
VCG-based Truthful Mechanisms for Social Task
Allocation

Yingqian Zhang and Mathijs de Weerdt

Delft University of Technology, The Netherlands
{Yingqian.Zhang, M.M.deWeerdt}@tudelft.nl

Abstract. In many applications of the task allocation problem such as peer-to-
peer and grid computing, and virtual organizations, the (social or business) rela-
tions between the participating agents play an important role, and thus they should
be taken into account. Furthermore, in such applications, agents providing the re-
sources usually act self-interested. This paper therefore studies the problem of
finding truthful mechanisms for these kinds of social task allocation problems.
In this paper we give on the one hand an optimal mechanism and model the
problem as an integer linear program (ILP), and on the other hand a polynomial-
time approximation by splitting the problem into smaller sub-problems, each of
which is solved optimally. We show that both mechanisms are truthful.
The optimal mechanism may take exponential time for some instances, and in
theory, the quality of the approximation is not guaranteed. However, we show
experimentally that for problem instances where the social network has the small-
world property, the quality of the results for the approximation is quite good, due
to the fact that the division into subproblems uses the locality of tasks in the social
network.

1 Introduction

The task (and resource) allocation problem (TAP) has been extensively investigated in
recent years [8, 17, 18]. With the increasing popularity of the Internet as a global plat-
form for computation, many interesting applications of this problem have emerged. For
example, in peer-to-peer and grid computing, resources and tasks are allocated to dif-
ferent agents. The difference from earlier problem settings is that these agents interact
within a (partially) connected (social) network, just like in business applications, where
preferential partner selection and interaction is very common. Therefore, we are inter-
ested in the study of the task allocation problem in agent social networks (STAP) [4].

In our previous work [4] we assumed agents to be cooperative. In this paper we
study the STAP as a mechanism design problem, taking into account the incentives of
agents. In the problem setting for this paper, agents receive a fair share of the utility of
a task they contribute to. Consequently, it is more interesting for an agent to submit its
resources to a task with a high utility. Our main goal now is to develop so-called truthful
mechanisms in which agents cannot be better off by lying about the resources they have
available.

We briefly describe the STAP as follows. A set of agents is connected by a partial
(social) network. Each agent has a limited amount of resources of different types at its
disposal. There also is a set of tasks to be done. Each task requires some resources, has

a fixed benefit, and is located at a certain agent, called a manager. We only allow neigh-
boring agents to supply the resources for a task. These agents are called contractors.
The problem is, given the declared resources of the contractors, to find out which tasks
to execute, and which resources of which neighboring contractors to use for these tasks,
such that the total benefit of the allocated tasks is maximized.

In contrast to some of the other task allocation and mechanism design problems,
we assume in this problem setting that all resources have been paid for already, or
that the costs for using them are negligible. This situation occurs in for example grid
computing, but also in many companies, because the hardware and/or the employees
need to be paid anyway. Also without costs, the social task allocation problem (STAP)
is NP-complete [4].

The efficient task allocation can only be found if the information of the available
resources among agents is correctly known, which requires agents to report their re-
sources truthfully. However, in many situations—especially where multiple organiza-
tions or companies are involved—agents are often self-interested, and they may lie
about their private information in order to maximize their utility. Therefore, incentiviz-
ing self-interested agents to report their private information truthfully is crucial to the
performance of task allocation algorithms. Surprisingly, this issue has not yet gained
much attention in the context of the TAP. Most of the existing work focuses on the
development of computational models in cooperative settings. Only a few other works
consider the influence of agents’ selfish behavior in task allocation [6, 10, 15], among
which Kraus et al. [6] study the case where the tasks need to be executed by self-
interested agents under time constraints. They focus on (stable) strategies for distribu-
ing revenues fairly among agents. Manisterski et al. [10] show impossibility results for
completing tasks by non-cooperative agents, and Nisan and Ronen [15] propose a truth-
ful task allocation mechanism, called MinWork, for the problem of minimizing the task
completion time. In this paper, we address both the computational part—to develop
an efficient allocation algorithm, and the game theoretical aspect—to define a truthful
mechanism, of the task allocation problem in social networks.

The private information in STAP is the set of available resources of each contractor.
We assume in this paper that only the contractor agents strategize about their private in-
formation. To avoid manipulation of the contractors, we aim to design a truthful mech-
anism by adding a payment function to reward agents for the use of their resources.
Nisan and Ronen [15] showed that the truthfulness of agents can be guaranteed by so-
called VCG-based mechanisms (see Definition 7) if the mechanism is able to compute
the optimal solution. Since many interesting optimization problems are intractable, they
showed an alternative way to achieve a truthful VCG-based mechanism by replacing the
exact algorithm with an approximation [16]. However, they showed that for combina-
torial auctions all reasonable VCG-based mechanisms are not truthful. Moreover, for
a certain class of minimization problems (cost minimization allocation problem), any
truthful VCG-based mechanism is either optimal or can lead to degenerate results, i.e.
for any approximation there are instances in which the result can be arbitrarily far from
the optimal solution. Their result suggests that for many NP-hard problems, developing
good polynomial-time VCG-based truthful mechanisms is not a trivial problem.

