 154; Sartorius). The filter 
cake was washed with 15 ml deionized H2O and dried 
in a heating chamber at +70°C until mass remained 
constant after occasional weighing.

To assess extracellular glucose, broth was directly 
withdrawn into an open syringe and squeezed through 
a PES filter element (Ø 30 mm, 0.22 μm pore size, 
ROTILABO®; Carl Roth) within less than five seconds. 
The supernatant was flash- frozen in liquid nitrogen and 
stored at −70°C until analysis. Glucose was quantified 
with a UV- based enzyme test kit (art. no. 10716251035; 
r- biopharm AG) without sample dilution according to 
the manufacturer's instructions.

Intracellular glycogen determination was follow-
ing the protocol originally published by Parrou and 
Francois (1997) and modified by Suarez- Mendez (2015) 
for rapid quenching. In brief, 1.5 ml broth was collected 
in 10 ml of <−40°C methanol and subsequently centri-
fuged for 5 min at −11°C under 5000 g. The resulting 
pellet was flash- frozen and stored at −70°C. Upon 
thawing, pellets were rendered permeable in 0.25 ml 
0.25 M sodium carbonate heated to +95°C for 3 h in 
a water bath. Next, optimal conditions for enzymatic 
glycogen conversion to glucose were established by 
adding 0.15 ml M acetic acid and 0.6 ml 0.2 M sodium 
acetate (pH 5.2, adjusted with acetic acid). 0.48 ml 
of the resulting suspension was mixed with 20 μl of  
α- amyloglucosidase (~70 U ml−1, cat. number: 10115; 
Merck) and incubated for +57°C for at least 12 h. Finally, 
the resulting suspension containing liberated glucose 
was separated from cellular debris via centrifugation 
(2 × 104 g, 1.5 min) and quantified as described above.

Intracellular total RNA levels were assessed based 
on the method described by Sasano et al. (2017). One 
millilitre of fermentation broth was transferred into a 
tube containing chilled 0.5 ml 1 M perchloric acid. The 
sample was immediately homogenized and placed for 
20 min in a water bath maintaining +70°C. Subsequently, 

the sample was mixed with 0.5 ml of 1 M K2HPO4 and 
the formed precipitate was removed via centrifugation 
(2 × 104 g, 1.5 min). The supernatant was flash frozen 
and stored at −70°C until RNA determination with a 
Nano- Drop ND- 1000 (NanoDrop Technologies), which 
was blanked against a solution containing 0.25 M per-
chloric acid and 0.25 M K2HPO4.

Estimation of qATP

Biomass- specific ATP formation rate was estimated 
based on its stoichiometric relationship with oxygen up-
take and glucose consumption according to 
qATP = 2 ⋅ qS + 2 ⋅

P

O
⋅ qO2

 with an assumed P
O

 ratio of 1.08 
(Van Den Brink et al., 2008). The specific oxygen uptake 
rate was calculated after deconvolution of the off- gas 
sensor readout due to the volume of tubing and foam 
traps causing significant detection delays. The deconvo-
lution method from Theobald (1995) was applied and has 
been described in detail recently (Minden et al., 2022).

Total RNA extraction

Total RNA extraction was performed using the Quick- RNA 
Fungal/Bacterial Miniprep Kit (R2014; Zymo Research) 
following the manufacturer's instructions with slight 
modifications. Prior to sampling, ZR BashingBead™ 
lysis tubes were prepared with 0.4 ml RNA lysis buffer 
and 0.1 ml DNA/RNA Shield™ agent (Zymo Research; 
not provided with the kit). During the experiment, 0.25 ml 
fermentation broth was instantly added to the prepared 
lysis tube, vigorously shaken by hand and flash- frozen in 
liquid nitrogen (all <10 s). This sampling routine yielded 
maximally 55 mg wet biomass (assuming a dry:wet mat-
ter of biomass correlation of 0.21 estimated from Aon 
et al., 2016) which is within the range of the recom-
mended upper loading limit of 50– 100 mg wet weight. 
Samples were stored at −70°C and extracted in batch 
from all three fermentations. The extraction protocol 
was started by thawing the samples fifty- fifty and sub-
sequently homogenizing the sample in a Precellys 24 
tissue homogenizer (Bertin Technologies) for two times 
20 s at maximum speed with a 10 s break in between. 
All subsequent steps were performed according to the 
manufacturer's instructions. At the end of the protocol, 
total RNA was eluted with 60 μl DNase/RNase- free H2O 
and each sample as split in two 30 μl aliquots.

Library preparation and RNA- sequencing

One aliquot from each sample was shipped for mRNA 
sequencing to GENEWIZ. Initial quality checks using 
the Agilent 2100 BioAnalyzer instrument (Agilent) 
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revealed high integrity of all samples with uniform 
RIN (RNA integrity number) values ≥9.9. Next, cDNA 
libraries were synthesized after polyA selection was 
performed to enrich mRNAs. Libraries were finally 
sequenced as paired- end reads of 150 base pair 
length on a NovaSeq 6000 platform (Illumina) with 
a sequencing depth of 2 × 107 paired- end reads per 
sample.

Processing of sequencing data

Sequencing results were received in the .fastqsanger 
format and uploaded on a local galaxy server instance 
(Afgan et al., 2018). First, the sequencing quality was 
assessed for each file individually using FastQC v. 0.72 
(Andrews, 2010). Adapter sequences were removed 
using Trimmomatic v. 0.38.0 (Bolger et al., 2014) for 
paired- end reads with default settings. The trimmed se-
quence files were then aligned against the S. cerevisiae 
CEN.PK113- 7D reference genome (GCA 000269885 –    
ASM 26988 v1) accessed from the ENSEMBL data-
base (Howe et al., 2021) using the TopHat v. 2.1.1 (Kim, 
Pertea, et al., 2013) algorithm for paired- end reads 
with default settings yielding an overall alignment rate 
of 86%– 93%. Count tables were computed using fea-
tureCounts v. 1.6.4 (Liao et al., 2014) together with the 
strain- specific annotation file Saccharomyces_cerevi-
siae.R64- 1- 1.50.gtf, also obtained from the ENSEMBL 
database. The generated count tables were merged 
into a data.frame object in the R environment v. 1.4.1106 
(R Core Team, 2021) for downstream analysis.

