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Abstract. State-of-the-art Deep Learning (DL) methods based on Supervisory Control and
Data Acquisition (SCADA) system data for the detection and prognosis of wind turbine faults
require large amounts of failure data for successful training and generalisation, which are
generally not available. This limitation prevents benefiting from the superior performance of
these methods, especially in SCADA-based failure prognosis. Data augmentation approaches
have been proposed in the literature for generating failure data instances within a SCADA
sequence to reduce the imbalance between healthy and faulty state data points, which is relevant
to fault detection tasks. However, the successful implementation of DL-based failure prognosis
methods requires the availability of multiple run-to-failure SCADA sequences. This paper
proposes a data-driven method for generating synthetic run-to-failure SCADA sequences with
custom operational and environmental conditions and progression of degradation. An Artificial
Neural Network (ANN) is trained with signals that represent these factors to reconstruct the
SCADA signals. Then, it is used to generate synthetic SCADA datasets based on data available
from a wind turbine that experienced a gearbox failure. Synthetic data sets generated are
evaluated on the basis of the similarity of their signal distributions, the temporal dynamics
within each signal, and the temporal dynamics among different SCADA signals with those in
similar field datasets. The results show that the generated synthetic datasets are consistent
with their field counterparts, with a comparatively lower diversity in their dynamic behaviour
in time.

1. Introduction
State-of-the-art Deep Learning (DL) methods for SCADA-based fault detection and prognosis
in wind turbines require a large amount of high-quality faulty-state training data for satisfactory
performance [1], which is usually not available. In SCADA datasets of wind turbines experiencing
failures, the time periods related to faulty operation are generally significantly shorter in length
than those of healthy operation. During fault detection, this imbalance introduces a bias towards
the majority (healthy) class, resulting in poor detection performance. Furthermore, a specific
component usually fails very few times in a wind farm, leading to an insufficient number
of run-to-failure sequences, which can negatively impact the performance of failure prognosis
methods. Another reason for this limitation can be the reluctance of wind farm operators to
share potentially sensitive failure data [1].



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 032033

IOP Publishing
doi:10.1088/1742-6596/2767/3/032033

2

The problem of class imbalance in classification is usually tackled by data augmentation,
i.e. oversampling of the minority class. Data augmentation for SCADA-based wind turbine
fault detection has been well studied in the literature, such as in [1, 2]. However, there is a
significant research gap regarding the generation of synthetic SCADA datasets, which can be a
viable solution to mitigate the lack of sufficient run-to-failure SCADA sequences.

An approach to generating synthetic SCADA signals is to use physics-based and hybrid
(combining both physics-based and data-driven) models of wind turbine components. For
example, in [3], a digital twin based on a hybrid model of a wind turbine drivetrain is developed
and used to generate synthetic stator winding temperature signals. The generator failure
is modelled as a heat exchanger, simulating elevated stator winding temperatures, and the
generated signals are used for fault detection. However, such models always introduce some
simplifications in the description of the actual component behaviour. Furthermore, they have
limited capacity to model component degradation and failure. As a result, they are unable
to generate realistic run-to-failure sequences of multiple SCADA signals useful for prognostic
purposes.

Data-driven methods for generating synthetic time series have been proposed in other fields.
In [4], a method based on Generative Adversarial Networks (GAN) is developed to generate
synthetic time series for smart grid applications. In [5], a survey of time series data generation
methods in the field of the Internet of Things is presented. In [6], a GAN-based method is
developed to generate synthetic financial time series. However, to the best of the authors’
knowledge, data-driven methods for creating synthetic SCADA datasets to mitigate the lack
of sufficient run-to-failure data sequences have not been proposed yet. The methods already
proposed mainly aim to learn the underlying distribution and dynamic behaviour in time of a
known dataset and to sample new time series from the learnt distribution, generating synthetic
time series that closely follow the behaviour and distribution of the original data [7]. Therefore,
based on very few field datasets with failure, they are not capable of generating a diverse set
of synthetic run-to-failure SCADA data sequences. In this paper, a data-driven method is
developed to address this limitation. This method allows the customisation of the operational,
environmental, and degradation behaviours under which the synthetic SCADA datasets are
generated.