Combinatorial auctions (CAs) have become the center of attention for studying the
impact of using an approximation algorithm for the design of a truthful mechanism,
e.g. by imposing additional restrictions on the problem domain [1, 7, 11]. For example,
Lehmann et al. [7] restricted the preferences of each bidder agent to a single bundle
of items, and then introduced efficient greedy mechanisms that are truthful. In CAs,

T2

{s2}

u(T2) = 20

a2

{s2}

T1

{s1.s2}

u(T1) = 10

a1

{s1, s2}

Fig. 1. For some allocation algorithms, agent a2 will be better off by underreporting its resources.

the preference v of the bidders is assumed to be monotone (or called “free disposal”
[2]), i.e., if a bundle of items S is a subset of another bundle S′, then v(S) ≤ v(S′).
However, this is not the case in the problem under consideration in this paper. As a
simple example, consider the case where there are two tasks T1 and T2. Task T1 with
the benefit of 10 requires resources s1 and s2 to complete. T2 only needs resource s2

yet with a higher benefit of 20. A contractor agent a1 connects to both tasks, and it
has required resources from both tasks. Thus it can be allocated to either T1 or T2. As
agents’ valuations relate to the tasks it is assigned to (it will be defined formally in
Section 2.1), a1’s valuation could be 20 by declaring {s2} and 10 by declaring {s1, s2}
(see Figure 1). Clearly, its valuation is not monotonically increasing with the “better”
declared type, and thus the domain we study is different from that of CAs. Since the
characteristic of truthfulness depends strongly on the domains of the valuations of the
agents [14], the existing results of truthfulness for CAs cannot directly be applied to the
STAP.

In remainder of this paper, we first recapitulate the STAP introduced in [4], then de-
fine the mechanism design problem for STAP formally. Next, in Section 3 we propose
an exact, truthful mechanism with an optimal allocation algorithm. We then introduce
our main contribution, i.e., a polynomial-time truthful mechanism (in Section 4). Al-
though the quality of this approximation cannot be guaranteed, in Section 5 we show
experimentally that for artificially generated small-world networks the results of the ap-
proximation can be quite good, suggesting that instances of the STAP in practice having
this small-world property can also be solved to a satisfactory level.

2 Social task allocation problems

In this section we define the social task allocation problem in a cooperative setting,
followed by a mechanism design problem for self-interested agents.

2.1 Cooperative social task allocation

LetA denote a set of agents, which need resources to complete tasks. Let R = {r1, . . . , rl}
denote the collection of the resource types available to the agents A. Each agent i ∈ A
controls a fixed amount of resources for each resource type in R, which is defined by
a resource function: si : R → N. Finally, we assume agents are connected by a social
network.

Definition 1 (Social network). An agent social network SN = (A, AE) is an undi-
rected graph, where vertices A are agents, and each edge (i, j) ∈ AE indicates the
existence of a social connection between agents i and j.

Suppose a set of tasks T = {t1, t2, . . . , tn} arrives at such an agent social network.
Each task t ∈ T is then defined by a tuple 〈U(t), req(t), loc(t)〉, where U(t) is the
benefit gained if task t is accomplished, and the function req(t) : R → N specifies the
amount of resources required for the accomplishment of task t. Furthermore, a location
function loc : T → A defines the locations (i.e., agents) of the tasks in the social
network. An agent i that is the location of a task t, i.e. loc(t) = i, is called the manager
of task t. The exact assignment of resources to tasks is defined by a task allocation.

Definition 2 (Task allocation). Given a set of tasks T = {t1, . . . , tn} and a set of
agents A in a social network SN , a task allocation is a mapping o : T ×A×R → N.
A valid task allocation in SN must satisfy the following constraints:

– A task allocation must be correct. Each agent i ∈ A cannot use more than its
available resources, i.e. for each r ∈ R,

∑
t∈T o(t, i, r) ≤ si(r).

– A task allocation must be complete. For each task t ∈ T , either all allocated agents’
resources are sufficient, i.e. for each r ∈ R,

∑
i∈A o(t, i, r) ≥ req(t)(r), or t is

not allocated, i.e. o(t, ·, ·) = 0.
– A task allocation must be maximal, i.e., no more tasks can be allocated.
– A task allocation must obey the social relationships. Each task t ∈ T can only be

allocated to agents that are (direct) neighbors of agent loc(t) in the social network
SN . Each such agent that can contribute to a task is called a contractor.

The set of all valid task allocations is denoted by O.

We write To to represent the tasks that are fully allocated in o. The benefit of o is then
the sum of the benefits of each task in To, i.e., Uo =

∑
t∈To

U(t). Note that we do not
include costs for resources, since we assume that the resources have already been paid
for. Our only goal is to allocate these resources as efficiently as possible. We thus define
the efficient task allocation as follows.

Definition 3 (Efficient task allocation). We say a task allocation o∗ is efficient if it is
valid and Uo∗ is maximized, i.e., o∗ = arg maxo∈O Uo.

The social task allocation problem is then defined as follows.

Definition 4 (Social task allocation problem). Given a set of agents A that are con-
nected by a social network SN = (A, AE), a finite set of tasks T need to be allocated
to the agents. The goal of this social task allocation problem (STAP) is to find the
efficient task allocation o∗.

2.2 Mechanism design for STAP

The efficient task allocation can only be found if the agents report their available re-
sources truthfully. Since we cannot always rely on the agents to be honest, we treat the
problem as a mechanism design problem so that every agent is incentivized to report its
true resources, no matter what strategies other agents use.

We give a brief summary of the relevant mechanism design concepts below, but for a
more elaborate introduction please see [14]. In a mechanism design setting, we provide
a method that determines an outcome, i.e., a valid task allocation o ∈ O, given the
inputs (called strategies) from the contractor agents and the public knowledge. Typical
assumption for a mechanism design problem is that some of the information is private,
in our case, those of the contractor agents.

