
 
 

Delft University of Technology

Estimation of regional mass balance changes of the Greenland ice sheet using GRACE
data and the Input-output method

Xu, Zheng

DOI
10.4233/uuid:ef8425da-0eee-45b3-8e29-086e5fb41ede
Publication date
2019
Document Version
Final published version
Citation (APA)
Xu, Z. (2019). Estimation of regional mass balance changes of the Greenland ice sheet using GRACE data
and the Input-output method. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:ef8425da-0eee-45b3-8e29-086e5fb41ede

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:ef8425da-0eee-45b3-8e29-086e5fb41ede
https://doi.org/10.4233/uuid:ef8425da-0eee-45b3-8e29-086e5fb41ede


 

Estimation of regional mass balance changes of the Greenland ice 

sheet using GRACE data and the Input-output method  

 

  



  



 

 

Estimation of regional mass balance changes of the Greenland ice 

sheet using GRACE data and the Input-output method 

 

 

 

 

 

 

 

 

Proefschrift 

 

ter verkrijging van de graad van doctor 

aan de Technische Universiteit Delft, 

op gezag van de Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen, 

voorzitter van het College voor Promoties, 

in het openbaar te verdedigen op 

Woensdag 24 April 2019 om 10:00 

 

Door 

 

Zheng Xu 

M.Sc., UNESCO-IHE, 

Delft, Netherlands  

geboren te Jiangsu, China 

 

 

  



 

  



This dissertation has been approved by the 

Promotor: Prof.dr.ir. P.N.A.M. Visser 

Copromotor: Dr.ir. E.J.O. Schrama 

 

Composition of the doctoral committee: 

Rector Magnificus   Chairperson 

Prof. dr. ir. P.N.A.M. Visser   Technische Universiteit Delft 

Dr.ir. E.J.O. Schrama   Technische Universiteit Delft 

 

Independent members: 

Prof.dr.ir. M. Mulder    Technische Universiteit Delft 

Prof.dr.-Ing. N. Sneeuw   Universität Stuttgart  

Prof.dr.-Ing. J. Kusche   Universität Bonn  

Prof.dr.M.R. van den Broeke   Universiteit Utrecht 

Prof.dr.L.L.A. Vermeersen   Technische Universiteit Delft 

Prof.dr.ir.H.W.J. Russchenberg  Technische Universiteit Delft, reservelid 

 

Dr.ir. W. van der Wal heeft als begeleider in belangrijke mate aan de totstandkoming van het proefschrift 

bijgedragen. 

 

  

This research is funded by means of scholarship ALW-GO-AO/27 provided by the Netherlands 

Organization of Scientific Research, NWO. 

Keywords: Greenland Ice Sheet, GRACE, RACMO2, mass balance, constraints   

Printed by:  IPSKAMP printing 

Front & Back: Qixuan Li 

Copyright © 2019 Zheng Xu 

ISBN:  

An electronic version of this dissertation is available at 

http://repository.tudelft.nl/. 

http://repository.tudelft.nl/
http://repository.tudelft.nl/


  



 

Table of Contents 

Acknowledgements ......................................................................................................................... I 

Summary ...................................................................................................................................... III 

Samenvatting .............................................................................................................................. VII 

Chapter 1: Introduction ................................................................................................................. 1 

1.1 Background ........................................................................................................................... 1 

1.2 Regional mass changes approximation ................................................................................. 2 

1.3 Research Motivation ............................................................................................................. 4 

1.4 Research questions ................................................................................................................ 5 

1.5 Dissertation Structure ............................................................................................................ 5 

Chapter 2: Optimization of regional constraints for estimating the Greenland mass balance 

with GRACE level-2 data .............................................................................................................. 7 

2.1. Introduction ........................................................................................................................... 8 

2.2. Inverse modelling of GrIS regional mass changes .............................................................. 10 

2.3. Simulation of the GrIS mass balance .................................................................................. 13 

2.4. Optimization of the constraints in least-squares approach .................................................. 16 

2.4.1. Optimization of constraint ........................................................................................... 16 

2.4.2. Evaluation of objective functions ................................................................................ 17 

2.4.3. Trend differences ......................................................................................................... 20 

2.4.4. Inter-region correlation of the monthly mass balance ................................................. 23 

2.5. Approximating the regional mass changes from GRACE data ........................................... 25 

2.6. Discussion ........................................................................................................................... 28 

Chapter 3: Improved GRACE regional mass balance estimates of the Greenland ice sheet 

cross-validated with the Input-output method .......................................................................... 31 

3.1. Introduction ......................................................................................................................... 32 

3.2. IOM method ........................................................................................................................ 34 

3.2.1. SMB and D .................................................................................................................. 34 

3.2.2. Cumulative TMB anomaly .......................................................................................... 35 

3.3. GRACE ............................................................................................................................... 37 



Contents 

3.3.1. Post-processing GRACE data ...................................................................................... 37 

3.3.2. Inversion of the regional mass balance ........................................................................ 38 

3.4. Cross-validation .................................................................................................................. 38 

3.4.1. Reference SMB and D ................................................................................................. 38 

3.4.2. Approximation errors ................................................................................................... 41 

3.4.3. Results and discussions ................................................................................................ 44 

3.5. Conclusions ......................................................................................................................... 47 

Appendix A .................................................................................................................................... 49 

A3.1. Reference discharge based on the pre-1960 discharge estimations ............................. 49 

A3.2. Approximation error correction ................................................................................... 49 

A3.3. The GrIS simulation ..................................................................................................... 49 

A3.4. Uncertainty estimations ............................................................................................... 50 

A3.5. Selection of the GIA model for GrIS regions. ............................................................. 50 

Chapter 4: Regional Greenland ice sheet mass changes based upon a hierarchical mascon 

constraining method ..................................................................................................................... 55 

4.1. Introduction ......................................................................................................................... 56 

4.2. Least-squares inversion ....................................................................................................... 57 

4.2.1. Mascons ....................................................................................................................... 58 

4.2.2. Global spherical harmonic analysis and filtering ......................................................... 58 

4.3. Hierarchical constraint method ........................................................................................... 59 

4.3.1. Inversion of two levels of mascons .............................................................................. 59 

4.3.2. Constraining LL with HL ............................................................................................. 61 

4.3.3. Definition of HL mascons ............................................................................................ 61 

4.4. Grid resolution for mascons ................................................................................................ 63 

4.5. Results analysis ................................................................................................................... 64 

4.5.1. Observation: simulation ............................................................................................... 64 

4.5.2. Mass changes derived from GRACE Level-2 data .............................................. 67 

4.6. Conclusion and recommendations ...................................................................................... 69 

Appendix A .................................................................................................................................... 70 

A4.1. Spherical harmonics simulation ................................................................................... 70 

Chapter 5: Conclusions and recommendations ......................................................................... 77 



Contents 

5.1. Conclusions ..................................................................................................................... 77 

5.2. Recommendations ........................................................................................................... 80 

References ..................................................................................................................................... 81 

Curriculum Vitae ......................................................................................................................... 87 

List of Publications ....................................................................................................................... 88 

 

  



 



 

I 

 

Acknowledgements 

Eight years ago, I made my first life-changing decision on my own. I decided that the Netherlands 

will be my next stop. So, at this point, I think I have to give my first acknowledgement to my 

parents, they are the ones who backed me up and supported me all the way up to now. Moreover, 

they taught me to think free and act brave. Because of them, I enjoyed a great journey which not 

only took me to many different countries but also gave me many more friends; the rest of my life 

I will benefit by the knowledge and skills that I picked up on the way. 

The next one on my list is an anonymous friend. The day I arrived in the Netherlands was a 

rainy day (of course). I didn’t plan the road from the airport to my school in Netherlands, since my 

sister who had studied in Delft promised to pick me up. But the story didn’t begin well. She mistook 

the time and did not show up at the airport. I waited several hours then made an impulsive decision 

that I would find the way to the school by myself. I should mention that I never spoke English 

outside a classroom at that time, google maps was not an option and I brought 4 pieces of luggage 

(my mom packed everything I had plus much more, so each piece of luggage was heavy like a 

truck). The trip by train was very friendly for foreigners, but once I left the Delft Zuid station I was 

completely lost in the city. I still remember that I stood in the rain at a crossroad and felt that I was 

a small boat in the middle of ocean, although later it turned out this city was no larger than a small 

village. Anyway, help came unexpectedly, an Indian guy discovered my hopelessness and he 

stopped and asked my destination. I told him the abbreviation of my school since I could only 

remember that much. It was very fortunate, he had a friend who studied there. So he walked me to 

a bus stop, helped me with the baggage, and paid my ticket (I only had five notes of 100 in my 

pocket). The rest of the story was just like any other foreign student arriving the first time at school. 

Now I would like to take the opportunity to give my best wishes to this anonymous friend, live 

long and prosper.  

Eight years later I became a skillful traveler. I had traveled several times alone, I can live and 

work in a completely new city without any discomfort. At the end of my overseas adventure, that 

moment surfaced in my mind. I’m still in the middle of an ocean, but now I am stronger, more 

confident and more determined. My 8 years away from home were a long and bumpy road, but I 

met a great number of people who helped me along the way. Firstly, my sincere gratitude is to Dr.ir. 

E.J.O. (Ernst) Schrama. Thank you EJO, you led me into a new and challenging field, you did not 

give up on me when I was down, you let me see the joy and difficulties of being a scientist, you 

gave all your support for me to finish my thesis even after I left Delft. No matter whether I will 

continue my work in science, I will always be proud to be one of your PhD students. Then a slightly 

smaller thanks to Dr.ir. W. (Wouter) van der Wal. Just like Frodo Baggins has Sam (of course you 

are million times more gorgeous than Sam), I may never reach the “Mount Doom” without your 

help. For you, one bottle of beer says all.  

Special thanks to Prof. Boudewijn Ambrosius, Prof. Pieter Visser and Prof. Bert Vermeersen, 

thank you for offering me the opportunity to pursue my PhD in the Astrodynamics and Space 



Acknowledgement 

II 

 

Missions group. Many thanks to Prof.  van den Broeke in Utrecht University (UU/IMAU), the 

face-to-face discussions about Greenland and RACMO deepened my understanding. Also many 

thanks to Dr. Ellyn Enderlin, without your discharge data I could not have completed my work. My 

gratitude to Dr. Ir. Bert Wouters, your research enlightened me to carry out my study of the GRACE 

and GrIS regional mass. 

Thanks to my dear colleagues, Ron, Erwin, Marc (black T-Shirt version), Dominic, Eelco, Bart, 

Jose, Wim, Jacco, Sowmini, Joao, Guido, Mao and those who used to work in the group but left at 

some point. Although I’m not very interactive in the office and after work, you created a 

comfortable, family-like atmosphere in our group, which I appreciated a lot. Last but not the least, 

one lady should be mentioned, the “forever life saver”, best secretary so far, guardian of young 

PhDs, dear N. (Relly) van Wingaarden. Every time I showed up in front of your door with tons of 

troublesome questions, you made some phone calls then told me that everything would be OK and 

you would take care of me. I wish the group will have you forever and thank you so much for 

everything. 

I came to Netherlands alone, but had a big family when I left. This family is not bound by blood, 

but is still undivided in spite of the physical distance. Just mentioning their names is not enough to 

express my gratitude and unnecessary, they are the reasons that my life in Netherland is colorful 

and interesting. You are part of my life till the end of time. 

This research is funded by means of scholarship GO-AO/27 provided by the Netherlands 

Organization of Scientific Research, NWO. During the writing, Dr. Ir. Bert Wouters and Dr. Ir. 

Cornelis Slobbe contributed as reviewers, their comments are more than valuable. I sincerely 

appreciate all of their advice and the time they gave to read my draft. The committee members of 

my PhD are also greatly acknowledged, for the devotion of time to read my dissertation and for 

being a part of my defense ceremony.  

 

Delft, The Netherlands, December 2017 

Zheng Xu (Black) 



 

III 

 

Summary 

In the 21st century, polar land ice melting became one of the driving factors of global sea level rise, 

which is discussed widely by the media and the public. Although the fact of the shrinking ice caps 

and accompanying changes in the sea level is established, the actual amount of polar ice melting 

still needs to be quantified in separate regions. Sitting on top of bedrock, the Greenland ice sheet 

(GrIS) is the second largest ice sheet on Earth. With traditional glaciological methods the change 

of the Greenland ice sheet is difficult to measure directly, however with the GRACE (Gravity 

Recovery and Climate Experiment) satellite system the mass changes can be measured directly. 

There are several sub-drainage areas within the Greenland Ice Sheet. Some of the subsystems may 

contribute differently to the overall mass changes of GrIS. For instance, while the mass loss in the 

GrIS ablation zone is enhanced during the last decades, the central high altitude areas experienced 

increased mass accumulation (Krabill et al., 2000, Thomas et al., 2001, Colgan et al., 2015, Xu et 

al., 2016). It is important to quantify the regional mass changes because it gives us insight what is 

going on beyond the realization that the GrIS is shrinking. 

Different methods have been implemented in the literature to estimate regional mass changes. 

As in this study, we are interested mainly in two methods, i.e.: 1) Using GRACE data to derive the 

GrIS mass changes (GRACE method); 2) Using modelled Surface Mass Balance (SMB) and ice 

discharge (D) estimates in the so-called Input-output Method (IOM method). Between these two 

methods, a good agreement can be found on the mass change estimates for the entire GrIS and in 

some sub-regions. However, in some reports in which different regional mass changes estimates 

are compared, we find: 1) some mass loss estimates are recognized as similar because uncertainty 

in one or both estimates is large; 2) in some regions, particular in the southeastern and northwestern 

GrIS, the comparison between methods show differences larger than the error margin. Hence, in 

our study, we focus on reducing the uncertainty in two types of GrIS mass loss estimates, derived 

from the satellite gravimetry measurements and based on the results of the IOM. With our method 

we get better estimates of the regional mass changes of the GrIS by properly configuring constraints 

during inversion while reducing bias towards to the a priori models used to derive the constraints. 

In our study, we use the level-2 data from the twin satellite Gravity Recovery and Climate 

Experiment (GRACE). Both satellites were launched in 2002. The satellites provided global 

surface mass change measurements until November 2017. There are several inversion strategies to 

retrieve regional mass loss from GRACE level data. Schrama et al. (2011) proposed a least-squares 

inversion to recover the regional mass changes of GrIS from the GRACE level-2 spherical 

harmonic data. We adopt this method and focus on the constraints that are applied in the inversion 

of regional mass changes of the GrIS. Based on mass change rates of different GrIS regions, we 

propose to use separate constraints to limit the variance of the mass changes in two different areas, 
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i.e. the areas below and above the 2000 m elevation contour. Together with the constraints for the 

surrounding Arctic areas, we replaced the original single constraint in Schrama et al. (2011) with 

three different constraints. In order to determine suitable values for the constraints, we utilize a 

multi-objective optimization approach based on a simulation in which the GrIS mass changes is 

modelled by an SMB model and an estimate of the ice discharge. To test our method, we create a 

simulation of the GrIS mass changes mainly based on an IOM method. By implementing our 

method on the simulation, we find that with these improved constraints the approximation error in 

the mass change estimates in each GrIS region is reduced. 

During the study of optimizing the constraints for GRACE solution, we noticed the correlation 

between the GRACE data and the approximation error in the GRACE solution. Thus we extend the 

use of the IOM solution based simulation to quantify the relationship between the approximation 

errors in the constrained least-squares inversion approach and the simulated mass changes signals, 

which can be seen as signal to noise ratio. We found that we can apply this signal to noise ratio to 

the GRACE inferred solution to further reduce the approximation errors by maximum ~40% (in 

the simulation). Still, even with this improvement in GRACE estimates there are regional 

differences in the northwest GrIS compared to the IOM solution. For this reason, we investigate 

the IOM solution, the surface mass changes model (RACMO2) and the ice discharge estimate 

(Enderlin et al, 2013). In a standard IOM solution, in order to compensate the uncertainty 

accumulation in the IOM approach, a reference SMB and D are subtracted from the SMB and D 

estimates because it helps to remove the uncertainties accumulated in the Total Mass Balance 

(TMB) over a long time period (see chapter 3.2). The reference SMB and D are the averaged SMB 

and D over a certain time period during which the GrIS is considered as stable. However, due to 

the SMB model uncertainty and lack of historical discharge measurements in the northwest, the 

reference estimate in this region is less accurate, especially the reference discharge. Thus, we 

replace the reference discharge in some regions with discharge based on modelled run-off from the 

RACMO2 model, which noticeably reduces the discrepancy between the GRACE solution and the 

IOM solution in some regions. Nevertheless, the difference in the northwestern GrIS remains. 

After validating our GRACE results with mass change estimates in this region based on satellite 

altimetry we conclude that the current uncertainty estimate in the IOM solution for this area is too 

low. 

The last contribution of this study is to explore the capability of the GRACE data for deriving 

mass change estimates at a finer subdivision of the GrIS sub region, i.e. 19 sub-basins. We realize 

that, in order to get better estimates for smaller areas, more specific constraints than for the 8 

sub-basins set-up are required, otherwise the approximation errors result in large uncertainties in 

the regional mass changes estimates. However, the method through which we optimize the regional 

constraints relies on an IOM based simulation of the GrIS and, as we concluded before, in some 

regions the IOM method is less reliable and validation of the IOM requires estimates that are 

independent from IOM. 

To derive some constraints for the smaller regions we use the fact that the estimates for the large 

areas (i.e. 8 GrIS basins) are more robust, i.e. they depend less on the constraints. For this reason, 
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we propose a new hierarchical constraint method to derive mass changes in small GrIS regions 

from GRACE, i.e.: to constrain the small regions with estimates of the large regions that are 

composed of random combinations of smaller regions. With this method we do not need a 

simulation or a priori information other than what is necessary for the largest mascons in the 

hierarchical method. In order to validate this method, we apply it to simulated mass changes and 

compare it against a standard least-squares inversion with an optimized single constraint applied 

to the same simulation. We find that in most regions the hierarchical constraint method is capable 

to retrieve similar mass changes estimates as the standard single constraint method, and in some 

regions it shows even better consistency to the simulation. 

In this study, we have investigated different methods to improve both the GRACE and IOM 

based regional mass changes estimates. The methods developed in chapter 2 and chapter 3 require 

some prior knowledge about the mass changes of GrIS, such as a GrIS mass changes simulation 

based on models and observations. We suggest that these methods can be applied to other areas, 

such as in Antarctica and Alaska if a simulation is available. In chapter 4 we present a feasible way 

to retrieve the regional mass from GRACE data.  
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Samenvatting 

 

Landijs in de polaire gebieden is één van de bepalende factoren voor mondiale 

zeespiegelverandering geworden in de 21e eeuw. Het onderwerp wordt breed besproken in de 

media en de samenleving. Het is een feit dat landijs verdwijnt en dat dit leidt tot zeespiegel 

verandering, maar het is moeilijker te kwantificeren in welke gebieden op aarde en in welke mate 

het ijs verdwijnt. Liggend op het vaste land is de Groenlandse ijskap het twee na grootste ijssysteem 

op aarde. Met traditionele glaciologische methoden is het moeilijk de verandering van de 

ijsvoorraad op Groenland direct te meten. Met de GRACE (Gravity Recovery and Climate 

Experiment) satellietmissie kunnen de veranderingen in de ijsvoorraad direct gemeten worden. Er 

zijn verschillende subsystemen binnen de Groenlandse ijskap (GrIS), namelijk de stroomgebieden, 

die zijn bepaald door de lokale topografie. Sommigen van deze subsystemen kunnen een andere 

bijdrage leveren aan het totale massaverlies van de GrIS. In (Krabill et al., 2000), (Thomas et al., 

2001), (Colgan et al., 2015), (Xu et al., 2016) zien we bijvoorbeeld een toename van massaverlies 

in de GrIS afsmeltzone gedurende de laatste 20 jaar, terwijl de zone boven de 2000 meter een 

toename van massa laat zien. Het is belangrijk de regionale massaveranderingen te kwantificeren 

omdat het meer inzicht geeft in wat er aan de hand is dan simpelweg te realisatie dat de GrIS massa 

verliest. 

In de literatuur zijn verschillende methodes geïmplementeerd om regionale 

massaveranderingen te bepalen. Een hoge mate van overeenkomst kan gevonden worden tussen de 

verschillende resultaten voor de gehele GrIS en in enkele deeL-gebieden. We zijn geïnteresseerd 

in twee methoden: 1) de GRACE methode om de massaverandering te bepalen, 2) het gebruik van 

oppervlakte massa balansen en ijsgangmetingen in de zogenoemde Input-output methode. In 

verschillende artikelen waar regionale massabalansschattingen worden vergeleken vinden we: 1) 

dat de massa verliezen alleen overeenstemmen als er een grote onzekerheidsmarge wordt 

aangenomen, 2) In bepaalde gebieden, met name in het zuidoosten en noordwesten van de GrIS, is 

het verschil tussen verschillende methoden groter dan de foutmarge. In deze studie concentreren 

we ons op het verminderen van de onzekerheden van schattingen van de massaverliezen van de 

GrIS afgeleid uit 1) satelliet gravimetrie en 2) het oppervlakte massa balans model (SMB) en de 

ijsgangmetingen (D). Met onze methode krijgen we een verbeterde schatting van de regionale 

massa balansen binnen de GrIS door verbeterde limiteringendie gebruikt worden bij de inversie; 

hiermee voorkomen we dat de oplossingen beïnvloed worden door a-priori modellen die we 

gebruiken voor de afleiding van limiteringen. 

In onze studie maken we gebruik van de level-2 gegevens van de GRACE (Gravity Recovery 

and Climate Experiment) tweeling-satellietmissie. Beide satellieten werden in 2002 gelanceerd; in 

November 2017 kwam een einde aan de eeks van wereldwijde metingen van de massaverandering. 

Er bestaan verschillende strategieën om een regionaal massaverlies uit de GRACE metingen af the 

leiden. In Schrama et al (2011) wordt een kleinste-kwadrateninversie voorgesteld waarbij regionale 
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massaveranderingen over de GrIS worden afgeleid uit de GRACE level-2 potentiaalcoefficiënten. 

We nemen deze methode als uitgangspunt waarbij we ons concentreren op de limiteringen die 

tijdens de inversie van de regionale massa verandering binnen de GrIS gebruikt worden. Gebaseerd 

op de snelheid waarmee massa verandert in verschillende GrIS gebieden stellen we verschillende 

type limiteringen op; hiermee kunnen we de variantie van de massaveranderingen in gebieden 

onder en boven de 2000 meter hoogtelijn beperken. Samen met de limiteringen voor de omliggende 

Arctische gebieden vervangen we de limitering die gebruikt werd in Schrama et al. (2011) door 

drie alternatieve constraints. Een multi-criteries optimalizatie-methode gebaseerd op een simulatie 

van de GrIS door middel van modellen van de SMB en de D is gebruikt om geschikte limiteringen 

te vinden. Met deze nieuwe constraints vinden we dat de benaderingsfout van het GrIS in elk 

sub-gebied wordt verkleind. Het eindresultaat na toepassing van de limiteringen komt beter 

overeen met het SMB model en de ijsgangveranderingen.  

We hebben gebruik gemaakt van een simulatie die gebaseerd is op de Input-output Methode 

(IOM) om te kwantificeren welke mogelijke verbanden er bestaan tussen de eerder genoemde 

benaderingsfouten en de kleinste-kwadraten methode die afhangt van limiteringen en gesimuleerde 

massaveranderingen. We vinden dat het toepassen van gesimuleerde signaaL-ruisverhouding in de 

GRACE oplossingen de benaderingsfouten tot circa 40% reduceert. Dit neemt niet weg dat, nadat 

we deze verbetering hebben aangebracht, er nog steeds regionale verschillen bestaan in het 

noordwesten van de GrIS ten opzichte van de IOM oplossing. Om deze reden bestuderen we de 

IOM-oplossing bestaande uit het RACMO2 model (SMB) en de ijsgangschattingen (D) (Enderlin 

et al, 2013). In de IOM oplossing is het gebruikelijk om de onzekerheden in de berekening te 

reduceren door zogenaamde referentiewaarden voor de SMB en de D in rekening te brengen. Er 

bestaan onzekerheden in het SMB model en er is een gebrek aan historische ijsgangmetingen in 

het noordwesten van Groenland, in deze regio zijn de referentieschattingen daarom minder 

nauwkeurig in het bijzonder voor de ijsgangmetingen (D). Om deze redenen vervangen we de 

referentieijsgang D in bepaalde gebieden waarbij we gebruik maken van de gemodelleerde run-offs 

verkregen uit het RACMO2 model; deze procedure vermindert de discrepantie tussen de GRACE 

oplossing en de IOM oplossing in bepaalde gebieden. Niettemin blijft er een verschil bestaan in 

het noordwesten van de GrIS. Een validatie tussen de GRACE-resultaten en massa schattingen uit 

satelliet altimetrie leert dat de IOM-oplossing een grotere onzekerheid heeft in dit gebied. 

De laatste bijdrage in deze studie bestaat uit het onderzoeken of het met GRACE data mogelijk 

is massaveranderingen te schatten in gebieden kleiner dan de tot nu toe gebruikte 19 

sub-stroomgebieden. Wij realizeren ons dat, om betere schattingen te krijgen in kleinere gebieden, 

specifiekere limiteringen nodig zijn dan gebruikt voor de 8 stroom gebieden, omdat anders de 

benaderingsfouten kunnen leiden tot grote fouten in de regionale massabalansschattingen. De 

methode die gebruikt is om de regionale limiteringen te optimaliseren hangt af van de IOM 

simulatie van het GrIS, en, zoals we al eerder concludeerden, in sommige gebieden is de IOM 

methode minder betrouwbaar of ontbreken onafhankelijke schatting voor de validatie van de IOM. 

De limiteringen die we gebruiken voor de acht grote stroomgebieden zijn gebiedsafhankelijk 

waarbij met de onzekerheid per gebied rekening wordt gehouden. Om deze reden stellen we in 
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hoofdstuk vier een methode voor om de limiteringen op te stellen voor kleinere gebieden die binnen 

grote gebieden in het GrIS liggen. Deze methode noemen we de hierarchische limiteringen 

methode. Met deze nieuwe methode hebben we geen simulatie of a-priori informatie nodig anders 

dan welke noodzakelijk is voor de grootste mascons in de hierarchische methode. We vinden dat 

de met de limiteringen geoptimaliseerd voor de grootste massaconcentraties de benaderingsfouten 

voor kleinere limiteringen geminimaliseerd worden. Een vergelijking met de IOM oplossing laat 

een goede overeenkomst tussen beide methoden zien in de meeste kleine gebieden. 

In deze studie zijn verschillende methoden bestudeerd om regionale massabalansschattingen 

zowel van GRACE als de IOM verbeteren. Als er een simulatie beschikbaar is dan suggereren we 

dat de methoden ontwikkeld in in hoofdstuk 2 en 3 ook toegepast kunnen worden in andere 

gebieden, zoals Antarctica en Alaska. In het geval er geen simulatie bestaat kan de methode 

beschreven in hoofdstuk 4 gebruikt worden om regionale massaschattingen te maken. 
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Chapter 1 

Introduction 

1.1 Background 
The Greenland ice sheet (GrIS) is the largest ice sheet on the northern hemisphere. The total extent 

is ~1.7×106 km2, occupying ~81% of Greenland. The average thickness is ~1600 m reaching over 

3000 m in the center and south of Greenland. The GrIS has a significant effect on the global climate, 

and it is large enough to create its own climate (Petersen et al., 2004; van Angelen, 2013). The 

observed mass loss of the GrIS during the last two decades is recognized as a key indicator of 

climate change, as mentioned in the Fifth Assessment Report (AR5) of the Intergovernmental Panel 

on Climate Change (IPCC) (Pachauri et al., 2015). The GrIS exhibits a clear increase in mass loss 

trend from 2002 up to the moment of writing (2016) compared to the mass loss in the 90s. A review 

of the Greenland mass loss between 1992 to 2011 can be found in Shepherd et al. (2012). Their 

reconciled Greenland mass changes based on four different techniques suggests -142±49 Gt·yr-1 in 

the timeframe 1992 to 2011 where one Gigaton is approximately equal to 1 km3 of water. During 

the first decade (1992 – 2000) the mass balance of the GrIS was -15±65 Gt·yr-1, which increased 

to -211±37 Gt·yr-1 between 2000 and 2011 and -263±30 Gt·yr-1 between 2005 and 2010. 

