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a b s t r a c t

Pipelines are vital for transporting oil and gas, but leaks can have serious consequences such as fires,
injuries, pollution, and property damage. Therefore, preserving pipeline integrity is crucial for a safe
and sustainable energy supply. The rapid progress of machine learning (ML) technologies provides an
advantageous opportunity to develop predictive models that can effectively tackle these challenges.
This review article mainly focuses on the novelty of using machine and deep learning techniques,
specifically artificial neural networks (ANNs), support vector machines (SVMs) and hybrid machine
learning (HML) algorithms, for predicting different pipeline failures in the oil and gas industry. In
contrast to existing noncomprehensive reviews on pipeline defects, this article explicitly addresses
the application of ML techniques, parameters, and data reliability for this purpose. The article surveys
research in this specific area, offering a coherent discussion and identifying the motivations and
challenges associated with using ML for predicting different types of defects in pipelines. This review
also includes a bibliometric analysis of the literature, highlighting common ML techniques, investigated
failures, and experimental tests. It also provides in-depth details, summarized in tables, on different
failure types, commonly used ML algorithms, and data resources, with critical discussions. Based on a
comprehensive review aforementioned, it was found that ML approaches, specifically ANNs and SVMs,
can accurately predict oil and gas pipeline failures compared to conventional methods. However, it
is highly recommended to combine multiple ML algorithms to enhance accuracy and prediction time
further. Comparing ML predictive models based on field, experimental, and simulation data for various
pipeline failures can establish reliable and cost-effective monitoring systems for the entire pipeline
network. This systematic review is expected to aid in understanding the existing research gaps and
provide options for other researchers interested in predicting oil and gas pipeline failures.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1DCNN One-dimensional neural network
AI Artificial intelligence
ANNs Artificial neural networks
CCTV Closed circuit TV
CLR Conventional literature review
CNN Convolutional neural network
CO2 Carbon dioxide
CPSO Chaos particle swarm optimization
DNN Deep neural network
EAC Environmental aid cracking
FEM Finite element method
FFNN Feed-forward neural network
GP Genetic programming
HML Hybrid machine learning
ICA Independent component analysis
ILI Inline inspection
KNN K-nearest neighbors
LR Liner regression
LS-SVM Least-square support vector machine
LSTM-AE Long short-term memory autoencoder
MFL Magnetic flux leakage
MIC Microbiologically influenced corrosion
ML Machine learning
MLP Multiple layer perceptron
NNs Neural networks
OCSVM One-class support vector machine
OLGA Oil & gas
PCA Principle component analysis
pH Potential hydrogen
PIM Pipeline integrity management
PLS Partial least squares
POF Probability of failure
PPA Posterior probability of association
PRISMA Preferred reporting items for systematic

reviews and meta-analyses
PSEW Pipeline safety early warning
RBFN Radial basis function network
RFR Random forest regression
RRSE Root relative square error
SAM Similarity aggregation method
SCC Stress corrosion cracking
SCNNs Subspace clustered neural networks
SLR Systematic literature review
SPPS Sand production pipe saver
SPRT Sequential probability ratio test
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SSA-CNN Sparrow Search Algorithm and Convolu-
tional Neural Network

SVMs Support vector machines
TOC Top of the line corrosion
UK United Kingdom
USA United States of America
USD United States dollar
VAPSO Variable amplitude particle swarm opti-

mization
VBA Visual basic for applications
VOSviewer Visualization of similarities viewer
XGBoost Extreme Gradient Boosting

1. Introduction

The growing global oil and gas industry since the middle of
the nineteenth century led to high demand for transportation and
linking oil and gas to markets. Pipelines made of stainless steel
are considered the most economical and advanced technology
that is currently utilized for oil and gas transportation and there
are about 2.2 million miles of pipelines around the world (Seghier
et al., 2022; Valentin de Oliveira, 2018; Vandrangi et al., 2022).
The pipelines play essential roles in oil and gas transportation,
especially with the rapid development of societies and increasing
demand for oil and gas (Liao et al., 2022; Zhou et al., 2022).
Compared to conventional transportation methods, pipelines are
considered fast, low-cost, easier for operating and transport a
large volume of oil and gas. Thus, the majority of the oil and
gas industry worldwide uses pipelines as the main transportation
way for oil and gas (Liu et al., 2020, 2019a; Peng et al., 2021;
Zaman et al., 2020). Pipelines are also the safest means of oil, gas
and refined petroleum products transportation (Liu et al., 2023,
2022; Shaik et al., 2022). Millions of kilometers of pipelines have
been constructed worldwide to fulfill the continuous demand for
oil gas products (Agency, 2020; Khan et al., 2021). Despite the
various advantages of utilizing pipelines compared to other oil
and gas transportation methods in terms of low cost, fast and
easier; but the failures such as leakage associated with the use of
pipelines result in notable challenges for the oil and gas industries
worldwide (Adegboye et al., 2019; Vandrangi et al., 2022; Wu
et al., 2023; Zhang et al., 2022).

Oil and gas pipelines are likely to leak due to various pa-
rameters such as operating conditions (including the aggressive
medium and overpressure), surrounding environment (including
atmosphere, soil, earthquake and flood) and human factors (Such
as excavation, bad installation and oil stolen) (Yin et al., 2021).
One example of such pipeline accidents that occur in various
countries is that about 745 major accidents only in the USA
between 1994 and 2013 caused 278 deaths, 1059 injuries, and
110 million USD as a monetary loss (Vandrangi et al., 2022). In
order to mitigate the risks of the defects and failures that can be
introduced along and across the oil and gas pipelines and to avoid
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he risk toward the societies, environment and oil and gas indus-
ries workers, regular assessments and predictions of the failures
rior to occurring should be conducted (Biezma et al., 2020; Khan
t al., 2021; Zheng et al., 2022; Zuo et al., 2022). Besides, the quick
etection the oil and gas pipeline failures or leakage is crucial
o minimize maintenance and repair expenses (Li et al., 2022a;
ao et al., 2022). Early detection and maintenance of oil and gas
ipeline failures are also necessary to avoid needless loss faced
y oil and gas industries and also to maintain a safe environment
or different work conditions.

Although the advantages of using pipelines to transport oil
nd gas compared to other methods such as ship, road and rail
ransportation, it is still facing serious failures issues that can lead
o severe negative consequences on equipment and properties of
ransmission medium such as explosion, toxicity and flammabil-
ty and the effect on the environment due to the complex service
onditions such as internal corrosion, atmosphere corrosion, ex-
ernal soil and third-party damage. Therefore, the accurate eval-
ation of the failures criticality of oil and gas pipelines is one of
he most important parameters that can guarantee the long-term
afe and economic service of pipeline networks (Crawley, 2020;
ang et al., 2020; Girgin and Krausmann, 2016; Yin et al., 2021).
n general, the criticality analysis of oil and gas pipelines can
e conducted using three different methods: quantitative, qual-
tative and semi-quantitative. The quantitative method is mainly
onducted based on materials properties, process situations and
hysical models that describe the development of accident sce-
arios. Numerical simulation is one of the common examples of
uantitative analysis used. On the other hand, qualitative analysis
ainly depends on the estimations given by engineers or man-
gers which reflect the people’s experience and intuitions play
he main role in such estimations (Yin et al., 2021).

The quantitative method may come up with better assessment
esults compared to the qualitative method, but the quantitative
echnique requires precise and complete data, more cost and
ore time. Unfortunately, most of the time it is quite challeng-

ng to get the field data that reflect the reliable failure records
ue to the complex operating conditions. Therefore, the semi-
uantitative method was suggested which can overcome the
imitations of the two techniques because of its high flexibil-
ty and adequate for being used in the absence of complete
ata and an accurate physical model. In order to carry out a
emi-quantitative analysis, several attempts have been conducted
sing Fuzzy set theory which is a very common method to deal
ith incompleteness and uncertainty. However, the fuzzy method

s considered relatively time-consuming and required complex
nference and operations processes. Alternatively, the quick evo-
ution of machine learning (ML) technologies provides a potential
ay to address the aforementioned problems by learning the
apping from data (Hegde and Rokseth, 2020; Worrell et al.,
019). It was also stated that due to the effects of internal com-
lex medium and external aggressive environment, Oil and gas
ipelines are susceptible to failure. Direct quantitative evaluation
f oil and gas pipeline failures is considered very difficult because
f the uncertainty and complexity of the failure scenarios of such
ipelines. Therefore, advanced techniques such as machine learn-
ng are recommended to evaluate oil and gas pipeline failures
Spandonidis et al., 2022; Yin et al., 2021).

Machine learning (ML) algorithms are widely recognized as
he predominant approach for developing predictive models in
omplex engineering, energy and environmental problems (Amini
t al., 2023; Chen et al., 2022; Du et al., 2023; Vadyala et al.,
022). ML has the power to enhance the quality of predictiv-
ty, reduce the dependence on conventional and manual data
nalysis, provide autonomous information processing and assist

n evaluating and managing high variety, velocity and volume
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data (Loebbecke and Picot, 2015; Rachman et al., 2021). The
increasing popularity of ML in diverse fields can also be attributed
to its remarkable ability to learn and construct predictive mod-
els based on performance, even when working with incomplete
and empirical data (Chen et al., 2022; Li et al., 2022b; Murphy,
2012). ML algorithms possess the capability to effectively ad-
dress complex nonlinear problems (Chen et al., 2022; Ma et al.,
2023; Murphy, 2012). ML approaches provide a big advantage
by being able to understand complex patterns without needing
any prior knowledge of how the independent and dependent
variables are related (Behnood and Daneshvar, 2020; Sun et al.,
2022). ML algorithms are suitable for predicting the performance
of engineering materials, like oil and gas pipelines, because they
can accurately and swiftly estimate mechanical properties at a
lower cost compared to traditional modeling methods (Du et al.,
2023). ML algorithms used for detecting defects in pipelines can
be classified into different categories, including supervised, semi-
supervised, unsupervised, or reinforcement learning, depending
on the learning method employed (Alamri, 2022; Liu and Bao,
2022; Rachman et al., 2021). In recent studies focused on de-
tecting defects in oil and gas pipelines using ML applications, the
supervised learning technique has emerged as the most widely
utilized approach (Eastvedt et al., 2022; Liu and Bao, 2022; Rach-
man et al., 2021). Supervised machine learning involves using
different algorithms to analyze datasets and identify patterns
and predictions for future values (Murphy, 2012). The supervised
machine learning models developed for detecting defects in oil
and gas pipelines are classified into two categories: classification
models and regression models. The choice between these cat-
egories depends on the primary objective of the model, which
includes identifying the types of defects and predicting various
aspects such as dimensions, pressure values, severity, and more
(Liu and Bao, 2022).

Due to the complicated nature and vast scale of oil and gas
pipeline systems, relying on human operators to carry out in-
spections proves to be a difficult and expensive approach. For
many years, oil and gas industries, governments and researchers
are looking for automating the inspection process to enhance the
quality of inspection and reduce the efforts, cost and environ-
mental consequences due to relying on humans. However, several
techniques have been investigated to overcome this problem such
as analytical modeling, numerical computations and machine
learning (Layouni et al., 2014). Machine learning become a hot
research area have been applied in various fields of life and oil
and gas pipeline inspection is one of these fields. However, most
research still depends on probabilistic models to predict the fail-
ures behavior of oil and gas pipelines but ML-based approaches
are considered one of the best choices for anticipating unexpected
failures of oil and gas pipelines, particularly due to the complexity
and extensive nature of oil and gas pipelines failures (Soomro
et al., 2022a). The utilization of machine learning techniques was
employed to automatically detect leakage defects by analyzing
pressure data and accurately determining the location of the
leakage through the analysis of sound data (da Cruz et al., 2020;
Zhou et al., 2021). Furthermore, computer vision methods were
employed to evaluate pipeline defects by incorporating images,
numeric data, and videos as additional sources of information
(Wang and Cheng, 2020). In general, recent research has demon-
strated the promising potential of machine learning techniques
in automatically detecting, localizing, and classifying pipeline
defects (Liu and Bao, 2022). It was also stated that using ML to
assess the safety of oil and gas pipelines is a new research field
and there is a lack of literature on the comprehensive assessment
of current research issues (Soomro et al., 2022a).