This private information or type si of a contractor agent is the description of the
resources it has available, i.e., si : R → N. The set of all such functions is called its type
space S. The type space of all m agents is defined by Sm. We use s = (s1, . . . , sm) ∈
Sm to denote the type profile of the agents. We sometimes denote s by (si, s−i), where
s−i denotes the types of all contractors except i.

The set of possible inputs of an agent for the mechanism is called its strategy space.
The revelation principle [12] says that for any coordination mechanism any equilib-
rium can also be achieved by a truthful direct-revelation mechanism. A direct revelation
mechanism is one where the strategy space of the agents is exactly their type space. In
our study we therefore define the strategy space A = S, and search for a mechanism
that is truthful (see Definition 6).

Besides the strategies of the contractor agents, part of the input for the mechanism
consists of public information. In our case, this is a social network and a set of tasks.
We use Z to denote this public parameter space of the social task allocation problem.
Each z ∈ Z is a tuple (SN, T).

When the mechanism receives inputs a = (a1, . . . , am) ∈ A (called a strategy
profile), it selects an allocation o = O(z,a) with some allocation algorithm O. In
addition, the mechanism computes payments (p1(z,a), . . . , pm(z,a)) for all contractor
agents. The result for agent i, called its utility, is the sum of the valuation vi that i gets
from the resulting allocation o with its type ai and the payment it receives from the
mechanism:

ui(a) = vi(ai, o) + pi(z,a).

In the STAP, we define the valuation of agent i as its fair share of the utilities of the tasks
it helped to fulfill. For this we define the efficiency e of a task t by dividing the utility of
t by the total number of required resources for t: e(t) = U(t)P

r∈R req(t)(r) . This efficiency
of a task has no other relation to the efficiency of a task allocation (Definition 3 than
that it expresses a heuristic for obtaining such an efficient task allocation. An agent then
receives for each resource it is contributing a fair share (the efficiency) of the task it is
contributed to.

vi(ai, o) =
∑
t∈To

∑
r∈R

min {o(t, i, r), ai(r)} · e(t). (1)

The utility ui is what agent i aims to maximize. The social welfare W (o) of the system
is then the sum of the valuations of the contractors in the allocation o, i.e., W (o) =

∑m
i=1 vi(ai, o). We use this to define the mechanism design problem for social task

allocation formally.

Definition 5 (Mechanism design for STAP). Given the parameter space Z, the type
space S, and the strategy space A, the mechanism design problem for STAP is to find
a mechanism M = (O, p) that consists of an allocation function O : Z ×A → O, and
a payment function pi : Z ×A → R such that the selected output o ∈ O maximizes the
total social welfare W (o).

A mechanism is efficient if it maximizes the social welfare. Such a mechanism de-
sign problem is called a utilitarian mechanism design problem [16].

We first show that the goal of this mechanism design problem is aligned with that
of the STAP. We re-write the objective function of the STAP for this purpose using the
definition of a valid allocation o as follows:

U(To) =
∑

t∈To
U(t) =

∑
t∈To

∑
r∈R req(t)(r) · e(t)

=
∑

i∈A
∑

t∈To

∑
r∈R o(t, i, r) · e(t)

=
∑m

i=1 vi(ai, o) = W (o)

Thus, when an algorithm for STAP gives the optimal solution, it also outputs the optimal
social welfare for the mechanism, if agents report their private information truthfully,
i.e., if the mechanism is truthful.

Definition 6 (Truthful). Given an output algorithm O, a mechanism is truthful if A =
S, and for any parameter z ∈ Z, for any strategy profile a ∈ Am, for any agent i with
type si ∈ S it holds that

ui(si,a−i) = vi(si, O(z, si,a−i)) + pi(z, si,a−i)
≥ ui(ai,a−i) = vi(si, O(z, ai,a−i)) + pi(z, ai,a−i)

Informally, agent i is always better off by revealing its true private type si to the mecha-
nism, no matter what strategies other agents play. Truthful mechanisms can be achieved
with carefully designed payment functions, such as VCG (Vickrey-Clarke-Groves) pay-
ments [19, 3, 5]. It has been shown that truthfulness can be guaranteed by a VCG pay-
ment if the mechanism is able to compute the optimal solution [16]. Furthermore, in
some cases VCG-based mechanisms are the only possible truthful mechanisms [14].

Definition 7 (VCG mechanism [16]). A mechanism M = (O, p) belongs to the VCG
family if:

1. The allocation function O(z,a) maximizes the total welfare according to a, i.e. for
all a, O(z,a) ∈ arg maxo∈O(z,a) W (o).

2. The payment of agent i is calculated according to the VCG formula, i.e. pi(z,a) =
−vi(ai, O(z,a))+W (O(z,a))+ha−i , where ha−i is an arbitrary function of a−i.

Nisan and Ronen [16] take into account the computational complexity while dealing
with the incentive compatibility. A mechanism is an exact mechanism if its allocation
algorithm maximizes the objective function. However, for many NP-hard problems,
computation is intractable in order to maintain the truthfulness. Therefore, they intro-
duced a class of VCG-based mechanism, where the optimal algorithm is replaced by a
sub-optimal, polynomial-time algorithm. A polynomial time mechanism is one where
both the allocation and the payment can be computed in polynomial time.

2.3 Hardness results

The following complexity results on STAP were proven in our previous work [4].

