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Summary

C ardiovascular diseases (CVDs) claimed 17.9 million lives annually (2019), represent-
ing 32% of total deaths, with 85% attributed to heart attacks and strokes [1] world-

wide. Atrial fibrillation (AF) is the most frequent type of cardiac arrhythmia that has a
worldwide prevalence of 46 million individuals worldwide [2]. The absence of P-waves in
the electrocardiogram and irregular heartbeat characterize AF. Although the awareness
and diagnostic methods of AF have improved over the past years, precision and timely
diagnosis are required for effective prevention. Electrophysiological recording serves as
the gold standard for diagnosing cardiac abnormalities. There currently exist two major
fundamental approaches for monitoring the heart from an electrophysiological point of
view. The most common approach is the measurement of the ECG (electrocardiogram),
which is recorded on the surface of the human body at specific points. A more recent
approach (but less commonly used) is the measurement of the AEG (atrial electrogram),
which is recorded on the surface of the human heart with higher spatial resolution than
ECG. ECG is a technique used to monitor the heart’s electrical activity non-invasively,
whereas AEG is used to obtain more profound and detailed insights into the electrical
conduction pathways of the heart invasively. AEGs are used to localize the origin of AF
for appropriate treatment. Chapter 2 elaborates on the application, the associated tech-
nological challenges, and the existing solutions in the literature concerning cardiac signal
acquisition.

Thefirst approach (most commonly used) for diagnosing cardiac abnormalities is record-
ing the ECG, with a high signal-to-noise-and-interference ratio and sufficient bandwidth
using a single-channel analog front-end. One of the main challenges with acquiring ECG
is baseline wandering (BW), which refers to low-frequency variations affecting the base-
line of the recordedwaveform. BWoccurs due to bodymovement or poor contact between
the body surface and electrodes. The impact of BW on the ECG signal quality can be two-
fold: (a) Saturation of the CMOS analog front-end leading to loss of information, and (b)
Distortion of the ECG waveform leading to misdiagnosis. In order to prevent or suppress
the impact of BW on the ECG waveform, the analog front-end requires a high-pass filter
with high linearity and accuracy to minimize distortion.

The information in an ECG signal lies between 0.5-200 Hz. Implementing a filter cut-
off in the sub-Hz region while maintaining high linearity and accuracy is challenging.
Sub-Hz filter implementation translates to large area occupation on silicon and is thus
expensive. Although there are several techniques to realize large time constants on-chip,
there does not exist a highly linear high-pass transfer characteristic for Sigma-Delta (ΣΔ)
analog-to-digital converters (ADCs). The first part of the thesis addresses the implemen-
tation of large time constants with high linearity and accuracy. Chapter 3 of the thesis
focuses on the design and analysis of a high-pass ΣΔ (HPΣΔ) analog-to-digital converter
(ADC) that aims to achieve high linearity for the high-pass (HP) filter cut-off. State-space
topologies, commonly used for optimizing filters, are proposed for developing the HPΣΔ
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modulator topologies. A ΣΔ modulator can be represented as a linear model that consists
of integrators and a quantizer, with the quantization noise modeled as additive white noise.
By employing the state-space synthesis method, it becomes possible to develop arbitrary
transfer functions for the signal and quantization noise of the state-space ΣΔ topologies.
The dynamic range of the ΣΔ topology is optimized by signal and noise scaling. Through
sensitivity analysis, the impact of coefficient variations in the different integrators on the
overall performance and stability of the modulator is determined. Comparative analysis
reveals that the orthonormal ΣΔ modulator outperforms the observable canonical state-
space-based topology. The experimental results demonstrate that the orthonormal HPΣΔ
ADC achieves a figure of merit (FoM) of 5.35 pJ/conv while occupying an area of 0.126
mm2. The orthonormal HPΣΔ ADC also achieves a peak SNDR of 69.8 dB, corresponding
to 11.3 bits of ENOB for a signal bandwidth of 3 kHz.

The second approach (and less commonly used) for diagnosing cardiac abnormalities
is recording the AEG, targeting high spatial resolution using a multi-channel analog front-
end. The primary difficulties encountered when acquiring multiple inputs are associated
with a proportional increase in area, power consumption, and the number of outgoing
wires. In order to mitigate the resource requirements and develop a compact solution
for the multi-input system, channel-sharing techniques such as time-division multiplex-
ing, frequency-division multiplexing, and code-division multiplexing (CDM) can be effec-
tively incorporated. These techniques enable the efficient utilization of shared resources,
optimizing the overall performance and reducing the system’s complexity. CDM offers en-
hanced capacity by enabling multiple users to effectively share the same frequency band.
It improves signal quality by effectively suppressing interference and band-limited noise,
resulting in higher fidelity and more reliable transmission. The second part of this the-
sis (Chapter 4) focuses on acquiring multi-input AEG signals using CDM. It presents a
systematic classification of modulation strategies based on their degrees of freedom to
identify suitable techniques for analog signal acquisition. This work also introduces a
design method for creating efficient spread-spectrum analog front-ends. Based on the
proposed design strategy, spread-spectrum codes can be selected for a given application
requirement (high or low-resolution acquisition). The modulation frequency and code
length can be determined for optimal performance for the total number of inputs. A 4-
input spread-spectrum recording system fabricated in a 0.18 𝜇m CMOS process validates
the proposed design method. With a 7-bit Gold code generator (𝐿 = 127), the maximum
achievable crosstalk performance is -40 dB, and the thermal noise density of the system is
224 nV/√(Hz). The system includes shared components such as an amplifier, an analog-
to-digital converter (ADC), and an on-chip Gold code generator, with a compact footprint
and low power consumption per channel input of 0.067mm2 and 23𝜇A, respectively.

Recording AEGs using a high-density array of flexible electrodes leads to generating
large amounts of data. A significant amount of area (for storage) and power (for data
transmission) are required to handle the data. A custom-fabricated flexible multi-electrode
array that contains 192 electrode sites is used to acquire the AEGs. Nine such sections are
required to cover the entire area of an average adult heart. Chapter 5 focuses on the com-
pressibility of AEGs. Standard compressed sensing is typically used to reduce the data
using sub-Nyquist domain sampling on-chip and reconstruction using optimal algorithms
off-chip. Signal statistics are not taken into account in standard CS. Both standard and
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rakeness-based compressed-sensing are applied on atrial electrograms for data compres-
sion in this thesis. Rakeness-based compressed-sensing (CS), which uses the signal statis-
tics of the known input signal, is proposed for compressing AEGs. Incorporating signal
statistics in the random matrix in rakeness CS leads to better reconstruction performance
at higher compression ratios. A similarity analysis is also conducted to quantitatively as-
sess the quality of the reconstructed AEGs during sinus rhythm (SR) and atrial fibrillation.
Also, a team of clinicians has visually inspected the reconstructed waveforms to check
their suitability for generating an activation map (to map the wavefront of the signal that
propagates through the heart). From the survey, it is found that for SR AEG signals up to
a compression ratio (CR) of 4.26, the signal is considered clean. However, at CR = 5.1, it
becomes noisier but remains suitable for specific applications. In contrast, AF AEG signals
exhibit a faster decline in signal quality at higher CRs, attributed to increased activity and
distinctive features of AF signals. Even at CR = 5.1, the signal can be used to estimate local
activation times but lacks detail for comprehensive feature computation.

In summary, this thesis addresses numerous pivotal challenges, namely enhancing
the linearity and accuracy of the HP filter cut-off for single-channel cardiac signal acqui-
sition and maximizing resource efficiency for multi-channel cardiac acquisition. We have
taken steps towards designing compact application-specific integrated circuits (ASICs) for
recording and diagnosing cardiac abnormalities, such as AF. Understanding the underly-
ing biological mechanisms through recording AEGs is crucial for early detection and mon-
itoring of such conditions, which can significantly affect the course of disease progression.
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Samenvatting

H art- en vaatziekten (CVDs) eisen jaarlijks 17,9 miljoen levens (2019), wat neerkomt
op 32% van alle sterfgevallen, waarvan 85% te wijten is aan hartaanvallen en beroer-

tes [1] wereldwijd. Atrium-fibrilleren (AF), ook wel boezemfibrilleren genoemd, is het
meest voorkomende type hartritmestoornis met 46 miljoen gevallen wereldwijd [2]. AF
wordt gekarakteriseerd door de afwezigheid van P-golven op het elektrocardiogram en
een onregelmatige hartslag. Hoewel de kennis en de diagnostische methoden voor AF
de afgelopen jaren zijn verbeterd, zijn precisie en tijdige diagnose nodig voor effectieve
behandeling. Elektrofysiologische metingen dienen als de gouden standaard voor het dia-
gnosticeren van hartafwijkingen. Momenteel bestaan er twee belangrijke fundamentele
benaderingen voor het monitoren van het hart vanuit een elektrofysiologisch standpunt.
De meest voorkomende vorm is het ECG (elektrocardiogram), dat wordt opgenomen op
het oppervlak van het menselijk lichaam op specifieke punten. Een nieuwere benadering
(maar minder vaak gebruikt) is de meting van het AEG (atriaal elektrogram), dat wordt
opgenomen op het oppervlak van het menselijk hart met een hogere ruimtelijke resolutie
dan ECG. ECG is een techniek die wordt gebruikt om de elektrische activiteit van het hart
op een niet-invasieve wijze te monitoren, terwijl AEGwordt gebruikt om diepgaandere en
gedetailleerdere inzichten te verkrijgen in de elektrische geleidingspaden van het hart op
een invasieve manier. AEG’s worden gebruikt om de oorsprong van AF te lokaliseren voor
een geschikte behandeling. Hoofdstuk 2 gaat dieper in op de toepassing, de bijbehorende
technologische uitdagingen en de bestaande oplossingen in de literatuur met betrekking
tot de acquisitie van hartsignalen.

De eerste benadering (en demeest gebruikte) voor het diagnosticeren van hartafwijkin-
gen is het opnemen van het ECG, met een hoge signaal-ruis-en-interferentieverhouding
en voldoende bandbreedte, met behulp van een enkelkanaals analoge front-end. Een van
de belangrijkste uitdagingen bij het verkrijgen van ECG is baseline wandering (BW), wat
verwijst naar laagfrequente variaties die de basislijn van de opgenomen golfvorm beinvloe-
den. BW treedt op door beweging van het lichaam of slecht contact tussen het lichaams-
oppervlak en de elektroden. De impact van BW op de kwaliteit van het ECG-signaal kan
tweeledig zijn: (a) verzadiging van het CMOS analoge front-end leidt tot informatiever-
lies, en (b) vervorming van de ECG-golfvorm leidt tot misdiagnose. Om de impact van BW
op de ECG-golfvorm te voorkomen of te onderdrukken, vereist het analoge front-end een
hoogdoorlaatfilter met hoge lineariteit en nauwkeurigheid om vervorming te minimalise-
ren.

De informatie in een ECG-signaal ligt tussen 0.5-200 Hz. Het implementeren van een
filter-kantelfrequentie in het sub-Hz regime met hoge lineariteit en nauwkeurigheid is uit-
dagend. Sub-Hz filterimplementatie leidt vaak tot een grote oppervlakte op silicium en is
dus duur. Hoewel er verschillende technieken bestaan om lange tijdconstanten on-chip
te realiseren, bestaat er geen zeer lineaire hoogdoorlaatkarakteristiek voor Sigma-Delta
(ΣΔ) analoog-naar-digitaal converters (ADCs). Het eerste deel van dit proefschrift behan-
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delt de implementatie van lange tijdconstanten met een hoge lineariteit en nauwkeurig-
heid. Hoofdstuk 3 behandelt het ontwerp en de analyse van een hoogdoorlaat ΣΔ (HPΣΔ)
ADC waarmee een hoge lineariteit behaald kan worden voor het hoogdoorlaat filter. Een
toestandsbeschrijving (Engels: state-space description), een veelgebruikte manier om fil-
ters te optimaliseren, wordt voorgesteld om de HPΣΔ topologie te ontwikkelen. Een ΣΔ
modulator kan worden voorgesteld als een lineair model dat bestaat uit integratoren en
quantizers, waarbij quantisatieruis gemodelleerd wordt als additieve witte ruis. Door ge-
bruik te maken van de state-space synthese-methode wordt het mogelijk om elk gewenste
overdrachtsfunctie voor het signaal en de quantisatieruis te realiseren. Het dynamisch be-
reik van de ΣΔ topologie wordt geoptimaliseerd met behulp van signaal- en ruis-schaling.
Een analyse van de gevoeligheid van het systeem voor variaties in de coefficienten van
de verschillende integratoren op de stabiliteit en prestaties van het totale systeem wordt
uitgevoerd. Deze analyse laat zien dat een orthonormale ΣΔ modulator beter presteert
dan een topologie gebasseerd op een observable canonical state - space. Experimentele
resultaten laten zien dat de orthonormale HPΣΔ ADC een figure of merit (FoM) heeft van
5,35 pJ/conv met een oppervlakte van 0,125 mm2. De orthonormale HPΣΔ behaalt een
piek SNDR van 69.8 dB, hetgeen overeenkomt met een ENOB van 11,3 bits voor 3 kHz
signaal-bandbreedte.

De tweede (minder gebruikte) benadering voor het diagnosticeren van hartafwijkin-
gen is het opnemen van een AEG, waarbij een hoge spatiele resolutie wordt verkregen
door middel van een multi-kanaals analoog front-end. De primaire uitdagingen voor een
multi-kanaals systeem zijn een proportionele toename in oppervlakte, stroomverbruik en
het aantal draden. Een compacter en efficienter multi-input systeem kan worden ver-
kregen door middel van technieken zoals time-division multiplexing, frequency-division
multiplexing en code-division multiplexing (CDM). Deze technieken zijn efficient, opti-
maliseren de algemene prestaties en reduceren de complexiteit van het systeem. CDM
verbetert de capaciteit door verschillende gebruikers dezelfde frequentieband te laten ge-
bruiken. Het verbetert de signaalkwaliteit door interferentie en band-begrensde ruis te
onderdrukken en resulteert in een betere kwaliteit en verbeterde betrouwbaarheid. Het
tweede deel van dit proefschrift (Hoofdstuk 4) behandelt de acquisitie van meerkanaals
AEG signalen door gebruik te maken van CDM. Een systematische klassificatie van ver-
schillende modulatie-technieken wordt gepresenteerd om geschikte technieken te iden-
tificeren voor signaal-acquisitie. Tevens zal een ontwerpmethode gepresenteerd worden
voor efficiente spread-spectrum analoge frontends. De voorgestelde strategie maakt het
mogelijk spread-spectrum coderingen te selecteren op basis van specifieke eisen van de
toepassing (zoals een hoge of lage resolutie). De frequentie van de modulatie en de lengte
van de code kan worden bepaald op basis van de optimale prestaties voor het totale aantal
inputs. Metingen aan een 4-kanaals spread-spectrum acquisatie-systeem gemaakt in een
0,18 𝜇m CMOS process valideren de voorgestelde ontwerpmethode. Met een 7-bit Gold-
code generator (𝐿 = 127) is de maximaal haalbare crosstalk -40dB en de thermische ruis
van het systeem is 224 nV/√(Hz). Het systeem bevat gedeelde componenten zoals een
versterker, een analoog-naar-digitaal converter en een on-chip Gold-code generator en
heeft een compacte opppervlakte en laag stroomverbruik per kanaal van respectievelijk
0,067 mm2 en 23𝜇A.

Het uitlezen van AEGs met behulp van een flexibele electrode-array met hoge dicht-
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heid leidt tot het generen van een grote hoeveelheid data. Een significante hoeveelheid
oppervlak (voor opslag) en vermogen (voor data transmissie) zijn nodig. Een speciaal ont-
worpen flexibele multi-elektrode array met 192 electroden wordt gebruikt om AEGs te
meten. In totaal zijn negen van dit soort arrays nodig om het volledige oppervlak van een
menselijk hart te bedekken. Hoofdstuk 5 behandelt het comprimeren van AEGs. Stan-
daard compressed-sensing wordt vaak toegespast om de data met behulp van sub-Nyquist
domein sampling te reduceren op de chip en vervolgens buiten de chip te reconstrueren
met behulp van optimale algoritmes. De statistische eigenschappen van het signaal wor-
den niet gebruikt voor standaard compressed sensing. In dit proefschrift worden zowel
standaard als rakeness-gebaseerde compressed-sensing toegepast op AEGs voor data com-
pressie. Rakeness-gebaseerde compressed-sensing gebruikt de statistische eigenschappen
van het ingangs-signaal en kan worden toegepast om AEGs te comprimeren. Het ge-
bruikt van de statistische eigenschappen van het signaal in de random matrix in rake-
ness gebaseerde compressed sensing leidt tot betere reconstructie en hogere compressie-
verhoudingen. Een overeenkomsten-analyse wordt toegepast om de kwaliteit van de ge-
reconstrueerde AEGs quantitatief te analyseren tijdens het sinusritme (SR) en het boezem-
fibrilleren. Een team van clinici heeft de gereconstrueerde signalen visueel geinspecteerd
op hun geschiktheid om een activatie-plattegrond (om het verloop van het signaal dat
door het hart beweegt in kaart te brengen). De analyse laat zien dat SR AEG signalen
met een compressie-verhouding van 4.,6 leiden tot een voldoende resultaat. Wanneer een
compressie-verhouding van 5,1 gebruikt wordt, bevat het resultaat meer ruis, maar is het
nog geschikt voor bepaalde toepassingen. AF AEG signalen laten een snellere achteruit-
gang in signaal kwaliteit zien voor hogere compressie-verhoudingen, hetgeen veroorzaakt
wordt door de hogere activiteit en specifieke eigenschappen van AF signalen. Zelfs voor
een compressie-verhouding van 5,1 kan het signaal gebruikt worden om locale activatie
te schatten, maar het heeft onvoldoende detail voor een uitgebreide analyse.

Samenvattend behandelt dit proefschrfijt verschillende doorslaggevende aspecten: het
verbeteren van de lineariteit en nauwkeurigheid van de hoogdoorlaatfilter-karakteristiek
van enkel-kanaals elektrocardiogrammen en het maximaliseren van de efficientie van
multi-kanaals signaal-acquisitie. Er zijn stappen gezet om een compacte applicatie-specifieke
geintegreerde schakeling (ASIC) te ontwerpen voor het opnemen en dagnostiseren van
hartafwijkingen, zoals AF. Het begrip van de onderliggende biologische mechanismen
door middel van het opnemen van AEGs is cruciaal voor het vroegtijdig detecteren en mo-
nitoren van dit soort aandoeningen, hetgeen de progressie van de ziekte significant kan
beinvloeden.
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Introduction

This chapter presents a short overview of cardiac electrophysiology, including the character-
istics of the cardiac signals. It also elaborates on the importance of high-density atrial elec-
trograms and the technological challenges associated with acquiring cardiac signals. Finally,
the structure of the thesis and the outline are presented.
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I n this section, we provide a summarized overview of the background of cardiac elec-
trophysiology and emphasize the importance of cardiac signal recording in diagnosing

and treating cardiac abnormalities.
Cardiovascular diseases (CVDs) refer to a group of disorders of the heart that include

cardiac arrhythmias, congenital heart disease, and heart failure and are one of the leading
causes of death worldwide. According to theWorld Health Organization (WHO) factsheet,
about 17.9 million [1] people, representing 31% of all deaths, die each year due to CVDs.
To be able to treat cardiac arrhythmias with a higher success rate, it is necessary to detect
and diagnose the abnormalities of the heart early on in order to have more treatment
options and increase the chances of survival. Typically, individuals suffering from CVDs
report to the hospitals due to pain or discomfort when the disease has already progressed
to an advanced stage. Atrial fibrillation (AF), a commonly occurring cardiac arrhythmia,
poses a challenge to doctors and clinicians due to the limited understanding of its physical
progression.

Right
Atrium

Left
Atrium

Right
Atrium

Left
Atrium

Figure 1.1: Illustration of (a) Sinus rhythm (SR), and (b) Atrial fibrillation (AF).

Figure 1.1 depicts the state of the heart in both a normal and an abnormal condition.
Figure 1.1a represents the heart in sinus rhythm (SR), the normal functioning condition.
Point 𝐴 refers to the sinoatrial node (SA node) located in the right atrium, which is the
heart’s natural pacemaker. Point 𝐵 refers to the atrioventricular node (AV node) responsi-
ble for regulating the electrical impulses that travel from the atria to the ventricles. During
sinus rhythm, the electrical impulse is generated at point 𝐴, passes through the heart’s
atrial chambers, and reaches node 𝐵. The electrical impulses reaching the AV node are de-
layed there. The delay through various paths gives an appropriate amount of time for the
atria and ventricles to contract in a coordinated manner to optimize the efficiency of blood
flow. The figure shows that the wavefront is traversing in a single direction. On the other
hand, Figure 1.1b depicts the pathological state of the heart characterized by atrial fibrilla-
tion, an abnormal cardiac rhythm disorder. Points 𝑎1, 𝑎2, and 𝑎3 represent the secondary
foci that lead to abnormal electrical conduction pathways and blocks, which characterizes
AF. As shown in the figure, multiple secondary wavefronts are generated due to the foci
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leading to the irregular beating of the heart.

AF is commonly characterized by the absence of P-waves and irregular RR intervals
seen on an ECG and is the most frequently occurring arrhythmia in clinical practice. It
is estimated to affect more than 24 million individuals in the developed world by 2060 [3]
and poses a global health burden. The currently available therapies for AF include drug
therapy, catheter-based ablation, and stimulation using implantable defibrillators. These
therapies are only partially effective since the exact underlying mechanisms of the prop-
agation of the signal through the cardiac tissue and the degeneration of tissue causing
changes in the electrical pathways are not yet fully understood.

Conventionally, AF is diagnosed through recordings of electrophysiological signals,
which has been the gold standard for detecting and treating cardiac diseases. Electrophys-
iological signals such as the electrocardiogram (ECG) and the atrial electrogram (AEG)
captures the electrical activity that contains information about the polarization and sub-
sequent contraction of the atrium of the heart. A combination of two approaches can be
taken to diagnose AF early on and to understand the mechanisms that govern the prop-
agation of electrical signals in the heart. First, ECG can be recorded on the surface of
the human body, a non-invasive procedure that can be used as a screening tool for con-
tinuously monitoring patients at higher risk. Second, to gain an understanding of the
propagation of signals at the tissue/cellular level, high-density spatiotemporal AEGs can
be recorded invasively.

The need for a high-density mapping of AEGs targeting high spatial resolution is ex-
plained in Section 1.1. The nature of the cardiac waveforms involved is described in Sec-
tion 1.2. The thesis objectives and challenges are elaborated in Section 1.3. Finally, the
organization of the thesis and the original contributions are summarized in Section 1.4.

1.1 Need for high-density atrial electrograms
ECG is recorded on the body’s surface and is a vector summation of the electrical activity
occurring within the heart [4]. While it provides information on the overall functioning
of the heart, ECG offers low spatial resolution and hardly any insight into the way the
signals propagate through the heart. To understand the tissue/cellular mechanisms of
the propagation of signals, i.e., the flow of electrical activity followed by the mechanical
pumping of blood, it is necessary to record signals with a higher spatial resolution and
closer to the location of the generation of these signals [5]. Therefore, the signals are
recorded invasively on the surface of the heart. This way, tissue properties that govern
the direction of propagation of signals can be studied. During AF, the signal is chaotic and
gives rise to secondary wavefronts, as shown in Fig. 1.1. Due to the incoherency in the
electrical impulse received at the AV node, the heart rate is irregular. At an early stage,
such a condition occurs only intermittently. As the arrhythmia progresses, the occurrence
of such events becomes more frequent and may result in cardiac arrest. In the following
section, we delve into the nature of the cardiac signals to gain a more comprehensive
understanding of the cellular-level processes involved.
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Figure 1.2: Action potential of a cardiomyocyte.

1.2 Characteristics of cardiac signals and commercially
used high-density mapping catheters

The heart wall is a three-layered structure consisting of the myocardium, epicardium, and
endocardium. Themyocardium, also known as the cardiac muscle tissue, forms the bulk of
the heart. The epicardium on the outside covers the myocardium, while the endocardium
covers the inner cardiac chambers. A cardiomyocyte is a cardiac muscle cell that resides in
the myocardium. The excitation and contraction of the cardiomyocytes are regulated by
action potential (AP). AP, shown in Fig. 1.2, refers to the generation of an impulse due to
the changes in membrane potential across a cell. In a cardiac system, the AP controls the
excitation of cardiac fibers. All the cardiac fibers contract in coordination as one unit. The
depolarization wave travels throughout the heart through the gaps between the fibers.
The action potential of a cardiomyocyte is generated by the exchange of charged ions,
namely sodium (Na2+), calcium (Ca2+) and potassium (K+) ions through the ion channels
across the cell membrane as shown in Fig. 1.2. During the first phase, due to the influx
of extracellular Na2+ ions in the fast voltage-gated Na2+ channels, the AP rises from a
resting potential of -90 mV to about +30 mV as illustrated in Fig. 1.2. During the second
phase, Ca2+ ions enter through the slow voltage-gated Ca2+ channels characterized by a
plateau phase. During the third phase, the Ca2+ ion channels deactivate and open the K+
channels. Due to the loss of K+ ions, the membrane potential comes back to its resting
voltage. The three phases constitute a complete AP of the cardiomyocyte. As a side note,
in a nervous system, the AP (as shown in Fig 1.3) transmits information in the impulses
between neurons.

At the cellular level, different locations, such as the SA node, atrial muscle, AV node,
bundle of His, Purkinje fibers, and ventricular muscles, give rise to various shapes of the
cardiac action potential. The surface of the heart, also referred to as the epicardium, re-
ceives various signals that are vectorially added, resulting in composite signals, which
are recorded over the electrode surface area. Flexible and biocompatible electrode arrays
[5] can be used to record signals originating from the epicardium (the outer wall of the
heart) and the endocardium (the inner wall of the heart), which represent the exposed por-
tions of the heart wall. Table 1.2 summarizes the characteristics of the signals recorded
at various locations in the heart. It also enlists the type of recording (invasive/minimally
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Figure 1.3: Action potential of a neuron.

