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Assessment of Parkinson’s Disease Severity
from Videos using Deep Architectures

Zhao Yin∗, Victor J. Geraedts∗, Ziqi Wang∗, Maria Fiorella Contarino, Hamdi Dibeklioglu, Jan van Gemert

Abstract— Parkinson’s disease (PD) diagnosis is based
on clinical criteria, i.e., bradykinesia, rest tremor, rigidity,
etc. Assessment of the severity of PD symptoms with
clinical rating scales, however, is subject to inter-rater vari-
ability. In this paper, we propose a deep learning based
automatic PD diagnosis method using videos to assist the
diagnosis in clinical practices. We deploy a 3D Convolu-
tional Neural Network (CNN) as the baseline approach for
the PD severity classification and show the effectiveness.
Due to the lack of data in clinical field, we explore the
possibility of transfer learning from non-medical dataset
and show that PD severity classification can benefit from
it. To bridge the domain discrepancy between medical and
non-medical datasets, we let the network focus more on the
subtle temporal visual cues, i.e., the frequency of tremors,
by designing a Temporal Self-Attention (TSA) mechanism.

Seven tasks from the Movement Disorders Society - Uni-
fied PD rating scale (MDS-UPDRS) part III are investigated,
which reveal the symptoms of bradykinesia and postural
tremors. Furthermore, we propose a multi-domain learning
method to predict the patient-level PD severity through
task-assembling. We show the effectiveness of TSA and
task-assembling method on our PD video dataset empiri-
cally. We achieve the best MCC of 0.55 on binary task-level
and 0.39 on three-class patient-level classification.

Index Terms— Parkinson’s disease (PD), severity clas-
sification, deep learning, transfer learning, self-attention,
multi-domain learning.

I. INTRODUCTION

Parkinson’s disease (PD) is a chronic, progressive neuro-
logical disorder, affecting over 10 million people around the
world according to the American Parkinson Disease Associ-
ation (APDA) [45]. Individuals with Parkinson’s disease typ-
ically present with characteristic motor symptoms, including
bradykinesia (i.e. slowness of movement), rigidity (stiffness),
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and rest tremor [48]. These symptoms are progressive over
time, subsequently leading to an increase in their severity.

At present, the Movement Disorder Society - Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS), containing
four parts: I for non-motor experiences of daily living, II for
motor experiences of daily living, III for motor examination
and IV for motor complications, has been widely used as
a validated tool to quantify PD severity [20], [33]. MDS-
UPDRS is the revised and more comprehensive version of the
original UPDRS [17] and they are highly correlated on the
motor sections [34]. This study uses the MDS-UPDRS part
III (MDS-UPDRS-III) as the measurement for analysis, which
contains 18 tasks and 33 scores, with some tasks pertaining to
either left or right extremities. Each task, tied to a symptom,
has five responses linked to symptom-severity: 0-normal, 1-
slight, 2-mild, 3-moderate, and 4-severe, providing consistency
across tasks. The clinical scores are assessed by a single
examinator, that is either a nurse specialized in Parkinson’s
Disease or a physician. Both have the certification to rate
the MDS-UPDRS III. Collapsing all the scores to provide the
patient with a composite total score is not recommended by
[20] but can still be applicable given the minimal clinically
important difference threshold values [32] and is often used
in clinical practice to monitor disease progression. Although
MDS-UPDRS-III is currently the gold standard to quantify the
severity, it still has the potential to cause less reliable ratings
due to the intrinsic inter-rater variability caused by the non-
identical inter-rater protocols and inexperienced examiners
[16], [51]. Besides, the presence of the specialist is mandatory
when giving the rating decisions. These difficulties make the
manual rating inefficient and urge for automatic quantification
method. In this work, we propose a deep learning based PD
severity quantification approach using videos. Fig. 1 shows the
overall pipeline.

The goal of PD severity quantification is that, given an
individual patient’s video performing a specific task, the
corresponding severity level can be predicted by the machine
learning algorithm to assist ratings of examiners. As the task
performed by the patient in the video is a kind of action,
we naturally think of the human action recognition method
to solve the identification of Parkinson’s severity. Recently,
many action recognition architectures [5], [18], [21] achieved
promising performance on public human action datasets and
one of the mostly used architecture is the inflated 3D CNN
(I3D) [5], which is a 3D CNN with 3D kernels inflated from
a 2D CNN with an additional temporal dimension. Therefore,
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Fig. 1: The flowchart of the automatic PD severity quantifi-
cation. The task symbols from left to right denote task finger
tapping, hand movements, kinetic tremor, leg agility, postural
tremor, pronation, and toe tapping.

we opt to use I3D as the base model for this work.
Due to the small size of our PD dataset, directly training I3D

from scratch is inefficient and prone to overfitting; thus, we
use transfer learning to pre-train the network on large datasets
to make the training process more stable. However, public
datasets we pre-train on have noticeable motion differences
while the motion difference in our PD dataset is subtle.
Such large domain discrepancy makes it difficult to transfer
knowledge between domains, so we need a solution to focus
on exploring the temporal motion changes. Besides, the video
in our dataset is a repeating task with periodic actions, where
the model should learn the repeating frequency or the starting
and ending point. Thus, we need another solution to assign
different weights for the frames of the video. Additionally, as
stated in [39], [41], not all frames are equally crucial for action
recognition, so we propose to use temporal self-attention to
assign the weights for frames as well as solve the domain
discrepancy issue. The benefit is not only for such a repeating
dataset but also for other datasets because it holds for other
datasets as well that not all frames are equally important.

Once we can predict each task’s severity, each patient will
have a separate severity score for each task. However, it is
more clinically interesting to give a summary severity for the
patient rather than multiple ones, so we propose to apply a
novel task-assembling method to combine the predictions of
different tasks from the patient to predict a single score.

The contributions of this work are:

1) we perform automatic task-level PD severity classifica-
tion using I3D from videos of our PD dataset, based on

seven tasks in MDS-UPDRS-III;
2) we show that I3D can benefit from non-medical datasets

with transfer learning;
3) we propose TSA to focus on the temporal visual clues

and overcome the large discrepancy of motion difference
between non-medical datasets and our PD dataset during
transfer learning;

4) we propose a task-assembling method to combine mod-
els of different tasks to produce a single concluding
severity score for a patient.