On the other hand, it was claimed that traditional machine
learning models that solely rely on available data without in-

corporating engineering theory will have limitations in terms
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f accuracy and efficiency (Wang et al., 2020). Model selection
nd parameter optimization are also crucial components in the
evelopment of a prediction model (Ramadhan et al., 2021). Most
revious studies have manually chosen models and optimized
heir parameters, which has made it difficult to determine the
est model structure and has also increased the time needed to
repare for predicting defects (Du et al., 2023). To address these
imitations, it was stated that the integration of engineering theo-
ies and domain knowledge into machine ML models is emerging
s a promising approach for solving various engineering problems
Du et al., 2023). For instance, in their work, Karpatne et al.
2017) introduced a method called theory-guided data science
TGDS), which combines scientific principles with data science
echniques. In this regards, Du et al. (2023) conducted a recent
tudy to introduce an automatic machine learning (AML) for op-
imizing the development of a corrosion depth prediction model.
o address the limitations of traditional ML modeling methods,
he integration of engineering theory and domain knowledge was
ncorporated into the feature engineering stage. Furthermore, a
ew prediction method, referred to as theory-guided AML (Tg-
ML), was proposed specifically for accurately predicting the
aximum depth of pitting corrosion in pipelines. Based on the
forementioned, researchers have conflicting opinions on the re-
iability and accuracy of using ML for pipeline defects detection.
hile some argue that ML is a dependable method (Bastian

t al., 2019; Liu et al., 2021; Santoso et al., 2014), others empha-
ize the importance of considering various factors, such as data
re-processing, cleaning, automated algorithm selection, feature
xtraction and combinations and integrating with other most
ngineering common techniques, to enhance the accuracy and
alidation of ML models (Lu et al., 2021; Qin et al., 2023; Xiao
t al., 2019; Xu et al., 2023; Zhou et al., 2021). Therefore, to
elp researchers interested in using ML techniques for detecting
efects in oil and gas pipelines, a thorough and organized review
s necessary. This will simplify the understanding of different
iewpoints from various researchers in the literature.
Numerous advantages can be derived from developing sys-

ematic reviews in certain research areas. For instance, the review
f reliable published works will aid other researchers to have
clear image of what needs to be done in this research area.

t also helps researchers to compare studies on a certain topic
rom different perspectives to come up with meaningful arrange-
ents. The structure of a literature review also can be used to
resent a clear insight in several ways, as well as direct and
anage interested researchers. This systematic literature review

SLR) distinguished itself in the selection process of evaluated
tudies through systematic, direct research and transparency to
inimize the common errors in the data collection for conven-

ional reviews. Despite the several review articles on oil and gas
ipeline defects, only very few mention the use of machine and
eep learning techniques in the early prediction of oil and gas
ipeline failures. However, based on the authors’ observation,
here has so far been no comprehensive and coherent review
n order to highlight the use of machine learning techniques,
pecifically artificial neural networks (ANNs), support vector ma-
hines (SVMs) and hybrid machine learning (HML) algorithms,
arameters used, reliability of the data in the prediction of dif-
erent oil and gas pipeline failures. Therefore, the purpose of this
ystematic review paper is to address the lack of clarity among
esearchers regarding the selection of machine learning (ML)
odels, parameters, and reliable data resources for predicting oil
nd gas pipeline defects. It provides a comprehensive overview of
esearch achievements in using ML methods to predict pipeline
ailures in the oil and gas industry. The paper compares and
nalyzes the advantages of common ML methods in detecting
ipeline failures. Its value lies in assisting other researchers inter-
sted in this field by providing insights into existing research gaps
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and aiding in the informed selection of ML models, parameters,
and data resources.

This review article specifically focuses on the use of ANNs,
SVMs, and HML algorithms for predicting various pipeline failures
in the oil and gas industry. It goes beyond a mere survey of
research by offering a coherent discussion that identifies motiva-
tions, challenges, and future directions associated with using ML
for predicting different types of defects in oil and gas pipelines.
The paper explores the reasons behind employing ML techniques
for predicting pipeline failures, such as early detection and im-
proving safety and reliability. It also suggests ways to address
implementation challenges, including data quality, algorithm se-
lection, and parameter optimization. Moreover, the article offers
insights into future directions, such as integrating multiple ML
algorithms, using real-time data for continuous monitoring, and
employing advanced techniques like deep learning for complex
defect detection. Additionally, the paper includes a bibliometric
analysis of the literature, highlighting common ML techniques
used in pipeline failure prediction, types of failures investigated,
and experimental tests conducted. This analysis helps identify
trends and patterns in the research landscape, providing valuable
information for researchers and practitioners. The paper also in-
cludes tables summarizing different failure types, commonly used
ML algorithms, and available data resources, along with critical
discussions. These discussions further enhance the value of this
systematic review paper.

2. Methodology

The systematic literature review (SLR) is a potential method
of literature that is commonly used to discover, highlight, assess
and analyze the efforts of researchers on a particular research
area of interest (Soomro et al., 2022a). Many benefits can be
derived from conducting SLR such as reliable published works
in certain research areas can be summarized. For example, new
researchers in the applications of ML for oil and gas pipeline
failure can feel confused to select the most appropriate ML ap-
proach for certain pipeline defects that can result with adequate
accuracy, especially with the number of papers published on this
topic without any structures, organization and analysis. Besides,
which data collection method could be more useful and which
parameters have the influence on the certain pipeline defect that
need to be predicted. Therefore, the following SLR method and
procedures have been used to come up with a reliable, structured
and organized summary of the applications of ML for pipeline de-
fects prediction. Table 1 presents a comparison of the advantages
and disadvantages of systematic and conventional methods for
conducting literature reviews. It highlights how the systematic
literature review (SLR) is considered the most suitable option for
this review based on its confirmed benefits. Overall, systematic
reviews provide a more rigorous, transparent, and comprehensive
method of reviewing the literature, resulting in more reliable and
trustworthy conclusions compared to conventional reviews.

Based on the advantages and disadvantages of the most com-
mon methods presented in Table 1 for conducting a literature
review, it can be concluded that systematic reviews are gener-
ally considered superior to conventional reviews. This is due to
their thoroughness and lack of bias, resulting in reliable results.
In contrast, conventional reviews may cover more sources but
are often biased and less objective. Therefore, the systematic
literature review method has been adopted for this study.

2.1. Databases and keywords

To find relevant research articles on the applications of ML
for oil and gas pipeline failure predictions, three databases have
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Table 1
Advantages and disadvantages of systematic and conventional literature review methods summarized.
Method Advantages Disadvantages

Systematic literature
review (SLR)

SLR uses a structured methodology to ensure unbiased and
transparent identification, selection, and analysis of relevant
studies (Briner and Denyer, 2012; Wright et al., 2007).

Time-consuming due to the need for thorough searching,
screening, and analysis of numerous studies (Wright et al.,
2007).

SLR ensures comprehensive and unbiased coverage of
relevant studies by conducting exhaustive searches,
minimizing the risk of overlooking important studies
(Rother, 2007; Wright et al., 2007).

It demands significant resources, including personnel,
funding, and access to databases and research materials
(Wright et al., 2007).

SLR employs criteria to select studies and extract data,
promoting objectivity and enabling replication. This allows
researchers to assess thoroughness and replicate if needed
(Briner and Denyer, 2012; Wright et al., 2007)

SLR can be biased towards positive or significant findings
due to their reliance on published studies, potentially
overlooking unpublished results (Wright et al., 2007; Xiao
and Watson, 2019).

SLR identifies research gaps, guiding future studies and
identifying areas needing further investigation (Wright
et al., 2007).

SLR requires expertise in research methodology, statistics,
and data analysis, making it challenging for non-specialized
researchers to conduct a precise review (Wright et al.,
2007).

SLR provides a reliable summary of the evidence, helping
policymakers and stakeholders make informed decisions
and develop evidence-based guidelines (Rother, 2007; Xiao
and Watson, 2019).

Conventional
literature review
(CLR)

CLR reviews provide flexibility in scope and inclusion
criteria, allowing researchers to include relevant studies or
sources that align with their research question without
strict criteria (Rother, 2007).

Lack of a systematic and rigorous approach to searching for
and selecting relevant studies (Xiao and Watson, 2019).

CLR usually takes less time and requires fewer resources
than a SLR (Wright et al., 2007).

Higher likelihood of excluding crucial evidence due to the
lack of predefined inclusion criteria (Xiao and Watson,
2019).

CLR enables the exploration of diverse sources, such as
non-peer-reviewed articles, books, opinions, and grey
literature (Rother, 2007).

Researchers are more likely to be biased and subjective
when they selectively include studies that confirm their
pre-existing beliefs (Wright et al., 2007; Xiao and Watson,
2019).

The lack of a clear and replicable methodology makes it
difficult for others to reproduce or verify the findings
(Rother, 2007; Xiao and Watson, 2019).

The lack of explicit methods to minimize bias can lead to
skewed or unreliable results (Rother, 2007).

The lack of transparency and reproducibility in the study
process can affect the reliability of the results (Wright
et al., 2007).
been used: Web of Science, Scopus and Science Direct which are
found to have the majority of materials on this research area
based on the preliminary survey. After surveying the abstracts
of the majority of articles on this research subject and discuss
with experts, the keywords were selected based on the most
frequently used and based on the aim of this SLR. The search
queries were developed using the following words: ‘‘Pipeline’’
AND ‘‘Oil and gas’’ AND (‘‘machine learning’’ OR ‘‘deep learning’’
OR ‘‘neural network’’ OR ‘‘support vector’’) AND (‘‘failure’’ OR
‘‘defect’’ OR ‘‘corrosion’’ OR ‘‘leak’’ OR ‘‘collision’’). The search
included articles from journals and conference proceedings that
were published in the English language within the span of time
from January 2000 to December 2022.

2.2. Inclusion and exclusion criteria

Overall, this SLR was carried out with respecting the Pre-
erred Reporting Items for Systematic Reviews and Meta-Analyses
PRISMA) criteria (Moher et al., 2009) paired with a bibliometric
nalysis approach. Besides, there are four inclusion criteria that
ave been implemented in this review which were developed
n response to the aim of this study. That includes the articles
hat reviewed the applications of ML in oil and gas pipelines
ailures prediction, the articles that developed ML-based models
or oil and gas pipeline defects prediction and assessment, the

rticles that are peer-reviewed and the articles that are in English.

1317
Articles that have not directly met the aforementioned criteria
were excluded.

2.3. Data acquisition and filtration

The quarry search has been aforementioned resulting in 255
articles: 45 from Web of Science, 72 from ScienceDirect and
138 from Scopus. After screening out the duplicated studies,
the scanning of the titles and abstracts of the articles was con-
ducted. A total of 65 articles that met the inclusion criteria were
included after the full-text reading. The included articles were
read in detail to establish the full concept and map the research
on the topic of ML applications for oil and gas pipeline failure
prediction. In order to facilitate the understanding of this SLR,
reviewed studies were categorized into two categories including
review articles and studies on the predictive models based on
ML techniques which in turn classified into artificial neural net-
work (ANN) based studies, support vector machine (SVM) based
studies, Hybrid machine learning based studies and other studies
that applied other ML techniques. Review articles on this topic,
particularly on specific oil and gas pipeline defects, form the first
part of this SLR and contributed 9.1%, which could be an adequate
body of literature but because each review discussed the topic
from a different and specific perspective, still there is a need
for a comprehensive SLR to combine all researchers efforts in
one article. Applications of different ML techniques for predicting
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Fig. 1. Application of ML in oil and gas pipelines failures prediction trend over time.
ifferent oil and gas pipeline failures form the second and largest
ortion of the included articles. The first part of this portion
ncluded 29.55% that applied artificial neural networks to develop
redictive models for various pipeline defects. The second part
ncluded 27.25% that combined various machine learning tech-
iques together such as ANN and SVM and others called hybrid
achine learning (HML) techniques to compare the applicability
f techniques and study the cross effects to develop predictive
odels for different pipeline defects. The third part included only
.55%, which is considered the smallest body in the articles in-
luded in this SLR, that focused on using support vector machines
or developing the predictive models for pipeline failures. In the
ast part 29.55% conducted studies on using machine learning
echniques rather than the techniques aforementioned.