It is mentioned in AR5 that the increasing speed of GrIS ice sheet mass loss is one of the major 

drivers of global mean sea level rise during 1993–2010. In Shepherd et al. (2012) it is mentioned 

that the GrIS has lost around 2700±930 Gigaton of ice between 1993 and 2011, which is equivalent 

to an increase of the global mean sea level of 7.5±2.5 mm. Furthermore, global ecosystems are 

greatly affected by the continuously increasing mass loss of the GrIS along with changes in other 

land glaciers (Hoegh-Guldberg and Bruno, 2010). Changes in the regional mass balance can 

directly affect the local climate and ecosystems (Hoegh-Guldberg and Bruno, 2010), e.g. the land 

ice melting in the Arctic has a strong impact on a variety of organisms living above and below the 

ice in this region. Therefore, it is essential to understand the regional mass changes of the GrIS. 

To quantify the changes of the GrIS mass balance one can use the model based methods, such 

as a Surface Mass Balance (SMB) model and estimates of the ice discharge to investigate the mass 

conservation of the GrIS. Other ways to measure the mass changes are based on gravity 

observations from the GRACE satellite mission and from satellite altimetry observations. These 

methods can be used to produce estimates for the entire GrIS but also regionally for the individual 

glacier basins of which the Greenland ice sheet is composed. The focus of this thesis is on the 

satellite gravimetry, therefore in the following sections we will discuss the method for analyzing 

the GRACE data. 
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1.2 Regional mass changes approximation 
Since 2002 the GRACE mission provides inter-satellite range data aided by GPS tracking and 

accelerometers that provide us with monthly gravity field solutions that formed the basis for many 

studies providing estimates of the GrIS mass changes. During the first several years of the GRACE 

mission most studies focused on isolating the mass change signal from noise that originates from 

the measurements or from the background correction models or from signal outside the study 

region (i.e. leakage). The objective was to find the mass changes at the scale of the entire ice sheet, 

cf. Tapley et al. (2001) and Swenson et al. (2003). Filtering the GRACE data turned out to be 

essential to be able to observe mass variations at the Earth’s surface, including a clear negative 

trend of mass change on the GrIS (Tapley and Bettadpur, 2004; Chen et al., 2005). To retrieve an 

accurate map of the GrIS mass change different versions of inversion methods were implemented, 

see for instance Velicogna and Wahr (2005), Luthcke et al. (2006) and Wouters and Schrama (2008). 

The different mass change rate estimates for the entire ice sheet have converged, as shown for 

instance in Shepherd et al. (2012).  

At the early stages of the GRACE mission, Velicogna and Wahr (2005) used the GRACE data 

from 2002 to 2004 to recover a mass trend with a rate of -82±28 Gt·yr-1 over the Greenland area. 

Later, GRACE data indicated a higher mass loss estimate of -248±80 Gt·yr-1 with only two more 

years of data and with a correction for Glacial Isostatic Adjustment (GIA) with the ICE-5G model 

(Velicogna and Wahr, 2006). Van den Broeke et al. (2009) used GRACE data from 2003 – 2008 

and compared the mass loss of the GrIS with output from a surface mass balance model (RACMO2) 

combined with ice discharge measurements derived from ice-penetrating radar. This so-called 

Input-output Method (IOM) indicated a Greenland mass loss of -237±20 Gt∙yr-1. The mass loss 

trend increased when longer time periods of GRACE data were considered. Shepherd et al. (2012) 

reconciled several GrIS mass changes estimates including some based on GRACE data and found 

-263±30 Gt·yr-1 between 2005 and 2010. Later, other GRACE based studies have shown similar 

estimates, such as -280±58 Gt·yr-1 (2003 to 2014) in Velicogna et al. (2014), -278±19 Gt·yr-1 

(2003–2013) in Schrama et al. (2014), -286±16 Gt·yr-1 (2003–2013) in Ran et al. (2015). Thus, 

GRACE inferred mass changes estimates are in agreement for the mass loss for the entire GrIS 

regardless of the differences between processing methods. 

When we zoom in to smaller regions on the GrIS, it becomes clear that the regional mass change 

estimates do not always agree with each other, see for example the comparison between GRACE 

and IOM in the north-western and south-eastern areas in Sasgen et al. (2012) and in Velicogna et 

al. (2014). There are several reasons for the regional differences: 1) For the entire GrIS area, the 

noise in GRACE data as well as the influence of leakage are small compared to the actual mass 

variations (Wahr et al., 2006; Velicogna and Wahr, 2005; Wouters and Schrama, 2007). In smaller 

areas, the associated mass change signals are localized in higher degree and orders of the GRACE 

data where the noise is higher, for a discussion see Bonin and Chamber (2016). 2) When the 

regional estimates are combined to obtain an estimate for the whole GrIS, some errors in the 

regional estimates cancel out (Xu et al., 2015; 2016).  

Before we discuss the differences between methods used for regional mass changes estimates, 
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it should be noticed that most of the implemented methods are based on the inversion approach. 

The basic steps of inversion are: 1) Choose a mascon definition that is a sub-set of the whole area, 

2) Make an assumption of a certain mass distribution in each mascon and define scaling factors of 

the mass distribution, 3) Compare the assumption with the GRACE observation for various scaling 

factors, 4) Find the scaling factor that best matches the GRACE observation. The differences 

between regional GRACE estimates based on an inversion approach are due to differences in the 

realization of the above mentioned steps. In Swenson and Wahr, (2007), and Velicogna and Wahr 

(2005) averaging kernel functions are applied for large GrIS regions. This method derives the 

rescaling factors by comparing between signal before and after applying the Post-processing 

method to the GRACE data. A contour map of scaling factors can be obtained, which indicates the 

ratio between the actual Equivalent Water Height (EWH) changes and the EWH changes of 

GRACE data after Post-processing. In Velicogna and Wahr (2005) the averaging function is 

computed with the assumption that there is a uniform distribution of mass change in the coastal 

area and also that there is no mass change in the interior of the GrIS. However, multiple studies 

have suggested that neither the mass changes on coastal areas are evenly distributed nor that the 

mass changes of the interior GrIS are completely zero (van den Broeke et al., 2009; Sasgen et al., 

2012). Besides, the averaging function for the entire GrIS extends to the neighboring land areas of 

north Canada where mass changes also occur (Schrama and Wouters, 2011; Luthcke et al., 2013).  

One can also treat the GrIS as a collection of “points”, which could be discs or squares but with 

small size (for instance, a 1o x 1o grid cell on the Earth’s surface as in Luthcke et al., 2013). One 

can invert the point mass changes from the geopotential field and group all the point mass 

approximations within the studied region to obtain the regional mass changes approximation. 

Examples of point mass assumptions can be found in the studies of Forsberg and Reeh (2007), 

Sørensen and Forsberg (2010), Baur and Sneeuw (2011), Barletta et al. (2013), Schrama et al. 

(2014). The estimated mass in each point is sensitive to the Post-processing of the GRACE data, 

such as the GIA model and the background models (Barletta et al., 2013). Furthermore, not just for 

the mascon method but for all GRACE studies, a choice has to be made how to obtain the degree 

1 term of the mass changes, which is not observed by GRACE (Swenson et al. 2008).  

Wouters et al. (2008) implemented another inversion approach that assumes a fixed number of 

areas that correspond to drainage basins, which are expected to behave uniformly (Rignot and 

Kanagaratnam 2006). Scaling factors for each region are adjusted in order to fit the post-processed 

GRACE level-2 data (i.e., monthly potential coefficients produced by a GRACE processing center). 

By repeating this process, the best-fitting regionally averaged mass changes can be determined 

iteratively. For the whole GrIS, the result of this approach agrees with the results from the direct 

mascon method (Luthcke et al., 2006) and other independent studies, such as from Shepherd et al. 

(2012). However regional differences are found when comparing with Sasgen et al. (2012). 

Schrama and Wouters (2011) computed optimal scaling factors by utilizing the least-squares 

method instead of the iterative adjustment of the weights of each area as in Wouters and Schrama 

(2008). This least-squares inversion approach will be discussed in later chapters.  
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1.3 Research Motivation 
The use of least-squares inversion techniques involving mascons shows consistent results 

compared to other methods in most GrIS drainage basins (van den Broeke et al., 2009; Sasgen et 

al., 2012; Shepherd et al., 2012 and Andersen et al., 2015). However, there are some regional 

differences between various methods, and an obvious question is: “what causes these differences?”. 

The mass changes recovered by GRACE are not uniform across the GrIS (Sasgen et al., 2012; 

Barletta et al., 2013; Luthcke et al., 2013; Velicogna et al., 2014; Wiese et al., 2015; Alexander et 

al., 2016 and Ran et al., 2017). A direct consequence of the latter, and of the nature of gravity data, 

is that basins in the neighborhood of the GrIS (notably Ellesmere and Baffin island, Iceland and 

Svalbard) also affect the mass loss on Greenland (Wouters et al., 2008; Sasgen et al., 2012; Bonin 

and Chambers, 2013 and Schrama et al., 2014); this effect was demonstrated in Wouters and 

Schrama (2007). The least-squares inversion method has also proven to be a good option to derive 

the regional mass changes from GRACE data (Schrama and Wouters, 2011; Bonin and Chambers, 

2013). This method finds the mathematical optimal solution using the observation data but it relies 

on covariance information of data and of the signal. Thus, its solution may be biased, which leads 

to regional differences compared with other methods.  

The results obtained by Schrama and Wouters (2011) show that basin mass changes are typically 

negatively correlated relative to neighboring basins after the inversion. This effect is referred to as 

the anti-correlation error, or as denoted in this thesis, the approximation error. Schrama and Wouters 

(2011) explained that the approximation error causes least-squares solutions to become noisier in 

smaller basins. They also found that the approximation error is reduced when several adjacent 

regions are combined. In order to reduce the approximation error, a-priori variances are introduced 

as regularization factors in the least-squares method. The results shown by Schrama and Wouters 

(2011) indicate that the anti-correlation error is reduced, but an open issue is to determine the 

a-priori variances in order to minimize the regional anti-correlation error.  

A weak a-priori constraint is applied by Schrama and Wouters (2011) assuming that the a-priori 

variance is 106 Gt2 for 20 regions in their solution. A valid question is whether this type of constraint 

is sufficient or whether it is possible to find better constraints for the inversion. It is known that 

local mass change estimates based on GRACE data depend on constraints that are applied during 

the least-squares inversion. A too small a-priori variance will over-constrain a regional mass change, 

while an a-priori variance that is too large will cause an increased approximation error in the 

solution. Hence, the goal should be to reduce the approximation errors and to ensure that the 

approximations are not biased towards the constraints. Bonin and Chambers (2013) use a 

simulation of the GrIS in order to optimize the single constraint during the inversion. Here we aim 

to use different constraints for different parts of the GrIS. As simulation we will make use of the 

IOM solution based on the RACMO2 model output that was provided for this study, which 

simulates surface mass balance changes on the GrIS. However, we also have to consider that the 

knowledge of the study area obtained by models such as RACMO2 and discharge measurements 

may be insufficient for a simulation. Consequently, we need to find an alternative method to 

determine the required constraints for the GrIS basins that is less dependent on priori information. 



Introduction 

 

5 

 

It has to be highlighted that when we say the model based simulation is used for determining the 

constraints, we do not use the mass changes from the simulation as constraints. Instead, we consider 

the variances of the modelled regional mass changes. In this way, we do not fit the GRACE 

approximation to the simulation but we only constrain the variances of the approximation to reduce 

the approximation error. We are also interested in the regions where the IOM shows different mass 

changes estimates from GRACE based estimates. In order to explain the difference, it is required 

to assess both the GRACE and IOM solutions. The GRACE solution can be wrong in some regions 

when the inversion approach is not capable to accurately extract the mass change signal. This can 

be verified through a simulation where we know the exact regional mass changes on the GrIS. The 

IOM solution is probably the best choice for creating the simulation.  

For the IOM solutions, we will not investigate the RACMO2 model and the ice discharge 

estimates themselves. However, we will investigate the determination of the reference SMB and D 

which play an important role in the IOM solution. Previous IOM solutions estimate the reference 

D from historical data (Rignot et al., 2008). Since the historical data are incomplete in some regions, 

one has to assume a reference D in order to close the calculation of IOM (see the detailed discussion 

in section 3.2). This is reason to suspect the regional accuracy of the IOM solution when it shows 

different results compared with the GRACE based estimates. Furthermore, some studies apply the 

over uncertainty of the SMB model for the whole GrIS, e.g.: van den Broeke et al. (2009) and 

Sasgen et al. (2012), but the uncertainty of the SMB model is still unknown in regions. It could 

lead to under- or over-estimated regional uncertainty which can also cause the results to be different 

from other solutions. Hence it becomes necessary to re-evaluate the IOM solution in those regions. 

1.4 Research questions 
Based on the motivation described in section 1.3 we obtain the following research questions:  

1) How can the variance information derived from an IOM solution help to get better 

constraints for the mascon inversion procedure? 

2) How large are the differences between the GRACE mascon inversion results and the IOM 

results and how can they be explained? 

3) How can we impose an alternative constraint on the GRACE mascon inversion procedure 

which depends only weakly on simulated mass changes? 

4) How do our GRACE mascon inversion results compare to other published results? 

1.5 Dissertation Structure 
This thesis consists of 5 chapters. Chapter 2 is published in Geophysical Journal International in 

2015, and it focuses on finding optimal constraints for different basins in the GrIS. In this chapter, 

we describe the approximation error when using the least-squares inversion approach. In order to 

minimize the approximation error appearing in the regional mass changes estimates for several 

GrIS basins as well as the coastal and the interior areas, we propose a method to solve the 



Introduction 

 

6 

 

multi-objective optimization problem of finding optimal constraint values for coastal and interior 

GrIS regions. A simulation based on the provided IOM solution is implemented to test the method. 

Chapter 3 is published in The Cryosphere in 2016 where we discuss improved optimal 

constraints to determine rates of mass changes in 16 GrIS basins. Independent from that, we utilize 

the IOM method in which the surface mass changes estimates come from the RACMO2.3 model 

and where the ice discharge estimates are based on a survey of the ice thickness of the GrIS glaciers. 

We compare the two regional solutions in this chapter, and identify causes of the regional 

disagreement. A method was developed to validate the accuracy of the constrained least-squares 

inversion approach and to improve our GRACE solution by targeting the still existing 

approximation error. Finally, we also improve the IOM solution by using a correction of the 

historical discharge data based on modeled run-off.  

The methods presented in chapter 2 and 3 require a priori information of the GrIS which may 

not be available in all basins with the required quality. In chapter 4 a so-called hierarchical 

constraint method is developed which uses the estimated mass changes in large (top-level) basins 

to constrain mass changes in smaller basins enclosed within the top-level basins. The method is 

based on the finding that top-level basins are less affected by approximation errors than small 

basins when they are constrained in the same way. We use this method to reduce approximation 

errors in the GRACE regional solutions with less dependence on prior knowledge about the ice 

mass changes and without the commonly used regularization term in the least-squares inversion 

method. The method is tested with a simulation based on the IOM solution and applied to the 

GRACE data for further validation. 

We summarize the results obtained in this thesis in chapter 5 where the reader can also find 

recommendations for future studies on improving our methods and for applying our methods to 

other study regions. 
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Optimization of regional constraints for estimating the 

Greenland mass balance with GRACE level-2 data 

Z. Xu, E. Schrama, W. van der Wal 

Published in Geophysical Journal International, Vol. 202, p. 381–393, 2015 

 

Abstract 

Data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission can be used 

to estimate the mass change rate for separate drainage systems (DSs) of the Greenland Ice Sheet 

(GrIS). One approach to do so is by inversion of the level-2 spherical harmonic data to surface 

mass changes in predefined regions, or mascons. However, the inversion can be numerically 

unstable for some individual DSs. This occurs mainly for DSs with a small mass change signal that 

are located in the interior region of Greenland. In this study, we present a modified mascon 

inversion approach with an improved implementation of the constraint equations to obtain better 

estimates for individual DSs. We use separate constraints for mass change variability in the coastal 

zone, where run-off takes place, and for the ice sheet interior above 2000 m, where mass changes 

are smaller. A multi-objective optimization approach is used to find optimal prior variances for 

these two areas based on a simulation model. Correlations between adjacent DSs are suppressed 

when our optimized prior variances are used, while the mass balance estimates for the combination 

of the DSs that make up the GrIS above 2000 m are not affected significantly. The resulting mass 

balance estimates for some DSs in the interior are significantly improved compared to an inversion 

with a single constraint, as determined by a comparison with mass balance estimates from surface 

mass balance modelling and discharge measurements. The rate of mass change of the GrIS for the 

period of January 2003 to December 2012 is found to be −266.1 ± 17.2 Gt yr−1 in the coastal zone 

and areas below 2000 m, and +8.2 ± 8.6 Gt yr−1 in the interior region. 

Key words: Inverse theory; Satellite gravimetry; Time variable gravity; Arctic region; Glaciology. 

  



Optimized Regional constraints for GRACE mass balance solutions 

8 

 

2.1. Introduction 
The Gravity Recovery and Climate Experiment (GRACE) mission was launched in March 2002. 

Several studies have shown that ice mass decrease takes place on Greenland using data from the 

GRACE mission, (Schrama et al., 2011; Jacob et al., 2012, Sasgen et al., 2012; Shepherd et al., 

2012; Barletta et al., 2013; Luthcke et al., 2013; Velicogna and Wahr, 2013; Schrama et al., 2014). 

An advantage of satellite gravimetry is that one can directly derive the total ice mass balance after 

correcting for glacial isostatic adjustment and atmospheric, oceanic and continental hydrology 

mass changes. An alternative method is to measure surface elevation change by satellite altimetry, 

in which case the density of the snowpack, the firn and the deeper ice must be known to estimate 

the mass change of an ice sheet. A drawback of satellite gravity measurements is the relatively low 

spatial resolution compared to satellite altimetry measurements (Zwally et al., 2005). The nature 

of satellite gravity in combination with the Post-processing is such that leakage effects can be seen 

in the maps of gravity change as a result of the signal spreading outside the source region (Chen 

et al., 2007; Velicogna and Wahr., 2005).  

In order to deal with GRACE measurement error and leakage effects different approaches have 

been suggested. By means of averaging kernels, cf. Velicogna and Wahr (2005) and Swenson and 

Wahr (2007), one can minimize the combined GRACE measurement error and leakage effects to 

derive an average mass change for the GrIS or for larger sub-regions of the GrIS. Velicogna and 

Wahr (2005) assume an averaging function that is computed under the assumption of uniform mass 

change distributed in the coastal zone and zero in the interior of Greenland. However, several 

studies have indicated that neither the mass change in the coastal zone is evenly distributed nor 

mass change in the interior of Greenland is zero (Johannessen et al., 2005; van den Broeke et al., 

2009). Furthermore, the averaging function for the GrIS extends to the neighboring land areas of 

northern Canada where mass changes also occur (Luthcke et al., 2013).  

The mass concentration (mascon) methods described in Luthcke et al. (2006), Rowlands et al. 

(2010) and Luthcke et al. (2013) result in mass changes for a global set of mascons directly from 

the K-band ranging data from the GRACE satellites (the so-called level-1b data) and from 

information on the orbit of the GRACE satellites determined by GPS tracking and accelerometer 

measurements. In Luthcke et al. (2013) the mascons are taken to be 1⁰×1⁰ blocks. In order to 

suppress leakage and signal loss as a result of filtering, this approach considers GRACE data with 

the full GRACE noise covariance. The study of Luthcke et al. (2013) considers anisotropic 

constraints for neighboring mascons, and it assumes separate GrIS regions below and above 2000 

meters. It is shown by Luthcke et al., (2013) that for smaller areas, i.e. for 34 sub-regions of the 

GrIS, meaningful regional mass changes still can be revealed from the GRACE data when proper 

constraints are introduced.  

Other studies have estimated regional mass changes from the GRACE level-2 potential 

coefficients. Wouters et al. (2008) (hereafter W⁰⁸) implement a forward modelling approach similar 

to the mascon layout used by Luthcke et al (2013) whereby a fixed number of basin shaped regions 

on the GrIS are considered. For a discussion about the definition of GrIS basins see Rignot and 

Kanagaratnam (2006). Scaling factors for each region are adjusted iteratively to find a best match 
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between the equivalent water heights obtained from GRACE and their equivalent that follows from 

the forward model used by W⁰⁸. Regional mass changes from this approach match the results from 

the mascon method described in Luthcke et al. (2006) as well as other studies, (Sasgen et al., 2012; 

Shepherd et al., 2012). A least-squares inversion approach described in Schrama and Wouters (2011) 

(hereafter SW11) also employs the basin shaped mascons, but it is different from the forward 

method as in W⁰⁸, since the least-squares approach is introduced. This approach improves the 

effectiveness of the approach of W⁰⁸ by reducing the required computing power. SW11 show that 

the approximated regional mass balance agrees with the results retrieved via the mascon method in 

eight major GrIS drainage basins. 

The least-squares inversion approach described in SW11 leads to correlation between adjacent 

regions. An increase in mass loss in one region can be compensated by mass gain in adjacent 

regions so that the overall mass balance is unchanged. We will address the correlation effect in 

section 2.2 but here we discuss two solutions to this problem which are given in SW11. The first is 

that the solution becomes more stable when several adjacent regions are combined into a single 

estimate. The second solution is to implement regularization in the least-squares estimation 

(Tikhonov 1963), which means that the approximations of the regional mass changes are 

constrained by priori information. This solution is also referred to as constrained least-squares 

adjustment (SW11). With the second approach, the question is which values should be used as 

constraint. When the constraints are too tight the regional mass change estimates are biased towards 

a priori information. On the other hand, the instability can remain in regions if the constraint is too 

loose. SW11 applied a loose constraint by assuming that the prior variance imposed on each basin 

is less than 106 relative to the variance of the EWH observation. In SW11 several basin 

configurations were considered for the GrIS. The 13-basin configuration where the area above 2000 

m on the GrIS was taken as one mascon was preferred in that study because the inter-region 

correlation was suppressed compared to the 20-basin solution. 

To determine the optimal prior variances for the 20-region configuration, Bonin and Chambers 

(2013) (hereafter BC13) implemented the constrained least-squares approach assuming one prior 

variance (referred to as process noise in their study) for 16 GrIS sub-areas and one for mascons in 

the surrounding ocean as well as in northern Canada. In BC13, the constraint variance is optimized 

by means of a simulation model based on the annual elevation change rate found by Zwally et al. 

(2005). However, according to BC13, the mass changes estimated for some regions still contain 

noticeable errors. We will discuss these errors when applying the same optimal prior variance as 

constraint in section 2.2. Thus a single constraint for all regions in Greenland yields suboptimal 

results in least-squares inverted GRACE level 2 data. Another study of constraining the inversion 

approach using simulation is that of Baur and Sneeuw (2011), in which point masses are used 

instead of basin shaped mascons. In Baur and Sneeuw (2011), the approximation norm and the 

residual norm associated with a series of constraint are compared in a L-curve (Hansen, 1992) and 

the one in the “corner” of the L-curve is considered to be the optimal. 

The goal of this paper is to build on SW11 and BC13 and to investigate whether an alternative 

constraint model for the basin shaped mascons can be justified that results in improved mass change 
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estimates for individual regions 

The inversion modelling approach from SW11 is described in section 2.2. We improve the 

regional mass balance approximation, in particular in the GrIS interior, by assuming separate 

constraints for regions above and below 2000 m. Optimal prior variances for different regions are 

found by applying the inversion approach to simulated monthly mass changes over the GrIS. In 

this simulation approach, discussed in section 2.3, we rely on RACMO2 model output (Ettema et 

al., 2009) and satellite radar interferometry observations of the ice discharge (Rignot and 

Kanagaratnam 2006). In section 2.4 we will introduce an optimization procedure for prior variances 

for different GrIS regions by searching for the optimal combinations using a genetic algorithm. In 

section 2.5, we will apply the optimal prior variances in the least-squares inversion modelling 

approach, and discuss the effect on regional mass changes from GRACE level-2 data. The 

conclusions are summarized in Section 2.6. 

2.2. Inverse modelling of GrIS regional mass changes 
The GRACE derived monthly geo-potential changes are represented by potential coefficients. In 

Wahr et al. (1998) it is shown how monthly geo-potential changes can be converted into surface 

mass changes expressed in water equivalent thickness under the assumption that one takes away 

the effects of tides, air pressure loading, mass changes in the ocean, and glacial isostatic adjustment. 

The inverse modelling approach used here aims at representing the equivalent water changes that 

follow from Wahr et al. (1998) by average water equivalent changes in predefined regions within 

the GrIS and the surrounding areas. 

A sensible choice for obtaining predefined regions is to divide the GrIS into regions according 

to their natural drainage system (DS). Here we follow the definition of the DS described in Zwally 

et al. (2011) so that we arrive at an 8-region layout (figure. 2.1). In addition, we divide each DS at 

the 2000-meter elevation contour, with the interior region being the one above 2000 m, cf. Thomas 

et al. (2001), W⁰⁸, SW11 and BC13. SW11 compared multiple layouts for the GrIS as well as the 

surrounding regions which are Ellesmere Island, Baffin Island, Iceland and Svalbard (EBIS). When 

considering the GrIS as one single region SW11 found a mass loss of -150 Gt∙yr-1 between 2003 

and 2010. Their conclusion was that a single mascon results in underestimated mass changes for 

the GrIS compared to other studies using GRACE data (Schrama and Wouters, 2011). The accuracy 

of the approximation in SW11 was improved by applying a 20-region setup which separated the 

GrIS into 8 DS each divided in a region above and below 2000 m elevation. EBIS areas were 

treated as 4 separate regions as well. With this configuration SW11 found an annual mass loss rate 

of around -250 Gt∙yr-1 which agrees with other studies. So when using the least-squares inversion 

approach, it is also possible to approximate the GrIS mass changes in small regions while providing 

reasonable estimates of the mass change for the whole GrIS. However, when using the GRACE 

level-2 potential coefficients, the spatial resolution is limited by the maximum degree and order. In 

this study we use the CSR GRACE coefficients that are truncated at maximum degree and order 

60. Therefore, regional mass balances derived from these truncated GRACE level 2 data should 

not rely on sub regions that are too small. In this study we will use the same number of sub-regions 
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as SW11. Moreover, compared to other region layouts, as described in (Luthcke et al., 2013), we 

use a more conservative 2000 m divide. The GRACE EWH map used in this study has a spatial 

resolution of 1o which is close to a 110×110 km square on the equator. In our layout, a grid cell is 

considered as interior only if 80% of the area of the grid cell has an altitude higher than 2000 m. 

We find that only 6 grid cells in DS 5 are above 2000 m, so in our layout we chose not to separate 

DS 5. W⁰⁸ and SW11 found that the mass changes above the GrIS observed by GRACE contain 

leakage from the EBIS areas which is the reason for including these areas in the inversion. Overall, 

as depicted in figure 2.1, we define 15 GrIS regions and 4 EBIS regions. 

 

Figure 2.1: Drainage system divides according to Zwally et al. (2012). The digits are the id’s of the drainage 

basins. The sub-region is marked by the character after the decimal. The characters “a” and “b” refer to the 

GrIS margin and interior regions, respectively. Note that in this figure Svalbard is not displayed but it is 

included in the 19-region layout. 

In order to implement the method, we first assume a uniformly distributed water layer with unit 

thickness within each region, i.e.  𝑓𝑘(𝜃, 𝜆)=1 when [𝜃, 𝜆] is within the domain of the region and 0 

outside, where the subscript 𝑘=1, 2, 3∙∙∙n indicates each region. We convert the mass distribution 

𝑓𝑘 into potential coefficients up to degree and order 60 which are filtered by an isotropic Gaussian 

filter as described in Swenson and Wahr (2002) with half width 𝑟1/2=300 km. Then we convert the 

coefficients to EWH in the spatial domain and order the values as a column vector, which becomes 

the influence function 𝑔𝑘(𝑓𝑘) . Both SW11 and BC13 have discussed the consequences of using 



Optimized Regional constraints for GRACE mass balance solutions 

12 

 

different half widths in the inversion approach. A half width of 𝑟1/2=300 km was found in SW11 

and BC13 to be the best compromise (compared to 0 km, 500 km and 700 km) between suppressing 

the noise in GRACE data and being able to compute mass changes in our configuration of regions. 