II. RELATED WORK

A. Machine/Deep Learning Based Approaches

Machine/deep learning based PD motor assessment and
analysis has been intensively researched in recent years. For
instance, the K-nearest neighbors (KNN) AdaBoost classifier
and support vector machines (SVM) with RBF kernel were
used to classify between PD patients and controls based on the
features extracted from individual handwriting [15]. Butt et al.
[4] applied machine learning based methods to investigate the
significance of PD motor features. For signal-based analysis,
signals acquired from the gyroscope attached to the subject’s
finger were extracted to feed into multiple classifiers [49]. In
[2], glottal flow features were used as input for SVM classifier
to detect PD with an accuracy of 75.3%. Ferraris et al. [19]
used data from optial RGB-Depth devices, which tracks hands
and body movements, to train classifiers for PD motor severity
rating. Apart from the signal-based analysis, the video was
also used as an input data type for PD quantification [54],
[59]. Lu et al. [30] designed a pose-based estimation system
for assessing Parkinson’s disease motor severity. However,
to the best of our knowledge, apart from [46] in which
freezing of gait videos were used to feed the 3D network,
most researchers extracted the feature from videos as the final
input for classifiers without fully utilizing the video resource.
Based on machine/deep learning approaches, our work applies
action recognition method to quantify PD severity using RGB
video data.

B. Transfer Learning

Transfer learning is a research problem in machine learning
that focuses on storing knowledge gained while solving one
problem and applying it to a different but related problem
[58]. It is widely used as a pre-training approach to offer the
model a better starting point instead of training from scratch.
In the work of [36], CNN layers trained from ImageNet
is reused to transfer visual recognition tasks to learn mid-
level representations for small datasets. In action recognition,
researchers apply transfer learning to pre-train the model on a
large dataset to make the training process faster, more efficient,
and less prone to overfitting with a significant performance
improvement [5], [21]. Most related research shows that
transfer learning can be a useful tool to make the network
work on small datasets, and thus we use transfer learning in
this work to help improve the performance on our PD dataset.
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C. Capture Temporal Information

1) For General Video Dataset: In action recognition, re-
searchers apply various methods to capture the temporal
information crucial in video data. In the work of [50] (C3D),
3D CNN is used as a spatiotemporal feature extractor for
videos, and the extracted features are used as inputs for simple
linear classifiers. Based on the 3D CNN, an I3D is introduced
to take advantage of pre-trained 2D models [5]. Similar to
3D CNN, I3D performs 3D convolution on both spatial and
temporal dimensions simultaneously. However, in I3D, pre-
trained 2D filters are repeated or inflated multiple times to
form 3D filters. Therefore, I3D can benefit from successful
image (2D) classification models trained on large datasets
such as ImageNet [12]. Besides 3D CNN, a combination of a
stack of CNNs and Long Short-Term Memory (LSTM [23])
networks is applied to exploit the temporal information [1],
[13] as well. These methods apply either 3D CNN or 2D
CNN with fusion methods such as LSTM on the video data
to capture the temporal information. We use I3D as our base
model because of its decent performance on public datasets,
including Kinetics-400 experimented in [21].

2) For Periodic- and Subtle-Motion Video Dataset: The spa-
tiotemporal template of motion features is used to recognize
and segment the repetitive motion by template matching [38].
In [10], CNN is used to count the number of repetitions,
and circle length in periodic-motion videos. Besides the task
of action recognition, the estimation of repeating frequency
is studied in [37], using a Lagrangian approach and an
Eulerian approach as the frequency estimators. In periodic-
motion videos, we need to focus on the repeating frequency,
starting, and ending points to make the model work.

In medical datasets such as movement disorder dataset,
videos usually have subtle motion changes, which are hard
for architectures to work because subtle motion information is
difficult to capture and can not even be seen with bare eyes.
The subtle motions can be magnified using a steerable pyramid
[28], [53]. In the work of [11], motion frequency is used to
estimate material properties. Similarly, signal analysis in the
Fourier domain is employed to estimate the tremor frequency
of subtle motions [37]. In subtle-motion videos, we need to
focus on magnifying the subtle motion or directly estimating
the frequency.

D. Self-Attention

Attention module is widely used in natural language pro-
cessing [7] and computer vision [43], [56] fields by allowing
the network to focus on key words or pixels. Self-attention
mechanism is proposed to capture the relative relationship
between words or pixels. Self-attention is extensively explored
since the Transformer network is introduced for machine
translation [52] where the self-attention is used to compute
the interactions between words. In recent work, the QANet
[60] architecture uses self-attention in cooperation with con-
volutions for machine-reading and question answering tasks,
where the convolution computes local interactions and self-
attention computes global interactions. In image tasks, self-
attention with relative positional embeddings is usually used to

compute the interactions among pixels in the same image and
allows the model to learn which part of the image is of more
importance [3]. In the non-local network [55], self-attention
can be used in convolutional architectures to learn the long-
range interactions among pixels in images or videos for object
detection and video classification. In general, self-attention is
used in architectures for modeling sequences as it can capture
long-distance interactions. In this paper, we propose a new
method, temporal self-attention model, for PD quantification,
which involves I3D and the self-attention mechanism, attempt-
ing to detect the periodic and subtle motion in the video data.

E. Multi-domain Learning

Different non-i.i.d. Parkinson tasks can be treated in a multi-
domain setting [14], [29], [57] with each task being one
domain. Multiple similar domains can be learned to let the
model work on a new target domain using parameter combi-
nation from multiple classifiers [26]. In [6], perceptron-based
algorithms are employed for multi-task binary classification
problem with the similarity estimation among tasks. Multi-
domain learning aims at exploring the relationship between
tasks or domains and integrating them to solve a common task.
In this work, we combine the features from multiple domains
(i.e., tasks from MDS-UPDRS-III) to predict patient-level PD
severity classification.

III. METHODS

The overall flow of the algorithm is described as follows.
Initially, each video is preprocessed to have the same spatial
and temporal size. At the same time, we use network-based
transfer learning to transfer knowledge from non-medical
datasets to the medical one, i.e., reusing the network trained
on large datasets as the pre-trained model to replace model
initialization. Then, the pre-trained model is fine-tuned on the
collected Parkinson’s dataset to learn the underlying patterns.
After fine-tuning, the model can be used as the classifier for
task-level classification. By combining the features extracted
by the deep models from different tasks and training a shallow
neural network using those features, patient-level analysis can
be further made.