. Results and analysis

The results of this SLR are presented in relation to the ML
echnique used for predicting the oil and gas pipeline failure
n terms of the overview of oil and gas pipeline failures and
he applications of artificial neural networks, support vector ma-
hines and hybrid machine learning models on the prediction
f oil and gas pipelines failures. Besides the summarizing of the
revious review articles that address the applications of ML in
ipeline defect predictions. Overall, the trend of studies on the
pplications of ML techniques for oil and gas pipelines failures
rediction is presented in Fig. 1. The figure clearly indicates a
otable rise in the number of studies conducted in the field of ML
echniques for oil and gas pipeline prediction. The highest num-
er of studies was observed in 2022, and this upward trend began
n 2019 and continued until 2022. The increase in studies during
his period can be attributed to advancements in ML algorithms,
growing recognition of the importance of pipeline integrity,

nd the availability of comprehensive pipeline data. These factors
ave enabled researchers to develop accurate prediction models
or preventing failures. This trend reflects the recognition of the
enefits of using advanced data analysis methods in pipeline in-
egrity management, emphasizing the need for ongoing research
o enhance prediction models. Besides, Fig. 2 exhibits that several
1318
countries worldwide are interested in the applications of ML
techniques for oil and gas pipeline prediction technology. China,
Canada and the USA are the three major countries interested in
this research field. This interest might be due to the huge oil
and gas pipeline networks in these countries that need advanced
technology to mitigate the failures and avoid the effects on the
environment and economy. In addition, other countries such as
India, the UK, Malaysia, etc. started applying this ML technology
and this research pathway is still a hot topic and needs to be
further investigated to come up with sustainable solutions that
can mitigate pipeline defects by early prediction and reserve the
environment from the oil and gas pipeline leakage pollution.
The global interest in ML techniques for oil and gas pipeline
prediction highlights the importance of this research in ensuring
pipeline integrity and safety. Ongoing research and development
are crucial to enhance the accuracy and reliability of prediction
models and establish sustainable practices for long-term pipeline
integrity worldwide.

3.1. Overview on oil and gas pipelines failures

Pipelines leakage is a result of many reasons such as product
errors, corrosion, fluctuation in pressure, external factors and etc.
Based on the literature, leakage can be diagnosed and detected
based on various parameters including the pressure, mass flow
rate, the size and location of the leakage and the time needed to
identify the leakage to avoid more loss. Thus, such issues need
to be detected early to avoid the loss of products and harm to
the environment (Dai et al., 2017; Vandrangi et al., 2022). Oil &
Gas (OLGA) is one of the commonly used software to monitor
leak localization and sizes. It gives quick results by handling a
good amount of data. Using OLGA software can easily detect large,
moderate and small leaks, however, one of its disadvantages is
that cannot be used to conduct a comprehensive investigation of
precise points on the pipelines (Vandrangi et al., 2022).

It can be said that; the inspection and monitoring of oil and
gas pipelines is facing several challenges which have to take into
consideration. During the pipeline design stage and the issues
and limits faced by the designers can be the first challenge. For



A.M. Al-Sabaeei, H. Alhussian, S.J. Abdulkadir et al. Energy Reports 10 (2023) 1313–1338

e
t
t
a
f
i
m
E
e
t
i
o
t
t
a
i
a

m
g
i
i
p
e
f
o
t
m
2
p
r
a
a
e
s
a

Fig. 2. Application of ML in oil and gas pipelines failures prediction versus countries.
xample, the available budgets, the nature of the lands where
he pipeline should be located to provide adequate protection,
he raw and selected materials, the thickness of the pipeline wall
nd the environmental conditions around the pipeline. These all
actors have direct effects on pipeline inspection and monitor-
ng (Ho et al., 2020; Vandrangi et al., 2022). Besides, the raw
aterials and welding defects are considered another challenge.
ven the issues in the process of pipeline laying can introduce
xcessive bending stress which results in the bucking and frac-
ures. Furthermore, the offshore pipeline can expose to vortex-
nduced vibrations which can vibrate the length free spanning
f the pipeline (Liu et al., 2014). It can be said that in order
o predict and monitor pipeline failures onshore and offshore,
here are several expected and unexpected challenges besides the
forementioned to be taken into consideration by researchers,
ndustries and governments to ensure the safe and adequate oil
nd gas flow through the pipeline network.
To reduce the risk levels of oil and gas pipeline failures and

aintain them within an acceptable range, different technolo-
ies have been employed. During the last two decades, inline
nspection (ILI) has been known as the best available technique
n pipeline inspection (Khan et al., 2021). This technique im-
roved the deeper understanding of failure mechanisms, cost-
ffectiveness and minimize the uncertainties due to missing in-
ormation. Besides, the application of the ILI method in terms
f quantitative risk assessment comes up with valuable data
hat can be successfully used for developing accurate prediction
odels on the failure progress (Khan et al., 2021; Xie and Tian,
018). However, ILI tools that are used for assessing the failure of
ipelines are like other instruments affected by systematic and
andom errors. The systematic error type is known due to the
ccuracy of the instrument, while the random error is associ-
ted with the environmental conditions and parameters (Al-Amin
t al., 2012; Khan et al., 2021; Wang et al., 2015). Therefore, many
tudies have been conducted during the last few years to address
nd minimize such errors.
1319
In general, oil and gas pipeline failures can be categorized into
five categories as shown in Fig. 3. It can be observed that the
third-party defect contributes to 33% of total failures which is
considered the highest among the other failure reasons which
is the failure or loss that is due to the third party’s activity.
Corrosion comes after the third party which contributes to 30%
including internal and external corrosion. The failures due to the
design or materials properties (mechanical failures) contribute
to 25% which consider a high percentage that should be taken
into consideration for further research to mitigate such defects
in the future. Operational, natural and other failures contribute
to around 7.5%, 4.5% and 1%, respectively, which are consid-
ered lower common defects or have minor effects if they are
compared with the first three failure types aforementioned. Un-
derstanding the various types of pipeline failures is crucial for
keeping pipelines safe and secure. By focusing research on the
main causes of failures like third-party defects, corrosion, and
mechanical failures, we can create effective strategies to prevent
and minimize these problems. It is also important to study and
address the less common failure types to prevent them from
causing major issues. Taking this comprehensive approach will
ensure that oil and gas pipelines remain safe and reliable in the
long run.

Corrosion defect is one of the oils and gas pipeline defects that
received an intensive evaluation and investigation in the litera-
ture. Therefore, some relevant studies on the corrosion defect are
summarized in this review.

The main reason for corrosion is the interaction of pipelines
with different chemical components of oil and gas materials
(Wasim and Djukic, 2022). Corrosion is one of the most well-
known hazardous damage in oil and gas pipelines. According
to the World Corrosion Organization (Koch et al., 2016), around
2.5 trillion USD is the cost of the damage caused by corrosion
worldwide. That is a result of the consequences of corrosion such
as environmental pollution, financial loss and heavy casualties. It
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Fig. 3. Types of oil and gas pipeline failures (Soomro et al., 2022a; Zakikhani et al., 2020b).
as reported that corrosion is one of the main pipeline failures
hich is accounting for about 30% of the overall pipeline failures
Liu and Bao, 2022). That is the main reason for the extensive
orrosion studies that have been conducted. In contrast to other
ailure types which still need more evaluations (Zakikhani et al.,
020a).
Different corrosion types of oil and gas pipelines were re-

orted in the literature as shown in Fig. 4. In order to understand
he mechanism of corrosion in oil and gas pipelines, various types
an be illustrated as follows:
The most common corrosion that could occur in oil and gas

ipeline is when the gas flow from the reservoir at high pressure
nd temperature which could lead to failures. Such failure is also
epending on the presence and the reaction of CO2 with the metal

surfaces of the pipelines (Soomro et al., 2022a; Wei et al., 2022).
Another corrosion type is pitting corrosion which is occurring due
to the CO2 presence in the pipe as a result of low velocities of
oil and gas. It was also indicated that the presence of chloride
ions is another main reason for pitting corrosion. It can be also
stated that due to the stress generated during the oil and gas flow
and the effect of flow disturbances, the inside film of the pipe
is deteriorated and leads to high-intensity corrosion. It was also
stated that the sources of the oil and gas can play a role in the
corrosion of pipelines due to the different chemical components
and interactions among the oil and gas from different resources
and the film of pipelines from inside.

Stress corrosion cracking (SCC) is also another common corro-
sion type in oil and gas pipelines. It mainly depends on the pipe
materials’ sensitivity to stress, the organic solvent used and the
applied tensile stress. This corrosion type occasionally leads to
the failures of pipelines due to the spreading of cracks (Adegboye
et al., 2019; Soomro et al., 2022a). It is crucial to address and
mitigate the various types of corrosion in order to ensure the
integrity and reliability of oil and gas pipelines. By understanding
and taking action against corrosion caused by factors such as CO2
presence, pitting corrosion, and stress corrosion cracking, we can
prevent failures and maintain the overall safety of the pipelines.
Implementing effective corrosion control measures is essential for

the long-term operation and performance of oil and gas pipelines.

1320
Several factors control the appearance of such failure which were
summarized in Fig. 5.

Erosion is also one of the most common issues commonly
found in pipelines due to the chemical interactions among the
fluid product, solid particles in the pipeline and the surrounding
materials. Erosion may cause a deterioration in the pipeline ma-
terials that leads to failure. This failure may lead to serious issues
for the surrounding environment, health and property. Therefore,
it was recommended that the early detection of erosion rate is
essential to maintain safe, cost-effective and sustainable opera-
tion conditions (Liu et al., 2021). Erosion often occurs due to the
colliding of solid particles with the pipe wall during the transport
of oil and gas products. That leads to gradually removing metal at
the inner surface of the pipe leading to erosion degradation (Shaik
et al., 2022). Erosion mainly causes the essential pipeline wall
thickness reduction and endangers the efficiency of the pipeline
to resist the applied pressures that leads to failures (Hu et al.,
2011; Liu et al., 2021). To maintain the integrity of pipelines,
it is crucial to address erosion. Regular inspections, monitoring
erosion rates, and using erosion-resistant materials or coatings
can help detect and mitigate erosion. Taking proactive measures
to manage erosion helps prevent failures, ensure efficient oper-
ations, and minimize risks to the environment and surrounding
communities.

In order to contribute to solving the erosion issue in the
oil and gas pipelines, many researchers and pipeline investiga-
tors have collected data and developed models and most of the
models reported in the literature combined mechanistic, empiri-
cal and computation-based methods. That combination was due
to the complication of the erosion mechanisms as a result of
its involves interaction among oil and gas products properties,
pipelines materials, particles characteristics, pipelines geometry,
operation conditions and flow regime (Karimi et al., 2017).

Several traditional techniques are used for integrity assess-
ments of corrosion failures of oil and gas pipelines such as
non-destructive evaluation methods, fault detection techniques,
pipeline failure pressure methods, inline inspection methods,
failure prediction techniques and burst pressure and structural
integrity assessment. However, the applications of machine learn-
ing models are considered a new approach that has been used for
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Fig. 4. Corrosion failure types in oil and gas pipeline (Soomro et al., 2022a).
orrosion failure and other failure types of oil and gas pipeline as-
essments and prediction which results in higher accuracy com-
ared to the traditional techniques aforementioned. Therefore, in
his review, a comprehensive systematic review is conducted to
ighlight the efforts of researchers in this research area.