Theorem 1. Given l resource types, a set of tasks T , and a set of agentsA with a social
network SN , the problem of deciding whether a task allocation o with benefit more than
K exists is NP-complete.

Let the number of neighbors of each agent in the social network SN be bounded
by ∆ for ∆ ≥ 3. Computing the efficient task allocation given such a network is NP-
complete. In addition, it is not approximable within ∆ε for some ε > 0.

In this paper we approach the mechanism design problem for STAP from two di-
rections. First, we come up with a truthful mechanism that is guaranteed to be optimal,
but can take exponential time. Then we propose an algorithm that takes polynomial
time, but does not have any hard guarantees on the quality of the solutions. Later we
investigate these disadvantages experimentally.

3 An exact mechanism for STAP

In this section, we first introduce an optimal allocation algorithm, and then a VCG
payment scheme to incentivize agents to report their true types.

3.1 The optimal task allocation algorithm

The optimal task allocation algorithm should deal with the restrictions posed by the
social network. For this NP-complete problem we used a straightforward translation to
an integer linear programming (ILP) problem and the GNU Linear Programming Kit [9]
to solve this problem. For the ILP formulation we introduce two types of variables: the
binary variables yj ∈ {0, 1} for 1 ≤ j ≤ n describe whether or not task j is allocated,
and the integer variables ∀1≤j≤n,1≤i≤m,1≤k≤lxijk denote the amount of resources of
type k agent i supplies to task j. The ILP formulation then looks as follows.

Maximize
n∑

j=1

yj · U(tj)

subject to having sufficient resources of each type for each chosen task from the neigh-
boring agents, i.e.

∀1≤j≤n∀1≤k≤l

∑
{i∈[1,m]|(i,loc(tj))∈AE}

xijk ≥ yj · req(tj)(rk),

and not using more resources than there are available, i.e.

∀1≤i≤m∀1≤k≤l

n∑
j=1

xijk ≤ rsc(i)(rk).

This optimal algorithm (OPT) is exponential in the number of variables, i.e., the
number of tasks, agents, and the resource types.

3.2 An exact truthful mechanism

Our mechanism is developed based on the VCG mechanism, which has some nice prop-
erties such as being efficient and incentive compatible.

Definition 8 (MOPT for STAP).

– Task allocation algorithm OPT: Let z = (SN, T) be an instance of STAP. First
the mechanism center announces a set of tasks T —required resources (type and
demand), utilities and locations—that need to be allocated to all contractor agents.
Next the contractors declare their types a to the center. The center then finds the
efficient allocation o = OPT(z,a) using the ILP translation.

– Payment function pOPT: The payment of an agent is its marginal contribution to
the society, i.e.,

pOPT
i (z, ai,a−i) = −vi(ai, o) + W (o)−W (o−i) (2)

where o−i = OPT(z,a−i) is the efficient allocation computed by OPT without i’s
participation.

An agent has no incentive to not fully state its available resource types and amounts,
since the utility of an agent is its marginal contribution to the society: suppose an agent
states less resources, the total number of allocated tasks will be no more than when it
fully states its available resources. Thus the marginal contribution of the agent to the
social welfare would then be no more, since the resulting efficient allocation has lower
utilities. Therefore the agent will derive a lower utility due to its incomplete report.1

Theorem 2. The mechanism MOPT = (OPT, pOPT) is a truthful and efficient mecha-
nism, where agents always receive non-negative utilities by participating in the game,
i.e., agents are individually rational (IR). In addition, the mechanism gives no payment
to agents that do not get any allocated tasks.

Proof. Let si be the true type of agent i and ai be any other type. Given a problem
instance z = (SN, T), let the resulting allocations be denoted by o = OPT(z, si,a−i),
and ô = OPT(z, ai,a−i), respectively, and let o−i = OPT(z,a−i) be the efficient
allocation computed by OPT without i’s participation.

First we prove truthfulness by showing that agent i receives always more or equal
utility by declaring its true type si instead of ai. This difference δ is calculated as
follows (using Equation 2):

δ = ui(si,a−i)− ui(ai,a−i)
= vi(si, o) + pOPT

i (z, si,a−i)− (vi(ai, ô) + pOPT
i (z, ai,a−i))

= W (o)−W (o−i)− (W (ô)−W (o−i))
= W (o)−W (ô)

Since the optimal allocation will not get worse by adding more resources in the system,
W (o)−W (ô) ≥ 0. So, δ ≥ 0, i.e., agents obtain higher utilities by truthfully reporting

1 In this paper we do not address the case that an agent overstates its resources. Such misreports
can be easily avoided by a separate payment calculation and payment transfer stage.

their types. Since all agents declare their true resources to the mechanism, the allocation
algorithm OPT outputs the optimal allocation.

We now show using a similar reasoning that agents are individually rational. Agent
i’s utility is computed by

ui(si, a−i) = vi(si, o) + pOPT
i (z, si,a−i)

= W (o)−W (o−i).

When agent i joins, there are more resources available for the task allocation, thus, the
system will always result in a better (or the same) allocation using the optimal algorithm
OPT. Therefore, W (o) ≥ W (o−i) and thus ui(si, a−i) ≥ 0, so agent i is guaranteed
to receive non-negative utility when joining the allocation game.