A. Inflated 3D Convolutional Neural Network (I3D)

In this paper, we use I3D as the base network with Residual
Networks (ResNet) as the backbone (currently 18, 34, 50, 101,
152-layer variations are available) and its pre-trained models
are already available [21]. Furthermore, rather than using two
streams (RGB frames and optical flow), we use RGB frames
as the only input because computing optical flow is time-
consuming, which is not feasible if the real-time prediction
is required.

The model is optimized using gradient descent by minimiz-
ing the empirical loss with class-balanced focal loss [9]:

J(ω) =
1

N

N∑
i=1

(
− 1− β
1− βny

C∑
c=1

(1−pti,c)γ log(pti,c)
)
+λ ‖ω‖22 ,

(1)
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where C, N , ω and γ denote the number of classes, number
of samples, learned parameters and focusing parameter, and
β = (N − 1)/N . ny stands for the number of samples in the
ground-truth class y and pt is defined as

pt =

{
p if y = c

1− p otherwise.
(2)

B. Self-attention Replacing Convolution

We describe the proposed temporal self-attention block for
video classification following the symbol styles of [3].

1) Temporal Self-attention over Video Volume: We first trans-
pose and flatten the input of shape (C, T,H,W )1 from the
previous layer to the shape of HW ×T ×C and then perform
multi-head-attention on the temporal dimension

Oh = Softmax
(
QKT√
dhk

)
V, (3)

where queries Q = XWq , keys K = XWk and values V =

XWv and Wq , Wk ∈ RC×dhk and Wv ∈ RC×dhv are learned
linear transformations2. dhk and dhv stand for the dimension of
each head of K and V . Note that we transpose the last two
dimensions of V to correctly multiply with Q. Concatenating
the outputs from all heads we get

O =
[
O1, . . . , ONh

]
. (4)

The shape of O is (HW × T × dhk) and is transformed with
WO ∈ Rdv×dv to

MultiHead(Q,K, V ) = OWO, (5)

where MultiHead(Q,K, V ) is of shape (HW × T × dhv ).
After reshaping back to the original spatial and temporal
dimension, we have the final output MultiHead(Q,K, V ) ∈
RT×H×W×dv of our temporal self-attention block if relative
postional embeddings [3] (see Section III-B.2) not applied.

The novelty of our temporal self-attention block is applying
the self-attention mechanism solely on the temporal dimen-
sion, leaving the spatial dimension untouched. The advantage
is that self-attention can capture the long-range temporal
changes while keeping standard CNN there, capturing the
necessary visual patterns simultaneously. As such, the abilities
of both self-attention and CNN be retained and incorporated
in the temporal self-attention block, which effectively makes
up the drawback of I3D.

Fig. 2 illustrates the temporal self-attention mechanism. The
temporal sequence of feature points (red ones) that share the
same spatial position is the atomic unit, on top of which the
temporal self-attention applies. We have HW sequences/units
located at all spatial positions, and each of them is independent
of others when performing the temporal self-attention.

1The number of channels, time or frames, height and width.
2Bias terms are ignored when we mention linear transformations.

Fig. 2: An example of temporal self-attention. Assume the
stack of those rectangles is a feature map (or more intuitively
for 3D data, feature volume) from one channel. Each rectangle
represents the spatial visual patterns at a specific temporal
position. Our temporal self-attention is performed on the
feature points colored in red, which share the same spatial
position along the temporal dimension. It can be seen as self-
attention through time.

2) Relative Positional Embeddings: The only difference be-
tween 1D and 2D relative positional embeddings is the di-
mensions involved in the algorithm. Thus we refer to [3]
for the details of 2D relative positional embeddings, and we
do not discuss the 1D variation anymore in this paper. To
implement temporal relative self-attention, we add relative
temporal information to the temporal self-attention block’s
output. The output is now changed from Equation 3 to

Oh = Softmax
(
QKT + SrelT√

dhk

)
V, (6)

where SrelT ∈ RHW×T×T is the matrix of relative position
logits along the temporal dimension.

3) Temporal Relative Self-attention: We combine temporal
self-attention with 1D relative positional embeddings to form
our new building block-temporal relative self-attention block.
Fig. 3 describes the whole pipeline of the proposed block.

4) Temporal Relative Self-attention Network (TSA): Once the
temporal relative self-attention block is built up, the convolu-
tional block in any architecture can be substituted. Take 3D
ResNet-34 for instance, which has 33 convolutional layers. We
replace as many layers as possible with our block from the last
convolutional layer to the first one until we hit the memory
bottleneck.

The time complexity of our block is O(HWT 2dk) com-
pared to the convolutional block O(HWTC), which is time-
efficient since the temporal size is typically small after a few
layers. The memory cost is O(HWT 2Nhd

h
k) compared to the

convolutional block O(HWTC).

C. Multi-task Assembling
Using the model we discussed in previous sections, it can

solve the task-level severity classification on our PD dataset.
Given a sample related to a specific task from the dataset,
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Conv3d
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Fig. 3: The general pipeline of our temporal relative self-
attention. Rectangles in the workflow represent tensors with
shape specified, and italic words stand for tensor operations.
⊗ and + denote tensor product and addition.

we can predict its task severity St. Nonetheless, it is more
clinically interesting to tell the severity score of a patient Sp
instead of tasks. Therefore, we propose two multi-task assem-
bling methods to combine the tasks to do severity classification
for patients. Note that the following methods require trained
models on the PD dataset for task-level classification.

1) Vector Averaging and Vector Weighting: We use the
trained model as a feature extractor to compress the infor-
mation of a video into a dense one. We first extract the
flattened vector F ∈ Rd of dimension size d as the compressed
information, which is the input feature of the fully connected
layer. Each video, containing only a single task from a patient,
produces one feature vector Fm of task m and all videos from
that patient produce feature vectors FM ∈ Rd×M of all M
tasks. Different tasks may contribute unequally to a patient’s
severity score, so we use two strategies to convert (or combine)
FM into a vector F ∈ Rd, representing the feature of a patient.

The first approach is to average features, formulated as

F =
1

M

M∑
m=1

Fm, (7)

by assuming each feature (task) contributes equally. The
second approach is to take the weighted average of features
as the following

F =

M∑
m=1

αmFm, (8)

where αm (
∑M
m=1 αm = 1) is the learnable weight for task m.