Differential gene expression analysis

Differential gene expression analysis was con-
ducted using the DESeq2 v. 1.32.0 R- package (Love 
et al., 2014). After transforming the count table into 
the homoscedastic log2- scale with rlog, PCA analy-
sis revealed a significant proportion of variance intro-
duced into the dataset via multiple library preparations 
and sequencing runs (Appendix S2: Table S1 and 
Appendix S1: Section A3). Thus, the variables ‘library 
run’ and ‘sequencing run’ (as a merged variable called 
‘libseq’) were introduced into the experimental design 
matrix. Time series and steady- state comparison were 
analysed with the likelihood ratio test (test = “LRT”) 
and a model reduced by technically introduced vari-
ance (for details, see Appendix S1: Figures S2– S4). 
Genes were considered as differentially expressed 
with a |log2- fold change| above 0.322 and a false dis-
covery rate (FDR) (Benjamini & Hochberg, 1995) below 
1 × 10−3. For further analysis, open reading frame iden-
tifiers were converted to ENSEMBL gene names using 
the libraries AnnotationDBi v. 1.51.5 and org.Sc.sgd.db 
v. 3.13.0.

Multidimensional scaling

Classical metric multidimensional scaling (Gower, 1966) 
was performed to visualize global dissimilarities in the 
gene expression profiles of all samples. First, log2- scaled 
count tables were cleaned from technical variance using 
the function removeBatchEffect from the limma v. 3.48.3 
package (Ritchie et al., 2015). Subsequently, biological 
replicates were expressed as arithmetic means and only 
genes with significant differential expression in at least 
one condition were considered. The resulting table was 
converted to a Euclidean distance matrix using the dist 
function, transposed and passed to cmdscale (k = 3) 
for a three- dimensional representation of the sample 
distances. The functions dist and cmdscale were called 
from the stats v. 4.1.0 package.

Cluster and functional enrichment  
analysis

Time series gene expression data were clustered 
into groups of genes with similar patterns of log2- fold 
changes using the kmeans function from the stats v. 
4.1.0 package. The algorithm was operated with a max-
imum of 1 × 103 iterations around two centroids for the 
adapted and six centroids for the non- adapted time se-
ries. For each cluster, gene ontology (GO) enrichment 
was assessed using the YeastEnrichr web interface 
(Chen et al., 2013; Kuleshov et al., 2019). YeastEnrichr 
was queried for the ‘GO_Biological_Process_2018’ 
library (source: http://geneo ntolo gy.org/; release 
2022- 03- 22) and significant terms (FDR < 0.05) were 
manually curated to avoid redundancy of GO terms. 
Up-  and down- regulated gene lists from the comparison 
between steady- states RS and DS were additionally 
queried for the ‘WikiPathways_2018’ (source: https://
www.wikip athwa ys.org; accessed 2022- 04- 15) and the 
‘GO_Cellular_Component_2018’ (source: http://geneo 
ntolo gy.org/; release 2022- 03- 22). Non- curated en-
richment results can be accessed in the Appendix S2, 
Tables S4– S9, S11, S12 and S14– S19.

Gene set enrichment analysis (GSEA) was per-
formed with the R package GAGE v. 2.42.0 (Luo 
et al., 2009) to investigate significant differential expres-
sion of pre- defined gene lists. As described previously, 
log2- scaled count tables corrected for technical vari-
ance were used as an input for the gage function, which 
was configured to perform paired comparisons (com-
pare = “paired”). Two- sample t- test values were 
used as a proxy for the intensity of gene- expression 
changes of the underlying gene set and converted 
to heat maps using the ggplot2 package (version: 
3.3.6.9000). Literature gene sets were extracted from 
various sources and transcription factor target lists 
were obtained from the Yeastract database (Monteiro 
et al., 2020). All 183 transcription factors available from 
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Yeastract were queried for genes with documented 
‘DNA binding and expression evidence’ and converted 
to a .gmt file as an input for the gage function. Only liter-
ature gene sets and transcription factor target sets that 
were enriched significantly (FDR <0.05) in at least one 
condition per GSEA analysis were reported. All input 
and output tables used in this analysis are accessible 
in the Appendix S2 (Tables S20– S23; .gmt tables were 
reduced to gene sets which are shown in Figure 7).

RESULTS

Characterization of the famine stimulus

Sudden glucose shortages mimicking industrial- scale 
famine zones were established by periodic stops of the 
medium feed during carbon- limited growth. The 2- min 
lasting substrate starvation- induced glucose reduction 
from 150 to 30 μmol L−1 (Figure 2A). Afterwards, the 
glucose- limiting feed scenario was re- installed finally 
creating a limitation- starvation- limitation (LSL) cycle. 
Interestingly, resulting glucose profiles were similar for 
non- adapted and adapted cells. The latter resulted from 
the repeated exposure to said LSL cycles (r- LSL, see 
Experimental Procedures). During one LSL- trajectory, 
biomass- specific glucose uptake rates (qs) were severely 
curtailed, not exceeding 5% of maximum capacities 
(9.3 mmol gDMB

−1 h−1, from Diderich et al., 1999) for 14% 
of cycle duration. Given that large- scale CFD simulations 
assumed CEN.PK 113- 7D to spend 40% of the time in 
sub- 5% qs,max regimes (Haringa et al., 2017), the cur-
rent experimental approach is qualified as rather mild 
but still realistic to mimic industrial- scale glucose deple-
tion scenarios. The calculated adenylate energy charge 
(AEC) (previously reported in Minden et al., 2022) was 
monitored as a possible actuator for initiating regulatory 
energy sensing cascades (Figure 2B). By trend, AEC 
mirrors the extracellular glucose availability during star-
vation. The restoration of pre- stimulus values even oc-
curred slightly faster than the recovery of extracellular 
glucose levels. Non- adapted cells decreased their AEC 
by 0.20 ± 0.03 while amplitudes for adapted cells were 
almost doubled reaching a minimal value of 0.50 ± 0.01. 
For a short period, both populations fell below the com-
monly accepted physiological AEC range of 0.7– 0.9 (De 
La Fuente et al., 2014). This is a rather remarkable obser-
vation given that long- term glucose- starved yeasts can 
sustain their adenylate energy charge within the physi-
ological range for up to several hours during the station-
ary phase (Ball & Atkinson, 1975; Weibel et al., 1974).