If agent i is not in the resulting allocation o by OPT, we have vi(si, o) = 0,
and W (o) = W (o−i). Therefore, we have pOPT

i (z, ai,a−i) = −vi(ai, o) + W (o) −
W (o−i) = 0. That is, agent i receives no payment. ut

We now show that MOPT belongs to the class VCG mechanisms, based on Def-
inition 7. Since the allocation function OPT outputs the optimal solution, OPT(z,a)
maximizes the total welfare. In addition, a VCG payment scheme should fit the form
pi(z,a) = −vi(ai, O(z,a))+W (O(z,a))+ha−i . Let ha−i = W (OPT(z,a−i)), then
it follows from Equation 2 that POPT is a VCG payment function.

Theorem 2 showed that the mechanism is efficient, truthful, and individually ratio-
nal. One may wonder how much the mechanism would pay the agents, and whether or
not the mechanism is budget balanced (BB).

Definition 9 (Budget balanced). Since there is no cost defined in our problem, a mech-
anism M is called budget balanced for social task allocation problem if the total pay-
ment to the contractors is 0, i.e.,

∑m
i=1 pi = 0.

Unfortunately, a classic result from Myerson et al. [13] showed that it is impossible
to achieve budget balance with efficiency and IR from a truthful mechanism. A budget
deficit is inevitable in MOPT. We now briefly analyze how much the mechanism pays
out. The total payment to the agents is calculated by:

m∑
i=1

pOPT
i =

m∑
i=1

(W (o)−W (o−i)) = mW (o)−
m∑
i

W (o−i).

where m is the number of contractor agents and W (o) is the maximal social welfare.
When no agents are critical, in the sense that with the absence of any single agent i, the
utility of the resulting allocation W (o−i) still equals to that of the optimal one, W (o),
the total payment that the mechanism gives out is 0; the worst case is when W (o−i) = 0
for all i, i.e., all agents hold “unique” resources such that any agent’s absence will result
in no allocated task at all. In that case the mechanism has to pay the agents in total m
times of the social welfare in order to maintain their truthfulness. Therefore, we have:

0 ≤
m∑

i=1

pOPT
i ≤ mW (o).

4 A truthful polynomial-time mechanism for STAP

The exact mechanism for STAP, MOPT, is truthful and efficient. However, it takes ex-
ponential time to compute the allocation and the payment. Obviously, this is not feasible
when the problem size is large. In this section, we develop a truthful polynomial-time
mechanism by splitting the problem into sub-problems that each can be solved opti-
mally in polynomial time.

Our main queston here is how to create sub-problems in such a way that the resulting
mechanism is still truthful and the quality of the resulting solutions is still quite good.
To achieve truthfulness, we should divide the problem in a way that does not depend
on the declared types of the agents. We would like the algorithm to be computationally
feasible. Since in most applications, the problem size tends to depend on the number
of agents and the number of tasks (for a fixed number of resource types) the algorithm
should be polynomial in at least m and n.

4.1 A cluster-based allocation algorithm

The idea of the cluster-based algorithm is to find a partitioning of the given social
network into several disjoint subnetworks (or clusters) so that each subnetwork is small
enough to be solved by the optimal algorithm in polynomial time.

Our approach is to cluster tasks based on the idea of similarity. This similarity-based
heuristic comes from the consideration that tasks which connect to the same contractor
agents should end up in the same cluster, because these interactions between tasks are
the core of our problem. We would like to keep as many of these interactions in the
sub-problems to maintain a certain level of quality.

Given a STAP with n tasks and m agents, we divide the graph so that each cluster
C contains at most log n tasks and log m agents when n and m are large. For smaller
numbers of tasks we limit the cluster size by a fixed number c. We start with the most
efficient task, which has the highest utility for using resources. The tasks are divided in
such a way that those in one cluster are more related to each other than to tasks outside
of the cluster. The similarity of a task t to a cluster C is measured by the number of
mutual contractor agents they are connected to (see also Algorithm 1): sim(t, C) =∑

t′∈C |mutual(t, t′)|, where

mutual(t, t′) =
{

i ∈ A
∣∣∣∣ ((i, loc(t)) ∈ AE or i = loc(t)) and
((i, loc(t′)) ∈ AE or i = loc(t′))

}
After we find a cluster C with at most max{c, log n} tasks, we limit the number

of contractor agents in C by keeping only the agents which have most connections to
the tasks in C. Each contractor agent can belong to at most one cluster. To distribute
the contractor agents evenly over the n

log n clusters, we add exactly q contractor agents

to each cluster, where q = min
{

log(m), m·max{c,log n}
n

}
. In this way, the size of each

cluster k is bounded by max{c, log n}+q. When the partitioning is completely done, we
calculate the optimal solution by ILP described in Section 3 for each cluster separately.

Algorithm 1 Cluster-based algorithm CLS.
Input: a set of agents A, tasks T , a network SN = (A, AE) and a cluster size c.
Output: a task allocation and its value.

1. Sort all tasks t ∈ T in descending order of their efficiencies e(t) in a list L.
2. Select the first task t from L, assign C = {t}, and then,

– Compute for every other task t′ in the network its similarity sim(t′, C) to the task(s) in
C.

– Add the task t′ with largest similarity value to C: C ← C ∪ {t′}.
– Repeat the above two steps until |C| = max{c, log n} or L = ∅.

3. Based on SN , include the q contractor agents with most connections to C.
4. Remove the tasks in C from L. Remove the agents in C from the network SN .
5. Compute the task allocation for C using the optimal algorithm OPT.
6. Repeat from step 2 to find another cluster until there is no more task left in this list.

Proposition 1. Given a STAP with n tasks, m agents, l resource types, and the degree
of the network bounded by ∆, the cluster-based algorithm CLS is polynomial in m, n,
∆, and exponential in l. When the number of resource types l is bounded by a constant,
CLS is a polynomial-time algorithm.