The first approach is a special case of this one. Afterward, F is

fed as input to train a shallow neural network3. The network is
optimized using gradient descent by minimizing the empirical
loss J(ω) (see Equation 1) where N is the number of patients.

2) Attention-based Feature Weighting: In the feature aver-
aging and weighting approach, we assume task weights are
identical across all patients. However, patients may not share
the same task weights so that the global task weights may
be insufficient and inaccurate. Therefore, we propose to use
channel-wise attention-based weighting, which automatically
assigns task weights for each patient separately. To do so, we
use another feature map FM ∈ RM×C×T×H×W (M denotes
the number of tasks), the output of the last convolutional or
our self-attention layer, as the extracted feature for a video.

The first weighting strategy is to apply squeeze-and-
excitation block [24] to map the input feature FM to a set
of channel weights. As the task weights are our concerns
instead of the channels, we take the task dimension as the
channel dimension in the squeeze-and-excitation block. The
process can be formulated as follows. First, squeeze global
information into a task descriptor by using global average
pooling to generate task-wise statistics

zm =
1

C × T ×H ×W

C∑
c=1

T∑
t=1

H∑
h=1

W∑
w=1

Fm(c, t, h, w), (9)

where Fm denotes the feature map for task m. Then we excite
the task-wise statistics to task weights (W1 ∈ RM

r ×M , W2 ∈
RM×M

r in which r is the dimensionality-reduction ratio)

αM = σ(W2δ(W1zM )), (10)

where αM , σ and δ denote task weights, the sigmoid activation
and the ReLU [35] function. Finally we obtain the combined
feature map F ∈ RC×T×H×W

F = αMFM . (11)

Applying the squeeze-and-excitation block to get task
weights is rather simple but turns out to be efficient. It flexibly
generates different weights for different patients accordingly.
However, this approach assumes each feature point in the
feature map contributes equally, which means a task weight
is a global weight for all feature points. We can explore even
further by making each feature point having its own weight
αt,h,w,m, which brings about the pixel-wise attention-based
weighting approach.

We opt to use the self-attention mechanism similar to our
temporal relative self-attention block for pixel-wise weighting,
by applying it on the task dimension instead of the temporal di-
mension. First, we reshape and flatten FM ∈ RM×C×T×H×W

into the shape of (THW ×M ×C) and then the output of a
single attention head can be computed as

Oh = Softmax
(
(FMWq)(FMWk)

T√
dhk

)
(FMWv), (12)

where Wq , Wk ∈ RC×dhk and Wv ∈ RC×dhv are learned linear
transformations. Afterwards, we combine attention results of

30, 1 or 2 hidden layers with non-linear activation.
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all heads and project using OW ∈ Rdv×dv to form the task
weighted feature map

F =
[
O1, . . . , ONh

]
OW . (13)

Note that the task weights for each feature point αt,h,w,m is
implicitly embedded in the computation of attention output.

Task weighted features using both approaches are fed into
a shallow neural network consisting of batch normalization
[25], the ReLU function, global average pooling, and a fully
connected layer.

The summary of the proposed four task-assembling methods
can be found in TABLE I. Vector averaging and vector
weighting use the outputs of the last global average pooling
layer while attention-based weighting methods use the outputs
of the last convolutional/self-attention layer in the network. We
denote avgpool and layer4 as the feature types.

IV. EXPERIMENTAL SETTINGS

A. Dataset
In this paper, we introduce a new video dataset for Parkin-

son’s disease analysis. We develop this dataset principally
because there is a lack of such datasets for Parkinson’s disease
analysis. We believe that having one will facilitate research
in this area because the dataset simulates the procedure of
how experts assess patients’ symptoms using MDS-UPDRS-
III scores. Besides, the dataset is challenging enough to act as
a performance benchmark where the advantages of different
architectures can be demonstrated.

1) Data Collection: Routine video recordings of consecutive
patients who underwent either a Levodopa Challenge Test
(LCT [40], [42]) prior to DBS surgery, or underwent a
Stimulator Challenge Test (SCT, [8], [22]) after DBS surgery,
were collected. All patients fulfilled the criteria for idiopathic
PD. Patients who underwent a LCT were videotaped twice (i.e.
Med-OFF and Med-ON); patients who underwent SCT were
videotaped three times (Med-OFF/Stim-ON [31], etc). Video
recordings were made with the camera in a fixed position, with
a complete overview of the patient central on the screen. Due
to the varying nature of the examination room, the camera’s
position and angle towards the patient varied, as well as
the background and surroundings. During the MDS-UPDRS-
III examination, the zoom-function was occasionally used to
focus on the hands or feet.

All videos were made in one continuous recording of
the examination. Separate segments were created by clipping
the videos per task (left and right separately if required):
bradykinesia of the hands (MDS-UPDRS-III items 3.4, 3.5,
3.6), bradykinesia of the legs (items 3.7, 3.8), postural tremor
(item 3.15), kinetic tremor (item 3.16). Rigidity was not
included as this symptom is not assessed through visual
observation; global bradykinesia, speech, freezing-of-gait, and
rest-tremor were not included as no specific video-segment
pertained to those tasks and they were evaluated throughout the
entire recording. The local medical ethics committee waived
the formal evaluation of the study. All patients gave written
informed consent.

We are not allowed to make the dataset publicly under the
Dutch privacy law.

2) Dataset Overview: The dataset contains 39 subjects (all
patients) and 1082 video fragments after cutting. Each sample
in the dataset is of resolution 1920 by 1080 and 25 fps. The
duration of samples may be different on different tasks. Fig.
4a shows the duration distribution of our dataset.

The dataset contains T = 11 tasks for most of the patients
based on the MDS-UPDRS-III, namely finger tapping, gait
freezing, hand movements, leg agility, pronation, toe tapping,
arising from chair, kinetic tremor, postural tremor, postural
stability and rest tremor. Note that not all tasks are used in
the experiments. Each video has a task-level severity score
St ∈ {0, 1, 2, 3, 4} (0: normal, 1: slight, 2: mild, 3: moderate
and 4: severe) labeled by experts. We have to emphasize that
a task score of 0 does not mean that the subject is not a PD
patient but indicates that the subject may have low severity
on the specific task. Each patient has a patient-level severity
score, which is the sum of all task-level severity scores, as
shown in the following equation:

Sp =
T∑
t=1

St. (14)

The distributions of St (over all tasks) and Sp are shown in
Fig. 4b and Fig. 4c.