.2. Diagnosis and detection of oil and gas pipelines failures

The diagnosis and identify the real errors or defects along the
ipeline are one of the major challenges. Besides, establishing the
orrect and specific causes behind the diagnosed problem or fault.
hen the details and magnitude of the fault and compare it to the
ault-tolerant standard is established. The correct diagnosis and
ollect data are the main and most important steps toward devel-
ping efficient detection and prediction systems, where detection
s only the process through which the presence of any fault in
certain system is determined based on the diagnosis outputs

Vandrangi et al., 2022; Willersrud et al., 2015).
Most of the time the collected data from the industries need

o be cleaned and filtered before it can be used for running
nd developing models to represent the actual behavior of data.
ig. 6 shows the flowchart that has been used by Khan et al.
2021) to clean the datasets obtained from the consecutive in-
ine inspection (ILI) runs reporting for more than seven years
f corrosion failure of more than 200 km across the Canadian
ipeline. The mentioned flowchart can be useful to be applied
or preprocessing of data for conducting analysis and developing
odels to reflect the real situation of various pipeline failures.

n their study, the stochastic models were presented and the
ariables required to model time-dependent structural integrity
uch as corrosion, burst pressure and containment failures were
efined. Besides that, the large filtered and clean data provided
y this study could be an essential source for pipeline failure
ssessments. Using the flowchart in Fig. 6, industry professionals
an clean and filter collected data effectively. This step ensures
1321
that the data is suitable for running and developing models
that accurately represent real-world behavior. Preprocessing the
data in this way is crucial for conducting thorough analyses and
developing reliable models to assess and address pipeline failures.

Different techniques and methods have been applied to pre-
dict the sizes and locations of leaks in pipeline networks. These
techniques can be categorized into hardware-based techniques
and software-based techniques. In hardware-based techniques
which are rarely used these days, precise instruments are used to
detect the leak from outside of the pipes which is considered an
expensive technique. On the other hand, In the software-based
techniques which are the most commonly utilized, continuous
software analysis-based programs are used to monitor and check
the flow rates, pressures, temperatures and/or other pipelines
parameters based on the network of sensors installed along the
pipeline (Vandrangi et al., 2022). It can be also said that several
techniques of leakage detection systems have been used, whether
interior or exterior. All used techniques show their strengths and
weaknesses. The leakage detection systems were categorized in
the literature into data-based, experience-based and model-based
methods. The methods that can be selected is depended on the
required accuracy, the complexity of the method, the amount
of training data that is required and the cost of installations.
Fig. 7 exhibits the rank of various methods used based on the
complexity, amount of data required and accuracy. From Fig. 7,
it can be noted that machine learning approaches such as ANN,
CNN, KNN, SVM and Fuzzy showed a low complexity and high
to very high accuracy to be used for pipeline defect detection,
however, a high amount of data is required. That makes it one
of the stronger techniques that can be applied for the prediction
of oil and gas pipelines failures and defects. It is important to
emphasize that the quality and quantity of available data play
a crucial role in developing accurate models for pipeline failure
detection using the three aforementioned methods. Adequate
and reliable data is essential for training and validating machine



A.M. Al-Sabaeei, H. Alhussian, S.J. Abdulkadir et al. Energy Reports 10 (2023) 1313–1338

Fig. 5. The most common factors leading to initiate the SCC in oil and gas pipeline (Mohtadi-Bonab, 2019; Soomro et al., 2022a).

Fig. 6. Flowchart of cleaning datasets prior to being used for modeling (Khan et al., 2021).

1322



A.M. Al-Sabaeei, H. Alhussian, S.J. Abdulkadir et al. Energy Reports 10 (2023) 1313–1338

l
p
t
a
l
r
t
s
d

s
a
w
b
p
I
w
h
f
t
a
l
f
a
i
t

k
c
t
T
t
s
a
a
t
g

s

Fig. 7. Accuracy and complexity of oil and gas pipelines leak detection techniques (Vandrangi et al., 2022).
earning algorithms, ensuring their effectiveness in detecting and
redicting pipeline failures. Overall, Fig. 7 highlights the impor-
ance of selecting appropriate methods based on factors such
s accuracy, complexity, data requirements, and cost. Machine
earning techniques demonstrate promising potential, but they
ely heavily on the availability of sufficient data. By considering
hese factors and leveraging high-quality data, industry profes-
ionals can develop robust models for accurate pipeline failure
etection and prevention.
According to the recent literature, three types of fault diagno-

is techniques were reported which are data-based, model-based
nd experience-based or knowledge-based. Artificial neural net-
orks (ANNs) are one of the data-driven based models that have
een recently used for developing predictive models that can
redict the defects and failures of oil and gas pipeline networks.
t can be stated that ANNs are also one of the well-known and
ell-framed ML techniques that simulate the functioning of the
uman brain to capture the dynamics of complex behaviors and
unctions. By inputting some sets of data into ANN, it can identify
he data patterns (Sukarno et al., 2007). Santoso et al. (2014)
ssessed the effect of the pressure difference and flow rate on
eak detection in the pipeline based on the ANN technique. It was
ound that the composite effect of pressure and flow rate showed
significant effect to identify the presence of leaks in pipelines,

n contrast to the separate effect of both factors that cannot show
he leak.

Support vector machines (SVM) technique is another well-
nown ML technique that is used to distinguish the data into
ategories based on their features. It is also one of the recent
echnologies used for detecting the failure of oil and gas pipelines.
o develop a predictive model for pipeline failures, the SVM is
rained by using the data collected from the experimental or
imulation studies such as data for leaks at different positions
nd various sizes along the pipeline. For non-linear analysis, there
re several available kernel functions that can be used to classify
he input data. Some of that functions are polynomial, sigmoid,
aussian and hyperbolic (Vandrangi et al., 2022).
To develop a predictive model, the first and most important

tep is to decide on the sources and the quality of the data that
1323
will be used for such modeling. The quality of data is mainly
depending on the accuracy of the instrument, tools and other
techniques that have been used for data collection. However, data
cleaning is one of the most important factors that contribute to
the highly accurate model. For example, noise data and irrelevant
data are deleted from the datasets that will be used for develop-
ing the model. There are two main deletion approaches have been
used in literature for the same purpose list wise and pairwise (Lit-
tle and Rubin, 2019). In list wise method, samples with missing
information on any variable are excluded. In pairwise technique,
the data is removed if the missing variable is used in the analysis
(Roth, 1994). After the data cleaning, categorizing the data based
on their features is performed using the summary statistics and
shape of the distribution to ensure the quality of the data (Witte
and Witte, 2017).

Applications of ML techniques in oil and gas pipelines have
been attracting research during the last few years. That could
be due to the ability of ML to provide higher accuracy, lower
cost and time compared to conventional methods. Artificial neu-
ral networks, support vector machines and decision trees are
the common machine leering approaches that have been stud-
ied to develop the predictive models of oil and gas pipeline
failures as shown in Fig. 8. According to VOSviewer mapping
and density visualization, the deep neural networks technique
has not received enough attention to be applied to oil and gas
pipeline defects. It can be also noted that corrosion failure is
the most common failure that has been investigated. In contrast
to other pipeline failures which received minor attention and
further studies are required to apply different ML techniques
to develop predictive models for different pipeline failures such
as weldment defects, materials defects, natural defects and so
on. It can be also noticed that nondestructive examination and
magnetic flux leakage tests are the most common tests used for
generating the laboratory data, which indicates further up-to-
date and more reliable tests and advanced simulations such as
finite elements methods could be further involved to generate
data required for more accurate ML models. From Fig. 8, it can
be summarized that, while ML techniques have shown promise
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Fig. 8. VOSviewer of authors’ keyword analysis sources with a minimum of four occurrences in an article (a) Mapping (b) Density visualization.
n the oil and gas pipeline industry, there is a need for fur-
her exploration of deep neural networks and the application of
L models to different types of pipeline failures. Additionally,

ncorporating more advanced testing methods and simulations
an enhance the accuracy and reliability of ML models in pre-
icting pipeline failures. Fig. 9 highlights the global adoption
f ML techniques for predicting oil and gas pipeline defects.
hina, Canada, and the United States lead this research due to
heir extensive pipeline networks, requiring advanced technology
o prevent failures and mitigate environmental and economic
onsequences. However, further exploration is needed in other
ountries to develop sustainable solutions. Expanding research
fforts worldwide is crucial for comprehensive approaches that
ddress region-specific challenges.

.3. Studies on ML applications for oil and gas pipelines failure
ssessment

Fig. 10 shows the distribution of the studies included in this
LR for the four main categories of reviews, studies applied ANN,
tudies applied SVM, studies applied HML and studies applied
ther ML techniques. It can be seen that reviews account for
.09% of the studies, indicating a smaller focus on literature
ynthesis. Studies using ANN contribute the highest percentage
t 29.55%, indicating its widespread use for pipeline defect fore-
asting due to its ability to handle complex relationships. SVM
tudies contribute 4.55%, indicating its effectiveness for high-
imensional data and limited datasets. HML studies contribute
7.27%, showing the exploration of combining ML techniques for
mproved predictions. Additionally, studies using other ML tech-
iques contribute 29.55%, revealing a variety of ML approaches
1324
being experimented with. Overall, Fig. 10 demonstrates the di-
verse range of ML techniques employed in oil and gas pipeline
defects prediction.

In the following sections, a comprehensive review of ML ap-
plications for oil and gas pipeline failure assessment is provided.
Existing literature reviews on the use of ML techniques and
their key contributions are discussed. Specific ML approaches,
including artificial neural networks, support vector machines, and
hybrid models, are explored, and an overview of relevant studies
and their applications in predicting pipeline failures is presented.
Our goal is to offer a comprehensive understanding of the current
state of ML in this important area of pipeline defect detection.

3.3.1. Reviews on ML applications for oil and gas pipeline failure
assessment

Surprisingly, no more review articles have been found in the
literature on the applications of ML for oil and gas pipeline failure
prediction. However, such new technologies should be intro-
duced to spread the knowledge to other interested researchers,
industries and communities. Furthermore, ML approaches from
different perspectives and descriptive statistics should be estab-
lished to explain the different ML techniques and models for
improving the detection of various oil and gas pipeline defects
and failures. Rachman et al. (2021) have reviewed the applica-
tions of ML in oil and gas pipelines from the pipelines integrity
management (PIM) perspective. They mainly focused on the ap-
plication of ML in processing and managing data generated from
PIM activities. PIM activates or processes are included inspec-
tions, monitoring and maintenance. Types of inputs, outputs,
pre-processing and learning algorithms of ML that have been
applied in different PIM stages were discussed. Besides, the re-
search challenges, future directions on the applications of ML
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Fig. 9. VOSviewer mapping and density visualization of countries with at least one article published (a) Mapping (b) Density visualization.
or PIM of oil and gas have also been introduced. Another arti-
le introduced leakage detection techniques for pressure failure
f pipelines (Zaman et al., 2020). However, this article mainly
1325
focused on the mathematical approaches and hydrological tools
for pressure defect prediction. Therefore, it is quite far from
our concern for this SLR. Soomro et al. (2022a) systematically
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Fig. 10. Distributions of the included studies on five main research categories.
reviewed the applications of ML in corrosion failures of oil and
gas pipeline predictions. The different ML techniques including
the ANN, SVM and HML on the prediction of corrosion failure
of pipelines have been summarized and discussed. The variables
have been identified by literature and dataset sources used to
generate the data for developing ML models for corrosion de-
fects have been also comprehensively addressed. It was reported
that HML techniques showed to be a significant ML technique
compared to other standalone ML models for higher accuracy of
prediction. It was also stated that out of the experimental, simu-
lation and the field data sources used in the literature, field data
source is most commonly used. Some future recommendations
and suggestions were also proposed for further exploration in the
ML applications for corroded oil and gas pipeline. In their recent
review, Soomro et al. (2022b) examined the existing applications
of the Bayesian network approach in the detection of corroded oil
and gas pipelines. The findings indicated that a majority of the
research studies utilized Bayesian models with insufficient data,
resulting in unforeseen outcomes.

