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Abstract

The ongoing large scale adoption of wind power increases the associated risks related to the
variability. An essential way to mitigate these risks is to forecast production accurately.
Because of its commercial and technical relevance ultra-short-term wind power forecasting
(UST-WPF) is the chosen forecast horizon of this thesis. Two open areas of research influenced
the direction of this research. Firstly, the desire for more insight into the practical application
of forecast methods considering both forecast accuracy and value. Secondly, the application
of deep learning methodologies in the field of forecasting. Therefore, the research goal of this
project has been to create insight into the potential of deep learning models for both forecast
quality and value on the UST-WPF horizon.

The status quo at Eneco for UST-WPF is a numerical weather prediction (NWP) based
model with a rudimentary ultra-short-term (UST) correction with real-time power data. The
methodology followed was the development of four UST-WPF models for Princess Amalia
Wind Farm (PAWP) with a 16 programme time unit (PTU) forecast horizon and a forecast
frequency of 1 PTU. Both model 1 and model 2 only use real-time data and are based on
a multilayer perceptron (MLP) and a long-short-term memory (LSTM) architecture, respec-
tively. After optimisation, these models were trained ten times to compute the 10th percentile,
median and 90th percentile forecast. The other two proposed models are a multivariate com-
bination of the median ensemble forecast models with the Eneco model.

The accuracy of the models was compared to two benchmark models: a Persistence and the
Eneco model. Additionally, a novel framework was designed to evaluate the forecast value
relative to the Eneco model on a variable forecast horizon.

The forecast quality results show that the models based on real-time data outperform the
Persistence model on a nine PTU ahead horizon, and the multivariate combination models
outperform the Eneco model on a nine PTU ahead horizon. The difference in performance
between the MLP and LSTM is minimal in the proposed configurations. However, the LSTM
model does show to be more robust compared to the MLP model. The forecast value results
show that all proposed models generate positive value relative to the Eneco model, but the
statistically best model does not necessarily generate the most value. To summarise, the
results indicate that the proposed deep learning models can contribute both in quality and
value up to 9 PTUs ahead.

Even though these results are encouraging, there are still multiple considerations; for example,
the model still needs to be evaluated for a whole year. Future research recommendations are
but not limited to: explore novel architectures (e.g., encoder-decoder model), include NWP
data in features, and research the explainability of deep learning time series models.

Master of Science Thesis T.A. Homsma



T.A. Homsma Master of Science Thesis



Table of Contents

Acknowledgements xi
1 Introduction 1
1-1 Context . . . . . . . 1
1-2 Problem statement . . . . . .. .. 2
1-2-1 Deep learning methods . . . . . . . . ... . ... 2
1-2-2 Forecast value . . . . . . . . L 3

1-3  Objectives and research questions . . . . . . . . . .. ... 3
1-4 Outline . . . . . . . . 4
2 Literature review 5
2-1 Wind power forecasting . . . . . . . . ... )
2-1-1 Classification based on modelling inputdata . . . . . ... .. ... ... 6
2-1-2  Classification based on forecasting methods . . . . . .. ... ... ... 7
2-1-3 Classification based on forecasting form . . . . . . . .. ... ... ... 8

2-2 Time series forecasting . . . . . . . . .. 9
2-2-1 Input data types and wrangling . . . . . . . ... .. L. 9
2-2-2  Time series characteristics and exploratory data analysis . . . . .. . .. 11
2-2-3  Pre-processing data into features . . . . . .. ... L. 12
2-2-4 Machine learning models theory . . . . . . ... ... L. 16
2-2-5 Multi-step forecasting styles . . . . . . .. ... L. 21
2-2-6 Evaluation . . . . . .. 21

2-3 Stateoftheart . . . . . . ... 24

Master of Science Thesis T.A. Homsma



iv Table of Contents

3 Methodology 29
3-1 Data collection and feature engineering . . . . . . . . . ... .. ... .. ... 29
3-1-1 Datacollection . . . . . . . ... .. 29
3-1-2 Dataexploration . . . . . . . ... 32
3-1-3  Pre-processing . . . . . . . ... 34

3-2 Feature importance model . . . . . . . ... 36
3-3 Forecasting models . . . . . ... 36
3-3-1 Multilayer perceptron (MLP) . . . . . . ... ... ... 36
3-3-2 Long short-term memory (LSTM) . . . . .. ... .. ... ... .... 38
3-3-3 Ensemble models . . . . .. ... 39
3-3-4 Multivariate combination methods . . . . . . ... ... ... 40

3-4 Evaluation setup . . . . . . . . 40
3-4-1 Evaluation . . . . . . .. 40
3-4-2 Benchmark models . . . . . .. ... 43

3-5 Software and hardware implementation . . . . . . . ... ... L. 44
3-5-1 Software . . . . . . 44
3-5-2 Hardware . . . . . . . 44

4 Results & Discussion 45
4-1 Feature importance model . . . . . . . . ... 45
4-2 Hyperparameter optimisation results . . . . . . ... ... 47
4-2-1 Multilayer perceptron . . . . . . . . . .. 47
4-2-2 Long short term memory . . . . .. ... 48

4-3 Forecast quality . . . . . . . .. 49
4-3-1 Overall performance . . . . . . . . . . ... 49
4-3-2 Performance over forecast horizon . . . . . ... .. ... ... ... .. 50
4-3-3 Forecast bias. . . . . . .. L 51

4-4 Forecastvalue . . . . . ... 51
4-4-1 Overall performance . . . . . . . . . ... 52
4-4-2 Detailed valuation results . . . . . . . ... ... 52

4-5 Casestudies . . . . . .. 56
4-5-1 Case 1: Ramp-upevents . . .. .. .. ... .. ... ... .. ..., 57
4-5-2 Case 2: Ramp-down events . . . . . . . .. .. ... .. ... ...... 59
4-5-3 Case 3: Consistent high wind speeds . . . . . . ... ... ... ..... 61
4-5-4 Case 4: Consistent low wind speeds . . . . . . ... ... ... ..... 62

5 Conclusion & Recommendations 63
5-1 Conclusions . . . . . . . 63
5-2 Drawbacks and limitations . . . . . . . ... ... 64
5-3 Recommendations . . . . . . ... 65
5-3-1 Business recommendations . . . . . .. ... 65
5-3-2 Academic recommendations . . . . . . .. ... 65

T.A. Homsma Master of Science Thesis



Table of Contents v
A Initial selection Eneco wind portfolio 67
B Valuation model trade cycle 69
C Forecast quality 71
D Cumulative forecast value 73
Bibliography 75
Glossary 79
List of Acronyms . . . . . . . . . 79

Master of Science Thesis T.A. Homsma



Vi Table of Contents

T.A. Homsma Master of Science Thesis



1-1

2-1
2-2
2-3

2-5
2-6

2-8
2-9

3-1
3-2

3-3
3-4
3-5
3-6

3-8
3-9

List of Figures

Past and projected annual wind power capacity of EU27+UK [44]. . . . . . . .. 1

[llustration of a time series Fourier transform [12]. . . . . . .. .. ... ... .. 14

[llustration of variational mode decomposition (VMD) for a wind power signal [14]. 15

Architecture of a basic MLP model. . . . . . . . .. ... oL 17
Zoom in on the operations within a single neuron with the equations in vector

notation. . . . . . . L L L 17
Visualisation of an unrolled recurrent neural networks (RNN) neuron [38]. . . . . 19
Unrolled LSTM block with indication of forget gate (red), input gate (orange) and

output gate (blue) [38]. . . . . . . .. 19
Zoom in on computations within one LSTM block [38]. . . . . .. ... ... .. 20
Visualisation of the two different types of walk-forward validation. . . . . . . .. 22

Combined results found in literature in one figure for 16 PTUs ahead [26, 30, 46, 47]. 27

Generic overview of data infrastructure at Eneco. . . . . . . . ... ... ... . 30
The difference between the historical real-time power data from two different

sources and the allocation data for PAWP. . . . . . . . . . . .. ... ... ... 32
Mean allocation per month for the full range of the PAWP dataset. . . . . . .. 33
The influence of system availability on the allocation for the year 2020. . . . . . 33
Automatic seasonal decomposition for the allocation data of PAWP. . . . . . .. 34
autocorrelation function (ACF) and partial autocorrelation function (PACF) for the

allocation data of PAWP. . . . . . . . . . .. 34
The data distribution before and after feature engineering the wind speed and wind

direction. . . . . . . 35
Plot of the yearly seasonality features for the first year of the data set. . . . . . . 36

Visualisation of the MLP model input features (blue) and output features (pink).
The univariate inputs and outputs are indicated through the dashed boxes. The
empty boxes with a blue outline represent available future information. . . . . . . 37

Master of Science Thesis T.A. Homsma



viii

List of Figures

3-10
3-11

3-12
3-13

4-1

4-2

43

4-4

4-5
4-6

4-7

4-9

4-10
4-11
4-12
4-13
4-14

B-1 The trading cycle of the valuation model explained until the 9 PTU ahead forecast.

T.A. Homsma

Visualisation of the MLP model 3 architecture with two hidden layers. . . . . . .

Visualisation of the LSTM model input features (blue) and output features (pink).
The empty boxes with a blue outline represent available future information.

Illustration of generating the percentile forecasts. . . . . . . ... ... ... ..

The timeline of the different electricity markets. . . . . . . . .. .. .. .. ...

Feature importance of the Extreme Gradient Boosting (XGBoost) model expressed
in Shapley Additive Explanations (SHAP) values. . . . . . ... ... ... ...

The four proposed models compared to the Persistence and Eneco benchmark
models. . . . . L

The Eneco— LST M5y model compared to the results from the reviewed literature
in section 2-3. . . . .. L

Cumulative value creation of the Persistence, M LP,50 and Eneco — LST M50
model over the testset. . . . . . . . . . . . ...

Cumulative value with the daily mean imbalance volumes and prices. . . . . . . .

Detailed plots to visualise the separate trade value (TVAL) components of the
Persistence, M LP,50 and Eneco — LST Mpso model. . . . . .. ... ... ..

The mean Eneco forecast on the last tradable time and the allocation in the
context of the measured wind speed from 21/12/2020 until 27/12/2020. . . . .

The imbalance volume of the Eneco model, imbalance prices and Twalio,r ac-
cumulation that is a product of these volumes and prices from 21/12/2020 until
27/12/2020. . . . .

Ramp-up from 38 MW to 90 MW between 12:45 and 13:15 on 30/12/2020.

Ramp-up from -0.1 MW to 90 MW between 04:00 and 07:00 on 16/01/2021. . .
Ramp-down from 90 MW to 36 MW between 00:15 and 01:15 on 17/12/2020. .
Ramp-down from 94 MW to 10 MW between 02:45 and 05:45 on 24/12/2020. .
Consistent high wind speeds on 04/01/2021.. . . . . . . . ... ... ... ...
Consistent low wind speeds on 08/11/2020. . . . . . . . ... ... ... ....

39

46

50

51

53
93

54

95

Master of Science Thesis



List of Tables

2-1 Characteristics of this research within the International Electrotechnical Commis-
sion (IEC) framework [21]. . . . . . . . . .
2-2  Correlation coefficient between meteorological features and wind power [47]. . . . 6
2-3 A general overview of state-of-the-art learning methods. . . . . . . . . . . .. .. 8
2-4  Qverview of common machine learning activation functions. . . . . . . ... .. 18
2-5 Overview of the most relevant UST-WPF state of the art. . . . . ... ... .. 26
3-1 Overview of the gathered data from Eneco. . . . . . . ... .. ... ... ... 31
3-2 Chosen resampling of the gathered data expressed in Coordinated Universal Time
(UTC). . o 31
3-3 The hyperparameter settings of the XGBoost model. . . . . . . .. .. .. ... 36
3-4 Details on the three different MLP random search configurations. . . . . . . .. 37
3-5 Details on the two different LSTM random search configurations. . . . . . . .. 39
4-1 XGBoost results for one-step-ahead forecasting. . . . . . .. ... ... ... .. 46
4-2  The hyperparameter optimisation results for the MLP model with univariate input
data. . . .. 47
4-3 The hyperparameter optimisation results for the MLP model with multivariate
input data. . . . . . .. 47
4-4 The hyperparameter optimisation results for the LSTM model. . . . . . . . . .. 48
4-5 Comparison of the average forecast accuracy of the benchmark models and pro-
posed models on the test set and specified forecast horizons. . . . . . . ... .. 49
4-6 The mean bias error with an hourly frequency on the UST-WPF horizon expressed
in KW, . 51
4-7 Cumulative forecast value relative to the Eneco model expressed in euros over the
test set on all forecast horizons between National and XBID. . . . . . . ... .. 52
A-1 The Eneco wind portfolio filtered on the initial selection criteria. . . . . . . . .. 68
C-1 The forecast results on the test set expressed in root-mean-square error (RMSE)
over the whole UST-WPF horizon. . . . . . . ... .. ... ... ... ..... 72
Master of Science Thesis T.A. Homsma



X List of Tables

D-1 Cumulative forecast value for all models relative to the Eneco model expressed
in euros over the test set on all forecast horizons between National and European
Cross-Border Intraday (XBID). . . . . .. . . . ... . ... ... 73

T.A. Homsma Master of Science Thesis



Acknowledgements

First of all, I would like to address that I am very grateful for the opportunity to graduate
from Delft University of Technology (TU Delft) at Eneco Energy Trade. When I reached
out to both Paul Smeets and Willem Willems in mid-November 2020, they were able to help
me formulate a research topic and arrange the contractual formalities on very short notice.
Because of this, even amid the Covid-19 pandemic, I could start this project in December
2020.

I want to thank my TU Delft supervisors Simon J. Watson and Sukanta Basu, for taking
the time and making an effort to guide me through this process. Simon’s continuous sup-
port and extensive experience in wind energy research have lifted the quality of this thesis.
Sukanta’s positive energy, drive, knowledge of deep learning methods and openness make him
an ideal mentor and daily supervisor. This work would not have been possible without their
encouragement and advice.

In addition, I would like to thank all colleagues at Eneco who have been involved in this
project. Especially my supervisors Truusje Quak and Vincent Visser. Truusje has introduced
me to Eneco’s relevant data, the current models, and operational forecasting processes. Vin-
cent has been of tremendous help in defining forecast value and offering his advice on the
project based on his experience as a data scientist. Furthermore, I would like to thank Math-
ias Veenman for answering any programming question and Aatish Kumar for teaching me
how to work on the Data Science Virtual Machine (DSVM).

Finally, I am forever grateful to my family, especially my parents and sister: Karin Homsma-
Dekker, Tjeerd Homsma and Eva Homsma, for their emotional, financial, and rational support
for the last 25 years. Also, I would like to thank Maud van den Berg, my girlfriend, for the
exceptional care, love and faith. Their unconditional love and support have given me the
energy to follow my interests and finish this thesis.

Delft, University of Technology
July 27, 2021

T.A. Homsma

Master of Science Thesis T.A. Homsma



Xii Acknowledgements

T.A. Homsma Master of Science Thesis



“Those who have knowledge don’t predict.
Those who predict don’t have knowledge.”

— Lao Tzu






Chapter 1

Introduction

The introductory chapter briefly discusses the context, relevance and scope of this thesis.
Furthermore, the structure of the report is provided to guide the reader through this work.

1-1 Context

The growing interest to mitigate climate change and reduce carbon emissions has stimu-
lated the implementation of variable renewable energy (VRE) sources, in particular solar
photovoltaics (PV) and wind energy technologies [40]. Over the last decade, there has been a
steady increase in Europe’s installed wind power capacity, and even the recent global Covid-19
crisis has not broken this trend. In 2020 Europe’s installed wind power capacity increased by
14.7 GW, and an increasing installation rate is expected in the year to come, see Figure 1-1

22, 44].