We construct a matrix 𝐇 = [𝑔1, 𝑔2, … , 𝑔𝑛]  and a vector of scaling factors 𝐱 =

[𝑎1, 𝑎2, … , 𝑎𝑛]
𝑇associated with the assumed mass distribution 𝑓𝑘, so that: 

𝐲 = 𝐇𝐱 + 𝛆                                                                        (2.1) 

The vector 𝛆 contains the misclosures between the observations y and the model 𝐇𝐱. y contains the 

global mass changes ordered as a column vector, which in this study is either derived from the 

simulation model (see Section 2.3) or from the GRACE observations (see Section 2.5). The 

approximation can be found by minimizing the sum of the squared residuals. To do so, we solve 

Eq. (2.1) using a least-squares approach. As in SW11, we define the cost function for the 

least-squares approach as: 

𝐽 = 𝛆𝑇𝛆                                                                                 (2.2) 

the minimization of which yields, under the assumption of a uniform variance of all observations 

in the vector 𝐲, 

�̂� = (𝐇𝑇𝐇)−1𝐇𝑇𝐲                                                                  (2.3) 

Eq. (2.3) is an unconstrained solution because no other information was considered than the 

observations. As a result, the residuals are minimized for the entire GrIS but the solution is 

numerically unstable. The numerical instability manifests itself in the form of anti-correlation 

between neighboring regions so that we can see the typical high-low-high patterns as demonstrated 

by BC13, also cf. Baur and Sneeuw (2011). Such a pattern will be called anti-correlation error in 

the following. One way to deal with this problem is to average the mass changes in the 

anti-correlated neighboring regions, e.g. by combining the area above and below 2000 m in one 

drainage system (Sasgen et al., 2012) or by combining the interior regions cf. SW11. Although the 

errors are reduced by combining regions, they still exist in sub areas. For instance, in SW11, when 

separating each drainage area by the 2000 m elevation contour, the approximated mass balance of 

the entire GrIS is obtained with a relatively low uncertainty, i.e. -201.4±21.0 Gt∙yr-1 during 2003–

2010. However, the uncertainties for separated GrIS margin and interior areas became larger, i.e. -

263.3±55.6 Gt∙yr-1 and 62.0±46.5 Gt∙yr-1 respectively. 

The regional instability can be reduced by introducing prior variances as constraints on the mass 

changes for each region, also known as the Tikhonov regularization, (Tikhonov, 1963). Note that 

in general Tikhonov regularization, 𝐏 = λ𝐑 where 𝐑  is the regularization matrix and λ  is the 

regularization parameter. In this study we assume that in the prior matrix, all the regions are equally 

weighted, yielding 𝐑 = 𝐈. Also we use the prior variance 𝜎2 of the regional mass variations in each 

regions as the regularization parameter so that the constraint can be written as 𝐏 = 𝜎2𝐈, and the 

cost function becomes:  

𝐽 = (𝛆𝑇𝛆 + 𝐱𝑇𝐏−1𝐱)                                                               (2.4) 
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where the residual norm 𝛆𝑇𝛆  is associated with the observations with unit weight and the 

approximation norm 𝐱𝑇𝐏−1𝐱 contains the priori information. With this information we restrict the 

variance of the regional scaling factor 𝐱, in order to reduce the anti-correlation errors cf. SW11. In 

this case Eq. (2.3) becomes: 

�̂� = (𝐇𝑇𝐇 + 𝐏−1)−1𝐇𝑇𝐲                                                        (2.5) 

All regions are considered to have the same prior variance in SW11 and BC13. However, it has 

been found in BC13 that with the optimized prior variance 𝜎2, the anti-correlation still remained in 

some over-sensitive regions that have a higher than average mass change per grid cell. For instance, 

in DS 6, the area of the coastal region is around 1.6×105 km2 and for the interior region it is around 

1.2×105 km2. In these two similar sized regions, the mass change rates are significantly different. 

According to the modelling of the surface mass balance, the mass changes in this interior region 

are smaller than in the margin region (Ettema et al. 2009; Fettweis et al. 2011). Also in the same 

DS, from GRACE data, Luthcke et al., (2013) found a much lower mass change rate in the interior 

and much more mass loss near the margin by using the direct mascon approach with geolocatable 

constraints for the mascons below and above 2000 m. However, when applying the same constraint 

as in BC13, the mass change estimates for DS 6 from GRACE data were -8.9±4 Gt∙yr-1 and -9.8±3.7 

Gt∙yr-1, for the margin and for interior regions, respectively. So the mass balance approximations 

in both regions are likely in error because the interior region should lose less mass than the margin 

because run-off is smaller. BC13 quantified this type of errors with a simulation method and found 

that in DS 6, when using the same optimal constraint, the regional mass estimates were 

anti-correlated, and the associated error was –8.4 Gt∙yr-1 for the GrIS margin area and +11.2 Gt∙yr-

1 for the interior region. Hence in order to further improve the least-squares approximation in 

regions, the constraint 𝐏 matrix will be composed of a group of non-identical prior variances. In 

our case an optimal 𝐏 is based on a full time series simulation model which will be described in 

section 2.3. 

2.3. Simulation of the GrIS mass balance 
In this section we introduce a simulation model that produces a reasonable representation of 

monthly mass changes on Greenland and its surrounding areas so that optimal prior constraint 

variances can be determined. For this purpose, we use the RACMO2 model and discharge data to 

simulate 108 months (January 2003 to April 2012) of surface mass changes on the spatial domain 

with a resolution of 1o x 1o. RACMO2 estimates the SMB by modelling the regional precipitation, 

runoff, refreezing and evaporation/sublimation and is accurate to within ~18%, according to 

Sasgen et al., (2012). To compute the total mass balance for Greenland we also use ice discharge 

data that have been derived from SAR data (Rignot and Kanagaratnam 2006) to yield a discharge 

mass flux at the glacier boundary. The remainder areas of the world are set to zeroes. This model 

describes the mass conservation of GrIS and will be referred to as input-output model (IOM) in 

the following, cf. (Shepherd et al., 2012). 

In figure 2.2(a), the IOM output is in the form of the gridded annual EWH change rate for 
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Greenland and the surrounding EBIS regions. We convolve the gridded mass distribution over the 

Earth’s surface and obtain the potential coefficients in response to this distribution up to degree 

𝑙=60. Additionally, the noise in GRACE level-2 data potentially increases the variability of the 

monthly regional mass balance. Therefore we also simulate the GRACE noise by applying the 

approach of BC13. In this approach the noise is isolated from the GRACE data by removing from 

it all known components, including the continental hydrology, all the glacier regions and GIA, 

using the following external information: 

1. The model output from the Global Land Data Assimilation System (Rodell et al., 2004) 

(GLDAS) using the Noah Land Surface Model.  

2. Annual mass changes on land glaciers outside the GrIS from Jacob et al. (2012).  

3. The GrIS regional mass changes from Sasgen et al. (2012). 

4. The GIA model of Paulson et al. (2007). 

This information is converted into monthly potential coefficients complete up to degree and 

order 60 and removed from GRACE potential coefficients. From the remaining coefficients, a 

covariance matrix is constructed, which is subsequently used to generate random potential 

coefficients according to the procedure in appendix A of BC13. In this study, we simulate the 

GRACE noise for every month, then add it to the potential coefficients of the IOM model. We 

apply a Gaussian filter with a smoothing radius r1/2=300 km on the combined coefficients and 

calculate the EWH map for the complete simulation model. The simulation model in terms of 

annual EWH change is shown in figure 2.2(b). 
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Figure 2.2: Mass change simulation model results based on the IOM. a) shows the gridded EWH change 

trend on a 1⁰x1⁰ grid for the time period January 2003 to April 2012. The unit is cm/yr. b) shows EWH 

change trend of the simulation model 𝐲. The simulation is based on a) after spherical harmonic analysis and 

synthesis up to degree and order 60 and Gaussian filtering (r1/2=300 km), and also includes noise in the 

GRACE data. The average EWH change trend for each region computed from the IOM is 𝐱′ , and the 

associated simulated GRACE data (after smoothing)  𝐲′ = 𝐇𝐱′ is shown in c). d) shows the annual EWH 

trend retrieved from the GRACE data for the same time span. 

Due to the uncertainty in the RACMO2 and discharge estimates, there will be regional 

differences between the simulation model and GRACE observations as can be seen in figure 2.2(b) 

and figure 2.2(d), but we use the simulation only as a reasonable mass change signal to derive 

constraints. In the next section we will use the above described simulation model to optimize the 

prior covariance matrix 𝐏 in our inversion algorithm. 
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2.4. Optimization of the constraints in least-squares approach 
In order to find the optimal covariance matrix 𝐏, we apply Eq. (2.5), replacing 𝐲 by simulated data. 

Since �̂� is supposed to represent the average regional mass balances, we compare them to the 

regionally averaged simulated data without noise, being just the IOM model output averaged by 

region, see figure 2.2(c). To distinguish from the simulated data, we label the regionally averaged 

IOM model output with 𝐲′. Note that the GRACE noise is not included in 𝐲′.  

2.4.1. Optimization of constraint 

The optimal constraint covariance matrix 𝐏  is achieved when the differences between the 

approximation 𝐇�̂� and the averaged model 𝐲′ reaches a minimum. Using Eq. (2.5) the difference 

is a function of the prior covariance matrix 𝐏: 

𝑓(𝐏) = 𝐲′ − 𝐇(𝐇T𝐇 + 𝐏−1)−1𝐇T𝐲                                       (2.6) 

Note that Eq. (2.6) is different from the cost function in Eq. (2.4) for the least-squares inversion, 

because 𝐲′ contains only the regionally averaged IOM model output, which means that 𝑓(𝐏) is not 

equivalent to the residual 𝛆 from the least-squares approach. 

BC13 considered a uniform prior variance factor 𝜎2 for all regions to form the 𝐏 matrix (which 

we denote as constraint matrix 𝐏1 ), so that 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑛
2 = 𝜎2  and 𝐏1 = 𝜎2𝐈 . Here we 

consider different variances on the diagonal of the P matrix. We use the notation 𝐏3 to define our 

𝐏 matrix because we define 3 prior variances factors. To form the 𝐏3 matrix, for the regions below 

2000 m we define the associated prior variance elements as 𝜎1…8
2 = 𝜎𝑑

2 . For the regions above 2000 

m, a different prior variance is applied, i.e. 𝜎9…15
2 = 𝜎𝑢

2 and we use 𝜎16… 19
2 = 𝜎𝐸𝐵𝐼𝑆

2  to describe the 

prior variance of the EBIS areas.  

We evaluate Eq. (2.6) and take the Root Mean Squares (RMS) difference to the simulation as 

the first objective function:  

𝐺1 = √
∬ 𝑓2(𝐏)𝛺

𝐴
                                                                     (2.7) 

𝛺 defines the area which we use for comparison, between 40⁰–85⁰N and 255⁰–385⁰W, and 𝐴 is the 

total surface area of 𝛺. 

Since the evaluation is based on the trend difference during the simulated time span, it only 

describes the long-term behavior of the mass change rate in each region. As discussed in W⁰⁸ and 

BC13, the inter-region correlation should also be taken into account for assessing the quality of 

approximated solutions. Hence, we introduce a second objective function during the optimization: 

𝐺2 = √∑ (𝑟𝑖𝑗
2−�̂�𝑖𝑗

2)
2

𝑛
𝑖,𝑗=1

𝑛2                                                               (2.8) 

It is the RMS of the difference between the inter-region correlation coefficient matrix for the 

simulation model 𝐑 = [𝑟𝑖𝑗
2]  and the inter-region correlation coefficient matrix for the 

approximation �̂� = [�̂�𝑖𝑗
2], where 𝑟𝑖𝑗

2  and �̂�𝑖𝑗
2

 are the correlation coefficients between the time series 
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of approximated monthly regional mass changes in region 𝑖 and region 𝑗 from 2003 to 2012, in the 

simulation and the approximation respectively. They state the correlation in monthly mass changes 

between two regions. 𝑛  is the total number of mascon regions in the least-squares inversion. 

Examples of the inter-region correlation can be found in figure 2.5, which will be discussed in 

section 2.4.4. 

2.4.2. Evaluation of objective functions 

Firstly, we evaluate the objective function Eq. (2.7) and Eq. (2.8) using a priori covariance matrix 

𝐏1 as the constraint where varies 𝜎2 from 0.001 m2 to 1000 m2. We find that when 𝜎2=1000 m2 

the influence of 𝐏1on the approximation in Eq. (2.5) becomes negligible, so that an unconstrained 

approximation is obtained. The corresponding RMS difference of the EWH trend 𝐺1=0.44 cmyr-

1. For 𝜎2 < 1 m2 𝐺1 is larger than the unconstrained solution thus these variances are rejected. The 

objective function as a function of the prior variance is shown in figure 2.3(a). As can be seen in 

this figure, the minimum of the objective function 𝐺1=0.35 cmyr-1 is achieved when 𝜎2=3 m2. 

However, we find the minimum of the inter-region correlation difference 𝐺2=0.44 when 𝜎2=5 m2. 

Also when we gradually increase the value of 𝜎2 from 3 m2 to 5 m2, the evaluation of 𝐺1 diverges 

from the minimum while the evaluation of 𝐺2 is converging towards to its minimum. Thus, there 

is a trade-off between these two objective functions within the range where the optimal 𝜎2  is 

mostly likely to be found. In this study, in order to choose from two values for the prior variance 

which both yield the optimal scores but for different objective functions, we assess the overall 

return when altering the solution. For instance, we chose 𝜎2=5 m2 as the optimal solution for 𝐏1, 

because when comparing to 𝜎2=3 m2, the evaluation of 𝐺2 is reduced by 6% while 𝐺1 is increased 

by only 1%. One may argue that the differences are small. However, the objective functions 𝐺1 

and 𝐺2 are computed as spatial averages, and when the averaged difference is integrated over the 

indicated region with a total area of approximately 2.6×107 km2, significant differences can be 

found. We will discuss the spatial differences in section 2.4.3. 

The optimization process becomes more complicated when 𝐏3  is used as the constraint 

covariance matrix, since the dimension of the search space of 𝐏3 increases by 2 compared to P1. 

Manually testing each possible 𝐏3 to locate the minimum with both objective functions turns out 

to be time consuming. For this reason, we employ a genetic algorithm (GA) technique, the 

Non-Dominating Sorting Genetic Algorithm (NSGA-II) (Deb et al., 2002), that is built-in the 

Matlab optimization toolbox, version 2012. NSGA-II is a fast multi-objective optimization 

algorithm that is designed to find the optimal solution in case there are multiple objectives that 

need to be minimized/maximized and also allows easy extension of the method to more than 3 prior 

constraints. NSGA-II iteratively evaluates and updates the solution. In GA the term population is 

defined as a group of solutions each consisting of different combinations of variables. In this study 

these variables are the variance factors in 𝐏3. In the NSGA-II algorithm the population is evaluated 

at every iteration through the objective functions, and the populations are ranked based on the 

outcome. The NSGA-II algorithm ranks the population by applying the “non-domination” rule. If 

an individual is worse than at least one other individual regarding all the objectives, then it is 
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dominated by those individuals. Individuals which are not dominated by any others are the 

dominating individuals and the collection of the dominating individuals is Pareto front. For instance, 

in figure 2.3(a) when using the covariance matrix 𝐏1 as the constraint and letting 𝜎2=3 m2, 5 m2 

and 20 m2, we find that 𝐺1 is 0.35 cm, 0.36 cm, 0.40 cm and 𝐺2 is 0.51, 0.45, 0.49, respectively. 

The solution 𝜎2=20 m2 yields the largest approximation error in both objective functions, so it is a 

dominated solution and will not be selected. Although 𝜎2=3 m2 is a better solution than 𝜎2=5 m2 

regarding the cost function 𝐺1, the opposite is true when considering the cost function 𝐺2. So 𝜎2=3 

m2 and 𝜎2 =5 m2 are both dominating solutions. In NSGA-II, during every generation, the 

individuals on the Pareto fronts are given the top rank, while the individuals on the second best 

front are given the second rank, and so on. NSGA-II repeats this process until the entire population 

in the current generation is ranked.  

Individuals with parents with high rank will provide the information used for creating a new 

population in the next generation, also referred to as children. For instances, if the covariance 

matrix Pi
t
 and Pj

t are the parents at generation t, then in generation t+1, NSGA-II will create a new 

Pt+1 which is identical to either Pi
t
 or Pj

t in part of the dimensions. In addition, we apply a mutation 

in one or more of the dimensions during the process of generating children, in order to avoid the 

solutions converging to a local minimum or maximum. NSGA-II will stop when it reaches the 

maximum specified number of generations. We also restrict the value of 𝜎 in 𝐏3 to fall in the range 

[0.001, 1000]. Moreover, we define the size of population to be 100 and the maximum number of 

generations to be 50. During the optimization, we found that the size of the population and the 

maximum number of generations is sufficient to find the global optimum. The final Pareto front, 

consisting of 70 different cases of 𝐏3, is shown in figure 2.3(b) in which the evaluations of the 

objective functions are normalized to a range of 0–1. After normalization, the minimum and 

maximum evaluations of 𝐺1 and 𝐺2 become 0 and 1, respectively. 

In figure 2.3(b) it can be observed that these solutions naturally fall into two distinguishable 

categories. The solutions within the pink box show a small change in the normalized objective 

function 𝐺1, but a large change in the normalized cost function 𝐺2. Two points in this group that 

yield the local minimum in either 𝐺1 or 𝐺2 are shown by solid red circles, i.e. 𝐴1 and 𝐴2. For 𝐺1 

the scores of these two points are 𝐺1
𝐴1=0 and 𝐺1

𝐴2=0.13. On the other hand, the evaluations of 𝐺2 

are 𝐺2
𝐴1=1 and 𝐺2

𝐴2=0.4. The slope of the normalized vector 𝐴1𝐴2
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  is around -0.2, which indicates 

that if we chose 𝐴2 over 𝐴1, we gain 1-unit improvement in 𝐺2 while losing 0.2 unit of 𝐺1. Because 

of the relatively small increase in 𝐺1, we choose the solution 𝐏3 associated with the point 𝐴2 to be 

the local optimal solution in this group. 

Similarly, for another group, we identify the boundary points B1 and B2 inside the green box, 

with scores of 𝐺1
𝐵1=0.23 and 𝐺1

𝐵2=1, 𝐺2
𝐵1=0.38 and 𝐺2

𝐵2=0. The slope of the normalized vector 

𝐵1𝐵2
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ is -2.0, which means that when we move from point 𝐵1 to point 𝐵2, in order to reduce 𝐺2 by 

1 unit we will increase 𝐺1 by 2.0 units. Regarding the overall return 𝐵1 is better than 𝐵2 in this 

group. Thus, we have found two local optimal solutions for 𝐏3, 𝐴2 and 𝐵1. If we select 𝐵1 over 𝐴2, 

𝐺2 is reduced by only 0.02 while 𝐺1 is increased by 0.2. Thus 𝐴2 is selected to be the optimal point, 
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and the associated solution is 𝐏3 with the diagonal elements [10.0, 0.1, 1.9] m2. 

 

 

Figure 2.3 a) the blue line shows the RMS differences in the annual trend between the approximated solution 

and the simulation model, i.e. the objective function 𝐺1. The green line shows the objective function 𝐺2 

which is the RMS difference of the inter-region correlation matrix for the simulation and for the 

approximation.  

b) shows the performance of all the dominating solutions 𝐏3 (blue circles) along the Pareto front with respect 

to the objective functions 𝐺1 (x-axis) and 𝐺2 (y-axis). The values are normalized to a range of 0–1. The 

dominating solutions are categorized into two groups, the dominating solutions in the pink box are better 

for the objective function 𝐺1; the green box contains the solutions that yield a smaller objective function 𝐺2. 

For each box, we compute the slope of the vector from the upper-left point to the bottom right point, marked 

by solid red circles.  
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2.4.3. Trend differences 

This section discusses the differences between the approximated simulation and the simulation, or 

𝐺1 in Eq. (2.7). Note that we do not consider the uncertainty in the RACMO2 and discharge data 

when we use them to create the simulation model as a reasonable benchmark. The actual 

uncertainty of the simulation model is discussed in section 2.5. The uncertainty of the trend in the 

simulation and approximated simulation only reflects the uncertainty caused by linear 

interpolation for a 95% confidence interval. 

In the simulation model a mass change of -249.7±4.9 Gt∙yr-1 is found for the entire GrIS (15 

regions) from January 2003 to April 2012. The mass change trends from the approximation are -

242.2±4.3 Gt∙yr-1, -247.5±4.3 Gt∙yr-1 and -251.2±4.3 Gt∙yr-1 when the least-squares inversion 

approach is unconstrained and constrained using the optimal 𝐏1 and constrained using the optimal 

𝐏3, respectively. All three approximations are similar for the whole GrIS, however the differences 

between regional mass change trends are significant.  

In figure 2.4, we compare the EWH rate differences between the approximations and the 

simulation model. We find that the differences are spatially anti-correlated. For example, in figure 

2.4(a) where the approximation is the unconstrained solution, one can see underestimated mass 

loss rate in the west coastal regions. To compensate the insufficient mass loss, the least-squares 

approach increases the mass loss in adjacent regions, which leads to overestimated mass loss in the 

neighboring Baffin Island region and over-estimated mass gain in the adjacent interior regions 

(both result in negative differences). This manifestation of the anti-correlation error during the 

least-squares inversion can be quantified by comparing with the simulation model. In table 2.1 we 

find that the annual mass change trend in region 6a and 7a (margin of western GrIS) is -52.9±1.7 

Gt∙yr-1and -16.6±0.4 Gt∙yr-1 in the simulation model, whereas the unconstrained least-squares 

solution gives -64.3±1.9 Gt∙yr-1 and -32.1±0.4 Gt∙yr-1, respectively. Inland we can see from this 

table a considerable mass gain in the approximation for both region 6b and region 7b, i.e. 17.1±0.4 

Gt∙yr-1 and 12.2±0.2 Gt∙yr-1 while in the simulation model there is only 1.0±0.3 Gt∙yr-1 and 2.8±0.2 

Gt∙yr-1 mass gain in regions 6b and region 7b respectively.  

When we use the optimal 𝐏1 as constraint, and compare the EWH differences in figure 2.4(b), 

we find that the approximated mass change rate for the western coastal regions and the interior 

regions are closer to the simulation model, see table 2.1. However, anti-correlation errors still exist 

in the interior. For instance, in region 7a and 7b the differences with respect to the simulation are -

7.3 Gt∙yr-1 and 6.2 Gt∙yr-1.  

Apparently, one can easily cancel the errors by combining DS number 7a and 7b. However, this 

lowers the resolution of the approximation, so we apply the optimal 𝐏3 matrix as constraint instead. 

After introducing a specific constraint for the interior regions with the optimal 𝐏3 matrix, one can 

clearly see that the EWH rate differences with respect to the simulation model, figure 2.4(c), are 

reduced compared to figure 2.4(b), although the approximated mass change rates are still higher in 

region 7b and lower in region 7a. However, the error in this DS with respect to the simulation value 

is reduced to 10% in the margin and 14% in the interior. 
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The benefits of applying the constraint 𝐏3 can also be seen when we combine all the regions 

above 2000 m. As shown in table 2.1, in the simulation model the mass slowly accumulates during 

the time span with a rate of 9.0±0.6 Gt∙yr-1. This rate is poorly approximated with a value of 

47.8±0.2 Gt∙yr-1 when no constraint is used, and 21.8±0.5 Gt∙yr-1 when the constraint 𝐏1 is used. 

Our main conclusion is that we obtain the best approximated rate of 7.6±0.1 Gt∙yr-1 for the 

combined interior regions when using 𝐏3.  

 

 

Figure 2.4: The linear trend of the approximated solutions after least-squares inversion minus the trend from 

the simulation (based on the RACMO2 model output and the discharge data). Three strategies are used for 

the constraints. a) unconstrained, b) using the optimal 𝐏𝟏 as constraint and c) using the optimal 𝐏𝟑 as the 

constraint. The unit is cm per year. 
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Table 2.1: The trend in monthly mass changes for all regions in Gt∙yr-1. The uncertainties only refer to the 

uncertainty caused by linear interpolation for a 95% confidence interval. For some regions, the uncertainty 

is 0.0 due to rounding. “IOM” refers to the solutions derived from the IOM model, and the symbol “NC” 

means that no constraint is applied. Similarly, P1 and P3 indicate the scenarios in which the optimal prior 

covariance matrix 𝐏𝟏 and 𝐏𝟑are applied respectively. Note that the mass change rates in this table refers to 

the time span from 2003 to 2012.  

 GrIS region layout (Zwally et al., 2012) 

 DS 1 DS 2 DS 3 DS 4 DS 5 DS 6 DS 7 DS 8 

 region 1a region 2a region 3a region 4a region 5 region 6a region 7a region 8a 

IOM -23.7±0.5 -10.6±0.5 -34.3±0.7 -62.4±1.1 -32.1±0.6 -52.9±1.7 -16.6±0.4 -26.0±1.2 

NC -11.6±0.3 -12.1±0.6 -25.4±0.6 -86.4±1.0 -30.1±0.6 -64.3±1.9 -32.1±0.4 -28.4±0.9 

P1 -18.9±0.3 -11.4±0.6 -30.0±0.6 -72.0±0.8 -33.2±0.6 -51.0±1.7 -23.9±0.3 -28.9±0.9 

P3 -21.2±0.4 -11.6±0.6 -31.9±0.6 -62.0±0.9 -34.8±0.6 -49.3±1.9 -18.3±0.4 -29.8±1.0 

         

 region 1b region 2b region 3b region 4b  region 6b region 7b region 8b 

IOM 0.4±0.1 3.0±0.1 0.7±0.1 0.3±0.1  1.0±0.3 2.8±0.2 0.8±0.1 

NC -7.6±0.1 3.2±0.3 -4.5±0.1 19.5±0.4  17.1±0.4 12.2±0.2 7.9±0.3 

P1 -3.8±0.1 3.0±0.2 3.5±0.1 5.0±0.1  2.1±0.2 9.0±0.2 3.1±0.2 

P3 -0.1±0.0 2.2±0.1 0.6±0.0 0.4±0.0  0.5±0.0 3.2±0.0 0.9±0.0 

         

 EBIS regions Combined areas 

 Svalbard island Elsmere island Baffin island Iceland <2000 m ≥2000 m GrIS GrIS+EBIS 

IOM -1.2±0.3 -36.0±1.2 -47.2±1.4 -6.0±0.2 -258.7±4.7 9.0±0.6 -249.7±4.9 -340.1±5.5 

NC -0.5±0.3 -29.8±1.0 -51.7±1.5 -4.4±0.1 -290.2±4.5 47.8±0.6 -242.4±4.3 -328±5.0 

P1 -0.4±0.3 -30.5±1.0 -50.6±1.4 -3.6±0.1 -269.4±4.2 21.8±0.5 -247.5±4.3 -332.6±9.4 

P3 -0.4±0.3 -29.4±1.0 -49.3±1.4 -3.0±0.1 -258.8±4.4 7.6±0.1 -251.2±4.3 -333±4.9 
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2.4.4. Inter-region correlation of the monthly mass balance  

We also assess the approximations by comparing the inter-region correlations. As in Eq. (2.8), we 

compute the correlation coefficient matrix 𝐑 of the monthly regional mass change approximations 

using different constraints. In figure 2.5, we plot the inter-region correlation coefficients of matrix 

R, with each pixel in these plots referring to the correlation between the monthly mass changes for 

region i on the x-axis and region j on the y-axis.  

Figure 2.5: The correlation coefficients of monthly mass balance between the different regions. Each plot 

is derived from the simulated (a) or the approximated (b, c, d) monthly mass balances. 