Table 1.1: Characteristics of cardiac signals

Signal Location Technique Inter-electrode dist. (mm) Amplitude (mV) Frequency (Hz)
ECG Body surface Non-invasive 2 - 20 0.5 - 3 0.5 - 200

Epicardial AEG Heart’s outer wall Invasive 2 1 - 10 0.5 - 400
Endocardial AEG Heart’s inner wall Minimally invasive 2 - 6 20 - 80 0.5 - 400

Cardiomyocytes AP Myocardium Invasive < 1 0.1 - 0.5 1 - 10k

invasive/non-invasive) for various signal waveforms and the preferred inter-electrode dis-
tance. Atrial electrograms can be recorded on the epicardium or the endocardium. A
few commercially used catheters targeting minimally invasive applications that map the
electrograms are the Orion from Boston Scientific [6] and the HD Grid from Abbott [7].
[8] uses the Octaray and Pentaray from Biosense Wester and compares the high-density
catheters’ performance. The electrode count of the catheters varies from 16 - 64 and has
an interelectrode distance varying from 2 - 6 mm. The electrode length varies from 0.2 to
1 mm.

1.3 Thesis objectives and challenges
The primary aim of this dissertation is twofold. Firstly, it focuses on examining various
approaches and design techniques aimed at achieving high linearity and accuracy for im-
plementing large on-chip time constants to acquire cardiac signals and other biosignals.
Secondly, it investigates compact and efficient multiplexing strategies for acquiring sig-
nals from a multi-electrode array while concurrently reducing the number of outgoing
wires.

An analog front-end is needed to transform the analog signal that is recorded bymeans
of an electrode into a digital signal that can be stored/transmitted/analyzed further. As
the ECG/AEG signal is analog (continuous-time and continuous-magnitude) in nature, rel-
atively weak and contaminated by unwanted signals and noise that, a.o., manifest them-
selves at other frequencies, an ECG/AEG analog front-end usually implements the fol-
lowing functions: 1. amplification, 2. filtering, and 3. analog-to-digital conversion. In
acquiring cardiac signals, the design of analog front-ends faces several challenges. These
challenges are addressed under single-channel and multi-channel acquisition front-ends
in the following sub-sections.
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1.3.1 Single-channel front-end to record electrocardiograms (ECG)
In the design of single-channel front-ends aimed at clinical diagnosis, implementing the
high-pass filter cut-off with sufficient accuracy is a significant challenge.

Baseline wandering and accuracy of filter cut-off frequency
ECGs are used to record signals on the surface of the human body, i.e., non-invasively
on the chest. The relevant frequency band of an ECG signal lies between 0.5-200 Hz and,
within that band, the ECG signal has an amplitude of about 1-5 mVp-p. Depending on the
application of the ECG, such as ST-segment monitoring, R-peak detection, or QRS detec-
tion, the analog front-end can be designed to meet the amplitude and frequency specifica-
tions. One key limitation in single-channel acquisition has been baseline wandering and
accuracy of the high-pass filter cut-off frequency [9]. Due to the inaccuracies of the filter
cut-off frequency, the signals appear distorted and can lead to inaccurate diagnosis. Since
the signals lie in the low-frequency regime, the implementation of the associated large
time constant usually leads to large area consumption on a chip.

1.3.2 Multi-channel front-end to record atrial electrograms (AEG)
In the design of multi-channel front-ends for the acquisition of AEGs [5], the challenges
are as follows:

• A large number of recording channels leads to a large amount of data.

• If each channel is implemented separately, a large number of channels results in a
large number of outgoing wires.

• A large number of outgoing wires impacts the flexibility and maneuverability of the
electrode array.

• If the electrode array is at a relatively large distance from and thus not integrated
with its readout electronics, interferencewill be picked up that is not easy to separate
from the information-carrying signals.

The above-listed challenges are further elaborated in the following sub-sections.

Generation of large amount of data
A large number of electrodes and monitoring of signals for a long time pose a challenge to
the amount of data to handle. AEGs are acquired with a high-resolution multi-electrode
array and an acquisition module. The electrode array used to record AEGs [5] consists of
192 electrodes. Nine such sections are required to cover an entire average adult heart. To
record signals from 1728 (= 9 x 192) electrodes, with a resolution of 16 bits, and a sampling
rate of 10 kHz, the total data rate required is 16 x 10×103 x 1728, or 276 Mbit/s, resulting
in ≈ 16.6 Gbit/min [10]. The required hardware resources to handle the data are enormous.
A significant amount of power and hardware resources in terms of memory and area are
needed to transmit and store the data, making the acquisition module expensive. There-
fore, compression methods can be applied for efficient data recording and transmission to
reduce the power consumption and the footprint of the electronics. Compressed sensing
allows simultaneous acquisition and compression of the signals and can be used to acquire
AEGs [10].
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Interference and constraint on outgoing cable wires
There is a need to acquire signals frommultiple electrodes efficiently and compactly. Shar-
ing resources such as amplifiers, analog-to-digital converters, and cables across multiple
electrodes reduces power and area consumption. Commonly used approaches for ac-
quiring multi-channel signals include time-domain multiplexing (TDM) [11], frequency-
domain multiplexing (FDM) [12] and code-division multiplexing (CDM) [13].

Practically, time-domain multiplexing requires a dedicated amplifier (due to the dy-
namic (time-dependent) behavior of the amplifier) per electrode, which increases power
and area as the number of electrodes increases. In FDM, a dedicated oscillator is required
for each electrode, which makes it unsuitable for large electrode count applications. How-
ever, CDM can acquire signals from several electrodes simultaneously with a shared front-
end, making it attractive as a low-power and compact solution. As each signal is encoded
with a unique code, it suffers from lower interference and noise than TDM or FDM, owing
to the advantages of spread-spectrum modulation. Also, as a consequence of the multi-
plexing, a single wire can be used to transmit the digital data out of the analog front-end.
Integrating the electrode array and the electronics module alleviates the need for a long
multi-wire cable between the patient and the acquisition module, thus providing a maneu-
verable prototype.

A detailed review of the state-of-the-art architectures to solve the challenges listed
above is described in Chapter 2. In the next section, the outline of the thesis, along with
the original contributions, is summarized.

1.4 Thesis outline
This thesis consists of three major parts. Following the review provided in Chapter 2, the
first part (Chapter 3) focuses on the design strategy and implementation of state-space
based ΣΔmodulators. It introduces the design of an HPΣΔ ADC. Multi-channel strategies
are investigated in the second part (Chapter 4). The design and optimization of a spread-
spectrum analog front-end using shared resources are presented. The third part (Chapter
5) presents rakeness-based compressed sensing for atrial electrograms.

Chapter 2 reviews the current state-of-the-art techniques for efficiently and accurately
acquiring single-channel and multi-channel cardiac signals. This review discusses the ex-
isting methods and summarizes the main challenges faced by the state-of-the-art tech-
niques. By exploring the strengths and limitations of these techniques, the chapter sets
the stage for the subsequent chapters.

Chapter 3 introduces a state-space approach to optimize the dynamic range of ΣΔ
ADCs. This approach offers a systematic approach for designing ΣΔ modulators with ar-
bitrary signal-transfer functions. The chapter delves into the details of the state-space
approach design method and illustrates its practical application through experimental re-
sults.

Chapter 4 presents a spread-spectrum approach specifically designed to address the
challenges of physical area requirements in acquiring multiple-channel atrial electrocar-
diograms (AEGs). By employing spread-spectrum techniques, this approach enables effi-
cient and simultaneous acquisition of multiple AEGs, making it suitable for multi-channel
applications. The chapter discusses the design considerations, implementation details, and
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performance evaluation of the spread-spectrum approach, highlighting its effectiveness in
achieving power and area efficiency.

Chapter 5 delves into compressed sensing techniques for atrial electrograms. Com-
pressed sensing allows for reconstructing high-quality AF signals from significantly fewer
measurements by exploiting the inherent sparsity or structure in the electrograms. This
chapter explores how the characteristics of the input signals can be leveraged to enhance
the reconstruction performance, leading to improved accuracy in AF detection.

Chapter 6 serves as the concluding chapter of the thesis, providing a comprehensive
summary of the scientific contributions made throughout the study. It highlights the es-
sential findings and advancements in the earlier chapters, emphasizing their significance
in cardiac signal acquisition. Additionally, this chapter discusses future research direc-
tions and potential areas for further exploration, outlining the broader implications of the
thesis and its potential impact on advancing the field of cardiac signal acquisition.

1.5 Original contributions
The original contributions of this work are summarized from Section 6.2 as follows:

1. A state-space design method for dynamic-range optimization of HPΣΔ ADCs and
their application to acquire single-channel electrocardiograms accurately (Chapter
3).

2. The design and implementation of highly accurate and linear HPΣΔ ADCs (Chapter
3).

3. A spread-spectrumdesignmethod for power- and area-efficient acquisition ofmultiple-
channel AEGs (Chapter 4).

4. The design and implementation of an analog front-end based on spread-spectrum
modulation using an on-chip PRBS code generator (Chapter 4).

5. Compressed sensing of atrial electrograms for the detection of AF using input-signal
characteristics to improve the reconstruction performance (Chapter 5).
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2
Review of state-of-the-art

architectures of biopotential
read-out front-ends

This chapter presents an overview of the techniques for acquiring single-channel and multi-
channel biosignals, focusing on non-invasive and invasively acquired cardiac signals. The
cardiac signal acquisition challenges, such as accuracy and linearity of the input-output rela-
tion in case of a high-pass filter characteristic for a single-channel front-end, maneuverability,
reduced outgoing wire count, and compact solution for a multi-channel recording front-end,
are discussed. The chapter reviews the state-of-the-art solutions for acquiring cardiac signals
invasively and non-invasively.
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2.1 Introduction
The heart is a primary organ of the circulatory system and is responsible for pumping
blood throughout the body and maintaining the heart rate and blood pressure. During
regular operation of the heart, the heart rate is generally consistent. During abnormal
operation of the heart, the heart rate is inconsistent. The heart-rate abnormality is inter-
mittent in the early stages of cardiovascular diseases (CVDs). Gradually, the heart rate
becomes consistently abnormal. Heart attacks and strokes are acute events that occur
due to the progression of CVDs. According to WHO, 17.9 million people died from CVDs
in 2019, which represents 32% of all global deaths [1]. About 85% of these deaths were
due to heart attacks and strokes. Atrial fibrillation, a type of cardiac arrhythmia, is the
most frequently occurring arrhythmia in clinical practice [3]. AF can be detected using
the recordings of electrophysiological signals such as the electrocardiogram (ECG) on the
surface of the body, endocardial atrial electrogram on the inner layer of the heart (endocar-
dial recordings), and epicardial atrial electrogram on the outer layer of the heart (epicardial
recordings).

Figure 2.1: Block diagram of a wireless (a) ECG front-end (surface of the body), and (b) AEG front-end (surface
of the heart).

For recording the ECG, a single-channel front-end with high resolution can be used
as shown in Fig 2.1a. For recording the AEG invasively, a multi-channel flexible electrode
array can be used to map the epicardial surface of the atria with high spatial resolution
[5] as shown in Fig 2.1b. For minimally invasive recording, catheter-based systems [14]
(with a much lower number of electrodes) can be inserted via the blood vessels and used
to record the inner surface of the heart (i.e., the endocardial surface). The main challenges
in acquiring cardiac signals can be summarized as follows.
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• Firstly, signals recorded on the body surface suffer from motion artifacts due to
patient movement, poor contact between the body and the electrodes, and respira-
tion. An accurate high-pass filter is required to suppress the impact of large low-
amplitude baseline variation and thus prevent saturation of the front end. At the
same time, preserving the linearity of the transfer function at the cut-off frequency
is vital to suppress distortions of the acquired waveform.

• Secondly, acquiring data from several electrodes simultaneously increases power
and area consumption linearly with the number of inputs. Also, havingmany outgo-
ing wires from the acquisition module is inconvenient. Optimal circuit techniques
are required to share resources among the inputs and reduce the outgoing wire
count.

• Thirdly, for handling the large amounts of data generated from a high-density map-
ping application, compression techniques are required to minimize the power con-
sumption and area consumed due to transmission and data storage.

This chapter focuses on state-of-the-art architectures and solutions to address the
abovementioned challenges.

2.2 Single-channel cardiac acquisition systems
Single-channel cardiac acquisition analog front-ends (AFEs) are critical to modern elec-
trocardiogram (ECG) recording systems. These systems are used to monitor and diagnose
various heart conditions by measuring the electrical activity of the heart. Single-channel
cardiac acquisition AFEs play a crucial role in diagnosing various heart conditions, such
as arrhythmias, ischemia, and heart failure. The AFE is responsible for acquiring the raw
ECG signals from the electrodes attached to the patient’s chest and processing them to
produce a high-quality, low-noise output signal. The single-channel AFE is designed to
process the signals from a single ECG lead, which consists of two electrodes placed at
specific locations on the chest. The AFE typically consists of several amplification stages,
filtering, and signal conditioning to remove noise and other unwanted artifacts from the
ECG signal. The output of the AFE is then digitized using an analog-to-digital converter.

One of the critical challenges in acquiring accurate and high-resolution biosignals
is baseline wandering (BW), which refers to a low-frequency drift or fluctuation in the
signal’s baseline. Baseline wandering is observed in signals such as electrocardiograms
(ECG), electroencephalograms (EEG), and electromyograms (EMG) and occurs due to elec-
trode movement, breathing, or patient movement. BW can make it challenging to analyze
the physiological activity of interest and even obscure important signal features. There-
fore, removing baseline wandering from the signal is essential before further analysis,
which can be done using high-pass filtering, wavelet-based methods, or baseline correc-
tion techniques. In [15], a method for tracking the baseline is suggested that involves
digitally extracting the DC offset and subtracting it from the front-end amplifier adap-
tively to correct the baseline of the signals. However, it uses a microcontroller to compute
the offset. [16] proposes an adaptive DC-level control using ICA (independent compo-
nent analysis) implemented on an FPGA to reduce the impact of baseline wandering. [17]
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proposes wavelet filtering to suppress motion artifacts in ambulatory ECG.The abovemen-
tioned techniques work on digitized data and require memory and computational power
to extract the baseline. Analog filtering, such as done by a passive first-order RC filter, is
simple but can consume an enormous amount of chip area for sub-Hz implementations.
Active-RC filter implementations, such as a MOSFET-C filter, can introduce significant
distortion to the waveform since the terminal voltages of the MOSFET modulate the re-
sistance. The frequency content of biosignals typically lies below 1 kHz. With the band-
width of the ECG signal extending from sub-Hz to 200 Hz [18], a significant challenge for
an ECG readout system lies in implementing the sub-Hz high-pass cut-off frequency as
this translates into the realization of large time constant. Acquiring cardiac signals with
high resolution and high accuracy of the time constant is a challenge, particularly if an
integrated-circuit solution is aimed for. To realize large time constants in the order of
a few seconds, there exist techniques that employ pseudo-resistors [19], [20], [21] or 𝑔𝑚
blocks [22] or off-chip solutions such as using an IIR-filter [23] or a resistor [24].

Although these techniques realize large time constants in an area and power-efficient
manner; they are heavily limited in accuracy. The existing solutions do not focus on
achieving good linearity around the HP cut-off frequency. However, it is an important
performance metric to acquire a low-distortion bio-signal waveform, especially in the case
of cardiac signals aimed at diagnostic quality ECGs [18]. Also, pseudo-resistors are not
very robust to PVT variations. Hence, when better linearity and accuracy are required,
alternative techniques need to be developed. To address acquiring ECG signals with a
linear input-output relation and accuracy of the filter cut-off frequency and a sufficiently
large signal-to-noise ratio, a synthesis procedure for the design of high-pass sigma-delta
modulator topologies that are optimized for linearity, low noise, and minimum sensitivity
to component and other variations, will be presented in Chapter 3.

2.3 Multi-channel cardiac acquisition systems
In a traditional N-input system, the total number of amplifiers, ADCs, and outgoing wires
equals the number of inputs, thus scaling the system’s area, power consumption, and
outgoing wire count linearly by N. To address these limitations, one can use channel-
sharing techniques such as time-division multiplexing (TDM), frequency-division multi-
plexing (FDM), or code-division multiplexing (CDM) as illustrated in Fig. 2.2 and which
are elaborated in the following paragraphs.

TDM is a multiplexing technique that divides the available acquisition time into time
slots, each assigned to a different input. Each input is assigned a unique time slot to
acquire, process, or transmit data. As an example, TDM is commonly used in cellular
phone networks, where each connection is assigned a dedicated time slot during which
the transmitter and the receiver can exchange information. [11] uses a dedicated amplifier
per input and does not utilize the total bandwidth of the ADC effectively. Each input is
processed using dedicated programmable gain amplifiers and band-pass filters. A shared
ADC is used to digitize the inputs. The order of the inputs is essential for reconstruction
in the digital domain, which is coordinated by digital control. [25] uses TDM to acquire
signals after the electrode but requires a high-bandwidth front-end to meet the settling
and noise requirements. The input capacitors, amplifier, filter, and ADC are shared among
all the inputs. Sharing of input capacitors could lead to significant amplitude errors due to
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Figure 2.2: Illustration of (a) TDM, (b) FDM, (c) CDM for the acquisition of biosignals.
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charge residue while switching between inputs. Fig 2.2a demonstrates an implementation
of a TDM AFE. An analog multiplexer selects an input, 𝑥𝑛(𝑡), in a given time slot through
the channel selector and uses a shared channel consisting of a low-noise amplifier (LNA)
and an ADC to digitize the analog signal. The demultiplexer receives the time-division-
multiplexed signal and separates the samples into their respective inputs.

FDM is a multiplexing technique that divides the total available frequency band into
smaller frequency bands, with each band assigned to a different user or input. Each user or
input transmits its data through the assigned sub-band. FDM is commonly used in radio
and television broadcasting systems, where different radio stations or television channels
are assigned different frequency bands. In [12], FDM based on frequency modulation
(FM) uses separate frequency bands simultaneously and requires a dedicated oscillator, a
band-pass amplifier, and an off-chip high-Q inductor per input, which poses a constraint
on the area and power. FDM based on amplitude modulation (AM) would require a very
high dynamic range (>100 dB) ADC due to voltage summation of all inputs [12]. Fig 2.2b
demonstrates an implementation of FDM. In FDM, each signal 𝑥𝑛(𝑡) is assigned a different
frequency band or sub-channel. The signals are then modulated with carrier waves 𝑓𝑛(𝑡)
generated by oscillators, and the modulated signals are combined and transmitted over
the same channel. After digitization, the signals are separated by using band-pass filters
and subsequently demodulated.

CDM is a multiplexing technique that allows multiple users or inputs to share the en-
tire frequency band simultaneously by assigning each user or input a unique code. These
codes are referred to as spread-spectrum codes. Each input is assigned a unique code to
transmit and receive data. The receiver uses the same code to decode the transmitted data.
CDM is commonly used in wireless communication systems, such as some cellular phone
networks, where multiple users can transmit and receive data simultaneously using the
same frequency band. In the acquisition of biosignals, [26] implements CDM using a ded-
icated amplifier and filter circuitry before code modulation, whereas [27] modulates the
signals at the input using orthogonal codes. CDM offers (a) increased capacity, allow-
ing multiple users to share the same band, (b) improved signal quality as it suppresses
interference and band-limited noise, (c) improved security since a unique code encodes
each input, and (d) simpler implementation, as compared to FDM. Fig 2.2c demonstrates
an implementation of CDM. The modulator can be positioned at the beginning or end of
the signal chain, either preceding the LNA, following the LNA, or following the ADC. In
this case, the modulator is situated near the input signal to allow for the sharing of the
amplifier and the ADC. Each signal 𝑥𝑛(𝑡) is assigned a unique code 𝑝𝑛(𝑡) that is used to
modulate the signal. The modulated signals are combined and transmitted over a shared
channel using an amplifier and an ADC. After digitization, a replica of the codes is used
to retrieve the individual signals by demodulation.

2.4 Data compression
For the diagnosis of diseases that require continuous monitoring of biosignals such as the
electrocardiogram (ECG), the electroencephalogram (EEG), the electromyogram (EMG),
and photoplethysmography (PPG) for the detection of intermittently occurring abnormal
events, a high-resolution analog front-end is used for recording and transmitting data to
the base station. Cumulatively, several such point-of-care non-invasive devices generate
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a large amount of data. An example of invasive recording is the acquisition of atrial elec-
trograms on the surface of the heart [5]. They are acquired with a high spatial resolution
from a high-density multi-electrode array to capture the wavefront during signal propaga-
tion in the heart. Using a custom fabricated multi-electrode array with an inter-electrode
distance of 2 mm, 1728 recording sites are required to cover the entire heart [10]. A large
amount of data is generated, posing a practical challenge in storage and transmission.
Compressed sensing, also known as compressive sensing, allows for data reduction and
alleviates the burden on available resources by employing sub-Nyquist-domain sampling
techniques. [28] discusses the design considerations for acquiring ECG and EMG signals
using a compressed-sensing approach. The sparsity control and thresholding of the input
signal determine the compression factor. If, for example, the application requires coarse
features such as heart rate or sudden specific movements, the input signal can be made
highly sparse via thresholding in the temporal domain to detect specific events. A compres-
sion factor can be selected based on the sparsity of the signal in a specific domain. [29]
presents a randomly modulated pre-integration (RMPI) based architecture that exploits
the rakeness or the signal characteristics of the input signal to improve reconstruction
performance. A compression factor of about 8-10 is achieved from measurement tests on
ECG and EMG. [30] presents a compressed-sensing architecture for multi-channel corti-
cal acquisition. A dedicated preamplifier and front-end filtering circuit per channel with
a shared summing stage and a successive approximation register ADC are implemented.
However, the extent to which the AEG signals can be compressed using the compressed
sensing approach has never been studied. Therefore, compressed sensing of AEGs is the
focus of the third major part of this thesis.

2.5 Conclusions
This chapter reviews the state-of-the-art literature for single- andmulti-channel cardiac ac-
quisition systems. It presents the background of the application area and the relevance of
cardiovascular diseases in society. It also discusses the challenges of acquiring single- and
multi-channel biosignals. It delves into the limitations of current approaches for single-
channel cardiac acquisition systems that employ highly linear, large-time-constant tech-
niques. It also explores strategies for acquiring signals from multiple sites while optimiz-
ing resource utilization to minimize power consumption and chip area in multi-electrode
applications. It also explores data compression as a potential technique to manage the
substantial volume of data generated by multi-channel acquisition systems. In the follow-
ing chapters, each of these challenges will be addressed individually, and a solution is
proposed to solve them.





3

17

3
A state-space approach for optimal

design of ΣΔ converters
Cardiac signal acquisition with high linearity and accuracy of the high-pass cut-off frequency
imposes a challenge on the implementation of analog preprocessing and analog-to-digital
converter. This chapter describes a state-space-based methodology for designing high-pass
sigma-delta (HPΣΔ) topologies, targeting high accuracy and linearity of the high-pass cut-off
frequency and filter transfer. Intermediate functions are evaluated mathematically to com-
pare the proposed HPΣΔ topologies with respect to dynamic range. A sensitivity performance
analysis of the noise transfer function with respect to integrator non-idealities and coefficient
variations is also described.

To illustrate the design approach, a complete analog front-end (AFE) consisting of a pre-
amplifier, a mixed-signal feedback loop that implements the HP transfer function, and an
orthonormal ΣΔ modulator is implemented in 0.18 𝜇m CMOS technology and validated by
electrical characterization and acquiring real ECG signals from a live subject. The single-
channel AFE consumes 63.4 𝜇A and achieves a linearity of 60 dB at the high-pass cut-off
frequency. The orthonormal ΣΔ modulator achieves an SNDR of 69.8 dB for a signal band-
width of 3 kHz, while consuming 45 𝜇A from a 1.8 V power supply, resulting in an FoM of
5.35 pJ/conv.

This chapter is partly based on  S. Rout and W. Serdijn: Structured electronic design of high-pass ΣΔ converters
and their application to cardiac signal acquisition, proc. ISCAS’17 [31] and S. Rout and W. Serdijn. High-pass ΣΔ
converter design using a state-space approach and its application to cardiac signal acquisition, IEEE TBioCAS, 2018
[32].
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3.1 Introduction
To diagnose and understand the underlying mechanisms of cardiac arrhythmia, a high-
resolution and large-bandwidth analog front-end recording electrocardiogram and atrial
electrogram signals aimed at clinical research purposes is required. This chapter describes
a state-space-based methodology for designing high-pass sigma-delta (HPΣΔ) topologies,
targeting high linearity and accuracy of the high-pass cut-off frequency. Based on the
proposed state-space method for the optimal design of ΣΔ converters, an orthonormal ΣΔ
converter is implemented. To illustrate the design approach, a complete analog front-end
consisting of a pre-amplifier and an orthonormal HPΣΔmodulator is implemented in 0.18
𝜇m CMOS technology, and is tested with a real ECG signal from a live subject.

This chapter is organized as follows. Section 3.2 presents the state-space design ap-
proach, noise analysis using intermediate functions and testing the orthonormal HPΣΔ
topology with real-prerecorded ECG signals. Section 3.3 presents the design, implemen-
tation, and validation of a complete analog front-end for the acquisition of cardiac signals
using an orthonormal ΣΔ ADC in a 0.18𝜇m CMOS process. Section 3.4 presents the con-
clusions of the chapter.