Short- term starvation evokes 
macroscopic rearrangements

Figure 3 compares post- stimulus data of the unper-
turbed reference (RS), the steady state after repeated 

perturbation (DS) and time- series of non- adapted cells. 
Furthermore, the small plot inside Figure 3B depicts 
two time series that reflect cellular responses during 
an LSL cycle. This diagram is provided for illustrating 
that the ‘steady- state’ after repeated perturbation ‘DS’ 
rather represents an average of dynamics than a true 
steady- state defined by constant state variables.

Notably, the biomass- substrate yield (YX∕S) of 
RS persisted after long- term adaptation to alter-
nating glucose availability as indicated by the sim-
ilar DS (Figure 3A). In part, this was the result of 

F I G U R E  2  Characterization of the famine stimulus. (A) 
Extracellular glucose concentration and (B) intracellular adenylate 
energy charge (AEC) during the course of one perturbation 
cycle. AEC was calculated based on the methodology reported 
by Ball and Atkinson (1975). Red circles indicate dynamics 
following a single (s) LSL- transition and green triangles depict 
one representative repeated (r) LSL- cycle during steady- state DS. 
Time point 0 min of s- LSL is the equivalent of steady- state RS 
(yellow squares). All values indicate means ± standard deviation 
of three biological replicates. The underlying data were previously 
published in Minden et al. (2022).
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substantial metabolic re- arrangements in adapted 
versus RS- cells, including a reduction of the glyco-
gen pool by 49% and increasing internal RNA abun-
dance from 77.0 ± 1.4 mg gDMB

−1 to 84.9 ± 1.6 mg gDMB
−1 

(Figure 3C,D). We quantified total ribonucleic acid as 
a proxy of ribosomal content, considering that 80% of 
total RNA in yeast contributes to the assembly of ribo-
somes as rRNA (Warner, 1999). Thereof, we hypoth-
esized that the 3% rise of qATP (p < 0.05, Figure 2B) 
in DS versus RS was necessary to sustain increased 
translational capacities, which was partially coun-
terbalanced by decreased energy spillage through 
glycogen- associated futile cycling.

A similar relation was found during the mid- term re-
sponse of unstressed yeast cells post s- LSL. Within the 
first 10 min, glycogen pools slightly reduced by 13% to 
a minimum of 271 ± 29 μmolglucose gDMB

−1, followed by 
a relatively prolonged repletion phase of 3 h. In par-
allel, the population showed 5% increased qATP 20– 
60 min post- stimulus before energy demands relaxed 
to pre- stimulus levels. Again, RNA ramp- up dynamics 
seemed tightly linked with the temporally increased ATP  
demands. Following the peak of this non- adapted  
response, we found a significant reduction of YX∕S at the 
1- h mark (p < 0.05) which eventually recovered. Thus,  
the temporal observation in this phase might reflect the 

early initiation and retraction of the phenotypic shift, 
which is completed after long- term adaptation in DS.

Interestingly, the immediate intra- r- LSL qATP re-
sponse during the representative cycle in Figure 3B 
revealed a reduction to 4.2 mmol gDMB

−1 h−1 which rep-
resents a 44% larger amplitude than the non- adapted 
population (Figure 3B, insert plot). This observation is 
consistent with the equally larger AEC amplitudes within 
one r- LSL- cycle (Figure 2B) and points to a larger ATP 
drain accounting for the intensified translational capac-
ities in adapted cells.

Next, we set out to elucidate regulatory phenomena 
on the gene expression level that govern the observed 
phenotypic shifts. Figure 4 displays the global analysis 
of Euclidean distances between all investigated sam-
ples using classical metric multidimensional scaling over 
three dimensions. The analysis of the first dimension 
distinguishes the grouping of adapted and non- adapted 
cells after their exposure to LSL cycles (Figure 4A). The 
apparent difference in the second dimension is further 
elucidated if the transcriptional time- series co- consider 
the third dimension (Figure 4B,C). By trend, the s- LSL 
exposure pushed the cells quickly away from their steady 
state within the first 4.5 min and it took about 180 min to 
return on a spiralled course. This pattern entails oscillat-
ing transcriptional dynamics, which reinforce until 20 min 

F I G U R E  3  Macroscopic stimulus– response characterization. (A) Biomass- substrate yield. (B) ATP production rate estimated from 
oxygen and glucose consumption rates assuming a P/O ratio of 1.08 (Van Den Brink et al., 2008). The insert plot depicts the short- term 
dynamics during one representative LSL- cycle. (C) Intracellular glycogen and (D) total RNA pool dynamics. Red circles indicate dynamics 
during and up to 6 h post single (s) LSL and time point 0 min is the equivalent of steady- state RS (yellow squares). Green triangles depict 
one representative repeated (r) LSL cycle during steady- state DS. Steady- state DS is expressed as the average of dynamic data from r- LSL 
cycles (green dashed line) ± standard deviation (light area). All time series values indicate means ± standard deviation of three biological 
replicates.

 17517915, 0, D
ow

nloaded from
 https://sfam

journals.onlinelibrary.w
iley.com

/doi/10.1111/1751-7915.14188 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [27/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 |   RESEARCH ARTICLE

before complete relaxation after 180 min. In contrast, we 
observed a rather circular trajectory for adapted cells. 
The latter anticipates that a fraction of adapted cells al-
ways remained transcriptionally stimulated during the 
entire course of the experiments.

S. cerevisiae overloads the strategic 
response upon first- time glucose 
deprivation

Differential gene expression analysis uncovered 1065 
genes accounting for 16% of the reference genome all 
fulfilling the statistical significance (p < 1 × 10−3) of dif-
ferential expression during the 3- h lasting response 
upon the s- LSL stimulus. We grouped the differen-
tially expressed genes (DEGs) into six clusters each 
featuring similar log2fold changes. Furthermore, we 
assigned co- regulated genes via the enriched gene 
ontology (GO) terms (Figure 5). In sum, the clus-
ters confirm the dynamics anticipated from the MDS 
analysis, which comprises an early transcriptional re-
sponse followed by an amplified mid- term amplitude 
before slowdown.