30
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Figure 1-1: Past and projected annual wind power capacity of EU27+UK [44].
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2 Introduction

The rapid increase in installed wind power capacity is associated with economic and environ-
mental benefits, but it also comes with multiple challenges. The major challenges are related
to the intermittent nature of wind power, caused by meteorological fluctuations [1, 28]. The
variability in supply can lead to a large imbalance, which in turn can significantly impact
market prices and grid stability [21]. Taking this risk into account can form an obstacle for
further wind power penetration within the power system. However, large-scale studies in
multiple countries have shown that accurate forecasting systems can mitigate these obstacles
[15, 21].

The underlying importance of forecasting from the perspective of a utility is explained as
follows. TenneT, the Dutch transmission system operator (TSO), is the responsible party
for electricity transport and grid stability on a national level. To fulfil this role, Balancing
Responsible Parties (BRPs) like Eneco are obliged to update TenneT on their scheduled pro-
duction, consumption and transportation needs. BRPs are financially responsible for the
difference between their actual production and consumption compared to the reported sched-
ule unless they have already corrected their position in the market. The reported schedule
and adjustments in the market are based on forecasting models. In this regard, the forecast
quality influences the potential revenue of BRPs [47].

Variations of wind happen on all time scales, but only from minutes to weeks is considered
relevant for the BRPs’ wind power forecast [13]. The shortest forecast time scale, ultra-short-
term wind power forecasting (UST-WPF), needs the highest accuracy and is considered the
most difficult because of the 15-minute temporal resolution and 4-hour forecast horizon [28].
Currently, Eneco operates a numerical weather prediction (NWP) based forecast model on
their wind farms with a rudimentary ultra-short-term (UST) correction for the 4-hour forecast
horizon. Given the fact that UST-WPF finds its application in many areas including but not
limited to short-term trading, asset curtailment and commitment of quick-start resources
make it a commercially important forecast horizon [7, 15, 21, 28, 39]. To summarise, both
from a technical and commercial point of view UST-WPF is an interesting area of research,
which will become even more important with the expected increase in installed capacity.
Therefore, UST-WPF will be the focus of this thesis.

1-2 Problem statement

The importance of forecast techniques to mitigate the challenges related to the intermittent
nature of wind power motivated the conduction of a literature study. Based on the literature
review into UST-WPF, the following two research topics were selected.

1-2-1 Deep learning methods

The increasing amount of computational resources and data have made deep learning methods
more common. However, deep learning is still a relatively new area of research with many
recent publications. Contributions to this field can be both through introducing novel methods
as well as through validation [7]. In this respect, the following text is worth quoting.

“Deep learning for time series is a relatively new endeavour, but it’s a promising
one. Because deep learning is a highly flexible technique, it can be advantageous

T.A. Homsma Master of Science Thesis



1-3 Objectives and research questions 3

for time series analysis. Most promisingly, it offers the possibility of modelling
highly complex and nonlinear temporal behaviour without having to guess at
functional forms. Deep learning has not yet delivered the amazing results for fore-
casting that it has for other areas, such as image processing and natural language
processing. However, there is good reason to be optimistic that deep learning will
eventually improve the art of forecasting while also lessening the brittle and highly
uniform nature of assumptions and technical requirements common for traditional
forecasting models.”

— Aileen Nielsen [37]

1-2-2 Forecast value

In the studied literature, the main focus is often on theory and lowering a single statistical
error metric. However, the single error metric indicates the forecast quality and not necessarily
of the forecast value [2]. Therefore, it is interesting to shift the focus towards practical
application of forecast methods considering both accuracy and value [7, 13].

“R&D will remain important in the future for improving not only the accuracy of
the forecasts but also their value.”

— Gregor Giebel [15]

1-3 Objectives and research questions
The main objectives of the thesis are to:

e Create insight in the potential of deep learning models for UST-WPF.

o Create insight in forecast value from the perspective of a utility.

In order to achieve the objectives mentioned above, the following research questions have been
formulated:

1. What are the current state-of-the-art forecast techniques for UST-WPFE?
2. What set of input variables are the most relevant on the UST time scale?
3. What are the currently applied loss functions and error metrics?

4. How does UST-WPF based on deep learning models compare to the currently applied
UST correction NWP based model and a naive forecasting model?

5. How does the forecast value defined by Eneco compare with the performance on the
chosen standard error metric?

Master of Science Thesis T.A. Homsma



4 Introduction

1-4 OQOutline
The report is structured in the following manner:

o Chapter 1: (this chapter) explains the relevance of the research and states the objectives
and research questions.

o Chapter 2: is a literature review that provides background on wind power forecasting
and time series forecasting domain knowledge, both in the context of the project scope
defined in Chapter 1. Subsequently, the state of the art on UST-WPF is summarised
and discussed.

o Chapter 3: offers insight into the methodological decisions made during the data col-
lection, model development and evaluation of the results. Furthermore, it presents
information on the applied devices and software.

e Chapter 4: displays and explains how to interpret the results from the described test
setup in Chapter 3. Moreover, the meaning, implications and limitations of the results
are discussed.

o Chapter 5: reflects on the research and summarises the main conclusions concerning the
research questions. Moreover, future recommendations are given based on the developed
knowledge of this work.

T.A. Homsma Master of Science Thesis



Chapter 2

Literature review

The first subsection gives background on wind power forecasting (WPF) within the struc-
ture of the recently published International Electrotechnical Commission (IEC) classification
framework [21]. Subsequently, the second subsection provides the reader with the necessary
background on time series forecasting. Finally, the state of the art literature on ultra-short-
term wind power forecasting (UST-WPF) is summarised.

2-1 Wind power forecasting

In the past two decades, the research interest in WPF has grown significantly [21, 39]. There
used to be no universal standard to classify the research within this large domain. Therefore,
the definition of labels within classifications varies between researchers, organisations and
countries. However, the recently published IEC standard has put the lack of consensus about
classification within the scientific community to rest.

The IEC classification consists of five categories: the time scale, spatial range, input data,
forecasting model and forecasting form. Any forecast solution can be labelled for every
classification; nevertheless, some labels can be considered mutually exclusive (e.g., medium-
term forecasts require numerical weather prediction (NWP) data as input) [21].

Table 2-1 summarises the classification of this thesis within the IEC framework. Because the
time scale and spatial range were predetermined based on research and commercial interest,
only the other three classifications of WPF models are discussed in more detail in the following
subsections.

Master of Science Thesis T.A. Homsma



6 Literature review

Table 2-1: Characteristics of this research within the IEC framework [21].

Classifcation standard Type

Time scale 0.25-4 hours (ultra-short-term)
Spatial range Wind farm
Modelling input data Input data without NWP data

Persistence method
Forecasting method Statistical and Learning methods
Multivariate combination methods

Forecasting form Deterministic forecasting

2-1-1 Classification based on modelling input data
Input data without NWP data

A model in this category uses supervisory control and data acquisition (SCADA) data; this
includes real-time and historical data from the wind turbine(s). Additionally, data from other
wind turbines or measurement points can be included [1]. The most common meteorological
input features are wind speed, wind direction and temperature. Less frequent features are
atmospheric pressure, and relative humidity [15, 33]. Zhou et al. [47] reported the correlation
of these meteorological features with wind power for his data set, see Table 2-2 [47]. In the
context of UST-WPF some discrepancy or ambiguity can be found in the literature. Some
sources state that NWP based models start to outperform time series models from 3-6 hours
lead-time onward, while others state that NWP data adds value from 1-2 hours onward
[17, 21, 45].

Table 2-2: Correlation coefficient between meteorological features and wind power [47].

Meteorological factor Correlation coefficient

Wind speed 0.62
Wind direction 0.29
Pressure 0.21
Temperature 0.07
Humidity 0.01

Input data with NWP data

The forecasted wind behaviour and other atmospheric properties from NWP models can
function as inputs for WPF models. Together with other information (e.g., topographic in-
formation) the Reynolds-averaged Navier-Stokes (RANS) equations form the basis of NWP
models [17, 21]. The RANS equations are partial differential equations for which no analytic
solution exists; thus, one must rely on numerical solvers. Running these models is computa-
tionally expensive; therefore, update frequencies are generally between 1-12 hours, depending

T.A. Homsma Master of Science Thesis



2-1 Wind power forecasting 7

on the model. The results of these models are essential for WPF models with longer forecast
horizons.

2-1-2 Classification based on forecasting methods

Forecasting methods can be divided into persistence methods, physical methods, statistical
and learning methods, and multivariate combination methods [15, 21].

Persistence methods

The persistence method is generally used as a benchmark method. It takes the current power
measurement as the forecasted value for the next time step(s) [10]. This method is only
suitable for short time scales, and the accuracy can deteriorate quickly for longer forecast
horizons [21]. The main advantage is that this is a very simplistic model that requires no
external variables [15].

Physical models

These models can predict the power production based on physical information about the wind
farm and NWP data. Physical models have proven to be very successful for forecasting with a
time horizon of more than 4 hours and find their application predominantly in short-term (i.e.,
day ahead) and medium-term (i.e., days to a week ahead) renewable power forecasting (RPF)
[21]. The main advantage is that physical models do not require lengthy historical data.
On the other hand, the accuracy of these models strongly depends on the topography of
the location [10]. Furthermore, these models are computationally expensive and relatively
complex [15].

Statistical and learning methods

As opposed to physical models, statistical models do not include physical processes. Statistical
models apply a direct transformation from the input variables to wind power. The input
variables can consist of both historical power production and NWP data [1]. In the case of
UST-WPF, real-time data is essential [21]. These methods are easy to model and generally
perform very well for UST-WPF [15]. Statistical methods can be subdivided into time series
based and learning methods.

Time-series based A time series is a chronological set of observations of a variable. In
the case of a regular pattern, past values can be used to predict future values through a
function [1]. The most common are the methods proposed by George Box and Gwilym
Jenkins, referred to as the Box-Jenkins methods [4, 15]. In the studied literature, multiple
variations and extensions of the autoregressive integrated moving average (ARIMA) model
have been tried to optimally fit a model to a time series [10]. Discussing all these alternative
forms exceeds the purpose of this section; therefore, only the primary model components are
explained.

The ARIMA consists of three components:

Master of Science Thesis T.A. Homsma



8 Literature review

o AutoRegressive (AR), is the autoregression of a specified number of lagged values.

o Integrated (I), is the differencing (i.e., subtracting consecutive values) of the time
series to transform the raw input into a time series that consists of the deltas between
consecutive values.

o Moving Average (MA), is the autorregression of the lagged residual errors. Correct-
ing the forecast with a predicted residual error can improve the model.

The number of lagged values for AR and MA are given as hyperparameters p and ¢, respec-
tively. The order of differencing (i.e., how many times the differencing procedure is executed)
is hyperparameter d.

The advantage of this model is that it is fairly easy to implement. Furthermore, it re-
quires minimal computational capacity [7]. However, without modification, it cannot include
exogenous variables. Moreover, learning methods tend to outperform this model on large
non-stationary time series [6, 15, 35].

Learning methods Artificial intelligence (AI) methods find their application on all fore-
cast horizons [21]. The four categories of Al methods are linear machine learning, nonlinear
machine learning, ensemble machine learning and deep learning. The aggregate of different
models within these categories is more than 50; therefore, the overview in Table 2-3 should
be considered non-exhaustive. Additionally, hybrid models exist that either combine mul-
tiple learning methods (e.g., CNN-LSTM), combine decomposition techniques and learning
methods (e.g., WT-ANN and EMD-SVM), physical and learning methods, or statistical and
learning methods [7, 10].

Table 2-3: A general overview of state-of-the-art learning methods.

Linear Machine learning Nonlinear machine learning Ensemble machine learning Deep learning

Linear regression KNN Random forest MLP
Decision trees Gradient boosting CNN
Support vector regression Stacking LSTM

Multivariate combination methods

The multivariate combination methods are a weighted average of the earlier discussed mod-
els [10, 21]. The objective of this method is to reduce the forecast error by incorporating
the positive characteristics of different models [15]. Another advantage is that multivariate
combination methods are usually more robust.

2-1-3 Classification based on forecasting form
Deterministic forecasting

This form provides a single power value for every forecasted time step. The accuracy is
generally high, but the uncertainty related to the forecast is not provided [21]. Therefore, the
evaluation of deterministic forecasts is more straightforward.
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Probabilistic forecasting

Probabilistic forecasting quantitatively provides the probability related to the forecasted val-
ues. It aims to represent the uncertainty related to atmospheric conditions. The four most
common methods are statistical methods, statistical scenarios, physically-based ensemble
forecasts and perturbation-based forecasts [16, 21]. The first two methods create a proba-
bilistic forecast from a deterministic simulation. The latter two apply either multiple NWP
models or apply varying input conditions, respectively. Consequently, these methods are com-
putationally more expensive than statistical methods. There is increasing research interest
in this field as it can improve situational awareness and consequently improve the decision
making [16, 34, 36]. The forecast can be in the form of quantiles, ensembles and parametric
distributions [34].

Event forecasting

This form aims to predict the probability of an event’s occurrence (e.g., significant ramp
event or cut-out situations) [21]. The forecast user is notified if the probability exceeds the
set threshold [34].

2-2 Time series forecasting

This section provides the reader with the necessary background on time series forecasting and
the models applied for this research. The structure corresponds roughly to Chapter 3.

2-2-1 Input data types and wrangling

For time series forecasting, the input data quality is of utmost importance. However, the
gathering of high-quality data is often a bumpy road with many potential pitfalls. The first
section explains the various types of input data. Subsequently, the second section discusses
the data wrangling process.

Input data types

Section 2-1-1 explains the classification of WPF based on input data. Here a more generic
taxonomy is provided that can describe any type of input when forecasting time series [32, 37].

o Univariate data, where one variable is measured over time (e.g., wind power at one
wind farm).

¢ Multivariate data, where multiple different variables are measured over time within
a single experimental unit (e.g., wind power and wind speed at one wind farm).

e Panel data, where the same kind of univariate or multivariate data is measured over
time at multiple independent instances (e.g., wind power at multiple wind farms).

o Metadata, information about other data (e.g., day of the week corresponding to the
wind power measurements).
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Input data wrangling

Data wrangling, the process of preparing data for downstream purposes, can be a time-
consuming operation but crucial for the model’s performance. The following section will
discuss time series wrangling, specifically concerning timestamps and data cleaning.

Timestamps provide helpful information to the data and make time-series analysis more
intuitive. Nevertheless, interpreting time series should be done with great precaution. Since
in practice, it is not always clear what the timestamp represents. To illustrate the issue, when
encountering data with a fifteen-minute frequency, does it represent the measurement at that
specific point in time, or is it the mean of data gathered at every minute?

Another issue quintessential to timestamps is related to time zones. Even though the database
convention is to store data in Coordinated Universal Time (UTC) instead of local time,
when combining data from multiple sources, this should not be assumed as it can result
in past data at future timestamps or future data at past timestamps (i.e., lookahead). The
fundamental trouble is that there is no generic methodology or test that can detect lookahead
[37]. Therefore, the only way to prevent mistakes related to timestamps is to continuously be
aware and critical towards obtained results and consult documentation when available.

After establishing what the data represents, the next step is to clean the data. This sec-
tion does not cover all the possible data cleaning techniques but aims to describe a general
framework based on the studied literature [28, 37].

1. Missing data, reasons for missing data can either be systematic (e.g., when the sys-
tem availability of a wind farm is zero, no wind speed measurements are gathered) or
random (e.g., an unexpected software update has hindered the data writing process).
Information about the nature of the missing data can be valuable. There are two types
of missing data in time series:

(a) No observation, the timestamp exists, but there is no observation. The absent
observation is, in most cases, filled with a Not a Number (NaN) value.

(b) Missing timestamp, the timestamp does not exist, which automatically results in
no observation. Missing timestamps commonly originate from a Structured Query
Language (SQL) database, which does not have time as a privileged information
axis. As SQL finds its origin in transaction data storage, where time is just one
of the many primary keys. A solution to obtain a regular time series is to insert
these missing datetimes with NaN observations.

2. Anomaly detection, identify which data points are out of the ordinary based on anal-
ysis and domain knowledge (e.g., a wind farm producing more than its maximal theo-
retical production capacity). The most straightforward approach is to interpret these
instances as missing. However, except when there is an explanation for the anomalies,
a more intelligent approach can be desirable.