3.2 High-pass ΣΔ converter design using a state-space ap-
proach

Figure 3.1: Analog front-end for ECG acquisition

E lectrocardiography (ECG), the recording of electric signals generated by the heart is
used as a diagnostic monitoring method for cardiovascular diseases (CVDs). It con-

tains specific physiological information about the functioning of the heart. To meet the
growing demand of the geriatric population and to reduce the burden on the public health-
care system, there is a requirement of compact, inexpensive health-care devices that en-
able continuous ECG recording for the detection of cardiac arrhythmias that manifest
themselves as aperiodic events over a period of days or weeks. Acquisition of the ECG is
faced with the challenge of removal of the baseline wandering due to respiration or move-
ments while recording. Baseline wandering (BW), which contributes to low-frequency-
interference, is responsible for distortion of the acquired waveform and poses a challenge
in accurate interpretation of the CVDs. In order to minimize the effect of baseline wan-
dering, it is necessary to implement a high-pass filter with high linearity and an accurate
cut-off frequency. As per the International Electrotechnical Commission (IEC) standards,
the recommended ECG bandwidth extends from 50 mHz to 200 Hz. However, the baseline
wander, which could be lying inband at the lower end, may require a higher high-pass cut-
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off frequency for its removal [9, 33]. It can be observed in Fig. 3.2a, derived from the MIT-
BIH normal sinus rhythm database (Record 17453) [34, 35], that there is a large amount
of signal energy around the sub-Hz region. Fig. 3.2b, derived from the MIT-BIH normal
sinus rhythm database (Record 16773), shows the effect of baseline wandering resulting
from low-frequency interference lying in the sub-Hz region.

With the bandwidth of the ECG signal extending from sub-Hz to 200 Hz [36], a major
challenge for an ECG readout system lies in implementing the sub-Hz high-pass cut-off
frequency (𝑓hpf) as this translates into the realization of large time constants. To realize
large time constants in the order of a few seconds, there exist techniques that employ
pseudo-resistors [19–21] or 𝑔𝑚 blocks [22] or off-chip solutions such as using an IIR-filter
[23] or a resistor [24]. Recently, a new technique to implement large time-constants has
been introduced, employing duty-cycled resistors [37]. Although this technique is an at-
tractive alternative, the position of the high-pass pole is still determined by the product
of R and C, which is less accurate than a switched capacitor implementation. Moreover,
the resistance would occupy a larger area as compared to a small sampling capacitor for
the same 𝑓hpf. Pseudo-resistors, designed using transistors biased in the cut-off region
to obtain extremely large resistances are not very robust to process, voltage, and tem-
perature variations. As these transistors are intrinsically non-linear, the resistances vary
with the signal level, eventually leading to clipping at the extremes [38]. As there is quite
some energy in the spectrum around the highpass cutoff frequency, a.o., due to baseline
wandering, this leads to a reduced dynamic range. Also, as the momentary value of the re-
sistance depends on the momentary value of the input signal, the RC time constant is not
fixed. Note, in such a case it would be better to talk about the dynamic eigenvalue of the
non-linear differential equation implemented by the pseudo-resistor-capacitor combina-
tion. Depending on the choice of the implementation of the resistance, there is a trade-off
between the area consumption, linearity around 𝑓hpf and the accuracy of 𝑓hpf. The exist-
ing solutions do not focus on achieving the same linearity around the high-pass cut-off
frequency as the rest of the signal band. However, it is an important performance metric
in order to acquire a low-distortion bio-signal waveform, especially in the case of cardiac
signals aimed at diagnostic monitoring quality. Hence, when better linearity and accuracy
are required, alternative techniques need to be developed.

In this section, a synthesis procedure for developing HPΣΔ converters suitable for
designing the high-pass filtering analog front-end for ECG signal acquisition is proposed.
ΣΔADCs take advantage of their noise-shaping property to achieve low quantization noise
and the use of a 1-bit digital-to-analog converter (DAC) ensures inherent linearity. As
opposed to conventional low-pass ΣΔ converters, a signal transfer that accommodates
a general filter transfer is considered. Intermediate transfer function analysis evaluates
the signal-handling capabilities and the noise contributions of each of the integrators and
thus helps in the overall ranking of the developed HPΣΔ topologies. Sensitivity of the
developed HPΣΔ topologies to coefficient variations and non-idealities of the integrator is
also investigated.

The rest of the subsections are organized as follows. In Subsection 3.2.1, the methodol-
ogy to develop HPΣΔ topologies is proposed. The entire design procedure is demonstrated
through design examples and compared qualitatively. In Subsection 3.2.2, intermediate
functions are derived for quantitative evaluation of the topologies. Further, the sensitiv-
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Figure 3.2: Power spectral density of ECG: (a) Clean ECG; (b) ECG with baseline wandering. (Data courtesy:
MIT-BIH database [35])

ity to coefficient variations and integrator non-idealities are described and evaluated in
subsection 3.2.3. Circuit design, simulation results and comparison with related prior art
are explained in Subsection 3.2.4. Finally, the conclusions are summarized in Subsection
3.2.5.

3.2.1 Proposed methodology
System design incorporating digitization and filtering using an orthogonal design method-
ology allows us to arrive at topologies satisfying the signal and noise transfer function
requirements while optimizing the performance metrics relevant to low-power and low-
voltage designs, such as dynamic range and sensitivity to coefficient variations. Con-
ventionally, ΣΔ modulator topologies have a low-pass filter signal transfer characteristic.
However, in this approach, to accommodate a general signal transfer function including
low-pass, high-pass, notch, and band-pass filter characteristics, state-space forms can be
used to design application-specific ΣΔ-modulator topologies. For the target application,
viz., acquisition of a cardiac signal whose bandwidth extends from sub-Hz to 200 Hz [36],
it is possible to implement the low-pass and the high-pass cut-off frequency separately.
Implementing the low-pass cut-off frequency can be readily merged with the front-end
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Figure 3.3: Flowchart of the state-space based approach for ΣΔ topologies.

amplifier and can serve as an anti-aliasing filter, and this will not be discussed in this
chapter. The high-pass transfer function with good linearity and accuracy is embedded in
the ΣΔ converter, thus eliminating the need for a dedicated high-pass filter.

The coefficients are evaluated for their contributions to the signal and noise transfer
function requirements for a given state-space form. In this analysis, we have focused only
on the inband properties of the modulator. The influence of the sampler on the transfer
function in this region is negligible due to the large oversampling ratio (OSR). The place-
ment of the quantizer depends on the requirement of the quantization noise transfer. A
single quantizer is considered. Multiple quantizers can also be used andwould lead to alter-
native topologies with different constraints [39], but this is considered beyond the scope
of the thesis. For the sake of simplicity and clarity, a 3rd-order system is considered. A
first-order high-pass filter is considered sufficient for the application [40]. A higher-order
high-pass filter would come at an additional power and area cost. However, the approach
can be extended to higher orders per the application specifications. The requirements of
the transfer function for a 3rd-order system are:

• Signal transfer function (STF): a high-pass filter characteristic with at least one pole,
the location of which can be set independently;

• Noise transfer function (NTF): a high-pass filter characteristic with all real zeros at
the origin, leading to a 40 dB/dec slope in the signal band;

Fig. 3.3 shows the design procedure proposed to develop the desired state-space-based
high-pass ΣΔ topologies. Based on the resolution and the signal transfer requirements of
the target application, the STF type, the order of the system, and the state-space form can
be chosen. The coefficients of the state-space forms correspond to physical components
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to be realized in silicon that play an essential role in determining the noise, area, and
power consumption. The quantizer is placed such that the quantization NTF is satisfied.
The STF and NTF of the topologies are verified through transfer function calculations. If
the STF and NTF requirements are not met, the coefficients are re-evaluated until all the
requirements are satisfied.

A linear, time-invariant dynamic system can be described using a set of first order
differential equations. The general state-space description of an nth order system is given
by

ẋ(𝑡) = Ax(𝑡) +b𝑢(𝑡)
𝑦(𝑡) = cTx(𝑡) +𝑑𝑢(𝑡) (3.1)

where x(𝑡) is an 𝑛 x 1 vector representing the integrator states or outputs, where 𝑛 is the
number of integrators, ideally equal to the order of the system, A is an 𝑛 x 𝑛 state matrix
that describes how the integrators are interconnected through feedback and feedforward
paths, b is an 𝑛 x 1 vector that describes how the input signal is applied to the integrators,
c is an 𝑛 x 1 vector that contains the set of coefficients that multiply the output states and
are summed together and 𝑑 is a scalar that represents the feedthrough component from
the input directly to the output. 𝑢(𝑡) and 𝑦(𝑡) are the input and the output signal, respec-
tively. To illustrate the design procedure, observable canonical, biquad and orthonormal
based HPΣΔ ADC topologies are designed that satisfy the NTF and STF requirements, as
described in the following paragraphs.

The observable canonical state-space form [41, 42] is investigated first. The observable
canonical state-space form is used to develop the observable canonical ΣΔ topology. The
output of the system is fed back to the input of each of the integrators through coefficients
that determine the poles of the system. The block diagram and the linear model of the
observable canonical HPΣΔ ADC topology are shown in Fig. 3.4. 𝑘1, 𝑘2 and 𝑘3 are the
integrator scaling coefficients of the first, second and the high-pass integrator, respectively.
The linear model of the quantizer is modeled as a gain 𝑘q, a quantization error 𝑒(𝑠), and
a summing node. The value of 𝑘q is given by 2/𝑎N where 𝑎N is the coefficient of the last
integrator, for a single-bit, 𝑁 th-order modulator as described in [39]. In the proposed
design, 𝑎N is given by the scaling coefficient of the second integrator.

The STF and NTF of the observable canonical HPΣΔ topology can be expressed as

STF =
sp1k1k2kq

s3 +kqk2q2s2 +kqk1k2q1s+kqk1k2k3q0

NTF = s3

s3 +kqk2q2s2 +kqk1k2q1s+kqk1k2k3q0

(3.2)

From (3.2), it can be seen that the STF and NTF requirements of the observable ΣΔ
topology are met. For the STF, there is at least one zero at DC (single-pole roll-off), and
the three zeros at DC for the NTF. On solving the characteristic equation (CE) of (3.2),
given by

𝑠3 +𝑘q𝑘2𝑞2𝑠2 +𝑘q𝑘1𝑘2𝑞1𝑠 +𝑘q𝑘1𝑘2𝑘3𝑞0 = 0, (3.3)
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(a)

 

(b)

Figure 3.4: 3rd-order observable canonical HPΣΔ topology: (a) Block diagram; (b) Linear model.
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(a)

 

(b)

Figure 3.5: 3rd-order biquad HPΣΔ topology: (a) Block diagram; (b) Linear model.

the location of the high-pass pole close to DC can be determined. The location of the
pole predominantly depends on the value of 𝑞0, 𝑞1 and 𝑘3.

Figures 3.5a and 3.5b show the biquad HPΣΔ ADC and its linear model, respectively.
The STF and the quantization NTF of the biquad HPΣΔ ADC can be written as

STF = sb1k1kq(c1s+k2c2)
s3 + a12k1k2s+kqk1(c1afbs2 +k2c2afbs+k2k3c2chp)

NTF = s(s2 + a12k1k2)
s3 + a12k1k2s+kqk1(c1afbs2 +k2c2afbs+k2k3c2chp)

(3.4)

As can be seen from (3.4), the STF and the NTF satisfy the requirements.
Orthonormal ladder filters [43], a state-space structure that is scaled for optimum dy-

namic range and less sensitive to component variations, can be used for realizing higher-
order arbitrary stable transfer functions [44]. Figures 3.6a, 3.6b and 3.6c show the gen-
eralized state-space form, the HPΣΔ topology and the corresponding linear model of an
example 3rd-order orthonormal HPΣΔ ADC. 𝑘1, 𝑘2, and 𝑘3 are the integrator scaling coef-
ficients of the first, second, and high-pass integrators, respectively. Also, 𝑎1 is replaced by
𝑘2. The STF and the NTF equations of the orthonormal ΣΔ topology can be written as
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(a)

 

(b)

(c)

Figure 3.6: (a) is an nth - order orthonormal filter topology; (b) 3rd-order orthonormal HPΣΔ topology; (c) and
its linear model.
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Table 3.2: Coefficients of the HPΣΔ topologies

Coeff. Orthonormal HPΣΔ Coeff. Observable canonical HPΣΔ
𝑏1 0.5 𝑝1 0.5

𝑘1, 𝑘2 0.5 𝑘1, 𝑘2 0.5
𝑎𝑓 𝑏 , 𝑐ℎ𝑝 1 𝑞1 0.5
𝑐1, 𝑐2 0.5 𝑞2, 𝑞0 1
𝑘3 0.001 𝑘3 0.001

STF = sb1k1kq(c1s+k2c2)
s3 +kqk1(c1afbs2 +k2c2afbs+k2k3c2chp)

NTF = s3

s3 +kqk1(c1afbs2 +k2c2afbs+k2k3c2chp)
(3.5)

From (3.5), it can be seen that the STF has one zero at the origin. Also, the NTF has
three zeros at the origin. The poles can be determined by solving the characteristic equa-
tion given by

𝑠3 +𝑘q𝑘1(𝑐1𝑎fb𝑠2 +𝑘2𝑐2𝑎fb𝑠 +𝑘2𝑘3𝑐2𝑐hp) = 0 (3.6)

For frequencies very close to DC, the characteristic equation can be approximated as

𝑠 ≈ −𝑐hp𝑘3𝑎fb
⇒𝑓hpf =

1
2𝜋

𝑐hp𝑘3
𝑎fb

𝑓s (3.7)

and the high-pass pole location can be set. Note that the quantizer gain 𝑘q does not impact
the location of the pole. This implies that the signal-dependent gain associated with 𝑘q
and thus the momentary value of the input signal of the ADC does not change the exact
value of the location of the pole, unlike in the case of pseudo-resistors.
For the orthonormal HPΣΔ topology, the equations can be written as:

[𝑢(𝑠)𝑏1 −𝑎fb𝑦(𝑠)− 𝑐hp𝑥3(𝑠)]
𝑘1
𝑠 = 𝑥1(𝑠), (3.8)

𝑥1(𝑠)
𝑘2
𝑠 = 𝑥2(𝑠), (3.9)

𝑘3
𝑠 𝑦(𝑠) = 𝑥3(𝑠), (3.10)

and
[𝑥1(𝑠)𝑐1 +𝑥2(𝑠)𝑐2]𝑘q +𝑒(𝑠) = 𝑦(𝑠), (3.11)

where 𝑢(𝑠) and 𝑦(𝑠) are the input and the output of the system, respectively, and 𝑥1(𝑠),
𝑥2(𝑠) and 𝑥3(𝑠) are the integrator outputs of the first, second and the high-pass integrator,
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Figure 3.7: System level plots of the 3rd-order orthonormal HPΣΔ topology: (a) NTF, (b) STF.
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respectively. After solving the algebraic equations, we obtain the signal transfer function
and the quantization noise transfer function given by

STF = k1b1s(c1s+k2c2)kq
s3 +kqk1(s2c1afb + s(k2c2afb +k3chpc1) +k2k3c2chp)

, (3.12)

and

NTF = s3

s3 +kqk1(s2c1afb + s(k2c2afb +k3chpc1) +k2k3c2chp)
(3.13)

respectively. The poles can be determined by solving the characteristic equation given by

𝑠3 +𝑘q𝑘1 [𝑠2𝑐1𝑎fb + 𝑠(𝑘2𝑐2𝑎fb +𝑘3𝑐hp𝑐1) +𝑘2𝑘3𝑐2𝑐hp] = 0 (3.14)

Solving a cubic equation is non-trivial and to calculate the pole located very close to DC,
(3.14) can be approximated to a 2nd-order equation and can be written as

𝑘q𝑘1 [𝑠2𝑐1𝑎fb + 𝑠(𝑘2𝑐2𝑎fb +𝑘3𝑐hp𝑐1) +𝑘2𝑘3𝑐2𝑐hp] = 0 (3.15)

or a 1st-order equation given by

𝑘q𝑘1 [𝑠(𝑘2𝑐2𝑎fb +𝑘3𝑐hp𝑐1) +𝑘2𝑘3𝑐2𝑐hp] = 0 (3.16)

Assuming that 𝑘3 is very small, the associated term can be made zero. 3.16 can be written
as

𝑠 ≈ −𝑐hp𝑘3𝑎fb
, (3.17)

which defines the location of the high-pass pole.
Figures 3.7a and 3.7b show the plots of NTF and STF of the orthonormal HPΣΔ topol-

ogy, respectively. Sampling frequency 𝑓s = 128 kHz, scaling coefficient 𝑘3 = 0.001 and 𝑎fb
= 1 result in an high-pass cut-off frequency 𝑓hpf of 20 Hz, selected to observe the slope
change clearly. A desired 𝑓hpf can be selected by appropriately setting 𝑘3.

Table 3.1 summarizes the advantages and disadvantages posed by the various HPΣΔ
topologies. While biquads can be tuned independently, they may be unstable at higher
orders and require modifications to stabilize the system. For this reason, we will discuss
only the orthonormal and observable canonical HPΣΔ topologies in the sequel.

3.2.2 Intermediate functions
In this section, the sets of intermediate transfer functions (IF) [43] are derived to compare
the thermal noise contributions and internal states magnitudes of the integrators of the
HPΣΔ topologies. Flicker noise is not considered here since circuit techniques to reduce
its effect can be found in the literature, and the reader is referred to [45] and [46] for more
details. Although both thermal and flicker noise contribute to the total noise of the system,
they are minimized through independent circuit techniques. The first set of intermediate
functions, from the input of the integrators to the output of the system, g(s), and the second
set, from the input of the system to the output of the integrators, f(s), as shown in Fig. 3.9,
can be expressed as
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(a)

 

(b)

Figure 3.8: Integrator input referred thermal noise sources: (a) Orthonormal HPΣΔ; (b) Observable canonical
HPΣΔ topology.

𝑓𝑖(𝑠) ≜
𝑥𝑖(𝑠)
𝑢(𝑠) ; 𝑔𝑖(𝑠) ≜

𝑦(𝑠)
𝑛𝑖(𝑠)

; (3.18)

where 𝑢(𝑠) and 𝑦(𝑠) denote the input and the output of the system, and 𝑛𝑖(𝑠) and 𝑥𝑖(𝑠)
represent the input thermal noise source and output of the 𝑖th integrator, respectively.

The IF f(s) of the orthonormal HPΣΔ modulator consists of a set of functions
{𝑓1(𝑠), 𝑓2(𝑠), 𝑓3(𝑠)} given by:

𝑓1 (𝑠) =
𝑏1𝑘1𝑠2

𝑠3 +𝑘q𝑘1(𝑐1𝑎fb𝑠2 +𝑘2𝑐2𝑎fb𝑠 ++𝑘2𝑘3𝑐2𝑐hp)
(3.19)

𝑓2 (𝑠) =
𝑏1𝑘1𝑘2𝑠

𝑠3 +𝑘q𝑘1(𝑐1𝑎fb𝑠2 +𝑘2𝑐2𝑎fb𝑠 +𝑘2𝑘3𝑐2𝑐hp)
(3.20)

𝑓3 (𝑠) =
𝑏1𝑘1𝑘3𝑘q(𝑠𝑐1 +𝑘2𝑐2)

𝑠3 +𝑘q𝑘1(𝑐1𝑎fb𝑠2 +𝑘2𝑐2𝑎fb𝑠 +𝑘2𝑘3𝑐2𝑐hp)
(3.21)
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The IF g(s) of the orthonormalHPΣΔmodulator consists of a set of functions {𝑔1(𝑠),𝑔2(𝑠),𝑔3(𝑠)}
given by:

𝑔1 (𝑠) =
𝑘1𝑘q𝑠(𝑐1𝑠 +𝑘2𝑐2)

𝑠3 +𝑘q𝑘1(𝑐1𝑎fb𝑠2 +𝑘2𝑐2𝑎fb𝑠 +𝑘2𝑘3𝑐2𝑐hp)
(3.22)

𝑔2 (𝑠) =
𝑘2𝑘q𝑐2𝑠2

𝑠3 +𝑘q𝑘1(𝑐1𝑎fb𝑠2 +𝑘2𝑐2𝑎fb𝑠 +𝑘2𝑘3𝑐2𝑐hp)
(3.23)

𝑔3 (𝑠) =
𝑘1𝑘3𝑘q𝑐hp(𝑠𝑐1 +𝑘2𝑐2)

𝑠3 +𝑘q𝑘1(𝑐1𝑎fb𝑠2 +𝑘2𝑐2𝑎fb𝑠 +𝑘2𝑘3𝑐2𝑐hp)
(3.24)

The IF f(s) of the observable canonical HPΣΔ modulator consists of a set of functions
{𝑓1(𝑠), 𝑓2(𝑠), 𝑓3(𝑠)} given by:

𝑓1 (𝑠) =
𝑠𝑝1𝑘1(𝑠 +𝑘2𝑞2𝑘q)

𝑠3 +𝑘q𝑘2𝑞2𝑠2 +𝑘q𝑘1𝑘2𝑞1𝑠 +𝑘q𝑘1𝑘2𝑘3𝑞0
(3.25)

𝑓2 (𝑠) =
𝑠𝑝1𝑘1𝑘2

𝑠3 +𝑘q𝑘2𝑞2𝑠2 +𝑘q𝑘1𝑘2𝑞1𝑠 +𝑘q𝑘1𝑘2𝑘3𝑞0
(3.26)

𝑓3 (𝑠) =
𝑝1𝑘1𝑘2𝑘3𝑘q

𝑠3 +𝑘q𝑘2𝑞2𝑠2 +𝑘q𝑘1𝑘2𝑞1𝑠 +𝑘q𝑘1𝑘2𝑘3𝑞0
(3.27)

The IFs g(s) of the observable canonical HPΣΔmodulator consists of a set of functions
{𝑔1(𝑠),𝑔2(𝑠),𝑔3(𝑠)} given by:

𝑔1 (𝑠) =
𝑘1𝑘2𝑘q𝑠

𝑠3 +𝑘q𝑘2𝑞2𝑠2 +𝑘q𝑘1𝑘2𝑞1𝑠 +𝑘q𝑘1𝑘2𝑘3𝑞0
(3.28)

𝑔2 (𝑠) =
𝑘2𝑘q𝑠2

𝑠3 +𝑘q𝑘2𝑞2𝑠2 +𝑘q𝑘1𝑘2𝑞1𝑠 +𝑘𝑞𝑘1𝑘2𝑘3𝑞0
(3.29)

𝑔3 (𝑠) =
𝑘1𝑘2𝑘3𝑘q𝑞0

𝑠3 +𝑘q𝑘2𝑞2𝑠2 +𝑘q𝑘1𝑘2𝑞1𝑠 +𝑘q𝑘1𝑘2𝑘3𝑞0
(3.30)

From Fig. 3.9, we can observe that the noise from the first, second and third integrator
in the orthonormal HPΣΔ modulator is first-order high-pass, second-order high-pass and
low-pass filtered, respectively. It can be observed that the input signal is high-pass filtered
with a slope of 20 dB/dec, while the quantization noise initially begins with a slope of 60
dB/dec but transitions to 40 dB/dec on encountering the pole associated with the high-pass
cut-off frequency. Similar frequency response trends as shown in Fig 3.9 are also obtained
for observable HPΣΔmodulator. The coefficients of both topologies are given in Table 3.2.

To quantitatively evaluate the performance of the HPΣΔ topologies, a mathematical
norm is necessary to measure the magnitudes of the signal level. The two signal types that
are often used in such a performance analysis are:

• A sinusoidal input: for a sinusoidal input with a peak amplitude 𝐴𝑝 , an appropriate
mathematical norm of the signal is the 𝐿∞ norm.
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Figure 3.9: Frequency response of the signal transfer function (STF), the quantization noise transfer function
(qNTF) and the 3 intermediate noise transfer functions 𝑔1, 𝑔2 and 𝑔3 of the orthonormal HPΣΔ topology.
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Table 3.3: 𝐿2-norm calculations of the HPΣΔ topologies

Orthonormal HPΣΔ
Int. Before scaling Factor After scaling

‖𝑓𝑖‖2 ‖𝑔𝑖‖2 𝛼𝑖 ‖𝑓𝑖‖2 ‖𝑔𝑖‖2
First integrator 0.354 0.866 2.8277 1 0.3063

Second integrator 0.25 0.7073 4.001 1 0.1768
High-pass integrator 0.0158 0.0158 63.23 1 0.00025

∑3
𝑖=1 ‖𝑔𝑖 (𝑗𝜔)‖22 1.2506 0.12506

Observable canonical HPΣΔ
First integrator 0.7501 0.707 1.33 1 0.5304

Second integrator 0.177 1.00 5.66 1 0.1768
High-pass integrator 0.0158 0.0158 63.238 1 0.00025

∑3
𝑖=1 ‖𝑔𝑖 (𝑗𝜔)‖22 1.5006 0.31266

• A power spectrum: if the input signal is assumed to be white, i.e., have a constant
power spectral density, the output power spectrum at the output of the integrators
is calculated and the root-mean-square value is given by the 𝐿2 norm of the signal.

The 𝐿2-norm of signal 𝑣(𝑡) is given by,

‖𝑣‖2 = (∫
∞

0
𝑣(𝑡)2𝑑𝑡)

1
2

(3.31)

The dynamic range, given by the ratio of the maximum signal handling capability and
the minimum level as determined by the internally generated noise, can be optimized
through scaling of the integrators. Integrator scaling is the process of readjusting the
internal gain coefficients in order to adjust the internal signal swing to a range appropriate
for the supply voltage such that the overall transfer function from the input to the output
remains unchanged [47]. The 𝐿2-norms of the set of IF’s f(s) and g(s) are calculated and
are tabulated in Table 3.3. A scaling factor, 𝛼𝑖 , is calculated for each integrator, given by

𝛼𝑖 =
𝑀
‖𝑓𝑖‖2

, (3.32)

where 𝑀 is the maximum acceptable signal magnitude at the integrator outputs. After
f(s) has been scaled, g(s) is scaled by the inverse factor ( 1𝛼𝑖

) as given in Table 3.3. The total

noise power of the integrators, given by∑𝑖 ‖𝑔 (𝑗𝜔)‖22, can be evaluated and used as a figure

of merit [5] for comparing the noise performance of the HPΣΔ topologies. The total noise
power for a 3rd-order system, given by ∑3

𝑖=1 ‖𝑔𝑖(𝑗𝜔)‖22 for the orthonormal HPΣΔ is 0.12,
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which is smaller than that of the observable HPΣΔ, which is 0.31, which is a significant
3.9 dB difference. Therefore, the orthonormal HPΣΔ is a preferred choice for circuit im-
plementation. The noise performance of the HPΣΔ topologies can be further improved by
balancing the integrator noise contributions, i.e., making 𝑔𝑖 of the integrators equal. This
can be carried out by appropriate capacitance sizing of the integrators while keeping in
mind the practical tradeoffs between noise and current consumption. The noise contribu-
tions of individual integrators can be seen in Table 3.3. It can be observed that the total
noise contribution of the observable canonical HPΣΔ ADC is about 1.25 times that of the
orthonormal HPΣΔADC before scaling, while it is three times that after scaling. Therefore,
the orthonormal HPΣΔ ADC is a better topology with respect to noise performance.