Three of six clusters were disproportionately en-
riched with GO terms related to the translation machin-
ery containing one- third of all 135 ribosomal proteins 
(RPs) in yeast (Gaikwad et al., 2021). Cluster 4 in-
creased steadily over the first 40 min. Meanwhile, clus-
ters 1 and 5 highlighted other dynamics that are laterally 
inversed. Whereas cluster 5 showed the early amplifi-
cation of gene transcripts as described above, cluster 1 
disclosed an opposite trend. The two clusters are par-
ticularly interesting as a trade- off between cytoplasmic 
and mitochondrial translation becomes evident. Several 
studies outlined that the coordinated redistribution of 
the costly translation machinery is a crucial feature for 
building up necessary respiratory capacity under 
stressful conditions (Bonawitz et al., 2007; Couvillion 
et al., 2016; Suhm et al., 2018). Further evidence of 
compartment- specific resource adjustments is 

provided by the enriched ‘mitochondrial transport’ on-
tology in cluster 5. However, we did not identify corre-
sponding up- regulation of the respiratory chain complex 
despite our observation of increased ATP dissipation 
during the observed ramp- up of RNA content and YX∕S

. In addition, cluster 1 was enriched with transcriptional 
inducers of rRNA synthesis from polymerase I antici-
pating a bilateral relationship between regulatory cir-
cuits and their provoked strategic responses.

Co- regulated amino acid synthesis genes in cluster 
2 followed the trajectory of cluster 1 but with a delayed 
onset and less pronounced fold changes. Both clus-
ters were significantly enriched for ‘alpha- amino- acid 
biosynthesis’ activity, reaching a GO- term coverage of 
46%. For some of the comprised genes, for example, 
those involved in leucine (LEU2, LEU4, LEU9) and ar-
omatic amino acid biosynthesis (ARO8, ARO7, TRP2, 
TRP3, TRP5), the intracellular concentrations of their 
biosynthetic products qualitatively followed the ob-
served cluster dynamics (Appendix S1: Figure S5). On 
the other hand, absolute glycogen levels appeared de-
tached from the induction- repression dynamic of cluster 
6 that comprised the related ontology. Nonetheless, this 
group contained both genes involved in glycogen mo-
bilization (GPH1 and GDB1) and accumulation (GLC3 
and GDB1) which may be taken as a hint towards 
the dynamic activity of futile cycling (Blomberg, 2000; 
François & Parrou, 2001). We observed a general ten-
dency for the initial repression of genes involved in 
primary anabolism, while catabolic enzymes from glu-
cose, pentose, and pyruvate metabolic processes fol-
lowed the opposite trend.

Genes that were annotated to cluster 3 signalled 
slight activity of stress- responsive mechanisms. For in-
stance, members of the ‘intracellular protein transport’ 
comprise chaperone activity such as SSA1 and CUR1 or 
were involved in protein recycling, for example, through 
VPS29 and EAR1. The early induction of transcriptional 
repressors (‘negative regulation of RNA polymerase II 
promotor transcription’) may indicate broader macromo-
lecular savings. Furthermore, the LSL- stimulus triggered 

F I G U R E  4  Dissimilarities of significant gene expression patterns in the multidimensional scaling (MDS) space represented by 
three dimensions. (A) Whole dataset represented by the first two dimensions. (B) MDS plot of the post single (s) LSL time series (red 
circles + yellow square) based on dimensions 2 and 3. Dashed arrows provide a visual aid to follow the time series (C) Analogous MDS plot 
of the 9 min repeated (r) LSL time series (green triangles).

 17517915, 0, D
ow

nloaded from
 https://sfam

journals.onlinelibrary.w
iley.com

/doi/10.1111/1751-7915.14188 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [27/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 9RESEARCH ARTICLE

changes in cell wall organization and even associated 
transcription factors (TFs). Taken together, a sudden 
shift from glucose limitation to starvation prompted S. 
cerevisiae to enter a defensive state preparing for times 
of scarcity. As this preparatory measure turned out to be 
premature, a pronounced backlash caused dampened 
transcriptional bursts up to 2 h post- stimulus.

Repeated famine exposure shapes a 
specialist growth phenotype

The transcriptomic landscape of yeasts adapted to 
unstable glucose uptake during DS was investigated 

by three- level enrichment analysis. Gene ontologies 
grouping genes according to biological function, path-
way affiliation, and compartment- specific localization 
were used to characterize 728 repressed and 676 in-
duced genes relative to RS (Figure 6). The dominant 
fraction of DEGs was operating in the nucleus, where 
highlighted reconstructions of the regulatory network 
and proliferation apparatus occurred. The first is ap-
parent as 20% of both up-  and down- regulated mRNAs 
encoded transcription factors. More specifically, signifi-
cant down- regulation of nuclear protein quality control 
through ubiquitin- dependent proteolytic activity and 
up- regulation of cell cycle- related DNA metabolic pro-
cesses was observed.

Regarding the proliferative capabilities, the ‘cell 
cycle and cell division’ pathway were amplified by in-
creasing expression levels of engaged cyclins, kinases 
and transcription factors. Attached were up- regulated 
functional categories on the level of DNA repair and 
segregation and cell division, represented by the 
terms ‘DNA metabolic process’ and ‘mitotic cytokine-
sis’ respectively. Gene expression of the translational 
machinery was strongly induced at the stage of early 
ribosome biogenesis (RiBi) in the nucleus, including 
rRNA processing and the maturation of several ribo-
somal subunits (Woolford & Baserga, 2013). Induction 
of RiBi genes was accompanied by the up- regulated 
‘nutrient control of ribosomal gene expression’ ontol-
ogy, which involved genes of the cAMP- dependent pro-
tein kinase A (PKA) nutrient- signalling network, such 
as the receptor protein Gpr1 and PKA subunits TPK1/3. 
On the other end of the ribosomal life cycle, down- 
regulation of proteolytic activity was evident from sev-
eral GO readouts, particularly represented by the term 
‘proteasome- mediated ubiquitin- dependent protein 
catabolic process’. The ubiquitin system predominantly 
controls the nuclear turnover of ribosomal subunits and 
its activity must be repressed to allow atypical overex-
pression of RPs (An & Harper, 2020; Sung et al., 2016). 
Additionally, mature ribosomes were adjusted based on 
their subunit configuration in both the cytosol (16 up, 12 
down) and the mitochondrion (7 up, 10 down).