Therefore, it can be said that few review articles, especially
systematic reviews, have been reported that introduce the ap-
plication of ML in oil and gas pipeline failure predictions. That
results in a wide knowledge gap in these technologies. Fig. 11
shows the summary of the number of reviews has already been
published, besides the gaps that need additional reviews on ML
applications for oil and gas pipeline failure prediction technology.
The highest number of reviews has been reported for the applica-
tions of ML in corroded pipeline detection, followed by ML for in-
tegrity management and HML for pressurized pipelines. However,
researchers should publish SLR based on different perspectives
such as on ML for pipeline failures (including a comprehensive
and connected mapping for the application of ML for different
pipeline failures), ANN for pipeline failures, SVM for pipeline
failures, HML for pipeline failures, ML for mechanical failures
of the pipeline, ML for third party failures of the pipeline, ML
for operational failures of pipeline and ML for natural failures
of the pipeline. Furthermore, systematic literature reviews from
the civil engineering researcher’s perspective, from petroleum en-
gineering researcher’s perspective, from mechanical engineering
1326
researcher’s perspective and from data and information technol-
ogy scholar’s perspective are recommended which could be very
useful for a comprehensive overview of the applications of ML
in oil and gas pipelines failure prediction. In summary, the lack
of systematic reviews on ML applications in oil and gas pipeline
failure predictions has created a knowledge gap. Additional re-
views are needed to cover various areas, including different types
of pipeline failures, ML techniques, and perspectives from differ-
ent engineering disciplines and data and information technology
scholars, to provide a comprehensive overview.

3.3.2. ML approaches for oil and gas pipelines failure assessment
In this section, the studies that have been conducted in the

literature are classified based on the most common ML models
(artificial neural networks, support vector machines and hybrid
machine learning models).

3.3.2.1 Studies on artificial neural networks applications for oil and
gas pipeline failure prediction The artificial neural network is one
of the wide ML techniques that have been employed during the
last few years to develop predictive models that can accurately
predict the various defects of oil and gas pipelines. In this regard
some of the studies conducted were summarized in this subsec-
tion considering the type of ANN used, parameters and responses
considered, the source of the data used for training the models
and the main findings.

Mohamed et al. (2015) studied the applications of ANNs at
various architectures to predict the pipeline defect depth. Data
obtained from the pipeline operators using magnetic flux leakage
(MFL) sensors have been used in this research. Prior to using
the Levenberg–Marquardt backpropagation learning algorithm to
train the model, different defect depths and features have been
extracted. The magnitude of MFL signals used as input in this
study to establish the relationship with defect depths. The three
architectures that have been investigated are static feed-forward
neural network (FFNN), Cascaded FFNN and dynamic FFNN. It was
reported that LM back-propagation showed to be the best learn-
ing algorithm compared to other learning functions for defect
depth prediction. It was also found that dynamic NN yields the
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Fig. 11. Review articles on ML applications for oil and gas pipelines failures prediction.
est performance of 89% accuracy and cascaded NN yields the
orst performance among the three NNs used. A novel real-time
ction recognition technique has been developed using CNN to
nhance the accuracy of automated pipeline safety early warning
PSEW) systems that are commonly used for identifying and
ocating third-party defects on oil and gas pipelines (Yang et al.,
021c). The data was collected from the optical fiber sensors
long the pipelines at the site at China National Petroleum Cor-
oration Pipeline in 2016 along the 48 km pipeline. Manual
xcavation, vehicle driving over the pipeline, and mechanical
xcavation parameters that cause the pipeline defect have been
dentified and considered. The developed model showed to ful-
ill the industrial requirements to be applied with an adequate
egree of accuracy.
Ossai (2020) carried out research to develop machine learning

odels to predict the corrosion depth defect and burst pressure
f oil and gas-aged pipelines. Subspace clustered neural networks
SCNNs) have been used to optimize the weights at the clusters of
eed-forward neural networks to improve the accuracy of defect
epth prediction. The mechanical parameter including (diameter,
hickness, length, yield strength and ultimate strength of tested
ipelines) and operating parameters including (pressure, temper-
ture, gas production rates, oil production rates, water production
ates, specific gravity and CO2 partial pressure) were considered
or developing the predictive model. The model was trained with
nshore pipeline data. It was stated that the developed model
ould provide a guide for experts on the defect depth prediction
ver time, and provide baseline information for effective man-
gement of the operating pipelines toward lower cost and safe
roduction environment. In order to mitigate the aggregation of
ydrate in the gas pipelines that cause a serious problem for the
1327
flow and stability of production, Seo et al. (2021) established a
system based on the feed-forward ANN to predict the hydrate
in the gas pipelines from flow assurance perspective. The model
was trained with data obtained from the OLGA simulator and
parameters of pressures, temperatures, and hydrate volumes at
each time step. It was reported that ML can be a useful technique
to predict the hydrate information in real-time with adequate
accuracy.

The deep neural network technique was used to develop fast
and accurate predictive models for the failure pressure of oil and
gas pipelines (Su et al., 2021). 142 groups of data obtained from
the burst pressure test, besides 150 groups of data generated
from FEM simulation have been used for DNN model training
and validation. The effects of different defect size on pressure
failure was investigated extensively. It was found that the appli-
cations of multilayer DNN on the modeling of failure pressure can
provide a high efficiency and satisfactory accuracy which can be
generalized and applied for the assessment of oil and gas pipeline
integrity. Zakikhani et al. (2020b) developed predictive models
based on ANN to predict the failure sources of oil pipelines in
order to overcome the disadvantages and inefficiencies of the
several inspection methods that have been used previously to
predict the failure of oil pipelines which results in economic
losses and environmental impacts. Data used for developing a
model was obtained from a field record for 35000 km of pipelines
over 37 years across Europe. For predicting the mechanical, corro-
sion and third-party failures as outcomes, pipelines age, service
types, diameter, land use and facility types were used as input
parameters. It was found that the developed models could be
useful for predicting the mechanical, corrosion and third-party
failure of oil and gas pipelines with an accuracy of around 72%.
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hat will help the decision-makers and pipeline operators to
rioritize inspections and provide an adequate view of the failure
ources allowing decision-makers to take a decision to mitigate
he risks. It was also stated that pipeline age and product type
howed the least and most impact on the failure source.
Ferreira et al. (2021) applied the deep neural networks tech-

ique to develop a predictive model that can be used to predict
urst pressure failure in pipelines. Experimental data obtained
rom Ultrasonic inspection for the corrosion dimensions in terms
f length and thickness of the defect were used as input for
inite element analysis. Then DNN was trained with other data
btained from finite element analysis. Developed DNN models
howed a high degree of accuracy to predict the burst pressure
ailures of oil and gas pipelines with an error of less than 2%
nd a coefficient of correlations of 99%. To develop a predictive
odel for erosion severity of oil and gas pipelines under high

nternal pressure, Yang et al. (2021a) employed ANN that was
rained with experimental data obtained from the erosion tests
nvolving tensile stress. It was stated that utilizing ANN provided
potential model that can be used for predicting the erosion

everity of pipelines under high internal pressures with an ad-
quate degree of accuracy. Yang et al. (2021d) conducted a study
o develop a model that can be used for accurately identifying
nd locating the third-party failure of oil and gas pipelines using
ultifeatured-fusion convolutional neural networks. The devel-
ped model was trained with a large amount of data collected
y the China National Petroleum Corporation from the real oil
nd gas pipeline networks in the country. It was found that the
eveloped model could be used with a high degree of accuracy
f more than 95% to identify and locate the third-party defect
nder various conditions in real-time. It was also stated that the
eveloped model could be generalized to other fields including
easurement, monitoring and industry inspection.
In order to develop models that can be utilized to predict the

xternal corrosions in oil and gas pipelines, Bastian et al. (2019)
rained a deep neural network in terms of CNN with a dataset of
40000 optical images obtained manually from inspection videos
f the corroded pipelines. It was claimed that the developed
odel can classify and discriminate between the images of cor-

oded pipelines and images that have similar patterns to corroded
ipelines but without real corrosion. The degree of accuracy of
he developed model was found to be 98.8%. In addition, a lo-
alization algorithm was proposed to identify the corrosion area
n the given images with higher precision. It was stated that the
eveloped DNN model will overcome the disadvantages such as
he higher cost and interrupting the functioning of the pipelines
or manual inspection and other non-vision techniques based on
ondestructive evaluation methods.
Table 2 summarizes some of the studies reported in the lit-

rature on the applications of ANN and SVM individually for
eveloping prediction models for various defect types of oil and
as pipelines. The inputs and outputs, data sources used for train-
ng the models and main findings were highlighted and briefed.
t can be seen that most of the studies used ANN which could
ndicate the appropriateness of this ML technique for predicting
he oil and gas pipeline defects with adequate accuracy. It can be
lso noticed that most of the existing studies investigate the use
f ANN and VSM for predicting the corrosion of pipelines. How-
ver, the research gaps in the development of predictive models
o predict other oil and gas pipeline failures such as three-party,
echanical, natural and operational failures still need further
nvestigation in the future.
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3.3.2.2 Studies on support vector machines applications for oil and
gas pipelines failure prediction Piao et al. (2019) carried out a
study to develop a fast reconstruction of the 3D defect profile
using a least-square support vector machine (LS-SVM) based on
data collected frommagnetic flux leakage (MFL). It was found that
the proposed models’ accuracy and computational speed have
been enhanced significantly compared to traditional methods
such as backpropagation ANN which required large data to be
used for the same purpose and come up with adequate accuracy.
Another Study was conducted by Luo et al. (2013) to develop a
model based on grey SVM to predict the corrosion rates of gas
pipelines. Known corrosion inspection data of oil pipelines have
been used to train the model considering pressure, deposition
rate, angle, the density of the gas, density of the liquid, liquid
hold-up, liquid velocity, surface tension, pH value, fluid temper-
atures, inner wall surface temperature, flow regime, superficial
velocity of gas, thermal conductivity of gas and maximum wall
shear stress as inputs parameters. It was claimed that developed
models provided a new thought for risk management, risk assess-
ment and maintenance of oil pipelines. It was also stated that
developed models could be useful for integrity management and
quantitative assessment for long-distance oil and gas pipelines.

3.3.2.3 Studies on hybrid ML models applications for oil and gas
pipelines failure prediction Hybrid machine learning is considered
a significant technique for improving the accuracy of oil and gas
pipelines failures prediction due to its advantages compared to
other standalone machine learning techniques. Some of these
advantages can overcome the issues of overfitting the need for
huge data to train the model. Besides, the optimization process
can be applied to improve the prediction accuracy and by com-
bining more than machine learning techniques the advantages of
all techniques can result in a significant model to be used for
the prediction of different complex pipeline defects with a high
degree of accuracy.