Following the intermediate function analysis from a linearized model, the topologies
are compared using a non-linear model of the HPΣΔ topologies, which models the quan-
tizer as a 𝑠𝑖𝑔𝑛 function on MATLAB. Fig. 3.10 shows the dynamic range comparison
between the observable canonical and orthonormal HPΣΔ topologies. It can be observed
that the orthonormal HPΣΔ topology has a larger dynamic range and can handle larger
input signal amplitudes.
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Figure 3.10: Simulated dynamic range performance of the HPΣΔ topologies

From system simulations, it follows that the difference between the noise performance
of these types of modulators becomes more pronounced for higher orders, in favor of the
orthonormal HPΣΔ modulator topology.

3.2.3 Sensitivity
In this section, the sensitivity of the transfer function to integrator non-idealities and
coefficient variations is discussed. In order to determine the impact of integrator errors
on the transfer function of the HPΣΔ topologies, the integrator errors are modeled and
simulated at the system level. The effects of finite DC gain, finite GBW and time-constant
variation of the integrators on the performance of the system are investigated. Assuming
an RC implementation, the ideal integrator transfer function (ITF) can be expressed as

𝐼 𝑇 𝐹𝑅𝐶,𝑖 =
𝑘𝑖𝑓𝑠
𝑠 = 1

𝑠𝑅𝐶 = 𝜔𝑢
𝑠 (3.33)

Taking the finite DC gain effect of the integrator into account, the non-ideal integrator
transfer function can be expressed as
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𝐼 𝑇 𝐹𝐴0,𝑖 ≈
𝑘𝑖𝑓𝑠

𝑠 + 𝑘𝑖𝑓𝑠
𝐴0

, (3.34)

where 𝐴0 is the finite DC gain of the integrator. Comparing (3.34) to the ideal ITF ex-
pressed in (3.33), it is observed that the pole is displaced from the origin to 𝑘𝑖𝑓𝑠

𝐴0
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Figure 3.11: Effect of finite DC gain on the performance of the HPΣΔ topologies

Fig. 3.11 shows the impact of finite DC gain of the high-pass integrators and com-
pares the signal-to-quantization-noise ratio (SQNR) performance between orthonormal
and observable canonical HPΣΔ ADC topologies. It can be observed that, on lowering the
DC gain of the high-pass integrator alone, the performance of the topologies does not de-
grade. The overall performance of the topologies mainly depend on the first or the second
integrator.

The non-ideal ITF due to finite GBW can be expressed as [39]

𝐼 𝑇 𝐹GBW,i =
𝑘𝑖𝑓𝑠
𝑠

𝐺𝐵𝑊
𝐺𝐵𝑊+𝑘𝑖𝑓𝑠

1+ 𝑠
𝐺𝐵𝑊+𝑘𝑖𝑓𝑠

, (3.35)

where GBW is the gain-bandwidth product of the integrator.
From Fig. 3.12, one can observe how the performance of the HPΣΔ topologies depend

on the GBW of the integrators. As the GBW product of the high-pass integrator decreases,
the performance of the modulator degrades only marginally. At the lower end, the GBW
values of the 1st and 2nd integrator are important tomaintain the performance of theHPΣΔ
topologies. To minimize the effect of finite GBW, a GBW value of 0.7⋅𝑓𝑠 or higher would
suffice.

The non-ideal ITF due to RC mismatch can be expressed as

𝐼 𝑇 𝐹𝑅𝐶,Δ𝑅𝐶 = 1
𝑠𝑅𝐶 ⋅ 1

(1+Δ𝑅𝐶 )
= 𝑘𝑖𝑓𝑠

𝑠 ⋅ 1
(1+Δ𝑅𝐶 )

(3.36)
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Figure 3.12: Effect of finite GBW on the performance of the HPΣΔ topologies
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Figure 3.13: Effect of time constant variation on the performance of the HPΣΔ topologies.

When the time constant increases, i.e., the gain of the integrator decreases, the perfor-
mance of the HPΣΔ topologies degrades. The trend is similar to the effect of finite GBW
on the performance. When the time constant decreases, i.e., the gain of the integrator
increases, the modulator can become unstable beyond a threshold, as can be seen in Fig.
3.13. The overall performance of the high-pass modulator mainly depends on the first or
the second integrator and not on the feedback integrator.

In the case of filters, the sensitivity of the transfer function to the integrator non-
idealities is dependent on the integrator time constant [43]. A higher integrator gain
would result in larger sensitivity to the integrator non-idealities. Given that the gain of
the integrator is proportional to the row sum given by [43]

|𝐴𝑖𝑗 | + |𝑏𝑖 |, (3.37)

where 𝐴𝑖𝑗 and 𝑏𝑖 are elements of the A and b matrices, respectively, the first and second
integrator are expected to be more sensitive to the integrator non-idealities than the high-
pass integrator, which confirms the observations made in Figures 3.11, 3.12 and 3.13. The
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row sum of the high-pass integrator is very low; therefore, the sensitivity to finite DC
gain, finite GBW, and time-constant variation is marginal. However, the row sums of the
first and second integrators are quite large compared to those of the high-pass integrator,
and hence, they suffer from larger sensitivities to integrator non-idealities. In general, the
larger the row sum of the integrator, the larger the sensitivity to its non-idealities. We
can conclude that the orthonormal HPΣΔ modulator is always less sensitive to the above
non-idealities than the observable HPΣΔ modulator. For this reason, orthonormal HPΣΔ
architecture is chosen for circuit implementation.

3.2.4 Circuit implementation and simulation results
Illustrated in Fig. 3.14 is the top-level schematic of the proposed orthonormal HPΣΔ topol-
ogy targeting the implementation of the high-pass cut-off frequency with good accuracy
and linearity. Opamp-RC integrators are used to realize the first and second integrators
to achieve good linearity. The amplifiers are designed using a two-stage opamp topology
for the high current driving capability required to drive the large capacitances, minimiz-
ing the performance degradation due to slewing. A multiple-input dynamic comparator
is used to realize the summer and the quantizer. A very large time-constant, parasitic-
insensitive, and area-efficient switched-capacitor Nagaraj integrator [48] as shown in Fig.
3.15 is used to implement the high-pass integrator in the feedback loop. The location of
the high-pass pole is determined by ratios of capacitors and by the clock frequency and,
as such, offers high accuracy and is robust to PVT variations. 𝑐hp and 𝑎fb are implemented
as a ratio of resistors, while 𝑘3 is implemented as a ratio of capacitors, both of which can
be very accurate. The circuit consists of three different capacitors and operates in two
non-overlapping phases. The input voltage is attenuated and integrated by capacitor 𝐶I.
A charge equivalent to 𝐶a𝑉in is transferred to the large capacitor 𝐶I during the first phase.
In the second phase, the charge is redistributed between 𝐶I and 𝐶b. Large capacitance
𝐶I is used for attenuation and integration, thus saving area. The gain and the unity gain
frequency, 𝑓𝑢 of the integrator are given by the factor (𝐶a

𝐶I
)(𝐶b
𝐶I

) and

𝑓u =
1
2𝜋

1
[1+ 𝐶b

𝐶I
]
𝐶a
𝐶I

𝐶b
𝐶I

𝑓s, (3.38)

respectively, where 𝑓s is the clock frequency and is equal to the sampling frequency of the
ΣΔ modulator.

To avoid long simulation times, 𝑓hpf is set at 1 Hz, and the circuit is tested for linearity
at the same frequency. Lower 𝑓hpf can be realized by appropriately selecting the values
of capacitances and the clock frequency at the cost of larger area and power. To obtain a
cut-off frequency of 1 Hz, 𝐶a = 0.5 pF, 𝐶I = 45 pF and 𝐶b = 0.2 pF are chosen to realize the
scaling coefficient of 5⋅10−5 that follows from (3.7) and (3.38). In the designed modulator,
the high-pass cut-off frequency is implemented using ratios of capacitors, which is more
accurate and robust to PVT variations than pseudo-resistors or 𝑔𝑚 based techniques. The
first, the high-pass, and the second integrator consume 76.6, 65.4, and 3.7 𝜇W, respectively,
while the digital blocks consume 0.4 𝜇W. To get an estimate of the noise contributions of
the passive components, the thermal noise of the opamps, and the quantization noise, a
transient noise simulation is run with noise 𝑓min and 𝑓max being 1 Hz and 200 Hz respec-
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Figure 3.14: Top level circuit block diagram of the CT orthonormal HPΣΔ modulator [31]

Table 3.4: Performance of the CMOS orthonormal HPΣΔ modulator

Technology 0.18 𝜇m AMS
Supply voltage 1.8 V

Sampling frequency 128 kHz
Signal Bandwidth 1 - 200 Hz

HD3@𝑓in=1.1 Hz,𝑉in = 100 mVp -78 dB
SNDR1 68.1 dB
ENOB 11.02 bits

Total capacitance 148.4 pF
Total power consumption 146𝜇W

1 Transient thermal noise from noise 𝑓min = 1 to 𝑓max = 200 Hz; flicker noise disabled

tively, after disabling the effect of flicker noise, and is shown in Figure 3.16. Assuming
that the flicker noise of the opamps can be optimized with available state-of-the-art circuit
techniques, the signal energy at the high-pass cut-off frequency region can be acquired
with high fidelity. The 3rd harmonic distortion is at -78 dB for an input signal of 100 mV
(peak value) at an input frequency of 1.1 Hz, as shown in Figure 3.16b, which is better
than the state-of-the-art performance. Designed and simulated in AMS 0.18 𝜇m CMOS
IC technology and taking resistor noise, switched capacitor noise, opamp thermal noise,
quantization noise, and harmonic distortion into account, the orthonormal HPΣΔ ADC
achieves an effective number of bits (ENOB) of 11.02 bits. Table 3.10 summarizes the per-
formance of the designed modulator.

The proposed implementation of the high-pass cut-off frequency is compared with
that of a ”Harrison amplifier,” i.e., the combination of an amplifier and a high-pass filter,
as shown in Fig. 3.15 [19]. Figures 3.16 and 3.17 show the performance of the orthonor-
mal HPΣΔ modulator and the Harrison amplifier, respectively. The proposed design is
benchmarked against a Harrison amplifier that consists of pseudoresistors designed using
PMOS transistors [19] and an ideal amplifier. The high-pass filter is implemented using
the pseudoresistors in parallel with the feedback capacitors 𝐶B. The linearity at the high-
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Figure 3.15: Implementation of the high-pass cut-off frequency a) SC Nagaraj integrator [48] b) Harrison
amplifier [19]

pass cut-off frequency of the Harrison amplifier is tested and is shown in Fig. 3.17. The
amplifier achieves an HD3 of about -40 dB for an input amplitude of 10 mV at an input
frequency of 1.1 Hz. The relative accuracy of the unity gain frequency of the SC integrator
is better than 0.1%. Together with the inaccuracies resulting from the ratio of resistances,
the accuracy of the proposed method can be better than 1%. Monte Carlo simulations, ac-
counting for process and mismatch variations, comparing the accuracies of the high-pass
cut-off frequency set by the SC Nagaraj integrator and the Harrison amplifier, are shown
in Figure 3.18.

Testing with pre-recorded ECG signal
The orthonormal HPΣΔ modulator is tested with a pre-recorded ECG signal from the
MIT-BIH Normal Sinus Rythym database (nsrdb [49]) numbered as Record 16773 (Signal:
ECG1). The designed system is run with 3 seconds of the ECG input signal to observe
the effect of baseline wandering and the output is post-processed in MATLAB. The ac-
quired digital signal output is low-pass filtered using a third-order Butter-worth filter and
is reconstructed in the analog time domain. Fig. 3.19 shows the pre-recorded time-domain
ECG input signal, the reconstructed signal from the output of the orthonormal HPΣΔmod-
ulator and the signal from the output of the Harrison amplifier, which are benchmarked
against a MATLAB high-pass filtered signal of the raw ECG with BW. The distortion com-
ponents present in the ECG signal acquired using pseudoresistors (with an ideal amplifier
having no swing limitations) can be clearly seen in the time-domain. Distortion around
the high-pass cut-off frequency of ECG signal can make accurate medical diagnosis a chal-
lenge. However, the waveform acquired by the orthonormal HPΣΔ modulator has much
better linearity and is closer to the MATLAB filtered waveform.

Given that the signal is normal sinus rhythm and assuming that the strength of the
beat is fairly uniform, the R-R interval is about 0.8 sec and the amplitude of the P-wave
peak of the input ECG signal ranges from -0.054 to 0.058 mV, whereas, the reconstructed
ECG peaks vary from 0 to 0.048 mV, which is a much smaller range. The occurrence of
the P-wave peak for the input ECG with baseline wander and the reconstructed ECG are
tabulated in Table 3.6. It can be observed that the effect of baseline wandering is greatly
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Figure 3.16: Orthonormal HPΣΔ circuit simulations: (a) Output spectrum for 𝑓in = 82.1 Hz, (b) Output spectrum
for 𝑓in = 1.1 Hz.



3.2 High-pass ΣΔ converter design using a state-space approach

3

41

Ta
bl
e
3.5

:C
om

pa
ris

on
of

th
e
im

pl
em

en
ta
tio

n
of

hi
gh

-p
as
sc

ut
-o
ff
fre

qu
en

cy
(𝑓 h

pf
)w

ith
re
la
te
d
w
or

k

T
hi

s
wo

rk
[M

oh
an

]
[H

ar
ris

on
]

[M
ul

le
r]

[R
ez

ae
e]

Ye
ar

20
17

IS
C

A
S

20
13

[2
2]

JS
SC

20
03

[1
9]

JS
SC

20
12

[2
3]

JE
T

C
A

S
20

11
[2

0]
A

rc
hi

te
ct

ur
e

2n
d

H
PΣ

Δ
1st

H
PΣ

Δ
am

pl
ifi

er
bo

xc
ar

A
D

C
am

pl
ifi

er
D

om
ai

n
m

ix
ed

-s
ig

na
l

m
ix

ed
-s

ig
na

l
an

al
og

di
gi

ta
l

an
al

og
Bi

o-
sig

na
l

EC
G

EC
G

ne
ur

al
ne

ur
al

ne
ur

al
H

PF
te

ch
ni

qu
e

SC
N

ag
ar

aj
in

te
gr

at
or

𝑔 m
,c

ur
re

nt
so

ur
ce

s
ps

eu
do

re
sis

to
rs

II
R

-fi
lte

r
(o

ff-
ch

ip
)

ps
eu

do
re

sis
to

rs
Ba

nd
w

id
th

[H
z]

1-
20

0
1-

20
0

0.
02

5-
7.

2k
30

0-
10

k
0.

5-
10

k
H

D
3

[d
B]

-7
8

@
𝑓 𝑖𝑛

=1
.1

H
z

-6
2

@
𝑓 𝑖𝑛

=2
.1

H
z

>-4
0

@
𝑓 𝑖𝑛

=1
.1

H
z

-
>-4

0
@
𝑓 𝑖𝑛

=1
.1

H
z

A
cc

ur
ac

y
of

𝑓 hp
f

hi
gh

pr
oc

es
s

se
ns

iti
ve

pr
oc

es
s

se
ns

iti
ve

ve
ry

hi
gh

pr
oc

es
s

se
ns

iti
ve

Te
ch

no
lo

gy
0.

18
𝜇m

0.
18

𝜇m
1.

5
𝜇m

65
nm

0.
18

𝜇m



3

42 3 A state-space approach for optimal design of ΣΔ converters

10
-1

10
0

10
1

10
2

Frequency (Hz)

-100

-80

-60

-40

-20

0

P
S

D
 (

d
B

)

Input freq., fin = 1.1 Hz

HP cut-off freq., fhpf = 1 Hz

40 dB

Figure 3.17: Output spectrum of Harrison amplifier for 𝑓in= 1.1 Hz
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Figure 3.18: Histogram of the relative accuracies of the high-pass cut-off frequency: (a) Harrison amplifier, (b)
SC Nagaraj integrator

reduced in the reconstructed signal.

Comparison with related work
Comparing the performance of the orthonormal HPΣΔ modulator to the Harrison ampli-
fier, it can be seen that the orthonormal HPΣΔ topology offers a much better alternative for
the implementation of the high-pass cut-off frequency, in terms of linearity and accuracy.
Pseudoresistors are used in [19] and [20] for lower area and power consumption at the
expense of poor linearity and accuracy of the high-pass cut-off frequency. Due to process
(P), voltage (V), and temperature (T) variations and poor circuit structures, pseudoresistors
achieve a linearity of about -40 dB and compromise the accuracy of the implementation
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Figure 3.19: Time-domain ECG signal from the orthonormal HPΣΔ modulator output compared with raw ECG
(MIT-BIH), Harrison amplifier and MATLAB filtered output

Table 3.6: Reduction of baseline wandering

ECG P-wave 1st (s, mV) 2nd (s, mV) 3rd (s, mV) 4th (s, mV)
Raw ECG (0.37, -0.054) (1.17, 0.024) (1.93, 0.058) (2.65, -0.015)
Rec. ECG (0.38, 0.015) (1.17, 0.048) (1.93, 0.012) (2.66, 0)

of the high-pass cut-off frequency. Although the use of a 𝑔m stage in combination with
current sources [22] leads to a power-efficient solution, the 𝑔m of any transistor is inher-
ently non-linear and is less robust to P, V, and T variations. Off-chip digital solutions [23]
can be used to obtain a highly accurate and linear high-pass cut-off frequency at the ex-
pense of power. Table 3.5 summarizes the metrics that characterize the implementation
of a high-pass cut-off frequency involving large time constants. For integrated on-chip
solutions, the proposed system is among the most promising approaches for applications
where good linearity and accuracy of the high-pass cut-off frequency are desired.

3.2.5 Conclusions on the proposed state-space methodology
This chapter proposes a state-space-based design methodology to develop HPΣΔ ADC
topologies. By using the state-space synthesis approach, ΣΔ converters with arbitrary sig-
nal and quantization noise transfer functions can be synthesized. State-space techniques
allow dynamic range optimization of the ΣΔ converters with respect to signal swing and
noise through state and noise scaling, respectively. This also minimizes the sensitivity of
the topology to component variations [50]. From the intermediate-function analysis, it is
seen that the noise from the high-pass integrator is low-pass filtered. Also, the 𝐿2-norm
calculations show that the orthonormal HPΣΔ ADC gives better noise performance than
the observable HPΣΔ ADC. Sensitivity analysis is carried out to investigate the impact
of coefficient variations and non-idealities of the integrator. Finally, schematic simula-
tions of a circuit designed in AMS 0.18 𝜇m CMOS IC technology verify the findings and
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match the system-level results. The designed orthonormal HPΣΔ is also tested with a real
pre-recorded ECG input signal and successfully reduces baseline wandering.

3.3 A single-channel integrated circuit for acquiring car-
diac signals using an orthonormal ΣΔ ADC

3.3.1 Introduction

R ecordings of cardiac signals, both electrocardiograms (ECG) and atrial electrograms
(AEG) provide insights into the functioning of the heart. To diagnose cardiac abnor-

malities, the ECG is non-invasively recorded on the surface of the heart. Specific features
of the ECG waveform reveal the state of normalcy or abnormalcy pointing to the corre-
sponding location in the heart. In addition to this, to obtain a deeper understanding of the
progression of cardiac arrhythmia concerning the conduction and blockages of electrical
signal paths at the tissue or the cellular level, signals recorded on the surface of the heart,
called the atrial or ventricular/epicardiac and endocardiac electrograms electrograms can
aid the research on epicardiac mapping [51][52].

Typically, the energy of an ECG waveform lies between 1-200 Hz and has an ampli-
tude of 1-5 mV.The energy of cardiac electrograms measured on the epicardium and endo-
cardium lies between 1 Hz and 2.5 kHz [51]. The typical peak-peak amplitude of epicardial
and endocardial electrograms is about 10 and 30 mVpp, respectively. In the acquisition
setup currently used to acquire electrograms at the Erasmus Medical Centre, Rotterdam
[5], the bandwidth is limited to 400 Hz by a maximum sampling rate of 1 kS/s for a single
channel. To generate an activation map based on the epi- and endocardiac electrograms,
a bandwidth of 400 Hz is sufficient. To record complex fractionated atrial electrograms
(CFAE) in the atria, higher bandwidths extending beyond 1 kHz are required [52].

Depending on the size, type, and electrodes used to record the signals, the interface be-
tween the electrode and the skin/tissue can be modeled by means of a resistive-capacitive
network [53]. According to the IEC 60601-2-47 standard for the acquisition of ambulatory
ECG, the noise levels should be lower than 50 𝜇V pp (≈ 18 𝜇Vrms) [36]. The noise gener-
ated due to the electrode-tissue interface depends on the effective impedance and the total
signal bandwidth. In order to have a negligible impact on the overall noise performance,
the total noise of the CMOS circuits dominated by thermal, shot, and flicker noise should
be minimized. A maximum signal amplitude of 30 mVpp can be expected for atrial electro-
grams. Thus, to acquire a raw waveform and to be able to detect changes in the amplitude
of small local potentials for research purposes, a high-resolution front-end targeting an
ENOB of 12 bits and a minimum bandwidth of 1 kHz is required.

Figure 3.20: Proposed ECG acquisition system for AF diagnosis.
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(a) Block diagram

(b) Linear model

Figure 3.21: Block diagram and linear model of the proposed analog front-end

In this chapter, we implement the design of a single-channel analog front-end based on
the state-space design approach [32] that is fully-integrated in 0.18 𝜇m CMOS technology.
Figure 3.20 shows the conceptual diagram of the acquisition of cardiac signals. Section
3.3.2 presents the system overview. Section 3.3.3 details the design of the fully-integrated
analog front-end implementation. We present the measurement results in Section 3.3.4
and, finally, conclusions in Section 3.3.5.

3.3.2 System overview
To accommodate a range of biosignals such as electrocardiogram, atrial electrogram (AEG),
electroencephalogram (EEG) or electromyography (EMG), with varying frequency char-
acteristics, the front-end is designed for a bandwidth of 3 kHz. Based on the state-space
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Figure 3.22: PSD of the output spectrum of the orthonormal ΣΔ ADC with HP loop.



3

46 3 A state-space approach for optimal design of ΣΔ converters

10 1 10 2 10 3

Frequency (Hz)

-25

-20

-15

-10

-5

0

N
o
rm

a
liz

e
d
 m

a
g
n
itu

d
e
 (

d
B

)

STF of orthonormal SDADC with HP loop

fs = 500 kHz
k3 = 0.002
HP pole @ 160 Hz 

(160 Hz, -3 dB)

Figure 3.23: Signal transfer function of the orthonormal ΣΔ modulator with HP loop.

Table 3.7: Parameters of the proposed front-end based on orthonormal ΣΔ modulator

Parameter Value
𝑘1 0.5
𝑘2 0.5
𝑎𝑓 𝑏 1
𝑐1, 𝑐2 1
𝑐ℎ𝑝 0.01
𝑘3 0.002
𝐺 100
𝑓𝑠 500 kHz

design approach for optimal dynamic-range ΣΔ ADCs, an orthonormal ΣΔ topology is se-
lected [32]. To achieve a resolution of 12-bits, a 2nd order orthonormal modulator with a
sampling frequency of 500 kHz and an over-sampling rate of 80 is selected. A first-order
roll-off implements the high-pass filter cut-off frequency. The coefficients of the topology
are tabulated in Table 3.7. Figure 3.21 shows the block diagram and the linear model of the
proposed front-end. The signal transfer function and the quantization noise transfer func-
tion equations of the proposed front-end using an orthonormal ΣΔ modulator topology
with a first-order high-pass loop can be written as:

STF =
sGk1kq(c1s+k2c2)

s3 + s2c1k1kqafb + s(c1k1k3kqchpG+ afbk1k2kqc2) +kqk1k2k3c2chpG
(3.39)

qNTF = s3

s3 + s2k1kqafbc1 + s(k1afbk2c2kq +k1k3kqc1chpG) +kqk1k3k2c2chpG
(3.40)

Solving the characteristic equation, the very low frequency high-pass pole is located
at,

𝑠 ≈ 1
2𝜋

𝑘3𝑐ℎ𝑝𝐺
𝑎𝑓 𝑏

⋅ 𝑓𝑠 . (3.41)

where 𝑓𝑠 is the sampling frequency and 𝑘3, 𝑐ℎ𝑝 , 𝐺 and 𝑎𝑓 𝑏 are parameters of the modu-
lator. Equations 3.39 and 3.40 show the signal and quantization noise transfer function
of the ΣΔ converter topology, respectively. Figures 3.22 and 3.23 show the PSD of the



3.3 A single-channel integrated circuit for acquiring cardiac signals using an orthonormal ΣΔ ADC

3

47

 
 

Figure 3.24: Architecture implementation of the proposed front-end with orthonormal ΣΔ ADC

Figure 3.25: Implementation of preamplifier: Schematic of 2-stage opamp (A1) and CMFB circuit

output spectrum with noise-shaping characteristics and the signal transfer of the entire
front-end, respectively, that are simulated behaviourally. The high-pass pole is located at
160 Hz to demonstrate the slope transitions clearly. For a lower high-pass filter cut-off
frequency, coefficient 𝑘3 can be chosen accordingly. The parameters are chosen such that
the contribution of the quantization noise to the total noise is negligible.