The rest of the paper is organised as follows: Section 2 introduces the developed method and
the metrics used for its validation. In section 3, the method is applied to the SCADA dataset of
a wind turbine with a gearbox failure, and the consistency of the generated synthetic datasets
with field datasets is evaluated in terms of the introduced metrics. Section 4 draws conclusions
regarding the validity of the method and the ongoing work for assessing its effectiveness in
boosting condition monitoring performance.

2. Method
This section first describes the method developed for generating synthetic SCADA datasets.
Then, the metrics and the approach to evaluate the consistency between the synthetic and field
datasets are discussed.

2.1. Synthetic SCADA dataset generation
Sensor signals of degrading industrial components are affected by different factors, including
the operational and environmental conditions and the level of degradation [8]. Likewise, a wind
turbine SCADA dataset consists of operation- and environment-dependant signals, such as the
rotor speed and the wind speed, and signals which depend on those along with the level of
degradation, such as gearbox bearing temperature. Any such signal Si can be expressed as:

Si = {si,t|t ∈ [0, T ]} = Fi(O,E, D) (1)
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where O = {Oj |j ∈ [1, CO]} = {oj,t|j ∈ [1, CO], t ∈ [0, T ]} and E = {Ek|k ∈ [1, CE ]} = {ek,t|k ∈
[1, CE ], t ∈ [0, T ]} denote the operation- and environment-dependant signals with CO and CE

indicating the number of such signals in the SCADA dataset, D = {d(t)} is the degradation
factor which is not directly measured, Fi is a function that describes the relationship between
these factors and Si, t indicates time, and T is the length of the dataset. The SCADA dataset
S can, then, be denoted as:

S = {Si|i ∈ [1, CS ]} ∪ {O,E} (2)

where CS is the number of signals which depend on the operational and environmental conditions
and the level of degradation. Knowing Fi, a synthetic SCADA signal, Ss

i , can be generated by
any set of synthetic O, E, and D.

Ss
i = Fi(O

s,Es, Ds) (3)

where Os, Es, and Ds are synthetic operational, environmental, and degradation factors.
If O, E, and D are known, a way to learn Fi is to use a supervised machine learning

approach, such as an Artificial Neural Network (ANN). In SCADA datasets, several signals
usually exist that represent operational and environmental conditions, such as rotor speed,
ambient temperature, and wind speed. However, the level of degradation is not directly
measurable by sensors. Since degradation is, to a large extent, an irreversible process, D is
expected to be highly monotonic [8]. In [9], a Convolutional Autoencoder (CAE) trained by
the Particle Swarm Optimisation (PSO) algorithm has been proposed to extract D from the
signals of a degrading component. The CAE receives input as tabular data in Equation (2) and
reconstructs them in the output, passing the information through a bottleneck in the middle
layer where the degradation factor is extracted. The CAE is trained using the PSO algorithm
to minimise the reconstruction error and maximise the monotonicity of the degradation factor
D obtained in its middle layer.

The flowchart of the data-driven method proposed to generate synthetic SCADA datasets
is shown in Figure 1. The D factor is extracted from a given dataset, S, using the CAE-PSO
algorithm, and is input, along with the already known O and E, to an ANN, that is trained to
reconstruct Si, implicitly modelling Fi (Figure 1 - Training step). The trained ANNs are then
used as a generative model (Generator ANN) to generate synthetic SCADA signals Ss

i in the
generation step (Figure 1 - Generation step), where O, E, and D can be customised or modified
to generate synthetic SCADA datasets under desired conditions. For example, O and E can be
replaced with those from a different wind turbine and/or a different time frame to replicate the
degradation associated with D in those conditions. It is important to note that since O and
E are correlated, they must refer to the same time frame and wind turbine. Alternatively, the
trajectory of D can be modified to simulate a different degradation history.

2.2. Model evaluation
The problem of evaluating synthetic time series generation methods is an active area of research.
However, no consensus has yet been reached among researchers on what characterises high-
quality synthetic time series and how to quantify quality [7], and different approaches referring
to various metrics and measures have been proposed in the literature [10]. Besides the sensor
signal value distributions, a synthetic time series generation method should preserve the temporal
dynamics in the original data [11]. Therefore, in this paper, the developed method is evaluated
with respect to the generated signal distribution, the temporal dynamics within each generated
signal and among the generated signals within a synthetic SCADA dataset.