As the baseline, we show the correlation coefficient matrix Rsim from the simulation model in 

figure 2.5(a). One can notice from this plot that there are three different “blocks” in the matrix R: 

1) The triangular block on the top left; 2) The square block on the bottom left; 3) Another triangle 

block on the bottom right. They contain the correlations between margin regions (block 1), the 
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correlations between margin and interior regions (block 2) and the correlations between interior 

regions only (block 3). In the simulation model, we find that in block 1 all correlations are positive 

and have high values (≥ 0.6). The regions above 2000 m are also positively correlated but some 

regions have relatively low correlation with some other interior regions, for instance 𝑟3𝑏,8𝑏=+0.2 

and 𝑟1𝑏,8𝑏 =+0.8. In block 2, the correlations between regions below and above 2000 m are all 

negative. Since the run-off is absent from the interior regions, the mass is slowly accumulating in 

the interior regions in the simulation model, whereas in all the regions below 2000 m the mass is 

decreasing over time, cf. van den Broeke et al. (2009). In the following, we will show that we can 

obtain the same (positive/negative) correlation pattern by using separate constraints for the interior 

and coastal regions. 

In figure 2.5(b), (c) and (d) we compare matrix R associated with the solutions which are 

unconstrained, constrained by 𝐏1, 𝐏3, respectively. Pattern errors are noticeable in the first two 

approximations. For instance, in plot b (unconstrained) we find that the approximated monthly 

mass balances in region 3b are positively correlated with all the margin regions and negatively 

correlated with the internal regions, which is opposite to the pattern that we find in plot a). Since 

we have considered the inter-region correlation as one of the objective functions in the optimization 

of 𝐏1 , the incorrect correlation pattern in region 3b is solved, see figure 2.5(c). However, the 

problem remains in region 1b. As in plot d), we have restored the correct sign for almost all the 

regional mass balance by using the constraint 𝐏3.  

Nevertheless, one may argue that in spite of the sign of the correlation being correct in plot d), 

the values of the correlation coefficients are different from the simulation. For instance, we find 

|𝑟8𝑎,6𝑏|=0.02 in the simulation model, which means that the mass balance in region 8a and in region 

6b are not correlated. However, in plot d) the absolute correlation coefficient between these two 

regions becomes |𝑟8𝑎,6𝑏|=0.89, thus the approximated correlation is much stronger. The correlation 

is also enhanced when applying the constraint P1 as well as in the unconstrained results. Despite 

the remaining inter-region correlation differences with respect to the simulation, we minimize the 

correlation difference by using optimal constraints based on only the objective function for the 

inter-region correlation. From table 2.2 it is clear that we reduce the errors in the inter-region 

correlation using the optimal 𝐏3 as constraint. It might be possible to further reduce the incorrect 

correlation by introducing more constraints, which we leave to future work.  

Table 2.2: The RMS differences of the inter-region correlation between three approximations with different 

constraints and the simulation model. Block 1) refers to the correlation between regions below 2000 m. 

Block 2) refers to the correlation between regions below and above 2000 m and Block 3) refers to the 

correlation between regions above 2000 m.  

 
Not constrained  P1 P3 

Block 1 0.17 0.11 0.11 

Block 2 0.71 0.51 0.30 

Block 3 0.78 0.63 0.33 
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2.5. Approximating the regional mass changes from GRACE data 
In this section we approximate the monthly mass changes in GRACE observations using the 

least-squares inversion approach with the optimal constraints 𝐏1 and 𝐏3. We use the release 5 level 

2 GRACE monthly potential coefficients from CSR which have a maximum spherical harmonic 

degree 60. The time interval is January 2003 to December 2012, with a few months excluded 

because of insufficient observations (July 2003, January 2004, January 2011 and June 2011). We 

remove a mean over 2003 to 2012 to obtain monthly mass changes. GRACE data is less accurate 

in C20 (Chen et al., 2005 and Chen et al., 2011), hence we replace the 𝐶20 coefficient with estimates 

from Satellite Laser Ranging (SLR) (Cheng et al., 2013). Since the orbit center of GRACE 

satellites is identical to the instantaneous center of mass of the Earth, degree 1 potential coefficients 

cannot be obtained from GRACE. We use the degree 1 coefficients provided by CSR, which are 

potential coefficients recovered using GRACE coefficients above degree 2 together with output 

from an ocean model (Swenson et al., 2008).  

The mass changes on GrIS are also influenced by continental hydrology and the GIA effect. We 

use the monthly GLDAS-Noah model described in Rodell et al. (2004) to remove the continental 

hydrology leakage, and use the GIA model from Paulson et al. (2007) to correct for GIA. To reduce 

high-frequency noise and inter-coefficient correlation that manifests as so-called stripes (Swenson 

and Wahr, 2006). We use a Gaussian filter (Wahr et al., 1998) with a half width of 𝑟1/2=300 km, 

the same as used in simulation model. Potential coefficients are converted to monthly EWH 

changes in the spatial domain and the constrained least-squares inversion approach is applied with 

the optimal constraints 𝐏1 and 𝐏3, to obtain an approximation of the GrIS monthly mass balances 

observed by the GRACE satellites.  

We first assess the approximation in combined areas as shown in table 2.3. Note that the 

estimated errors in the annual mass changes consist of the vector sum of 1) the standard deviations 

of the GRACE data which is also provided by CSR, 2) the estimated uncertainty of 20% in the GIA 

model (Paulson et al., 2007) which is a guess of the inherent uncertainty in the implemented ice 

model ICE-5G (Peltier, 2004), and 3) the estimated 30% average uncertainty in GLDAS-NOAH 

model (Fang et al., 2009). The uncertainty from estimating a linear trend with a 95% confidence 

interval is considered as well. In table 2.3, for the entire GrIS and for sub-regions, not using 

constraints or using 𝐏1 and 𝐏3 as constraint all yield consistent mass change trends. It indicates that 

the anti-correlation errors disappear when regions with negative correlation are combined. 

Table 2.3: Approximated annual trend from GRACE data using different constraints on combined areas. 

The unit is Gt/yr.  
 

Not constrained P1 P3 

< 2000 m -272.3±17.4 -263.4±17.2 -266.1±17.2 

≥2000 m 13.1±9.7 7.5±8.6 8.2±8.6 

GrIS -259.1±19.9 -255.9±19.2 -257.9±19.2 

EBIS -90.9±22.6 -87.2±22.1 -81.4±22.1 
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In figure 2.6, one can observe that the anti-correlation errors are reduced using the optimal 𝐏3. 

For instance, in region 1b, when using the constraint P1 the rate is 10.8±5.5 Gt∙yr-1 while in the 

neighbouring region 8b, the rate is -9.7±5.3 Gt∙yr-1 which is significantly different. The difference 

is caused by the numerical instability of the inversion which manifests as anti-correlation between 

adjacent regions, because when comparing the values to the rates found with the RACMO2 model 

for the same time period, the two regions show similar mass change rates, with 0.4±0.1 Gt∙yr-1 in 

region 1b and 0.5±0.1 Gt∙yr-1 in region 8b. Due to the fact that the run-off and ice-discharge is 

absent in this area, the RACMO2 model output is more accurate there (Ettema et al., 2009). In 

order to improve the incorrectly distributed regional mass change between these two regions one 

can use the constraint 𝐏3 in which case the rate becomes similar to RACMO2 model output, i.e. 

1.7±5.5 Gt∙yr-1 and 0.8±5.3 Gt∙yr-1 in region 1b and region 8b, respectively.  

When using the constrained least-squares approach, the approximated solution is determined by 

both the GRACE observation and the simulation model. The mass balance of the interior regions 

is influenced by the external information in the form of 𝐏1 or 𝐏3. Moreover, as in figure 2.6(a), 

when considering the uncertainties of the rate estimation, we find that the approximations in most 

of the regions below 2000 m are consistent between the cases unconstrained, or optimal constraints 

for 𝐏1 and 𝐏3. Hence during the least-squares inversion, the mass balance of these regions is not 

sensitive to changes in the constraints. Only in region 4a and region 7a, which are the GrIS margin 

regions located at the south east and west, we find that the rate estimations change by a value larger 

than the error bars when we alter the constraints. The sensitivity becomes more obvious for regions 

above 2000 m. For instance, on region 2b, the rate difference between the solution using 𝐏1 and 

the unconstrained solution is insignificant, (17.1±2.6 Gt∙yr-1 compared to 17.6±2.6 Gt∙yr-1), 

whereas we obtain a much lower increasing rate with 5.4±2.6 Gt∙yr-1 using P3. However, for region 

7b, using 𝐏1 and 𝐏3 results in similar estimates of -0.3±4.3 Gt∙yr-1 and 0.6±4.4 Gt∙yr-1 mass change, 

respectively, both of which are much lower than the rate of 32.7±4.4 Gt∙yr-1 from the unconstrained 

solution. 

The constrained mass change rates derived from the GRACE data is similar to the IOM solution 

for the whole GrIS, i.e. -258±19 Gt∙yr-1 and -249.7±34 Gt∙yr-1 respectively. However, differences 

can be noticed in the southeast and northwest coastal regions. We compare the regional mass 

changes trend in the IOM (see table 2.1) with the ones in the approximations from GRACE data 

(see figure 2.6). Note that in table 2.1, the uncertainties for the IOM mass changes only refers to 

the uncertainties of the linear interpolation, the uncertainties in the RACMO2 model and the 

discharges estimations are considerably larger (~20%), cf. (Ettema et al., 2009; Rignot et al., 2008; 

Sasgen et al., 2012). In the southeast coastal region 4a, the IOM presents more mass loss trend than 

in the approximations from GRACE data, i.e. -62 Gt∙yr-1 and -52 Gt∙yr-1, while the difference can 

be explained by the large uncertainties (~30%) of the surface mass balance model in this region, 

cf. (Sasgen et al., 2012; Vernon et al., 2013; Andersen et al., 2015). In the northwest region 8a, 

when applying P3 the mass change rate is -44.1 Gt∙yr-1 from the GRACE data but only -26.0 Gt∙yr-

1 mass loss rate is given by the simulation, as it has been discussed by Sasgen et al. (2012), this 

difference can be caused by the high uncertainties of the discharge estimation in this region and the 
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uncertainties in the simulation model for this region can be approximately 50%. These regional 

differences to the IOM model are also seen in the GRACE inferred EWH map, as in figure 2.2. If 

we compare the GRACE data (without approximating the regional mass changes) to the IOM based 

simulation model, it also shows more mass loss in the northwest and less in the southeast. It 

indicates that although the optimized constraint is based on the simulation model, the 

approximations are still mainly determined by the observations, e.g. GRACE data. 

 

Figure 2.6: The annual mass change rates of the approximated GrIS regional solution for three different 

cases: unconstrained (blue), optimal 𝐏𝟏 (green) and optimal 𝐏𝟑 (red). The error bars include errors in the 

GRACE data, GIA model, GLDAS model as well as the errors caused by the linear interpolation. 
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2.6. Discussion 
Least-squares inversion of mass change rates on Greenland from GRACE data requires the use of 

constraints on the variance. It was shown by BC13 that the value of the constraint should be 

optimized, otherwise incorrect regional mass balance estimates can result. We build on their results 

and find that the use of a single constraint can result in incorrect estimated mass changes for 

individual regions. The main problem is that in regions of small mass change, the inversion will 

place negative mass changes next to positive mass change. In our study we propose to use different 

constraints for regions below and above 2000 m. We are motivated to do this because the mass 

changes from the surface mass balance models clearly show smaller variance in regions above 

2000 m than in the regions below 2000 m. 

In order to determine the optimal 𝐏3 a model based simulation is employed, following BC13. We 

extended the optimization approach by adding as another objective function a measure of 

inter-region correlation of the regional mass balance from the output of the IOM model. By doing 

so the mass balance approximations in large areas yield a good agreement with similar regional 

GrIS studies, e.g. Luthcke et al., (2013)), the approximated mass changes from December 2003 to 

December 2010 were -223.7±19.8 Gt∙yr-1 (for the margin regions) and -6.6±8.6 Gt∙yr-1 (for the 

interior regions). When applying the same time span, we find that the corresponding mass change 

trends constrained by 𝐏3  are -232.2±11.7 Gt∙yr-1 and 8.2±7.7 Gt∙yr-1. Meanwhile we have 

successfully reduced anti-correlation errors caused by the over-sensitivity of some regions, 

particularly in the GrIS interior. Thus, the use of separate constraints for higher parts of an ice sheet 

improves the regional mass balance estimates from GRACE. This suggests that our approach could 

also improve mass balance estimates for Antarctica where there are also regions of high and low 

mass variability.  

When optimizing the constraints, we used an IOM model which comes with approximately 18% 

uncertainty. We modify the output of the IOM model by removing (minimum scenario) or adding 

(maximum scenario) 18% of the original EWH to investigate the influence of the IOM uncertainty 

during the optimization. When repeating the optimization procedure, we find that the optimal prior 

variances for the GrIS margin are 9.2 m2 or 17.3 m2, for the minimum and maximum scenario, 

respectively. However, the changes of the constraints for the interior regions are less than 0.02 m2 

compared to using the un-changed scenario in which the IOM model remains the same. The 

conclusion is that the optimization is more robust in the interior than in the margin, when 

considering the RACMO2 output and the discharge estimation as reference. The mass balance 

estimates only differ by 0.9 Gt∙yr-1 in the GrIS margin, and 0.3 Gt∙yr-1 in the interior regions from 

the original IOM. The differences are small when considering the uncertainties in the 

approximations, see the error bars in figure 2.6. 

There are a few issues in the approach that can be further developed in future work:  

1) Even though we use three prior variances in the least-squares inversion, there are still 

differences between GRACE and the combination of modelled surface mass balance in RACMO2 

and the estimated ice discharge in the west of Greenland, as can be seen in figure 2.2. In addition 

to distinguishing the regional mass changes between regions below and above 2000 m, different 
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constraints can be used for the southern regions in the GrIS (region 4a~region 6a). However, this 

will add an extra unknown, and the method will rely more on prior knowledge. In addition, the 

method becomes computationally more demanding than for example the iterative forward 

modelling approach of W⁰⁸. 

2) Another way to improve the regional mass changes approximation might be to introduce 

weights in the least-squares estimation. In Eq. (2.5), we assume that each region in the system has 

equal weight. Thus a small area has the same weight as a larger area even though there are fewer 

observations that are sensitive to the smaller area. If we are able to properly weight all the regions 

in the system, then the over-sensitivity of smaller regions can become less significant. 
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Chapter 3 

Improved GRACE regional mass balance estimates of 

the Greenland ice sheet cross-validated with the 

Input-output method 
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Abstract 

In this study, we use satellite gravimetry data from the Gravity Recovery and Climate Experiment 

(GRACE) to estimate regional mass change of the Greenland ice sheet (GrIS) and neighboring 

glaciated regions using a least-squares inversion approach. We also consider results from the input–

output method (IOM). The IOM quantifies the difference between the mass input and output of the 

GrIS by studying the surface mass balance (SMB) and the ice discharge (D). We use the Regional 

Atmospheric Climate Model version 2.3 (RACMO2.3) to model the SMB and derive the ice 

discharge from 12 years of high-precision ice velocity and thickness surveys.  

We use a simulation model to quantify and correct for GRACE approximation errors in mass 

change between different sub-regions of the GrIS, and investigate the reliability of pre-1990s ice 

discharge estimates, which are based on the modeled runoff. We find that the difference between 

the IOM and our improved GRACE mass change estimates is reduced in terms of the long-term 

mass change when using a reference discharge derived from runoff estimates in several subareas. 

In most regions our GRACE and IOM solutions are consistent with other studies, but differences 

remain in the northwestern GrIS. We validate the GRACE mass balance in that region by 

considering several different GIA models and mass change estimates derived from data obtained 

by the Ice, Cloud and land Elevation Satellite (ICESat). We conclude that the approximated mass 

balance between GRACE and IOM is consistent in most GrIS regions. The difference in the 

northwest is likely due to underestimated uncertainties in the IOM solutions. 

 

Key words: GRACE, RACMO2, cross-validation, regional mass balance. 
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3.1. Introduction 
During the last decade, the ice mass loss from the Greenland ice sheet (GrIS) has become one of 

the most significant mass change events on Earth. Because of its ongoing and potentially large 

future contribution to sea level rise, it is critical to understand the mass balance of the GrIS in detail. 

As a result of increasing runoff and solid ice discharge (D), the GrIS has been experiencing a 

considerable and increasing mass loss since the mid-1990s (Hanna et al., 2005; Rignot and 

Kanagaratnam, 2006; van den Broeke et al., 2009). The changes in mass loss rates are due to 

different processes. For instance, mass loss acceleration in the northwestern GrIS is linked to the 

rapidly increasing discharge in this region (Enderlin et al., 2014; Andersen et al., 2015), while in 

the southeast the increase in mass loss rate after 2003 is mainly due to enhanced melting and less 

snowfall (Noël et al., 2015). 

To quantify the recent changes in the GrIS mass balance, three methods are used: satellite 

altimetry, satellite gravimetry and the input–output method (IOM) (Andersen et al., 2015; Colgan 

et al., 2015b; Sasgen et al., 2012; Shepherd et al., 2012; Velicogna et al., 2014; Wouters et al., 2013). 

We will concentrate on the latter two methods in this study, using results from satellite altimetry 

for validation purposes. 

The IOM is used to evaluate the difference between mass input and output for a certain region. 

It considers two major mass change entities: surface mass balance (SMB) and solid ice discharge. 

SMB is commonly estimated using climate models (Ettema et al., 2009; Fettweis, 2007; Tedesco 

et al., 2013; van Angelen et al., 2012), whereas D can be estimated from combined measurements 

of ice velocities and ice thicknesses, e.g., Rignot and Kanagaratnam (2006), Enderlin et al. (2014) 

and Andersen et al. (2015). To reduce the uncertainties in the mass change of SMB and D, the SMB 

and D from 1961 to 1990 are sometimes used as a reference when applying the IOM method (van 

den Broeke et al., 2009; Sasgen et al., 2012). However, introducing SMB and D as reference may 

introduce new uncertainties in the IOM. We will discuss the details of the IOM, as well as the 

uncertainties of the reference SMB and D, in section. 3.2. 

The satellite gravity observations from GRACE (Gravity Recovery and Climate Experiment) 

provide snapshots of the global gravity field at monthly time intervals, which can be converted to 

mass variations. Mass variation solutions of a given area that are obtained from GRACE 

observations are, however, influenced by measurement noise and leakage of signals caused by mass 

change in neighboring areas. Furthermore, the GRACE monthly gravity fields contain north– south 

oriented stripes as a result of measurement noise and mis-modeled high-frequency signal aliasing. 

Therefore, to estimate the mass balance for GrIS sub-regions from GRACE data, we apply the 

least-squares inversion method (Schrama and Wouters, 2011) in this study with an improved 

approach (Xu et al., 2015). However, as shown by Bonin and Chambers (2013) in a simulation 

study, the least-squares inversion method introduces additional approximation errors. 

Previous studies have compared regional GrIS mass change from different independent methods. 

In Sasgen et al. (2012), the mass balance in seven major GrIS drainage areas was derived from the 

IOM and GRACE data using a forward modeling approach developed by Sasgen et al. (2010). 

When separating out the IOM components and comparing them with the seasonal variability in the 
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derived GRACE solution, the relative contributions of SMB and D to the annual mass balances 

were revealed. In the northwestern GrIS, important differences between IOM and GRACE were 

noted, which were attributed to the uncertainty in the regional discharge component in this area, 

where detailed surveys of ice thickness are lacking. The comparison between two approaches 

shows a mass loss difference of 24±13 Gt yr−1 in this region, and as a result the uncertainty in the 

regional mass balance estimate is estimated at ∼46 %. However, using new discharge estimates 

and the corresponding IOM regional mass change in the northwestern GrIS, Andersen et al. (2015) 

found that the difference between GRACE and IOM mass loss estimates fell within the combined 

uncertainty range. However, using the least-squares based inversion approach of Schrama and 

Wouters (2011), we find that the mass change differences between results obtained from GRACE 

and the IOM in the southern GrIS increase and cannot be explained by the assumed uncertainties. 

An example of the regional differences between the GRACE data and the IOM solution can be 

seen in figure A3.1. The details of this difference will be discussed in section 3.4. 

In this study, we aim to investigate the two aforementioned sources of uncertainties in GRACE 

and IOM mass balance estimations: (i) we present a way to reduce the error from the inversion 

approach and (ii) we investigate different discharge estimates. We then evaluate our results by 

comparing the GRACE and IOM estimates both with each other and with published estimates from 

satellite altimetry. 

The GrIS drainage system (DS) definition of Zwally (2012) is employed here to investigate the 

mass balance in GrIS subregions. This definition divides the whole GrIS into eight major drainage 

areas, and each drainage area is further separated by the 2000 m elevation contour line, creating 

interior and coastal regions for each drainage area. This GrIS DS definition is employed by several 

other studies (Andersen et al., 2015; Barletta et al., 2013; Colgan et al., 2015a; Luthcke et al., 2013; 

Sasgen et al., 2012). The regional GrIS mass change estimated with GRACE are influenced by 

mass change from areas outside the ice sheet, i.e., from Ellesmere Island, Baffin Island, Iceland 

and Svalbard (EBIS) (Wouters et al., 2008). Therefore, we include four additional DSs to reduce 

the leakage from these regions. The overall mascon definition used in this study is shown in figure. 

3.1. 

The main topic of this study is to provide improved GrIS regional mass balance estimates from 

GRACE and the IOM. We show that the improved GRACE solution reduces the regional 

differences between two mass change estimates, especially in the southeastern GrIS region. 

Furthermore, we compare the GRACE solution with the IOM, which employs different reference 

discharge estimates, showing that the uncertainties in the reference discharge can result in an under 

estimated mass loss rate in the IOM regional solution, in particular in the northwestern GrIS region. 

In section 3.2, we present SMB mass change from a recently improved regional atmospheric 

climate model (RACMO2.3) (Noël et al., 2015) and discharge estimates of Enderlin et al. (2014), 

which are based on a near-complete survey of the ice thickness and velocity of Greenland 

marine-terminating glaciers. In section 3.3, we introduce the least-squares inversion approach. In 

section 3.4, we start by investigating different methods to calculate mass change in GrIS drainage 

areas using the modeled SMB and D estimates. Subsequently, we identify the approximation errors 
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in regional mass change estimates from GRACE data, followed by a comparison of mass change 

estimates from GRACE and the IOM and a discussion of the remaining differences. The 

conclusions and recommendations are given in section 3.5. 

 

 

Figure 3.1. The GrIS mascon layout, based on the basin definition by Zwally (2012). The mascons with the 

same digits refer to a region belonging to the same drainage system. The characters “a” and “b” indicate the 

GrIS margin (<2000 m) and GrIS interior (≥2000 m), respectively. There are 16 GrIS mascons and 4 

neighbouring Arctic mascons. The location of the three largest discharge outlets are marked with a star, i.e. 

Jakobshavn (green), Kangerdlugssuaq (red) and Koge Bugt (blue) glaciers. The glacier area is defined in 

the RACMO2 model. In this study, we will use the index of the drainage systems to label each mascon, e.g.: 

mascon DS7 is drainage system No.7  

3.2. IOM method 

3.2.1. SMB and D  

For the GrIS, precipitation (P) in the form of snowfall is the main contribution to the mass input, 

while mass loss is a combination of sublimation (S), melt water runoff (R), and solid ice discharge 

(D). Surface mass balance (SMB) equals to P-S-R, and subtracting D from SMB yields the total 

mass balance (TMB). In this study, we use the Regional Atmospheric Climate Model, version 3 

(RACMO2.3) to model the SMB of the GrIS. RACMO2 (Ettema et al., 2009; Van Angelen et al., 

2012; van den Broeke et al., 2009) is developed and maintained at the Royal Netherlands 

Meteorological Institute (KNMI) and has been adapted for the polar regions at the Institute for 

Marine and Atmospheric Research, Utrecht University (UU/IMAU). RACMO2 model output is 

currently available at ~ 0.1o spatial resolution for Jan 1958 to Dec 2014. The differences between 

a previous model version (RACMO2.1) and other SMB models are discussed by Vernon et al. 

(2013). In RACMO2 we assume 20% uncertainties for the P and R components in each grid cell. 

Assuming both components to be independent, the uncertainty of the SMB is the quadratic sum of 
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uncertainties of P and R. The magnitude of S is small and its absolute uncertainty negligible 

compared to those in P and R. The RACMO2 model also provides the estimates of SMB in the 

peripheral glacier areas, which we have included in this study. 

Ice discharge (D) estimates from Enderlin et al. (2014) (hereafter Enderlin14, with the associated 

discharge estimates D-14) are used in this study. In Enderlin14, the ice thickness of 178 glaciers is 

estimated as the difference in ice surface elevations from repeat digital elevation models and bed 

elevations from NASA’s Operation IceBridge airborne ice-penetrating radar data. The ice surface 

velocity is obtained from tracking the movement of surface features visible in repeat Landsat 7 

Enhanced Thematic Mapper Plus and Advanced Spaceborne Thermal and Reflectance Radiometer 

(ASTER) images. For glaciers with thickness transects perpendicular to ice flow (i.e., flux gates), 

the ice flux is estimated by summing the product of the ice thickness and surface speed across the 

glacier width. Ice flux for glaciers with no thickness estimates is retrieved using the empirical 

scaling factors as derived in Enderlin et al. (2014). Because the ice fluxes are calculated within 5 

km of the estimated grounding line locations, SMB gain/loss between the observations and the 

grounding lines will be small and the ice discharge is estimated directly from the fluxes (Enderlin 

et al., 2014).  The estimation of discharge uncertainty of 1~5% D for each glacier is smaller than 

in previous studies, e.g. Rignot et al. (2008) (hereafter Rignot08, and the associated estimates are 

denoted by D-08), which relied on interior ice thickness estimates that were assumed constant in 

time. 

3.2.2. Cumulative TMB anomaly 

For the whole GrIS or a complete basin from ice sheet maximum height to the coast, the total mass 

balance is: 

TMB = SMB − D                                                                  (3.1) 

In this study, we further separate each GrIS basin in a downstream (I) and upstream (II) region 

separated by the 2000 m surface elevation contour line. Thus, for the sub-divided regions Eq. (3.1) 

becomes:  

TMB = TMBI + TMBII                                                         (3.2) 

where 

TMBII = SMBII − FII                                                            (3.3) 

and 

TMBI = SMBI + FII − FI                                                        (3.4) 

in which FII refers to the ice flux across the 2000 m elevation contour, and FI refers to the ice flow 

across the flux gate. Note that FII is cancelled if the study area includes both the regions below and 

above the 2000 m contour, but FII has to be considered when the upstream and downstream regions 

are considered separately. As described above, we assume that SMB changes downstream of the 

Enderlin14 flux gates are negligible and that FI = D. 

In order to fit the temporal resolution of the modeled SMB data, we interpolate the yearly D on 
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a monthly basis. Significant seasonal variations in ice velocity have been observed along 

Greenland’s marine-terminating outlet glaciers (Moon et al., 2014). However, since we focus 

mostly on long-term changes in mass in this study, monthly variations in D should have a negligible 

influence on our analysis and we assume that D is approximately constant throughout the year. 

Contrary to the GRACE data which measures a thin layer of mass near to the Earth’s surface (Wahr 

et al., 1998), the SMB, D and TMB are estimates of rates of mass change (i.e., mass flux) in Gt per 

month. Hence in order to compare with GRACE, one has to integrate the SMB and D from a certain 

month (or year), which yields: 

ΔTMB𝑖 = ∫ (SMB𝑡 − D𝑡)𝑑𝑡
𝑖

𝑖0
                                                      (3.5) 

where ΔTMB𝑖 is the cumulative mass change at month i in IOM (unit is Gt) and the integration 

time period is from a certain initial month 𝑖0 to month 𝑖. 