Peng et al. (2021) carried out a study to develop a hybrid
machine learning algorithm method to predict the corrosion rates
of oil and gas pipelines. Principle component analysis (PCA), SVM
and chaos particle swarm optimization (CPSO) techniques have
been combined together to develop the proposed models. It was
stated that PCA was used to screen out the main variables that
influence the corrosion rates while CPSO was utilized to optimize
the hyperfine parameters in SVR to enhance the prediction ac-
curacy of the model. A total of 60 groups of data were collected
from the 5.5 km submarine oil and gas pipelines in Hainan, China.
Parameters used are pH, flow rate, temperature, partials CO2
pressures, pressures, wall shaving stresses and liquid hold, while
the output was the corrosion rate. It was claimed that the pro-
posed PCA-CPSO-SVR model showed an absolute error of 0.083
which is lower than the error from SVR alone by 18.6%. It was
also stated that developed models showed higher prediction ac-
curacy compared to PCA-GA-SVR, ANN, linear regression (LR), De
warred95 (OLGA) and PCA-PSO-SVR. Liu et al. (2021) conducted
a study to develop machine learning models (ANN, classification
tree and Bayesian network) to help in the evaluation of erosion
rate and the optimal flow velocity in pipelines. Sand production
pipe saver (SPPS) V5.3 and DNV GL RP-O501 models have been
utilized to calculate and generate the datasets used in developing
the machine learning models. Field data was also used in this
study. The Monte Carlo simulation method was also used in this
study. A parametric study was carried out to show the impact of
each factor on the erosion rate. VBA code is also used to evaluate
if erosion is within the allowable range. Hugin Expert software
is also used to establish a Bayesian network to ensure uncer-
tainty. Overall it was found that machine learning techniques can
make a faster and more efficient decision and handle uncertainty

very well in a probabilistic manner compared to conventional



A.M. Al-Sabaeei, H. Alhussian, S.J. Abdulkadir et al. Energy Reports 10 (2023) 1313–1338
Table 2
Summary of studies on prediction of oil and gas pipeline failures using ANN and SVM individually.
Reference ML technique used Input parameters Output evaluated Remarks

Afebu et al. (2015) ANN Flow rate, velocity,
pressure and temperature

Detect leak locations
and leak sizes

– Data obtained from OLGA simulator.
– Better precision in predicting leak locations
was found compared to leak size predictions.

De Masi et al.
(2014)

ANN with
Lavenberg–
Marquadt (LM)
learning algorithm
and 20 hidden
neurons

Elevation, slope, concavity,
flow regime, hold-up,
pressures, gas flow, liquid
velocities, and gas
velocities

Corrosion rate, metal
loss and defect area

– Data obtained from the field (case study)
– It was found that developed ANN models
showed significant performance compared to
deterministic ones that a significant drawback
in accuracy.

Santoso et al. (2014) ANN Flow rate (time) and
pressure

Detect pipeline
leakage

– ANN backpropagation with three layers
showed to be the optimal structure for
pipeline leakage very well.

Chamkalani et al.
(2013)

ANN pH value, velocity,
pressure of CO2 and
temperature

CO2 corrosion rate – Data collected from the experimental work
– It was found that ANN can predict the CO2
corrosion rate with very close values to the
experimental findings.
– The developed model was recommended to
be used for corrosion of pipeline prediction
considering the limitations applied.

Din et al. (2015) ANN Length, width, depth and
orientation of the
corrosion defects

Corrosion rate – Data was obtained from In-line inspection
(ILI) data
– ANN was found to be an efficient
technique to predict the corrosion rates based
on the mentioned inputs in this study

Nayak et al. (2020) ANN (multilayer
perceptron neural
network)

pH value, CO2 ,
temperature and velocity

CO2 corrosion in the
oil and gas pipeline

– Data obtained from experimental and
computational fluid dynamic
– Corrosion obtained from ANN, CFD and
experiments found to be very close and similar

Bastian et al. (2019) Deep neural
network using CNN

Images dataset was
collected from oil and gas
pipeline

Detect the level of
corrosions

– DNN showed to be very accurate to
develop models that can be used for
identifying the corroded regions successfully
on the pipelines

Ren et al. (2012) Back propagation
ANN

– Elevation of pipeline
– Pressure
– Length of pipeline
– Pipe slope

Internal corrosion
rate

– Data obtained from an experimental
program
– ANN model has been developed to predict
the internal corrosion rates of gas pipelines
accurately.

Carvalho et al.
(2006)

Nonlinear pattern
classifier using ANN

MFL signals obtained from
intelligent PIG

Defect in the weld
zone of the pipelines
(if the signals are
defective or
non-defective and if
the defects are
external or internal
or non-penetrating).

– Data was obtained from the installed
sensors on the 1025 points along the pipeline
– ANN showed an accuracy of more than 90%
for the classification of the defects
– The best ANN performance found at 15
neurons in the hidden layer

Silva et al. (2007) ANN Pipe wall thickens, defect
depth and dimensionless
circumferential spicing

Gas pipeline’ failure
and burst pressure

– Finite Element Method (FEM) used in this
study to generate the dataset
– It was found that the pressure failure is
associated with the length and depth of the
defect

Xu et al. (2017) ANN Ratio of defects depth to
pipe thicknesses, ratio of
defects length to pipeline
thicknesses, dimensional
circumferential spacing
and dimensional
longitudinal spacing

Burst pressure failure – Experimental data
– ANN showed to be capable to predict the
pressure failure from the interacting pipe
defect

Chin et al. (2020) ANN The tensile strength of
pipe, nominal thickness
and nominal diameter and
defect length and depth of
pipe.

Normalized pipe
failure pressure

– Data used from literature for full-scaled
burst pressure test
– It was reported that the defects depth has
a proportional relationship to the pressure
failure

Valizadeh et al.
(2009)

Fuzzy Flow rate, pressure and
temperature of pipe

Detect pipeline
leakage at different
positions and sizes

– Features extractions and classifications can
be applied to detect the pipeline leakage

(continued on next page)
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Table 2 (continued).
Reference ML technique used Input parameters Output evaluated Remarks

Luo et al. (2013) SVM Pressure, deposition rate,
angle, density of the gas,
density of liquid, liquid
hold-up, liquid velocity,
surface tension, pH value,
fluid temperatures, inner
wall surface temperature,
flow regime, superficial
velocity of gas, thermal
conductivity of gas and
maximum wall shear
stress

Corrosion rate of gas
pipeline

– SVM results in adequate models that can
be used for predicting corrosion rates based
on the inputs in this study
methods. Developed models using machine learning provide cost-
effective and user-friendly tools for erosion rate prediction to
maintain safer and more sustainable pipelines. Therefore, the
procedures followed in this study are strongly recommended to
be used for evaluating and producing the other failure types in
oil and gas pipeline networks. In order to improve the accuracy
of existing engineering simulators available to predict the pres-
sure drop and steady-state multiphase pipe flow, Kanin et al.
(2019) combined several ML algorithms including SVM, ANN,
Gradient Boosting algorithm and Random Forest. Data used for
model training from lab data set obtained from open literature.
It was found that the hybrid ML algorithms used can predict the
pressure distribution along the pipes with correlation coefficients
maximum of 0.99 which is considered higher accuracy and better
than the mechanistic models and multiphase flow correlations
used for similar prediction purposes.

To predict the erosion rate of liquid hydrocarbon pipelines
oward cleaner and safer transportation, machine learning tech-
iques have been used (Liu et al., 2021). ANN, Classification tree
nd Bayesian network were selected for developing the erosion
ate predictive model for their simplicity and comprehensively
o address the different pipeline operating sensors with ade-
uate accuracy. Pipe diameter, the radius of curvature, steel of
ardness, particle diameter, particle hardness, particle density,
luid density, fluid viscosity and fluid velocity are used as inputs
or predicting the erosion rate. The dataset used was obtained
rom a Monte-Carlo method simulation. It was found that the
lassification tree technique showed to be the fastest method
mong the three used, ANN provides comprehensive sensitivity
valuations for each input and the Bayesian network was more
seful to predict the erosion rates with uncertain data. After
he comparison of three ML techniques with non-ML models, it
as found that all ML techniques exhibited more efficient ways
nd accuracy to make a decision. Therefore, it was stated that
eveloped models can serve as a basis for the pipeline operators
o take a decision on pipeline inspections and maintenance to-
ard minimizing the erosion rate. Yin et al. (2021) carried out a
tudy to introduce a semi-quantitative framework that combined
uzzy logic, similarity aggregation model and ML techniques for
riticality evaluations of oil and gas pipeline networks. The fuzzy
ogic method was used to establish the criticality index and build
n easy model to facilitate the evaluation process using ML. While
AM is used for data collection strategies. It was claimed that
he developed framework showed the advantages of the three
echniques in terms of excellent handling of uncertainty, the
easonable aggregating of experts’ opinions by SAM and the high
bility of ML to fit the data. The failure scenario and affect the
ype of failure consequences of the oil and gas pipeline were
ntroduced by Yin et al. (2021) and is shown in Fig. 12. Besides,
he proposed framework to predict the criticality of oil and gas
ipelines through the three stages of data collection, fuzzy logic
nference and ML modeling that have been developed is pre-
ented in Fig. 13. The data collection strategy gathers pipeline
1330
conditions, environmental factors, and other variables influenc-
ing failures. Fuzzy logic assesses potential failure severity using
collected data. Machine learning algorithms predict and analyze
pipeline failure criticality. It was claimed that the framework in
Fig. 13 offers a systematic approach to evaluate and predict the
criticality of oil and gas pipeline failures. It uses data collection,
fuzzy logic, and machine learning to assess and prioritize risks.
This framework can be useful as a guideline for evaluating various
failures of oil and gas pipeline at different regions around the
world under different conditions.

Jiang and Dong (2020) conducted a study to provide several
models based on finite element method (FEM) analysis and ML
algorithms that can be used to predict the collision failure risk
of pipelines. Sample space has been drawn using FEM and the
Latin Hypercube Sampling technique to ensure the uncertainties
and non-linear effects in the collision were considered. Four ML
techniques were used in this study: Genetic programming (GP),
multiple layer perceptron (MLP), SVM and radial basis function
network (RBFN). Parameters considered are pipeline diameter,
yield strength, wall thickness and object mass. It was reported
that the GP model showed the best performance among other
ML techniques used with a correlation coefficient higher than
0.999 and root relative square error (RRSE) less than 0.06. The
developed model was validated by FEM showing a good correla-
tion. Besides, the feasibility of the developed model was proved
by considering nonlinear influences and pipe-soil interaction to
come up with a more realistic risk evaluation. Layouni et al.
(2017) conducted a current study to propose a model using ma-
chine learning to automatically analyze MFL signals to detect the
size of metal-loss defects in oil and gas pipelines. They claimed
that such a model will overcome the challenges of manual de-
tection by engineers which could be cumbersome to human
operators. ML techniques applied were ANN, linear and non-
linear parametric regressions. ML models trained with data ob-
tained from raw MFL signals after conducting feature extraction.
Features extracted that depend on the defect’s depth were maxi-
mum magnitude, mean average, peak-to-peak distance, standard
deviation and integral of the normalized signal. It was claimed
that developed models showed a high degree of accuracy and
computational efficiency and the proposed model can detect any
pattern in the MFL signal that is known as a reference pattern. As
they stated the developed model can even be useful to be applied
to a wide range of defects shapes that are not known because of
its flexibility. Another advantage for propose model is detecting
the defect sizing by the model is fully automated.