B. Settings
To evaluate our methods for Parkinson’s severity classifica-

tion, we use the above-described dataset. In our experiments,
only RGB frames are used as the input for the deep archi-
tectures. The clips are resized to 32 × 224 × 224 resolution
without changing their spatial aspect ratios.

The dataset is split into five folds at the patient level but not
the video level. One subject only appears in either the training
or testing fold to avoid network cheating by recognizing the
appearance of the patient. We train networks on four of them
and test it on the remaining one in the cross validation setting.
The overall accuracy is obtained by taking the average of the
individual accuracy tested on each fold.

I3D is pre-trained on both UCF-101 (by ourselves) and
Kinetics-400 (by [21]). TSA is pre-trained only from UCF-
101 (by ourselves). Batch size of 15, learning rate of 0.001
without decay and weight decay (λ) of 0.01 are used.

The task-level score St ∈ 0, 1, 2, 3, 4 is split into two
classes: class 0 for {0, 1} and class 1 for {2, 3, 4} since we are
more interested in whether the model can distinguish between
the slight and severe group of patients. The patient-level score
Sp is split into three classes in the way that each class has
an equal number of patients. Method specific settings are
provided alongside when showing the results in Section V.

We briefly introduce the results in order shown in the next
section. We first validate the performance of TSA on public
dataset in section V-A, and then inspect the performance
improvement using transfer learning in section V-B. In Section
V-C, we show results on seven PD tasks using models with
different settings followed with comparison between those
models. In Section V-D, we analyze the performance on
patient-level severity classification, compare different strate-
gies to combine PD tasks, and show the model behavior on
classifying only the highest and lowest severity class.
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TABLE I: The summary of four task-assembling methods.

vector averaging vector weighting channel-wise attention weighting pixel-wise attention weighting

Input type avgpool avgpool layer4 layer4
Weights differ among tasks 7 3 3 3
Weights differ among patients 7 7 3 3
Weights differ among feature points 7 7 7 3
Core mechanism averaging learnable weight vector squeeze-and-excitation [24] self-attention
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(a) The histogram of the duration
of samples, using 80 bins. The av-
erage duration is 6.3 seconds, and
90% of samples are shorter than 10
seconds, with less than five samples
longer than 25 seconds.
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(b) The bar chart shows the distribution
of task-level severity score. From low to
high severity class, the number of sam-
ples decreases, which shows the class
imbalance issue in our dataset.
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(c) The histogram of patient-level severity
score using 20 bins. Compared to task-level
severity distribution, patient-level severity dis-
tribution has no obvious imbalance issue. The
number of patients across the range of severity
is approximately on the same level.

Fig. 4: Distributions of the sample duration and task/patient-level severity of our dataset.

V. RESULTS

In this section, we show the results of our experiments.
We test seven tasks with high quality videos, finger tapping,
hand movements, pronation, toe tapping, leg agility, postural
tremor and kinetic tremor. They are denoted as finger, hand,
pronation, toe, leg, postural and kinetic for simplicity. We
use ResNet-34 as backbone because through experiments we
find that ResNet-34 is the most suitable one in this study,
considering the size and difficulty of our dataset. One can of
course use other backbones if the size, complexity and classes
of the dataset are different from ours. We have to emphasize
that, in all experiments, although patients contribute more than
one video, no patient is included into both the training- and
test-set because even though videos of a patient are separate
ones, they are still from the same patient.

A. Validate Temporal Relative Self-attention Network
Before applying TSA on PD dataset, we first check whether

it works better than I3D on two frequently used public datasets
UCF-101 and HMDB-51. Hyper-parameters are chosen with-
out optimization: input shape of 64× 224× 224, lr of 0.001,
batch size of 45, weight decay of 10−5 and optimizer of SGD
with momentum [47]. The backbone is ResNet-18 for fast
illustration. TABLE II shows that TSA outperforms I3D when
both trained from scratch. The performance improvements
demonstrate the effectiveness of TSA and the possibility of
applying it to our PD dataset.

B. Benefit from Transfer Learning
We utilize three datasets: Kinetics-400 [27] and UCF-101

[44] to pre-train our models considering their large sizes,

TABLE II: Top-1 accuracy on UCF-101 and HMDB-51. All
accuracy are averaged over three splits. Both methods use
ResNet-18 as the backbone. TSA shows better performance on
both datasets so that it can be further applied to PD dataset.

Method (scratch) UCF-101 HMDB-51

I3D ResNet-18 [21] 42.4 17.1
TSA ResNet-18 51.5±2.6 22.1±1.9

high quality and popularity. Then, we fine-tune the pretrained
models on our PD dataset. Since our dataset contains periodic
and subtle motions while public datasets have easily distin-
guishable motions, the relatedness between our dataset and
public datasets is not tight. As such, the parameters from the
convolutional stem may not be optimal after transferring to
our dataset. Thus all layers of the model rather than part of
them are fine-tuned.

I3D and task finger and hand are used to demonstrate the
function of transfer learning. Convergence is confirmed for
every compared setting for a fair comparison. Note that for
task-level classification we have binary classes. In TABLE III,
I3D trained from scratch, I3D pretrained from UCF-101, and
I3D pretrained from Kinetics-400 are compared based on the
binary accuracy, precision, recall, and Matthews correlation
coefficient (MCC). Here the MCC is formed as:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(15)

where TP, TN, FP and FN stand for true positive, true negative,
false positive and false negative. We also show the receiver
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TABLE III: Accuracy, precisons, recall and MCC (with CI 95%
and p-value) on task finger and hand (binary classification)
using I3D with and without transfer learning. Datasets in the
brackets denote where the model is pretrained.

I3D using transfer learning achieves better results than I3D trained from
scratch on both finger and hand tasks. Moreover, transfer learning with a

larger dataset (i.e., Kinetics-400) has more benefits to the model.
Method Metric finger hand

I3D (scratch)

acc 65.4 65.6
MCC 0.32±0.08 0.31±0.06
CI 95% [0.16, 0.48] [0.19, 0.43]
p-value 7.3× 10−5 3.7× 10−7

I3D (UCF-101)

acc 68.6 70.0
MCC 0.34±0.10 0.39±0.05
CI 95% [0.14, 0.54] [0.29, 0.49]
p-value 7.1× 10−4 3.8× 10−14

I3D (Kinetics-400)

acc 69.2 77.5
MCC 0.35±0.06 0.54±0.07
CI 95% [0.23, 0.47] [0.40, 0.68]
p-value 1.1× 10−8 7.0× 10−14

TABLE IV: The number of samples in each class of seven
tasks in our PD dataset.