Metabolic enzymes were primarily repressed in the 
regime- transitioning environment of DS. Especially, 
glycolytic catabolism was subjected to a slowdown 
as represented by several enriched GO terms. One 
exception, however, was the non- oxidative branch of 
the pentose phosphate pathway, possibly a reflection 
of increased anabolic needs to supply the overpro-
ducing translation machinery. Furthermore, S. cer-
evisiae sacrificed activity of various stress- specific 
programs such as the mentioned MAPK signalling, the 
‘cellular response to oxidative stress’ or the nutrient- 
starvation- specific ‘lysosomal microautophagy’ (Gross 
& Graef, 2020). In contrast, the up- regulated biological 
function ontology ‘vesicle- mediated transport’ involved 
many endocytic genes. Recently, Johnston et al. (2020) 

F I G U R E  5  Differential gene expression analysis of the 
non- adapted s- LSL response. (A) Six clusters with similar gene- 
expression dynamics are shown with the number of dedicated 
genes in brackets. (B) Corresponding gene ontology (GO) 
enrichment analysis. The false discovery rate (FDR) interval is 
indicated by asterisks for each GO term (* 1 × 10−5 ≤ FDR < 5 × 10−2; 
** 1 × 10−10 ≤ FDR <1 × 10−5; *** FDR <1 × 10−10).
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reported that under conditions of extracellular nutrient 
scarcity, yeasts scavenge for alternative nutrients via 
increased endocytosis activity.

Complementary to the steady- state assessment, 
we investigated the existence of persistent regula-
tory dynamics of the DS- population. Accordingly, 
251 stimulus- responsive genes in fully adapted cells 
were identified (Figure 7). Two symmetric clusters 
revealed oscillatory gene expression changes with 
two inflection points during 9- min r- LSL cycles. With 
this short window of observation, the clusters were 
mainly enriched for fast- responding genes with short 
half- lives <10 min, such as those involved in stress 
response, ribosome biogenesis and transcription reg-
ulation (Miller et al., 2011). Especially, the latter two 
categories were also prevalent in the non- adapted 
response, reflected by 142 overlapping genes ac-
counting for 57% of the adapted DEG dynamic. Thus, 
despite pronounced changes in the global transcrip-
tional landscape during steady- state DS, S. cere-
visiae still executes starvation- induced short- term 
gene expression changes that are independent of its 
adaptation status.

Cluster 1 revealed regulatory activity of the DNA 
replication process, represented by the GO terms 
‘sister chromatid segregation’ and ‘mitotic DNA dam-
age checkpoint’. The latter involved RAD53, the mas-
ter effector kinase regulating progression through the 
S- phase of the cell cycle (Branzei & Foiani, 2006). 
Recently, RAD53 revealed additional transcriptional 
control over several promoters covering 20% of the 
whole yeast genome, emphasizing its wide regula-
tory influence (Sheu et al., 2021). Notably, there was 
no overlap with ‘cell cycle and cell division’ genes up- 
regulated during steady- state DS (Figure 6B) despite 
their involvement in the same signalling cascade of  
S- phase DNA damage checkpoint, such as the media-
tor protein RAD9 (Pardo et al., 2017). The ontology ‘me-
thionine biosynthetic process’ confirms the existence 
of a tightly regulated crosstalk between glucose sens-
ing and methionine synthesis. Zou et al. (2020) linked 
this relationship to the rate- limiting function of methi-
onine on translation initiation through the formation of  
methionyl tRNA. More differentially expressed kinase 
encoding genes were found in the two top GO terms in  
cluster 2, with no apparent functional connection to the 

F I G U R E  6  Functional enrichment analysis of steady- state DS based on (A) biological function, (B) pathway affiliation and (C) cellular 
localization annotations. The false discovery rate (FDR) interval is indicated by asterisks for each GO term (* 1 × 10−5 ≤ FDR <5 × 10−2;  
** 1 × 10−10 ≤ FDR <1 × 10−5; *** FDR < 1 × 10−10).
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unstable nutrient availability. In contrast, the following 
two entries contain regulatory proteins involved in the 
early starvation response (USV1 and MTL1) or glucose 
catabolite repression, such as transcription factors 
Adr1 or Mig1 and the Snf1 subunit gene SIP2 (Stasyk 
& Stasyk, 2019).

To recapitulate, repeated exposure to glucose short-
age in LSL cycles induced pronounced transcriptional 
reprogramming in S. cerevisiae. The strategic re-
sponse encompassed up- regulated growth capacities 
and down- regulated metabolic and stress- responsive 
pathways. However, full adaptation did not shut down 
the repeated on– off switching of immediate tactical 
mechanisms involved in DNA replication and transla-
tion initiation control.

A stress defence— growth trade- off  
shapes the fate of yeasts in a 
heterogeneous environment

In the final part of this study, we investigated the pres-
ence of global transcriptional programs and their un-
derlying regulatory mediation through gene set 
enrichment analysis (Figure 8). Non- adapted yeast 
cells showed significant signs of executing the environ-
mental stress response (ESR), a program that initiates 
a broad spectrum of stress- responsive genes (ESR- 
induced ESRi) while simultaneously repressing riboso-
mal protein (RP) and biogenesis (RiBi) genes (Brion 
et al., 2016; Gasch et al., 2017). This well- investigated 
characteristic is clearly visible in Figure 8A and has 
been observed previously in various stresses (Levy 
et al., 2007; MacGilvray et al., 2020). The temporal dy-
namic of the ESR follows the earlier described trend of 
overshooting as evidenced by matching patterns of 
gene sets controlled by its master transcription factors 
Msn4, Sko1, Sok2 (ESRi), Sfp1 (RP and RiBi) and Ifh1 
(RP) (Gasch et al., 2017; Gutin et al., 2015; 
Skoneczny, 2018). Besides common ESR regulators, 
we identified the activity of non- ESR- associated stress- 
responsive TFs such as heat shock transcription factor 
Hsf1, the calcineurin- responsive zinc finger Crz1, and 

the oxidative stress regulators Cin5 and Skn7. 
Interestingly, Hsf1 targets seem to operate ‘out of 
phase’ compared to the overall transcriptional dynam-
ics suggesting divergent signal integration. Indeed, 
ESR coordination is dominated via target of rapamycin 
1 (TORC1) and PKA crosstalk (López- Maury 
et al., 2008), while glucose starvation- induced Hsf1 
phosphorylation is dependent on the Snf1 signalling 
cascade (Hahn & Thiele, 2004). We further assessed 
expression changes of 267 strictly growth rate- 
dependent genes extracted from Fazio et al. (2008) 
which followed the observed transient YX∕S reduction 
implied by Figure 3A. In contrast, the cell cycle gene 
set was not affected significantly during the non- 
adapted time series, even though Figure 8B indicated a 
steady gene expression decline of Swi4 targets. 
However, this cell cycle regulator reportedly plays a 
role in the induction of several stress- responsive genes 
under the control of the Xbp1 promoter (Mai & 
Breeden, 1997). Altogether, we anticipate that stress- 
sensing networks dominated the transfer of non- 
adapted cells to a defensive state. We rule out mere 
growth rate sensing as an effector since μ correlated 
genes surged after 4.5 min, while the first significant re-
duction in YX∕S was observed 1 h post- s- LSL stimulus.