Yang et al. (2022) proposed a novel model that used a one-
dimensional neural network (1DCNN) and SVM to enhance the
detection accuracies of oil and gas pipeline leakages. After extrac-
tion of data features using IDCNN, an enhanced variable ampli-
tude particle swarm optimization (VAPSO) algorithm was applied
with an adjustment strategy to optimize the combination of
parameters in SVM and minimize the risks of trapping. The data
features extracted were then used as input into the enhanced
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Fig. 12. Failures scenario and affect type of failures consequences of oil and gas pipeline (Yin et al., 2021).
Fig. 13. Proposed framework of criticality for oil and gas pipelines (Yin et al., 2021).
APSO-SVM to classify. Data used in this study was obtained
rom the pipeline signals collected from the laboratory experi-
ents by simulating the oil and gas pipeline with 160 m. The
103 hydrophone sensors have been used to detect weak leakage
ignals in frequencies of 0.1 Hz to 180 kHz. The parameters con-
idered are temperature, flow rate and pipeline pressure. It was
laimed that the developed model showed the ability to extract
he features of pipeline data more accurately and faster with
ffective enhancement in the classification accuracy. Overall, the
eveloped model exhibited higher robustness in the prediction
f pipelines leakages. Yang et al. (2021b) studied the effects of
he tensile stresses introduced by the high internal pressures and
rosion defects due to the solid particles by the fracturing fluid
n oil and gas pipeline defects. Data were collected from the
rosion wear experiment of fracturing pipelines in various situa-
ions. Parameters included were tensile stress, impact angle, flow
elocity, target material and particle concentrations. SVM, KNN,
NN and random forest regression (RFR) models have been used
o develop models that can be utilized to predict the erosion rate.
FR showed optimal agreement with the actual data obtained
rom the experiment with a high degree of accuracy and lower
rror compared to other machine learning models used.
Mazumder et al. (2021) applied several ML techniques to de-

elop a valuable alternative model to the conventional techniques
1331
that can computationally intensive analyses and determine the
failure risk of oil and gas pipelines. Data used for developing mod-
els were obtained from the experimental data that had already
been published in the literature. Corrosion defect of the pipelines
was detected considering the remaining strength parameters of
the pipeline. Eight machine learning models were used to identify
the best failure prediction model. Fig. 14 shows the flowchart of
the proposed methodology adopted in the study. The XGBoost
was found to be the optimal to be used for accurate failure
prediction and it was recommended for future analyses. The
efficiency of ML-based models was also compared to the physical-
based models and it was found that ML models can perform the
failures risk analysis with much better accuracy than physical-
based methods. Besides, it was stated that in terms of time, ML
is 12 times faster than physical-based methods. Liu et al. (2019b)
conducted a study to develop an ML model that can automatically
much the growth of corrosion with extracted data from In-Line
inspection (ILI). After the extraction of features from ILI data,
SVM, decision tree and random forest ML models have been used
individually and ensembled. It was stated that accurate matching
was found in the case of using the ensemble learning method.
Therefore, this characterization of matched corrosions will con-
tribute to pipelines risk analysis and integrity management. On
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Fig. 14. The framework proposed by Mazumder et al. for failure risk analysis (Mazumder et al., 2021).
Fig. 15. The framework of the proposed method by Zuo et al. for detecting leaks (Zuo et al., 2022).
he other hand, real-time leak detection in oil and gas pipelines
s vital for industry safety. Traditional model-based techniques
re impractical, leading to increased interest in data-driven meth-
ds. However, most of the existing approaches require labeled
ata, which is challenging to obtain for rare leaks. To address
his, Zuo et al. (2022) proposed a semi-supervised method using
n improved long short-term memory autoencoder (LSTM-AE)
etwork and a one-class support vector machine (OCSVM) as
llustrated in Fig. 15. The LSTM-AE learns features from normal
arameter datasets, and the OCSVM calculates a score to detect
eaks. Evaluation on real gas pipelines showed 98% accuracy and
9% area under the curve, confirming the effectiveness of the
eveloped approach.
A new method called Sparrow Search Algorithm and Convolu-

ional Neural Network (SSA-CNN) for detecting oil pipeline leaks
as proposed by Li et al. (2022a). The SSA-CNN method initially
onverts the input time series data into a two-dimensional matrix
1332
and then compares the classification conditions using different
convolution kernel sizes and pooling sizes. The SSA algorithm
was employed to optimize the CNN parameters. It was found
that using two-dimensional data as input improved the neu-
ral network’s ability to extract features compared to traditional
ML methods. The proposed SSA-CNN method achieved an ac-
curacy rate of 98.67% which is higher than that of traditional
ML methods and further improves the classification capability of
CNN. Spandonidis et al. (2022) conducted a study using a semi-
supervised deep-learning approach to detect oil leaks in pipelines.
Two methodologies were implemented: a 2D-CNN for supervised
classification of spectrograms, and LSTM AE for unsupervised
leakage detection. The combined model outperformed the bench-
mark and individual components, demonstrating its effectiveness
for pipeline leak detection. Table 3 presents the summary of some
of the studies that combined more than a machine learning tech-
nique to improve performance and prediction accuracy. Similar



A.M. Al-Sabaeei, H. Alhussian, S.J. Abdulkadir et al. Energy Reports 10 (2023) 1313–1338

t
c
o
c
a
s
p

t
n
c
d
f
t
o
h
i
c
r
o
o
f
h
c
t
a
e
c
i
a
d
s
a
a
d
a
h
a

i
t
s
e
t
a

4

i
m
o
l
g
d

4

u
g
h
m
t
r
i

o studies that used ANN, most of the existing studies are on
orrosion and still there is a knowledge gap in the applications
f hybrid machine learning models for predicting other most
ommon failures of oil and gas pipelines. Overall and based on the
forementioned studies, it can be said that hybrid ML techniques
howed a significant accuracy in the prediction of oil and gas
ipeline failures compared to the separate models.
Based on the relevant literature have been reviewed in Sec-

ion 3.3.2, it can be said that understanding the strengths, weak-
esses, and applicability of ANNs, SVMs, and hybrid models is
rucial for predicting defects in oil and gas pipelines. They provide
istinct advantages and limitations, making them valuable tools
or precise oil and gas pipeline defect prediction and prevention
o some extent. ANNs are advantageous for predicting defects in
il and gas pipelines due to their ability to learn complex patterns,
andle large amounts of data, and make predictions based on
ncomplete or noisy data. However, they have limitations, in-
luding being ‘‘black-box’’ models that are difficult to interpret,
equiring substantial training data, time-consuming to train and
ptimize, being computationally intensive, and being prone to
verfitting if not properly regularized. Similarly, SVMs are useful
or predicting defects in oil and gas pipelines as they handle
igh-dimensional data, non-linear relationships, and provide a
lear margin of separation between classes. They are also robust
o outliers. However, SVMs can be sensitive to hyperparameters
nd the choice of kernel functions. They can be computationally
xpensive with large datasets and may struggle with overlapping
lasses or imbalanced class distributions. Hybrid machine learn-
ng models, which combine different algorithms such as ANNs
nd SVMs, offer strengths that can be beneficial for predicting
efects in oil and gas pipelines. Hybrid models can leverage the
trengths of individual algorithms, enhancing overall prediction
ccuracy. They can handle complex patterns and relationships
nd mitigate the weaknesses of individual algorithms. However,
eveloping and implementing hybrid models can be a challenging
nd time-consuming process. The performance of hybrid models
eavily depends on the selection and integration of individual
lgorithms.
In summary, ANNs can predict future defects based on histor-

cal data, but their performance relies on data quality and quan-
ity. SVMs handle high-dimensional data and non-linear relation-
hips but need careful tuning and balanced datasets. Hybrid mod-
ls enhance prediction accuracy by combining algorithms, but
heir design and implementation require careful consideration
nd evaluation.

Discussions

According to the studies reviewed in this SLR, the follow-
ng subsections provide three aspects of literature including the
otivations behind applying ML techniques in the development
f predictive models for oil and gas pipeline failures, the chal-
enges encountered in using ML techniques successfully in oil and
as pipeline defects prediction and recommendations and future
irections to overcome and mitigate such difficulties.

.1 Motivations

One of the motivations for using ML for detecting the fail-
res of oil and gas pipelines is the challenges faced by oil and
as industries to inspect oil and gas pipelines that transport
ydrocarbons over a very long distance using the most com-
on non-destructive evaluations techniques based on ultrasonic

esting, magnetic flux leakages, etc., which are techniques that
equired stopping the current operations of the pipelines result-

ng in a reduction of the financial profit (Bastian et al., 2019; De
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Masi et al., 2015). Besides, the manual inspection method is one
of the conventional alternatives for failure detection; however,
it is time-consuming and not efficient and practical in case of
hazardous locations. In this method closed circuit TV (CCTV) cam-
eras are installed to capture the failure images and then expert
humans conduct a manual checking which is considered very
tiresome and time-consuming and also not very accurate (Bastian
et al., 2019). Thus, there is a need for a computer vision-based
system that can be used to capture images from dynamic moving
camera systems and automatically detect failures.

Furthermore, the applications of hybrid machine learning
models by combining more ML models showed a significant
improvement in the accuracies and efficiencies of the developed
models for predicting the oil and gas pipeline defects compared
to the standalone model used. Such HML techniques are widely
applied for predicting pipeline corrosion, however, it is still con-
sidered a research gap for improvement of most other pipeline
failure defects such as third-party, natural defects, mechanical
defects and so on. Therefore, encouraged findings from the ap-
plication of HML for corrosion prediction could be a motivation
and a solid background guiding the extent of application of such
technique for prediction of the rest of pipeline failures.

4.2 Challenges

One of the main challenges of oil and gas pipeline failures
predictions is inadequate understanding and incorrect diagnosis
of the problem of the exact failure through the studying of the
nature of the oil and gas materials, from the design and materials
aspect, implementation aspect, chemistry aspect, environmental
aspect and flow mechanics aspect. Then based on the compre-
hensive investigation and specifying the exact issues, the role of
the collection of accurate data and applying ML come to develop
prediction models that can reflect the real situation. Another
main challenge is dealing with, processing and analyzing the
datasets from different resources. Most of such challenges are due
to instrument performance, adopted technology for data collec-
tion and changing the reporting criteria. Besides, the earlier data
processing through hardware or software can be another reason
for such challenges (Khan et al., 2021; Soomro et al., 2022b).
To contribute to solving some of the aforementioned challenges,
a holistic approach in terms of a framework that includes data
cleaning and statistical analysis has been developed to overcome
the challenges of accurate and credible interpretation of large
databases prior to being used for developing predictive models
(Khan et al., 2021).

Furthermore, to evaluate the pipeline failures, another chal-
lenge is the availability of data due to the complication of the oil
and gas pipeline operation process as a result of the fluctuation of
operating conditions and different product components and prop-
erties. Besides, the existing data is very limited. Therefore, there is
a need for probabilistic models to address the lack of information
in this regard (Liu et al., 2021). Moreover, dozens of ML algo-
rithms are available and each of them follows a different theory of
learning. It cannot be nominated as one of those algorithms as the
best among the others or even there is no one algorithm that can
fit all (Yin et al., 2021). That means choosing the right algorithm
is very critical and considered another challenge for applications
of ML in oil and gas pipeline failure predictions.

However, extensive studies in literature used the experimen-
tal, simulations and field inspection as the main resource for data
that needs to develop ML models for oil and gas pipelines fail-
ures prediction, there is a need to further extend the possibility
of using different simulation techniques such as finite element
method (FEM) at various stress, strain, environmental, operation
conditions and pipeline characteristics to further minimize the
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Table 3
Summary of studies on prediction of oil and gas pipeline failures using hybrid ML techniques.
Reference ML technique used Input parameters Output evaluated Remarks

Liu et al. (2021) – Classification tree
techniques
– ANN (Feed forward)
with two hidden layers
– Bayesian Network to
check uncertainty

Pipe diameter, radius of
curvature, steel of
hardness, particle
diameter, particle
hardness, particle density,
fluid density, fluid
viscosity and fluid velocity

Predict the
erosion rates

– Dataset used was obtained from a
Monte-Carlo method simulation.
– Classification tree showed to be the faster
technique used for erosion rate detection,
whereas ANN provides a comprehensive
sensitivity evaluation.
– ANN back propagation with two hidden
layers, 10 neurons, showed to be the optimal
structure for pipeline leakage very well.

Yin et al. (2021) ML (Multilayer perceptron,
SVM and random forest)
and Fuzzy

Safety effects,
transportation interruption
influence, equipment
maintenance and
environmental effects

Failure criticality
of pipelines

– It was found that the random forest model
showed the best prediction capability
compared to other ML models used. Besides,
the effects of safety and environmental factors
exhibited the biggest impact on failure
criticality.