Task finger hand kinetic leg postural pronation toe

Class 0 66 89 130 145 62 104 87
Class 1 91 71 38 39 23 72 71

operating characteristic (ROC) curves of all 6 settings based
on TABLE III. In general, I3D pretrained from the two datasets
outperform I3D (scratch), demonstrating that I3D can benefit
from non-medical datasets with transfer learning. Moreover,
the performance improvement of I3D (Kinetics-400) from I3D
(scratch) is more notable than I3D (UCF-101) especially on
task hand, which indicates the model would benefit more from
a larger dataset with transfer learning.

C. Task-level Severity Classification
Building a model good at predicting the task severity score

is our first concern and affects the later experiments and
research. Two architectures - I3D and our TSA are compared
in TABLE V on seven tasks from MDS-UPDRS-III. The
class distribution can be found on TABLE IV. In general,
the class imbalance in task finger, hand, pronation and toe
is acceptable. In remaining tasks, the class imbalance issue
is severe. Note that we replace convolutional layers in 3D
ResNet-34 layer3 and layer4 with temporal relative self-
attention block to construct our TSA network. The dataset
in the brackets denotes on which the model is pretrained. We
show the MCC along with precision and recall.

1) Task-level Performance: Fig. 6 shows the ROC curve for
each task in the setting which achieves the best performance
(bold numbers) in TABLE V. Three out of seven tasks have the
best MCC higher than 0.5, and only one task leg is under 0.3.
The average MCC across all seven tasks is 0.40, sufficiently
good for classification on a medical dataset. It demonstrates
that deep architectures can predict the task (i.e., task from
MDS-UPDRS) severity of a patient with decent accuracy given
the video from that task.

In particular, task finger, hand and pronation are the top-3
well-classified task in terms of MCC and ROC curves in Fig.
6a, 6b and 6f, because 1) most of the videos are zoomed in
to focus on the objects, making it easier for the model to look
at the relevant patterns and 2) the class imbalance problem
is slight compared to task kinetic, leg and postural. On the
opposite, task leg has the lowest MCC, and the ROC curve in
Fig. 6d does not bulge towards the top-left corner of the figure,
indicating a corrupt model for task leg. Inspecting TABLE V,
we can observe quite low recalls of 0.17 and 0.14 using I3Ds
and an inadequate recall of 0.35 using TSA.

The performance discrepancy between tasks exposes some
disadvantages of our architectures. First, the ratio of objects,
e.g., hand in task hand movements and toe in task toe tapping,
occupying the bounding box of the video matters. In task finger
tapping, hand movements and pronation, the zoom-function is
occasionally used to focus on the objects, and most of the
videos are zoomed in during the pre-processing stage, which
gives the architectures cleaner and more easy-to-identify input
data. Second, the effects of the class imbalance problem on
the architectures cannot be ignored. Due to the PD dataset
is a periodic- and subtle-motion dataset, which is different
from public datasets. Identifying task severity is harder than
classifying different human actions. In such a case, the extreme
class imbalance can corrupt the architectures’ behavior even
if the class-balanced loss [9] is adopted. However, the class
imbalance is everywhere in real-world settings or at least in
Parkinson’s disease. As such, we leave solving class imbalance
on the PD dataset as one of the future work.

2) Model Comparison: In TABLE V, we see that in terms
of the MCC, TSA (UCF-101) outperforms I3D (UCF-101) on
six tasks with a significant margin. Besides, the average MCC
of the former is also clearly better than the latter. Since the
only difference between the two is the backbone used, we can
conclude that our TSA performs better than I3D on the PD
dataset.

Also, compared to I3D (Kinetics-400), TSA (UCF-101)
still has 1.5% improvements even if pretrained from a much
smaller and less complex dataset. It demonstrates that TSA
is better at dealing with the large discrepancy of motion
difference between non-medical datasets and our PD dataset.
So we think TSA pretrained from Kinetics-400 would further
improve the performance. Due to the limit of time and
computation resource, we leave it as the future work.

Regarding the time cost of the temporal relative self-
attention, it is completely acceptable as the network can still
run with a bit more time cost. However, the memory cost can
be problematic if the network is too deep due to the hardware
memory limitation. As such, we give some useful solutions in
terms of the algorithm itself:

1) only replace convolutional layers with small temporal
size (usually the last few),

2) reduce dk and
3) use large kernel size or stride on the temporal dimension

at the first few layers to quickly decrease the temporal
size to the one you want and use kernel size of 1 at fol-
lowing layers to maintain the temporal size unchanged
until the last layer.
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(b) finger I3D (UCF-101)
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(c) finger I3D (Kinetics-400)
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(d) hand I3D (scratch)
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(e) hand I3D (UCF-101)
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(f) hand I3D (Kinetics-400)

Fig. 5: ROC curves of all 6 settings in Table III.

TABLE V: Accuracy, precision, recall, and MCC (with CI 95% and p-value) on seven tasks from MDS-UPDRS-III using I3D
and TSA. Each row shows the performance of a task and each column gives the result of a measurement (two classes). Datasets
in the brackets denote on which public dataset the model is pretrained. In general, I3D pretrained on Kinetics-400 outperforms
I3D pretrained on UCF-101, indicating transfer learning from larger datasets has more benefits than smaller datasets. TSA
pretrained from a smaller dataset, UCF-101, is comparable to Kinetics-400 pretrained I3D.