3. Solutions to missing data, there are multiple techniques to fill or circumvent the
missing data. Nevertheless, it can be illogical to proceed with inadequate data, consid-
ering that even the most sophisticated techniques available to ameliorate the data have
their limitations.
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(a) Downsample, if the downstream use case allows it, downsampling can be a
straightforward method to reduce the amount of missing data (e.g., take the mean
of all per minute data within one hour).

(b) Imputation

i. Data from another source, when the data from another source is statisti-
cally similar enough (e.g., wind speeds measured at a nearby wind farm), then
imputation from this data set can be an option.

ii. Forward fill, where the most recent value is carried forward to fill the missing
observations. The advantages of the forward fill method are low computational
demand, applicable to online data, and the imputation quality for a limited
amount of consecutive missing values is relatively high.

iii. Moving average, comparable to forward fill, but uses multiple recent values
to compute an average, which is carried forward to fill the missing observations.

iv. Interpolation, there are many interpolation techniques, for example, lin-
ear, polynomial and spline. Generally, these perform better than the forward
fill and moving average methods, but interpolation often includes lookahead,
making it undesirable for forecasting projects.

(¢) Remove timestamps with no observation, this is the most time effective, but
not all models perform well with irregular input.

2-2-2 Time series characteristics and exploratory data analysis

Developing insight into the properties of the available data can be a valuable undertaking
before preprocessing and modelling. In this section the most common time-series properties
and exploration techniques are described [5, 37].

The most important properties to explore are:

e Correlation: indicates the degree to which two variables move in relation to each other,
where 1 indicates a strong positive correlation and -1 a strong negative correlation.

¢ Autocorrelation: is the correlation of a specific signal with a time-shifted copy of the
same signal as a function of the lag.

o Partial autocorrelation: is the autocorrelation that has been corrected for the indi-
rect correlation between the original and the time-shifted copy of the signal. Therefore,
the partial autocorrelation reveals the direct correlation and indicates which lagged val-
ues truly contain information. This information can indicate the number of meaningful
lag values.

e Stationarity: refers to the case when the statistical properties of the time series are
not time-dependent. The most important characteristics are constant mean over time,
constant variance over time and no seasonal component. In practice, it is generally
easier to falsify the stationarity hypothesis than to find definite proof.

¢ White noise: a time series where all variables are independent and identically dis-
tributed (IID) with zero mean and constant variance, which implies zero correlation
between the variables. Therefore, the series is considered unpredictable.
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e Random walk: a time series where the next value is a random modification of the
previous value and consequently is considered unpredictable.

¢ Cyclical behaviour: recurring behaviour without a fixed period.

o Seasonality: recurring behaviour with a constant frequency (e.g., diurnal, monthly,
yearly frequency).

e Trend: is the increase or decrease of the mean over a more extended period.

In order to inspect these properties, a common approach is to visualise the data. Examples
include line plots, histograms, Box and Whisker plots, heat maps, scatter plots, decomposition
plots and autocorrelation plots. For illustrations of these techniques, see subsection 3-1-2
where most of these visualisation techniques are applied.

Another option is to check the time dependency of summary statistics. For stationarity
specifically, it is often desirable to further explore the data through hypothesis tests. The
most widely used hypothesis test is the Augmented Dickey-Fuller (ADF) test. The null
hypothesis is that the time series has a unit root and is thus non-stationary. This hypothesis
can be rejected for a specific significance level based on the results (i.e., the p-value of the
test). Nevertheless, even when rejected, this test cannot be considered definitive proof for
stationarity as this test has a relatively high type I error (i.e., false-positive results).

2-2-3 Pre-processing data into features

The insight gained from data exploration can be applied to improve the input data. This sec-
tion first discusses three methods to modify the data: transforms, moving average smoothing,
and decomposition. The final subsection explains the various feature engineering options.

Transforms

Many models tend to converge more quickly and consistently after the data has been scaled
or standardised. The first changes the data range but keeps the distribution intact (e.g.,
Min-Max scaler see Eq. (2-1)). While the latter often implicitly scales the data when the
distribution is changed to have a standard deviation of one (e.g., standard scaler see Eq. (2-
2)). Another difference between these methods is that the standard scaler does keep the signs
of the data, while the Min-Max scaler transforms the data to only positive values [23].

o T~ min(x) (2-1)

max(z) — min(z)

z=2"F (2-2)

For signals with a strong trend power transforms can scale the data. The square root transform
linearises time series with quadratic growth. Time series with an exponential trend and only
positive data require log transformation. In practice, these perfect theoretical trends are
rare. A more variable solution is the Box-Cox transform capable of finding a more optimal
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transformation for the time series by tuning lambda. Eq. (2-3) shows the general form of the
Box-Cox transform. The hyperparameter lambda ranges between -5 and 5, determining the
type of transformation.

A Sl A £0
y» = o a (2-3)
Iny; ifA=0

Moving Average Smoothing

Moving average smoothing aims to reduce noise by taking the average of a specific number
of subsequent values and sliding this data window over the time series. The output is a new
time series with reduced high-frequency components.

Decomposition

The decomposition of a time series is the separation of the signal into multiple compo-
nents. These components can be systematic (i.e., deterministic) or non-systematic (i.e., non-
deterministic). The difference is that the systematic components contain structure. Therefore,
the systematic components can be forecasted separately and recombined to give the forecast
of the original signal [10].

Classical time series decomposition assumes a signal to contain a level and noise component
(i.e., the non-systematic component). Additionally, a signal can contain a trend and season-
ality /cyclical component. This type of decomposition technique isolates the trend and then
the seasonality component through computing moving averages. The disadvantage of this
method is that two hyperparameters have to be predetermined. Firstly, the periodicity of
the signal. Secondly, the relationship between the components, which is either additive or
multiplicative.

Alternative decomposition methods are based on time-frequency analysis. The reason for
both time and frequency analysis is to prevent the loss of information. The time-domain
representation loses frequency resolution, and frequency-domain representation loses time
resolution. To illustrate, in frequency domain analysis, the Fourier transform provides mag-
nitude information as a function of frequency, but not when in time that frequency occurs,
which is relevant information for non-stationary signals. This concept is visualised in Fig-
ure 2-1. There are two categories of time-frequency methods: adaptive or with an a priori
basis function.
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Figure 2-1: lllustration of a time series Fourier transform [12].

The most common time-frequency method with an a priori basis function is the wavelet
transform (WT). WT has a very similar working principle compared to Fourier transform
but has a different basis function. Fourier transforms and WT are computed with Eq. (2-4)
and Eq. (2-5), respectively. The Fourier transform basis function consists of infinite sine and
cosine waves, while the WT uses a compact support wavelet signal (¢)). The wavelet signal
is adjusted by the scaling factor (a) and time shift factor (b). That scales the frequency
and move the basis function over the signal, respectively. This method is cable of analysing
non-stationary linear signals because of the time shift factor.

X(f) = L :)o 2(t)e 2Tt qy (2-4)

t—b
a

1 o0
Ta,b:—/ x(t)y* dt 2-5
(a,0) Jil . ) (—) (2-5)
Examples of adaptive methods that can decompose non-stationary non-linear signals are
empirical mode decomposition (EMD) and variational mode decomposition (VMD). EMD
has an empirical and VMD has a theoretical base [11, 19]. For wind power forecasting EMD

and VMD have shown better results in recent years compared to papers that have applied
WT [14, 20, 47].

The EMD method decomposes the signal in intrinsic mode functions (IMFs) through the
sifting process. IMFs can have a variable frequency and amplitude, but have to satisfy two
characteristics. The first requirement is the same number of extrema (i.e., maxima and
minima) and zero crossings. Secondly, the combination of the cubic spline through the maxima
and the minima should be zero mean. Ensemble empirical mode decomposition (EEMD) is
a modified version of EMD that reduces the mode mixing issue related to EMD through
ensembles. To every ensemble, a different white noise signal is added. The output of EEMD
is the ensemble mean of the corresponding IMFs.

The VMD algorithm was invented in 2014 to solve EMD’s sensitivity to noise and sampling.
The mathematical and theoretical background are outside the scope of this thesis, but the
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performance of the decomposition method is strongly related to the number of modes hyper-
parameter. An excessively high number of modes increases the computational complexity.
Figure 2-2 illustrates the results of VMD on a wind power signal.
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Figure 2-2: lllustration of VMD for a wind power signal [14].

Feature engineering

The final step of pre-processing is feature engineering. The features are the inputs of the
model. For time series forecasting, there are four categories of features [5]:

o Time-based features, provide information about the time (e.g., hour of the day or
season of the year). Approaches to design these features are:

— Sine and cosine signals with a period equal to the relevant range of date-times (e.g.,
for yearly seasonality, the sine and cosine span a whole year with a value between
-1 and 1 for every time step).

— One-hot encoding transfers the integer representation of date time to binary clas-
sification vectors (e.g., the months of the year can be represented as a vector with
zeros and ones, where the one indicates the month that corresponds with the other

features).

o Lag features, contain past values from time series based on data analysis and domain
knowledge (e.g., the three most recent wind speeds or the wind speed 24 hours ago).

« Window features, are a summary of multiple values of a variable that can be obtained
through either a sliding window or an expanding window (e.g., moving average of the
previous three values).

o Combined variable features, is the combination of different variables (e.g., combi-
nation of wind speed and wind direction into two orthogonal components or the mean
of multiple wind speed measurements).
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2-2-4 Machine learning models theory

This subsection discusses the theory behind the machine and deep learning forecasting models
that have been used for this research. In recent years, leveraging the power of Al technologies
and big data have revolutionised various fields, for example, speech recognition, image recog-
nition and natural language processing [25]. Because of the extraordinary results, researchers
have started applying the underlying models also for time series forecasting. Even though
no machine learning method has been developed for time series specifically, the results are
promising [37]. The concept of machine learning models is that the model learns from expe-
rience to accomplish a specific task based on its performance. The models that are discussed
in more detail are Extreme Gradient Boosting (XGBoost), multilayer perceptron (MLP) and
long-short-term memory (LSTM).

XGBoost

XGBoost is a tree-based ensemble method using gradient boosting proposed by Chen and
Guestrin [8]. The model is less prone to overfitting than other gradient boosting approaches
and known for its speed, parallel computing capabilities, automatic cross-validation and spar-
sity awareness (i.e., able to handle missing data) [43]. Another advantage of the model is that
it is fairly easy to create insight into the feature importance. Based on the principles of
game theory, the Shapley Additive Explanations (SHAP) value can explain tree-based learn-
ing models. The SHAP indicates to what extend features have been used to generate the
predictions of the XGBoost algorithm [31]. The working principle of the model is to minimise
the loss function by constructing better trees on a modified version of the original data by
following an iterative process. The loss function with regularisation term that penalises model
complexity is Eq. (2-6). Traditional optimisation methods cannot solve Eq. (2-6); therefore
Eq. (2-7), is generally used in practice to iteratively evaluate split candidates. The three
terms within brackets (i.e., often referred to as the gain) are the similarity scores for the left
branch, right branch and root leaf. The similarity score is the squared value of the summed
residuals of the leaf divided by the number of residuals plus lambda (\), the regularisation
parameter, which is zero by default but can be increased to prevent overfitting. The gamma
(7) represents the tree complexity parameter and influences the depth of the tree through
pruning.

L(¢) =2l (Tiryi) + 2k 2 (fr)

where Q(f) =T + $A[|w]f?

2 2 9
[t | (Sl o
2 ZieILhi+/\ ZieIRhi+>‘ Eielhi+/\

£split -7 (2'7)

Multilayer perceptron (MLP)

The MLP is the most widely used form of a feed-forward artificial neural network (ANN)
and can find the non-linear relationship between inputs and outputs. Feed-forward refers to
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the fact that the neurons exclusively propagate their signal forward through the weighted
connections between consecutive layers. Moreover, the layers are fully connected, meaning
every neuron output is propagated to every neuron in the next layer. The network generally
consists of three components: the input layer, one or more hidden layers referred to as the
hidden layer and the output layer. Figure 2-3 shows the most basic architecture of a MLP
model.

Hidden layer

Input layer

Input 1
Output layer

Input 2
Input 3

Input 4

Figure 2-3: Architecture of a basic MLP model.

Except for the input layer, all neurons within a layer have a specified activation function,
which realises the non-linear capabilities of MLP. Figure 2-4 visualises the working of a
neuron. The inputs of the neuron are multiplied with the weights of the connections (W),
and a bias term (b) is added. After which the result (z) is passed through an activation
function, which gives either the prediction (3) or the input for the next layer of neurons (a).
The four most common activation functions (o) are summarised in Table 2-4

X, z=WTx+b| a=o0(2) vy

Figure 2-4: Zoom in on the operations within a single neuron with the equations in vector
notation.

Master of Science Thesis T.A. Homsma



18 Literature review

Table 2-4: Overview of common machine learning activation functions.

Name Function Range
Linear o(z) ==z (—00,00)
Hyperbolic tangent o(z) = tanh(z) (—-1,1)
Logistic o(z) = Hi_z (0,1)
Rectified Linear Unit (ReLU) o(z) = maz{0,2} [0,00)

The number of engineered features determines the size of the input layer, while the hidden
layer is free for design. For supervised learning (i.e., machine learning where the desired output
is known), the output layer architecture is determined by the expected results, referred to as
the labelled data. During the training process, the randomly generated weights of the MLP
are optimised to minimise the loss function through the backpropagation process, which is
fundamentally driven by the partial derivatives of the loss function and the set learning rate.
The chosen optimisation algorithm governs this learning process.

The basic steps of the backpropagation learning process are:

1. Forward pass the inputs to predict the output(s).

2. Compare the prediction to the ground truth and compute the loss.

3. The loss function is used for backpropagation through computing the partial derivatives.
The gradients are calculated for every node and in combination with the learning rate,
influence to what extent the connections’ weights are adjusted.

Long short-term memory (LSTM)

The MLP maps the inputs to the outputs but does not capture a dependence between both.
This is not a favourable characteristic for data sets where a strong correlation between the
inputs and outputs exists, which can be the case for sequential or time-series data. Opposed
to the feed-forward ANN the recurrent neural networks (RNN) have loops between layers;
therefore, historical data can influence the current prediction. The basic architecture of a
RNN is displayed in Figure 2-5. Except for the recursive hidden layers, this network is similar
to the MLP; there is an input layer, hidden layer and output layer. The training of this
network is also through backpropagation. This causes an issue for RNN that is also observed
when training very deep MLP networks (i.e., a network with many hidden layers); namely, the
gradients in earlier layers will either vanish or explode. Because the gradients are a product
of the gradients of the deeper layers, this results in exponential shrinking or growing of the
gradients. Consequently, the model might be unable to converge.
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Figure 2-5: Visualisation of an unrolled RNN neuron [38].
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Two specific RNN models were invented to solve this problem, namely, LSTM and gated
recurrent unit (GRU). These models can learn long-term dependencies through the use of
gates, which either remove or conserve information. Therefore part of the error can be directly
transmitted to the subsequent network layer. In theory, the error should not disappear even
for very long sequences or deep networks. However, in practice, it is necessary to limit the
sequence length [43]. In theory LSTM should yield better results than GRU as it has three
gates instead of two, which means more parameters to train. For the same reason, GRU is
faster to train. In practice, the LSTM and GRU results do differ per data set and problem, but
overall show very similar results. Based on the theoretical argument, only LSTM is further
explained. In Figure 2-6 the LSTM unit is inserted in the earlier visualised RNN architecture
and the three gate components are highlighted. Figure 2-7 provides a more clear visualisation
of the separate components of an LSTM unit.
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Figure 2-6: Unrolled LSTM block with indication of forget gate (red), input gate (orange) and
output gate (blue) [38].
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Figure 2-7: Zoom in on computations within one LSTM block [38].