Remarkably, the adapted DS- culture predominately 
followed the same course of transcriptional dynamics 
of the mid- term s- LSL response after 20– 40 min. In 
this phase, the S. cerevisiae transcriptome ramped 
up growth- associated genes and repressing stress- 
responsive genes. Regarding metabolic gene sets a 
pronounced difference emerged: The non- adapted 
response showed expression changes of gene sets 
representing glycolysis, gluconeogenesis and fatty 
acid oxidation coordinated by their respective TFs 
Adr1 and Cat8 (Young et al., 2003). In contrast, the 
DS- phenotype showed down- regulated glycolytic/
gluconeogenic genes, but no sign of Adr1 or Cat8 
regulation. Instead, Cat8 targets were constantly 
differentially expressed within adapted LSL- cycling. 
Another regulatory program with persistent temporal 
activity during DS was controlled by Bas1, a control 
mechanism for ATP homeostasis (Pinson et al., 2019). 

F I G U R E  7  Differential gene 
expression analysis of the adapted r- LSL 
time series. (A) Two clusters with similar 
gene- expression dynamics are shown 
with the number of dedicated genes 
in brackets. (B) Corresponding gene 
ontology enrichment analysis.  
The false discovery rate (FDR) interval is 
indicated by asterisks for each GO term  
(* 1 × 10−5 ≤ FDR <5 × 10−2).
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Figure 8C further indicates additional short- term dy-
namics of ESR- associated gene expression, although 
to a lesser extent, compared to the time series after 
a single famine stimulus. Notably, only RiBi, not RP 
genes, were differentially expressed in concert with 
the ESRi group.

DISCUSSION

The impact of famine zones in industrial 
bioreactors

Gradients of limiting nutrients occur when reaction times 
of microbial activity match or exceed mean circulation 
times (Haringa et al., 2018; Lara et al., 2006). This cor-
relation causes the appearance of carbon starvation 
regimes during the growth (Nadal- Rey et al., 2021) or 
production phase of C- limited fed- batch processes. We 
imposed a single famine stimulus on steady- state yeast 
cultures to investigate the influence of this scale- up ef-
fect on strain performance when starvation zones start 
to build up. The population which was already adapted 
to glucose limitation apparently perceived the exposure 
to glucose starvation as a warning signal, which imme-
diately triggered facets of the ESR (Gasch et al., 2000). 
Even though optimal conditions were restored within 
76 s, S. cerevisiae CEN.PK 113- 7D obviously lacks the 
regulatory capability to stop the initiated program ef-
ficiently. Instead, the stressed cells shifted into a ‘panic 
mode’ which is characterized by frequent switching 

on/off of regulatory genes that caused increased ATP 
expenditure and impaired growth. Understanding the 
underlying regulatory mechanisms is paramount to en-
gineer robust strains and guided this study.

Several studies anticipate that the initiation of 
the ESR following acute glucose starvation is domi-
nated by cAMP- dependent PKA signalling (De Wever 
et al., 2005; Görner et al., 2002; Martínez- Pastor 
et al., 1996). PKA, in turn, controls the ESRi regu-
lon through activation of the transcriptional inducers 
Msn2/Msn4 and inactivation of the repressors Sko1 
and Sok2 (Gutin et al., 2015). A characteristic prop-
erty of these and other stress- related TFs such as 
Crz1 is their oscillating translocation between nucleus 
and cytoplasm (Zadrąg- Tęcza et al., 2018). Gutin 
et al. (2019) reported that Msn2/Msn4 activate two 
successive bursts of transcription upon exposure to 
osmotic stress: First, PKA dephosphorylates Msn2/
Msn4 causing their translocation to the nucleus to 
initiate quick but weak transcriptional changes within 
10 min. Strong transcriptional changes require a pul-
satile translocation of Msn2/Msn4 between nucleus 
and cytoplasm, during which nuclear export is medi-
ated by Msn5. Thus, we reason that the non- adapted 
response examined in this work displayed the initi-
ation phase but not the second progression phase, 
potentially explaining the mild log- fold changes com-
pared to others (Causton et al., 2001; Gasch, 2007). 
Recently, Wu et al. (2021) inferred that Msn4, but not 
Msn2, is regulated by an incoherent feedforward loop 
(IFFL), including the intermediate regulator kinase 

F I G U R E  8  Gene set enrichment analysis (GSEA) of pre- defined gene lists from literature and transcription factor target lists. The 
reported t- statistic implies the strength and direction of coordinated differential gene expression of a given set. GSEA was performed 
comparing the single (s) LSL time series and steady- state DS (A and B) on the one hand, and the dynamics within the repeated (r) LSL 
cycles (C) on the other hand. Only gene sets with significant enrichment during at least one sample point (FDR <0.05) are reported in this 
figure.
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Yak1. Since the purpose of IFFLs is to accelerate 
response time and execute oscillatory behaviour 
(Reeves, 2019) we interpret the absence of significant 
Msn2 regulation (Figure 7B) as further support for an 
early ESR retraction mechanism.

Recent research concerning the ESR identified 
strong counter- correlated gene expression between 
the ESRi and RP/RiBi clusters. The latter, sometimes 
referred to as the ESRr (ESR repressed) cluster, is 
mediated by the regulatory activity of Sfp1, Ihf1/Fhl1 
and the general activator/repressor TF Rap1 (Gasch 
et al., 2017; MacGilvray et al., 2020). Our experiment 
confirmed the mutual relationship between ESRi and 
ESRr, even though transcriptional control of RP and 
RiBi genes was executed exclusively via Sfp1 and Ifh1. 
Both TFs are inducers of proliferative capacity as Sfp1 
binds the RiBi- associated PAC promoter while Ifh1 pos-
itively controls RP gene expression through a currently 
unknown promoter architecture (Cipollina et al., 2008; 
Schawalder et al., 2004). Either TORC1 or PKA retains 
their active state during optimal growth. Sudden down-
shift of nutrients, however, induces PKA- coordinated 
ESRr down- regulation, which can be explained by 
cytosolic localization of Sfp1 and Ifh1 alone (Shore 
et al., 2021; Zencir et al., 2020). This exclusively stress- 
specific role of Sfp1 and Ifh1 is mediated through their 
antagonizing TFs Dot6/Tod6 and Stb3 respectively 
(Huber et al., 2011; Plank, 2022).