3.3.3 Architecture and circuit design
Figure 3.24 shows the top-level block diagram of the single-channel cardiac analog front-
end. The output of the amplifier is connected to a 2nd-order ΣΔADC. A 1-bit DAC converts
the digital bitstream into an analog signal and is connected to the Nagaraj integrator. The
Nagaraj switched-capacitor integrator in negative feedback between the modulator’s out-
put and the pre-amplifier input implements the high-pass loop.

Pre-amplifier
The cardiac signals are recorded by electrodes that are placed in contact with the body
surface or the tissue surface. Due to the electrode-tissue interface, a capacitive electrical
double-layer is formed, which generates a DC offset. According to the IEC standards
[18],[36], a maximum of +/-300 mV offset can be expected for gel-based electrodes. The
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(a)

(b)

(c)

Figure 3.26: Implementation of ΣΔ modulator: (a) A2 and CMFB circuit, (b) A3 and CMFB circuit, (c) Dynamic
comparator and a 1-bit DAC
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AEGs are recorded using gold-plated (Au) electrodes without gel in the presence of a finite
amount of blood. So, the expected offset can be much lower. The implemented front-end
consists of a capacitively-coupled pre-amplifier to reject DC offset with a closed-loop gain
of 100 or 40 dB.

Figure 3.25 shows the implementation of the preamplifier consisting of 𝐴1, a 2-stage
opamp, and a common-mode feedback (CMFB) control circuit. The CMFB block uses
two resistors to extract the common-mode output voltage and an amplifier that drives
the common-mode feedback control point 𝑣𝑐𝑚𝑓 𝑏 in the opamp. The pre-amplifier is
capacitively-coupled with a closed-loop gain of 100. The values of 𝐶𝑖𝑛 and 𝐶𝑓 𝑏 are 20
pF and 0.2 pF, respectively. 𝐶𝑓 𝑏 is selected as 0.2 pF to implement a gain of 100. With
a unit capacitance of 100 fF, the capacitors are implemented using a common-centroid
layout technique to achieve high gain accuracy and minimize differential mismatch.

At the maximum input signal frequency of 1kHz, and for an input capacitance of 20
pF, the input impedance value of the pre-amplifier is given by 1

2𝜋𝑓 𝐶𝑖𝑛
≈ 8 MΩ. If higher

input impedances are required (𝑍𝑖𝑛 >> 10 x 𝑍𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒), lower values of 𝐶𝑖𝑛 can be selected
or other techniques, such as partial positive feedback can be applied.

The pseudoresistors are implemented by PMOS transistors due to their area and power-
efficient design. They set the DC bias voltage at the input. The pseudoresistors and the
feedback capacitance 𝐶𝑓 𝑏 implement the high-pass filter cut-off. For the implementation
of the opamp, a 2-stage topology is chosen as it provides high DC gain and is well suited
to drive a resistive load. A folded-cascode topology implements the first stage. Cascoding
improves the gain by increasing the output impedance at the expense of voltage headroom.
The second stage is a common-source topology and provides a large output swing. The
first stage dominates the noise. The input-referred noise of the input differential pair of a
transistor biased in the subthreshold region is given by:

𝑉𝑛𝑖,𝑟𝑚𝑠 = √
4𝑘𝑇 ⋅𝑈𝑇
𝜅2 ⋅ 𝐼𝐷

𝜋
2 ⋅𝐵𝑊 (3.42)

where 𝑘 is Boltzmann’s constant, 𝑇 is the absolute temperature, 𝜅 is the subthreshold
slope factor, 𝑈𝑇 is the thermal voltage, kT/q, approximately 26 mV at body temperature, 𝐼𝐷
is the current through the input transistor, and 𝐵𝑊 is the -3 dB bandwidth of the amplifier.
The current through the input transistors can be increased to reduce noise at the expense
of a higher power consumption. To characterize the efficiency of the bio-amplifier, its
noise efficiency factor (NEF) can be calculated, which is given by [54] :

𝑁𝐸𝐹 =
√

2𝐼𝑡𝑜𝑡
4𝑘𝑇 ⋅𝑈𝑇 ⋅ 𝜋 ⋅ 𝐵𝑊 (3.43)

PMOS input transistors are selected for lower flicker noise as compared to NMOSTs.
The input PMOS differential pair 𝑀1,𝑀2 is biased in the subthreshold saturation region
(or weak-inversion saturation, WI-sat) to maximize the gain (viz., the transconductance
𝑔𝑚) for a given drain current. As the input-referred noise voltage is inversely proportional
to 𝑔𝑚 , a higher transconductance leads to lower input-referred noise voltage. PMOS tran-
sistors𝑀5,𝑀6 and NMOS transistors𝑀11,𝑀12 are for biasing purposes only and therefore
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Table 3.8: Device dimensions and operating point of the pre-amplifier

Devices W/L (𝜇m) 𝐼𝐷 (𝜇m) 𝑔𝑚/𝐼𝐷 (𝑉 −1) 𝑉𝐸𝐹𝐹=𝑉𝐺𝑆-𝑉𝑡 (V)
𝑀1, 𝑀2 300/4 2 24.5 0.081
𝑀3, 𝑀4 40/8 4 10 -0.12
𝑀5, 𝑀6 5/8 1 10 -0.12
𝑀7, 𝑀8 10/8 1 12.9 -0.062
𝑀9, 𝑀10 2.5/8 1 13.2 0.07
𝑀11, 𝑀12 14.5/32 1 7 0.186
𝑀13, 𝑀15 20/8 2 10 -0.12
𝑀14, 𝑀16 5/4 2 13.4 0.07
𝑀𝑎1, 𝑀𝑎2 1/1 0.25 16 -0.016

𝑀𝑎3 5/8 0.5 10 -0.12
𝑀𝑎4, 𝑀𝑎5 0.85/18 0.25 8.8 0.186

biased in strong inversion (SI), minimizing their 𝑔𝑚 values and thereby their noise con-
tribution. Since the voltage headroom consumed by devices operating in the SI region is
higher than WI, there is a tradeoff between noise contribution and the available output
swing. Table 3.8 summarizes the device dimensions and operating points. The common-
mode voltage is maintained at 0.9V. A resistive-based CMFB circuit is implemented for
higher linearity at the expense of power and area consumption and consumes 0.5 𝜇A. The
resistance values are 500 kΩ. Lower resistive values can be more area-efficient at the ex-
pense of higher current consumption.

From simulation results, it is seen that the 2-stage opamp has an open-loop gain of 112
dB, a phase-margin of 85∘ and a unity-gain bandwidth of 360 kHz. The total input referred
noise is 2.3𝜇Vrms, while it consumes 10𝜇A from a 1.8V supply. The closed-loop bandwidth
of the amplifier is 3.5 kHz. The simulated NEF for the designed amplifier is 4.

SC Nagaraj integrator
To implement a high-pass cut-off frequency with high accuracy and linearity, a very large
time-constant switched-capacitor Nagaraj integrator is implemented, as shown in Figure
3.27. The circuit operates in two non-overlapping phases, 𝜙1 and 𝜙2, generated by a non-
overlapping clock phase generator. 𝐶2 is the integration capacitor that attenuates the
signal. The value of the unity-gain frequency, 𝑓𝑢𝑔𝑏 , of the integrator is determined by:

𝑓𝑢𝑔𝑏 =
1
2𝜋

1
[1+ 𝐶3

𝐶2
]
𝐶1
𝐶2

𝐶3
𝐶2

𝑓𝑐𝑙𝑘 . (3.44)

Since the cut-off frequency is set by capacitor ratios and 𝑓𝑐𝑙𝑘 , a high accuracy (> 99%)
can be expected [32]. For the selected values 𝑓𝑐𝑙𝑘=500 kHz, 𝐶𝐼=30 pF and 𝐶1 = 𝐶3 = 0.1
pF, the 𝑓ℎ𝑝𝑓 of the integrator is located at 0.88 Hz. The value of 𝐶ℎ𝑝 is equal to 0.2 pF,
the same as the feedback capacitance of the pre-amplifer. The opamp chosen is a folded-
cascode topology. Since the time-constant is very large, the requirement of the DC gain,
UGB, and slew-rate are relaxed [32].
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Figure 3.27: SC Nagaraj integrator

2nd-order ΣΔ ADC
For achieving a high-resolution analog front-end, we implement a fully-differential 2nd
order orthonormal ΣΔ ADC modulator as shown in Figure 3.21. The sampling frequency
of the modulator is 500 kHz for a signal bandwidth of 2 kHz with an oversampling ratio
of 125. The coefficients are given in Table 3.7 and are selected for the high dynamic range
and stability of the modulator. The transistor-level implementation is shown in Figure
3.26. A single-bit quantizer is used to sample the output, which is stored in an SR flip-flop.
A 1-bit DAC is used to convert the digital output to an analog value which is fed back
at the input of the first integrator. The continuous-time loop filter is implemented using
opamp-RC integrators, which offer high linearity at the expense of slightly higher power
consumption as compared to other alternatives. 𝑔𝑚C integrators can be chosen for lower
power consumption at the expense of reduced linearity.

Integrators suffer from non-idealities that lead to degradation of modulator perfor-
mance such as finite DC gain, finite unity-gain bandwidth (UGB), and finite slew rate.
Since the overall performance of the modulator is dominated by the first integrator, it
should satisfy the requirements and be designed carefully. From behavioral simulations,
it is found that the minimum DC gain required for the first integrator to have negligible
degradation of performance is 80 dB. For the second integrator, a DC gain of 60 dB is suffi-
cient. To minimize the impact of finite GBW, a GBW value of at least 1 𝑓𝑠 is required [32].
For stable single-loop modulators, variations in RC products lead to minor degradation in
modulator performance. From behavioral simulations, there is no significant degradation
in performance up to ± 40% time-constant variation.

Design of thefirst integrator: As shown in Figure 3.26, a 2-stage opamp is chosen for
implementing the opamp (𝐴2) used in the first integrator to achieve highDC gain and large
output swing. To maintain high linearity and to ensure that the output does not saturate
at large output swing values, a CMFB block that uses two resistors to extract the common-
mode output voltage and an amplifier that drives the 𝑣𝑐𝑚𝑓 𝑏 point in the opamp is used (Fig
3.26). The input stage consists of large area PMOS transistors with aW/L= 300 𝜇m/4𝜇m for
lower flicker noise that are biased in their WI-sat region for maximum power efficiency.
The opamp is frequency-compensated by pole-zero cancellation using a capacitance 𝐶𝑐
of 5pF and a resistor 𝑅𝑧 of 44 kΩ. 𝑀3,𝑀4 and 𝑀5 are biased in SI-sat to minimize 𝑔𝑚 ,
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(a) (b)

Figure 3.28: Chip (a) micrograph and (b) layout.

and thus their noise contributions. The second integrator (𝐴3) is implemented as a folded-
cascode opamp with power-efficient CMFB as shown in Figure 3.26b. It has relaxed DC
gain, swing, linearity, slew-rate, and loading requirements. The values of the resistances
and capacitances are 𝑅1 = 𝑅2 = 1𝑀Ω and 𝐶2 = 𝐶2 = 3.6𝑝𝐹 , respectively.

Design of the 1-bit comparator: For single-bit quantization, a two-input dynamic
comparator based on the strong-arm latch comparator [55] is used. It performs weighted
addition (coefficients 𝑐1, 𝑐2) and implements a 1-bit quantizer in a power- and area-efficient
manner. The comparator consists of one tail transistor𝑀𝑡𝑎𝑖𝑙 , 4 input transistors,𝑀1,𝑀2,𝑀3
and𝑀4, 4 reset transistors𝑀9,𝑀10,𝑀11 and𝑀12, and 4 cross-coupled transistors𝑀5,𝑀6,𝑀7
and 𝑀8. By using a large-width tail transistor, a higher dynamic current can be supplied,
thus reducing the decision time. When the 𝑐𝑙𝑘 goes low, the tail transistor is OFF, and
the internal nodes are charged to 𝑉𝐷𝐷 , thus resetting the output nodes. When the 𝑐𝑙𝑘
goes high, 𝑀𝑡𝑎𝑖𝑙 switches ON, allowing a path for discharge. Depending on the differ-
ence between the differential input voltages, slightly different currents flow through the
branches, thus discharging at different rates. Based on the voltage level at the output
nodes, either 𝑀5 or 𝑀7 turns ON while the other turns OFF, which is reinforced through
the cross-coupled structure. One of the outputs reaches 𝑉𝐷𝐷 while the other node is pulled
to 𝐺𝑁𝐷. The output of the comparator is connected to an SR flip-flop through inverters,
which hold the final value.

Design of the 1-bit DAC: The output of the comparator is connected to a 1-bit DAC,
which is in turn fed to the input of the first integrator through resistances 𝑅𝑑𝑎𝑐 . The 1-bit
DAC consists of 4 switches implemented by transmission gates (T-gates). A T-gate im-
plementation is used for rail-to-rail operation and reduced ON-resistance of the switches.
The positive (𝑣𝑟𝑒𝑓 𝑝 = 1.1 V) and negative (𝑣𝑟𝑒𝑓 𝑛 = 0.7 V) DAC reference voltages are
switched by the comparator outputs 𝑄 and ̄𝑄, which are connected to 𝑅𝑑𝑎𝑐 . The value of
𝑅𝑑𝑎𝑐 equals 𝑅1, implementing a gain factor of 1.
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(a) (b)

Figure 3.29: (a) Custom evaluation board, (b) Measurement setup.

3.3.4 Measurement results
The analog front-end for ECG signal acquisition has been fabricated in TSMC 1P6M 0.18
𝜇m CMOS process. The prototype chip, including the main core, test structures, and the
IO ring, measures 1.6 mm x 1.6 mm and consists of a single-channel analog front-end, a
test ADC, and a test amplifier, as shown in Figure 3.28a. Figure 3.28b shows the layout
of the entire chip. The active area of a single-channel front-end, which includes the pre-
amplifier, the 2nd order ΣΔmodulator and the HP loop is 0.448 mm2. The resistors and ca-
pacitors are implemented using metal-insulator-metal capacitors and high-res polysilicon
resistors, respectively. The bit-stream output of the ΣΔ converter is acquired using a 5442D
MSO Picoscope, and the performance is analyzed using MATLAB. The digital and analog
core circuits are powered by separate 1.8V power supplies and grounds to minimize noise.
Also, decoupling capacitors implemented using MOM capacitors are connected between
the power supply and ground to reduce power supply noise. The fabricated prototype is
packaged in a DIP-40 package for testing using a custom-designed PCB Obelius.

Figure 3.29a shows the implementation of PCB Obelius for testing the fabricated chip.
The measurement setup is shown in Figure 3.29b. To power up the PCB, a lab DC power
supply is used to power a master low dropout regulator (LDO), ADM7150, which powers
fixed-voltage LDOs (1.8V, 3.3V), voltage buffers, and adjustable reference voltage sources.
The adjustable reference voltage sources are implemented using buffers and resistive di-
viders. A reference bias current (1 𝜇A) is generated using a potentiometer. The device
under test (DUT) is excited by sinusoidal signals generated by a signal generator con-
nected to the PCB via SMB connectors. Clock sampling frequencies of 500 kHz and 2
MHz are generated by Agilent waveform generators. A Picoscope is used to acquire the
digital output data and sends it through a USB cable connected to the PC. The generated
bit-stream is processed in MATLAB using digital filters, and the performance is analyzed
using an FFT test bench. A Kaiser window is used to measure the performance metrics
and is compared against simulation results.
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Figure 3.30: Measured performance of the pre-amplifier: (a) Input-referred noise, (b) AC response of the
pre-amplifier, (c) Linearity of the amplifier (THD = 0.17 % @ 14 mVp input, 𝑓𝑖𝑛 = 200 Hz)
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Table 3.9: Measured performance of the pre-amplifier

Technology 0.18 𝜇m TSMC
Supply voltage 1.8 V

Current (opamp+CMFB) 10.5 𝜇A
Total current (incl. bias) 15.5 𝜇A

Amplifier Bandwidth 150 mHz - 3 kHz
Closed-loop gain 40.5 dB
Gain accuracy 1.25 %
Input ref. noise 6.3 𝜇Vrms (BW=1Hz to 3 kHz)

Input referred-offset 564 𝜇V
NEF (excl. bias current) 14.3

CMRR 67 dB
THD (14mVp input, 𝑓𝑖𝑛=200Hz) 0.17%

Performance results
Table 3.10 tabulates the measured performance of the ECG recording system. Figure 3.30
shows the measurement results of the pre-amplifier: (a) the input-referred noise voltage
spectral density; (b) the closed-loop gain as a function of frequency and, (c) the output
frequency spectrum for a 200-Hz, 14-mVp input signal. The gain can be made variable by
incorporating a capacitor bank and switches at the input (𝐶𝑖𝑛) if a variable gain is desired.
Fig. 3.30a shows the measured and simulated input-referred noise of the pre-amplifier.
The measurement is carried out using Dynamic Signal Analyzer from Stanford Research
Systems (SR785). The measured thermal and simulated noise levels are at 38𝑛𝑉 / √𝐻𝑧 and
36𝑛𝑉 / √𝐻𝑧 , respectively. The measured flicker corner is at 500 Hz. Flicker noise and
thermal noise contribute to 6 𝜇Vrms and 1.97 𝜇Vrms, respectively, totaling upto 6.3 𝜇Vrms
in the signal bandwidth extending from 1Hz to 3 kHz. The measured fixed gain of the
AC-coupled amplifier is 105 as shown in Figure 3.30b. Figure 3.30c shows the THD per-
formance of the pre-amplifier and measures 0.17% for an input amplitude of 14 mVp and
an input frequency of 200 Hz. Table 3.9 summarizes the performance results of the pre-
amplifier. Fig 3.31 shows the power consumed by various blocks.

Figure 3.32 shows the FFT spectrum of the orthonormalΣΔADC for an input frequency
of 200 Hz and an amplitude of -1.4 dBFS (𝑑𝐵𝐹𝑆 = 20 ⋅ log10

𝑉 𝑖𝑛
𝑉 𝑟𝑒𝑓 where 0 dbFS refers to 0.8

Vp-p. Figure 3.33 shows the measured SNDR performance versus input amplitude, demon-
strating a peak SNDR of 72.5 dB for a bandwidth of 1 kHz and 69.8 dB for a bandwidth of
3 kHz and a dynamic range of 77 dB for an input amplitude of -1.4 dBFS. The Walden FoM
(linear form) of the ADC is given by:

𝐹𝑜𝑀𝑤 = 𝑃
2𝐸𝑁𝑂𝐵 ⋅ 2 ⋅ 𝐵𝑊 (3.45)

and equals 5.35 pJ/conv. The Walden FoM (logarithmic form) of the ADC is given by:

𝐹𝑜𝑀𝑤 = 𝑆𝑁𝐷𝑅 +10 ⋅ 𝑙𝑜𝑔10(𝐵𝑊𝑃 ) (3.46)

and equals 145.5 dB.
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Table 3.10: Measured performance of the proposed 2nd order orthonormal ΣΔ ADC

Technology 0.18 𝜇m TSMC
Supply voltage 1.8 V

Total current (incl. bias) 36.4 𝜇A
Signal bandwidth (𝑓𝑏) 3 kHz
Sampling frequency 500 kHz

Peak SNDR 69.8 dB (𝑓𝑏=3 kHz); 72.5 dB (𝑓𝑏=1 kHz)
ADC power 81 𝜇W

SFDR 79.68 dB
DR 78 dB

ENOB 11.3
Walden ADC FoMw (linear form) 5.35 pJ/conv.

The Schreier FoM (logarithmic form) of the ADC is given by:

𝐹𝑜𝑀𝑠 = 𝐷𝑅 +10 ⋅ 𝑙𝑜𝑔10(𝐵𝑊𝑃 ) (3.47)

and equals 152.7 dB.
The measured system transfer for various signal amplitudes is plotted in Fig. 3.34. A

high-pass pole resulting from the pseudoresistor and 𝐶𝑓 𝑏 occurs at 0.1 Hz, as shown in
the figure. 𝐶ℎ𝑝 introduces a zero in the path which reduces the reduces the impact of the
feedback loop beyond the -3 dB point of the SC integrator. Figure 3.34 shows the measured
system transfer for different amplitudes.

The linearity performance achieved by SC Nagaraj integrator and capacitor ratios is
compared with pseudoresistors in Figure 3.35. Figure ?? presents the SFDR performance
of the high-pass loop at 𝑓𝑖𝑛 = 8 Hz close to the pole location (12 Hz). Figure 3.35b presents
the SFDR performance at 𝑓𝑖𝑛 = 0.3 Hz close to the pole location (0.1 Hz). Figure 3.36 shows
the variation of SFDR with respect to the input frequency. It can be seen that at lower
frequencies, the SFDR value drops. Figure 3.37 shows the measured PSD of the complete
AFE with a 100 Hz input sinusoidal signal with an amplitude of 3.4 mVp. It also shows the
PSD of the system with shorted inputs. The measured input referred noise of the entire
system, including the ADC and the HP loop, is 9.7 𝜇Vrms. The prototype is validated by
acquiring ECG from a live subject, as shown in Figure 3.38. Table 3.11 compares the results
of the proposed front-end with other state-of-the-art solutions.

3.3.5 Conclusions on the design of orthonormal HPΣΔ modulator
architecture

In this section, we described the design of an analog front-end based on the state-space
approach for optimal ΣΔ architectures outlined in Section 3.2 targeting the acquisition
of cardiac signals. Measurement results show that the orthonormal ΣΔ converter has a
peak SNDR of 69.8 dB, corresponding to 11.3 bits of ENOB, for a signal bandwidth of 3
kHz while consuming 40.5 𝜇A from a 1.8 V supply. The fabricated prototype is tested and
validated by acquiring a real ECG waveform from a live subject.
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3.4 Conclusions
In this chapter, a state-space approach for ΣΔmodulators targeting a desired arbitrary sig-
nal transfer and noise transfer functionswhile optimizing their dynamic range is proposed,
verified, implemented, and demonstrated in standard CMOS technology.

In the first part of the chapter (Section 3.2), the proposed state-space designmethod for
ΣΔADCs for acquiring cardiac signals with high linearity and high accuracy are discussed
and analyzed. The impact of the integrator noise sources and state excitations is investi-
gated through intermediate function calculations. It is seen that for very small integrator
coefficients, the impact of integrator non-idealities on the overall ADC is almost negligi-
ble. Finally, an orthonormal ΣΔ topology offers better performance than an observable
canonical ΣΔ architecture.

In the second part of the chapter (Section 3.3), a complete analog front-end consisting
of a pre-amplifier and an orthonormal ΣΔ ADC with a high-pass loop is implemented
to demonstrate the proposed state-space design approach for acquiring cardiac signals.
Measurement results of chip Obelius validate the proposed methodology in a standard
CMOS IC technology. The proposed orthonormal HPΣΔ ADC achieves an FoM of 5.35
pJ/conv while occupying an area of 0.126 mm2.
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4
Spread-spectrum modulated

multi-channel biosignal acquisition
The key challenges in designing a multi-channel biosignal acquisition system for an ambula-
tory or invasive medical application with a high channel count are reducing area and power
consumption and the outgoing wire count. This chapter proposes a spread-spectrum modu-
lated biosignal acquisition system using a shared amplifier and an ADC. We propose a design
method to optimize a recording system for a given application based on the required SNR
performance, number of inputs, and area. The proposed method is tested and validated on
real pre-recorded atrial electrograms and achieves an average percentage root-mean-square
difference (PRD) performance of 2.65% and 3.02% for sinus rhythm (SR) and atrial fibrillation
(AF), respectively by using pseudo-random binary-sequence (PRBS) codes with a code-length
of 511, for 16 inputs. We implement a 4-input spread-spectrum analog front-end in a 0.18
𝜇m CMOS process to demonstrate the proposed approach. The analog front-end consists of
a shared amplifier, a 2nd order ΣΔ ADC sampled at 7.8 MHz, used for digitization, and an
on-chip 7-bit PRBS generator. It achieves a number-of-inputs to outgoing-wire ratio of 4:1
while consuming 23𝜇A/input, including biasing from a 1.8 V power supply and 0.067𝑚𝑚2 in
area.

This chapter is partly based on  S. Rout et al. Spread-spectrum modulated multi-channel biosignal acquisi-
tion using a shared analog CMOS front-end, TBCAS 2023 [59] and S. Auerbach, W. A. Serdijn, and S. Rout.
Compressed-sensing of spatiotemporally-correlated and/or rakeness-processed electrograms. US Patent App.
16/846,551 [60].
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4.1 Introduction
Atrial electrograms (AEGs) are biosignals recorded on the surface of the atria, whereas
electrocardiograms (ECGs) are recorded on the surface of the body, both of which help
doctors and medical researchers understand the propagation of electrical signals in the
heart and diagnose cardiac abnormalities such as atrial fibrillation (AF). ECGs are vector
summations of the epicardial signals acquired non-invasively on the body surface, whereas
AEGs offer high spatio-temporal information acquired invasively on the epicardial or the
endocardial surface [5]. AEGs are obtained invasively or minimally invasively during
open-heart surgery or a catheter operation, respectively. For minimally invasive surg-
eries, typically, a 6 Fr (2 mm) catheter tube is used, which poses a strict constraint on
the area and the maximum number of outgoing wires. Current techniques for acquiring
AEGs require a long cable connecting a multi-electrode flexible array[5] placed on the epi-
cardial surface and an acquisitionmodule for high-density mapping. The limitations of the
current solution can be listed as follows: a) interference due to the long cable degrading
signal quality; b) limited maneuverability as the number of outgoing wires from the array
is equal to the number of electrode inputs, and c) area constraints for minimally invasive
applications.