The variable convention used in Figure 2-7 matches the convention in the following equations.
The forget gate determines what information of the old cell state is discarded. The forget
gate (f;) takes a value between 0 and 1 where the min and max represent no information
or all information is passed forward, respectively. The inputs consist of the previous output
of the hidden layer (h;) and the current input sequence (z;). These are concatenated and
multiplied with the weight matrix (W) to which the bias vector (by) is added. The whole
computation is shown by Eq. (2-8).

fe=0Wg-[hi—1, 2] + by) (2-8)

The input gate determines to what extent the previous cell state is updated with the prelimi-
nary cell state information. The computation of the input gate (i;) is similar to the forget gate
but with different weight matrix (W;) and bias vector (b;). The input gate and preliminary
cell state information (C}) equations are shown by Eq. (2-9) and Eq. (2-10), respectively.

=0 (WZ . [ht_l,xt] + bz) (2—9)

Cy = tanh (We - [he_1, x¢] + bc) (2-10)
The new cell state combines the retained information of the previous cell state with the filtered

preliminary cell state information. This new cell state (Cy) is computed through Eq. (2-11),
where (x) indicates element-wise multiplication.

Cr=fixCi_1+ixCy (2-11)

The output gate filters the hyperbolic tangent of the cell state to construct the hidden layer
output Eq. (2-13). Notice that the output gate equation Eq. (2-12) is similar to the forget
and input equations.

o =0 (Wo [htfl, fL‘t] + bo) (2—12)

ht = O * tanh (Ct) (2—13)
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2-2-5 Multi-step forecasting styles

The models discussed in subsection 2-2-4 do not necessarily predict multiple steps. However,
for some time series forecasting applications, this is required. Therefore, this subsection
describes the four main methods for forecasting multiple steps into the future [37].

Direct multi-step forecast strategy

This method makes use of a separate model for each step into the future. The main disad-
vantage of this method is the loss of dependency on the earlier time steps. Moreover, all the
models have to be maintained. There are two particular ways in which this method can be
applied.

o Specific: The specific method only predicts a specific timestamp. To illustrate, a sepa-
rate model for each specific hour of the day ahead.

o Lead time: The lead time method predicts a specific lead time in the future. Therefore
this leads to more optimal use of the available training data.

Recursive multi-step forecast strategy

This method makes a one-step-ahead prediction and appends this prediction to the available
inputs to forecast multiple steps into the future (e.g., forecast the value at t+1 with a model
and use this prediction to predict t+2 with the same model, this is repeated until the required
forecast horizon is reached).

Direct-recursive hybrid multi-step forecast strategies

The direct-recursive hybrid method combines the methods mentioned above: the direct mod-
els are used within a recursive framework (e.g., use the prediction from t+1 from model 1
to predict the next time step that is t+2 with model 2). In this manner, both methods can
complement each other, but this is inherently more complex.

Multitask forecast strategy
One model is used to forecast a sequence. These models are more complex and often take

longer to train. An important consideration when applying the models is whether to weigh
the importance of the forecast horizons differently.

2-2-6 Evaluation
The objective of time series forecasting models is to make accurate predictions on unseen
data as this gives the best proxy for future operational performance. The process can be

briefly summarized in the following steps. Firstly, determine which data is available and
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suitable for the forecasting problem. Secondly, decide on how to resample the data to assess
the performance on unseen data. Finally, choose a performance metric that is suitable to
evaluate the forecast. The last two steps are extensively discussed in this section.

In machine learning, it is common to resample the data into three categories: training data,
validation data, and test data. The training data set has the most samples; based on this set,
the model weights are adjusted. The validation data is used for hyperparameter optimisation.
The test data shows the performance of the tuned model on unseen data. There are three
methods to divide the available historical data while taking temporal dependence into account:

o Split the data into a train, validation and test set (e.g., train on data from the year
2018, validate on data from the year 2019 and test on data from the year 2020).

— The advantage of this method is that only one model is trained.

o Multiple train, validation and test sets (e.g., train on data from summer 2018, validate
on data from summer 2019 and test on data from summer 2020).

— This requires training multiple models to cover the full range of historical data but
can be more accurate if the chosen periods have comparable data characteristics.

o Walk-Forward Validation retrain the model when new data is available through applying
a sliding or expanding window as visualised in Figure 2-8.

— The model is updated after every sliding step; therefore, the most recent data
is included, which can improve the forecast. Either the available computational
power or the conflict between training time and available forecast time can be a
constraint for this method.

Time Validation Test Present Time Validation Test Present

Pass 1 Pass 1
Pass 2 Pass 2
Pass 3 Pass 3
Pass 4 Pass 4

Available Historical Time Series Available Historical Time Series

Dropped Training Forecasting Training Forecasting

(a) Sliding window (b) Expanding window

Figure 2-8: Visualisation of the two different types of walk-forward validation.

The evaluation of the forecast performance is referred to as backtesting. The quality of
the models can be assessed through different performance metrics. Specifically the standard
statistical error metrics root-mean-square error (RMSE) and mean absolute error (MAE),
which give an indication of the forecast accuracy occur frequently in research papers [15, 33].
The reason behind their popularity is the fact that these single error metrics are easy to
interpret, which makes them useful to compare different models or configurations of models
[33]. However, this can lead to the common fallacy that the forecast that performs best on
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a specific error metric truly is the best forecast [34]. For this reason, without context, one
should always be cautious when interpreting these metrics. Since the focus of this thesis is
not on the development of an optimal forecast evaluation framework, the curious reader is
referred to the recent paper from Messner et al. [34]. Instead, the following part explains the
most frequent standard error metrics [1, 15, 34]. Most of these error metrics can be normalised
by dividing the predicted value and the actual value by the maximum observed or theoretical
actual value [15].

mean bias error (MBE) Represents the difference between the mean of the predicted values
and the mean of the actual values as seen in Eq. (2-14), where N is the number of samples,
¢ is the actual value, and §; is the predicted value. A low MBE does not provide insight into
the forecast accuracy but should be interpreted as a prerequisite of a good forecast (i.e., an
unbiased forecast). If the MBE is significantly positive or negative, this indicates that the
model is either over-predicting or under-predicting, respectively.

N

1 .
MBE = =" (5 — ) (2-14)
t=1

mean absolute error (MAE) Represents the mean absolute difference between the forecasts
and expected results. This error metric is suitable for processes with a fixed marginal cost,
which means that a larger error does not have to be penalised more than a small error. The
MAE is expressed in the original unit, which makes the metric intuitive. The formula for the
MAE is given by Eq. (2-15).

1
MAE = — " | — w (2-15)
N t=1

mean absolute percentage error (MAPE) Represents the mean absolute difference between
the forecast and the expected result divided by the expected result. The MAPE is generally
reported as a percentage value and therefore considered easy to interpret. However, in the
original form, see Eq. (2-16), comes with some issues. The most important one is that the
metric becomes unstable when the actual value is zero or close to zero. Additionally, the
asymmetric character punishes over-forecasting more compared to under-forecasting. Mod-
ified MAPE definitions have been developed to mitigate these issues and inherently more
complex.

N
MAPE = 100

N t=1

Yt — Gt

m (2-16)

mean squared error (MSE) Represents the mean squared difference between the forecasts
and expected results and can be calculated with Eq. (2-17). Because of the quadratic nature
of this error metric, more significant errors are penalised heavily. This is the most widely
used loss error metric for regression problems.
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LN
MSE = =3 (: — v)? (2-17)
N =

root-mean-square error (RMSE) Is the square root of the MSE, see Eq. (2-18). By taking
the square root, the original unit is attained, which makes it easier to interpret.

RMSE = VMSE (2-18)

2-3 State of the art

The state of the art has been studied and summarised to create insight into the potential of
deep learning models for UST-WPF. Specifically focusing on which features, techniques and
error metrics were applied, which corresponds with the earlier formulated research questions.
An entirely fair comparison between different UST-WPF studies is hard to make due to, for
example, the difference in user data sets [30]. Nevertheless, an attempt has been made to
create a context in which this thesis fits. Table 2-5 summarises the general information about
the most relevant papers that have been studied during the literature review. Figure 2-9
displays the normalized root-mean-square error (NRMSE) results on a 16 programme time
unit (PTU) horizon (as defined in the paper of Wu et al. [46]) for all the papers that have
either reported this metric directly or have reported the RMSE and the installed nominal
capacity. The following paragraphs explain in more detail the relevance, conclusions and
limitations of the papers summarised in Table 2-5.

In 2011, Catalao et al. [6] showed the potential of deep learning methods with and with-
out decomposition in improving the UST-WPF compared to traditional statistical models.
The implementation of a neural network (NN) model reduced the MAPE on the three-hour
horizon by 30% relative to the ARIMA model. Additionally, this study incorporated WT
decomposition as a prepossessing technique in combination with a NN; this further improved
the MAPE with a 4% reduction relative to the plain NN model. The wind power forecast in
this study is on a national level which means the farms are geographically spread; therefore,
the results are hard to compare with individual wind farm studies [42].

Liu et al. [29] reported even better results when implementing WT decomposition for multiple
deep learning models, namely a backpropagation NN, RNN and LSTM. The RMSE reduc-
tion observed on the first PTU ahead prediction due to adding decomposition to the LSTM
where 33.01%, 37.63%, 63.80%, 64.90%, and 65.87% compared to DWT-RNN, DWT-BP,
LSTM, RNN and BP, respectively. Within the five PTU forecast horizon, the DWT-LSTM
outperforms all the other models on any prediction time ahead. What is striking about the
results is that the different models without decomposition perform remarkably similarly on
all individual prediction steps ahead. This similarity between BP NN and LSTM models is
in conflict with the results found by Li et al. [26]. This study finds an average reduction of
21% RMSE on the first four PTUs ahead in favour of the LSTM model.

Recently the combination of more advanced decomposition algorithms and LSTM have shown
promising results for the UST-WPF. Han et al. [14] applied the VMD algorithm with a limited
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number of modes, reasoning that there is no physical meaning to decomposing the wind power
series into more than three modes. The performance of the VMD-LSTM model is significantly
better and remains exceptionally consistent over the forecast horizon compared to the WT
and BP NN model. Zhou et al. [47] applied EEMD instead of VMD and includes exogenous
variables to improve the forecast. The prediction of this model is optimally weighted with the
prediction from a Seasonal Autoregressive Integrated Moving Average (SARIMA); according
to the author, the SARIMA model can, to some extend, extract the seasonal information from
the raw wind power data. The RMSE reduction observed on the first PTU ahead prediction
for the proposed hybrid model were 42.12%, 40.38%, 21.39% and 3.15% compared to GRU,
LSTM, EEMD-LSTM and PCA-EEMD-LSTM, respectively. It is observed that the difference
in performance between GRU and LSTM is slightly favourable towards LSTM. Moreover,
the addition of the EEMD algorithm and the exogenous variables have had the most impact
on the RMSE score, while the hybrid configuration (i.e., adding the SARIMA model) results
in a relatively small improvement.

Nevertheless, the benefit of hybrid combinations of models is a widely covered theme in
the forecasting literature. Ju et al. [23] proposed a Light GBM-CNN model that only slightly
outperforms the other models included in the study, which are support-vector machine (SVM),
deep neural net (DNN), Light GBM and convolutional neural network (CNN). Every model
configuration is trained and tested ten times to remove the stochastic element of machine
learning models from the comparison. As the error statistics from these runs are averaged
before comparison. Wu et al. [46] reported a more evident improvement through the use of
a hybrid model. The performance of the proposed CNN-LSTM hybrid model was compared
to an individual CNN and LSTM model. The average RMSE over the one-hour forecast
horizon decreased by 25.3% and 14%, respectively. The hybrid model’s spatial and temporal
capability successfully incorporated the input data measured at different turbines throughout
the wind farm.

The studies above are all based on modelling without NWP input data. Lu [30] on the other
hand, proposed a traditional statistical model; namely, an AR model based on NWP data
from the Weather Research and Forecasting model. This study found that the auto-regressive
order is in the range of two to four. The relevance and contribution of this paper are that
it applies the same model on two distinct data sets, one with steady and one with unsteady
wind conditions. These results underline the influence of the used data set on the magnitude
of the error metrics. The limitation of this study is that the used data sets are pretty small
compared to the other studies.

To summarise, studies that have applied traditional statistical models show that deep learn-
ing models outperform these. Furthermore, the contribution of a traditional statistical model
within a hybrid model is relatively small compared to alternative approaches. The main alter-
native approaches are hybrid configurations of different deep learning models, pre-processing
with decomposition algorithms or the inclusion of exogenous inputs. The limitations of these
studies are that they focus mainly on statistical error metrics. Moreover, most of the studies
do not include a persistence model; therefore, no objective benchmark put the model results
into perspective. In addition, the full potential of ensemble modelling is not yet explored
in these papers. One could think of taking the median of multiple forecasts to have a more
robust and most likely better forecast. This is a standard methodology in NWP models [21].
Finally, none of the studies has explored the potential of a multivariate combination model
that consists of both a NWP and non-NWP based model.
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Figure 2-9: Combined results found in literature in one figure for 16 PTUs ahead [26, 30, 46, 47].
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Chapter 3

Methodology

The following chapter explains the methodological decisions made during this thesis project.
In Chapter 1 the importance of accurate ultra-short-term wind power forecasting (UST-WPF)
is explained, and two related research problems are highlighted; application of deep learning
methods and forecast value. These topics have been crystallised into two research objectives
and five research questions. In chapter 2 the theory about wind power forecasting and time
series forecasting is outlined. Additionally, the state of the art on UST-WPF is summarised
and discussed. This chapter describes the methodological approach to answer the earlier
defined research questions based on the information gathered during the literature review.
Section 3-1 describes the data collection and feature engineering process. Next, in Section 3-2
the model is described that was used to gain insight into the importance of the engineered
features. Section 3-3 provides details on the proposed forecasting models. Followed by Section
3-4 which lays out the evaluation framework. Finally, Section 3-5 describes the used software
and hardware to conduct this research.

3-1 Data collection and feature engineering

This section has been divided into three parts: data collection, data exploration and pre-
processing of the data into desirable input features.

3-1-1 Data collection

First, the general information technology (IT) infrastructure is explained. Subsequently,
a description of the final data sets used for conducting the research is given. After this, a
detailed description of the chronological decision process is given, emphasising the encountered
obstacles in data collection.

During the literature review, the importance of real-time data for the UST-WPF was es-
tablished. Based on interviews with various Eneco employees, the following generic data
infrastructure has been mapped and visualised in Figure 3-1.
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Figure 3-1: Generic overview of data infrastructure at Eneco.
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Figure 3-1, depicting the data infrastructure should be interpreted in the following manner.
The supervisory control and data acquisition (SCADA) information of a wind turbine is
continuously sent to and processed by an internal box PC. The information of every box PC
is sent to Eneco’s asset management system Breeze (developed by Greenbyte). The Breeze
Application Programming Interface (API) is used for a scheduled data drop of the wind speed,
wind direction and power on farm level every minute to Eneco’s internal Structured Query
Language (SQL) database. The bottom data stream is the direct power measurement at the
injection point. This signal is continuously reported for the wind farms that are used for
regel- en reservevermogen (RRV) (i.e., the Dutch transmission system operator (TSO) term
for regulating reserve) and is stored in Ebase (i.e., an energy data management system used
at Eneco). TenneT monitors the power output of all wind farms at their respective injection
points, which is referred to as the allocation data. However, the allocation data is generally
sent with a one day delay to Eneco; therefore, it can only be used as ground truth for model
evaluation and not for UST-WPF.

The research is conducted on Princess Amalia Wind Farm (PAWP) which has a nominal
capacity of 120 MW and has been operational since 2008. The historical data used for
this research ranges from 01/03/2018 23:00 (the date on which Eneco implemented Breeze)
until 26/01/2021 22:45 Coordinated Universal Time (UTC). The different data types are
summarised in Table 3-1. Meteorological and system availability data were gathered through
the Breeze API. Missing meteorological values were imputed from the nearest wind farm,
which is Luchterduinen Wind Farm (LUD). Missing system availability values were imputed
by dividing the power observation by a theoretical power calculated based on a constructed
power curve and available wind speed data. The power and allocation data measured at the
grid injection point were exported from Ebase. The remaining missing values were imputed
through forward filling. For this particular data set, the maximum number of consecutive
Not a Number (NaN) values was nine. Before imputation, all anomalous observations found
through their respective theoretical minimum and maximum limit were replaced by NalN
values. All time series were resampled into a train, validation and test set as summarised in
Table 3-2.
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Table 3-1: Overview of the gathered data from Eneco.