Taken together, the observed retraction and over-
shooting gene expression originated from the TORC1/
PKA circuitry since both nodes tune the temporal and 
local displacement of overlapping TFs. Acute glucose ex-
haustion signals PKA to execute its feedforward role to 
rapidly respond to the stimulus and override the steady- 
state controller TORC1 (Kunkel et al., 2019). Similarly, 
PKA remains dominant when glucose levels elevate, 
leading to overshooting regulation until TORC1 regains 
control. It is somewhat surprising that the overshoot am-
plitude matches the initial response. Combined with the 
feedforward role of PKA, multiple feedback mechanisms 
exist with the potential to act as signal amplifiers. For in-
stance, Ashe et al. (2000) reported severe inhibition of 
translation initiation within 30– 60 s after glucose deple-
tion, which can induce rapid RiBi and RP mRNA degra-
dation (Huch & Nissan, 2014). In our experiment, ample 
nutrient conditions 2 min after the start of the s- LSL 
cycle superimposed the initiated decay of translation- 
associated genes. The phenotype may be explained by 
consequent disparate sensing of expected versus actual 
growth rates that may prompt yeasts to boost transcrip-
tion of growth- associated mRNAs causing the observed 
overshoot (Shore et al., 2021). Regarding the regulation 
of energy homeostasis, the Snf1 kinase is activated upon 
AEC drops by as narrow as 0.1 causing inhibition of 
TORC1 (González & Hall, 2017; Oakhill et al., 2012) and 
co- phosphorylation of stress- responsive PKA targets 
(De Wever et al., 2005).

Once activated, Snf1 co- activated specific gene 
expression programs via crosstalk with the TOR/PKA 
node. Furthermore, the TFs Adr1 and Cat8 are am-
plified but not Mig1 (Busti et al., 2010). Besides Snf1, 
Mig1 is dependent on further activation through hexose 
kinase 2 and represents one branch of dual control 
over the carbon catabolite repression (CCR) regulon. 
The second branch integrates extracellular glucose 
signals through the sensory Rgt2/Snf3- PKB system 
(Busti et al., 2010; Kim, Roy, et al., 2013). Since we did 
not observe any differentially expressed CCR genes, 
we reason that Snf1 regulation is solely AEC driven. 
Consequently, the strictly glucose- related Rgt2/Snf3- 
PKB pathway was not implicated in the non- adapted re-
sponse. Short- term energy deprivation further induced 
changes in mitochondrial translation (see Figure 5 clus-
ter 5). Yi et al. (2017) reported that Snf1 associates with 
the mitochondrial membrane to support respiratory 
activity for 10 h of glucose starvation— a prerequisite 
to sustain autophagy during arrested growth. We hy-
pothesize the existence of a preparative program that 
was aborted in early stage in analogy to the observed 
ESR dynamics: Genes encoding translational capaci-
ties might have been differentially expressed as a pre-
paratory measure to alter mitochondrial respiration. 
Nevertheless, the cascade was shut down promptly 
after return to steady- state conditions.

The transcriptional response mirroring 
frequent glucose starvation

Once famine zones are established during industrial 
fermentations, yeast cells require adaptation to with-
stand the repeated exposure to the starvation condi-
tions that request regime transitions. Our experimental 
design enabled the investigation of the growth pheno-
type and the transcriptional strategy during oscillatory 
glucose availability by imposing an intermittent feeding 
regime. On a macroscopic level, the cellular mode of 
operation mimicked that of a faster- growing popula-
tion, that is, reduced carbon storage pools, increased 
rRNA content and ribosomal gene expression, de-
creased ESR expression levels, down- regulated glyco-
lytic genes and up- regulated cell cycle genes (Brauer 
et al., 2008; Nissen et al., 1997; Regenberg et al., 2006; 
Silljé et al., 1999; Xia et al., 2022).

Processing of dynamic environmental inputs 
can cause repeated decoupling of the growth rate 
from the expected μ- specific transcriptome (Levy 
& Barkai, 2009; Zakrzewska et al., 2011; Zaman 
et al., 2009). Dedicated studies assigned this disso-
nance predominantly to high PKA activity, which is 
in agreement with our DS dataset: Strong ESRi re-
pression and RiBi induction, backed by increased 
expression levels of PKA pathway components are 
opposed to relatively weak RP induction, owing to 
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the TORC1- dependency of the latter (see summariz-
ing Figure 9) (Huber et al., 2011). Under the inves-
tigated conditions, however, cells did not shut down 
rapid translation initiation control mechanisms, which 
is also reflected by dynamic ESRi/RiBi patterns 
during the adapted time series. This finding may sur-
prise as the yeast's ability to decelerate translation 
upon glucose scarcity may be regarded as a per-
sistent ‘first line of defence’ (Hershey et al., 2012). 
Instead, cells apparently enable growth by benefit-
ting from higher ribosome abundance as it was ob-
served in other studies (Metzl- Raz et al., 2017; Young 
& Bungay, 1973). This seems to be an evolutionarily 
conserved principle since bacterial cells elevate ribo-
some content for accelerating growth after relieving 
from various stresses (Bergen et al., 2021). However, 
despite amplifying genes encoding ribosomal pro-
teins, yeasts further backed ribosomal biogenesis 
and configuration to maximize growth capacities. In 
this context, Parenteau et al. (2015) reported that 
perturbed growth can induce the expression of dif-
ferent subunits including gene paralogues which in-
crease fitness and which are repressed under normal 
growth. Likely, de- repressed RP paralogues do not 
exert stress- specific functions but may enable atyp-
ical gene overexpression. In our study, however, we 
could not draw any conclusion if and to which extent 
differentially expressed paralogue genes actually 
contributed to the observed phenotype.