Proof. In this proof we show that the asymptotic run-time is polynomial; we therefore
ignore the case that log n < c in the following. We first show that partitioning the
network using the similarity-based heuristic takes polynomial time. Sorting the set of
tasks takes O(n log n). For a cluster C, computing the similarity of one task to C is
bounded by O(log n∆). This similarity is calculated for at most O(n) tasks. This is
repeated for each task to be added to the cluster. Thus, determining one cluster takes
O

(
n(log n)2∆

)
. As there are in total at most O

(
n

log n

)
clusters to be found, the com-

putation time for the partition algorithm is: O
(
n log n + n2 log n∆

)
= O

(
n2 log n∆

)
.

Recall that ILP runs exponentially in n, m, and l. Now in each cluster, the size
of the input for the ILP is reduced by restricting the number of tasks and agents.
More precisely, in each cluster, the number of variables in ILP is O(log(n) log(m)l),
therefore, computing the solution for each cluster using ILP takes: eO(log(n) log(m)l) =
O

(
m · n · 2l

)
.

When the number of resource types l is bounded by a constant, the total computation
time of CLS is: O

(
n2 log n∆

)
+ O

(
n

log n

)
·O(mn) = O

(
n2(log n∆ + m

log n)
)

. ut

The cluster-based algorithm can be used to define a truthful mechanism.

4.2 A polynomial-time truthful mechanism

We define a polynomial-time truthful mechanism as follows.

Definition 10 (A cluster-based mechanismMCLS). A cluster-based mechanismMCLS =
(CLS, PCLS) works as follows.

– Let z = (SN, T) be an instance of STAP. First, the mechanism partitions the agent
network according to Algorithm 1, Steps 1− 4.

– After one cluster Cj is formed, the agents in this cluster are asked to submit their
private types a to the mechanism. Based on the declared types, the mechanism uses
the task allocation algorithm CLS to get the optimal allocation oj of this cluster
(Algorithm 1, Step 5).

– A payment function pCLS calculates the payment to the agents in each cluster Cj

based on the same payment function as used by the OPT mechanism (Definition 8),
i.e., pCLS

i (z, ai,a−i) = −vi(ai, o
j) + W (oj)−W (oj

−i).

The mechanism calculates the allocation and the payment for each cluster. Agents
are asked to submit their types after the clusters are formed. Therefore, agents’ private
types will not influence the partitioning process, i.e. they cannot manipulate in order to
enter “good” clusters. When the mechanism divides the network into several clusters,
it uses only the public information—the network structure and the information of the
tasks, no private information of agents is involved in this stage, and each agent can only
belong to one cluster. Indeed, we will show this is the key fact which ensures that the
mechanism is truthful even when a sub-optimal allocation algorithm (CLS) is used.

Theorem 3. The mechanismMCLS = (CLS, pCLS) is a polynomial-time truthful mech-
anism which is individual rational and gives no payment to agents that do not get any
allocated tasks.

Proof. The cluster-based algorithm (Algorithm 1) removes some edges between agents
and tasks, and divides the network into disjoint clusters. Given a problem instance z,
as a result of partitioning, the set of “allowable” allocations, given the type space of
agents a, is restricted to Ω = {ω1, . . . , ωk} where ωj = {oj

1, o
j
2, . . .} denotes the set of

allowable allocations in cluster Cj . Note that Ω is a subset of the allowable outputs O
in the exact mechanism: Ω ⊆ O. Each agent is only in one cluster after partitioning. We
now prove that for each cluster, truth-telling is always in the best interests of all agents.
For this we use a similar proof as for the exact mechanism (Theorem 2).

Given an agent i in the cluster Cj , we define the true type of i by si and any other
type by ai. Let oj = CLS(z, si,a−i), and ôj = CLS(z, ai,a−i), oj , ôj ∈ ωj , respec-
tively. The difference δ of the utility that i will receive by declaring si and ai is:

δ = ui(si, a−i)− ui(ai, a−i) = W (oj)−W (ôj).

Since we use the optimal algorithm OPT to find the optimal allocation in every clus-
ter, oj is the best allocation over ωj , i.e., oj = arg maxo′j∈ωj

W (o′j). Therefore,
W (oj) − W (ôj) ≥ 0, i.e., agents are better off by report their types truthfully. The
truthfulness result holds for all clusters. In addition, since the network is partitioned
without the knowledge of the contractor agents’ private information, the contractors
cannot manipulate the mechanism in order to enter different clusters.

Similarly, we can show the mechanism is individually rational. The mechanism is
a polynomial-time mechanism as both the allocation and the payment function can be
computed in polynomial time when the number resource types is bounded by a constant
(see Proposition 1). ut

Nisan et al. [16] have showed that a class of VCG-based mechanisms where the
output algorithms are maximal in its range (or MIR) are truthful. Informally speaking,
an algorithm is maximal in its range if it optimizes the output over a—on forehand
determined—set of allowable outputs. Our cluster-based mechanism MCLS actually
belongs to this class of MIR. In addition, the following theorem says that if we desire
a VCG-based truthful mechanism for social task allocation problem, this kind of MIR
algorithm is all we can have.

Theorem 4. For the social task allocation problem STAP, if a mechanism with VCG-
based payment function is truthful, then its allocation algorithm (ALG) is maximal in
its range.