Data Unit Source Real-time Missing values
Wind speed m/s  Breeze  Yes Yes
Wind direction deg Breeze  Yes Yes
System availability - Breeze  Yes Yes
Power kW Ebase Yes No
Allocation kW Ebase No No

Table 3-2: Chosen resampling of the gathered data expressed in UTC.

Data set Start End Percentage of data
Train 01/03/2018 23:00 28/06/2020 13:00 80%

Validation 28/06/2020 13:15 31/10/2020 22:45 12%

Test 31/10/2020 23:00 26/01/2021 22:45 8%

The following paragraphs are dedicated to the chronological data gathering process to support
and explain the choice of data used for this research project. With the initial intention to
develop a generic model based on the current I'T infrastructure, the historical wind speed, wind
direction and power were queried from Eneco’s internal SQL database. Eneco owns wind farms
in the Netherlands, Belgium and the United Kingdom. For three reasons, only the Dutch
wind farms were considered for this thesis. Firstly, to limit the amount of data. Secondly,
the majority of the installed capacity is in the Netherlands. Thirdly, the limited geographical
separation between assets makes accurate forecasting more critical and thus commercially
attractive. Not all Dutch wind farms report real-time data, which is a requirement for this
project. Based on these criteria, the data from the wind farms in Table A-1 was retrieved
from Eneco’s internal database. After initial data exploration, it was observed that the
percentage of missing power values for these wind farms exceeded the required quality due
to the contribution of both missing timestamps and missing observations. The percentage of
missing values ranged from 3.74% to 21.86% with a median of 13% and an average of 12.68%.
The conclusion was drawn that this data flow is too unreliable to use, and imputation would
likely cause inaccurate data points. This raised the question wherein the data flow this loss
of data had occurred.

It was decided to go one step back in the data flow. Thus a new data request was made through
the Breeze API. This opened up the opportunity to add more SCADA data parameters to the
query. Based on data exploration in Ebase, conversations with industry experts and intuition,
it was decided to add system availability to the query. Even though, to the best of the author’s
knowledge, system availability has not been incorporated in earlier research on UST-WPF.
Not adding additional meteorological features is mainly to restrain the input dependencies
of the model, which makes the model more suitable for an operational environment. The
new data had a considerably lower percentage of missing power values. This brought to
light that the connection between Breeze and Eneco’s internal database has not always been
stable. The data quality was high enough to proceed to data wrangling. However, after
plotting the power data from Breeze and allocation data from Ebase, a significant mismatch
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was observed, especially during ramp up and ramp down events. Due to magnitude and
bidirectional character, the mismatch could not be ascribed to line losses. This is visualised
through plotting the difference between both signals for PAWP in Figure 3-2a.

Multiple steps were taken to deduce the cause of the observed mismatch. The first step was to
shift the data to reveal a potential consistent delay or a time zone related issue, but this did
not reduce the mismatch. Secondly, the construction of the signal was examined. The Breeze
power data is on turbine level and aggregated on farm level per minute. The downsampling
from minute to programme time unit (PTU) frequency data happens through taking the
exclusive mean. One hypothesis is that since the real-time power signal is generated in this
manner, the granularity of the per-minute data might not be high enough to capture the
ramp up and ramp down events accurately. The final and most likely cause for the mismatch
is the delay and system faults in receiving data from the box PC. Since improving this issue
is considered outside the scope of this thesis, the decision was made to focus on building a
model for RRV assets only with a real-time power signal at the injection point. The quality
of this power signal is visualised through plotting the difference between allocation and the
historical real-time injection point power data from Ebase in Figure 3-2b. It can be observed
that there is almost a perfect match with the allocation data. The significant spikes that
remain have been investigated manually, but no apparent underlying cause was discovered.
In order to prevent lookahead, no modifications were made.
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(a) Breeze real-time power data (b) Ebase real-time power data

Figure 3-2: The difference between the historical real-time power data from two different sources
and the allocation data for PAWP.

3-1-2 Data exploration
Seasonality

Based on the literature, both a diurnal cycle and yearly seasonality were expected. During
data exploration, it became clear that the diurnal effect is negligible compared to the strong
yearly seasonality. The yearly seasonality is observed from the monthly mean wind power
production of PAWP taken over the whole duration of the data set. This is visualised in
Figure 3-3.
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Figure 3-3: Mean allocation per month for the full range of the PAWP data set.

In order to gain more insight into the distribution of the data, the box and whisker plot for
the monthly power data of PAWP in 2020 was plotted in Figure 3-4. It can be observed that
in every month, approximately the full range of power values occur. However, the median
generally follows a similar pattern to the mean values of the previous figure. Moreover, the
influence of system availability on power production is best observed for December 2020,
which supports the importance of including the system availability data.
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Figure 3-4: The influence of system availability on the allocation for the year 2020.

The yearly seasonality is also observed through decomposition as described in section 2-2-3.
Figure 3-5 shows for both PTU and quarterly frequency the additive decomposition for a
yearly periodicity. Because the dataset length is two months short of three full years, the
extrapolate trend function has been applied.
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Figure 3-5: Automatic seasonal decomposition for the allocation data of PAWP.

Correlation

The autocorrelation function (ACF) and partial autocorrelation function (PACF) have been
plotted in Figure 3-6 to gain insight in the correlation of the power data set. It is observed that
the PACF drastically decreases, and after three lags, no statistically significant correlation is
observed. This is in agreement with results from previous studies [30].
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Figure 3-6: ACF and PACF for the allocation data of PAWP.

3-1-3 Pre-processing

Feature engineering

For this research, three new inputs were engineered; two combined variables and two time-
based features. The combined variable features are created because raw wind direction data
in degrees does not form a good input feature. There are two reasons for this: the small and
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large values are numerically remote while physically distant (e.g., 1 degree and 359 degrees).
Secondly, the wind direction measurement does not contain relevant information when the
wind speed magnitude is close to zero. For these reasons, the wind direction in radians ()
and wind speed (v) have been combined into two vectors according to Eq. (3-1) and Eq. (3-2).
Consequently, the data distribution has improved, the before and after results are displayed
in Figure 3-7.

vy = v - cos(f) (3-1)

vy = v - sin(f) (3-2)
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(a) Distribution of the wind speed and wind direction data  (b) Distribution of the wind x and wind y vectors

Figure 3-7: The data distribution before and after feature engineering the wind speed and wind
direction.

The other two time-based metadata features were constructed with the intention to provide
the model with information about the observed yearly seasonality. A yearly sine and cosine
were constructed with the timestamp information (¢) and the total number of PTUs in one
year (1), see Eq. (3-3) and Eq. (3-4). The two features have been visualised for the first year
in Figure 3-8.

o 2.t
Ysine = Sll’l( T ) (3_3)
2w -t
Yeosine = COS( T ) (3_4)

Master of Science Thesis T.A. Homsma



36 Methodology

1.00 A
0.75 A /
0.50 A
0.25 A
0.00 A
—0.25 A
—-0.50 A

—0.75 1 .
— sin

-1.00 A cos

y> » ! o N N y>
10\/%,0 10\%’0 10\/%,0 qp\%’g 79\,%,& 10\9,0 10\9’0

Figure 3-8: Plot of the yearly seasonality features for the first year of the data set.

After constructing these four additional features and removing the wind direction from the
available input data, the wind power and wind speed features were transformed using a
standard scaler. The standard scaler used the mean and standard deviation of the training
data set to prevent lookahead.

3-2 Feature importance model

The Extreme Gradient Boosting (XGBoost) regressor model has been trained with the mul-
tivariate inputs as illustrated in Figure 3-9 [8]. The objective of implementing this model
was to create insight into feature importance; therefore, the model hyperparameters have not
been optimised. Nevertheless, it was checked whether the model outperformed persistence on
the first PTU ahead with the settings as summarised in Table 3-3 because otherwise, insights
in the feature contributions should be considered meaningless.

Table 3-3: The hyperparameter settings of the XGBoost model.

Hyperparameters Values

Ensembles 5
n_ estimators 1000
max_ depth 5
learning rate 0.02

3-3 Forecasting models

3-3-1 Multilayer perceptron (MLP)

Different multilayer perceptron (MLP) architectures have been applied to prove the hypothe-
ses that the persistence model can be improved, and additional features improve the forecast.
There are three reasons to choose MLP as a first model. Firstly, MLP has proven to out-
perform less complex models (e.g., ARIMA) [6]. Secondly, the neural network is relatively
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straightforward to implement and understand. Thirdly the MLP is computationally less
expensive than long-short-term memory (LSTM), which makes early-stage experiments less
time-consuming. In total, three model architectures were chosen, which have been summarised
in Table 3-4. One of the architectures is visualised in Figure 3-10. The performance of three
models was explored for both univariate and multivariate inputs see Figure 3-9, which results
in a total of six experiments. Based on the findings in subsection 3-1-2 and the literature
review, the maximum amount of lag values was set to four. The model was evaluated on the
one step ahead forecast. In order to obtain a multi-step ahead forecast, the final MLP model
was applied recursively. The values in the final output vector were clipped to the minimum
and maximum power values observed in the training set.

For every experiment, a random search numerical optimisation algorithm with 50 iterations
was executed to compare only the best performing architecture for each experiment. The
Adam optimiser was used to minimise the mean squared error (MSE) loss function [24]. The
weights were initialised according to He uniform initialisation [18]. Learning rates were varied
during the random search between 0.01 and 0.00001 with a logarithmic step size. The batch
size was set to 256 after trial runs with varying batch sizes. The maximum number of epochs
was set to 1000, but an early stopping callback with a patience of 5 was included to prevent
overfitting the training set. Because when the validation loss does not improve within five
epochs, the training stops and the best model is saved.

Table 3-4: Details on the three different MLP random search configurations.

Layer (type) Activation Parameters Model 1 Model 2 Model 3
Dense Relu 5-100 (step size 5)  x X X
Dropout 0-0,5 (step size 0,1) X

Dense Relu 0-100 (step size 5) X X

Dense Relu 0-100 (step size 5) x*

Dense Linear #Outputs X X X

* Randomly included or excluded during random search
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Figure 3-9: Visualisation of the MLP model input features (blue) and output features (pink).
The univariate inputs and outputs are indicated through the dashed boxes. The empty boxes with
a blue outline represent available future information.
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Figure 3-10: Visualisation of the MLP model 3 architecture with two hidden layers.

3-3-2 Long short-term memory (LSTM)

In total two LSTM model architectures were chosen, which have been summarised in Table 3-
5. The first model is a Vanilla LSTM and contains a single layer of LSTM units. The second
model is a more complex stacked LSTM model, which contains two hidden layers. For this
model, the first layer is slightly different as it produces an output for every time step and
passes this information to the next LSTM layer. The performance of the two models was only
explored for multivariate inputs (see Figure 3-11), which results in a total of two experiments.
The model was evaluated on the one step ahead forecast. In order to obtain a multi-step ahead
forecast, the final LSTM model was applied recursively. The values in the final output vector
were clipped to the minimum and maximum power values observed in the training set.

For every experiment, a random search numerical optimisation algorithm with 50 iterations
was executed to compare only the best performing architecture for each experiment. The
Adam optimiser was used to minimise the MSE loss function [24]. The weights were initialised
according to He uniform initialisation [18]. Learning rates were varied during the random
search between 0.01 and 0.00001 with a logarithmic step size. The batch size was set to 256
after trial runs with varying batch sizes. The maximum number of epochs was set to 1000,
but an early stopping callback with a patience of 5 was included to prevent overfitting the
training set.
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Table 3-5: Details on the two different LSTM random search configurations.

Layer (type) Activation Parameters Model 1 Model 2
LSTM Sigmoid and tanh 8-128 (step size 8) x X
LSTM Sigmoid and tanh 8-128 (step size 8) X
Dense Linear #Outputs X X
Input data Output data
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Figure 3-11: Visualisation of the LSTM model input features (blue) and output features (pink).
The empty boxes with a blue outline represent available future information.

3-3-3 Ensemble models

In order to create insight into the stochastic nature of the models and make the final forecast
more robust, ensemble models were produced. After the hyperparameter optimisation for
both the MLP and LSTM model, ten ensemble models were trained. For every trained
model, the weight initialisation was slightly different, which results in different models and
consequently results. Subsequently, for every prediction from the ten models, the median, the
10th percentile, and the 90th percentile were stored, see Figure 3-12. The latter two are used
to quantify the stochastic nature of the models. The median of the ensembles is proposed as
the final forecast. This methodology is comparable to the filtering approach, which is often
applied to numerical weather prediction (NWP) based models [21].

— Ensemble model 1 —— Po1o

[1x16 PTUs]
» Ensemble model 2 .
P = P

Input ) forecast §' N P50

data ° [10x16 PTUS] 2 [1x16 PTUS]
[ ]
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~—— Ensemble model 10 —— [1x16 PTUs]

Figure 3-12: lllustration of generating the percentile forecasts.
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3-3-4 Multivariate combination methods

Another technique to further improve the forecast was to equally weigh the Eneco model
predictions with the median predictions of the MLP models and the LSTM models. This
method is known as the multivariate combination method [21].

3-4 Evaluation setup

In this section, the model evaluation process is explained for both forecast quality and value.
Subsequently, the details about the two benchmark models are described.

3-4-1 Evaluation

The model modification and selection process were based on the MSE loss results on the
validation set for the one-step-ahead prediction. In the case of multivariate outputs, all
outputs were equally weighed.

In order to simulate the operational implementation and thus the true performance of the
best models, a sliding window was moved over the test set with a step size of 1 PTU; after
each iteration, the next 16 steps were recursively forecasted and recorded. The forecasted
values were used to calculate both the forecast quality and forecast value for the relevant lead
times.

Forecast quality metric

The accuracy of the models is evaluated with three different standard error metrics; namely,
the root-mean-square error (RMSE), the mean absolute error (MAE) and the mean bias
error (MBE). The primary metric for comparing the accuracy of the models is the RMSE.
Because of following reasons:

o As described in the section 2-2-6 it is a common wind power forecasting (WPF) er-
ror metric, which enables the possibility to compare the results with work from other
researchers.

e The error metric is expressed in the original unit, which makes it intuitive to interpret.

e The RMSE is a single error metric, which makes it easy to compute and understand.

The reason behind including the MAE is to check whether this evaluation metric supports the
results of the RMSE metric. The MBE on the other hand is to validate whether the model is
unbiased.
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Forecast value metric

In this subsection, first, a brief overview of the electricity market process is given. Subse-
quently, it is explained how this process is adjusted and which assumptions were made to
conduct a static value analysis. Finally, a step by step overview of the applied framework
with the relevant equations is given.

As explained in Chapter 1 a Balancing Responsible Party (BRP) has to report the expected
wind power production per hour for the next day at noon the day before delivery, which is
sold in the day-ahead market.

During the delivery day, the intraday trader aims to trade towards the adjusted forecast for
every PTU of the day on the intraday market. The intraday market has two closing times, one
for European Cross-Border Intraday (XBID) and one for national trading, see Figure 3-13. On
the intraday market, most trading contracts are hourly, but half-hourly and quarter-hourly
contracts exist. If the intraday trader wants to trade hourly contracts, at least a five and
nine PTU ahead forecast horizon is required for the national and XBID market, respectively.
From here onward, the five and nine PTU forecast horizons are referred to as the national
and XBID horizon. Figure B-1 illustrates the necessity of a nine PTU ahead forecast horizon
to trade within the XBID market. The significant advantage of trading in the XBID market
is that there is generally more liquidity than in the national market.

closes trading
stops

Delivery
hour

Time
X 6 years
Balancing market
Intraday market

Day-ahead market

Futures market

Figure 3-13: The timeline of the different electricity markets.