In previous study of mass balance IOM, when estimates of D are not available for some regions 

(Rignot et al., 2008), the 1961 to 1990 reference SMB is used to approximate the missing regional 

D (Sasgen et al., 2012). Also, due to the uncertainties in the SMB model, accumulating the TMB 

over a long time period may also lead to unrealistic mass gains or losses (van den Broeke et al., 

2009). By removing the reference, the influence of the large uncertainties and inter-annual 

variability in SMB and D can be reduced (van den Broeke et al., 2009). For instance the 

uncertainties due to model configurations could be the similar in every monthly SMB estimate, and 

cumulating over long period may result to a large uncertainty. The reference period is chosen based 

on the assumption that the mass gain from the surface mass balance during that period is 

compensated by ice discharge, so the GrIS was in balance (i.e. no mass change). 

For the reference period we defined the month index to run from i0 to i1, from i2 to in afterwards. 

Since we assume the GrIS was in balance during this period, ∫ (SMB𝑡 − D𝑡)𝑑𝑡
𝑖1

𝑖0
= 0. By removing 

the reference SMB and D (i.e. SMB0 and D0) Eq. (3.5) becomes: 

ΔTMB𝑖 = ∫ (𝛿SMB𝑡 − 𝛿D𝑡)𝑑𝑡
𝑖

𝑖2
                                                 (3.6) 

where 𝑖 ≥ 𝑖2 , 𝛿SMB𝑖 = SMB𝑖 − SMB0  and 𝛿D𝑖 = D𝑖 − D0 . Note that SMB0  and 𝛿SMB𝑖  are both 

rates of mass change, similar to the discharge. 

As explained before, when Eq. (3.6) is used to compute the mass balance for the regions below 

and above 2000 m separately, the ice flux across the 2000 m contour (FII) has to be considered. 

Therefore we introduce two assumptions, i.e.: 1) FII  is constant over time, which means FII = F0
II 

(F0
II is the FII during the reference period), so ∫ 𝛿F𝑡

II𝑑𝑡
𝑖

𝑖2
= 0; 2) The separate GrIS interior and 

coastal regions are all in balance during the 1961 – 1990 reference period, i.e. ∫ (SMB0
II −

𝑖1

𝑖0

F0
II)𝑑𝑡 = 0 and ∫ (SMB0

I + F0
II − D0)𝑑𝑡 = 0

𝑖1

𝑖0
  Assumption 1) is necessary since there is a lack of 

yearly measurements of ice velocity across the 2000 m contour. An estimate of decadal change by 

Howat et al. (2011) suggests it is reasonable to assume a constant FII for the entire GrIS, except for 

a few glaciers, such as the Jakobshavn glacier in basin 7 where the FII may be higher than F0
II after 
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2000. In Andersen et al. (2015), the mass balance of the interior GrIS (in their study defined as the 

ice sheet above the 1700 m elevation contour) was 41±61 Gt∙yr-1 during the 1961–1990 reference 

period and in Colgan et al. (2015) the ice flux across the 1700 m contour was estimated to be 54±46 

Gt∙yr-1 for the same time period, indicating the assumption of balance approximately holds within 

the uncertainties. 

Based on these two assumptions, we apply Eq. (3.6) for the interior and coastal GrIS regions, 

yielding: 

∆TMB𝑖
II = ∫ 𝛿SMB𝑡

II𝑑𝑡
𝑖

𝑖2
                                                 (3.7) 

and 

∆TMB𝑖
I = ∫ (𝛿SMB𝑡

I − 𝛿D𝑡)𝑑𝑡
𝑖

𝑖2
                                     (3.8) 

We quantify the combined uncertainties of assumptions 1) and 2) by comparing the results from 

Eq. (3.8) to the regional mass balance derived from GRACE by Wouters and Schrama (2008) and 

derived from ICESat by Zwally et al. (2011), resulting in ~±15 Gt∙yr-1 uncertainties for the entire 

interior GrIS. The regional uncertainties are summarized in table A3.3. Note that for each region, 

the same uncertainty is applied to both the interior and coastal areas. For the whole basin the 

uncertainties associated with assumption 1) and 2) will vanish, because these two assumptions are 

needed only when we separate the coastal and interior regions. 

3.3. GRACE 

3.3.1. Post-processing GRACE data 

In this study we use the GRACE release 5 level 2 monthly spherical harmonics coefficients Clm 

and Slm (‘GSM’) produced by the University of Texas Center for Space Research (CSR). The time 

interval is from Jan 2003 to Jan 2014 and the maximum spherical harmonic degree l=60. We add 

C10, C11 and S11 coefficients (related to the motion of the Earth’s geocenter) obtained from GRACE 

data and independent oceanic and atmospheric models (Swenson et al., 2008). The geopotential 

flattening coefficients (C20) in GRACE data are less accurate than those from the Satellite Laser 

Ranging (SLR) measurements (Chen et al., 2004). We replace these coefficients with the ones from 

Cheng et al. (2013). The GRACE potential coefficients are averaged between Jan 2003 and Jan 

2014 and this average field serves as a reference to obtain monthly anomalies ΔClm and ΔSlm.  

GRACE observations of mass change within a sub-region of the GrIS are affected by mass 

changes in neighboring areas, a phenomenon known as leakage (Wahr et al., 1998). But GRACE 

data should also be corrected for known oceanic and atmospheric mass motions, continental 

hydrology and Glacial Isostatic Adjustment (GIA). The oceanic and atmospheric mass changes are 

already removed from the coefficients provided by CSR. The Global Land Data Assimilation 

System (GLDAS) model (Rodell et al., 2004) is employed to simulate the continental hydrology, 
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which is then removed from the GRACE monthly coefficients. Note that permafrost regions are 

excluded in the GLDAS version 2 1.0 degree monthly data that are obtained from the Goddard 

Earth Sciences Data and Information Services Center. 

The GIA effect in the GRACE data for the GrIS is compensated via the model output of Paulson 

et al., (2007), which is based on the ICE-5G ice loading history and the VM2 Earth model (Peltier 

2004). Hereafter we refer to this model by Paulson-07. In addition to this model, 11 alternative GIA 

models are employed based on different ice history and viscosity models to determine the 

uncertainty in the GIA correction. For instance, the models of van der Wal et al., (2013) include 3D 

changes in viscosity and the model of Simpson et al. (2009) uses a different ice loading history, see 

the summary of the GIA models used in this study in table A3.3. An isotropic Gaussian filter is 

employed to reduce the noise in GRACE data (Wahr et al. 1998), with a half width of r1/2=300 km.  

3.3.2.  Inversion of the regional mass balance 

To estimate the regional mass balance in separate GrIS basins, we apply a constrained least-squares 

inversion approach (Bonin and Chambers, 2013; Schrama and Wouters, 2011).  

�̂� = (𝐇𝐓 𝐇 + 𝐏−𝟏)−𝟏 𝐇𝐓𝐲                                                       (3.9) 

The vector 𝐲 contains the monthly GRACE data. To compute the influence functions in the design 

matrix 𝐇 we assume a layer of water with unit height uniformly distributed over the mascon, then 

express the mass change in spherical harmonic coefficients up to d/o 60, similar to the GRACE 

data. The vector �̂� represents the scale factors for the unit mass changes in each basin that we aim 

to find. 𝐏 is the covariance matrix of the mass changes in each mascon. When assuming that the 

mass changes in each equally weighted mascon are independent then 𝐏 = 𝜆𝐈 , with 𝜆  the prior 

variance of the regional mass changes. In our previous study, we demonstrated that three different 

prior variances for the GrIS regions below and above 2000 m, as well as for the surrounding Arctic 

regions respectively improved the recovery of regional mass changes (Xu et al. 2015). Using a 

simulation model based on the IOM (see section A3.3) optimal regional constraints were 

determined, i.e. for coastal mascons 𝛌𝒂=13 m2, for inland mascons 𝛌𝒃=0.1 m2 and for the nearby 

surrounding EBIS regions (Ellesmere Island, Baffin Island, Iceland and Svalbard) regions 

𝛌EBIS=11 m2. One may notice that the constraints 𝛌𝒂 and 𝛌EBIS are slightly different from the ones 

we found in chapter 2. This is because we use a newer version of RACMO2 in this chapter. The 

influence on the approximation is found to be negligible. 

3.4. Cross-validation 

3.4.1. Reference SMB and D 

In this study, the error in SMB0, hereafter 𝜎𝑆𝑀𝐵0  involves the systematic error caused by the 

assumption of a reference period and the fact that averaging within the chosen reference period 

results in an error. Both parts will be explained hereafter.  

The systematic error is the uncertainty in the SMB derived from model output and the averaging 
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error is related to the variability of the reference SMB0 during 1961–1990. To quantify the later, 

we apply a Monte-Carlo simulation to evaluate the standard deviations of the SMB0 resulting from 

using different combinations of 20-year average of SMB. The sampled combinations are randomly 

chosen from the months between 1961 and 1990, following van den Broeke et al. (2009). For 

RACMO2, we find 20 Gt∙yr-1 averaging errors in 𝜎𝑆𝑀𝐵0. The SMB0 from RACMO2 yields 403 

Gt∙yr-1 hence the systematic error is approximately 73 Gt∙yr-1 (considering 18% uncertainty in 

RACMO2). If we assume both errors are independent, then 𝜎𝑆𝑀𝐵0=75 Gt∙yr-1. 

We also investigate the uncertainties of the 1961 – 1990 reference discharge. In this study we 

employ D-14 as the D estimates in IOM. However, D-14’s time series starts from the year of 2000 

when the GrIS already was significantly out of balance. In order to retrieve D0 for D-14 (D0-14), 

we employ the D0=413 Gt∙yr-1 in 1996 from D-08 (D0-08) for the entire GrIS, and assume that the 

regional D changes from 1990 to 2000 in D-08 should be proportional to the changes in D-14 in 

each region, i.e. D-14 and D-08 are linearly correlated. The details of the interpolation of regional 

D0 are given in section A3.1. Note that the averaging error in D0 is minimized via an iteration 

process, the details can be found in Rignot et al. (2008). Due to the lack of ice thickness information 

before 2000, the reference D0 in Rignot08 has high uncertainty, especially in the northwest of the 

GrIS.  

Another way to obtain historic discharge estimates is by using the presumed correlation between 

discharge and SMB or runoff (Rignot et al., 2008; Sasgen et al., 2012). The approach assumes that 

the anomaly of the discharge with respect to a reference SMB (𝛿D = SMB0 − D) is correlated with 

the anomaly of the 5-year averaging runoff with respect to a reference runoff (𝛿R = R − R0). Note 

that the lagging correlation is discussed in Bamber et al. (2012) and Box and Colgan (2013). In this 

study we choose to use the runoff output from the RACMO2 model. We consider three estimates 

of D, i.e. by Rignot08, Enderlin14 and Andersen et al. (2015), based on different measurements of 

the ice thickness and flux velocity changes, integration areas (areas between the flux gate and the 

grounding line), SMB and ice storage corrections and whether the peripheral areas are included or 

not. In this study we provide runoff-based estimates D0 only for those ice sheet basins where the 

correlation between 𝛿D  and 𝛿R  is strong (figure 3.2). For the entire GrIS, we obtain a high 

correlation (R2=~0.86), similar to the correlation found by Rignot et al. (2008), but the regional 

correlations are lower and vary from 0.19 to 0.94. In DS7 and DS8, the discharge anomaly is 

obviously correlated with the runoff anomaly (R2 > 0.9), while in other regions (i.e. in DS2, DS4, 

DS5 and DS6), the correlation is low (R2 < 0.5). In DS3a, when we consider only the D estimates 

from Enderlin-2014 and Andersen-2015, the correlation increases to R2=0.72. Note that, the 

regions with high correlation are also those that have a large fraction of marine-terminating glaciers. 

We derive the linear relation between 𝛿D and 𝛿R for 8 major GrIS DS and calculate the regional 

annual 𝛿D from 1960 to 2013 using this linear relation.  

Hereafter, the regional cumulative discharge anomaly ( 𝛿D ), which is derived from the 

RACMO2.3 run-off, is denoted as 𝛿DR, while δD-08 and δD-14 refer to 𝛿D based on Rignot08 and 

Enderlin14, respectively. We compare 𝛿DR, δD-08 and δD-14 in figure 3.3 for the time interval 2000 

to 2007, which is common to both δD-08 and δD-14. In DS7 we find a correlation of R2=0.94. In 
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that region, δD-08 and δD-14 are similar, i.e., 20.1±1.9 and 17.6±2.2 Gt yr−1, respectively, but 𝛿DR 

is 8.9±4.7 Gt yr−1. The difference between the runoff-derived and flux gate D estimates may 

indicate that the reference D0  for this region should be ∼9 Gt yr−1 lower than D0  estimated by 

Rignot08. A similar difference can be seen in DS4 where we obtain 36.2±2.5 Gt yr−1 for δD-14 and 

37.9±2.8 Gt yr−1 for δD-08, but δDR is 8.4±3.3 Gt yr−1. However, in DS4, 𝛿DR is probably not 

reliable, since the runoff-to-discharge correlation is weak in this region (R2=0.38). For the entire 

GrIS, the reference discharge D0 is 427±30 Gt yr−1 for δD-08 and 414±44 Gt yr−1 for δD-14. When 

applying the runoff-based interpolated D0  only for DS1, DS3, DS7 and DS8, with the rest of 

drainage areas using δD-14, D0  becomes 410±37 Gt yr−1 and all three versions of reference 

discharge agree within their respective uncertainties. 

 

Figure 3.2: Correlation between the anomaly of the discharge 𝜹𝐃 with respect to a reference SMB (y-axis) 

and the 4-year averaging runoff 𝜹𝐑 (x-axis) in GrIS regions. The symbols with different colours refer to 

different estimations of D. The grey bars for both 𝜹𝐃 and 𝜹𝐑 indicate the errors. The correlation coefficients 

R2 are also shown in each plot. 

To evaluate the SMB0 and D0 used in this study, we compare the IOM regional mass balance in 

eight major drainage areas (interior and coastal regions are combined) and apply both Eq. (3.5) and 

Eq. (3.6). The latter equation relies on the determination of the SMB0 and D0 while Eq. (3.5) does 

not, so the comparison can provide an indication about the reliability of the SMB0 and D0 for some 

basins. For the application of Eq. (3.6) we use two methods. Method 2 uses δD-14 while method 3 

uses 𝛿DR in DS1, DS3, DS7 and DS8. As can be seen in figure 3.3, the three methods agree for the 

whole GrIS, as well as for most of the drainage areas, within their uncertainties. In DS4, DS7 and 
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DS8, however, methods 1 and 2 are significantly different, which may be caused by underestimated 

cumulative errors in Eq. (3.5) or a less accurate reference surface mass balance SMB0 and reference 

discharge D0. This is further discussed in section 3.4.3. 

 

Figure 3.3: Comparison between cumulative TMB (2000–2012) obtained with three different methods. 

method 1, using no reference TMB, is shown with a green curve. For method 2 (red markers and curve), the 

reference discharge is based on the estimation from D-08, while the discharge estimation from D-14 is used 

(δD-14) for the years after 2000. Method 3 (blue markers and curve) interpolates the reference discharge 

using the modelled runoff data (only in DS1, DS3, DS7 and DS8), is dented by 𝛿DR. δD-08 refers to the 

discharge estimated using D-08. All the discharges are shifted upward by 200 Gt for visualization purposes. 

The numbers in each plot indicate the annual TMB change rates in Gt yr−1. The x axis shows the last two 

digits of the years from 2000 to 2012. 

3.4.2. Approximation errors 

In the solution of �̂�, two types of errors occur: a) systematic errors are caused by measurement 

errors propagated through the least-squares approach and b) the additional error that is introduced 

when applying Eq. (3.9). For the type b) error, Bonin and Chamber (2013) show that Eq. (3.9) 
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leaves a noticeable difference between the approximation �̂� and the “truth” (a GrIS mass changes 

simulation), in particular in GrIS sub-regions, which we recognize as an error source, also see the 

discussion in Tiwari et al. (2009). Hereafter the type b) error is denoted as 'approximation error ' 

or 𝛆. We estimate 𝛆 by using simulations of GrIS as 𝐱, following Bonin and Chambers (2013) so 

that the approximation error becomes 𝛆 = 𝐱 − �̂� . The simulated regional mass changes on the 

mascons are 𝐱 = [x1, x2, x3, … , x𝑛], where n is the total number of mascons. We will show that 

there is a relation between �̂� and 𝐱, which can be used to correct for the approximation errors.  

The simulation model 𝐲 = 𝑓(𝜃, 𝜆) is based on 10 years linear trend (2003 to 2012) of mass 

changes of SMB and D estimates (see section A3.3), with uncertainties of the simulation model 

written as 𝛔(𝜃, 𝜆). We employ a Monte-Carlo approach to simulate a sample of 1000 randomly 

distributed observations, according to 𝐲𝑙′ = 𝐲 + 𝐤𝑙𝛔  with 𝐤𝑙 = 𝑘𝑙(𝜃, 𝜆)  a vector of random 

scaling factors varying from -1 to 1, and index l running from 1 to 1000. Hereby it is important to 

note that we assume that measurement errors do not exist (i.e. the simulation model is assumed to 

be reality); in addition, we assume that the generated samples in the simulation (𝛔) are normally 

distributed. 

Next we apply Eq. (3.9) to yield approximated regional mass changes �̂� = [�̂�𝑚], in which m is 

the index of the mascons (see figure 3.1). From the simulation we can derive the real regional mass 

change rate 𝐱 = [𝑥𝑚] . As mentioned above, the difference between �̂�  and 𝐱  equals the 

approximation error. In figure 3.4 we show that the 𝑥𝑖 are linearly correlated with �̂�𝑖. By applying 

this correlation to the approximations derived from GRACE data, one can reduce the 

approximation errors in the GRACE based regional mass balance approximations. 

The simulated trend in regional mass changes 𝐱′ and the corresponding approximation �̂�′ are 

shown in figure 3.4. It can be noticed that the approximations are strongly correlated with the 

simulation in the coastal regions over time and with an average correlation coefficient R2=0.9. This 

means that the approximated regional solutions are close to the simulation. The correlation in 

region DS1a is weaker (~0.6), which suggests that the approximation for region DS1a is influenced 

more by mass changes in neighbouring regions such as region DS8a. In the simulation the 

inter-region correlation between DS1a and DS8a is ~ –0.1, while in the approximations, the 

correlation rises to ~ –0.5. By comparison, another neighbour of DS8a, DS7a, has a very weak 

inter-region correlation with DS8a both in the simulation and in the approximation (~0.04). The 

inter-region correlation errors are systematic due to the least-squares inversion (Bonin and 

Chambers, 2013; Schrama and Wouters, 2011). Previous work shows that the regional 

approximation errors can be reduced when specifying constraints for the GrIS coastal and inland 

regions, but within the coastal region all the sub-DSs are constrained by the same prior variance in 

this study, thus the increase in correlation between DS1a and DS8a remains. 

For the coastal regions, there is a linear relationship between the simulations 𝐱  and the 

approximation �̂�, as can be seen in figure 3.4. We fit this relationship by  𝐱 = 𝛼1�̂� + 𝛼0, with a 

summary of 𝛼1 and 𝛼0 given in table A3.1. The linear relationship between the simulated and the 

approximated regional mass change rates is found to be stable; even when the simulation 

uncertainties are multiplied with a factor or 5 (light green marks in figure 3.4), the average 
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regression parameters (𝛼1and 𝛼0) vary by less than ~1% for the coastal mascons. Therefore, it is 

reasonable to assume 𝛼1 and 𝛼0 should also reflect the relationship between the reality and the 

approximation, as derived from GRACE observations. When the vector of observations 𝐲 becomes 

the GRACE observations, by applying the linear relationship to the corresponding approximation 

�̂�, we can derive an improved GRACE regional solution. We will show that this correction yields 

better agreement between GRACE and the IOM in section 3.4.3.  

 

Figure 3.4: Correlation between the linear trend in the simulations x′  (y-axis) and the corresponding 

approximation x̂′ (x-axis). The unit is in Gtyr-1. The colours are associated with the changing range of x′ 

for a standard deviation going from 1σ to 5σ. The numbers refer to the R2 coefficient for three different σ. 

Contrary to the coastal regions, the linear relation between x and �̂� is weak in the interior regions, 

where the mean correlation coefficient is ~0.2. This may be because interior regions show smaller 

mass change rates than the coastal regions, or maybe the processes act on larger scales? Along the 

margins these are much more affected by topography. For simulations created within a 1σ range, 

the highest correlation coefficient is only 0.47 for DS7b. The strong constraint used for these 

regions, i.e. a prior variance of 0.1 m2, may cause the approximation to be more determined by this 

constraint than the simulation. However, if we apply a weaker constraint, i.e. λ=106, the correlation 

coefficients between 𝐱 and �̂� in these regions remain below 0.5. This means that correcting the 
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approximation errors using the same method as for the coastal regions may create larger 

uncertainties. Following Bonin and Chambers (2014), we choose to include the approximation 

errors in the uncertainties but only for the interior regions. The uncertainties are shown in table 

A3.2. 

3.4.3. Results and discussions 

We compared the regional mass changing rate from GRACE with the IOM (figure 3.5) before and 

after applying the approximation error correction to GRACE and with different discharge 

estimations implemented by the IOM, separately for coastal and interior regions. For the coastal 

regions, we find that the correction of the approximation errors in the GRACE solutions adjusts 

the mass distributions between adjacent mascons. For instance, the corrected mass loss rate in 

DS3a increases by 10 Gt∙yr-1 while it reduces the mass loss rate in the adjacent region DS4a by 15 

Gt∙yr-1. In mascon DS5a, DS6a and DS7a, the combined mass change rate is -107±8 Gt∙yr-1 before 

correcting and -106±8 Gt∙yr-1 after correcting for regional approximation errors. In mascon DS6a 

correcting for the approximation error causes a mass loss increase of 13 Gt∙yr-1. 

 

Figure 3.5: Comparison of the regional mass change rates between the GRACE solution and the IOM 

solutions. Each column refers to one complete basin according to Zwally (2012).  The regional mass change 

rates from GRACE before correcting for the approximation error, are represented by the light blue hollow 

squares; the filled dark blue squares indicate the mass change rates after implementing the correction. The 

numbers show the mass change rates in blue and red colour which indicate the GRACE solution and IOM 

solution respectively. The dashed line separates the solutions from the interior regions (above the dashed 
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line) from the coastal regions (below the dashed line). The error bars are estimated in section. A3.4. 

In the IOM used in the comparison, we only consider TMB in order to reduce the influence of 

the individual uncertainties in SMB and D. We obtain two IOM solutions, using the reference D0 

by Rignot08 (method 2) and the interpolated discharges based on RACMO2 runoff (method 3). In 

mascon DS1a and DS3a, we obtain lower discharge changes rate from method 3 than from method 

2. In mascon DS7a, which includes Jakobshavn glacier, method 3 results in smaller mass changes 

than method 2.  

Figure 3.5 shows that agreement between GRACE and IOM improves after correcting the 

GRACE approximation errors and applying the runoff based discharge estimations in mascon DS3a, 

DS5a, DS6a and DS7a. The difference between GRACE and IOM estimates is also reduced in 

DS1a and DS2a, where the remaining difference falls within the uncertainty margins. The corrected 

GRACE solution in DS4a is only ~3 Gt∙yr-1 lower than the IOM solution while it was 10 Gt∙yr-1 

higher before correcting the approximation error. However, regardless of correcting the 

approximation errors, the GRACE inferred regional mass balance agrees with IOM mass balance 

in DS4a due to the large uncertainties in the GRACE solution and the RACMO2 model there, i.e. 

±17 Gt∙yr-1 (see table A3.2). From figure 3.5 we can also make some inferences about the effect of 

using different methods to estimate reference discharge. Only in mascon DS8a, IOM and GRACE 

do not agree within the uncertainties. Previous studies, e.g. Bolch et al. (2013) and Gardner et al. 

(2013), show that approximately 40 Gt∙yr-1 mass losses are from the peripheral glaciers. Yet, these 

portions of mass losses are not considered in our IOM solution. However, given the relationship 

we found in our discharge data between glacier width and area for the ice sheet's 

marine-terminating glaciers, we suspect the discharge from these glaciers is quite small and the 

regional mass changes in these glacier areas are dominated by changes in SMB. Ideally, the 

GRACE-IOM difference will likely be on the order of single digit Gt∙yr-1 due to the exclusion of 

discharge from peripheral marine-terminating glaciers and ice caps as long as we consider the SMB 

for the whole of Greenland, not just the ice sheet. 

For the regions above 2000 m altitude, GRACE inferred regional mass change rates agree with 

the RACMO2 SMB estimations within uncertainties (see figure 3.5). A noticeable mass increase 

appears in both GRACE and IOM solutions in mascon 2b (northeast interior). A second observation 

is that in the IOM, the runoff dominates the regional mass balance on the edge of the southern GrIS 

interior resulting in mass loss of -8 Gt∙yr-1. The overall IOM uncertainties in the coastal regions are 

mainly influenced by the uncertainties in SMB and D estimates, meanwhile applying F2000 

assumptions contributes additional uncertainties in the GrIS interior regions. In the GRACE 

solution, the uncertainties are due to the errors in the GRACE coefficients which is not dependent 

on the altitude, therefore the uncertainty level is similar to the coastal regions.  

We also compare our GRACE and IOM solutions to 1) GRACE 2) IOM 3) ICESat altimetry 

estimates, as shown in table 3.1. All listed GRACE solutions agree within uncertainty levels in 

DS1, DS2, DS3, DS5 and DS8. In-line with some of the referenced studies, we combine DS6 and 

DS7. We find a larger rate of mass loss in this area compared to other studies (i.e. -87±10 Gt∙yr-1) 

because a longer time interval is considered in this study and mass loss accelerates by ~-21 Gt∙yr-2 



Improved GRACE regional mass balance estimates 

46 

 

during the time gap between different comparing periods. After accounting for this acceleration, 

all GRACE solutions become similar in this combined region.  

In the southeast region DS4, the regional acceleration of mass loss is negligible (~-0.1 Gt∙yr-2). 

When comparing different GRACE solutions, the mass loss rate in DS4 ranges from -28±7 Gt∙yr-1 

to -51±6 Gt∙yr-1. It suggests that a large approximation error, which is associated with different 

approximation approaches, is likely present in this region in the GRACE solution. As shown in 

figure 3.5, the regional mass change is reduced by 29% in this region after applying the correction.  

Table 3.1: Linear trends in the mass changes in GrIS regions based on satellite gravity data (GRACE), IOM 

output and altimetry data (ICESat). The unit is Gtyr-1. The studies are: Zwally et al., 2011; Sasgen et al., 

2012; Barletta et al., 2013; Colgan et al., 2013; Groh et al., 2014; Andersen et al., 2015; Sørensen et al., 

2011. 

Basin DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 

 
GRACE 

This study （2003–2013） -22±4 -8±4 -36±5 -51±6 -20±6 -47±8 -40±5 -50±4 

Colgan (2003–2010) -21±6 1±6 -47±13 -28±7 -24±4 -33±7 -23±9 -42±12 

Sasgen (2003–2010) -16±5 -12±5 -38±6 -42±6 -24±6 -56±7 -53±7 

Barletta (2003–2012） -17±2 -12±2 -36±4 -35±3 -23±2 -66±4 -44±4 

 IOM 

This study (2003–2013) -26±8 -10±6 -39±8 -59±18 -18±7 -46±14 -38±6 -35±8 

Andersen (2007–2011) -17±5 -13±6 
 

-38±29 -20±9 -53±13 -53±17 -58±14 

Sasgen (2003–2010) -20±4 -16±5 -31±8 -66±21 -20±7 -66±20 -26±12 

 ICESat 

Zwally -11 (2003–2007) 1±0 13±0 -51±1 -75±2 -10±0 -4±0 -14±0 -33±1 

Sørensen (2003–2009) -16±1 -16±3 -40±18 -43±11 -26±5 -51±7 -53±3 

 

The IOM is also relatively uncertain in DS4 (Sasgen et al., 2012). Even though the mass-change 

rates between GRACE and the IOM in this region show a relatively large difference, agreement is 

obtained within the large uncertainties. For ICESat-based mass loss estimates, the retrieved long-

term mass loss can be very different, e.g., -75±2 Gt∙yr-1 by Zwally et al. (2011) compared to -

43±11 Gt∙yr-1 by Sørensen et al. (2011). This may be explained by the complicated regional ice 

surface geometry in the coastal areas (Zwally et al., 2011) or uncertainty resulting from the 

conversion of height changes to mass change, e.g., different firn corrections and density 

conversions. Another area where GRACE and the IOM do not agree is the northwest (region DS8). 