2.2.1. Signal distribution. The signal distributions of a synthetic SCADA dataset generated
from a given set of operational, environmental, and degradation conditions should be congruent
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Figure 1. Synthetic SCADA data generation method. D denotes the degradation trend, O
and E the operation- and the environment-dependant signals respectively, and S the SCADA
dataset.

with those of a field SCADA dataset referring to similar conditions. For example, in the
case of a synthetic SCADA dataset including a gearbox failure mode known to cause elevated
temperatures [12], an increase in the level of degradation (D) in a given period should translate
into an increase in the gearbox-related temperature signals in the same period. Furthermore,
the increase in the temperature signals should be proportional to the increase in the degradation
level. The former assertion is assessed by applying the two-sample Kolmogorov–Smirnov (KS)
test [13] and by verifying that the null hypothesis that the signals related to the lower and higher
D come from identical underlying distributions is rejected. The p-value is calculated, which
indicates the probability that the two sets of samples have identical underlying distributions.
A p-value less than 0.05 typically indicates that the null hypothesis is rejected. The latter
analysis is performed by measuring the dissimilarity between signal distributions corresponding
to different quantities of increase in D, which is measured by the Wasserstein Distance (WD)
[14]. This metric is calculated by associating a hypothetical mass to distributions, finding the
optimal way to transport it from one distribution to the other, and calculating the required
work to do that. The WD is calculated for each Si and Ss

i pair (WDi) and then the Average
WD (AWD) between S and Ss is calculated as the mean WDi for i = 1 . . . C.

2.2.2. Intra-signal temporal dynamics. In addition to exhibiting congruent distributions, the
synthetic and field signals corresponding to similar conditions should display similar dynamics
in time [11]. This property is measured by the Auto-Correlation Function (fAC) [6]. The auto-
correlation of a signal Si with a time lag of τ , C(Si, τ), is measured by the Pearson correlation
coefficient between Si,0:T−τ = {si,t|t ∈ [0, T − τ ]} and Si,τ :T = {si,t|t ∈ [τ, T ]} where T is the
length of Si.

C(Si, τ) = Corr(Si,0:T−τ , Si,τ :T ) (4)

Then, the fAC function is defined as:

fAC(Si) := {C(Si, τ)|τ ∈ [1, T − 1]} (5)
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which returns a vector of auto-correlations at lags of 1 through T −1. The dispersion among the
fAC vectors in field datasets should ideally be replicated in the synthetic datasets referring
to similar conditions, indicating similar diversity in intra-signal temporal dynamics. The
autocorrelation score among the field and synthetic signals, sAC(Si, S

s
i ), is defined as the

Euclidean norm of the difference between the mean fAC(Si) among field datasets and the mean
fAC(S

s
i ) among synthetic datasets.

sAC(Si, S
s
i ) := ||fAC(Si)− fAC(Ss

i )||2 (6)

The lower sAC(Si, S
s
i ) is, the higher the similarity of temporal dynamics in Si and Ss

i .

2.2.3. Inter-signal temporal dynamics. A SCADA dataset consists of multiple signals with
different levels of correlation. Therefore, other than the temporal dynamics within each signal,
the signals in a synthetic dataset and a field dataset corresponding to similar conditions should
display similar cross-correlations. To assess this property, a measure called the Cross-Correlation
Function (fCC) is defined based on [15].

fCC(S) := {Corr(Si, Sj)|i ∈ [2, C], j ∈ [1, i]} (7)

where Corr(Si, Sj) is the cross-correlation between Si and Sj defined by their Pearson correlation
coefficient, and C is the number of signals in the SCADA dataset. In [15], the whole cross-
correlation matrix is used for measuring inter-signal temporal dynamics, where the values in
the higher and lower triangles are identical, and the main diagonal is equal to 1. Equation 7
returns a vector with the lower triangle elements of the cross-correlation matrix to eliminate
redundant values. The dispersion in fCC vectors of field datasets should ideally be replicated in
the synthetic datasets, indicating similar diversity in inter-signal temporal dynamics.

3. Results
In this section, the proposed method is used to generate synthetic datasets based on a wind
turbine with a gearbox failure. The synthetic datasets are compared with field datasets
corresponding to similar conditions, considering the three properties introduced in the previous
section.