The difference between the obtained position for every PTU and the allocation per PTU (i.e.,
the actual delivery) is settled against the corresponding imbalance price per PTU. Generally,
there is one imbalance price per PTU. However, the imbalance price can sometimes differ
between upward regulation (i.e., take price) and downward regulation (i.e., feed-in price); this
is referred to as 2-sided regulation and is due to steering within the timeframe of one PTU.

The static value analysis presented in this thesis aims to measure the financial performance
of a proposed model relative to the Eneco model. Since the metric is relative to the Eneco
model, the reported day ahead position is not required. The most important assumptions
made for the analysis are:

e The last hourly mean of the Eneco forecast is obtained for every delivery hour.

e The trades and positions do not influence the intraday and imbalance price.
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e Only 50 per cent of the total traded capacity at the specific lead time of a delivery hour
is available to adjust the intraday position.

e Only hourly contracts are traded.

e The trader does not have a strategic mindset.

The framework computes the financial performance (Tvaliot qisr) for every PTU in the test
set. The framework consists of two parts. The first four steps explain how the intraday and
imbalance volumes were calculated. The last steps explain the financial settlements of these
volumes.

1. The mean forecast of the proposed model (Pp , ;) and Eneco logging (P, ;) is calcu-
lated for all lead times (V) indicated with subscript (7) on all tradable delivery hours
(M) indicated with subscript (n), where N depends on the forecast horizon and M on
the length of the test set.

2. The tradable intraday volume (Ajq,;) with respect to the Eneco model is computed
through Eq. (3-5). The total available volume (Qsym n ) at the specific lead time before
delivery is multiplied with the assumed available market for Eneco (w), which is set to
0.5. This signifies that 50% of the trade volume is available for Eneco to change position.
The model trades in chronological order and account for earlier position changes. To
prevent making the same correction multiple times.

i = PP,n,i;PE,n,ia if |P7P,n,i - PE,n,i| <w- qum,n,i
e sign(Ppp; — PEpng) W Qsumnyi, else
(3-5)

3. The post-intraday position of the proposed model (Pp piq) is computed through ad-
justing the last forecasted mean Eneco position (Pg;—;) with the cumulative intraday
volume over all tradable lead times. The post-intraday position of the Eneco model
(Pg p-ia) is equal to E,i:1 following the model assumptions. Where the hourly values

are upsampled to quaterly values.

N

Pppida = Pgi-1 + Z Aid i (3-6)
i-1

4. For both the proposed model and Eneco model, the imbalance volume for every delivery
PTU is calculated through subtracting the post intraday position from the allocation
data (Pa), resulting in (Ajmp p) and (Aijmb E), respectively.

5. The tradable intraday volume is traded against the volume weighted average price
(VWAP) for the forecasted hour at the relevant trade time interval (€;4.,)-

6. The imbalance volume vectors (Ajmb p) and (Ajmp ) are traded against their respec-
tive imbalance price vectors (€imb,p) and (€imp ). These price vectors are calculated
according to Eq. (3-7).
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) o €take,n7 if Sign(Aimb,n) =-1
€zmb,n N { €feed—in,na else (3_7)

7. The financial performance vector of the proposed model can be determined by Eq. (3-
8), where (Tvalgot p) represents the total trade value of the proposed model as defined
by Eq. (3-9) and (Tvaliot ) the total trade value of the Eneco model as defined by
Eq. (3-10). The summed intraday trade value is filled for every PTU in the delivery
hour to match the length of the imbalance volume and price vector.

Tvaliot qig = Tvaliot,p — Tvaliot,E (3-8)
N

Tvaliotp = 0.25- > (€idn,i - Nidnsi) +0-25 - €imb.p - Ajmb,P (3-9)
i1

Tvaliot, g = 0.25 - €imb E - Aimb,E (3-10)

3-4-2 Benchmark models
Persistence

The persistence method is applied to create a meaningful benchmark to check whether a
model has skill. Another advantage of including the persistence method is to provide future
researchers with an indicative measure of how predictable this specific test set was. Through
computing percentage improvements to persistence, this study can be easily compared with
other works.

Eneco model

Out of commercial interest, it is important to gain insight into whether the proposed models
outperform the companies status quo model. Detailed information about this model has to
remain confidential. Nevertheless, what can be shared is the general working principle of the
Eneco model. The Eneco model is a k-nearest neighbour NWP based model with a two-step
delayed rudimentary ultra-short-term (UST) correction model based on real-time data. If for
two subsequent PTUs the deltas between the real-time signal and the forecast have the same
sign. The forecast is corrected with the last delta multiplied by a factor that decays with
respect to the forecast horizon. The 0, 4, 6, 8, 12, and 16 PTU ahead logging of the UST
corrected Eneco model was used. It is assumed that these loggings can be linearly interpolated
for analysis. These loggings are available from November 2020 onward and thus constrained
the duration of the test set.
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3-5 Software and hardware implementation

3-5-1 Software

The code has been written in the programming language Python 3, using Jupyterlab Integrated
Development Environment (IDE) from package management software Anaconda. The follow-
ing Python packages were used to develop the models:

Keras 2.4.3

Tensorflow 2.3.0

scikit-learn 0.24.1

XGBoost 1.3.3

Neptune.ai 0.5.1 was used to keep track of the different experiments.

3-5-2 Hardware

Developing the models and trial runs were executed on Eneco’s Data Science Virtual Machine
(DSVM), which is a 24/7 operational Azure D4s v3 virtual machine. It contains an Intel(R)
Xeon(R) CPU E5-2673 v4 processor and 16GB random-access memory (RAM). The operative
system is Windows Server 2016 Datacenter 64-bit.

Some experiments were executed on the Azure NC6s_ v2, which is a Deep Learning Virtual
Machine (DLVM) (i.e., a type of DSVM designed for deep learning applications) [41]. The
main difference with Eneco’s DSVM is that the DLVM contains a Graphical Processing Unit
(GPU), specifically the NVIDIA Tesla P100, which significantly reduced the training time of
the models. Moreover, the DLVM contains an Intel(R) Xeon(R) E5-2690 v4 processor. It
runs on the same operating system as the DSVM.
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Chapter 4

Results & Discussion

This chapter displays the results and discusses their relevance. The first section focuses on
the results from the feature importance model. The following section summarises the hyper-
parameter optimisation results for the two proposed deep learning models. Subsequently, in
section 4-3 the forecast quality is evaluated, followed by the results of the valuation model.
The final section presents six case studies to create insight into the forecast behaviour under
specific circumstances.

4-1 Feature importance model

One of the research questions was to investigate what set of input variables are most relevant
on the ultra-short-term (UST) time scale. Even though this questions is to some extent
already answered in subsection 2-1-1 and section 2-3. Out of curiosity, it was decided to
implement an Extreme Gradient Boosting (XGBoost) model to gain more insight into the
used features through the Shapley Additive Explanations (SHAP) methodology. As the SHAP
methodology used, is not suitable in its original form for explaining deep neural net (DNN)
time series models [27]. These findings cannot be extrapolated to the forecasting models but
still deliver interesting insights.

Table 4-1 shows the root-mean-square error (RMSE) scores of the XGBoost model on the one-
step-ahead forecast horizon for the training, validation and test set. The model’s performance
on the test set can be compared with the data in Table C-1 which shows that the model has
skill compared to the persistence model. Consequently, the feature importance results likely
contain meaningful information.
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Table 4-1: XGBoost results for one-step-ahead forecasting.

Run Training RMSE (kW) Validation RMSE (kW) Testing RMSE (kW)
Ensemble 1 4755 5419 4920
Ensemble 2 4691 5410 4853
Ensemble 3 4586 5404 4834
Ensemble 4 4661 5333 4852
Ensemble 5 4611 5337 4854
Average 4661 5381 4863

What stands out in Figure 4-1a is the importance of the most recent wind power and speed,
while there is strongly decreasing importance of more distant lagged values. These results are
in alignment with the findings in the literature review and data exploration section. Another
important result is the significant impact of the system availability. Interestingly, in Figure 4-
1b the system availability shows to have the most influence when the feature value is low.
These findings suggest the importance of system availability for low wind power predictions.
The two time-based features that should capture the yearly seasonality seem to have a minor
influence on the forecast results. It is difficult to explain this disappointing result, but it
might be related to how the two features were computed. The following approach could
potentially yield more desirable results: modify the equations (3-3) and Eq. (3-4) by setting
t to the day of the year corresponding to the timestamp and T to the number of days in a
year. These modifications result in more samples with similar values, which can enhance the
learning performance of the model on the yearly seasonality.
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Figure 4-1: Feature importance of the XGBoost model expressed in SHAP values.
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4-2 Hyperparameter optimisation results

As was mentioned in the previous chapter, the proposed deep learning model architectures
were found through a hyperparameter optimisation algorithm. This section below summarises
the random search results and the final parameter settings for both the multilayer perceptron
(MLP) and long-short-term memory (LSTM) model.

4-2-1 Multilayer perceptron

Table 4-2 and Table 4-3 summarise the random search results obtained for the univariate
and multivariate MLP model, respectively. Note that the mean squared error (MSE) loss is
standardized.

Table 4-2: The hyperparameter optimisation results for the MLP model with univariate input
data.

Data Model jpioss 012055 Lhval loss a‘zla”oss Best validation loss Best parameters

units_ 1: 25,

1 0.0239 0.0000 0.0231  0.0000  0.0224 -
learning rate: 0.01

units__1: 5, dropout: 0.0,
Univariate 2 0.0760 0.0199 0.0831  0.0146  0.0226 units_ 2: 75,
learning_ rate: 0.01

units_ 1: 5,

num__additional_layers: 2,
3 0.0431 0.0187 0.0419 0.0174  0.0225 units_ 2: 85,

units_ 3: 55,

learning_ rate: 0.01

Table 4-3: The hyperparameter optimisation results for the MLP model with multivariate input

data.
Data Model 055 leoss [hval loss Uﬁalloss Best validation loss Best parameters
1 0.0120 0.0000 0.0131  0.0000 0.0120 units_1: 10,
learning_ rate: 0.001
units_ 1: 70,
P dropout: 0.0,
Multivariate 2 0.0863 0.0293 0.0825 0.0266  0.0122 .
units_ 2: 95,
learning_ rate: 0.001
units_ 1: 30,
num__additional_layers: 1,
3 0.0517 0.0375 0.0518 0.0345 0.0122 units_ 2: 35,
units_ 3: 45,

learning rate: 0.001

No significant difference in the best validation score was found between the different model
configurations. However, for the average and variance values over all trials, a remarkable
difference between model 1 versus models 2 and 3 is observed. After manual exploration
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of the different trials, it became apparent that the difference can primarily be ascribed to
the search range of the second and third dense layer. Because when a trial initialises a zero
neuron dense layer, no information is passed to the output layer, which causes a faulty trial.
For model 2 specifically, this might also be due to high dropout rates within the search range;
this is supported by the fact that the best validation loss is found at a zero dropout rate.
A note of caution is due here since the (validation) loss between Table 4-2 and Table 4-3
cannot be directly compared. The underlying reason is that the univariate model has only
one output, while the multivariate model has four. Therefore, the results on the power
forecast were compared separately, which supported the expectation that the multivariate
model outperforms the univariate model on the one-step-ahead power forecast.

Even though the best validation loss is slightly lower for model architecture 1, it was decided to
continue with model 3 because of the expectation that this model will better map the complex
task due to the additional layer and more significant number of neurons. The final architecture
used to create the ensemble models consists of two dense layers with 30 and 35 neurons and
has a learning rate of 0.001. The third layer that consists of 45 neurons is excluded from the
model because the number of additional layers equals one for this configuration. This model
architecture is from here onwards referred to as the M LP — W PF model.

4-2-2 Long short term memory

Table 4-4 summarises the random search results obtained for the multivariate LSTM model.

Table 4-4: The hyperparameter optimisation results for the LSTM model.

Data Model jioss alzoss hvalloss 0331 loss DBest validation loss Best parameters
1 0.0102 0.0000 0.0120 0.0000  0.0114 units_1: 24,

learning_ rate: 0.01
Multivariate wmits 1: 16,
2 0.0102 0.0000 0.0120 0.0000 0.0114 units_ 2: 40,

learning_ rate: 0.001

Similar to the results of the multivariate MLP models, there is no significant difference ob-
served related to model architecture. One unanticipated finding was that the total number
of set trials was not reached for model 1 because the Oracle triggered an exit at trial 23.
A possible explanation is that the random search algorithm could not generate a new set of
hyperparameters from the search space. After exceeding a specific number of attempts, the
Oracle stops. Nevertheless, this early stop of the random search does not seem to impact the
results negatively.

The final architecture that was used to create the ensemble models consists of two LSTM
layers with 16 and 40 neurons and has a learning rate of 0.001. This model architecture is
from here onwards referred to as the LSTM — W PF model.
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4-3 Forecast quality

After the hyperparameter optimisation phase, the specified model architectures in section
4-2 were trained ten times on the train and validation set. The obtained ensemble models
were used to construct four final models as described in section 3-3. These four models were
evaluated on the test set using the quality performance metrics RMSE, mean absolute error
(MAE) and mean bias error (MBE). The quality performance results are divided into three
subsections. The first subsection presents the average results for specific forecast horizons.
Subsequently, the focus is on the detailed results for every programme time unit (PTU) within
the ultra-short-term wind power forecasting (UST-WPF) horizon. The final section examines
the mean forecast bias.

4-3-1 Overall performance

Table 4-5 shows the average summary statistics on different forecast horizons for the bench-
mark and proposed models. The best score for every forecast horizon and performance metric
is printed in bold. There are two important findings within these results. The most strik-
ing result to emerge from the data is that the Eneco — LST M5y outperforms all the other
models on the different forecast horizons, which is counterintuitive given that the ML Py
model outperforms the LST M50 model on the XBID and UST-WPF horizon. Illustrating
an insignificant difference in performance between the two deep learning approaches, which
confirms the findings of Liu et al. [29], but is in conflict with the findings of Li et al. [26].
The average reduction in RMSE between Eneco — LST M50 and Persistence model on the
forecast horizons from short to long are 15%, 22% and 31%, respectively. Compared to the
Eneco model, the reductions are 27%, 16% and 4%, respectively. The second finding is that
all other models, including the Persistence benchmark model, on average outperform the
FEneco model until the XBID horizon on the MAE metric.

These results are likely to be related to the importance of real-time data for relatively short
forecast horizons. This is supported by the decreasing RMSE reduction compared to the
FEneco model. Moreover, also the Persistence model outperforms the Eneco on the shorter
forecast horizons. It is essential to bear in mind that these results are the average performance
metrics for specific horizons. Let us now consider the more detailed results of the different
models.

Table 4-5: Comparison of the average forecast accuracy of the benchmark models and proposed
models on the test set and specified forecast horizons.

National XBID UST-WPF
Model RMSE (kW) MAE (kW) RMSE (kW) MAE (kW) RMSE (kW) MAE (kW)
Persistence 9433 5276 12006 6860 15457 9065
FEneco 10437 6394 11412 7098 12305 7794
M LPys 8634 5070 11382 6749 15200 9132
LST Mpso 8618 5039 11446 6810 15306 9337
Eneco — MLPpsg 8279 4991 9885 6031 11820 7361
Eneco — LSTMpso 8218 4885 9843 5925 11804 7242
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4-3-2 Performance over forecast horizon

This subsection focuses on the quality performance of the models per lead time. The in-
tention is to visualise when the forecast performance is on par with the benchmark models
and illustrate the uncertainty related to the stochastic nature of the proposed deep learning
models. Only the RMSE is reported to avoid approximately redundant results.