Proof. Let the type space of m agents be Am. We define the set of allowable out-
puts of the mechanism using allocation algorithm ALG by O = {ALG(a)|a ∈ Am}.
The VCG-based payment function is defined as pi(ALG(z,a)) = −vi(ALG(z,a)) +
W (ALG(z,a))−ha−i , where ha−i is any function without agent i, and thus does not af-
fect the mechanism’s truthfulness. Let ha−i = 0. The utility of agent i is ui(si, a−i) =
vi(si,ALG(z,a)) + pi(z, si,a−i) = W (ALG(z, si,a−i)), where si is the true type of
i, which consists of all its available resources. Since the mechanism is truthful, we have
for all i, for every other type ai 6= si, that ui(ai,a−i) ≤ ui(si,a−i). Therefore, it
holds that W (ALG(z, si,a−i)) ≥ W (ALG(z, ai,a−i)). Thus, given any type in Am,
the algorithm ALG always maximizes the social welfare over the set of possible outputs
O. The algorithm is maximal in its range at Am. ut

According to Theorem 4, if a VCG-based mechanism is truthful, then the allocation
algorithm must be the one which gives the optimal solution over a set of restricted al-
lowable outputs. In the proposed cluster-based algorithm, such a restriction on outputs
may bring some undesired performance loss: in some problem instances of STAP, the
cluster algorithm may return an empty allocation, while the optimal algorithm allocates
at least one task. As we cannot guarantee the performance theoretically, in the next
section, we show the performance of this polynomial-time mechanism MCLS experi-
mentally.

5 Experiments

In this section we investigate the performance of the cluster-based allocation algo-
rithm for STAP on small-world networks. Small-world networks are networks where
the neighbors of an agent often are neighbors of each other. This property occurs in
many real-world (social) networks such as scientific collaborative networks and the In-
ternet [20].

5.1 Experimental set-up

To get an idea of the performance of the cluster-based allocation algorithm for STAP
we compare the resulting social welfare to the optimal algorithm. In all settings we
generated a small-world network using the algorithm by Watts and Strogatz [20] with

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 200 400 600 800 1000 1200 1400 1600 1800 2000

so
ci

al
 w

el
fa

re

tasks

Optimal Algorithm
Cluster-based Algorithm

Fig. 2. The quality of the cluster-based algorithm decreases for larger number of tasks, given a
fixed cluster size of 100 tasks, and a fixed number of agents of 150.

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 100 200 300 400 500 600 700 800 900

so
ci

al
 w

el
fa

re

agents

Optimal Algorithm
Cluster-based Algorithm

Fig. 3. The quality of the cluster-based algorithm increases for larger numbers of agents, given a
fixed maximum cluster size of 100 tasks, and a fixed number of tasks of 600.

a rewiring probability of 0.05, and then generated tasks and their required resources, as
well as the available resources for the agents using uniform distributions. Each specific
run we did 20 times and calculated the average and the standard deviation over these 20
instances.

1. In the first experiment we investigated the influence of the number of tasks. For
a small-world of 150 agents where each agent has on average 18 neighbors, we
varied the number of tasks from 200 to 2000. In this setting each task requires 20
resources on average of 5 different types. The total number of resources available
is exactly enough to fulfill all tasks. Note that because of the restrictions imposed
by the network, not all these resources can be used. The result of this experiment is
shown in Figure 2.

2. In the second experiment we varied the number of agents from 100 to 900 while
keeping everything else the same for a problem with 600 tasks. The result of this
experiment is shown in Figure 3.

 15000

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 23000

 24000

 25000

 0 50 100 150 200 250 300

so
ci

al
 w

el
fa

re

cluster size

Optimal Algorithm
Cluster-based Algorithm

Fig. 4. The quality of the cluster-based algorithm increases for larger cluster sizes and a fixed
number of tasks (600) and agents (400).

5.2 Results

From the first experiment we expected a drop in performance because the problem is
splitted into more sub-problems. This result can be observed from the measurements in
Figure 2 as well. The performance indeed decreases from 85% of the optimal down to
about 50% for large instances with 2000 tasks.

More surprising was the result from the second experiment with the increasing num-
ber of agents. We expected to show that the quality of the cluster-based algorithm does
not decrease if only the number of agents is increased. However, it turns out that for
a fixed number of tasks, but an increasing number of (contractor) agents, the quality
of the cluster-based algorithm significantly increases, to 88% of the optimal with 900
agents. This can be explained by the fact that because there are more agents, the average
distance between tasks increases, and thus the sub-problems become more independent.
The fact that the network has the small-world property increases this effect.

An increasing cluster size results in a smaller number of sub-problems that each is
solved optimally. It can thus be expected that the quality of the algorithm increases with
a larger cluster size. In a third experiment we confirmed this behavior (see Figure 4).

We also ran experiments with random and scale-free networks. As we expected,
the cluster-based algorithm worked best on small-world networks. How to find good
(community) structures and thus good task allocations in other types of networks we
leave for future work.

6 Discussion and conclusion

Assigning services in a virtual organization or allocating resources in a peer-to-peer net-
work can both be modeled as a social task allocation problem (STAP). In this paper we
pose the problem of finding a truthful mechanism for STAP, i.e., to allocate resources to
tasks in an environment where possible allocations are restricted by a network of rela-
tions between agents, and where the agents providing the resources are self-interested.

In this setting we assume that the tasks and the restrictions are given, and that the agents
are asked for the resources they want to contribute.

We have presented a truthful optimal mechanism for this NP-complete problem,
and we have showed how a truthful polynomial algorithm can be obtained by splitting
the problem into smaller-sized sub-problems that can be solved optimally in polynomial
time.