3.1. Dataset
The dataset used in this paper contains SCADA data from nine 2MW wind turbines (WT1–9)
with 100m diameter, 80m hub height, and three-stage gearboxes with one planetary and two
parallel stages. One wind turbine (WT8) experienced a failure in the gearbox planetary stage.
Signals are recorded in 10-minute time frames from 2017-01-01 until 2022-08-01, and the gearbox
failure occurred around 2022-02-23. Among the available data, the 14 signals listed in Table 1
are selected in this work as they refer to the turbine operational and environmental conditions
and the gearbox operation.

The data pre-processing includes omitting values outside their acceptable physical ranges
and those corresponding to non-operational conditions of the turbines. The former includes
gearbox-related temperatures lower than the ambient temperature, zero gearbox oil pressures,
and negative rotor speeds, which are caused by sensor errors and constitute around 5% of the
total data points. The latter refers to data points corresponding to negative produced power
values which occur when the turbine is idling. They constitute around 20% of the total data
points. Hence, the pre-processing step eliminates around 25% of the original data. Then, the
pre-processed signals are resampled in 6-hour time frames. A larger resampling window leads
to a lower number of data points in a given time period and, hence, a lower computational
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Table 1. Selected SCADA signals.
Gearbox-related signals Operational signals Environmental signals
(1) Gearbox oil temperature (8) Produced power (12) Wind speed
(2) Gearbox bearing 1 temperature (9) Rotor RPM (13)Ambient temperature
(3) Gearbox bearing 2 temperature (10) Rotor RPM Max. (14) Nacelle temperature
(4) Gearbox bearing 3 temperature (11) Blades pitch angle
(5) Gearbox oil inlet temperature
(6) Gearbox oil pressure after filter
(7) Gearbox oil pressure before filter

Figure 2. (a) degradation factor extracted from WT8 field data and (b) synthetic degradation
factor mimicking a healthy WT8.

burden, especially during the extraction of the degradation factor. Furthermore, it reduces
the ratio of missing data points, which is crucial for maintaining the signal continuity for the
analysis of temporal dynamics. However, it can affect the quality and accuracy of the extracted
degradation factor and the suitability of the datasets for failure prognosis tasks. A window of 6
hours, reducing the number of data points in 1 year from around 52000 to around 1400 and the
percentage of the missing data from 25% to 3.6%, has been identified as a good trade-off among
these conflicting factors.

3.2. Extraction of the degradation factor
Since WT8 includes a gearbox failure, it is used as a reference for the generation of synthetic
SCADA datasets. The period of 1 year leading to the gearbox failure is selected as the run-to-
failure SCADA dataset, and according to the method developed in [9], its degradation factor,
shown in Figure 2 (a), is extracted.

3.3. Generation of the synthetic SCADA datasets
Generator ANNs are trained to map the operational and environmental factors and the extracted
degradation factor of the WT8 run-to-failure SCADA dataset (input) to each gearbox-related
signal. Therefore, 7 generator ANNs are developed for the 7 gearbox-related signals listed in
Table 1. In this study, the rotor speed of the wind turbine is used as the operational factor, and
the wind speed and ambient temperature are used as the environmental factors. Therefore, the
input of the generator ANN includes these signals along with the degradation factor. Including
additional operation- and environment-related signals reported in Table 1 did not affect the
ANN performance significantly while increasing the computational burden. Once trained, these
ANNs can generate synthetic SCADA signals corresponding to modifications of any of their
input signals. During training, 20% of the training data points are randomly selected as a
validation set to monitor the training process in terms of convergence and overfitting. Each
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ANN contains six layers (including the output layer), each with a ”ReLU” activation function,
and the number of neurons per layer is 8, 8, 8, 12, 12, and 1. The network architecture is
obtained using a constructive trial-and-error approach where the number of layers and neurons
gradually increases to obtain a trade-off between performance, measured by the prediction Mean
Squared Error, and computational burden.

The extracted degradation factor (D) in Figure 2(a) describes the gradual WT8 gearbox
degradation with the failure occurring at the final time instance. The remaining eight wind
turbines are healthy in the considered time frame. Therefore, to enable a comparison with
the available field datasets, the generated synthetic signals refer to two specific degradation
factors, one describing the known run-to-failure WT8 behaviour and the other a synthetic
healthy turbine. In this latter case, the synthetic degradation factor (Ds) is built by mimicking
a constant degradation equal to the initial WT8 level within the analysed 1-year period. This
is achieved by applying the Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise algorithm [16] to decompose D into its trend, Dtrend, and several other intrinsic mode
functions (IMFs), DIMF,i.