In a traditional 𝑁 -input system, the total number of amplifiers, ADCs, and outgoing
wires equals the number of inputs 𝑁 ; thus, scaling area, power, and outgoing wire count
linearly by 𝑁 . To address these limitations, one can use channel-sharing techniques such
as time-division (TDM), frequency-division (FDM), or code-division multiplexing (CDM).
TDM requires a dedicated amplifier per input [11] and does not utilize the total bandwidth
of the ADC effectively. The order of the inputs is also important for signal reconstruction
in the digital domain. [25] uses TDM to acquire signals after the electrode but requires
a high-bandwidth front-end to meet settling and noise requirements. FDM based on fre-
quency modulation (FM) uses separate frequency bands simultaneously [12] and requires
a dedicated oscillator, a bandpass amplifier, and an off-chip high-Q inductor per input pos-
ing a constraint on the area and power. FDM based on amplitude modulation (AM) would
require a very high dynamic range (>100 dB) [12] ADC due to voltage summation of 𝑁
inputs. [26] implements CDM using a dedicated amplifier and filter circuitry before code
modulation, whereas [27] modulates the signals at the input using orthogonal codes. CDM
offers (a) increased capacity, allowing multiple users to share the same band; (b) improved
signal quality as it suppresses interference and band-limited noise; (c) improved security,
a unique code encodes each input, and (d) simpler implementation, as compared to FDM.
Therefore, as illustrated in Fig 4.1, CDM is chosen as the channel-sharing technique in this
work.

Fig. 4.1 shows the block diagram of conventional spread-spectrum digital (Fig. 4.1a)
and analog (Fig. 4.1b) front-end (FE), which requires dedicated FE resources per input.
Fig. 4.1c shows the proposed spread-spectrum FE. Modulating the signal early in the sig-
nal chain can minimize the effects of unwanted band-limited signals with finite power,
such as electromagnetic interference or 1

𝑓 noise, and offset of the following CMOS blocks.
Fig. 4.2 shows a linear model of the proposed spread-spectrum FE for acquiring atrial
electrograms. The proposed approach a) enables high-density signal-wavefront mapping
from a 2D electrode array while reducing the outgoing wire count, (b) reducing area by
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Figure 4.1: Approaches to implementing spread-spectrum modulation: (a) in the digital domain (conventional),
(b) in the analog domain, after amplification (conventional), and (c) in the analog domain, before amplification

(proposed).

sharing FE channel resources, and (c) reducing flicker noise and offset of the FE CMOS
block. The acquired signal is written as,

𝑦(𝑡) = {
𝑁
∑
𝑖=1

𝑢𝑖(𝑡)𝑝𝑖(𝑡) +𝑛𝑓 (𝑡) +𝑛𝑡ℎ(𝑡) +𝑛𝑒𝑚𝑖(𝑡)}𝐴+𝑛𝑞,𝑎𝑑𝑐(𝑡) (4.1)

where 𝑦(𝑡) is the total signal acquired, 𝑢𝑖(𝑡) is the signal from the 𝑖𝑡ℎ electrode and 𝑝𝑖(𝑡) is
the code-sequence uniquely assigned to the 𝑖𝑡ℎ signal, 𝑛𝑓 (𝑡) is band-limited 1

𝑓 noise, 𝑛𝑡ℎ(𝑡)
is wide-band thermal noise, 𝑛𝑒𝑚𝑖(𝑡) is interference due to EMI, 𝑛𝑞,𝑎𝑑𝑐(𝑡) is the quantization
noise of the ADC, and 𝑁 is the number of inputs. The received signal is correlated with
the replica of the code sequence on the receiver side. The reconstructed signal, 𝑦𝑖(𝑡), can
be written as,

𝑦𝑖(𝑡) = 𝑦(𝑡)𝑝𝑖(𝑡) (4.2)

= 𝑝𝑖(𝑡)𝐴
𝑁
∑
𝑖=1

𝑢𝑖𝑝𝑖(𝑡) +𝑝𝑖(𝑡){𝐴(𝑛𝑓 (𝑡) +𝑛𝑒𝑚𝑖(𝑡)) +𝑛𝑞,𝑎𝑑𝑐(𝑡)} (4.3)

= 𝐴𝑢𝑖(𝑡) +𝑝𝑖{𝐴(𝑛𝑓 (𝑡) +𝑛𝑒𝑚𝑖(𝑡)) +𝑛𝑞(𝑡)} (4.4)

Given that the the signal energy of 𝑝𝑖 is distributed over a large frequency band, from
Eq. (4.4), the 𝑢𝑡ℎ𝑖 signal is recovered while 1

𝑓 noise, electromagnetic interference and offset

are modulated by the 𝑝𝑡ℎ𝑖 sequence and are filtered out using a low-pass filter.
The rest of the chapter is organized as follows. In Section II, a classification of existing

modulation schemes is proposed. In Section III, a method to optimize a spread-spectrum
FE for acquiring biosignals by selecting code-length, modulation frequency, and the num-
ber of inputs is discussed. This approach has been validated using real pre-recorded
biosignals using two types of commonly used codes, Walsh-Hadamard (WH) and pseudo-
random codes. Section IV describes the system architecture and circuit implementation of



4

66 4 Spread-spectrum modulated multi-channel biosignal acquisition

Figure 4.2: Linear model of the proposed spread-spectrum front-end for atrial electrogram acquisition.

the spread-spectrum modulated FE. Measurement results of a 4-channel spread-spectrum
amplifier with a ΣΔ modulator implemented in 0.18 𝜇m CMOS technology are presented
in Section V. Finally, conclusions are drawn in Section VI.

4.2 Proposed classification
In this section, we propose a classification of modulation techniques based on the proper-
ties (or degrees of freedom) of the modulating signal (also known as the carrier wave), as
shown in Figure 4.3. The degrees of freedom are (a) periodicity, (b) discretization in time,
and (c) discretization in amplitude of the carrier wave, as shown along the x-, y-, and z-
axis, respectively. To the authors’ best knowledge, such a classification does not yet exist
in the literature. Such a classification can give rise to newer modulation approaches that
may or may not have been explored. Subsections 4.2.1 through 4.2.3 describe the degrees
of freedom. Subsection 4.2.4 elaborates on the existing modulation approaches.

Figure 4.3: Proposed classification of modulation techniques
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4.2.1 Degree of periodicity
The degree of periodicity of modulating signals refers to the occurence of symbols 0’s
and 1’s and can be categorized into constant, periodic, stochastic-stationary, stochastic-
cyclostationary and stochastic non-stationary, respectively.

• Constant: The symbols of the modulating waveform do not change (i.e., remain
constant).

• Periodic: The signal is completely specified with respect to time and repeats with a
period 𝑇𝑜 .

• Stochastic-stationary: The signal is not fully specified with respect to time. How-
ever, the statistics are time-invariant. The mean is constant. The autocorrelation
𝑅𝑋 (𝑡1, 𝑡2) only depends on time lag 𝜏 and is not a function of time 𝑡 .

• Stochastic-cyclostationary: The statistics of the signal may vary periodically with
time. The mean is cyclic in time 𝑡 with a period 𝑇𝑜 . Autocorrelation is a function of
time period 𝑇𝑜 .

• Stochastic non-stationary: The statistics change over time, i.e., the mean changes
with time. Autocorrelation is a function of time 𝑡 .

4.2.2 Degree of time discretization
Time discretization refers to the sampling instant in time and can be categorized as:

• Continuous: Time is continuous.

• Periodic: The sampling frequency is fixed.

• Stochastic-stationary: The sampling frequency is randomly varying but is station-
ary.

• Stochastic-cyclostationary: The sampling frequency is randomly varying , and the
statistics vary periodically with time with a time period 𝑇𝑜 . If the sampling instant
of the signal is determined by other parameters, such as thresholding of the input
signal, then the clock incorporates the properties of the input signal. In case of
adaptive sampling, the rate of the clock depends on the activity of the input signal.

• Stochastic-non-stationary: The sampling frequency is randomly varying , and its
statistics change with time.

4.2.3 Degree of amplitude discretization
Amplitude discretization can be categorized as:

• Discrete-M-ary values: The signal can assume a value from a well-defined set of
outcomes. In general, a set of 2 (e.g., {0,1} or {-1,1} are binary sets), a set of 3 (e.g., {-1,
0, 1} is a ternary set) or a limited set of values (e.g., M-ary set) can be used. The total
probability of all outcomes is the summation of individual probabilities and equals
1.

• Continuous values: The signal can assume any real value.
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Table 4.1: Some example modulation techniques and applications

Paper Technique Application
[61] Square-wave chopping (SWC) Performance enhancement

[62],[63],[64] Orthogonal freq. chop. (OFC) Multi-channel recording
[26],[27] Walsh Hadamard (WH) Multi-channel recording

[65],[66],[67] Pseudo-random binary seq. (PRBS) Performance enhancement
[10] Pseudo-random binary seq.(PRBS) Compressed sensing
[68] Signal stat. PRBS modulation Single-channel recording
[12] Frequency modulation (FM) Single-channel recording
[69] Amplitude modulation (AM) Communication systems
[70] Phase modulation (PM) Communication systems
[71] True random number gen. (TRNG) Hardware security
[72] Chaotic modulation Communication systems
[73] Chirp modulation Communication systems

This work PRBS modulation Multi-channel recording

4.2.4 Existing modulation techniques
Input signals can be modulated with a waveform resulting from the orthogonal combi-
nation of the above-mentioned degrees of freedom. In this sub-section, a few existing
modulation techniques are classified and placed on the three axes of a 3D grid to ac-
commodate the three degrees of freedom, as shown in Fig. 4.3. Table 4.1 summarizes
the modulation type and its corresponding application. [61] uses square-wave modula-
tion (chopping) for improving the circuit’s performance, i.e., reducing offset and flicker
noise. Spread-spectrum clocking can be used with a chopper-stabilized amplifier, which
reduces inter-modulation distortion [65, 66]. PRBS modulation is used together with a ΣΔ
modulator to reduce substrate noise [67]. [62–64] are examples of an orthogonal modu-
lation technique, also referred to as ’multi-frequency chopping’. All these techniques lie
at {𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐,𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐,𝑏𝑖𝑛𝑎𝑟𝑦} in Fig. 4.3. The modulating wave is characterized by or-
thogonal periodic sequences that assume binary amplitude values, i.e., ±1. Conventional
code-division multiplexing (CDM) lies at 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (orthogonal) or 𝑐𝑦𝑐𝑙𝑜𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 on
the x-axis, 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 on the y-axis and 𝑏𝑖𝑛𝑎𝑟𝑦 on the z-axis. [27] and [26] use orthog-
onal Walsh-Hadamard codes to acquire signals from multiple channels. [12], [69] and
[70] are examples of conventional frequency division multiplexing (FDM) which lie at
{𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠}. [68] acquires signals from a single input using pseudo-
random binary sequences (PRBS) while the sampling frequency varies in a stochastic-
cyclostationary fashion based on the input signal. Here, the carrier signal is statistically
correlated to the input. Another example of a correlated chipping sequence with respect
to the input-signal statistics is rakeness-based compressed sensing [10]. The carrier wave-
form can be either correlated or uncorrelated with the input signal. In standard com-
pressed sensing, the input matrix is uncorrelated with the input signal characteristics [28].

4.3 Proposed design methodology
In this section, we propose a design method based on spread-spectrum modulation for
multi-channel bio-signal acquisition. For a given number of channels, power consumption,
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Start

Input: Given application (high-res/low-res; area constraints)

Step 1: Select spread-spectrum code

Step 2: Select N, 𝑓𝑚𝑜𝑑

Step 3: Select code-length

SNR req. met? Step 4: Increase 𝑓𝑚𝑜𝑑

Step 5: Select ADC type

Output: Spread-spectrum AFE

Stop

No
Yes

Figure 4.4: Design strategy for multi-channel spread-spectrum analog front-ends.

area, and application-derived performance requirements, the proposed design method can
be carried out as illustrated in Figure 4.4. Starting with the target application as the in-
put, the design strategy follows from 5 steps, as described in sub-sections 4.3.1 to 4.3.4,
arriving at an optimal spread-spectrum AFE at the output. In sub-section 4.3.5, the pro-
posed method is compared with other approaches. Finally, sub-section 4.3.6 illustrates the
proposed design method on real pre-recorded AEGs.

4.3.1 Input: Application requirement
Based on the target application, one or more design parameters, such as power consump-
tion, area, and resolution are more critical than the others. We consider two application
cases of the acquisition of multi-channel AEGs here:

• Multi-channel PRBS codes for low-resolution recording.

• Multi-channel WH codes for high-resolution recording.

Multi-channel PRBS codes can, e.g., be used when we wish to track the propagation of the
cardiac wavefront and generate an activation map [5], which requires only low-resolution
and low-bandwidth signals. Multi-channel WH orthogonal codes can be used when we
wish to acquire high-resolution signals for identification of detailed features of the AEG
[74].
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4.3.2 Step 1: Selection of codes
Based on the degree of periodicity from the proposed classification, modulation codes
can be periodic, cyclostationary random or stationary random. Fig. 4.5 shows the time-
domain and frequency-domain representations of periodic, cyclostationary, and stationary
random codes, which are elaborated in the following paragraphs.

Periodic codes: An example of a periodic modulating signal (or square-wave signal)
is conventional chopping, as shown in Fig. 4.5a where 𝑓𝑐ℎ is the chopping frequency.
Consider a periodic train of pulses characterized by amplitude ±A and a duration of 𝜏 . Let
𝑣(𝑡) be a periodic signal with period 𝑇𝑐ℎ = 1

𝑓𝑐ℎ
defined by,

𝑣(𝑡 ±𝑚𝑇𝑐ℎ) = 𝑣(𝑡), −∞ < 𝑡 < ∞ (4.5)

where 𝑚 is an integer. The spectrum of a signal is computed using the Fourier integral.
Since the integrability condition is not met, the Fourier integral cannot be directly com-
puted [75]). To calculate the Fourier integral, the signal is truncated, and the range of
integration over −𝑇𝑐ℎ

2 ⩽ 𝑡 ⩽ 𝑇𝑐ℎ
2 is taken, where

𝑣(𝑡) = { 𝐴, for |𝑡 | ≤ 𝜏/2
0, for |𝑡 | ≥ 𝜏/2 }

The Fourier expansion is given by 𝑣(𝑡) = ∑∞
𝑛=−∞ 𝑐𝑛𝑒𝑗2𝜋𝑛𝑓𝑐ℎ𝑡 , for 𝑛 = 0,1,2, where 𝑐𝑛 =

𝐴𝜏
𝑇𝑐ℎ

𝑠𝑖𝑛𝑐{𝑛𝑓𝑐ℎ𝜏}. Note that, for periodic signals, the amplitude spectrum consists of a line
spectrum where the lines have uniform spacing 𝑓𝑐ℎ. By the Wiener-Khinchine theorem,
the power of the signal is given by 𝑃𝑣(𝑓 ) = ∑∞

𝑛=−∞ |𝑐2𝑛 |𝛿(𝑓 −𝑛𝑓𝑐ℎ).
Orthogonal codes such as WH codes also lie at 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 on the degree of periodicity

axis, as shown in Fig. 4.3. The WH transform is a non-sinusoidal orthogonal transforma-
tion technique that decomposes an arbitrary vector of dimension 2𝑚 into a set of basis
functions called Walsh functions, which are square or rectangular waves with values +1
or -1. It performs an orthogonal symmetric and linear operation on the input vector.

Spread-spectrum codes: Random codes can be used to spread the energy of the
input signal to a larger bandwidth. For a random signal, the spreading bandwidth is infi-
nite since an infinitely long sequence leads to a continuous spectrum. The PSD of a ran-
dom signal 𝑣(𝑡) = ∑∞

𝑛=−∞ 𝑎𝑛𝑓 (𝑡 − 𝑛𝑇𝑚𝑜𝑑 ), where 𝑇𝑚𝑜𝑑 is the duration of 1 bit, is given by
𝑃𝑣(𝑓 ) = 𝑇𝑚𝑜𝑑 (𝑠𝑖𝑛𝑐𝜋𝑓 𝑇𝑚𝑜𝑑 )2 [76] as also shown in Fig. 4.5c. However, in practice, random
code sequences are generated using pseudo-random generators since a replica of the code
sequence is needed to recover the input signal. Pseudo-random binary sequences (PRBS)
are cyclostationary, as shown in Figure 4.5c. A popular choice for implementing PRBS
codes is employing linear feedback shift registers (LFSRs). In the design of an LFSR, the
code sequences are replicated by choosing the same initial state and coefficients. Let 𝑝(𝑡)
be a cyclostationary sequence that assumes an amplitude of 1 randomly at a rate of 𝑓𝑚𝑜𝑑
and the sequence repeats after code length 𝐿, given by the time period 𝑇0 = 𝐿𝑇𝑚𝑜𝑑 , where
𝑇𝑚𝑜𝑑 = 1

𝑓𝑚𝑜𝑑
, 𝐿 = 2𝑛−1, and 𝑛 is the number of bits of the LFSR. 𝑝(𝑡) =∑𝑘 𝑎𝑘𝑞(𝑡 −𝑘𝑇0),𝑘 ∈ 𝑍 ,

𝑎𝑘 ∈ [1,−1] is a cyclostationary sequence and 𝑞(𝑡) =∑𝐿−1
𝑛=0 𝑐𝑛𝑠(𝑡 −𝑛𝑇𝑚𝑜𝑑 ), 𝑐𝑛 ∈ 𝑍 is a station-

ary random sequence whose length is given by 𝐿. Since the function 𝑝(𝑡) is periodic with
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Figure 4.5: Time-domain and frequency-domain representation of modulation signals: a) Periodic; b)
Cyclostationary random; c) Stationary random. 𝑓𝑐ℎ and 𝑓𝑚𝑜𝑑 refer to the modulation frequency of periodic and

(pseudo-) random signals, respectively.
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Figure 4.6: Theoretical limit of cross-correlation of PRBS codes. Note: Y-axis plots normalized cross-correlation
(= ratio of peak cross-correlation to peak auto-correlation).

𝑇0, by the Wiener Khinchine theorem, the PSD is a line spectrum given by,

𝑆𝑝(𝑓 ) = [
∞
∑

𝑚=−∞
𝛿(𝑓 −𝑚𝑓𝑜)]

𝐿+1
𝐿2 (𝑠𝑖𝑛𝜋𝑓 /𝑓𝑐𝜋𝑓 /𝑓𝑐

)
2
+ 1
𝐿2 𝛿(𝑓 ) (4.6)

where 𝑓0 = 1
𝑇𝑚𝑜𝑑

. An example with 𝐿 = 5 is shown in Figure 4.5b.
Some examples of PRBS codes are maximum-length (ML) sequences, Gold codes, and

Kasami codes, and they are used in communication systems to encode multiple signals.
These codes are non-orthogonal and have varying cross-correlation properties, as shown
in Fig. 4.6. The most important selection criterion in acquiring multiple biosignals is
suppressing interference from other signals in the shared channel. The code length, 𝐿, is
given by 𝐿 = 2𝑛 − 1, where 𝑛 is an integer corresponding to the polynomial order used
to generate the code. 𝑛 is 𝑜𝑑𝑑 for ML, Gold, and 𝑒𝑣𝑒𝑛 for Kasami codes. The peak auto-
correlation is given by 𝐿. The peak cross-correlation values for Gold codes is given by 𝑡(𝑛),
where 𝑡(𝑛) = 2(𝑛+1)/2, m is odd; 2(𝑛+2)/2, in case 𝑛 is even; for Kasami codes, 𝑡(𝑛) is given
by 2𝑛/2 +1 [77–79]. Fig. 4.6 shows that the cross-correlation performance improves with
increasing 𝑛 bit (or 𝐿) for ML, Gold, and Kasami codes. Secondly, we can observe that for a
given 𝐿, Kasami codes are optimal as they approach the Welch lower bound on peak cross-
correlation [80]. However, the performance gap between Kasami and Gold codes reduces
at higher values of 𝐿. Kasami codes offer marginal performance enhancement over Gold
codes at the cost of higher implementation complexity. Thirdly, odd-order ML and Gold
sequences offer lower cross-correlation performance than even-order.

4.3.3 Step 2,3: Selection of number of inputs and modulation fre-
quency

In this sub-section, the number of inputs, 𝑁 , the code length (𝐿), and the selection of
the modulation frequency, 𝑓𝑚𝑜𝑑 , are discussed. If the interfering signals are unknown
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but have finite power, the input signal may overlap with the interferer. If the interferers
are known (e.g., flicker noise), the input signal can be spread to a non-overlapping fre-
quency band. In Figure 4.7, it can be seen that spread-spectrum modulation suppresses 1

𝑓
noise. As an example, in Figure 4.7a, a 3-bit PRBS code (𝐿=7) with a modulation frequency
𝑓𝑚𝑜𝑑=12.8 kHz is used to modulate and demodulate an input signal, 𝑓𝑖𝑛=0.108 kHz with a
bandwidth 𝑓𝑏=0.4kHz. It can be observed that the 1

𝑓 noise reduces and the lowest tone 𝑓0 is
at 𝑓𝑚𝑜𝑑

7 =1.8kHz. Figure 4.7b shows the effect of 𝐿 for varying values of the spreading gain

𝐺, given by: 𝐺 = 𝑓𝑚𝑜𝑑
𝑓𝑏

on the SNR performance. At lower values of 𝐺, there is a marginal
improvement of SNR even when the number of LFSR bits increases. For a given 𝐺, there
is an optimal value of 𝐿 at which the SNR is maximal. The peak shifts with increasing 𝐺.
After the peak, the curve shows a decrease in SNR. This decrease is because the smallest
tone given by 𝑓0 is within the signal band, and some of the 1

𝑓 noise is in-band. A larger
𝐿 implies a larger spreaded bandwidth. However, 𝑓𝑚𝑜𝑑 should be high enough to push 𝑓0
beyond 𝑓𝑏 . The two blue dashed lines show the minimum and maximum achievable SNR
levels corresponding to with and without 1

𝑓 noise, respectively.
Impact of limited AFE bandwidth: The AFE is responsible for amplifying the entire
spectrum, and it requires a minimum bandwidth equal to the modulation frequency, de-
noted as 𝑓𝑚𝑜𝑑 . If the amplifier’s bandwidth is lower than 𝑓𝑚𝑜𝑑 , some of the signal will be
lost and cannot be recovered. When using shorter code-lengths, a significant amount of
information is lost at a given 𝑓𝑚𝑜𝑑 . On the other hand, increasing the code-length spreads
the signal over a wider bandwidth, resulting in improved performance. However, when
the code-length is large and 𝑓0 falls within the signal bandwidth, the SNR performance
drops which is clearly demonstrated in Figure 4.7c.

Multi-channel acquisition: For acquiring multiple inputs using a shared channel,
the maximum number of inputs for a given 𝑛-bit LFSR is given by Euler’s totient equation,
𝐶 = 1

𝑁 Π{𝑃𝛼𝑖−1𝑖 ⋅ (𝑃𝑖 −1)}, where 𝑃𝑖 are the prime factors of 𝐿 and 𝛼𝑖 is the power of the 𝑖th
factor [81]. In Table 4.2, the acquisition performance is shown for 𝑁 = 2, 4, 8, 16 and 32
for 𝑓𝑏=100 Hz and 𝑓𝑚𝑜𝑑= 153.6 kHz. A smaller signal bandwidth allows for either (a) a
smaller modulation frequency (𝑓𝑚𝑜𝑑 ) and thus a smaller amplifier bandwidth (𝑓𝐵𝑊 ,𝐴𝐹𝐸)
for the same code length (𝐿) and number of channels (𝑁 ), or (b) a larger 𝐿, and thus a
larger signal-to-noise ratio (𝑆𝑁𝑅), for the same 𝑓𝑚𝑜𝑑 , 𝑁 and 𝑓𝐵𝑊 ,𝐴𝐹𝐸 , or (c) a large 𝑁 and
a larger 𝐿 for the same 𝑓𝑚𝑜𝑑 , 𝑆𝑁𝑅 and 𝑓𝐵𝑊 ,𝐴𝐹𝐸 . As given in the table, using a code-length
of 127 (which can be generated by a 7-stage PRBS generator), the maximum SNR that can
be achieved is 39 dB for a 2-input shared channel, given that the smallest tone (𝑓0) lies
outside the signal bandwidth. For a shared channel, the maximum average SNR decreases
with an increasing number of inputs. On the highlighted row in Table 4.2, for a 4-input
channel, the maximum achievable SNR is 39 dB. If a higher average SNR is desired, it can
be achieved by increasing 𝑓𝑚𝑜𝑑 and selecting a longer 𝐿.

4.3.4 Step 4, 5 Optimization of modulation frequency
The modulation frequency can be increased linearly to achieve higher performance at a
corresponding code length. In Fig. 4.8, it is shown that for a 16-input shared channel, an
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Table 4.2: Performance of PRBS codes on multi-channel acquisition

𝑛 𝐿(=2𝑛-1) No. of codes Avg. SNR (in dB)
N=2 N=4 N=8 N=16 N=32

3 7 2 16.90 - - - -
4 15 2 23.52 - - - -
5 31 6 29.82 27.16 - - -
6 63 6 35.98 33.32 - - -
7 127 18 42.07 39.40 38.14 36.27 -
8 255 16 48.13 45.46 44.18 42.31 -
9 511 48 54.16 51.49 50.21 48.35 43.91
10 1023 60 45.10 30.63 29.56 22.19 20.61
11 2047 176 31.73 29.23 24.95 21.87 17.87
12 4095 144 32.94 28.36 23.68 20.16 17.01
13 8191 630 30.94 26.42 23.17 19.53 16.67
14 16383 756 30.77 26.95 22.87 19.97 16.69
15 32767 1800 28.32 27.04 24.38 20.23 16.88
16 65535 2048 31.04 26.26 22.56 19.35 16.55

average SNR of 64 dB can be achieved by using a code-length of 2047 at a modulation rate
of 572.8 kHz for a total signal bandwidth of 1.6 kHz (16 x 100 Hz). Also, it can be seen
that using a 7-bit LFSR @𝑓𝑚𝑜𝑑=40.5 kHz, for 16 channels, the maximum SNR that can be
achieved is 35.8 dB.