Task I3D (UCF-101) I3D (Kinetics-400) TSA (UCF-101)

acc recall
precision MCC p-value

95% CI acc recall
precision MCC p-value

95% CI acc recall
precision MCC p-value

95% CI

finger 68.6 0.76
0.55 0.34±0.09

1.7× 10−4
[0.16, 0.52] 69.2 0.76

0.57 0.35±0.06
1.1× 10−8
[0.23, 0.47] 78.2 0.81

0.75 0.55±0.08
2.1× 10−11
[0.39, 0.71]

hand 70.0 0.61
0.76 0.39±0.07

4.5× 10−8
[0.25, 0.53] 77.5 0.75

0.80 0.54±0.11
1.3× 10−6
[0.32, 0.56] 75.6 0.72

0.79 0.50±0.06
7.2× 10−16
[0.38, 0.62]

kinetic 78.0 0.10
0.87 0.22±0.06

2.7× 10−4
[0.10, 0.34] 73.8 0.49

0.82 0.33±0.10
1.0× 10−3
[0.13, 0.53] 79.2 0.51

0.87 0.40±0.09
1.1× 10−5
[0.22, 0.58]

leg 79.3 0.17
0.88 0.24±0.05

2.2× 10−6
[0.14, 0.34] 79.3 0.14

0.88 0.26±0.06
1.8× 10−5
[0.14, 0.38] 70.1 0.35

0.81 0.29±0.04
1.8× 10−12
[0.21, 0.37]

postural 74.1 0.08
0.85 0.18±0.04

8.7× 10−6
[0.10, 0.26] 77.6 0.34

0.87 0.30±0.08
2.0× 10−4
[0.14, 0.46] 70.6 0.56

0.78 0.35±0.09
1.1× 10−4
[0.17, 0.53]

pronation 68.8 0.56
0.76 0.34±0.06

2.7× 10−8
[0.22, 0.46] 77.8 0.71

0.87 0.53±0.07
1.7× 10−4
[0.39, 0.67] 72.2 0.67

0.76 0.43±0.04
5.9× 10−25
[0.35, 0.51]

toe 64.6 0.52
0.72 0.31±0.07

1.7× 10−6
[0.20, 0.48] 67.7 0.65

0.70 0.38±0.08
2.8× 10−6
[0.22, 0.54] 62.0 0.53

0.68 0.29±0.06
1.9× 10−6
[0.17, 0.41]

average - - 0.29±0.08 - - - 0.38±0.11 - - - 0.40±0.10
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(b) hand movements
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(c) kinetic tremor
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(d) leg agility
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(e) postural tremor
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(f) pronation
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(g) toe tapping

Fig. 6: ROC curves for seven tasks in the setting where the best performance is achieved in TABLE V. The ROCs on task
finger, hand, pronation and toe are well shaped, indicating that models on these tasks performs well. The remaining ROCs are
close to the diagonals, which means the models’ performance is not good.

TABLE VI: Clinical information for three classes. Note that each patient is videotaped two or three times, and the severity
score of each time may fall into different classes. For simplicity, L-OFF, L-ON, A, B, and C denote Levodopa challenge
test OFF, Levodopa challenge test ON, Med-OFF-Stim-ON, Med-OFF-Stim-OFF, and Med-ON-Stim-ON. Each class has an
approximately equal number of patients and videos, i.e., no severe class imbalance issue.

Class Score Number of patients Age Disease duration Male/Female Number of video fragments

all L-OFF L-ON A B C

0 15±4 32 61±8 11±4 22/10 351 0 130 66 0 155
1 32±5 32 65±9 12±5 28/4 374 62 36 145 65 66
2 53±8 31 64±8 11±5 21/10 357 152 21 12 172 0
total 33±16 39 63±8 11±5 28/11 1082 214 187 223 237 221

Another issue of TSA is that a large learning rate is possible
to cause the exploding gradients problem, which can be
overcome by applying approaches such as the ReLU activation
function and pre-training.

D. Patient-level Severity Classification

We use the trained model on each task as the feature
extractor to extract the learned patterns and apply the proposed
four task-assembling methods to incorporate tasks to produce a
single concluding severity score for a patient. The patient-level
severity is split into three classes by cut-off: slight ∈ [0, 23],
moderate ∈ (23, 40] and severe ∈ (40,−] with approximately
equal number of videos. TABLE VI shows the number of
video fragments in each class. Experiments are repeated 20
times to ensure validity.

1) Single-Task Baseline: To demonstrate the effectiveness
of task-assembling methods, we first do patient-level severity

classification using only one single task as the baseline. The
result is shown in TABLE VII. The best MCC is 0.31 using
single task hand, which is served as the baseline to compare
with assembling methods.

2) Benefit from Task-assembling methods: Four task-
assembling methods incorporate seven tasks used in task-level
severity classification. From TABLE VIII, we see that all
task-assembling methods, including the most straightforward
averaging strategy, outperforms the single-task baseline. The
best method is the pixel-wise self-attention based weighting in
terms of the MCC, with an improvement of 25.8% from the
baseline. These results demonstrate that patient-level severity
classification benefits from all tasks combined compared to
based on a single task, which is intuitive since it is also hard
for experts to diagnose a patient by inspecting just one task.

Comparing all four methods, we see the weighting strategy
is better than just simple averaging, indicating that each
task contributes unequally to the patient-level severity. More-
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TABLE VII: Single task baseline for patient-level severity
classification (three classes). Each row shows the performance
of a task and columns give the result of accuracy and MCC
with standard deviation provided. Rank is calculated based on
the average MCC from two inputs. The top-3 well-performed
tasks used for patient-level classification are task hand, kinetic
and finger. Task hand achieves a MCC of 0.31

, which is used as the best single-task baseline.
Task Input Accuracy MCC Rank

finger avgpool 60.3±2.8 0.30±0.05 3layer4 60.7±3.2 0.31±0.04

hand avgpool 61.5±2.8 0.31±0.04 1layer4 60.7±3.1 0.30±0.03

kinetic avgpool 59.7±2.7 0.29±0.04 2layer4 60.5±3.4 0.30±0.04

leg avgpool 50.6±2.7 0.21±0.05 6layer4 60.0±3.7 0.27±0.04

postural avgpool 54.9±2.5 0.19±0.05 5layer4 60.8±3.5 0.29±0.04

pronation avgpool 59.3±3.2 0.20±0.05 4layer4 61.3±3.4 0.31±0.04

toe avgpool 51.3±2.8 0.17±0.06 7layer4 60.6±3.9 0.28±0.04

TABLE VIII: Patient-level severity classification (three classes)
using single task as a baseline and task-assembling approaches
(seven tasks). Each row shows the performance of a task-
assembling method on the input from a certain layer. The four
task-assembling methods outperform the single-task baseline
with the channel-wise and pixel-wise attention weighting
being the best methods.