D = Dtrend +

NIMF∑
i=1

DIMF,i (8)

where NIMF is the number of IMFs other than the trend. Ds, shown in Figure 2(b), is then
obtained by replacing the increasing trend (Dtrend) with a constant one (Ds

trend) whose value is
equal to the initial value of Dtrend.

Ds
trend,t = Dtrend,t|t=0 (9)

Ds
trend = {Ds

trend,t|t ∈ [0, T ]} (10)

Ds = Ds
trend +

NIMF∑
i=1

DIMF,i (11)

By inputting eitherD orDs along with the three operational and environmental signals related to

any wind turbine within any 1-year time frame, two sets of synthetic healthy Ss,h
i , i = 1, . . . , Ns,h

and synthetic failed Ss,f
i , i = 1, . . . , Ns,f datasets can be built, where Ns,h and Ns,f are the

number of generated datasets. In this work, one healthy and one failed synthetic SCADA
dataset is generated from each wind turbine’s operational and environmental signals in each
one-year time frame. Hence Ns,h=9 and Ns,f=9.

3.4. Analysis of the signal distributions
In addition to an increase in gearbox-related temperatures, the degradation and failure in WT8
led to a reduction in the gearbox oil pressure. Post-mortem analysis uncovered an accumulation
of wear particles in the oil, clogging up the oil filter and leading to a drop in the oil pressure. The
replacement of D with Ds while generating the synthetic signals should reverse these changes.
To evaluate if the developed method is able to mimic this behaviour, WT8 data in the year
leading to the gearbox failure and its equivalent synthetic healthy SCADA dataset are analysed
and compared (Figure 3-top), where only the degradation factor is modified as shown in Figure
3-bottom. Sections A, B, and C indicate the first, middle, and last 3 months of the data,
respectively. KS tests performed on sections A and C result in average p-values of around 0.35
and 10−6. This indicates that the null hypothesis, i.e., the two datasets have identical underlying
signal distributions, can be rejected with higher certainty for the last three months, where the
degradation factors have higher divergence. However, in the first three months, given the strong
similarities between the two degradation behaviours, the signals must have similar underlying
distributions, which is confirmed by the result of the KS test.
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Figure 3. WT 8 (failed) SCADA dataset and its corresponding synthetic healthy SCADA
dataset. Top: distributions of the gearbox oil temperature and oil pressure after filter in the
first, middle, and last 3 months. Bottom: degradation factors.

The level of divergence in the gearbox-related signal distributions for the field (failed) and
synthetic healthy SCADA datasets is expected to correspond to the level of divergence between
their degradation factors, D and Ds, i.e. these signals must show increasing divergence as we
move closer to the failure. This can be observed in Figure 3-top showing the distributions of two
gearbox-related signals, the oil temperature and the oil pressure after the filter, in sections A,
B, and C of the analysed 1-year period. When approaching the failure point, in the field dataset
with failure, as expected, the gearbox oil temperature shifts to higher values and the gearbox oil
pressure shifts to lower values, while the same behaviour is not observed in the healthy synthetic
dataset. This leads to a clear divergence between the two signal distributions. The divergence
among all the gearbox-related signals in these two datasets is measured with the AWD metric,
whose increasing values of 0.33, 1.28, and 3.22 for sections A, B, and C, respectively, confirm
the trend shown in Figure 3-top. This increasingly shifting trend between the two datasets is
also clearly visible after applying Principal Component Analysis to reduce the dimensionality of
the gearbox-related signals from 7 to 2 for visualisation purposes, as shown in Figure 4.

The AWD metric is calculated between the nine field datasets and the 18 synthetic datasets
generated from their operational and environmental signals, along with either the healthy or
failed D, in the time frame of three months leading to failure in WT8. The results reported
in Table 2 show that the signal distributions of the synthetic healthy datasets are more similar
to field healthy datasets than the field failed dataset and vice versa, demonstrating the above-
mentioned shift in signals in all the generated synthetic datasets.