Furthermore, even though still under debate, in-
creased RiBi expression supposedly indirectly pro-
motes progression over START during the cell cycle 
through Whi5 inactivation (Bernstein et al., 2007; 
Polymenis & Aramayo, 2015; Schmoller et al., 2015). 
Eased START passaging leads to reduced time within 
the G0/G1 phase and decreased trehalose and glyco-
gen pools (Brauer et al., 2008; Paalman et al., 2003). 
Hence, we argue that the cell cycle aligned with the 
PKA- guided shaping of the translational machinery 
following the environmental signal as a feedback 
mechanism (Müller et al., 2003). Transcriptome anal-
ysis revealed added regulatory rearrangements that 
point towards a preference for PKA activity over 
TORC1 control. Down- regulation of non- relevant 
stress signalling cascades was observed, such as the 

osmo- responsive MAPK cascade— a constitutive in-
hibitor of PKA (Mace et al., 2020). In terms of energy 
homeostasis, elevated translational capacity is ATP- 
costly and might have contributed to the increased 
AEC difference during the LSL transition in DS. A 
more pronounced drop of the AEC, in turn, could po-
tentially amplify the earlier discussed Snf1- guided 
energy signal integration with positive feedback for 
PKA and repression of TORC1 targets. In conclusion, 
exposure to recurring regime transitions shifted the 
regulatory response of S. cerevisiae into a mode of 
dominating PKA signalling. The kinase constantly 
overrides the steady- state controller TORC1 and 
is amplified by several feedback mechanisms, the 
consequence of which is a cellular tuning to enable 
efficient growth acceleration based on the adapted 
ribosome portfolio.

Potential transfer of knowledge for 
industrial strain engineering

Understanding how cells adapt to substrate het-
erogeneities in industrial bioreactors is important for 
bioprocess optimization. The trade- off between stress- 
response and internal growth capacity turned out as a 
key mechanism to explain cellular performance under 
recurring glucose starvation. If biomass itself is the 
product, maintaining a high growth rate is a favoura-
ble trait. However, for exploiting metabolic production 
capacities the prioritization of re- installing high growth 
rates may deteriorate the supply of carbon, reduction 
factors, and energy for the targeted product formation. 
This conflict may arise for metabolic products as well 
as for heterologous proteins. For the latter, ribosome 
buildup could potentially reduce the product yield and 
vice versa (Birnbaum & Bailey, 1991). Yet, predicting 
the impact of competing resource allocations influenced 
by environmental signalling is not a trivial task (Kafri 
et al., 2016). For instance, Wright et al. (2020) reported 
increased insulin production from S. cerevisiae in a two- 
compartment scale- down approach with a remarkable 
conformity to the results presented here: Environmental 
heterogeneity enforced the translational machinery and 
repressed stress- responsive networks, which proved to 

F I G U R E  9  Key regulatory elements comprising target of rapamycin 1 (TORC1) and protein kinase A (PKA) signalling. DS, dynamic 
steady state; ESRi, induced environmental stress response genes; L, C- limitation; RiBi, ribosome biogenesis genes; RP, ribosome protein 
genes; RS, reference steady state; S, C- starvation.
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be beneficiary for insulin productivity. In consequence, 
we propose two use cases for our dataset.

First, the deployed scale- down approach can en-
able strain engineers to streamline industrial hosts. 
For instance, we observed a presumably unnecessary 
induction of the ESRi cluster upon first- time glucose 
withdrawal as it was actively repressed during repeated 
glucose oscillations. Thus, deleting Msn2/4 could po-
tentially save unwanted resource expenditure. This pro-
posal is supported by the work of Ashe et al. (2000), 
who prove that msn2/4Δ strains abolished the induction 
of the stress response program while maintaining a nor-
mal growth phenotype. Likewise, our dataset suggests 
wasteful gene expression induced via Hsf1 and Crz1. 
Indeed, altering nuances of the regulatory response 
via TF engineering gains popularity as relatively minor 
changes in the genetic background can improve strain 
performance significantly (Mohedano et al., 2022). For 
instance, several studies achieved increased ethanol 
yield through the atypical expression of just a single 
transcription factor (Michael et al., 2016; Samakkarn 
et al., 2021; Watanabe et al., 2017).

Second, this and other work supports the finding 
that glucose availability, but also other industrially rel-
evant heterogeneities, converge mainly on the level 
of PKA signaling (de Lucena et al., 2015; De Melo 
et al., 2010; Norbeck & Blomberg, 2000; Zaman 
et al., 2009; Zhao et al., 2015). To conclude, we would 
like to formulate a somewhat alternative, maybe even 
provocative scale- down route. If mere activation/inhi-
bition dynamism of PKA shapes the corpus of adap-
tation effects during industrial fermentations, wouldn't 
triggering PKA according to process- relevant stimuli 
suffice as the most simplistic scale- down experi-
ment? Instead of trying to mimic physicochemical 
perturbations by wet- lab approaches as close to re-
ality as possible, it might be sufficient to character-
ize the frequency and amplitude of relevant stimuli 
a priori, for instance, by means of CFD simulations. 
Consequentially, the simulation output should be 
translated into an input signal for the PKA hub. Tools 
to control PKA activity on relevant scales are al-
ready available, such as optogenetic switches (Hepp 
et al., 2020; Stewart- Ornstein et al., 2017). Ultimately, 
this approach could empower rational scale- down 
by providing a fast and easy method to estimate the 
impact of extracellular signal fluctuations on strain 
performance.

CONCLUSIONS

This study revealed that perception of extracellular 
glucose concentration alone can induce pronounced 
biological scale- up effects. Industrially relevant glu-
cose gradients with regime transitions between car-
bon limitation and starvation were set in a chemostat 

with intermittent feeding. The single most prominent 
observation, irrespective of the adaptation status, 
was the adjustment of internal resources following 
a growth– stress response tradeoff. Interpretation of 
transcriptomic data allowed us to identify the implica-
tion of several regulatory circuits, all centred around 
protein kinase A. In consequence, we were able to 
define engineering propositions with the potential to 
(i) improve strain performance in an industrial setting 
and (ii) simplify classical scale- down. Here, a growth 
scenario was investigated with the laboratory S. cerevi-
siae strain CEN.PK113- 7D. Comparative experiments 
carried out under the same premise with industrial pro-
duction hosts, especially considering polyploid strains, 
could shed further light on the general applicability of 
the demonstrated approach.
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