Method Input Accuracy MCC

single task baseline avgpool 61.5±2.8 0.31±0.04

vector averaging avgpool 62.7±2.4 0.32±0.06
vector weighting avgpool 64.1±2.4 0.37±0.06
channel-wise attention weighting layer4 64.5±3.1 0.38±0.05
pixel-wise attention weighting layer4 64.5±2.8 0.39±0.06

over, the attention-based weighting slightly outperforms the
learnable vector-based weighting. It is because 1) layer4 has
more feature points, potentially more representable for a task
than avgpool, and 2) attention-based weighting gives more
flexibility to the weights such that patients can have task
weights exclusively learned based on their condition.

We show the weights learned in the vector weighting
method in Fig. 7 to give a general feeling of which task
may contribute less or more to the prediction of patient-level
severity. Weights are averaged across 20 runs on each fold,
a total of 100 runs. As the two attention-based weighting
methods assign task weights for patients exclusively, it is not
intuitive to see the overall weight distribution on tasks. In Fig.
7, we see the top-2 tasks with highest weights are hand and
finger, which well matches the performance rank in TABLE
VII. The rest tasks remain the similar position as in TABLE
VII except that task kinetic drops to the lowest rank. We
suspect the reason being the effect of severe class imbalance
problem of task kinetic.
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Fig. 7: Weights for seven tasks learned by vector weighting
method. The weights of task finger and hand are higher than
the average, which means in the task-assembling approach,
i.e., vector weighting, they contribute more than other tasks in
the prediction of the patient-level severity.

TABLE IX: Patient-level severity classification (two classes
with class moderate removed) using single task and task-
assembling approaches (seven tasks). Each row shows the
performance of a task-assembling method on the input from
a certain layer. The four task-assembling methods outperform
the single-task baseline with the pixel-wise attention weighting
being the best method.

Method Input Accuracy MCC

single task baseline avgpool 81.1±2.2 0.60±0.06

vector averaging avgpool 81.4±1.7 0.61±0.05
vector weighting avgpool 81.9±2.1 0.64±0.07
channel-wise attention weighting layer4 82.2±3.1 0.66±0.09
pixel-wise attention weighting layer4 83.6±1.2 0.68±0.04

3) Distinguishing between slight and severe classes: We re-
move the class moderate with the remaining classes untouched
to focus on the classification between slight and severe classes.
The result of the best single task baseline and assembling
methods are shown in TABLE IX. By combining seven tasks,
we gain 1.7%-13.3% performance improvements compared to
using a single task. At best, we can achieve a MCC of 0.68 on
distinguishing between slight and severe classes. Moreover, the
attention-based weighting methods still outperform the vector-
based ones, matching the case in TABLE VIII.

In general, attention-based weighting strategy is the first
choice to assemble the tasks, but the vector-based one is
also applicable, given its higher time efficiency. It is also
worthwhile to exclude some tasks to see the ablation effects
on patient-level performance. As the main focus of this paper
is to show the potential of combining tasks, we leave it as
future work.

In Section V-D.2 and V-D.3, we empirically show the
possibility that a multi-task algorithm based on an incom-
plete video-overview (i.e. not all MDS-UPDRS-III items are
included) can help discriminate between groups of disease
severity in both slight-moderate-severe and slight-severe cases
with acceptable MCC, 0.39 for the former case and 0.68 for
the latter case. Besides, the performance of single task and
weights visualization demonstrates the test of bradykinesia
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hands among all videotaped items is the best reflections of
the total MDS-UPDRS-III.

VI. CONCLUSION

In this paper, we successfully apply deep architectures on
the PD video dataset to automatically identify the task-level
severity, i.e., item scores in MDS-UPDRS-III given the video
of the task, with satisfactory performance in terms of both
accuracy and MCC. Due to the small size of our PD dataset,
we employ transfer learning from non-medical datasets to
improve the performance of the model.

We propose a temporal self-attention method, TSA, for
action recognition problem and validate it on two commonly
used public datasets and our PD dataset. The promising results
compared to I3D demonstrate the effectiveness of TSA and
better ability of handling motion discrepancy between non-
medical datasets and our PD dataset during transfer learning.
TSA is highly flexible and can be embedded in any 3D
network for action recognition by replacing the CNN layer
with the temporal relative self-attention block.

We propose four task-assembling methods to incorporate
tasks to identify the patient-level severity by using the mod-
els trained on each task. Compared to using only a single
task, tasks combination can produce a better performance
under both classification scenarios: slight-moderate-severe and
slight-severe. It is clinically interesting that through analysis
of a limited number of selected tasks, we can deduct a global
severity score given the reasonably good accuracy and MCC.

In this study, we focus on only 7 tasks and each of them is
based on one particular video-segment. In MDS-UPDRS-III,
the scores of other tasks are also indicators for PD severity,
such as resting state tremor and freezing of gait. However,
video samples from these tasks contain multiple view and
scene changes and most part of the video is not highly
relevant for severity score prediction. So we exclude these
tasks temporarily to prevent from leading to an inaccurate
conclusion. In the future work, we will try to include all
the tasks with video data and propose new methodologies to
overcome these difficulties, further illustrating the feasibility
of our methods in this study. The clinical asymmetry which
may be present in PD was not considered in this study. Future
research should identify whether motor asymmetry plays an
important role during automated assessments of motor severity
in PD.

We take this study as a preliminary step for PD severity
prediction. Several additional steps should still be taken before
algorithms can be applied robustly in the real clinical world,
such as collection of much more data and findings of more
advanced class-imbalance-free models. However, some results
of our current methods already matches the clinical description
of PD. For instance, the tasks related to finger or hand
movements are most sensitive to reflect motor disease severity,
in comparison to other tasks. This implies that the severity
of upper extremity bradykinesia best reflects the total motor
severity, which closely adheres to the clinical diagnosis of
PD. Furthermore, the result also shows that bradykinesia of
the upper extremity is more sensitive than bradykinesia of the

lower extremity, which suggests that assessment of severity
should be more focused on upper body bradykinesia than
lower body bradykinesia. However, it is questionable whether
upper limb bradykinesia should be considered a gold standard.
Future research should attempt to replicate and validate this
finding before implementation in clinical practice.

The proposed methodology here can be used in other disor-
ders with motor phenotypes, such as classification of disease
severity in e.g. Huntington’s Disease, or differentiating motor
phenotypes such as epilepsy vs. psychogenic non-epileptic
seizures, indicating its utility beyond Parkinson’s Disease.
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