4.3.5 Comparison with other modulation techniques

In this sub-section, the requirements of PRBS modulation, WH modulation, and orthogo-
nal frequency chopping are qualitatively compared in terms of bandwidth and area. Con-
sider a signal bandwidth 𝑓𝑏 , number of inputs 𝑁 , and a code length = 128. For PRBS
modulation, the minimum required modulation frequency is given by 𝑓𝑚𝑜𝑑 = 2 × 127 × 𝑓𝑏 ,
with a maximum capacity of 𝑁 = 18, whereas, for WH modulation, it is given by 𝑓𝑚𝑜𝑑 = 2
× 128 × 𝑓𝑏 with a maximum capacity of 𝑁 = 128. For orthogonal frequency chopping, the
minimum required frequency is 𝑓𝑚𝑜𝑑 = 2 × 27 × 𝑓𝑏 , with a maximum capacity of 𝑁 = 7.
So, for a given total bandwidth, WH modulation is most efficient, followed by PRBS codes
and orthogonal frequency chopping. From a hardware viewpoint, PRBS codes are easy
to generate since they require a few digital gates and consume negligible power and area
[82]. The number of D flip-flops in a PRBS generator for a given 𝐿 scales with 𝑙𝑜𝑔2(𝐿). Im-
plementing orthogonal codes requires look-up tables whose length scales with the power
of 2 as the number of inputs increases. In practice, orthogonal codes have non-zero cross-
correlation, as shown in [27]. In this work, we select Gold codes since they consume the
least area for the required performance.
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4.3.6 Illustration of the designmethod: validation on real pre-recorded
AEG signals

Theproposed technique is tested and validatedwithout pre-processing on real pre-recorded
atrial electrograms from the Erasmus Medical Centre, Rotterdam. Hospital recordings
tend to be less clean (due to noise and interference) than synthetically modeled datasets
or clean datasets available in public databases (e.g., MIT-BIH). The amplitude of AEGs
varies from 1-10 mVpp depending on the size and the recording location in the heart. The
signal bandwidth typically extends from 0.5 Hz to 200 Hz. The flexible electrode array con-
tains 192 electrodes, each with a diameter of 0.45 mm and an inter-electrode distance of
2 mm [5]. Increasing the electrode diameter may lead to loss of spatial information while
decreasing it will increase the electrode impedance. 16 sinus rhythm (SR) and atrial fibril-
lation (AF) AEG signals as shown in Figs. 4.9a - 4.9b are encoded using spread-spectrum
codes, summed, and demodulated. Figures 4.9c - 4.9f show the performance of PRBS mod-
ulation using 𝐿=127 and 511, at 𝑓𝑚𝑜𝑑=35 kHz and 140 kHz, respectively for SR (input 2)
and AF AEG (input 2). AF exhibits a larger residual error than SR AEG, as seen in Figs.
4.9g-4.9h, due to significantly higher signal activity. SR exhibits a worse performance in
certain parts of the segment than AF due to sharp peaks and loss of those peaks in the
reconstructed signal. SR yields better average recovery at higher parameter settings than
AF, as shown in Table 4.3. The effectiveness of PRBS and Walsh-Hadamard codes with dif-
ferent parameter configurations can be compared using the percentage root-mean-square
difference (PRD), which quantifies the similarity between the original and reconstructed
signal. A lower PRD value indicates better performance. The average PRD values are ob-
tained by calculating over AEGs lasting 2 s and averaging over 16 inputs. For a bandwidth
of 𝑓𝑏 = 200 Hz and 𝐿 = 127, the optimum modulation frequency is 70 kHz with mean PRD
values of 10.8% and 13.1% for SR and AF, respectively. The PRD performance for SR and
AF improves to 2.65% and 3.02%, respectively, when 𝐿 = 511 and 𝑓𝑚𝑜𝑑 = 280 kHz. In this
illustration, the optimal parameters for a given code length for PRBS and Walsh codes are
shown in the highlighted row of Table 4.3. A marginal improvement in PRD performance
is observed beyond the optimum 𝑓𝑚𝑜𝑑 for both PRBS and WH codes. The proposed tech-
nique was evaluated using PRBS codes on 4 inputs with a code length of 127. At 𝑓𝑚𝑜𝑑
= 35 kHz, the PRD performance for SR and AF improved to 4.7% and 3.1%, respectively,
compared to higher values of 14.9% and 13.78% when 16 inputs were employed.
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Table 4.3: Average PRD performance

Parameter setting Average PRD (%)
Type of code No. of inputs Code-length Modulation freq. SR AEG AF AEG

PRBS 16 127 20 kHz 42.9 50.7
PRBS 16 127 35 kHz 14.9 13.78
PRBS 16 127 70 kHz 10.8 13.1
PRBS 16 127 140 kHz 10.7 13.1
PRBS 16 511 80 kHz 23.1 27.45
PRBS 16 511 140 kHz 6.2 3.6
PRBS 16 511 280 kHz 2.65 3.02
PRBS 16 511 560 kHz 2.5 3.01
Walsh 16 16 4 kHz 36.3 23.6
Walsh 16 16 8 kHz 6.9 1.2
Walsh 16 16 16 kHz 0.25 0.39
Walsh 16 16 32 kHz 0.1 0.2
PRBS 4 127 20 kHz 30.6 32.5
PRBS 4 127 35 kHz 4.7 3.1
PRBS 4 127 70 kHz 2.3 2.47
PRBS 4 127 140 kHz 2.3 2.4
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Figure 4.9: Validation of PRBS modulation on pre-recorded (a) SR and (b) AF AEGs from 16 inputs.
Demodulated (c) SR and (b) AF AEG with 𝐿 = 127, 𝑓𝑚𝑜𝑑=35 kHz. Demodulated (e) SR and (f) AF AEG with

𝐿 = 511, 𝑓𝑚𝑜𝑑=140 kHz. Residual error given by the difference between original and demodulated signals for (g)
𝐿 = 127, 𝑓𝑚𝑜𝑑= 35 kHz and (h) 𝐿 = 511, 𝑓𝑚𝑜𝑑=140 kHz.
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4.4 System architecture and circuit implementation
To validate the proposed design strategy for spread-spectrum acquisition of AEGs, a 4-
input shared amplifier and a ΣΔ ADC are implemented in a standard 0.18 𝜇m CMOS IC
process. AEGs are unipolar recordings and the reference is shared across all the inputs.
The reference electrode is large and its impedance does not add considerably to the to-
tal impedance seen by each channel. Mismatch between electrodes leads to negligible
common-mode to differential-mode conversion as the input impedance of the front-end
is much larger than the mismatch in electrode impedance. Each input utilizes a large
off-chip decoupling capacitor to block any resulting DC offset due to the gold metal and
cardiac tissue interaction. Figure 4.10 shows the block diagram of the proposed system
architecture. Subsections 4.4.1 - 4.4.3 elaborate on the various blocks.

4.4.1 Analog front-end
Each channel consists of a modulator, a shared amplifier, and a shared ADC. The signals
are multiplied by spread-spectrum codes 𝑝𝑖 , i ∈ [1,4]. Input capacitances (Cin) convert
the input voltage signals into currents. The summation of these currents takes place at
the virtual ground node of the opamp. Four gain settings (G=4/8/16/32) are available for
different input amplitude ranges (10/5/2.5/1.25 mVpp) corresponding to AEGs recorded
on the epicardium. The gain settings are implemented by the ratio of capacitances 𝐶𝑖𝑛
and 𝐶𝑓 𝑏 . 𝐶𝑖𝑛 is implemented as a variable capacitor bank (400fF, 800fF, 1.6pF, 3.2pF) with
CMOS transmission gate (TG) switches controlled digitally. Themodulator is implemented
by four switches that are driven by a non-overlapping clock generator. The switch is
implemented by a CMOS TG, which offers a higher linearity for large amplitude signals
than NMOS or PMOS switches. The effective ON resistance of the switch of a TG is lower
than that of an NMOS or a PMOS switch. The switches are sized optimally for lower
ON resistance and lower charge injection. Off-chip capacitors are used with the flexible-
electrode array to ensure patient safety. Since the electrodes are used directly on the
surface of the heart and do not use gel, the expected DC offset level at the tissue-electrode
interface is low. Therefore, this architecture does not employ a dedicated high-pass loop
per channel to reject offset, which would otherwise saturate the amplifier [32].

The opamp is implemented by a two-stage Miller-compensated topology, as shown in
Fig 4.11a. A two-stage opamp with continuous-time common-mode feedback (CMFB) is
chosen to achieve high DC gain, high linearity, and to drive the input resistance of the
ADC. The second stage is designed to meet the high signal-swing requirements for four
inputs. To achieve lower 1/𝑓 noise, the first stage has a PMOS differential input pair biased

Figure 4.12: Noise analysis of an 𝑁 -input spread-spectrum amplifier
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in weak-inversion saturation. The simulated DC gain of the two-stage opamp is 100 dB.
TheAC bandwidth extends from sub-Hz to 150 kHz. Pseudo-resistors 𝑅ps are implemented
using PMOS transistors biased in weak-inversion triode and provide a DC path from the
output to the input, thereby setting the input common-mode voltage equal to 𝑉𝑐𝑚= (0.9
V). The total power consumption of the spread-spectrum amplifier, including biasing and
CMFB is 23 𝜇A from a 1.8 V supply, corresponding to 5.75 𝜇A per input.

To ensure sufficient accuracy, the value of 𝐶𝑓 𝑏 is chosen equal to 100 fF with a unit
capacitance of 50 fF. Higher values of 𝐶𝑓 𝑏 would lead to higher 𝐶𝑖𝑛 values for the given
gain settings and thus lower impedances. For 4 inputs and a 7-bit Gold-code generator, a
modulation frequency of 16 kHz or 32 kHz is sufficient. For 𝑓𝑚𝑜𝑑 = 35 kHz and 𝐿=127, the
tones lie between 32 kHz and 251 Hz (𝑓0 = 32𝑘𝐻𝑧

127 ). The input capacitance 𝐶𝑖𝑛 , combined
with the mixer switch driven by modulation frequency 𝑓𝑚𝑜𝑑 , forms an impedance 𝑍𝑖𝑛
given by 1/(2𝑓𝑚𝑜𝑑𝐶𝑖𝑛). Assuming a maximum capacitance of 𝐶𝑖𝑛 = 3.2𝑝𝐹 , the worst-case
impedance ranges from 4.9 MΩ to 622 MΩ for 𝑓𝑚𝑜𝑑 and 𝑓0, respectively.

From Fig. 4.12, the signal and noise gain of an 𝑁 -input spread-spectrum amplifier can
be written as:

𝑉𝑠𝑖𝑔 = 𝑉𝑖𝑛(−
𝐶𝑖𝑛
𝐶𝑓 𝑏

); (4.7)

𝑉𝑛,𝑜𝑢𝑡 = 𝑉𝑛(1+
𝑁 ⋅𝐶𝑖𝑛
𝐶𝑓 𝑏

) (4.8)

The input-referred noise is 𝑁 times higher for an 𝑁 -input amplifier as compared to a
single-channel amplifier. On the other hand, 𝑁 times more power can be spent on this
single 𝑁 -input amplifier, which results in an equal noise contribution per channel of both
an 𝑁 -input amplifier and 𝑁 single-channel amplifiers. In other words, if 𝑁 single-channel
amplifiers each consume 1/𝑁 times the power of the multiplexed amplifier, the total input-
referred noise is the same in both situations. Note that flicker noise is suppressed if the
signal is modulated before the amplifier.

4.4.2 ΣΔ ADC
For digitizing the modulated and summed signal inputs, a continuous-time ΣΔ modulator
is implemented for its inherent anti-aliasing property. For the target application, there
is a need to minimize the number of outgoing wires. Other ADCs, such as SAR have
the number of outputs equal to the number of bits. Additional circuitry, such as an SPI,
is required to reduce the number of outgoing wires, which might consume more area
and power. For a total input bandwidth of 32 kHz and a resolution of 10 bits, a 2nd order
orthonormal feed-forward topology low-pass ΣΔADC [32] designed to operate at 7.8 MHz
is selected for its optimal performance. The integrators are implemented using opamp-RC
filters due to their high linearity. Alternative implementations such as gmC integrators are
more power-efficient as compared to opamp-RC integrators; however, they offer poorer
linearity.

The performance of the modulator is determined by the first integrator stage. The
errors originating in the second integrator and the following blocks are suppressed by the
gain of the preceding blocks. For lower noise, a smaller input resistance (< 300 kΩ) can
be chosen. For a given integrator constant, for lower noise, a larger capacitance value is
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required, leading to a higher opamp power consumption. To reduce the loading of the
previous stage and trading noise for lower power, R1=R2= 512 kΩ and C1=C2= 0.5 pF have
been chosen. The common-mode voltage is at VCM=0.9 V. Rdac is chosen as 256 kΩ. The
non-idealities of the integrator performance are simulated through behavioral simulations.
To minimize the effect of finite DC gain and GBW on the performance of the modulator,
a DC gain > 85 dB and GBW > 0.7 x 𝑓𝑠 or 5 MHz would be sufficient. The impact of time-
constant (RC) variations of the integrators is also modeled. For a variation up to ±30%,
there is a slight degradation in the performance. However, beyond ±40%, the performance
degrades significantly andmay even become unstable. To achieve a high DC gain and high
output swing, A2 is implemented by a 2-stage opamp and A3 by a folded-cascode opamp
as shown in Fig. 4.11. A 1-bit comparator quantizes the signal, and a 1-bit DAC with four
switches is implemented for its inherent linearity. To implement the 1-bit comparator and
the summer, a multi-input two-stage dynamic comparator is implemented for its power
efficiency. Its first stage provides amplification and is followed by a latching stage.

4.4.3 Generation of spread-spectrum codes
The PRBS codes are generated by a 7-stage Gold-code generator using two LFSRs, gener-
ating up to a maximum of 18 codes (See Table 4.2). Four of these codes are required to
modulate four inputs. Each LFSR has 7 delay flip-flops (DFF). At the start of the acquisi-
tion, all the outputs are cleared to 1 through a reset signal. The DFFs consume negligible
area and power compared to the rest of the circuitry. For an increasing number of input
signals, the area occupied by the WH code generator increases exponentially, whereas for
PRBS codes, the area of the corresponding generator increases by a few more gates.

4.5 Measurement results
The prototype has been implemented in a standard 180 nm CMOS technology. Fig 4.13
shows the die photograph with a total chip area of about 5.12 mm 2 (3.2 mm x 1.6 mm),
including the test structures and the IO ring. Fig 4.14a-b show the area and power break-
down, respectively. A programmable-gain amplifier, a Gold-code based PRBS generator,
and a 2nd order ΣΔ modulator with a single outgoing wire is integrated for amplifying,

Figure 4.13: Chip microphotograph
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Figure 4.14: (a) Area and (b) Power breakdown.

Table 4.4: Measured performance of 2nd order ΣΔ modulator

Parameter Specification
Process 180 nm CMOS

Supply voltage 1.8 V
Current 36.3 𝜇 A

Bandwidth 16 kHz
Sampling frequency 7.8 MHz

SNDR 57.8 dB @ 16 kHz/50 dB @ 32 kHz
Dynamic range 68 dB
Walden FOM 0.87 pJ/conv.

Area 0.09𝑚𝑚2

digitizing, and reading out cardiac signals. The proposed PRBS-modulated multi-channel
amplifier and ΣΔ ADC, including biasing, operate from 1.8 V and draw 91.9 𝜇A. The PRBS-
modulated multi-channel amplifier, PRBS generator, and ADC occupy only 0.27 𝑚𝑚2.

Fig. 4.15 shows the performance of the ADC. It achieves a peak SNDR of 57.8 dB mea-
sured at 𝑓𝑖𝑛= 5 kHz and 𝑉𝑖𝑛@-2.4 dBFS), for a bandwidth of 16 kHz. For input signals
lower than -52 dBFS, the curve is extrapolated. As the input amplitude approaches its
maximum limit, the curve becomes flatter, but it remains stable [32]. The overall perfor-
mance is summarized in Table 4.4. Fig. 4.16 shows the input-referred noise spectrum of
the amplifier characterized by using a dynamic signal analyzer (SR785, Stanford Research
Systems) capable of capturing low-frequency behavior from 100 mHz. It shows the mea-
sured input referred noise before and after demodulation with 𝑓𝑚𝑜𝑑 = 5 kHz. The noise
floor is flat down to 1 Hz, showing that 1/𝑓 noise is removed using PRBS modulation. The
integrated noise for a bandwidth of 39 Hz is about 1.4 𝜇Vrms. The thermal noise density is
at 224 nV/sqrt(Hz). Fig. 4.17 characterizes the PRBS-modulated amplifier at 𝑓𝑚𝑜𝑑 = 5 kHz,
10 kHz and 32 kHz. For an 𝑓𝑚𝑜𝑑@5 kHz, the lowest tone, 𝑓0 is given by 5𝑘𝐻𝑧

127 , i.e., 39 Hz,
which sets the maximum usable bandwidth, whereas, @10 kHz and 32 kHz, it occurs at
78 Hz and 251 Hz, respectively, as shown in Fig. 4.17a. It can be seen that the noise floor
is higher for higher values of 𝑓𝑚𝑜𝑑 . Charge injection and clock feed-through associated
with theMOSFET switches of the input chopper give rise to significant chopper noise. The
magnitude of chopper noise increases proportionately with the modulation frequency, as
observed and described in [83] and [84].
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Figure 4.15: Measured ΣΔ modulator performance (a) PSD plot for -2.4 dBFS input signal at 5 kHz (b) SNDR
versus the input signal amplitude.

In order to test the performance of the prototype, each of the channel inputs is simulta-
neously stimulated with a 5 𝑚𝑉𝑝𝑝 single-tone sinusoidal signal with a unique frequency,
i.e., 15 Hz, 17 Hz, 21 Hz and 25 Hz at a gain of 4 and modulated at 10 kHz. The Gold
codes are already known since the initial state of the DFFs is set to 1. For synchroniza-
tion with the replica of the codes at the receiver end, one of the outputs of the generator
is read out. A custom synchronization script is then used to reconstruct the other codes
based on the known code sequence at 10 kHz. The combined output is read out from the
chip. Post-processing carried out on MATLAB involves demodulation using replicated
codes and filtering with a 10th-order digital low-pass filter (LPF) on the receiver side. Us-
ing a lower-order filter such as a 2nd- or a 3rd-order LPF results in lower performance, as
also shown in [26]. In Fig 4.18, the measured performance is compared with the results
obtained fromMATLAB simulations. With a 7-bit Gold-code generator (𝐿 = 127), the max-
imum achievable crosstalk performance is -40 dB, as shown in Fig. 4.18b. In Fig. 4.18a, the
measured crosstalk performance varies between -32 dB and -40 dB depending on the Gold
codes. The degradation in crosstalk performance in the practical setup can be attributed to
non-zero cross-correlation between the codes and the use of a shared reference [85]. PRBS
modulation upmodulates flicker noise and offset to the tones at 𝑓0, 2×𝑓0 … 𝑓𝑚𝑜𝑑 . For large
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Figure 4.16: Input-referred noise with PRBS modulation ON/OFF.

circuit offset, the tones are larger. In Fig. 4.18b, the tones present between 40 Hz and 78 Hz
are intermodulation tones. The intermodulation tones result from the interaction between
the signal inputs and the modulation frequency. The inputs at 15 Hz, 17 Hz, 21 Hz, and
25 Hz result in intermodulation tones at 63 Hz, 61 Hz, 57 Hz, and 53 Hz due to 𝑓0 tone at
78 Hz. The low-pass filter attenuates the input frequencies closer to its cut-off frequency
(ch3 and ch4) due to its 10th - order roll-off. The slight variation in amplitude between
ch1 (-40.4 dB) and ch2 (-40.1 dB) could be attributed to a mismatch in gain between the
channels. Fig. 4.19 shows the recovered inputs in the time domain.

Table 4.5 presents a summary of the proposed system performance and a benchmark
with state-of-the-art modulation approaches for multi-channel recording systems. The
proposed system is designed for acquiring unipolar atrial electrograms with a shared ref-
erence. Compared with systems that use orthogonal codes such as [27], which requires
look-up tables (or on-chip memory), the proposed system includes an integrated PRBS
generator, which consumes negligible power and area. Also, the number of bond pads/in-
put in the proposed approach is 1×, whereas other implementations such as [27], [62] or
[26] use 2× the number of inputs. Compared to [12] and [62], the proposed system con-
sumes less area/channel. The proposed method is attractive for applications with strict
area constraints for low-resolution signal acquisition, such as wavefront mapping.
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Table 4.5: Comparison with modulation approaches for multi-channel systems

JSSC’20 [27] TCAS’21 [26] TBCAS’19 [12] TVLSI’19 [62] This work
Modulation/Mutliplexing WH/CDM WH/CDM FM/FDM OFC/CDM PRBS/CDM

Type of biosignal EMG EEG EEG ECG AEG
Type of recording Bipolar Bipolar Unipolar Bipolar Unipolar

Reference electrode Dedicated Dedicated Shared Dedicated Shared
Look-up table required Yes Yes No No No

Bondpads/input 2 2 1 2 1
No. of channels 15 4 4 2 4
Shared blocks LNA,ADC ADC ADC LNA LNA,ADC

ADC architecture Async. SAR SAR - ΣΔ
Serializer Yes Yes Yes No Yes

Wirecount ratio 15:1 4:1 4:1 1:1 4:1
Current/channel (uA) 9.2 1.5 190 0.36 20.7

Noise density 𝑛𝑉
√𝐻𝑧 155 95.9 63 130 224

LNA Gain (dB) 40-56 45.3 - 40 12-30.1
Area/ch (mm2) 0.019 0.08 1 0.34 0.067
Process (𝜇m) 0.18 0.18 0.35 0.13 0.18
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4.6 Conclusions
This chapter proposes a novel design strategy to develop optimal spread-spectrum analog
front-ends. A structured classification of modulation strategies orthogonalized by their
degrees of freedom is proposed to identify possible techniques for acquiring analog sig-
nals. The proposed designmethod is validated by implementing a 4-input PRBSmodulated
spread-spectrum recording system in a 0.18𝜇𝑚 CMOS process, which consists of a shared
amplifier, a shared ΣΔ ADC, and an on-chip Gold code generator occupying 0.067 mm2
and consuming 23 𝜇A per channel input.
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5
Compressed-sensing of atrial

electrograms for the detection of
AF

Atrial electrograms (AEGs) acquired with a high spatio-temporal resolution are a promising
approach for early detection, analysis, and understanding of the electropathology underlying
atrial fibrillation. Due to the high data rate, transmission of AEG signals is expensive in terms
of power consumption and resources, making its adoption a challenge for low-power wireless
devices. In this chapter, we investigate the feasibility of using compressed sensing (CS) for the
acquisition of AEGs while reducing redundant data without losing information. We apply
two CS approaches, standard CS and rakeness-based CS (rak-CS), on a data set composed of
real AEG recordings. We find that the AEGs are compressible in time and, more interestingly,
in the spatial domain. The performance of rak-CS is better than standard CS, especially at
higher compression ratios (CR), both during sinus rhythm (SR) and atrial fibrillation (AF).The
difference in the achieved average reconstruction signal-to-noise ratio (ARSNR) in rak-CS and
standard CS, for CR = 4.26, in the time domain is 7.7 dB and 2.6 dB for AF and SR, respectively.
Multi-channel data is modeled as a multiple-measurement-vector problem, and the mixed
norm is used to exploit the group structure of the signals in the spatial domain to obtain
improved reconstruction performance over 𝑙1 norm minimization. Using the mixed-norm
recovery approach, for CR = 4.26, the difference in achieved ARSNR performance between
rak-CS and standard CS is 5 dB and 2 dB for AF and SR, respectively.

To validate the usability of the reconstructed signals, the quality of the signals is evaluated
by a team of clinical experts. Upto CR = 4.25, the signals are generally clean and useful. The
visual performance of SR AEG is much better than AF AEG, as also observed in the quanti-
tative analysis. Using rak-CS, at CR = 4.26, the percent root mean square difference for SR is
7.1 %, whereas, for AF, it is 9.2 %.

This chapter is partly based on S. Rout et al. Rakeness-based compressed sensing of atrial electrograms for the
diagnosis of atrial fibrillation, ISCAS 2019 [10] and S. Auerbach, W. A. Serdijn, and S. Rout. Compressed-sensing
of spatiotemporally-correlated and/or rakeness-processed electrograms. US Patent App. 16/846,551 [60].
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5.1 Introduction
About 17.9 million individuals die from cardiovascular diseases (CVDs) annually [1]. In
order to have better treatment alternatives, it is necessary to diagnose patients with car-
diac abnormalities early on. One of the ways to diagnose abnormalities is by recording
electrophysiological signals, which has been the gold standard for detecting and treating
heart diseases. While ECG records on the surface of the heart and can only offer a very
coarse look at the heart’s health, atrial electrograms recorded on multiple electrode sites
are used to obtain a high-resolution wavefront map to track the conduction pathways in
the heart. However, using several hundred recording sites generates a massive amount of
data. In order to reduce the data rate, compression algorithms are used. This chapter de-
scribes compressed sensing techniques applied to atrial electrograms during sinus rhythm
and atrial fibrillation.

This chapter is organized as follows. Section 5.2 presents the performance of rakeness-
based CS and standard CS on atrial electrograms. For validating the usability of the com-
pression technique, the reconstructed signals are evaluated by a team of clinical experts,
and the results are presented in Section 5.3. Section 5.4 presents similarity analysis, which
quantifies the performance of compressed sensing in terms of average reconstruction
signal-to-noise ratio and percent root-mean-square difference. Section 5.5 presents the
conclusions of the chapter.

5.2 Rakeness-based compressed sensing of atrial electro-
grams for the diagnosis of atrial fibrillation

5.2.1 Introduction
Atrial electrograms (AEG) are a class of signals that are recorded on the surface of the heart.
Contrary to electrocardiogram (ECG), which is recorded on the surface of the human body,
the AEG has the potential to offer deeper insights into the signal propagation in the heart,
specifically the atria, located in the upper part of the heart. AEGs can be used to study
the progression of atrial fibrillation (AF), a cardiac abnormality of the atria. Irregular R-R
intervals [18] and the absence of P-waves characterize AF in an ECG recording. Although
characterization of AF in AEGs is not straightforward, it is usually identifiedwith irregular
and rapidly varying signals. The phenomena governing the propagation of the wavefront
during AF is poorly understood, and the current understanding is limited due to the lack
of efficient high-resolution mapping systems [14, 86].