We find that our GRACE solution shows -32±6 Gt∙yr-1 mass change during 2003–2007 and -46±5 

Gt∙yr-1 during 2003–2010. The ICESat solutions show similar mass loss rates in this region (see 

table 3.1), while the IOM solution shows lower mass change rates, i.e., -13±3 Gt∙yr-1 and -28±6 

Gt∙yr-1 for the time period 2003–2007 and 2003–2010, respectively. Moreover, if we determine the 

mass change rates for the time interval from 2007–2011, the rate is -57±6 Gt∙yr-1 (GRACE) and -

49±11 Gt∙yr-1 (IOM). Both results agree with the rate of -58±14 Gt∙yr-1 from Andersen et al. (2015). 

We have reduced the approximation error in the GRACE solution for this region, although by a 
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small amount (-2.3 Gt yr−1). To assess the influence of the remaining approximation errors, we 

compare the GRACE and IOM solutions in the surrounding areas, i.e., DS1 and DS7. It can be seen 

in Fig. 5 that mass change rates are consistent between IOM and GRACE solutions, within their 

uncertainties. This suggests that the approximation errors become negligible in the GRACE 

solution. The comparison for Ellesmere Island is more difficult because discharge is not included 

in our IOM solution. However, an IOM solution including the D estimates by Gardner et al. (2011), 

showed that the mass change rate of the glaciers on this island is 37±7 Gt yr−1 between the years 

of 2004 and 2009. This agrees (to within its uncertainty bound) with our solution for the same time 

interval, i.e., -35±7 and -29±3 Gt yr−1 for IOM and GRACE solutions, respectively. Hence, it is 

reasonable to believe the mass change estimated from IOM and GRACE agree with each other in 

this region. After comparing the GRACE and IOM solutions on all the neighbor regions of DS8, 

no significant differences between the IOM and GRACE solutions are found. This suggests that 

the remaining approximation error is not the major source of the difference in DS8. 

The uncertainties of the GIA effect are included as part of the uncertainties of the GRACE 

solution for this region as well (see table A3.3), but adding these still cannot bridge the gap between 

GRACE and IOM. The ICESat-based mass change estimate by Kjeldsen et al. (2013) yields a mass 

loss rate of 55±8.4 Gt∙yr-1 from 2003 to 2010, which is consistent with the GRACE solution in this 

study. All evidence combined indicates that the IOM method underestimates the mass loss rate in 

this basin by ~-15 Gt∙yr-1. In Sasgen et al. (2012), the discharge estimations from Rignot08 are used, 

in which a portion of DS8 was un-surveyed, to which they ascribed the difference between GRACE 

and IOM (24±13 Gt∙yr-1). In this study, the discharge estimation from Enderlin et al. (2014) covers 

the entire glacier area in this region, but only for the years after 2000. Therefore, despite 

observations of relatively stable terminus positions for the majority of the marine-terminating 

glaciers in northwest Greenland between 1985–2000 (Howat and Eddy, 2011), we hypothesize that 

the estimated reference discharge over-estimates the regional D0. Deriving D0 from D-14 involved 

the assumption that D from 1990 to 2000 follows Rignot08, which contains high regional 

uncertainties. On the other hand, if we use the runoff-based estimate of D0 , uncertainties are 

influenced by the uncertainty of the RACMO2 model. The SMB inter-comparison study of Vernon 

et al. (2013) shows that the 1961–1990 reference SMB0 of RACMO2 model is larger than some 

other SMB models, e.g. MAR or PMM5. It is interesting to see that when the cumulative TMB is 

calculated independently from the reference SMB0 and D0  (using Eq 3.5, method 1), the mass 

change rates agree with the GRACE mass balance in this region within uncertainties. This indicates 

that modelled SMB (as well as SMB0) could have uncertainties that are larger than 18%. 

3.5. Conclusions 

In this study, we implement a simulation of GrIS mass changes and show that the approximation 

errors caused by the least-squares inversion approach can be quantified and furthermore be reduced 

in the GRACE solution. For using the IOM, we apply an improved reference discharge estimate 

that can better agree with other independent estimates. We show that the regional differences 
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between our GRACE and IOM solutions are reduced and agree within the calculated confidence 

intervals. This is confirmed by an inter-comparison with ICESat based regional mass change rates. 

In the southeast, the corrections for the approximation errors in GRACE are especially important. 

We find that the IOM solutions underestimate mass loss in the northwest compared to GRACE and 

ICESat solutions, which we attribute to incorrect estimates in reference D and/or SMB used to 

construct the IOM estimates. For the whole GrIS and considering the early half of the comparison 

time window, we find a 208±18 Gt∙yr-1 mass loss rate for the period 2003 to 2008 from the GRACE 

solution, while the IOM solution shows a mass loss rate of 195±25 Gt∙yr-1. The loss rates increase 

by ~67% and ~85% in 2009–2014 in the GRACE and IOM solutions, respectively. The 10-year 

acceleration in the GRACE data is -25±8 Gt∙yr-2, consistent with the IOM solution, -26±12 Gt∙yr-
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Appendix A 

A3.1. Reference discharge based on the pre-1960 discharge estimations 

The GrIS ice discharge D was distributed into 34 glaciers by Rignot et al. (2008), denoted by D-08. 

The reference discharge D0-08 is considered equivalent to the discharge estimation for the year of 

1996. We define the reference discharge in 1996 and 2000 as D0-08 and D2000-08, respectively. 

The deviations between D0-08 and D2000-08 are due to the discharge changes in late 1990s 

(Enderlin et al., 2014). Similarly, we define Enderlin14 as D-14, with the time series starting from 

the year of 2000 (D2000-14). In order to estimate the reference discharge D0-14, we find scaling 

factors between D0-08 and D2000-08 and scale the D2000-14 to yield the estimation of D0-14. We 

estimate the uncertainties of estimated D0-14 via 500 pairs of randomly generated D̃0-08, D̃2000-08 

and D̃2000-14, following from the normal distribution N (D, σD), in which σD is the error in the 

discharge estimations. For the entire GrIS, we find that the interpolated D140=413.8±31.6 Gt, 

similar to previous studies. (Sasgen et al., 2012; van den Broeke et al., 2009) 

A3.2. Approximation error correction 

In order to determine the linear relationship between the simulated regional mass balances with 

the associated approximations after applying the least-squares inversion, the linear fitting 

parameters 𝛼0 and 𝛼1 are calculated for different simulation error levels, the values of which are 

shown in table A3.1. The values of 𝛼0 and 𝛼1 and their uncertainties vary slightly in all coastal 

regions. In order to determine one value for 𝛼0 and 𝛼1, we assume the 𝛼0 and 𝛼1 follow the normal 

distribution in each region and draw 1000 random samples for each error level. Then we combine 

all the samples and fit into another normal distribution, from which the 𝛼0 and 𝛼1 are determined 

for each region (see the table A3.1).  

A3.3. The GrIS simulation 

The GrIS monthly mass balance simulations that will be used in section 3.4.2 are based on the 

RACMO2 model and the discharges estimates from Enderlin et al., (2014). Note that the discharge 

estimates are given the form of lumped mass change for 178 different geographical locations. To 

get SMB and D estimates for each basin we sum the discharges for all glaciers or the gridded SMB 

values within each basin, respectively. We interpolate SMB and D onto a gridded map of EWH 

with a resolution of 1 arc degree for the GrIS and surrounding areas. To account for leakage from 

outside the GrIS, as occurs in GRACE, we apply the annual mass changes estimates from Schrama 

et al. (2014) for all the major glacier areas (GrIS excluded). We convolve the gridded mass 

distribution over the Earth’s surface and obtain the potential coefficients in response to this 

distribution up to d/o 60. Noise in the monthly GRACE coefficients manifests mainly as 

north-south stripes in the spatial domain (Swenson and Wahr, 2006). In order to mimic this error 

in the simulation, we add randomly generated noise as described in Bonin and Chambers (2013) 

to the potential coefficients. The simulation model was discussed in details in Xu et al., (2015). 

Note that for this study we focus on the discussion of long-term linear trend, thus the linear trend 

of the monthly simulation is used as the simulation model for later use. 
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A3.4. Uncertainty estimations  

A summary of the uncertainties in the regional mass balance (linear trend) is shown in table A3.2. 

In our GRACE inferred mass balance, the uncertainties are associated with 1a) the standard 

deviations of the CSR RL05 GRACE spherical harmonics coefficients (including the standard 

deviations of the external degree l=1 and 2 coefficients), 2a) the variations of the regional mass 

changes due to different GIA models and 3a) the uncertainties due to the corrections of the 

systematic error in the least-squares inversion solutions. The uncertainties of the IOM inferred 

mass balance consist of the uncertainties of the 1960 – 1990 reference in SMB0 and in D0 and 2b) 

the systematic error in the SMB (RACMO2) and 2c) the errors in the yearly D estimations 

(Enderlin 2014 and Rignot 2008).  

A3.5. Selection of the GIA model for GrIS regions. 

We apply the GIA correction to the GRACE data using 11 different GIA models before estimating 

the associated regional mass changes in 20 GrIS and surrounding Arctic regions (see the mascon 

definition in section 3.3). By comparing with one without applying GIA correction, we assume the 

differences are the regional GIA effects. In addition to Paulson-07 GIA model, we use a GIA model 

with lateral changes in viscosity and the ICE-5G loading history (van der Wal et al. 2013). 

Moreover, we use 8 different GIA models based on the ice history model from Simpson et al. 

(2009), provided by Glenn Milne within the scope of the IMBIE project. The upper mantle viscosity 

ranges from 0.3×1021 to 1×1021 Pa∙s and the lower mantle viscosity ranges from 1×1021 to 10×1021 

Pa∙s. The thickness of the lithosphere is assumed to be 96 km or 120 km.  

In table A3.3, the GIA related mass changes can vary from -7 Gt∙yr-1 to 10 Gt∙yr-1 for the entire 

GrIS. A positive GIA effect appears in the northern GrIS while in the south and southwest GrIS, 

(DS5a to DS7a) negative GIA signals prevail.  

In order to quantify the uncertainties of the regional GIA in the Paulson-07, since it is the GIA 

model we used to derive our GRACE solution, we estimate the standard deviation of all models 

with respect to Paulson-07. The uncertainties are summarized in table A3.3. 
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Figure A3.1: The EWH of the linear trend (a1) and accelerations (a2) in CSR release 5 level 2 GRACE data. 

The linear trend (b1) and the accelerations (b2) of IOM solution in EWH. The time interval is from Jan 2003 

to Jan 2012. The Gaussian filter half width in all plots is r1/2=300 km. 

Table A3.1: The linear fit parameters 𝛼0 and 𝛼1 describing the relationship between the regional simulated 

mass balance and the approximations obtained after the inversion procedure as applied to GRACE data of 

the coastal regions. For the interior GrIS regions, we show the approximation errors as additional 

uncertainties. 

mascon (< 2000 m) DS1a DS2a DS3a DS4a DS5a DS6a DS7a DS8a 

𝛼0 (Gt) -10.93±1.46 -0.64±0.54 6.82±1.47 -14.90±1.54 -1.86±1.61 -17.15±1.54 2.54±2.23 0.28±1.02 

𝛼1 0.85±0.03 1.02±0.02 0.95±0.01 0.96±0.02 0.90±0.01 0.90±0.02 0.97±0.01 1.00±0.01 

 

 mascon (>=2000 m) DS1b DS2b DS3b DS4b DS5b DS6b DS7b DS8b 

uncertainty (Gt yr) 0.28 0.35 0.45 0.6 2.88 5.1 0.67 0.65    
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Table A3.2: The uncertainties associated with the regional mass change rates. For the GRACE inferred 

regional solutions, “coef.std” refers to the errors due to the standard deviations in the CSR RL05 spherical 

coefficients, “GIA” refers to the errors obtained from comparing 11 GIA models. Note that the GIA 

uncertainties in the interior GrIS are all close to 0 thus they are neglected. In the column with the header 

“Cor” we show the uncertainties which are caused by the approximation error correction. For SMB and D 

trend estimations, the uncertainties consist of the reference SMB0 and D0 error (“SMB0” and “D0”) and the 

systematic errors in RACMO2 model and in the discharge estimations (“sys”). The column entitled with 

“Cum. Uncer” refers to cumulative uncertainties using the assumptions 1) and 2), see the details in section. 

3.2. The highlighted columns show the total uncertainties of the linear fit of the GRACE and IOM mass 

balances. 

Mascon 

GRACE RACMO2 ( SMB ) Discharge ( D ) Cum.Uncer IOM 

coef.std(1a) 
GIA 

(2a) 

Cor 

(3a) 
Total 

SMB0 

(1b) 

Sys 

(2b) 
Total 

D0 Sys 

(2c) 
Total 

Apply 

assum. 1) 

and 2) 

SMB-D 

(1c) 

DS1a 1.9 3.9 1.6 3.4 1.9 7.2 7.6 0.8 0 0.8 1.1 7.7 

DS2a 2.1 2.2 0.6 2.8 1.6 5.8 6 1.1 0.3 1.1 2.9 6.8 

DS3a 3.2 3 1.5 4.3 3.6 6.8 7.8 2 1 2.2 2.1 8.4 

DS4a 3.8 2.6 8.8 10 8.6 10.6 17.1 3.1 1.4 3.4 1.6 17.5 

DS5a 4.4 0.2 1.7 4.9 3.9 5.2 6.7 1.1 0.7 1.2 0.8 6.9 

DS6a 3.7 0.8 1.7 5.6 4.7 12.5 13.4 0.6 0.3 0.6 1.4 13.5 

DS7a 3 0.5 2.2 3.9 2 4.9 5.4 2 1.5 2.5 4.9 7.7 

DS8a 2.4 3.7 1.1 4.5 3.3 7.7 8.3 2.1 1.1 2.4 2.3 8.9 

Coastal 9 7.3 4.5 14.9 12.1 22.6 27.7 4.9 2.7 5.5 15.4 32.2 

DS1b 1.8  0.3 1.8 0.3 0.1 0.3    1.1 1.1 

DS2b 2.4  0.4 2.4 0.6 0.2 0.6    2.9 3.0 

DS3b 3  0.5 3 1 0.3 1.1    2.1 2.4 

DS4b 3.4  0.6 3.5 1.5 0.3 1.5    1.6 2.2 

DS5b 3.5  2.9 4.5 1.1 0.3 1.2    0.8 1.4 

DS6b 3.4  5.1 6.1 1.2 0.4 1.2    1.4 1.8 

DS7b 2.8  0.7 2.9 1.8 0.6 2    4.9 5.3 

DS8b 2.4  0.7 2.5 0.9 0.4 1.1    2.3 2.5 

interior 7.8  6 9.8 8.1 1.7 8.3    15.4 17.5 

GrIS 11.9 7.3 7.5 17.8 14.5 22.7 28.9 4.9 2.7 5.5 0 29.4 
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Table A3.3: The GIA effects on mass balance in different GrIS regions based on 11 different GIA models. 

The unit is Gt yr-1. For the GIA models using Simpson’s ice history model, the column headers are in the 

form of “xpab”, where the x value refers to the lithosphere thickness (km), and a and b represent the viscosity 

of the upper and lower mantle, in 1020 and 1021 Pa∙s respectively.  

ICE 

model 
ICE-5G Wouter van der Wal Simpson 

Mascon Paulson-07 heatflow seismic 96p32 
96p5

5 

96p5

8 

96p8

5 

96p51

0 

120p5

1 

120p8

1 

120p1

1 

DS1a 4 5 2 1 -1 -1 -1 0 3 4 4 

DS2a 3 1 1 1 1 1 2 2 2 3 3 

DS3a 0 2 -1 1 -1 -2 -1 -1 2 3 3 

DS4a 0 3 1 -1 0 0 1 1 1 3 4 

DS5a -3 -1 0 -5 -8 -7 -7 -7 -4 -4 -5 

DS6a -2 1 2 -5 -2 -2 1 -2 -3 -1 0 

DS7a -3 0 0 -1 -5 -5 -6 -5 -2 -2 -3 

DS8a -1 -1 0 1 -1 -2 -2 -2 -1 -2 -2 

Ellesmere 7 4 4 1 2 3 4 3 4 5 6 

Baffin 12 -3 6 10 12 12 12 13 1 0 -1 

Iceland -1 0 -1 -1 -3 -3 -3 -3 0 0 -1 

Svalbard 2 0 2 2 3 4 3 5 0 0 0 
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Chapter 4 

Regional Greenland ice sheet mass changes based upon 

a hierarchical mascon constraining method 

 

Abstract 

In this study, we derive regional mass changes for 19 regions in Greenland and 4 surrounding 

glacier areas from GRACE using a least-squares inversion approach. The method of constraining 

the solution is to a large extent independent from priori information about the study area. The 

method considers two levels of mascons: 19 smaller mascons which are the target areas, and larger 

mascons which consist of several of the smaller mascons. The idea of the method is to use the 

inverted mass changes of the larger mascons, which are less susceptible to inversion instability, to 

govern the least-squares solution of the smaller mascons. We validate this method using a GrIS 

simulation based on modelled surface mass balance (SMB) and an ice discharge estimate. The 

results show a significant improvement in most of the GrIS sub-basins after applying the proposed 

hierarchical constraint method, compared to a least-squares solution based on a single constraint. 

Finally, we apply our method to GRACE data to investigate the mass loss in the 19 GrIS regions.  

 

Key words: GRACE, mascons, small region mass changes, hierarchical constraints 
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4.1. Introduction 
The Gravity Recovery And Climate Experiment (GRACE) satellites observe mass changes on the 

Earth’s surface by measuring the gravitational field changes over time. GRACE data have been 

used to derive the mass changes relating to ice melt on Greenland (Shepherd et al., 2012, Schrama 

et al., 2014; Velicogna et al., 2014; Anderson et al., 2015; Wiese et al., 2015; Colgan et al., 2015; 

Alexander et al., 2016; Schlegel et al., 2016; and Ran et al., 2017). In order to extract the GrIS 

regional mass changes signal from the GRACE data, a least-squares inversion approach can be 

used (Wouters et al., 2008; Sasgen et al., 2010; Schrama and Wouters, 2011). The inversion 

approach divides the GrIS in several regions or mascons with a pre-defined mass distribution. This 

method requires the conversion of the mass changes for a single mascon to changes of the 

gravitational field. The scale of the uniform mass distribution in the mascons is adjusted to fit the 

observed gravity field changes. Among several inversion methods, the basin-averaged 

least-squares inversion by Schrama and Wouters (2011) is a simple but effective inversion approach 

to study the mass changes in GrIS regions, see applications in Bonin and Chambers (2013) and Xu 

et al. (2015). Some other studies assumed the non-uniform distributed mass for the GrIS mascons 

but this has the drawback of relying on the prior knowledge of mass change in these areas (Wouters 

et al., 2008 and Sasgen et al., 2012). The regional mass changes approximations derived from the 

basin-averaged least-squares inversion are consistent with other independent regional mass 

changes estimates such as the Input-output Method (IOM) and satellite altimetry (Sasgen et al., 

2012; Shepherd et al., 2012; Velicogna et al., 2014 and Xu et al., 2016). Recent developments 

towards smaller mascons are discussed and their shortcomings are specified. After that we present 

a new method for obtaining constraints which depend less on a priori information than earlier 

methods.  

Bonin and Chambers (2013) find that the least-squares inversion method is sensitive to the 

geometric definition of mascons. Their closed-loop simulated showed that when approximating 

simulated GrIS mass change with different mascon definitions, the approximation-to-simulation 

residual varies with mascon. Bonin and Chambers (2013) found that it is best to define the mascons 

according to hydrological drainage systems (DS). Furthermore, as introduced by Schrama and 

Wouters (2011), a priori information on the variance of the regional mass changes can be used to 

constrain the approximations. Without priori information on the magnitude of the constraint, a very 

weak constraint can be applied in order to remove most of the numerical instability during the 

inversion. In Bonin and Chambers (2013) a constant variance for all mascons is considered which 

is optimized based on a simulation of GrIS mass change. Based on a similar simulation Xu et al. 

(2015) showed that the approximation derived from the least-squares inversion sometimes results 

in negative correlation of mass changes in neighboring basins. This negative correlation is not 

necessarily a physical signal in the GRACE data but results from instability in the approximation 

for small mascons. In Xu et al. (2016), the negative correlation is recognized as the error, or 

approximation error. In Xu et al. (2015) the approximation error is reduced by using different 

constraints for different regions, for instance a small variance for mass changes in the higher 

elevation GrIS regions where run-off is small (Colgan et al., 2015) and larger variances for the 
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coastal areas which lose ice more rapidly through discharge and runoff (Andersen et al. 2014).  

There are several drawbacks of this constraining method: 1) Since the constraints depend on the 

location of mascons, changing the definition of mascon requires finding new constraints based on 

simulation, 2) The method relies on priori information about the variance of mass changes in the 

study area which might not be reliable in all situations, 3) It is computational expensive to optimize 

the location dependent constraints for a large number of mascons (Xu et al., 2015). 

In this study we introduce a new method to constrain the least-squares inversion approach which 

is not necessary to depend on establishing a simulation or the priori information of the study area 

but still reduces the negative correlation error. First the least-squares inversion set-up is introduced 

in section 4.2. Then the new constraining method is explained in section 4.3. Before diving into the 

smaller areas in GrIS, we investigate the limitation of the spatial resolution of GRACE data in 

section 4.4. The mass change estimates from the new method are discussed in section 4.5.  

4.2. Least-squares inversion 
In this study, we will employ a simulation of monthly spherical harmonics similar to the GRACE 

data; the detail of the simulation is in section A4.1. We follow the least-squares inversion method 

of Schrama and Wouters (2011) to approximate the mass changes in GrIS basins:  

𝐲 = 𝐀𝛂 + 𝛆,                                                         (4.1) 

where the observation vector y is the global equivalent water height (EWH) map derived from the 

spherical harmonic coefficients associated with the mass distribution on the Earth’s surface. The 

method of calculating the EWH map from the spherical harmonics is given by Wahr et al., (1998). 

The design matrix 𝐀 = [𝐚𝟏, 𝐚𝟐 … , 𝐚𝒏] contains column vectors 𝐚𝒊 which are influence functions of 

the pre-defined mascons. In this study we assume a constant 1 m height water layer uniformly 

distributed across the mascons, and mascons corresponding to drainage systems. 𝐚𝒊 can be obtained 

by converting the spherical harmonics to EWH in the spatial domain using the same method of 

deriving the EWH maps from the observations. Note that this means the same filter as used for the 

observations has to be applied to the influence functions (Wouters et al, 2008). The parameter 

vector 𝛂 = [𝛂1, 𝛂2, … , 𝛂𝑛]  contains the scaling factors associated with each mascon. 𝐀𝛂  

represents the approximation of mass changes of the whole GrIS. The 

observation-to-approximation difference is given by 𝛆. 

The least-squares solution of equation (4.1), subject to constraints, is: 

�̂� = (𝐀T𝐀 + 𝜎−1𝐈)−1𝐀T𝐲                                               (4.2) 

where 𝜎−1𝑰 is a regularization term [Tikhonov, 1963] which constrains the approximation �̂� =

[α̂1, α̂2, … , α̂𝑛] and reduces the numerical instability during the least-squares approach as described 

in (Schrama and Wouters, 2011 and Baur and Sneeuw, 2011). We do not consider a covariance 

matrix of the equivalent water height thickness data in vector y other than an identity matrix. 

Schrama et al. (2007) used a full covariance matrix and demonstrated it does not adequately explain 

the full error structure in the equivalent water height maps. More recent estimates of full noise 
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covariance matrices have been used in inversion or regularization procedures (Klees et al., 2008 

and Sabaka et al. 2010). The results of such a procedure are highly dependent on the accuracy of 

the covariance matrix. Here we proceed to show our method in an inversion. 

In order to verify the feasibility of this method, we will use this inversion method to approximate 

the regional mass changes and compare it to the estimates derived according to the methods of 

chapter 2 and chapter 3. In this chapter, a single constraint 𝜎 is used. The magnitude of 𝜎 will be 

discussed later in this chapter. 

4.2.1. Mascons  

The shape and position of the mascons have a noticeable effect on regional mass changes estimates 

as was explained by Bonin and Chambers (2013). Following Bonin and Chambers (2011) we 

define the mascons to be the drainage systems (DS) and sub-drainage system (sub-DS). Here the 

definition of Zwally et al. (2012) is used (see figure A4.2). According to this definition, there are 

8 major GrIS DSs; each of them can be further divided by several smaller sub-DSs with 

distinguishable surface characteristics related to the atmospheric advection (Zwally et al., 2012). 

Following this definition, there are 18 sub-DS in total. DS5 is the only DS with no sub-DS, and it 

will be considered as one sub-DS. Wouters et al. (2008) showed that the glacier regions 

surrounding Greenland, which are Ellesmere Island, Baffin Island, Iceland and Svalbard (hereafter, 

EBIS), also influence the approximation for the GrIS. Therefore, the EBIS regions are included as 

4 separate mascons in our inversion. 

The position of each mascon is mapped onto a grid. It may happen that different portions of a 

cell belong to different mascons when this cell is situated on the boundary of two mascons, or a 

cell is located at the edge of Greenland. For the first problem, we choose to assign the conflicting 

cell to the mascon which contributes the largest area in this cell; and for the latter problem the cell 

will be recognized as a mascon cell when it is partially situated on Greenland. The influence of the 

grid resolution is investigated in section 4.4.1. 

4.2.2. Global spherical harmonic analysis and filtering 

In the beginning of the mission, GRACE level-2 data consist of spherical harmonic coefficients up 

to maximum degree and order 60. Later GRACE level-2 solutions (release 5 of the CSR) include 

higher degree and order potential coefficients. In our studies in chapter 2 and chapter 3, we estimate 

the mass changes of 8 drainage regions as defined in Zwally et al. (2012). However, in this study, 

smaller mascons are considered. Thus, to better preserve the signal in these mascons, level-2 data 

produced by the University of Texas Center for Space Research (CSR) up to degree and order 96 

are used to define the equivalent water thickness data, which is y in equation (4.1). 

GRACE level-2 spherical harmonics coefficients at increasing degree and order are more likely 

to contain noise. In the spatial domain, the GRACE noise manifests as north-to-south directed 

“stripes” (e.g. Swenson and Wahr 2006). To reduce the stripes, a homogenous Gaussian filter with 

a certain smoothing radius r1/2 is applied to the spherical harmonic coefficients (Swenson and Wahr, 

2003).  
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4.3. Hierarchical constraint method 
In this section, we will demonstrate a constraining method which is not dependent on priori 

information of the study area, e.g. a simulation of GrIS. Firstly, we need to explain the definition 

of the “levels” of mascons. For instance, when a mascon can be further divided into several small 

within mascons, then the “mother” mascon is considered as a high level mascon and the “off-spring” 

mascons are the low level mascons. The main concept of our new method, is to use the inverted 

approximation of the high level mascons to constrain the inversion for enclosed low level mascons. 

The reason is that we expect reduced approximation errors in mass changes estimates of the high 

level mascons  

4.3.1. Inversion of two levels of mascons 

Inversion of small (LL) mascons 

We label the set of 23 smallest mascons as low level (LL) mascons, see also the mascon map in 

figure 4.1. The corresponding influence functions are 𝐀𝑳𝑳 = [𝒂𝑳𝑳𝟏, 𝒂𝑳𝑳𝟐, … , 𝒂𝑳𝑳𝟐𝟑] , where 𝒂𝑳𝑳𝒊 

refers to the influence function for LL mascon 𝒊 and the estimated scaling factors with respect to 

each pre-defined mass distribution equation (4.2), are �̂�𝑳𝑳 = [�̂�𝐿𝐿1, �̂�𝐿𝐿2, … , �̂�𝐿𝐿23]. We multiply 

the scaling factor �̂�𝑳𝑳 with the associated mass distribution and the area of each mascon to yield 

the approximated regional mass changes �̂�𝑳𝑳 = [�̂�𝐿𝐿1, �̂�𝐿𝐿2, … , �̂�𝐿𝐿23]
T  in units of Gt. The 

relationship between an individual mass in each mascon and the overall mass for the entire GrIS 

is: 

𝐡𝑳𝑳�̂�𝑳𝑳 = �̂�gris                                                         (4.3) 

�̂�gris refers to the approximated mass changes for entire GrIS when 𝒉𝑳𝑳 = [1,1, … ,1]. Note that 

at this stage the approximation for each individual mascon is only constrained by the 

pre-determined scaling factor �̂� in equation (4.2). 