We have investigated the results of this algorithm for several problem instances
based on a small-world network. We have showed that for a uniformly randomly gen-
erated range of such instances the heuristic achieved a quality of about 50-80% of the
optimal algorithm. Since many real-world problems share this small-world property,
this result is quite promising.

However, a polynomial-time algorithm with a guaranteed bound would be even
more interesting. For the class of cost minimization allocation problems (CMAP) it
has been proven that such a method does not exists [16] for a VCG-based truthful
mechanism. This proof relies on the idea of constructing an instance for which the ap-
proximation gives a result that can be arbitrarily worse than the optimal solution.

The STAP is not a cost minimization problem. Our current research is to try to prove
(or to disprove) that also for STAP no approximation can be found with a guaranteed
bound on the quality. If this also holds for the STAP, the two approaches taken in this pa-
per may be all that is possible. In that case, the next step of our research is to investigate
the performance of the heuristic algorithm on real-world instances, and the influence of
the small-world properties on the performance of the cluster-based heuristic.

The assumption that a task can only be assigned to its direct neighbors may impede
the applicability of our approach to some problem domains. Our future work will intro-
duce mediator agents into the network and study the consequent problems such as trust
and incentives of the mediators.

Another ongoing research is to develop non-VCG-based polynomial-time truthful
mechanisms for STAP. We are also interested in developing a mechanism for a setting
where also the manager agents may lie about their types, and a mechanism which can
be run distributedly. In addition, we would like to investigate the sufficient conditions
of truthfulness in social task allocation domains.

Acknowledgments This work is supported by the Technology Foundation STW, applied
science division of NWO, and the Ministry of Economic Affairs of the Netherlands.

References

1. M. Babaioff, R. Lavi, and E. Pavlov. Mechanism design for single-value domains. In M. M.
Veloso and S. Kambhampati, editors, Proc. of 20th Nat. Conf. on Artificial intelligence, pages
241–247. AAAI, 2005.

2. L. Blumrosen and N. Nisan. Combinatorial auctions. In N. Nisan, T. Roughgarden, E. Tar-
dos, and V. Vazirani, editors, Algorithmic Game Theory, pages 209–242. Cambridge Univer-
sity Press, 2007.

3. E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1), September 1971.
4. M. de Weerdt, Y. Zhang, and T. B. Klos. Distributed task allocation in social networks. In

Proc. of 6th Int. Conf. on Autonomous Agents and Multiagent Systems, pages 17–24. ACM,
2007.

5. T. Groves. Incentives in teams. Econometrica, 41(4):617–31, July 1973.
6. S. Kraus, O. Shehory, and G. Taase. The advantages of compromising in coalition forma-

tion with incomplete information. In Proc. of 3rd Int. Conf. on Autonomous Agents and
Multiagent Systems, pages 588–595, Washington, DC, USA, 2004. IEEE Computer Society.

7. D. Lehmann, L. I. Oćallaghan, and Y. Shoham. Truth revelation in approximately efficient
combinatorial auctions. Journal of the ACM, 49(5):577–602, 2002.

8. K. Lerman and O. Shehory. Coalition formation for large-scale electronic markets. In Proc.
of 4th Int. Conf. on Multi-Agent Systems, pages 167–174. IEEE Computer Society, 2000.

9. A. Makhorin. GLPK. GNU Linear Programming Kit, 2004.
10. E. Manisterski, E. David, S. Kraus, and N. Jennings. Forming Efficient Agent Groups for

Completing Complex Tasks. In H. Nakashima, M. P. Wellman, G. Weiss, and P. Stone,
editors, Proc. of 5th Int. Conf. on Autonomous Agents and Multiagent Systems, pages 257–
264. ACM, 2006.

11. A. Mu’alem and N. Nisan. Truthful approximation mechanisms for restricted combinatorial
auctions: extended abstract. In Proc. of 18th Nat. Conf. on Artificial intelligence, pages
379–384, Menlo Park, CA, USA, 2002. AAAI.

12. R. Myerson. Incentive-compatibility and the bargaining problem. Econometrica, 47:61–73,
1979.

13. R. B. Myerson and M. A. Satterthwaite. Efficient mechanisms for bilateral trading. Journal
of Economic Theory, 29(2):265–281, April 1983.

14. N. Nisan. Introduction to mechanism design (for computer scientists). In N. Nisan, T. Rough-
garden, E. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, pages 209–242. Cam-
bridge University Press, 2007.

15. N. Nisan and A. Ronen. Algorithmic mechanism design (extended abstract). In Proc. of
31th ACM Symposium on Theory of Computing, pages 129–140, New York, NY, USA, 1999.
ACM.

16. N. Nisan and A. Ronen. Computationally feasible VCG mechanisms. In Proc. of the 2nd
ACM Conf. on Electronic commerce, pages 242–252, New York, NY, USA, 2000. ACM.

17. P. V. Sander, D. Peleshchuk, and B. J. Grosz. A scalable, distributed algorithm for efficient
task allocation. In Proc. of 1st Int. Conf. on Autonomous Agents and Multiagent Systems,
pages 1191–1198, New York, NY, USA, 2002. ACM.

18. O. Shehory and S. Kraus. Methods for Task Allocation via Agent Coalition Formation.
Artificial Intelligence, 101(1-2):165–200, 1998.

19. W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of
Finance, 16(1):8–37, 1961.

20. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small world’ networks. Nature,
393:440–442, 1998.