3.5. Analysis of the intra-signal temporal dynamics
To assess the similarity of intra-signal temporal dynamics in field and synthetic datasets, the fAC

in gearbox-related signals (fAC(Si), i = 1, . . . , 7) is analysed to measure how their autocorrelation
varies with the lag. It was observed that all temperature signals display similar fAC behaviours,
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Figure 4. First vs. second principal components of the field (failed) and synthetic healthy
datasets in the first, middle, and last three months.

Table 2. AWD metric between each pair of dataset groups.
Field healthy Field failed

Synthetic healthy 1.44 3.05
Synthetic failed 3.77 1.67

Table 3. Mean sAC metric of pressure signals for each pair of dataset groups.
Field healthy Field failed

Synthetic healthy 2.80 9.77
Synthetic failed 7.28 3.10

as do all pressure signals. Therefore, the fAC vectors of one temperature and one pressure
signal, i.e. the gearbox oil temperature and the pressure after the filter, in all field and synthetic
datasets and various one-year periods from 2017/1/1 to 2021/12/1 with one-month shifts in
the starting dates, are plotted in Figure 5-top which shows a similar range of values for field
and synthetic datasets. However, the pressure signals’ fAC vectors in synthetic datasets show a
slightly lower dispersion at lower lags compared with field datasets, indicating a lower diversity
in temporal dynamic behaviour. The high variability of the autocorrelation observed at high lags
is the result of the reduction in the length of the correlated sequences. Unlike the pressure signal,
the autocorrelation of the temperature signal is generally close to zero, except at very low lags.
This might be because temperature signals are highly dynamic and show higher sensitivity to
wind turbine operation. In contrast, pressure signals are mostly static and affected by ambient
and oil and filter conditions, among other factors. This explains the larger variations in the fAC

vectors associated with the pressure signal. Because of this sensitivity to ambient conditions,
the two signals are analysed in the fixed one-year time frame of the run-to-failure dataset among
the four groups of field/synthetic healthy/failed datasets, plotted in Figure 5-bottom. The
pressure signals show different autocorrelation behaviours in the healthy and failed field datasets,
closely replicated in the synthetic datasets. Table 3, which reports the sAC metric between
field/synthetic healthy/failed dataset groups, averaged among all pressure signals, confirms this
observation. The temporal dynamic behaviour of pressure signals in synthetic healthy datasets
is more similar to field healthy datasets than the field failed one and vice versa.

3.6. Analysis of the inter-signal temporal dynamics
The fCC vectors, which include 21 elements corresponding to the number of pairs of gearbox-
related signals, are plotted in Figure 6 for all the field and synthetic datasets referring to
different one-year periods. Indices 1 through 10 and 21 refer to temperature-temperature
and pressure-pressure signal pairs, which display high cross-correlations. The other indices
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Figure 5. The fAC vectors of gearbox oil pressure after filter and gearbox oil temperature

Figure 6. fCC vectors, i.e., cross-correlation (y-axis) for different pairs of gearbox signals (x-
axis), in different 1-year periods

refer to pressure-temperature pairs which have lower cross-correlations. The fCC vectors for
the synthetic healthy/failed datasets are consistent with the corresponding field observations.
However, a noticeably lower dispersion can be seen in synthetic healthy datasets compared with
the corresponding field ones, indicating a lower diversity. Conversely, synthetic failed datasets
show a relatively larger diversity. Since there is only one field failed dataset available, it is not
possible to draw conclusions on the diversity between field and synthetic failed datasets.

4. Conclusions and future work
This paper proposes a data-driven method using an ANN for generating synthetic SCADA
datasets with customisable operational, environmental, and degradation conditions. The results
show that the signal distributions and temporal dynamic behaviours of the synthetic datasets
generated are consistent with field datasets under similar operational, environmental and
degradation conditions. However, the lower variability in the signal autocorrelation and cross-
correlation indicates that the synthetic datasets, especially in the healthy case, usually feature a
slightly lower diversity in temporal dynamic behaviour compared to the field case. The proposed
generator ANN is trained with signals related to only one wind turbine gearbox failure, and
this limits the possibility of replicating the farm-wide diversity in signal behaviour. With the
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availability of more faulty field data, future work will further assess this observation. The
robustness of using the proposed method to perform reliable fault detection and prognosis when
adequate field SCADA datasets containing multiple failure instances are not available is explored
in ongoing research.
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