 

Inversion of large (HL) mascons 

We combine the LL mascons into larger mascons resulting in a new mascon definition. We define 

these LL mascon combinations as the high level (HL) mascons. For the HL mascons the negative 

correlation error will be smaller. Here we investigate if we can use the estimates for the large 

mascons as constraints for the smaller mascons.  

HL mascons can be created from the set of LL mascons in different ways; examples of HL 

mascons are shown in figure 4.1. In figure 4.1(b), we create HL mascons by combining all the LL 

mascons according to the DS by Zwally et al. (2011). For instance, the mascon HL1 is constituted 

of four LL mascons on the northern GrIS, i.e. mascon LL1 to LL4. Note that in this study, the 4 

additional mascons representing the EBIS regions are the same for both LL and HL mascons. 

In figure 4.1(b) and figure 4.1(c), we show two different ways of forming HL mascons. With 

the least-squares inversion, we can estimate the regional mass changes for a certain HL mascon 

definition, i.e. �̂�𝑯𝑳
𝒌 = [�̂�𝐻𝐿1

𝑘 , �̂�𝐻𝐿2
𝑘 , … , �̂�𝐻𝐿𝑗

𝑘 ]T  where 𝑘  is index for the HL mascon definition 
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(𝑘 ≥ 1), and j is the total number of HL mascons included in this definition. Since each HL mascon 

consists of one or more LL mascons, the regional mass estimate �̂�𝐻𝐿𝑗
𝑘  in HL mascon definition k 

should also be the combination of the mass estimates of the LL mascons that form this HL mascon. 

Hence the following relationships can be obtained: 

𝐡𝐻𝐿
𝑘 �̂�𝑳𝑳 = �̂�𝑯𝑳

𝒌                                                          (4.4) 

in which 𝐡𝐻𝐿
𝑘  is the matrix of the linear coefficients relating the LL mascons to the HL mascons: 

𝐡𝐻𝐿
𝑘 = [𝐡𝐻𝐿1

𝑘 ; 𝐡𝐻𝐿2
𝑘 ; … ; 𝐡𝐻𝐿23

𝑘 ], 𝐡𝐻𝐿𝑗
𝑘 is a 1 by n vector (1 ≤ 𝑗 ≤ 𝑛), which has the value 1 if the LL 

mascon j (1 ≤ 𝑗 ≤ 23) is included in the HL mascon k, otherwise the elements are 0. An example 

of constructing an 𝐡𝐻𝐿
𝑘  matrix is shown in figure 4.2.  

 

 

Figure 4.1: Examples of LL and HL mascon definitions. a) L1 mascon definition based on DSs from Zwally 

et al. (2011), 19 GrIS mascons in total; b) L2 mascon definition with combining the sub-DS to DS. c) and 
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d) are two different mascon definitions using the rule defined in section 4.3.3, in these two definitions d=3 

and 4, respectively.  

4.3.2. Constraining LL with HL  

Since there are 𝑛 LL mascons and assuming we use 𝑙 different HL mascon definitions, in total one 

can find 𝑛 × 𝑙 approximations for HL mascons satisfying equation (4.4). We use more than 1 HL 

mascon definition to reduce the probability that one particular definition will dominate the 

approximation error. It is worth mentioning that the same HL mascon may appear multiple times 

in different HL mascon definitions. We treat these approximations as constraints in equation (4.3): 

(

 

𝐡𝑳𝑳

𝐡𝑯𝑳𝟏

⋮
𝐡𝑯𝑳𝒍)

  

(

 
 
�̂�𝐿𝐿

�̂�𝐿𝐿
⋮

�̂�𝐿𝐿)

 
 

=

(

 
 

M̂gris

�̂�𝑯𝑳𝟏

⋮
�̂�𝑯𝑳𝒍)

 
 

                                                (4.5) 

or 

𝐇�̂�𝑳𝑳 = [M̂gris, �̂�𝐻𝐿]
T                                                (4.6) 

On the right hand of equation (4.6), mass changes approximations M̂gris and �̂�𝐻𝐿 are the inverted 

mass changes consisting of HL mascons. M̂gris is the combination of all M̂𝑳𝑳 which are derived 

from equation (4.3) and �̂�𝐻𝐿 = [�̂�𝑯𝑳𝟏 …�̂�𝑯𝑳𝒍]
𝐓. H is a matrix that gives the relation between LL 

and HL mascons. We solve equation (4.6) using the least-squares approach and the result is �̂�𝑳𝑳
′  

which is not only derived from the LL inversion, but also constrained by the HL inversion 

approximations, moreover without introducing external information, such as simulation based 

constraints. Note that, in our later experiment we will apply a constraint for deriving the mass 

changes of high level mascons but only to perform a comparison. 

4.3.3. Definition of HL mascons 

In this section it is discussed how HL mascons are created. Since the LL mascons on GrIS are a 

subdivision of the 8 major DS we choose to always group LL mascons into 8 HL mascons. The 

motivation for this approach is that we already find a good consistency between different studies 

for both the GrIS and for 8 particular regions (Barletta, et al., 2013; Bonin and Chambers, 2013; 

Xu et al., 2015). In order to explore more HL definitions, we will start from the definition used in 

chapter 3 (figure A4.2), i.e. 8 GrIS mascons and 4 additional mascons for the surrounding glacier 

areas.  

We impose the condition that the majority of the HL mascons must include the same number of 

LL mascons in order to prevent that any HL mascon becomes too big or too small. The number of 

LL in each HL mascon is set to 𝑑. Note that the mascons outside GrIS will always be the same, 

thus in the following only the HL mascons for GrIS are discussed. When 𝑑 is large, the size of the 

HL mascon increases while the number of HL mascons decreases. We group the LL mascons 

clock-wise starting from mascon LL1 (see examples in figure 4.1). The total number of LL mascons 

is 19, which is not dividable by any chosen d, so this leaves one HL mascon with a different size 

from the others. For instance, when 𝑑=2, mascon LL19 cannot be paired with another LL mascons. 
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So we decide that if the number of the “left over” LL mascons is equal or less than half of 𝑑, then 

this mascon will be added to the HL mascon next to it. The indexing of HL mascons is also 

clock-wise starting from the one including the LL1 mascon. HL mascon definitions that can be 

obtained according to this procedure are illustrated in figure 4.2. Our LL mascon definitions follow 

from the 19 drainage basins found by (Zwally, 2012). We allow the topologic parameter 𝑑 to vary 

between 2 and 4 so that the areas of HL mascons are similar to the mascons in the 8 DSs definition 

by Zwally et al. (2012). 

The consequence is that we can retrieve 20 different HL mascon definitions. The number of HL 

mascons associated with each 𝑑 is 9, 6 and 5, for 𝑑=2, 3 and 4, respectively. 

In figure 4.2, a simplified case of GrIS LL mascon definition is shown in the top row. We use 

seven LL mascons to separate the GrIS. The first and the last mascon, i.e. mascon LL1 and mascon 

LL7 are assumed to be lying next to each other. We let 𝑑=2, and group the neighboring mascons 

starting from mascon LL1 which results in three HL mascons. The “left-over” HL mascon has only 

1 LL mascon, LL7. Following the rule that is mentioned above, it is included in HL mascon 3. As 

a result, the new HL mascons definition (HL1) contains two mascons with size 2 and one with size 

3. The corresponding linear relationship matrix 𝐡𝑯𝑳 is shown on the right hand side.  

 

Figure 4.2: An example of separating HL mascons based on the LL mascon definitions. Seven blocks on 

the top layer represent the smaller LL mascons. All the possible HL mascon separations are shown below 

the dashed line. In each HL separation, three lager mascons are marked in blue, red and green. On the right 

hand side, the corresponding 𝐡𝑳𝑳 and 𝐡𝑯𝑳 matrix is listed; see also the explanation in section 4.3.1. 
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It also can be noticed that, if we group HL mascons starting from a new LL mascon, e.g. from 

mascon LL2, then one obtains a different HL mascon definition as definition 2 (third row in figure 

4.2). If we move the starting LL mascon, then in total seven different HL mascon definitions are 

obtained for the example with 7 LL mascons. As mentioned before, three different values of d are 

used. Furthermore, the rank of each 𝐡𝑯𝑳  is determined by the number of HL mascons in each 

definition. Hence, the rank of the 𝐇 matrix (in equation (4.6)) becomes 381 for the GrIS and 609 

when we include the EBIS areas. Equation (4.6) can be solved and we discuss the influence using 

HL mascons as the constraint in section 4.5. 

4.4. Grid resolution for mascons 
Due to the smaller sizes of the mascons (LL mascons) used in this study, a different grid resolution 

on which the mascons are discretized can generate noticeable differences in mass estimates. To 

test this, LL mascons with three different spatial resolutions are constructed, i.e. 0.25⁰, 0.5⁰ and 1⁰. 

The mascon definitions for the different grids are shown in figure A4.2 and the areas of each 

corresponding mascon can be found in table A4.1. The mascons on the highest resolution grid have 

the smallest areas compared to coarser mascons because a grid cell is considered to be part of the 

mascon if it is partly contained in the mascon. We apply least-squares inversion using equation 

(4.3), with observations y based on the simulated spherical harmonics as described in section A4.1. 

For this test, a Gaussian filter with smoothing radius r1/2=300 km is applied to the spherical 

harmonics of the observations and the influence functions. We choose the regularization term 𝜎=3 

for all the mascons as determined by Bonin and Chambers (2013). Note that the simulation is only 

used to verify the feasibility of the hierarchical method, the required constraints that we impose 

do not depend on a simulation. We compare the inverted approximation of the regional mass 

changes to the actual mass changes resulting from the simulation, and study the differences in the 

linear mass change rate for each mascon. The result is shown in table 4.1 where it can be seen that 

the use of different mascon resolutions results in a variation of the approximation for the same 

mascon. When applying the mascons with the finest resolution of 0.25⁰, the 

approximation-to-simulation difference is the lowest in most of the mascons. In DS1.3, DS4.3 and 

DS8.1 the approximation deviates more from the simulation. When using the 0.25⁰ resolution 

mascons, the approximation-to-simulation differences increase by 0.5 Gt∙yr-1, 0.9 Gt∙yr-1 and 0.6 

Gt∙yr-1, respectively, compared to the lowest one. However, when we consider the simulated mass 

change rates in these mascons, the variations are all less than 10%, i.e. ~8.2%, ~6.4%, ~4.3% for 

DS1.3, DS4.3 and DS8.1, respectively. Thus, a finer resolution is considered to be better when 

applying the least-squares inversion method. Therefore, in the following test we will employ a 

0.25⁰ resolution for the definition of the LL and HL mascons. The resolution does not matter for 

the GRACE data which has low resolution, but it could matter for following the outlines of the 

drainage areas. 

Table 4.1: The annual trend difference of the mass change in each mascon between the approximation and 

the simulation. The spatial resolution of the mascon grid varies from 0.25⁰ to 1.0⁰. The unit is Gt∙yr-1 
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Resolution DS1.1 DS1.2 DS1.3 DS1.4 DS2.1 DS2.2 DS3.1 DS3.2 DS3.3 DS4.1  

0.25o -2.8 -1.8 3.2 -5.9 5.3 -4.4 9.4 -7 5.9 -4.5  

0.5o -3.2 -2.1 2.7 -6.2 7.5 -4.4 10.2 -7.7 7.2 -4.6  

1.0o -3.3 -1.9 2.8 -6.4 9.5 -5.1 11.0 -7.6 7.4 -4.5  

  DS4.2 DS4.3 DS5 DS6.1 DS6.2 DS7.1 DS7.2 DS8.1 DS8.2 
GrIS 

(sum) 

GrIS 

(rms) 

0.25o 11.5 4.7 -5.7 9.4 -26.8 31.2 -19.2 9.4 -3.3 8.6 12.0 

0.5o 11.8 3.8 -7.5 9.5 -27.9 33.2 -19.6 8.8 -3.6 11.1 12.6 

1.0o 12.3 5.8 -6.0 10.2 -30.3 34.2 -21.1 9.8 -3.4 14.4 13.3 

 

4.5. Results analysis 

4.5.1. Observation: simulation 

In order to judge how well our hierarchical constraint method performs compared to the 

conventional least-squares inversion based on equation (4.2) we conduct two experiments.  

Experiment 1. 

To validate the claim that the constraints based on priori information are not needed we need to 

show that our method is stable with or without such constraints. Furthermore, in this experiment 

we need to find out the optimal constraint 𝝈  for our reference solution from equation (4.2). 

Therefore, we ran the hierarchical method and the standard least-squares inversion method (i.e. 

equation 4.2) by allowing various constraint values 𝝈 namely  𝝈=1×106, 1×103, 10, 3, 0.1. Note 

that it is possible to use different constraints 𝝈 for different mascons as we have demonstrated in 

chapter 2. However, in chapter 2 the mascons are defined according to the 2000 m elevation contour, 

which gives an indication of using two different constraints for GrIS. In this study, the mascons 

are defined only according to the glacier basin layout. Some more study is required to determine 

how many different constraints are needed and for which mascons. Although it can be an interesting 

topic, it is not the main focus in this chapter. Therefore, one constraint 𝝈 is applied for both HL 

and LL mascons in the hierarchical method. Our conclusions are: 

• When using a very weak constraint 𝝈 =106, the approximation is basically 

un-constrained (Schrama and Wouters, 2011). Therefore, the associated solution 

can be considered as not using any priori information on the GrIS mass changes. 

• The constraints 𝝈 =10 and 0.1 are the optimal constraints found in chapter 2 for the 

coastal and interior GrIS regions, respectively. We use them here separately (one at 

a time) to represent the constraints for the large and very small mass changes.  

• The constraint 𝝈=3 is the optimal constraint found by Bonin and Chambers (2013) 

when a single value constraint is considered. 

In this experiment, we are not only interested in the mass change trend in the approximation, 

but also the approximated regional mass change distribution for each month is studied, since it is 
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possible that a good trend approximation is obtained while the mass changes time series is very 

different from the simulation. We apply equation (4.2) with the LL mascons using the constraint 

𝝈=3, and denote the solution by “LL only”. To compare with the “LL only” approximations, we 

first create several different HL mascons based on the method in section 4.3.3 and estimate regional 

mass changes. Then we use the hierarchical constraint method described in section 4.3.2 to obtain 

the “LL+HL” approximations. The results of this experiment are given in table A4.2 while selected 

results are summarized in table 4.3. As can be seen in this table, with smaller values of  𝝈, the 

absolute trend differences (per mascon) with respect to the simulation decrease from 15.1 Gt∙yr-1 

to 8.2 Gt∙yr-1 in the “LL only” solutions, and also the monthly mass approximations (per mascon 

per month) become closer to the simulated mass changes with decreasing 𝝈 . In contrast, the 

solutions using the hierarchical method are hardly sensitive to changing the constraint 𝝈, not only 

for the trend but also for the monthly approximation of mass changes. Moreover, in all cases the 

hierarchical method performs better in this table, which means it gives a better approximation for 

each mascon. However, one may find in table A4.2 that the trend in the approximation for the entire 

GrIS as well as for DS 5 of the “LL only” method is sometimes slightly better than “LL+HL” 

solution. For instance, when 𝝈=106, the “LL+HL” solution shows ~6 Gt∙yr-1 less mass loss than the 

simulation, but the difference for the “LL only” solution is close to 0 Gt∙yr-1. This is likely because 

approximation errors in mascons are cancelled out when integrating over the entire GrIS. 

From table 4.3 we conclude that using the strongest constraint 𝝈=0.1 results in seemingly better 

approximations, but if we assess the overall mass changes trend from table A4.2 for the entire GrIS, 

the solutions for both methods diverge more from the simulation for 𝝈=0.1. In that case we find 

overall ~66 Gt∙yr-1 less mass loss for the “LL only” solution. Consequently, we choose the constraint 

𝝈=3 as the best constraint in this experiment for the conventional least-squares inversion, which 

reduces the approximation errors in each mascon to a level that will not significantly affect the 

consistency (~ -10 Gt∙yr-1 difference) in the approximations for the entire GrIS.  

Table 4.3: The comparison between the hierarchical method (LL + HL) or the normal constrained 

least-squares method in equation (4.2) (LL only). In this table, the mean absolute differences to the 

simulation are shown. 

Constraint 

(𝝈) 

Trend Diff.(Gt∙yr-1) Monthly Diff.(Gt) 

LL only LL + HL LL only LL + HL 

106 15.1 4.5 101.7 41.9 

1000 14.9 4.5 99.6 41.9 

10 11.3 4.4 71.9 41.9 

3 9.0 4.2 58.7 40.4 

0.1 8.2 4.8 46.2 37.1 

 

The effect of using constraints for both LL only and LL + HL methods is also demonstrated in 

figure 4.3. In this figure, trend differences to the simulation are compared between using the 

constraints 𝝈=106 and 𝝈=3. These trend differences can be considered as the “accuracy” of the 

approximations. When we further compare the “accuracy” of two approximations, the solution 
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resulting from using 𝝈 =3 is better. Hence we consider the “accuracy” differences as the 

improvement in this figure. When the improvement is negative it means the regional solution 

becomes worse in that area. Apparently, the optimized value of 𝝈 is more important for reducing 

the monthly approximation error in all mascons for “LL only” solutions. Apart from a small 

deterioration in mascons 1.1, 3.3 and 5, the trend in mass changes approximations is improved as 

well. Furthermore, it can be noticed that the trend improvement in the “LL+HL” solutions is 

negligible compared to the error margins except in DS4.3 and DS5. DS5 is the only mascon that 

consists of an entire basin; in this mascon stronger constraints (e.g. 𝝈 =0.1) reduce the 

approximation error, and also for the adjacent mascon DS4.3. Nevertheless, it is safe to say that, 

using or not using a constraint will not significantly alter the result obtained by the hierarchical 

method. 

 

Figure 4.3: The differences to the simulation between using the constraint in the LL only and the LL+HL 

solution. Both the differences in the trend and in the monthly mass approximations are considered. The 

x-axis indicates the mascon index. The top row shows the results associated with the constraint 𝝈 = 𝟏𝟎𝟔, 

and the results of 𝝈 = 3 are in the bottom row. 

 

Experiment 2. 

In this experiment, we show the comparison between a conventional least-squares method and the 

hierarchical method. As reference we consider the approximations of the “LL only” solution and 

the optimal constraint 𝝈 =3, while the hierarchical solution is denoted as “LL+HL”. In this 

experiment no constraint is used for the hierarchical method. To compare both solutions, the 

regional mass change rates for each mascon as well as for the whole GrIS are shown in table 4.4. 

Comparing the mass change rates in each mascon with the simulation, it can be seen that the 

approximation-to-simulation difference is reduced in every mascon when the hierarchical 

constraint method is applied.  
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The west GrIS mascons 6.2, 7.1 and 7.2 mascons are different from each other regarding the 

coverage area and the regional mass change rate. These three mascons are adjacent to each other 

and the area of mascon 7.1 is approximately half of its neighboring mascons. At the same time, 

mascon 7.1 also contains a significant amount of mass loss of ~-35.3 Gt·yr-1 in the simulation, 

which is three times larger than in mascon 6.2 and four times larger than in mascon 7.2. The high 

mass loss is due to the ice discharge from the Jakobshavn glacier in mascon 7.1, which has been 

rapidly increasing during the simulated time period (Howat et al., 2011; van de Wal et al., 2012; 

Enderlin et al., 2014 and Andersen et al., 2015). This leads to a concentrated mass distribution in 

these areas since we treat the discharge as the point mass change at the glacier outlet grid in the 

simulation. As can be seen in figure A4.1 the negative point mass change will be smoothed out and 

spread across three mascons when the smoothing radius increases. In the “LL only” approximations, 

the approximated mass changes become proportional to the size of these three mascons which 

causes the regional approximations to deviate from the simulation. As can be found in table 4.3, 

the simulation-to-approximation differences are -27 Gt·yr-1, +31 Gt·yr-1 and -19 Gt·yr-1 for mascon 

6.2, mascon 7.1 and mascon 7.2, respectively. The negative-positive-negative difference suggests 

that a negative correlation error exists in the approximation which could be further reduced by 

introducing separate constraints 𝜎 for different mascons (Section 2), or applying a correction as in 

Section 3.  

Table 4.4: comparison of the linear annual mass change rates in 19 regions between 2000 and 2012. The 

unit is Gt∙yr-1. The approximation based on 19 LL mascons is labelled as “LL only”, while approximations 

also constrained by the HL mascons are indicated by “LL+ HL”. 

(unit Gt∙yr-1) DS1.1 DS1.2 DS1.3 DS1.4 DS2.1 DS2.2 DS3.1 DS3.2 DS3.3 DS4.1 DS4.2 DS4.3 

LL only -10.0 -6.4 -2.9 -10.8 -3.8 -5.9 3.8 -12.1 -9.9 -24.7 -21.6 -9.3 

LL+HL -7.0 -5.6 -9.0 -6.2 -8.3 1.3 1.5 -6.3 -13.5 -19.8 -27.2 -14.3 

Simulation -7.2 -4.6 -6.1 -4.9 -9.1 -1.5 -5.6 -5.1 -15.8 -20.2 -33.1 -14.0 

 DS5 DS6.1 DS6.2 DS7.1 DS7.2 DS8.1 DS8.2 Elles. Baff. Ice. Sval. GrIS 

LL only -17.5 -0.7 -43.3 -4.3 -29.1 -4.5 -8.4 -25.3 -14.8 -3.9 -5.0 -221.0 

LL+HL -10.0 -11.3 -38.7 -17.9 -15.6 -9.1 -5.7 -23.9 -16.1 -4.8 -5.7 -222.7 

Simulation -11.8 -10.1 -16.5 -35.5 -9.9 -13.9 -5.1 -20.9 -16.9 -4.8 -5.3 -229.8 

 

4.5.2.  Mass changes derived from GRACE Level-2 data 

We implemented CSR RL05 GRACE level 2 spherical harmonic coefficients to derive the EWH 

observation y in this section. The GRACE coefficients from January 2003 to December 2012 are 

obtained from the University of Texas Center for Space Research (CSR). The maximum degree 

and order is 96. We use the monthly degree 1 coefficients (C10, C11 and S11) estimates by Swenson 

et al. (2008), to represent the mass changes resulting from geocenter motion. The more accurate 

geopotential flattening coefficients (C20) obtained from Satellite Laser Ranging (SLR) are used to 

replace the ones observed by GRACE (Chen et al., 2013). In the following step we average the 

monthly spherical harmonics between 2003 and 2012 and remove the average from the GRACE 

data in order to obtain the spherical harmonics of the monthly mass changes. To remove effects 
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other than ice melt, we remove the monthly continental water storage changes from the Global 

Land Data Assimilation System (GLDAS) model version 2 (Rodell et al., 2004). Note that the 

permafrost and glacier regions are excluded from the model output. The GIA effect is corrected 

for by removing a GIA model (ICE-5G based) by Paulson et al. (2007). The rest of the procedure 

is the same as in section 4.2 and in section 4.3.  

We compare the “LL only” and “LL+HL” solution with the IOM within the same time span in 

figure 4.5. In this figure, we show the possible ranges of the mass change rates for a 95% confidence 

interval. The errors of the approximation of the GRACE data are estimated from propagating the 

uncertainty of the GRACE data, differences between various GIA models and the magnitude of the 

GLDAS model. Details of the error estimation can be found in table A4.3 and in (Xu et al., 2016). 

The GRACE data originates from the CSR release 5 solution that comes with maximum degree 

and order of 60 or 96. We assume that spherical harmonic coefficients beyond degree and order 60 

do not represent any geophysical signal, and that they mostly contain noise (Bonin and Chambers, 

2015).  

We estimate the uncertainty of the SMB simulation as error-to-mass change ratio of ~18% 

(Ettema et al., 2009) and the uncertainty of the D simulation is from Enderlin et al. (2014). It can 

be found in figure 4.3 that the “LL+HL” solution agrees with the IOM in more mascons than the 

“LL only” solution. Also considering the improvement seen in section 4.5.1, it suggests that the 

“LL+HL” solution is less affected by an approximation error. For this reason the LL+HL approach 

is better suited for approximating the GRACE data in the LL mascons. In mascons 1.1 and 2.2 the 

“LL+HL” solution is further from the IOM than “LL only” solution but still within the uncertainties. 

We think this is due to the fact that “LL only” is already constrained with the priori information by 

σ=3, and this constraint could be the optimal constraint for these two regions. Apparently, the 

additional governing information introduced by HL mascon approximations enlarges the 

approximation error in these regions.  

It can also be noticed that in some mascons the “LL+HL” solution is closer to the IOM than “LL 

only” solution but still does not agree with the simulation, i.e. in mascon 3.2, 4.2, 7.1, 7.2 and 8.1. 

For mascons 3.2, 7.1 and 7.2, the differences are similar to the approximation-to-simulation 

difference in section 4.5.1. Thus it is likely that for these mascons the differences are mainly due 

to approximation error. These three mascons belong to DS 3 and 7, respectively. In Xu et al. (2016) 

we showed that GRACE and the simulation can agree in these two areas when the “LL only” 

method is applied. Therefore, the negative correlation error appearing in mascon 3.2, 7.1 and 7.2 

arises because of the separation of the DS into smaller sub-areas. Although it may not be the major 

reason, the uncertainty of the GRACE coefficients in these mascons can be underestimated as 

explained before, and causing a smaller range of the possible mass change rates in the 

approximations. Regarding mascon 4.2, we have shown a noticeable negative correlation error 

appearing in DS 4 (Xu et al., 2016) which explains the difference between GRACE approximations 

and the simulation in sub-DS mascon 4.2. The difference between “LL+HL” solution and the 

simulation is smaller than for the “LL only” solution. Regarding mascon 8.1, our conclusion is that 

the difference is not due to GRACE regional mass changes being poorly approximated, but because 
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of the underestimated uncertainty in the IOM, see Sasgen et al., (2012) and Xu et al., (2016). 

 

Figure 4.5: Comparison between the annual mass change rate approximations derived from GRACE data 

with the IOM in LL mascons. The approximations are derived from using the “LL only” solution (yellow) 

and the “LL+HL” solution (blue). The solution from the IOM is shown in green. The time interval is between 

Jan 2003 and Dec 2012. Note that the mass loss rates for the IOM differ from what is presented in table 3.1 

because here a 0.25 degree cell resolution is used whereas 1 degree was used in table 3.1. 

4.6. Conclusion and recommendations 
In this study, we show that our hierarchical constraint method is capable of reducing errors in mass 

changes estimates in small GrIS regions. It can be a feasible method for constraining the GRACE 

regional solution to prevent having to rely on priori information, which might be biased or 

erroneous. We compared our results with a least-squares solution constrained only by a single prior 

variance. The simulation as well as the real GRACE data implementation show that our new 

method is able to better constrain the approximation for 19 GrIS mascons. The separation of 19 

mascons approaches a resolution limit of GRACE data on the GrIS. We demonstrated that a finer 

separation of mascons results in an increased approximation error. 

We suggest that the hierarchical constraining method can be implemented in other areas for 

obtaining mass changes estimates in small regions from GRACE data. The hierarchical constraint 

method can be further improved by employing a weighted least-squares method. Because the same 

HL mascon can be found in different HL mascon definitions different estimates will be obtained 

for the same HL mascons. This creates the possibility of estimating the variance of the inversion 

for this HL mascon, which could be employed as the weights for the associated approximations. 
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Appendix A 

A4.1. Spherical harmonics simulation 

In this study, we establish a 10-year simulation of the GrIS and surrounding areas, in order to be 

able to compare the inverse regional mass changes approximation with the pre-defined “truth”. 