Mazzella et al.
(2019)

Hybrid ML techniques
(ANN, extreme boosted
trees and generalized
linear model)

Focused on the
environmental factors
(chloride pollution, annual
average temperature,
sulfide pollution, time of
wetness and number of
years below than zero
degree), besides the pipe
manufacturer, actual
diameter and year of mill
run.

Underground oil
and gas
pipeline’s
corrosion rate

– Data was obtained from North American
pipeline operator
– All three models showed a significant
prediction for the corrosion rate of pipeline
with a high degree of accuracy

Li et al. (2022a) Sparrow Search Algorithm
and Convolutional Neural
Network (SSA-CNN)

The size of the
convolutional layer’s
kernel, the number of
neurons, the rate of
learning, and the number
of iterations of the CNN.

Pipeline leaks – Two-dimensional input data improved
feature extraction in neural networks
compared to traditional ML methods
– The proposed SSA-CNN method achieved a
higher accuracy rate of 98.67% and enhanced
the classification capability of CNN.

Priyanka et al.
(2021)

ML (manifold learning
method, kernel based SVM
algorithm)

At wide pressure range Predict the risk
probability rate

– A new technique was proposed to handle
the oil and gas pipeline failure estimation with
respect to pressure factors. As claimed, this
technique is consistent with the most recently
developed IoT technologies to be applied in
the real-world oil and gas pipeline.

Liao et al. (2012) ANN, ANN-PSO and
ANN-GA

Liquid hold up, maximum
wall stresses, heat transfer
coefficients of pipeline
wall, superficial velocities,
maximum shear stress in
the wall, deposition rate
and pipe angle

Internal
corrosion rates
of gas pipeline

– Data obtained from the field inspection
– ANN-PSO showed the best accuracy among
the three developed models

Spandonidis et al.
(2022)

Semi-supervised
deep-learning (a 2D-CNN
for supervised
classification of
spectrograms, and LSTM
AE for unsupervised)

The sensor spacing,
leakage-sensor separation,
and leakage diameter.

Leakage
detection

– The combined model surpassed both the
benchmark and individual components,
indicating its efficacy for detecting pipeline
leaks.

Ossai (2019) – HML (Feed forward
ANN with particle swarm
optimization (PSO),
Random Forest (RF),
Gradient Boosting
Machine (GBN), and Deep
Neural Network (DNN))
– Principle Component
Analysis (PCA)

Operating pressure,
temperature, CO2
pressure, sulphate ion
concentrations, chloride
ion concentrations, oil
production rates, gas
production rates, alkalinity
concentration, iron
content and calcium
concentration

Corrosion defect
depth of aged
pipelines

– Field measurements have been conducted
to collect the data
– Results showed that the accuracy of the
prediction from the combined ML modeling
with PCA was found to be 3.52 to 5.32 times
of that using only PCA.
– GBN with PCA exhibited the best accuracy
among all other HML

Aslam (2018) ANN, Genetic Algorithm
(GA) and Fuzzy Logic (FL)

External parameters
(external temperature,
weather patterns and the
elevation) and internal
stress parameters (gas
composition, hydrocarbon
composition, velocity and
flow rate)

Leak and
corrosion
prediction

– Data collected from the field measurements
– Developed HML model showed to be
practical for accurate prediction of leak and
corrosion of pipelines

(continued on next page)
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Table 3 (continued).
Reference ML technique used Input parameters Output evaluated Remarks

Ossai (2020) Feed-forward ANN using
sub cluster neural
network (SCNN) and PSO

Operating pressure,
temperature, basic
sediments and water, CO2
partial pressure, gas
specific gravity and oil
and gas prediction rates

Corrosion defect
depth and burst
pressure

– The developed model exhibited a degree of
accuracy with a predicted correlation
coefficient of 92%

Sinha and Pandey
(2002)

Probabilistic neural
network (PNN) and back
propagation neural
network (BPNN)

Pipe wall thickness, yield
strength of pipe, cracks
depth, pipe diameter, the
standard deviation of
crack depth and operation
pressures

Probability of
failure (POF) of
oil and gas
pipeline

– Field observation data were collected using
a magnetic flux leakage tool
– Proposed model trained by PNN showed
better accuracy compared to BPNN based
model.

Liu et al. (2012) PSO-SVM Acid number of oils, sulfur
in crude oil, temperatures,
pressures and velocities

Internal
corrosion rate of
oil pipelines

– The proposed model has been compared to
BPNN and found that PSO-SVM resulted in
better accuracy with a maximum error of 0.6%

Zuo et al. (2022) Long short-term memory
autoencoder (LSTM-AE)
network and a one-class
support vector machine
(OCSVM)

Pressure, flow and
temperature

Real-time leak
detection

– The developed approach demonstrated its
effectiveness with an accuracy of 98% and an
area under the curve of 99%.

Peng et al. (2021) Support vector regression
(SVR), chaos particle
swarm optimization
(CPSO) and principle
component analysis (PCA)

pH, flow rate,
temperature, partials CO2
pressures, pressure, wall
shaving stress and liquid
hold

Corrosion rates
for multiphase
flow pipelines

– Data collected from the 5.5 km submarine
oil and gas pipeline in Hainan, China
– SVR-CPSO-PCA showed a better degree of
prediction and accuracy compared to the
SVR-based model with an error of 0.0083.

Phan and Duong
(2021)

Adaptive neuro fuzzy
inference system (ANFIS)
with and without PCA

Wall thickness, pipe
diameter, corrosion defect
length and corrosion
defect depth,

Burst pressure of
pipeline

– The results showed that models with PCA
exhibited better accuracy compared to that
without PCA
need for the field and experimental inspections which is defi-
nitely required more time and cost. Meanwhile, it is important to
consider whether the data obtained through field and experimen-
tal methods is more representative compared to simulation and
modeling. models developed based on the data obtained from the
simulation need to be validated to ensure the behavior simulated
is very close to the real pipeline failure behavior. It is also es-
sential to carefully consider the representativeness and reliability
of the data used for training and validation. Balancing the trade-
off between the costs and benefits of different data collection
methods, such as field inspections, experimental testing, and sim-
ulation, will be crucial to ensure the accuracy and generalizability
of the deep learning models. Besides, in-depth studies including
the micro and molecular level on the different oil and gas pipeline
defects to predict early failure and can provide adequate solutions
earlier is another challenge and research gaps should be studied
in the future extensively.

4.3 Recommendations and future directions

However, many studies applied ML techniques to predict the
orrosion defects of oil and gas pipelines, but very limited studies
ddressed other failures such as weldment defects with their
ifferent types (weldment materials failure, porosity, overlayers,
eldment cracking and etc.), Pipelines materials properties and
anufacturing defects, environmental condition defects, stress
nd strain (including tensile, shear and bending) based defects,
ressure or burst pressure defects. Therefore, applications of ML
echniques still need to be further extensively used to come up
ith accurate systems that can be used for oil and gas pipelines

ailures predictions in order to improve the integrity of oil and
as pipelines and enhance the control of overall health monitor-
ng system of oil and gas industries. Combining more than the
pproach of ML such as ANN, SVM and other algorithms could be
nother trend for future studies to come up with higher accuracy.
Based on the recommendations reported in the literature, lab

atasets should be extended either experimentally or use various
1335
available simulators to improve the predictive capability of ex-
isting models. Furthermore, the hybrid ML technique should be
adopted to solve the existing issues such as pressure fluctuation
in the oil and gas pipeline which has a significant effect on
the operations. That also can be done by incorporating the ML
algorithms into the mechanistic models (Kanin et al., 2019). It was
also recommended that, in order to develop an accurate predic-
tion and detection of pipeline failure models, hybrid techniques
of software-based techniques and hardware-based techniques
should be adopted to come up with low errors and adequate
accuracy. So the combination of different techniques and tech-
nologies is recommended to improve the reliability and accuracy
of pipeline failure detection (Qin et al., 2023; Vandrangi et al.,
2022). Although developed predictive models for the criticality
index of oil and gas pipelines by Yin et al. (2021) can be useful
for researchers and industries that are interested in applications
of ML for modeling oil and gas pipelines failures, future research
was recommended on multi-level evaluation indicators in deeper
with respect to each factor at different situations to come up with
more practical models. There is also a need for comprehensive
research on the applications of ML techniques for detecting the
interactive defects of oil and gas pipelines based on the timing
and locations of these defects (Liu and Bao, 2022).

5 Conclusions

This systematic review paper focuses on the use of machine
and deep learning techniques, specifically artificial neural net-
works (ANNs), support vector machines (SVMs) and hybrid ma-
chine learning (HML) algorithms, for predicting various pipeline
failures in the oil and gas industry. Unlike previous reviews, it
specifically examines how these techniques are applied, including
the parameters and data reliability involved. The paper provides
a comprehensive discussion of the motivations and challenges
of using ML for predicting different types of pipeline defects. It
also includes a bibliometric analysis that highlights commonly
used ML techniques, the types of failures investigated, and the
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xperimental tests conducted. Detailed information, summarized
n tables, is provided on different failure types, commonly used
L algorithms, and available data resources, along with criti-
al discussions. According to the results and analysis from this
ystematic review, the following conclusions can be drawn:

• The effectiveness of machine learning methods, particu-
larly accuracy, is influenced by numerous factors, includ-
ing variations in dataset sizes, data sources, pipeline types,
data types, pre-processing algorithms, and machine learning
models.

• In comparison to conventional techniques, machine learning
methods such as ANN, SVM, and HML demonstrated low
complexity and achieved high to very high accuracy in de-
tecting pipeline defects. However, it is important to note
that a substantial amount of data is necessary for optimal
performance.

• The majority of studies found in the literature focused on
addressing corrosion defects in oil and gas pipelines. How-
ever, there were only a few studies that explored the appli-
cation of machine learning on other types of failures, such
as third-party, mechanical, natural, and other failures.

• Through the bibliometric analysis, it was observed that the
most commonly used machine learning techniques in the
literature for predicting pipeline defects are ANN and SVM.
However, there is a scarcity of research that has explored
the utilization of other machine-learning techniques, such
as CNN, and KNN.

• In generating laboratory data for pipeline defect detection,
nondestructive examination and magnetic flux leakage tests
are the most commonly utilized methods. However, it is
suggested that incorporating more advanced simulations
like finite element methods can enhance the accuracy of
machine learning models by providing more up-to-date and
reliable data.

• The parameters most frequently employed in the litera-
ture for predictive machine learning models were operat-
ing pressure, pH, temperature, CO2 pressure, velocity, pipe
wall thickness, defect depth and length, diameter, flow rate,
density of liquid, and liquid hold-up.

• ML models developed using ANN and/or SVM techniques
exhibited a strong correlation with field, laboratory, and
simulation-based data. However, to enhance the accuracy
of the models and enable the detection of various types
of failures, it is recommended to explore the application
of hybrid ML techniques that have not been extensively
studied in the existing literature.

• Machine learning in the oil and gas pipeline sector is ad-
vantageous for its ability to learn from diverse data sources
and create accurate models. However, the challenge lies in
generating sufficient clean data for training these models.

• Conducting experiments with large datasets can enhance
the generalization capability of defects detection methods,
enabling a more comprehensive analysis of pipeline defects.

• There are many different ML algorithms, each with its own
theory of learning. However, there is no one-size-fits-all
algorithm that is considered the best. This makes it chal-
lenging to choose the right algorithm for predicting oil and
gas pipeline failures. To overcome this challenge, future
research should prioritize the optimization of ML methods
and the enhancement of accuracy.

• While optimization algorithms improve detection accuracy,
they also increase training time, making it challenging to
continuously update the model for real-time detection. Fu-
ture research should focus on reducing model training time
and enabling continuous updates while ensuring real-time
detection.
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• More research is needed to establish a sustainable machine-
learning system that can effectively monitor all oil and gas
pipeline failures, considering the environment. This system
should automate processes from data collection to decision-
making for repairing identified defects.
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