Figure 4-2a compares the performance of the two proposed deep learning models with the
two benchmark models. The shaded areas indicate the 80% confidence interval based on the
10th and 90th percentile predictions of the ensemble models. Generally, the 10th and 90th
percentile predictions are worse than the 50th percentile prediction; therefore, the shaded area
is most prominent on the up side and barely visible on the bottom side. It can be observed that
the stochastic element has more influence on the M LP — W PF model than on the LSTM —
W PF model, which signifies that the LSTM — W PF model is more stable than the M LP —
W PF model. Eventually, the performance of both models is slightly worse compared to the
Persistence model, which means that the models do not have skill from 10 PTU onwards.
Figure 4-2b compares the performance of the multivariate combination models with the two
benchmark models. The shaded areas are based on the multivariate combination of the 10th
and 90th percentile predictions with the Eneco model. The multivariate combination models
outperform the Persistence model on the complete UST-WPF horizon and outperform the
FEneco model up to the nine PTU horizon.
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Figure 4-2: The four proposed models compared to the Persistence and Eneco benchmark
models.

Performance within the literature framework

The performance of the Eneco— LST M5y can be compared with some of the models found in
the literature through normalising the RMSE with the nominal farm capacity (i.e., normalized
root-mean-square error (NRMSE)). Figure 4-3a and Figure 4-3b show the comparison for a 16
PTU and 8 PTU horizon, respectively. These plots must be interpreted with caution because
these studies use different data sets. Moreover, the variation in sample size can strongly
influence the results. Nevertheless, these figures still put the best performing model of this
study into context.
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Figure 4-3: The Eneco— LST M5y model compared to the results from the reviewed literature
in section 2-3.

4-3-3 Forecast bias

The forecast bias indicates whether the model tends to overestimate or underestimate wind
power production. Table 4-6 presents the MBE for the two benchmark models and four pro-
posed models, where the value closest to zero is printed in bold per time interval. What stands
out is that all models generally overforecast except for the LST M50 model, which slightly
underestimates the power production. From a forecaster’s perspective the Persistence and
LST M5y perform best on the MBE metric.

Table 4-6: The mean bias error with an hourly frequency on the UST-WPF horizon expressed in

kW.

Model 0-4 PTU 4-8 PTU 8-12 PTU 12-16 PTU
Persistence 69 76 71 57

Eneco 1411 2198 2869 3458

M LP,50 461 694 983 1275

LST Mys -8 -281 -294 -4

Eneco — M LP,s 936 1446 1926 2367

Eneco — LST M5, 701 958 1287 1727

4-4 Forecast value

This section covers the results from the valuation model proposed in section 3-4. First, the
overall cumulative value creation results are presented. Subsequently, the underlying driving
factors for value creation are explored for three specific models.
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4-4-1 Overall performance

Table 4-7 shows the cumulative forecast value relative to the Eneco model for the test set.
The different forecast horizons have to be interpreted as follows: the five PTU forecast hori-
zon leads to only one potential intraday trade per delivery hour. In comparison, the nine
PTU forecast horizon leads to five potential intraday trades per delivery hour. These find-
ings cannot be extrapolated into the future and might differ in practice. Nevertheless, four
interesting findings result from this table. Firstly, all models produce a positive revenue. Sec-
ondly, the multivariate combination models have a significantly lower value creation, which is
explainable through considering that the forecast is for 50% determined by the Eneco model.
Thirdly, the increase in the forecast horizon improves the valuation results except for the final
increment in the forecast horizon of the LST M50 model. The increase in market liquidity
may partly explain the relationship between forecast value and forecast horizon. Finally, these
results further support the idea that a high forecast quality does not necessarily deliver the
most value.

The cumulative forecast value results of the 10th or 90th percentile models are included in the
appendix, see Table D-1. These results do not indicate a consistently better value creation
for either the 10th or 90th percentile forecast. Therefore, based on these results, there is no
clear relationship between forecast value and over or under forecasting.

The next section aims to provide more insight into what causes the cumulative value creation
of the Persistence, M L Py and Eneco— LST My5y models. Because the Persistence model
functions as a benchmark. The M LP,50 model is the best performing model on the European
Cross-Border Intraday (XBID) horizon. Lastly, the Eneco — LST M5y model is the most
accurate model on the XBID horizon.

Table 4-7: Cumulative forecast value relative to the Eneco model expressed in euros over the
test set on all forecast horizons between National and XBID.

Model 5 PTU 6 PTU 7PTU 8PTU 9PTU
Persistence 35450 52391 52771 57901 67641
Eneco 0 0 0 0 0
MLP,50 37743 51616 51781 59410 69353
LST My 33290 40028 41700 46356 46208

Eneco — M LP,5 25664 35426 37458 41575 47750
Eneco — LSTMpsy 21608 27179 29027 32142 34867

4-4-2 Detailed valuation results

The first subsection displays the cumulative value creation of the Persistence, M LPysy and
Eneco — LST Mpso in more detail. On account of these results, the latter subsection focuses
on one specific week in the test set.

The value creation for three different models

Figure 4-4 presents the cumulative value creation over the test set of the three selected models.
Overall the models seem to generate a relatively small positive forecast value compared to
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the Eneco model, but between 21/12/2020 and 27/12/2020, the value creation spikes.
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Figure 4-4: Cumulative value creation of the Persistence, M LP,5, and Eneco — LST M50
model over the test set.

Some of the driving factors for this value creation are the imbalance volumes, the XBID
horizon volume weighted average price (VWAP) and the imbalance prices. The daily mean
of the imbalance volumes and prices were plotted on top of Figure 4-4 in Figure 4-5a and
Figure 4-5b, respectively. The reason behind taking the daily mean is to make the data
visually more appealing and interpretable. Based on both figures, it appears that most value
creation is characterised by a significant short position of the Fneco model during relatively
high imbalance prices compared to the intraday VWAP.
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Figure 4-5: Cumulative value with the daily mean imbalance volumes and prices.

To further investigate whether this significant value creation can largely be ascribed to the
short position of the Eneco model all trade value (TVAL) components are plotted separately in
a cumulative fashion in Figure 4-6a, Figure 4-6¢ and Figure 4-6e. Furthermore, the cumulative
Tvalyor p and Twalor g are plotted for the three models in Figure 4-6b, Figure 4-6d and
Figure 4-6f.
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The figures show that the three examined models neither have significant intraday or imbal-
ance costs during this specific week. Of these three models, the Persistence model has the
most negative intraday TVAL on the XBID horizon but has almost negligible costs related to
imbalance. For the other two models, these parameters are of comparable magnitude, where
the M LP,50 has a slightly lower imbalance cost compared to the intraday TVAL on the XBID
horizon and the Eneco— LST M,5q vice versa. The imbalance costs of the Fneco model seem
to be significant, supporting the earlier findings, which pointed towards the short position of
the model during this specific week. Following the findings in this section, the next section
focuses on the Tvaliy,p within this particular period at a higher granularity.

50000 50000

J— —— Tvalo,p
ok % ﬁ&w o oA —— Tvalwt,e
-50000 S — Tvaly, ~50000 4
\A\'\f _
& -100000 \ & -100000 -
b — Tvalims,p o
3 Tvaliot.e 2
S -150000 : S -150000
200000 N —200000 4
~250000 ¥ ~250000
~300000 oy s ~300000 ey ey
R I I U R I D W I ! N % A0 93 a0 o A3 .0 )
Q,x‘f‘gq,x\'z,x\'xbs\%,O'QQ.xl’qg.\,7-’&0.\,7-‘10_x”L‘3\’,@‘“\;0\’\;.0\'1,0\3 q,x‘f‘ob_\,\‘ Ry Q,\J-’“Q,\J’“Q,ﬂ'xe,\3’10_\}3\;0\'(1,0‘/\\;0\1&0”3
PN N S\ SN N W\ P\ AP R N PN BB AP AP \12

(a) Seperate TVAL components of the Persistence and  (b) TVAL of the Persistence and Eneco model
FEneco model

50000
50000 - —— Tvalo,p
0 4 —— Tvaligpi-a 0+ Tvaltor e
—— Tvalig,p,i=3
~50000 — Tvalupi-z ~50000
— Tval, - —
@ -100000 RIS G 100000
b —— Tvalimp,p P
3 Tvalee 3 150000 |
$ -150000 ]
—200000 - —200000 1
~250000 ¥ ~250000
~300000 B . s K WA S A S
oA S ® AS D A P> 0 A A® D S AS D A P A3 A0
S s S e s s s S S S S P N e A A
A G Y Y Y I Y Y Y Y P P o8 A Y Y Y Y Y Y Y Y e Y oY
(c) Seperate TVAL components of the MLP,5 and (d) TVAL of the M LP,50 and Eneco model
FEneco model
50000
50000 f—
— Tvalpies Tvalorp
0 —— Tvaligp,iza 01 — Tvalwt,e
—— Tvalig,p,i=3
~50000 — Tvalupies ~50000
— Tvalgpion =
@ -100000 vaieri=t g 100000 -
b —— Tvalimp,p Py
3 Tvakxe g ~150000
S -150000 s
~200000 - Y —200000
~250000 o ~250000
~300000 ~300000
O A . A% 25 b O :\_6 2> .20 . o > 90 :i\ (N N g )] L ° o > Q © %] N Al
O e e O A A A S A S A S S q"}Dn3\’30'\}—\’0”yme31’0031/00”Txo”ﬂﬂn313\,9\’&«,—“\’—\1'&1&‘“&
ENaE b Nl ULl Nl Ml Ll Mg g i e B e N N B AST AP\ A

(e) Seperate TVAL components of the Eneco — (f) TVAL of the Eneco — LST M50 and Eneco model
LST Mpso and Eneco model

Figure 4-6: Detailed plots to visualise the separate TVAL components of the Persistence,
MLP,s50 and Eneco — LST Mpso model.
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The value creation from 21/12/2020 until 27/12/2020

Based on the previous subsection, it was concluded that the significant change in value is
mainly due to the high imbalance costs of the Eneco model. In Figure 4-7 the wind speed is
visualised in the top plot, and in the bottom plot, the mean Eneco forecast in the last tradable
PTU and the allocation data are shown. Three particular moments have been highlighted,
during which a considerable difference between the Eneco forecast and the actual production
is observed. The observed difference is most likely due to the sudden decrease in wind speed,
while the wind speed is close to the rated output speed.
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Figure 4-7: The mean Eneco forecast on the last tradable time and the allocation in the context
of the measured wind speed from 21/12/2020 until 27/12/2020.

The delta between the Eneco forecast and the allocation is shown in the top plot of Figure 4-8.
Combined with the respective imbalance price, this computes the Tvals £, see the bottom
plot of this figure. This combination of findings provides support for the importance of real-
time data for the forecast value on the XBID horizon.
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Figure 4-8: The imbalance volume of the Eneco model, imbalance prices and Twalot g accu-
mulation that is a product of these volumes and prices from 21/12/2020 until 27/12/2020.
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4-5 Case studies

This final section aims to create insight into the forecast under specific conditions. All plots
contain the allocation data (Pa), measured wind speed and the two benchmark models.
Because plotting all proposed models would be overwhelming, it was decided only to show the
LST M50 model on the nine PTU ahead horizon. As the multivariate combination between
this and the Eneco model generates the best performing model, which is the Eneco—LST Mps
model. Plotting both separately creates insight into why the combination is beneficial for the
forecast quality. Every figure contains four plots where plot (a) shows the running forecast
with a 9 PTU ahead horizon and the plots (b), (¢) and (d) show the 1, 5, and 9 PTU ahead
forecasts, respectively.

Firstly, two ramp-up and ramp-down events are shown. Subsequently, a consistently high and
low wind speed case is considered. The definitions of ramp events in the papers of Cutler et
al. [9], and Bossavy et al. [3] have functioned as an inspiration. The following guidelines were
used to chose the four different ramp occurrences: a quick ramp event has approximately a
50% change in rated power within one hour while the gradual ramp event has approximately
a 75% change in rated power within three hours. The consistent wind speed cases were found
empirically.
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4-5-1 Case 1: Ramp-up events

Case 1A: Ramp-up event within one hour

Its inconsistent increase characterises the ramp event on 30/12/2020. Figure 4-9 shows that
in this specific case, the LST M5, performs well on the first PTU ahead forecast. However,
the model under-forecasts and does not recognise the up-going trend for multiple steps ahead.
Because of this, the model performs similarly to the Persistence model.
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Figure 4-9: Ramp-up from 38 MW to 90 MW between 12:45 and 13:15 on 30/12/2020.

Master of Science Thesis

T.A. Homsma



58 Results & Discussion

Case 1B: Ramp-up event within three hours

In contrast to earlier findings in the one-hour ramp-up case, the LST M50 picks up the
upward-trend within the three-hour ramp-up case, see Figure 4-10a. Therefore, it generally
outperforms the two benchmark models. Moreover, the LSTM,50 does not significantly
overshoot, which is the case for the Eneco model. In this case, the value of high dependence
on real-time data for short forecast horizons becomes apparent. A possible explanation for
this might be the more consistent and gradual increase. Furthermore, the real-time wind
speed ramps up in advance of the allocation data, which provides the LST M50 model with
ramp-up information.
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Figure 4-10: Ramp-up from -0.1 MW to 90 MW between 04:00 and 07:00 on 16/01/2021.
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4-5-2 Case 2: Ramp-down events
Case 2A: Ramp-down event within one hour

There are similarities between the LST M50 behaviour in the ramp-up case 1A and the ramp-
down case within one hour. Looking at the running forecast in Figure 4-11a the LST M50
model only picks up the downward trend on the first PTU ahead forecast as it forecasts lower
than the persistence model, which is more clearly visualised in Figure 4-11b. However, the
forecast even slightly increases for the following PTUs ahead. Even though the increase the
model still performs slightly better than persistence, but for the 5th and 9th PTU ahead,
the results look somewhat similar to the persistence model. These results may support the
influence of the wind speed feature on the forecast. In ramp-up case 1B, the wind speed
preceded the allocation power, which informs the model on the ramp-up; this is not the case
when the wind speed and allocation align. The inconsistent phase shift between the wind
speed and allocation data is most likely due to the earlier mentioned issues related to the
Breeze asset management system.
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Figure 4-11: Ramp-down from 90 MW to 36 MW between 00:15 and 01:15 on 17/12/2020.
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Case 2B: Ramp-down event within three hours

The combination of the gradual ramp-down and the preceding decreasing wind speed likely
cause the LST M50 to forecast lower than the Persistence model, which supports the earlier

findings that the model has skill over Persistence, see Figure 4-12a.

In Figure 4-12b it

becomes clear that the Eneco model is already slightly modified with real-time data through
the UST correction model. However, a more substantial correction would be beneficial. This
perfectly illustrates the reason behind the improved performance of the Eneco — LST Mps

model.
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4-5-3 Case 3: Consistent high wind speeds

The difference between all models is relatively low during the consistently high wind speeds
scenario. The most noticeable difference is the over-forecasting of the Eneco model around
18:00; this is most likely related to the numerical weather prediction (NWP) data used as an

input for the Eneco model.
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Figure 4-13: Consistent high wind speeds on 04/01/2021.
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4-5-4 Case 4: Consistent low wind speeds

The consistent low wind speed case has a slightly increasing trend, which the LST M50 model
seems to forecast, see Figure 4-14a. Overall the models perform very similarly on this section

of the test set.
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Figure 4-14: Consistent low wind speeds on 08/11/2020.
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Chapter 5

Conclusion & Recommendations

5-1 Conclusions

The ongoing large scale adoption of wind power increases the associated risks related to the
variability. An essential way to mitigate these risks is to forecast production accurately. This
has been the motivation for this research into wind power forecasting (WPF), specifically
ultra-short-term wind power forecasting (UST-WPF), due to its commercial and technical
relevance.

Two open areas of research have influenced the direction of this research. Firstly, the desire for
a more practical application of forecast methods considering both accuracy and value. Most
state-of-the-art research is conducted from a forecaster’s perspective, focusing on reducing the
standard error metrics. However, from a forecast user perspective, it is evenly important to
generate value with a forecast model. Secondly, the increasing amount of available data and
the developments within the domain of artificial intelligence (AI) over the past decades present
opportunities for forecasting. Until now, deep learning has not yet delivered exceptional
results in forecasting compared to other research fields. Therefore, the research goal of this
project has been to explore the potential of deep learning models to increase both forecast
quality and value.