For this study we employ the surface mass balance estimated by the Regional Atmospheric Climate 

Model version 2.3 (RACMO2.3) and the ice discharge estimates of Enderlin et al. (2014). The 

RACMO2.3 model is developed and maintained at the Institute for Marine and Atmospheric 

Research (IMAU), Utrecht University, the Netherlands. The details of RACMO2.3 model can be 

found in Noël et al. (2015). The ice discharge is derived from the estimates of the ice thickness 

change and the velocity of the ice flux. Ice thickness changes are obtained from NASA’s Operation 

IceBridge airborne ice-penetrating radar data. Ice surface velocity is obtained from tracking the 

movement of surface features that are visible in repeat 17 Landsat-7 Enhanced Thematic Mapper 

Plus and Advanced Spaceborne Thermal and Reflectance 18 Radiometer (ASTER) images 

(Enderlin et al., 2014).  

We distribute the monthly RACMO2.3 SMB estimates onto a global spherical grid at 0.25o 

spatial resolution. We also consider the ice discharge as point mass changes located on grid cells 

located along the edge of GrIS where the corresponding glacier outlets are located. It has to be 

mentioned that the discharge is given on an annual basis. Hence, in order to integrate with the 

monthly based SMB estimates, we assume no temporal variation in discharge and interpolate the 

annual change to the monthly change using the same baseline of the RACMO2.3 months, i.e. Jan 

2000 to Dec 2012. For the nearby glacier regions outside Greenland we consider Ellesmere Island, 

Baffin Island, Iceland and Svalbard. Furthermore, only the SMB estimates from RACMO2.3 are 

used. We note that ice discharge is relatively small compared to the regional SMB changes, for 

details see Xu et al. (2016).  

In order to include other glacier regions, we use the estimates of the mass changes from Jacob 

et al., (2012). To estimate the remaining land mass changes, we apply the GRACE level-2 monthly 

land mass grids, the “GRACE Tellus” version RL05.DSTvSCS1409. These data are available from 

http://grace.jpl.nasa.gov. Details can be found in Swenson (2012), Landerer and Swenson (2012) 

and Swenson and Wahr (2006). All GRACE data are projected on the same global grid as was used 

for RACMO2.3 SMB and the ice discharge data for the GrIS. 

Next, we convert the global mass distribution grids over the entire Earth surface to spherical 

harmonics coefficients up to maximum degree and order 96. Furthermore, to better simulate the 

monthly GRACE level-2 coefficients, one also has to consider noise in the GRACE data which 

manifests itself as the well-known GRACE “stripes” in the north-to-south direction (e.g. Swenson 

and Wahr 2006).  

We first separate the noise from the actual mass changes signals from the GRACE data over 

land areas. In this study, we use the aforementioned spherical harmonics of the simulation to 

represent the spherical harmonics of the actual mass changes on the Earth’s surface. After removing 

simulated mass change signals from GRACE data at the same month, we also remove a linear trend 

http://grace.jpl.nasa.gov/
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from the remaining GRACE data in order to minimize the influences of the uncertainties in the 

RACMO2.3 SMB, the ice discharge as well as all other mass change estimate uncertainties in the 

simulation. What remains is considered to be noise-only spherical harmonics. It has been 

demonstrated by Bonin and Chambers, (2012, 2015) that one can simulate the monthly GRACE 

stripes using the “noise-only” GRACE spherical harmonics. For the GRACE noise model, we 

employ the Jan 2003 to Dec 2012 monthly spherical harmonics of GRACE and a simulation of the 

global mass changes within the same time span to extract the pattern of GRACE noise. This model 

is used for the full-time span of the simulation, i.e. Jan 2000 to Dec 2012. In the end, we combine 

the simulated GRACE noise and simulated mass changes in the spectral domain which yields the 

spherical harmonics of the simulation used for this study. The scattered mass distribution for the 

GrIS and neighboring glacier regions and the corresponding EWH maps can be seen in figure A4.1. 

 

 

 

Figure A4.1: The annual mass change rate of simulation with unit equivalent water level height in cm∙yr-1. 

The simulated time interval is 2000–2012. a) The scattered mass distribution derived from the estimates of 

the surface mass balance. b) to d) The EWH maps obtained when we use the associated spherical harmonics 

up to the maximum degree and order l=96 and the Gaussian filter using different smoothing radii ranging 

from r1/2=0 km to r1/2=300 km. The GRACE noise is simulated using the CSR GRACE level-2 coefficients 

from Jan 2000 to Dec 2012. Note the color scales are different  
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Figure A4.2: Mascon definitions for GrIS. Our mascons follow the DS and sub-DS separation by Zwally et 

al. (2011). Each mascon is created based on a global grid with resolution of 1o, 0.5o, and 0.25o. 
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Table A4.1: Comparison of the areas for each mascon based on the global grid using different spatial 

resolution., The unit is 105 km2. 
 

Area (105 km2) 

 DS1.1 DS1.2 DS1.3 DS1.4 DS2.1 DS2.2 DS3.1 DS3.2 DS3.3 DS4.1 

Resolution DS1.1 DS1.2 DS1.3 DS1.4 DS2.1 DS2.2 DS3.1 DS3.2 DS3.3 DS4.1 

1o 1.93 1.30 1.18 0.89 3.19 0.61 2.75 1.29 0.91 0.88 

0.5o 1.76 1.12 1.01 0.92 3.10 0.58 2.49 1.10 0.83 0.85 

0.25o 1.63 1.02 0.92 0.85 3.06 0.60 2.36 0.98 0.81 0.83 
           

 
DS4.2 DS4.3 DS5 DS6.1 DS6.2 DS7.1 DS7.2 DS8.1 DS8.2 GrIS 

1o 0.58 0.50 1.26 0.61 2.33 0.93 1.72 2.94 0.82 25.8 

0.5o 0.55 0.47 1.01 0.75 2.20 0.92 1.84 2.77 0.65 24.3 

0.25o 0.54 0.47 0.95 0.73 2.18 0.94 1.80 2.70 0.59 23.4 
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Table A4.2: The mass changes approximation of the simulation using different constraining methods. The 

hierarchical constraint method is denoted by “HL+LL”, and “LL only” refers to the results from the normal 

constrained least-squares method. Each comparison invokes the same least-squares constraint 𝜎2. We list 

the approximated annual trend from 2003 to 2012 in 19 GrIS sub-regions and the difference between the 

approximated trend with the simulation (“Trend Diff.”). In addition, the table includes the average of 

monthly differences between approximation and simulation (Month Diff.) in order to show the “oscillation” 

of the monthly mass approximation. 

DS 

𝝈 = 𝟏𝟎^𝟔 𝝈 = 𝟏𝟎^𝟑 
Trend 

(Gt∙yr-1) 

Trend Diff. 

 (Gt∙yr-1) 

Monthly Diff. 

(Gt per month) 
Trend 

(Gt∙yr-1) 
Trend Diff. 

 (Gt∙yr-1) 
Monthly Diff. 

(Gt per month) 
LL 

only 

HL+L

L 

LL 

only 
HL+LL 

LL 

only 
HL+LL 

LL 

only 

HL+L

L 

LL 

only 

HL+L

L 

LL 

only 

HL+L

L 

1.1 -8.6 -7.0 1.4 -0.2 28.1 15.2 -8.6 -7.0 1.4 -0.2 28.0 15.2 

1.2 -12.1 -5.5 7.5 0.9 47.1 13.3 -12.1 -5.5 7.5 0.9 46.7 13.3 

1.3 2.3 -9.3 -8.4 3.2 58.3 24.2 2.3 -9.3 -8.4 3.2 58.0 24.2 

1.4 -16.3 -6.2 11.4 1.3 63.1 13.7 -16.2 -6.2 11.3 1.3 62.9 13.7 

2.1 11.1 -8.2 -20.2 -0.9 111.5 26.0 11.0 -8.2 -20.1 -0.9 110.6 26.0 

2.2 -25.1 1.5 23.6 -3.0 124.6 23.6 -24.9 1.5 23.4 -3.0 123.6 23.6 

3.1 16.3 1.3 -21.9 -6.9 109.4 41.3 16.2 1.3 -21.8 -6.9 108.8 41.3 

3.2 -16.9 -6.6 11.8 1.5 57.4 15.8 -16.8 -6.6 11.7 1.5 56.9 15.8 

3.3 -10.1 -12.1 -5.7 -3.7 65.1 50.0 -10.3 -12.1 -5.5 -3.7 62.2 49.9 

4.1 -32.7 -19.6 12.5 -0.6 143.1 44.0 -32.0 -19.6 11.8 -0.6 134.3 44.1 

4.2 -17.4 -29.9 -15.7 -3.2 158.4 56.6 -18.5 -29.9 -14.6 -3.2 146.2 56.7 

4.3 -21.8 -17.1 7.8 3.1 83.9 24.3 -20.9 -17.1 6.9 3.1 74.9 24.2 

5 -14.9 -7.0 3.1 -4.8 50.1 71.5 -15.2 -7.1 3.4 -4.7 48.2 71.4 

6.1 6.6 -11.3 -16.7 1.2 88.6 30.1 6.6 -11.3 -16.7 1.2 88.5 30.1 

6.2 -44.4 -38.7 27.9 22.2 160.4 129.2 -44.2 -38.7 27.7 22.2 159.3 129.2 

7.1 8.4 -17.6 -43.9 -17.9 254.9 93.3 8.3 -17.6 -43.8 -17.9 254.5 93.3 

7.2 -42.0 -15.9 32.1 6.0 224.0 52.5 -42.0 -15.9 32.1 6.0 224.0 52.5 

8.1 -3.2 -9.1 -10.7 -4.8 80.1 51.6 -3.1 -9.1 -10.8 -4.8 80.3 51.6 

8.2 -9.8 -5.5 4.7 0.4 24.1 20.4 -9.8 -5.5 4.7 0.4 24.0 20.4 

GRI

S 
-230.6 -223.8 0.6 -6.2 1932.2 796.6 -230 -223.9 0.2 -6.1 1891.9 796.5 

DS 

𝜎 = 𝟏𝟎 𝜎 = 𝟑 
Trend 

(Gt∙yr-1) 
Trend Diff. 

 (Gt∙yr-1) 
Monthly Diff. 

(Gt per month) 
Trend 

(Gt∙yr-1) 
Trend Diff. 

 (Gt∙yr-1) 
Monthly Diff. 

(Gt per month) 
LL 

only 

HL+L

L 

LL 

only 
HL+LL 

LL 

only 
HL+LL 

LL 

only 

HL+L

L 

LL 

only 

HL+L

L 

LL 

only 

HL+L

L 

1.1 -9.5 -7.0 2.3 -0.2 23.1 15.1 -10.0 -7.0 2.8 -0.2 20.7 14.9 

1.2 -8.8 -5.6 4.2 1.0 27.9 13.2 -6.4 -5.6 1.8 1.0 17.1 13.2 

1.3 -0.5 -9.2 -5.6 3.1 41.6 23.9 -2.9 -9.0 -3.2 2.9 29.2 23.1 

1.4 -13.2 -6.2 8.3 1.3 47.1 13.6 -10.8 -6.2 5.9 1.3 34.1 13.5 

2.1 1.3 -8.3 -10.4 -0.8 62.7 25.9 -3.8 -8.3 -5.3 -0.8 40.9 25.5 

2.2 -12.6 1.4 11.1 -2.9 59.6 23.2 -5.9 1.3 4.4 -2.8 24.9 22.8 

3.1 8.3 1.4 -13.9 -7.0 71.5 41.6 3.8 1.5 -9.4 -7.1 51.4 41.7 

3.2 -14.2 -6.4 9.1 1.3 42.1 15.8 -12.1 -6.3 7.0 1.2 30.8 16.0 
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3.3 -9.4 -12.6 -6.4 -3.2 54.8 47.0 -9.9 -13.5 -5.9 -2.3 49.4 42.4 

4.1 -28.1 -19.8 7.9 -0.4 84.4 45.0 -24.7 -19.8 4.5 -0.4 63.6 44.5 

4.2 -23.8 -28.9 -9.3 -4.2 90.2 62.5 -21.6 -27.2 -11.5 -5.9 103.4 72.0 

4.3 -12.2 -16.0 -1.8 2.0 12.6 18.5 -9.3 -14.3 -4.7 0.3 22.9 10.4 

5 -17.3 -8.2 5.5 -3.6 31.8 65.1 -17.5 -10.0 5.7 -1.8 25.7 55.5 

6.1 2.4 -11.3 -12.5 1.2 61.2 30.2 -0.7 -11.3 -9.4 1.2 41.7 30.1 

6.2 -42.4 -38.7 25.9 22.2 147.7 129.2 -43.3 -38.7 26.8 22.2 153.4 129.7 

7.1 2.7 -17.7 -38.2 -17.8 216.7 92.7 -4.3 -17.9 -31.2 -17.6 175.9 91.6 

7.2 -36.9 -15.8 27.0 5.9 191.7 51.7 -29.1 -15.6 19.2 5.7 146.1 50.5 

8.1 -2.8 -9.1 -11.1 -4.8 79.0 51.5 -4.5 -9.1 -9.4 -4.8 68.3 51.2 

8.2 -9.3 -5.6 4.2 0.5 19.5 20.1 -8.4 -5.7 3.3 0.6 15.4 19.5 

GRI

S 
-226.3 -223.6 -3.7 -6.2 1365.2 785.8 -221.4 -222.7 -8.6 -7.3 1114.9 768.1 

DS 

𝜎 = 𝟎. 𝟏 
Trend 

(Gt∙yr-1) 
Trend Diff. 

 (Gt∙yr-1) 
Monthly Diff. 

(Gt per month) 
LL 

only 

HL+L

L 

LL 

only 

LL 

only 
HL+LL 

LL 

only 

1.1 -8.0 -6.4 0.8 -0.8 11.7 14.1 

1.2 -4.9 -6.1 0.3 1.5 9.7 11.4 

1.3 -4.3 -6.8 -1.8 0.7 16.1 13.1 

1.4 -3.7 -5.1 -1.2 0.2 8.9 11.1 

2.1 -8.5 -5.8 -0.6 -3.3 24.9 25.8 

2.2 -0.3 -0.9 -1.2 -0.6 6.8 13.2 

3.1 -5.1 -2.0 -0.5 -3.6 21.1 23.2 

3.2 -6.5 -6.8 1.4 1.7 11.6 11.7 

3.3 -3.4 -12.6 -12.4 -3.2 64.7 47.8 

4.1 -6.0 -11.3 -14.2 -8.9 25.3 11.7 

4.2 -8.9 -17.1 -24.2 -16.0 155.6 132.4 

4.3 -1.6 -5.5 -12.4 -8.5 62.7 45.4 

5 -10.1 -11.7 -1.7 -0.1 58.4 47.1 

6.1 -2.3 -9.3 -7.8 -0.8 33.9 19.2 

6.2 -41.4 -30.8 24.9 14.3 116.6 87.7 

7.1 -5.6 -17.6 -29.9 -17.9 146.3 92.6 

7.2 -26.7 -14.6 16.8 4.7 56.0 47.3 

8.1 -11.0 -10.8 -2.9 -3.1 29.1 34.4 

8.2 -5.6 -6.4 0.5 1.3 18.4 16.4 

GRI

S 
-163.9 -187.6 -66.1 -42.4 877.8 705.6 
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Table A4.3: The uncertainty estimates for each LL mascon (unit: Gt).  
 

GRACE uncer. GIA uncer. Overall uncer. 
 

LL only LL+HL LL only LL+HL LL only LL+HL 

DS1.1 3.7 3.7 2.7 1.5 4.5 4.0 

DS1.2 2.6 3.4 1.9 1.6 3.2 3.7 

DS1.3 2.4 3.6 4.3 3.9 5.0 5.3 

DS1.4 2.5 3.6 1.9 1.7 3.1 4.0 

DS2.1 5.8 4.3 4.9 2.2 7.6 4.8 

DS2.2 2.5 4.4 1.5 0.7 2.9 4.4 

DS3.1 5.1 4.0 2.3 1.9 5.6 4.5 

DS3.2 3.2 3.0 2.3 1.6 3.9 3.4 

DS3.3 3.1 2.5 1.3 1.6 3.4 3.0 

DS4.1 3.3 2.2 1.9 1.7 3.8 2.8 

DS4.2 2.7 2.1 1.3 2.2 3.0 3.1 

DS4.3 2.6 2.1 1.2 1.3 2.9 2.5 

DS5 3.5 2.3 5.8 6.5 6.8 6.9 

DS6.1 3.7 2.7 1.9 2.6 4.1 3.7 

DS6.2 5.6 3.7 7.8 6.5 9.6 7.4 

DS7.1 3.6 4.3 1.8 1.2 4.0 4.5 

DS7.2 5.0 4.6 1.7 3.4 5.3 5.7 

DS8.1 5.5 4.4 9.0 6.2 10.5 7.6 

DS8.2 2.0 4.0 1.0 0.9 2.2 4.1 

GrIS 16.5 15.3 16.3 13.8 23.1 20.6 

Elles. 2.2 1.0 4.1 3.7 4.7 3.9 

Baff. 2.9 2.8 11.0 10.7 11.4 11.0 

Ice. 0.5 1.1 0.9 0.9 1.1 1.4 

Sval. 1.0 0.6 2.4 2.4 2.6 2.5 
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Chapter 5 

Conclusions and recommendations 

The variations of the Greenland Ice Sheet (GrIS) mass at basin and sub-basin scale are studied in 

this dissertation. Our focus is to estimate these regional mass changes using the GRACE gravity 

measurements which allow to gain insight in the processes that cause mass gain and loss on GrIS. 

An alternative method is the Input-output Method (IOM) which uses climate models and discharge 

measurements. With the availability of advanced surface mass balance models (e.g. RACMO2) 

and ice discharge surveys fully covering the GrIS, the resulting IOM solution becomes an important 

source of information for the mass changes of GrIS. In this study, we have demonstrated that the 

regional mass changes of GrIS from GRACE level 2 data can be improved with the help of the 

IOM solution. Moreover, we reconcile the regional mass changes between GRACE and IOM 

solutions. We do this not by “condensing” the different estimates within a same time period but 

instead, we identify the causes of regional estimates differences between these methods and find 

that the results can be very similar to each other given realistic error estimates. 

In chapters 2, 3 and 4 we address the presence of approximation errors in the GRACE mascon 

solutions. In chapter 2 and chapter 3 we also investigate optimized constraints to provide more 

accurate estimates of the regional mass changes in eight main basins of the GrIS each separated in 

an interior and coastal area. In chapter 3 we investigate the uncertainties that are part of the IOM 

method which are related in part to the historic reference discharge.  In chapter 4, we describe a 

hierarchical constraint method which uses the high level mascons to constrain the enclosed 

sub-level mascons. In all cases we respect the drainage systems laid out in Zwally et al. (2012). 

Section 5.1 answers the research questions defined in section 1.4 and in section 5.2 

recommendations for future research are provided. 

5.1. Conclusions 

Research question 1: How can the variance information derived from an IOM solution help 

to get better constraints for the mascon inversion procedure? 

Firstly, as we have shown in chapter 2, it is possible to derive variance information from the IOM 

method to improve the definition of the constraints. By using the variance information, we show 

that the optimized constraints for different GrIS regions can be determined which help to reduce 

the approximation error.  

In chapter 2 we employ a model based simulation similar to the one used by Bonin and 

Chambers (2013) to determine optimal values for multiple constraints. As objective function to be 

minimized we propose the inter-region correlation of the mass changes in addition to the misfit of 

the forward modeled gravity of the GRACE data. This multi-objective optimization problem is 
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solved using a Non-dominated Sorting Genetic Algorithm (NSGA-II). This algorithm allows us to 

find the optimal combination of the regional constraints for both objectives. Tests with the optimal 

constraints in the simulation indicate a reduction of the approximation errors in some mascons, 

particularly in the interior regions of the GrIS where mass changes are smaller. At the same time 

the coastal regions are also properly constrained by the optimal constraint for those regions. 

Research question 2: How large are the differences between the GRACE mascon inversion 

results and the IOM results and how can they be explained? 

We study this question in chapter 3. In summary: we compare two methods and find that these two 

methods result in different mass changes estimates in northwest and southeast GrIS regions. We 

cannot reconcile these differences since they are larger than the estimated uncertainties. We 

demonstrate that the southeastern differences are mainly due to the approximation errors in 

GRACE solution, and error in the IOM solution which is larger than previously assumed in the 

northwest GrIS is responsible for the differences in that region.  

To be more specific, a direct comparison was made between our method and the IOM solution. 

It is found that there are inconsistent mass change rates in several GrIS regions. In order to explain 

the differences, we firstly revisit our GRACE method which is demonstrated in chapter 2. We find 

that when using this method on a simulation, the approximations cannot agree with the simulation 

within the uncertainties in particular in the south-eastern GrIS regions. We calculate the 

approximation-to-simulation ratio based on this simulation, then multiple this ratio to our GRACE 

solution to adjust the GRACE solution accordingly. The improved GRACE solution in the 

south-east shows better consistency with the IOM solution. 

We further discuss the possible causes that could underlie the differences and find that there are 

persistent approximation errors in southeastern GrIS areas. We trace this problem to the uncertainty 

of the reference SMB and the reference discharge. In the IOM method, not including the reference 

SMB and discharge may lead to a larger uncertainty in the IOM solution due to the cumulated 

modelling errors, but including them also introduces a source of uncertainty. In van den Broeke et 

al. (2009) and Shepherd et al. (2012), the IOM is proven to be consistent with the GRACE 

observation, whereas in our study, we find that, when subtracting the differences between GRACE 

and IOM results approximately ±10% additional uncertainty remains in the IOM solution in the 

northwest GrIS. 

In order to better identify this 10% mismatch, in section 3.4.1, we quantify the uncertainty of 

the reference SMB with the RACMO2.3 model during the reference period (from Jan 1960 to Dec 

1990). The uncertainty of the reference discharge is difficult to determine since there is insufficient 

historical discharge data of the GrIS discharge during the reference period. Therefore, we consider 

the modelled reference run-off in the SMB model as an alternative parameter to estimate in the 

least-squares adjustment. This is supported by a correlation test between the modelled run-off and 

discharge estimates between 2000 and 2012. In section 3.4.3, we show that by replacing the 

reference discharge with the modelled run-off based reference discharge the existing regional 

differences between GRACE and IOM solution are reduced. Nevertheless, in section 3.4.1, the 

difference between the mass change rates of the two techniques in the northern GrIS is not reduced. 
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Therefore, we further validate both improved solutions by comparing them to the ICESat-based 

regional mass change rates. The inter-comparison with the ICESat solution indicates a better 

agreement with our GRACE solution than with the regional IOM solution, thus we conclude in 

chapter 3 that the difference between GRACE and IOM in northern GrIS is due to the 

underestimated uncertainty in reference discharge and the SMB model. 

Research question 3: How can we impose an alternative constraint on the GRACE mascon 

inversion procedure with less dependence on simulated mass changes? 

To answer this research question we set-up a hierarchical constraint method based on the 

observation that GRACE derived mass changes solutions for larger mascons are more stable and 

more accurate than the solutions for small mascons. A property of the hierarchical constraint 

method is that smaller mascons are grouped within larger ones and that the sum of the enclosed 

mascons is linked to the mass changes of the larger mascon. The results show that the hierarchical 

constraint method is capable of reducing the approximation errors in several GrIS regions with 

only need for weak a priori constraints which do not have a large effect on the results. By using 

GRACE data, we show that the mass change estimates from the hierarchical constraint method are 

consistent in 12 out of 19 regions when comparing to the independent mass changes estimates from 

the IOM in the same mascon areas. Meanwhile, the normal least-squares inversion approach with 

an optimized constraint leads to the regional mass changes estimates which are consistent in 10 out 

of 19 regions with the IOM solution. 

Research question 4: How do our GRACE mascon inversion results compare to other 

published results?  

In this thesis we derive several versions of the GrIS regional mass changes approximations which 

differ from each other because of the definition of GrIS basins as well as the observation time 

window, and the method by which we constrain the procedures. We compare our findings to other 

published solutions. 

In chapter 2, the implementation of three localized constraints results in regional mass change 

estimates which are in good agreement to some other regional GrIS studies in the large GrIS basins 

which involve both the areas below and above 2000 m. When we assess our approximation relative 

to the 2000 m contour, we find that the results of the GRACE solution are in closer agreement with 

independent SMB studies than previous studies, (Schrama et al.,2011) and (Bonin and Chambers, 

2013). Note that the latest GRACE data are available until October 2017, However, in this study, 

we consider the time period from 2003 to 2012 because we compare what we retrieve from GRACE 

solution with the IOM solution. In the IOM solution we use the time series of the RACMO2 SMB 

output from 2000 to 2012, while the ice discharge estimates up to 2012 are from Enderlin et al. 

(2014). Therefore, in chapter 2.5 we provide only the mass changes estimates from 2003 to 2012. 

For the time period after 2012, it is recently suggested by Schrama (personal communication) that 

the mass changes for the whole GrIS increased by ~23% when including the available observations 

in 2015 and 2016, i.e. from -222±5.3 Gt∙yr-1 (2003–2010) to -273.4±5.3 Gt∙yr-1 (2002–2016). 

In chapter 3, we compute the GRACE and IOM solutions of the mass changes between 2003 
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and 2013 with the same mascon definition based on the GrIS catchment layout from Zwally et al. 

(2012). We implement the correction to the approximation errors in the GRACE data. In section 

3.4.3 we find for the whole GrIS  208±18 Gt·yr-1 between 2003 to 2008 from the GRACE solution, 

while the IOM solution shows a mass loss rate of 195±25 Gt·yr-1. These loss rates increase by ~67% 

and ~85% in 2009–2013 in the GRACE and IOM solutions, respectively. The 10-year acceleration 

in the GRACE data is -25±8 Gt yr-2, consistent with the IOM solution, which is -26±12 Gt yr-2.  

In section 4.5, we show for the whole GrIS -264±15 Gt∙yr-1 mass changes from 2003–2012. For 

IOM, the value is -272±29 Gt∙yr-1. Two types of regional mass changes estimates differ in the small 

regions located on the southeastern, western and northwestern GrIS. These small regions belong to 

the basin 4, basin 6, basin 7 and basin 8 of the eight basins’ definition of the GrIS. As we discover 

in chapter 3, these differences are due to the approximation error in GRACE solutions and the 

underestimated uncertainty in IOM.  

5.2. Recommendations 

In this dissertation we developed methods to improve the regional mass change estimates on 

Greenland derived from the GRACE data. We proposed two different constraints, namely for 

mascons above the 2000 m contour and those below, as well as a third constraint for the EBIS area. 

We noticed that within the ablation area mass changes can be different for different glaciers. An 

example is the mass change in the southern and southwestern coastal areas which are higher than 

the areas in the north. This observation suggests that one could investigate refined basin dependent 

constraints to be able to further reduce the approximation error. 

In this thesis we have used IOM results and we compared them to the GRACE data. The IOM 

solution will likely improve because new measurement data become available. A recent survey of 

the ice thickness along the flux gate of the GrIS glaciers provides information that can be used to 

establish more accurate ice discharge estimates (Andersen et al., 2015). In that case, the IOM 

solution may no longer need to consider the reference SMB and ice discharge so that at least one 

recognized source of the uncertainty (in the IOM solution) can be avoided. We have also seen that 

the current RACMO2.3 SMB approach underestimates uncertainties in some GrIS areas. Future 

studies could benefit from an improved uncertainty estimate accompanying the SMB model and a 

better description of the assumption of a reference discharge in the northwestern GrIS. 

We suggest that our methods for determining optimal constraints and the hierarchical constraint 

method may also be used in other areas where large mass change rates occur, such as Antarctica. 

The hierarchical method in chapter 4 has shown that smaller areas can be constrained by estimates 

for larger mascons. In this way we can increase the resolution of mass changes estimates. 

The GRACE mission has come to an end in October 2017 after being in orbit for 15 years; the 

mission has provided unique data that have significantly changed our knowledge of mass loss and 

the effects of climate change in the polar areas; but also provided indispensable insight in relaxation 

processes as a result of changes within the lithosphere and mantle due to glacial isostatic rebound. 

Longer time series are indispensable for identifying long-term trends, and we look forward to data 

from the GRACE follow-on mission.   
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