The approach has been the development of four recursive UST-WPF models for Princess
Amalia Wind Farm (PAWP) with a 16 programme time unit (PTU) forecast horizon and a
forecast frequency of 1 PTU. Model 1 and model 2 use a multilayer perceptron (MLP) and a
long-short-term memory (LSTM) architecture, respectively. Both models only use real-time
data to forecast wind power. After finding the optimal hyperparameters through a random
search algorithm, these models were trained ten times to compute the 10th percentile, median
and 90th percentile forecast. This makes the models more robust and quantifies the stochastic
nature of deep learning models. The other two models are a multivariate combination of
the median ensemble forecast models with the currently operational ultra-short-term (UST)
corrected numerical weather prediction (NWP) based model (i.e., the Eneco model). The
four models that result from this approach are the M LP,50, LST M50, Eneco— M LP,5, and
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Eneco — LST Mpsg, which were compared to two benchmark models: a Persistence and the
FEneco model. Additionally, a novel framework was designed to evaluate the forecast value
relative to the Eneco model on various forecast horizons.

Based on the obtained results, the following five conclusions can be drawn. Firstly, it ap-
pears that both proposed deep learning methods, M LP,5, and LST M,50, outperform the
Persistence benchmark model on a nine PTU ahead horizon. Secondly, the multivariate
combination of these methods with the operational Eneco model, Eneco — M LP,50 and
Eneco — LST M50, outperform the Eneco model on a nine PTU ahead horizon. Thirdly, the
difference in performance between the MLP and LSTM is remarkably small in the proposed
configurations. However, the LSTM model does show to be more consistent compared to
the MLP model. Fourthly, all proposed models have a smaller bias than the Eneco model,
which is a desirable model characteristic. Finally, all proposed models generate positive value
relative to the Eneco model, but the statistically best model does not necessarily generate
the most value. To summarise, the results indicate that the proposed deep learning models
can contribute both in quality and value up to 9 PTUs ahead.

5-2 Drawbacks and limitations

During the project, the following drawbacks and limitations were encountered:

e Length data set. The performance of deep learning methods is strongly related to
the amount of training data. The number of training samples is constrained by the im-
plementation date of the Breeze asset management system. Because the meteorological
observation features were only available from this data source at Eneco, consequently,
not the entire length of historical power measurements could be used.

e Data quality. The data in Breeze is most likely inconsistently lagged. Considering that
accurate lagged real-time power measurements are an essential feature in UST-WPF the
study has been limited to regel- en reservevermogen (RRV) wind farms that do have an
accurate real-time power datastream.

e Lack of generalisation. This methodology has only been applied to one particular
offshore wind farm. Therefore it is unknown how these conclusions generalise to other
RRV wind farms. Furthermore, the short duration of the test set related to the ini-
tialisation date of the Eneco model logging means that these results have not yet been
validated for any spring or summer months.

e Limited design iterations. Training of deep learning models is a time-consuming
process, even with high-performance computational resources. Not only the training but
also generating the running forecast over the test set is time-intensive. The combination
of both has limited the number of design iterations.
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5-3 Recommendations

5-3-1 Business recommendations

The core challenge for a utility company related to this research is to bridge the divide between
theoretical improvements in research and an operational workflow. Because of the following
two reasons, there is some resistance to implement deep learning models. First, a utility
company values reliability above all else. Therefore, the interpretability of the forecast will
be crucial for adoption within this industry. More research into the explainability of deep
learning models is recommended. Secondly, there is still, to some extent, a gap concerning
innovation and integration structures. Developing a deep learning workflow and a standard
parallel test environment for quality and value could aid the swift implementation. Regarding
forecast value, the theoretical value model proposed in this thesis can function as a basis to
build on. Nevertheless, the implications of the assumptions made to conduct the financial
analysis need to be critically examined. A sensitivity analysis on these assumptions can be a
future research topic.

For Eneco specifically, it is recommended to address the four limitations and drawbacks
discussed in the previous subsection. In order to do this, the following opportunities are
suggested:

o Investigate whether the additional historical power data weighs more heavily on model
performance than the features from Breeze.

e Start the conversation with Greenbyte about data consistency. Maybe they can improve
the software and replace the anomalous data.

e Schedule a new analysis when a full year of data is available to evaluate the model
performance on all seasons. Furthermore, the developed models can be validated on
similar wind farms within the portfolio.

e Improve the designed recursive forecasting framework; this reduces the evaluation time
on the test set.

5-3-2 Academic recommendations

In reflection of developing the deep learning WPF models, the following avenues for future
research are summarised as follows:

1. Considering that the multivariate combination models outperform all other models from
two PTUs ahead onward. Incline that the inclusion of NWP data or other available
forecasts to the input features might improve the model performance. Future research
could, for instance, quantify the importance of NWP on the UST-WPF horizon.

2. This research takes into account the stochastic element of deep learning models and
quantifies its influence on the UST-WPF horizon. Further research can include NWP
ensemble data to provide an indication of meteorological uncertainty and subsequently
compare the magnitude of the two sources of forecast uncertainty.
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. The performance of the proposed LSTM model is more stable, but it does not seem to

outperform the MLP model significantly. A greater focus on the difference in results
between various LSTM architectures could produce interesting findings. Some sugges-
tions are implementing the recursive model from this thesis, an encoder-decoder model
and a multi-step vector output model.

. The selection process of the number of lagged inputs in this thesis were influenced

by results found in literature and the results from the partial autocorrelation func-
tion (PACF) analysis. Further research is required to determine whether an increased
number of lagged values improve the results of either the MLP or LSTM model.

. A fundamental approach to capture the yearly seasonality has a negligible effect on the

forecast. Further research could be conducted to determine the effectiveness of alterna-
tive methods to incorporate seasonality like differencing, time-series decomposition and
one-hot encoding.

. Several questions remain to be answered regarding the results of the random search

hyperparameter optimisation of this study. A natural progression of this work is to
analyse the results for more complex architectures, additional input features and more
advanced optimisation algorithms, like Bayesian optimisation.

. In the studied literature, the inclusion of features is often based on the correlation

with wind power. A further study could assess feature importance in a more modular
fashion to quantify the relationship between specific input features and forecast quality
and value.

. Based on the studied literature, the mean squared error (MSE) loss function was applied.

Nevertheless, different loss functions might better approximate the actual cost function,
which is most likely asymmetric. Future studies can investigate the influence of different
loss functions on value creation by implementing the proposed value framework.

. The multivariate combination of models is weighted equally. However, based on the

obtained results, it seems interesting to pursue the development of an algorithm that
optimizes the weights between both models for every PTU.
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Appendix A

Initial selection Eneco wind portfolio

Table A-1: The Eneco wind portfolio filtered on the initial selection criteria.

Country Subgroup Site name Nominal Power (MW) Lat Lon
Slufter 21.6 51.93196 4.014845
Herkingen IT 8.25 51.70857 4.11307
Delfzijl ZO 15.13 53.28468 6.96886
Waalwijk 7.5 51.70916 5.072338
Acrres 2.3 52.51553 5.55035
Romerswaal 17.5 51.41659 4.230881
Hoevensche Beemden 15 51.60921 4.591458
Fujifilm 10 51.59656 5.017764
Houten 6 52.01714 5.144442
Delfzijl-Noord 62.7 53.31766 6.983167
Laarakkerdijk 10 51.33191 5.136647
Sabinapolder 9 51.67193 4.398243
NI Onshore de Kroeten 0.85 51.63206 4.708825
Anna-Mariapolder 14.4 51.38326 4.265265
Kloosterboer 1 2.05 51.47829 3.70778
Kloosterboer I1 6.9 51.47167 3.69865
Autena 9 51.96966 5.106693
WP Boerderijweg 9.2 51.30341 5.939264
WP Dalfsen 9.9 52.56118 6.213787
WP IJslandweg 2 51.44052 3.736372
WP Oesterdam 5 51.45413 4.232188
WP Tolhuis 9.9 52.56297 6.20628
WP Van Gogh 11.5 51.61489 4.609872
WP Zuidwal I 15 51.9791  4.061
WP Zuidwal II 9 51.9825  4.0442
WP Landtong II 6 51.93861 4.18712
Prinses amaliawindpark 120 52.58755 4.224012
NL Offshore Luchterduinen 129 52.40463 4.162962
Borssele 365.75 51.67318 2.887471
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Start trade time End trade time (National) End trade time (XBID) Available data 1PTU ahead 2 PTU ahead 3 PTU ahead 4 PTU ahead 5 PTU ahead G PTU ahead 7PTU ahead 8 PTU ahead 9 PTU ahead
Delivery time [ 01/11/2020 00:45 | 01/11/2020 01:00 | 01/11/2020 01:15 | 01/11/2020 01:30 | 01/11/2020 01:45 | 01/11/2020 02:00 | 01/11/2020 02:15 | 01/11/2020 02:30 | 01/11/2020 02:45 |
00:46:00 00:55:00 01:00:00 01/11/2020 00:30 96040 93224 70124 49764 43536 37652 39358 61200 62924
Delivery time [ 01/11/2020 01:00 | 01/11/2020 01:15 [ 01/11/2020 01:30 | 01/11/2020 01:45 | 01/11/2020 02:00 | 01/11/2020 02:15 | 01/11/2020 02:30 | 01/11/2020 02:45 | 01/11/2020 03:00 |
01:01:00 01:15:00 x 01/11/2020 00:45 93224 70124 49764 43536 37652 39358 61200 62924 64160
Delivery time | 01/11/2020 01:15 | 01/11/2020 01:30 | 01/11/2020 01:45 | 01/11/2020 02:00 | 01/11/2020 02:15 | 01/11/2020 02:30 | 01/11/2020 02:45 | 01/11/2020 03:00 | 01/11/2020 03:15 |
01:16:00 01:30:00 x 01/11/2020 01:00 70124 49764 43536 37652 39358 61200 62924 64160 84676
Delivery time [ 01/11/2020 01:30 | 01/11/2020 01:5 [ 01/11/2020 02:00 | 01/11/2020 02:15 | 01/11/2020 02:30 | 01/11/2020 02:45 | 01/11/2020 03:00 | 01/11/2020 03:15 | 01/11/2020 03:30 |
01:31:00 01:45:00 x 01/11/2020 01:15 49764 43536 37652 39358 61200 62924 64160 84676 89100
Delivery time [ 01/11/2020 01:45 | 01/11/2020 02:00 | 01/11/2020 02:15 | 01/11/2020 02:30 | 01/11/2020 02:45 | 01/11/2020 03:00 | 01/11/2020 03:15 | 01/11/2020 03:30 | 01/11/2020 03:45 |
01:46:00 01:55:00 02:00:00 01/11/2020 01:30 43536 37652 39358 61200 62924 64160 84676 89100 83440
Legend:

No trading possible

National
XBID

Figure B-1: The trading cycle of the valuation model explained until the 9 programme time unit (PTU) ahead forecast.

Master of Science Thesis

T.A. Homsma



Appendix C

Forecast quality

Master of Science Thesis T.A. Homsma



Forecast quality

72

Table C-1: The forecast results on the test set expressed in root-mean-square error (RMSE) over the whole ultra-short-term wind power

forecasting (UST-WPF) horizon.

MMMQ LSTMyo LSTMyso LSTMyy MLPyg MLPsy MLP,y Eneco wmw%@a wmw%@% WN@% wwmmwa wwmwwg wwmmg Persistence
1 4124 4126 4151 4451 4393 4760 8672 5276 5285 5314 5379 5431 5570 5779
2 7444 7471 7495 7525 7462 7884 9381 7344 7364 7391 7316 7389 7575 8222
3 9067 9091 9128 9188 9072 9625 10451 8491 8515 8560 8478 8557 8802 9710
4 10510 10533 10565 10640 10475 11175 11787 9618 9646 9697 9614 9692 9998 11075
5 11845 11870 11905 11962 11770 12632 11896 10244 10280 10346 10234 10324 10711 12381
6 13153 13183 13222 13230 13022 14025 12396 10974 11017 11097 10920 11031 11493 13605
7 14405 14441 14485 14510 14272 15384 12478 11545 11599 11691 11499 11615 12144 14759
8 15557 15603 15657 15709 15440 16648 12810 12125 12190 12300 12087 12216 12796 15789
9 16640 16698 16764 16810 16529 17831 12838 12607 12686 12812 12552 12709 13336 16730
10 17674 17744 17821 17849 17549 18950 12931 13081 13173 13317 12994 13168 13842 17615
11 18568 18653 18748 18827 18496 20002 13097 13478 13586 13750 13415 13600 14325 18479
12 10438 19540 19653 19715 19390 20997 13338 13870 13996 14180 13780 14008 14781 19301
13 20256 20373 20508 20580 20225 21939 13440 14242 14385 14590 14156 14373 15201 19996
14 20978 21115 21272 21353 20968 22776 13586 14550 14718 14944 14468 14688 15557 20659
15 21692 21859 22083 22092 21717 23611 13776 14870 15051 15318 14761 15011 15916 21311
16 22358 922591 22979 22800 22416 24422 14008 15160 15379 15718 15045 15310 16268 21904
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Cumulative forecast value

Table D-1: Cumulative forecast value for all models relative to the Eneco model expressed in
euros over the test set on all forecast horizons between National and European Cross-Border
Intraday (XBID).

Model PTUS5 PTU6 PTUT7 PTUS8 PTUY9
LST My 31930 40750 43338 48564 47242
LST My 33290 40028 41700 46356 46208
LST Mg 35438 40452 41492 46494 48049
MLPp 27752 52834 56808 66382 66723
M LP,50 37743 51616 51781 59410 69353
M L Py 48539 46459 43113 47842 70739
Eneco 0 0 0 0 0

Eneco — LSTMpp 20511 27616 30009 33226 35854
Eneco — LSTMpsy 21608 27179 29027 32142 34867
Eneco — LST Mgy 22859 27721 29330 32611 35684
Eneco — M LPpy 19504 35114 38666 44212 46881
Eneco — M LP,s50 25664 35426 37458 41575 47750
Eneco — ML P 30912 32345 31565 34227 44677
Persistence 35450 92391 52771 57901 67641
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ACF
ADF
Al
ANN
API
AR
ARIMA
BRP
BRPs
CNN
DLVM
DNN
DSVM
EMD
EEMD
GPU
GRU

I

IDE
IEC
I1ID
IMFs
IT

MA

autocorrelation function

Augmented Dickey-Fuller

artificial intelligence

artificial neural network

Application Programming Interface
AutoRegressive

autoregressive integrated moving average
Balancing Responsible Party

Balancing Responsible Parties
convolutional neural network

Deep Learning Virtual Machine

deep neural net

Data Science Virtual Machine

empirical mode decomposition

ensemble empirical mode decomposition
Graphical Processing Unit

gated recurrent unit

Integrated

Integrated Development Environment
International Electrotechnical Commission
independent and identically distributed
intrinsic mode functions

information technology

Moving Average
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MAE mean absolute error

MAPE mean absolute percentage error

MBE mean bias error

MLP multilayer perceptron

MSE mean squared error

LSTM long-short-term memory

LUD Luchterduinen Wind Farm

NaN Not a Number

NN neural network

NRMSE normalized root-mean-square error
NwWP numerical weather prediction

PACF partial autocorrelation function

PAWP Princess Amalia Wind Farm

PTU programme time unit

PV photovoltaics

RAM random-access memory

RANS Reynolds-averaged Navier—Stokes
RMSE root-mean-square error

RNN recurrent neural networks

RRV regel- en reservevermogen

RPF renewable power forecasting

SARIMA Seasonal Autoregressive Integrated Moving Average
SCADA  supervisory control and data acquisition
SHAP Shapley Additive Explanations

SQL Structured Query Language

SVM support-vector machine

TSO transmission system operator

TU Delft Delft University of Technology

TVAL trade value

UST ultra-short-term

UST-WPF ultra-short-term wind power forecasting
uTcC Coordinated Universal Time

VMD variational mode decomposition

VRE variable renewable energy

VWAP volume weighted average price

WT wavelet transform
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WPF wind power forecasting
XBID European Cross-Border Intraday
XGBoost Extreme Gradient Boosting
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