In comparison to recording ECG signals, AEGs are acquired with a high-resolution
multi-electrode two-dimensional array, which requires unbounded and continuous acqui-
sition, storage, and transmission of a large amount of data. Due to the data-intensive
nature of the acquisition of AEGs, developing portable devices for continuous monitor-
ing in the clinical setting is challenging. In particular, for the early diagnosis of AF and
understanding of the complex spatio-temporal behavior of the signals recorded on the
surface of the heart, both during sinus rhythm (SR) and atrial fibrillation (AF), there is
a need for high-resolution data acquisition system. The acquisition and transmission of
high-resolution data poses a constraint on the power consumption. A system-level dia-
gram of the acquisition of the AEGs is shown in Figure 5.1, where the signals are recorded
using a flexible electrode array and a recording module and transmitted to a base station
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Figure 5.1: System-level diagram of the acquisition of atrial electrograms.

for further processing. With a minimum interelectrode distance of 2 mm, at least 1728
recording sites are required to cover the entire atrium, which includes the right atrium,
the left atrium, and Bachmann’s bundle [5]. For recording signals from 1728 electrodes at
a resolution of 16 bits and a sampling frequency of 10 kHz, the total data rate required is
16×103 ×1728, or 276 Mbit/s, resulting in ≈ 16.8 Gbit/min. The acquisition and processing
of such a large amount of data for a portable device is a practical challenge due to the
needed power and memory requirements.

One of the innovative points of our work is to investigate the compressibility of a new
class of signals, i.e., AEGs, both in the time and the spatial domain. Compressed sensing
(CS) is a relatively recent paradigm that allows simultaneous acquisition and compression
of a signal by means of sampling it below the Nyquist rate. In the state-of-the-art liter-
ature, CS has been successfully applied to various bio-signals, such as ECG, EMG, and
EEG [28–30, 87], thanks to the property of these signals to be inherently sparse in a cer-
tain domain. In details, we will investigate the sparsity properties of the AEG signal and
compute the expected CS performance with varying compression ratios. In this section,
we will focus both on single-channel compression in the temporal domain and on multi-
channel compression by exploiting the expected similarity among the signals coming from
adjacent leads. In Section 5.2.2, the compressed sensing approach for single-channel and
multi-channel AEG signals is explained. In Section 5.2.3, the performance evaluation of
the proposed approach is described. Finally, the conclusions are summarized in Section
5.2.4.

5.2.2 Compressed sensing
Single channel compressed sensing
Compressed sensing is amethod for sampling and reconstruction of signals that are known
to be sparse in some basis [88, 89]. An input signal 𝑥 recorded from a single electrode, rep-
resented in an 𝑁 -dimensional vector space, which is sparse in a certain basis and acquired
with a sensing matrix Φ, can be formulated as a single-measurement-vector (SMV) prob-
lem. The measurement vector 𝑦 obtained can be written as

𝑦 = Φ𝑥 +𝑛 (5.1)

where 𝑦 ∈ ℝ𝑀 , Φ ∈ ℝ𝑀×𝑁 , 𝑥 ∈ ℝ𝑁 and 𝑛 ∈ ℝ𝑀 is the measurement noise, modeled as
additive white Gaussian noise in the temporal domain. Given that signal 𝑥 is 𝐾 -𝑠𝑝𝑎𝑟𝑠𝑒 in
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Figure 5.2: Time-domain waveforms of (a) Sinus rhythm, and (b) Atrial fibrillation (Data courtesy of Erasmus
Medical Center, Rotterdam).

an arbitrary basis Ψ = [𝜓1,𝜓2...,𝜓𝑁 ], 𝜓𝑖 ∈ ℝ𝑁×𝑁 , 𝑥 can be represented as

𝑥 = Ψ𝛼 (5.2)

where 𝛼 is an 𝑁 -dimensional vector with only 𝐾 ≪ 𝑁 non-zero elements in matrix Ψ. 𝐾
and 𝑁 are related by sparsity which is given by (1−𝐾/𝑁 ) × 100%. From the compressed
measurement samples, the signal can be reconstructed by solving the minimization prob-
lem given by

�̂� = arg min𝛼 ‖𝛼‖1 subject to 𝑦 = ΦΨ𝛼 (5.3)

where ‖𝛼‖1 is the 𝑙1 norm of the signal. Further, the reconstructed input signal is given by
�̂� = Ψ�̂� .

Standard CS only accounts for the sparsity of a signal in an arbitrary basis. However,
for a proper class of signals, it is possible to exploit the signal energy distribution, i.e, the
localization [90], to improve the performance of the CS reconstruction. The localization
of the signal energy in a certain basis leads to the rakeness-based approach which incor-
porates the input signal second-order statistics in the design of the measurement matrix.
The idea is to increase the average energy (information) of the measurement vector el-
ements by a soft adaptation of the statistics of the rows of Φ to the correlation matrix
characterizing the class of acquired signals having, as a consequence, a reduction in the
reconstruction error ||𝑥 − �̂�||2 after the solution of (5.3). Rakeness 𝜌 between two processes
Φ and 𝑥 can be defined as [90, 91],

𝜌(Φ,𝑥) = EΦ,𝑥 [||⟨Φ,𝑥⟩||
2] (5.4)

where EΦ,𝑥 refers to the expectation with respect to the two processes and 𝜌 maximizes
the signal energy.
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Multi-channel compressed sensing
Consider a 2-D array of 𝐿 electrodes where the signal X is acquired from various channels
with a sensing matrix Φ and the measurement matrix Y can be described as

Y = ΦX+n (5.5)

where Y ∈ ℝ𝑀×𝐿, Φ ∈ ℝ𝑀×𝑁 , X ∈ ℝ𝑁×𝐿 and n ∈ ℝ𝑀×𝐿 is the measurement noise, modeled
as spatio-temporally white Gaussian noise. Here, X = [𝑥1, 𝑥2,… ,𝑥𝐿], where 𝑥𝑗 is the signal
acquired from the 𝑗-th electrode. Let A = [𝛼1,𝛼2,… ,𝛼𝐿] be a matrix composed from a
sparse representation of vectors [𝑥1, 𝑥2,… ,𝑥𝐿], with 𝑥𝑗 = Ψ𝛼𝑗 , 𝑗 = 1,2,…𝐿 or, with a more
compact notation, X = ΨA.

The multi-channel atrial electrograms share similarities among the adjacent channels,
which can be exploited for an improved reconstruction performance. Multi-channel CS
acquisition can be formulated as a multiple-measurement-vector (MMV) problem and can
be solved with jointly sparse recovery algorithms [92]. The aim of MMV compressed
sensing is to recover the jointly sparse A, which can be formulated as [93]

Â = arg min
A

‖A‖1,2 subject to Y = ΦΨA (5.6)

where the joint sparsity in A is induced by the 𝑙1,2 mixed norm defined by:

‖A‖1,2=(∑𝐿
𝑗=1 (∑

𝑁
𝑖=1 ||A𝑖,𝑗 ||)

2
)
1/2

.

5.2.3 Results
Method of data acquisition
Atrial electrograms are recorded on the epicardium, the surface of the heart, using a
custom-made 46 mm by 14 mm flexible multi-electrode array with 192 gold-plated elec-
trodes and a 256-channel data-acquisition system [5]. The data is acquired using an analog
front-end module that consists of an amplifier with a gain of 60 dB, a bandpass filter with
a bandwidth extending from 0.5 to 400 Hz, and an analog-to-digital converter with a res-
olution of 16 bits, which samples the analog signal at 1 kHz. A total of 10 electrode array
sections are required to cover the entire surface area of the atria. For rak-CS, one of the
recorded sections is used as a reference for the correlation matrix estimation. Using the
SPGL¹ toolbox, we use the CS decoders to reconstruct the signals by solving (5.3) and (5.6),
where Ψ is the Symmlet6 transformation basis. Symmlet6 is chosen as the wavelet basis
for its high reconstruction SNR performance when applied to compressed AEGs.

Performance evaluation
The reconstructed signal is compared to the original signal using the performance metric,
reconstruction signal-to-noise ratio (RSNR) given by

RSNRdB = 20log( ‖𝑥‖2
‖𝑥 − �̂�‖2

) (5.7)

¹http://www.cs.ubc.ca/ mpf/spgl1/
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Figure 5.3: Time-domain ARSNR vs CR for the atrial electrograms during: (a) SR (b) AF.
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where ‖𝑥‖2 refers to the 𝑙2 norm of vector 𝑥 . The RSNR is averaged over all the channels
and 9 blocks of the signal for standard-CS and rak-CS in the time domain. Firstly, it can
observed that rak-CS performs better than standard CS. The difference in the achieved
average reconstruction SNR (ARSNR) performance between the two approaches increases
with increase in the compression ratio. In case of SR, at CR = 4.26, rak-CS outperforms
standard CS by almost 9 dB, as shown in Figure 5.3a. In case of atrial fibrillation, at CR =
4.26, rak-CS outperforms standard CS by 7.7 dB, as shown in Figure 5.3b. Rak-CS accounts
for the localization of the signal energy due to which there is a significant improvement
in performance at higher CRs (See Section 5.2.2).
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Figure 5.4: Spatial-domain ARSNR using mixed-norm recovery and 𝑙1 norm minimization (for N=512)

The reconstruction performance of the SPGL1 recoverymethod, whichminimizes only
the 𝑙1 norm, is compared with the mixed norm recovery approach and is as shown in Fig-
ures 5.4a and 5.4b. It can be seen that the reconstruction performance of the jointly sparse
recovery approach is better than independent 𝑙1 minimization recovery, and the differ-
ence is more pronounced at higher compression ratios. Also, standard CS is compared
with rak-CS using the multiple-measurement-vector approach. At CR = 4.26, the ARSNR
of the rak-CS approach using the mixed norm recovery is 24.4 dB, which is 4.6 dB better
than standard CS with the 𝑙1 norm minimization recovery method in the case of SR.

The ARSNR varies over different channels and compression ratios, showing significant
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Figure 5.5: ARSNR for 192 channels in case of: (a) SR (b) AF.
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Figure 5.6: Reconstruction of the time-domain waveform of atrial electrograms at CR = 4.26 (N=512)

differences in the case of SR and AF, as shown in Figures 5.5a and 5.5b. The fixed dark
blue lines on the figures correspond to reference signals. One can observe that the group
structure is preserved in the case of SR, but the signals are not very similar in the case of
AF. This points to the fact that during atrial fibrillation, the signals are not coherent, and
the signal propagation takes place depending on the conduction paths and blocks in the
atria.

Figures 5.6a and 5.6b show the reconstruction of the atrial electrograms in the time
domain during SR and AF, respectively, for an arbitrarily selected channel number (ch
= 90). Figures 5.7a and 5.7b show the reconstruction of the AEGs in the spatial domain,
during SR and AF, respectively for an arbitrarily chosen time instant. We can see that the
reconstruction of the signal during sinus rhythm is better than during atrial fibrillation
for the same compression ratio. i.e, CR = 4.26.

5.2.4 Conclusions
The main findings of the work can be summarized as :

• For the application of AEGs, rak-CS performs better than standard CS at all CRs in
both the time- and spatial-domains.
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Figure 5.7: Reconstruction of the spatial-domain waveform of atrial electrograms at CR=4.26 (N=512)
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• At lower CRs, mixed-norm recovery works better in the case of SR since the signals
are coherent.

• In time-domain and spatial-domain, AF has worse absolute performance than SR
because of incoherence among signals recorded in different channels and the much
larger energies involved.

• For the detection of AF, rak-CS is a better choice, as the performance is significantly
better than standard CS at higher CRs.

One distinguishing feature of AEGs from other biosignals, such as EEG or EMG, is the di-
rection of the signal propagation. As the composite cardiac signal propagates in a specific
direction, the absence of strong spatial correlations can detect the presence of AF. Finally,
the rakeness-based compressed sensing approach holds the potential to reconstruct AF
signals with a high ARSNR, which makes it a strong candidate for the acquisition of AEGs
for the detection of AF, especially when aiming for hardware- and power-efficient imple-
mentation.

5.3 Visual inspection and the doctors’ opinion
A team of hospital researchers and doctors visually inspected the results of the compres-
sion technique and validated the usability of the compressed signals to map the wavefront
of the propagating atrial electrograms and diagnose atrial fibrillation. The survey analysis
was conducted using feedback on the quality of signals given by clinical researchers and
experts in epicardial mapping. A total of 10 experts participated in the survey. When
compression is applied to signals, the resulting quality of the reconstructed signals should
satisfy the requirement of the application. Some examples of applications are: estimation
of local activation times for generating a wavefront map, investigating detailed fraction-
ations, and, in specific cases studying conduction pathways and blocks. The motivation
behind applying compression is to generate the wavefront map in the most data-efficient
manner.

Based on the settings for compression used in Section 4.1, we survey the quality of
signals for compression ratios (CR) = 1, 3.5, 4.2, and 5.1 as compared to a reference signal
(original pre-recorded signal), in terms of whether the quality is clean and acceptable, or
noisy, but acceptable or unacceptable for reliable detection and diagnosis of AF. Figure 5.8
shows the outcomes of the performance.

Significance of the performance survey: From Figure 5.8, it can be seen that as the
compression ratio (CR) increases, the signal can become noisy and lose some of the fea-
tures. The reconstructed signals are first-order low-pass filtered up to 400 Hz (bandwidth
of AEG signals). A moving average filter with a window width of 4 is used to counter
any noise on the reconstructed signal and smoothen the output waveform. In the case of
SR AEG signals (Fig 5.8a), up to the value of CR = 4.26, it is accepted as clean and useful.
At CR = 5.1, the signal quality is noisier, though it is still suitable for some applications,
such as estimating local activation times used to generate the wavefront map. However, it
may not be suitable for the detection of fractionated electrograms. In the case of AF AEG
signals (Fig 5.8b), at CR = 1, which means that the algorithm is applied on the signals with
no compression, we can observe that the signal looks ”cleaner,” which is due to filtering
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out some amount of baseline noise due to reconstruction. The signal quality of AF AEG
drops faster than the SR AEG signal at higher compression rates, which can be attributed
to a higher amount of activity and features that characterize an AF signal. At CR = 5.1,
most agree that the signal is not helpful in computing detailed features. However, even at
this compression ratio, the signal can still be used to estimate local activation times as it
requires a coarse resolution of the signal. In order to benchmark the results obtained from
a custom-designed 192 inputs flexible electrode array, we compare it to the publicly avail-
able atrial electrograms on the Intracardiac Atrial Fibrillation Database from the MIT-BIH
database [49]. From Figure 5.8c, we can see that most of them agree that the signals are
generally ”not useful.” The same sparsity basis (Symmlet) is used in both cases (AEG from
EMC and AEG from MIT-BIH database). A different sparsity basis should be used for bet-
ter performance. The atrial electrograms segments available from the MIT-BIH database
are bipolar recordings, whereas the custom 192-electrode array acquires unipolar record-
ings. Also, these signals could have a higher amount of noise. The features captured in
these signals depend on the location of the electrodes. Also, signals from only 4 locations
are recorded, which is far lower than the 192 electrodes used in the case of EMC AEG
acquisition. Therefore, to generate a wavefront activation map, these signals may not be
entirely suitable.

Figures 5.9, 5.10 and 5.11 show thewaveforms of sinus rhythm atrial electrogram, atrial
fibrillation atrial electrogram and bipolar atrial electrogram, respectively.
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Figure 5.8: Survery performance
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Figure 5.9: Reconstructed SR signals
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Figure 5.10: Reconstructed AF signals
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Figure 5.11: Reconstructed AEG signals. Source: MIT-BIH database
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5.4 Similarity analysis
In Tables 5.1 to 5.3, we tabulate the quantitative performance of compressed sensing on
atrial electrograms during SR and AF, and compare the results with signals from the MIT-
BIH database. The same compression and reconstruction algorithm settings are used in all
three cases. In order to compare the performance of the reconstructed signals with respect
to the original signals, we use the average reconstruction signal-to-noise ratio (SNR) in dB,
and percent root-mean-square difference (PRD), in %.

In Table 5.1, during SR, for a compression ratio setting of 5.12, PRD values of 7.55 %
and 12.3 % are obtained when rakeness compressed sensing (rak-CS) and standard CS are
used, respectively. A 5-dB improvement in SNR value is obtained while using rak-CS as
compared to standard CS.

In Table 5.2, during AF, with an increase in CR, the performance drops much faster
than in the case of SR. While the overall performance is worse than SR, rak-CS performs
significantly better than standard CS at high CR values by more than 8 dB at CR = 5.12.

In Table 5.3, the performance of the intracardiacAEG signals from theMIT-BIH database
is summarized. Overall, the performance of the proposed algorithms is worse in the case
of AEG from the Intracardiac database than the AEG signals from EMC. It can be seen that
rakeness CS performs much better than standard CS.

Table 5.1: Quantitative performance of the signals: AEG - Sinus Rhythm (EMC)

Compression Ratio Std. CS SNR (in dB) Std. CS PRD (in %) Rake-CS SNR (in dB) Rake-CS PRD (in %)
CR=5.12 18.189 12.333 23.321 7.5509
CR=4.26 21.753 8.2943 23.93 7.1425
CR=3.5 25.309 5.4279 28.257 3.9661
CR=1 38.404 1.2025 38.118 1.244

Table 5.2: Quantitative performance of the signals: AEG - Atrial Fibrillation (EMC)

Compression Ratio Std. CS SNR (in dB) Std. CS PRD (in %) Rake-CS SNR (in dB) Rake-CS PRD (in %)
CR=5.12 11.42 27.182 19.827 10.625
CR=4.26 12.068 25.231 20.721 9.2369
CR=3.5 15.408 16.968 23.091 7.0752
CR=1 39.629 1.0437 39.266 1.0883

Table 5.3: Quantitative performance of the signals: AEG - Intracardiac database (MIT-BIH)

Compression Ratio Std. CS SNR (in dB) Std. CS PRD (in %) Rake-CS SNR (in dB) Rake-CS PRD (in %)
CR=5.12 1.0213 88.907 8.1692 39.043
CR=4.26 3.0083 70.727 9.3036 34.263
CR=3.5 5.6758 52.025 11.374 26.995
CR=1 38.949 1.1287 37.454 1.3407

5.5 Conclusions
In this chapter, rakeness-based compressed sensing as a potential technique for compres-
sion of atrial electrograms is proposed, implemented, and verified on real pre-recorded
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atrial electrograms.
In the first part of the chapter (Section 5.2), it is shown that rak-CS performs better

than standard CS in both time and spatial domains. For the detection of atrial fibrillation,
rak-CS is better than standard CS at higher compression rates.

In the second part of the chapter (Section 5.3), the quality of the reconstructed signals is
assessed by a team of clinical experts at the Erasmus Medical Center Rotterdam to check
for its suitability in the generation of an activation map. Up to a compression rate of
5.12, the signals are suitable for coarse-resolution applications such as wavefront map
generation. The performance of the reconstructed signals is also quantitatively evaluated
in terms of their similarity with respect to the original waveform. Using rakeness CS at
CR = 5.12, the percent root-mean-square difference for SR is 7.5 %, whereas, for AF, it is
10.625 %.
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6
Conclusions

This thesis focuses on the CMOS architectures based on hardware-algorithm co-design for ac-
quiring cardiac signals. It aims to explore the design trade-offs to implement an accurate,
compact, power- and area-efficient analog front-end targeted at the diagnosis of atrial fib-
rillation based on the electrocardiogram (ECG) and the atrial electrogram (AEG). Clinically,
the goal is to diagnose atrial fibrillation (AF) early for better treatment alternatives based on
understanding the disease progression. This concluding chapter presents an overview of the
thesis outcome while summarizing the main findings and original contributions. Based on
the results, recommendations for future work are presented.
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6.1 Thesis outcomes
Cardiac signals can either be non-invasively recorded on the surface of the body in the
form of an ECG or invasively mapped from the surface of the heart in the form of AEG
signals. The key challenges associated with designing a compact, accurate, and efficient
analog electronic front-end are discussed in Chapter 1. The existing techniques and state-
of-the-art implementations to solve the challenges in acquiring cardiac signals in the con-
text of the work described in this thesis are discussed in Chapter 2.

Targeting single-channel front-ends, a design method based on a state-space approach
for ΣΔADCs targeting desired arbitrary signal-transfer and noise-transfer functions while
optimizing their dynamic range are presented in Chapter 3. The approach targets the ac-
quisition of cardiac signals with high accuracy of the high-pass filter function and sup-
presses baseline wandering. By computing the intermediate functions, the impact of non-
idealities of the integrator(s) on the overall performance of the ADC is presented. From
calculations and simulations, it is shown that for very small integrator coefficients, the
non-ideal effects of the integrator on the overall ADC are negligible. From the analysis,
it is shown that an orthonormal ΣΔ topology offers better performance than the observ-
able canonical ΣΔ architecture. A complete analog front-end consisting of a pre-amplifier
and an orthonormal ΣΔ ADC with an integrating feedback loop is implemented in 0.18𝜇m
standard IC technology and illustrates the proposed approach. From measurements, it is
shown that using the integrating feedback loop, a high-pass characteristic filter transfer
can be obtained, the cutoff frequency of which can be changed by varying the switched-
capacitor clock frequency, thus reducing baseline wandering in ECG signals. The ADC
consumes 81 𝜇W at a sampling rate of 500 kHz and occupies an area of 0.126 mm2.

Targetingmulti-channel front-ends, a designmethod to develop optimal spread-spectrum-
based analog front-ends, is developed in Chapter 4. A structured classification of modu-
lation strategies orthogonalized by their degrees of freedom is also proposed to identify
possible techniques for acquiring multiple analog signals simultaneously using a single
analog front-end. Using the design method, real pre-recorded atrial electrograms (both
during sinus rhythm and atrial fibrillation) are used to verify the concept. The perfor-
mance of the PRBS and Walsh-Hadamard codes for different parameter settings are quan-
tified by percentage root-mean-square difference (PRD). For a bandwidth 𝑓𝑏 = 200 Hz and
code length (𝐿) = 127, the optimum modulation frequency, 𝑓𝑚𝑜𝑑 is 70 kHz with a mean
PRD of 10.8 and 13.1 for SR and AF, respectively. The PRD performance improves to 2.65
and 3.02 for SR and AF, when 𝐿 = 511 and 𝑓mod = 280 kHz. AF performs worse than SR
due to the much higher signal activity. SR exhibits a worse performance in certain parts
of the segment than AF due to sharp peaks and loss of those peaks in the reconstructed
signal.

The spread-spectrum modulation design method is validated by implementing a 4-
channel PRBS-modulated spread-spectrum recording system in a 0.18𝜇𝑚 CMOS process,
which consists of a shared amplifier, a shared ΣΔ ADC, and an on-chip Gold code genera-
tor occupying 0.067mm2 and consuming 20.7𝜇A per channel input.

Rakeness-based compressed sensing (CS) targeting compression of atrial electrograms
is presented in Chapter 5 and verified on real pre-recorded atrial electrograms. Rakeness
CS and standard CS are used to compress AEG signals in the time and spatial domains.
The results show that rakeness CS performs better than standard CS in the compression
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of AEG signals. It is also shown that for the detection of atrial fibrillation, rakeness CS
is better than standard CS at higher compression rates. For the purposes of diagnosing
the arrhythmia, the proposed compression technique can be used on high-density elec-
trode array mapping of atrial signals in low data-rate settings. In addition to these results,
the quality of the reconstructed signals was assessed by a team of clinical experts at the
Erasmus Medical Center (EMC), Rotterdam, to check for its suitability in the generation
of an activation map. Up to a compression rate of 5.12, the signals are suitable for coarse-
resolution applications such as wavefront map generation. The performance of the recon-
structed signals is also quantitatively evaluated in terms of their similarity with respect
to the original waveform. Using rakeness CS, at CR =5.12, the percent root-mean-square
difference for SR is 7.5 %, whereas for AF it is 10.625 %.

6.2 Main contributions and discussions
The main and original contributions made in this thesis are summarized as follows:

• A state-space based design method for designing ΣΔ ADCs targeting desired arbi-
trary signal-transfer and noise-transfer functions while optimizing their dynamic
range (Chapter 3)

• Measurement results of an orthonormal ΣΔmodulator with a high-pass loop demon-
strating the proposed design method in a 0.18 𝜇m CMOS process technology (Chap-
ter 3)

• A structured classification of modulation strategies orthogonalized by their degrees
of freedom to identify possible techniques for acquiring analog signals (Chapter 4)

• A design method and identification of trade-offs in acquiring analog signals opti-
mally using spread-spectrum analog front-ends (Chapter 4)

• Measurement results of a 4-input PRBS modulated spread-spectrum recording sys-
tem in 0.18𝜇m CMOS technology (Chapter 4)

• Rakeness-based compressed sensing can be used in the compression of atrial elec-
trograms (Chapter 5)

• Rakeness-based compressed sensing performs better than standard compressed sens-
ing in the detection of atrial fibrillation at higher compression rates (Chapter 5)

6.3 Recommendations for future research
This thesis investigates the design of CMOS front-ends to acquire cardiac signals efficiently
and accurately. Some ideas for further investigations are as follows:

• The proposed high-pass orthonormal ΣΔ ADC cannot adaptively change its high-
pass filter cut-off frequency. An area-efficient on-chip solution to process and adap-
tively change the cut-off frequency in real-time based on the bandwidth of the input
signal and the accompanying motion artifacts (baseline wandering) is worth inves-
tigating.
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• The designed prototypes can be integrated with the custom-fabricated flexible elec-
trode array or a commercially available endocardiac electrode array for testing on
animals as a first step towards a compact integrated module for recording cardiac
signals during open-heart surgery.

• If designed prototypes are used in an implantable device, an increase in the number
of channels leads to an increase in the data rate. Transmitting a large amount of
data leads to high power consumption. On-chip data-compression methods such as
compressed sensing can be investigated for efficient data transmission.

• In this work, we have focussed on acquiring the raw data efficiently for use in detect-
ing atrial fibrillation and generating the wavefront activation map. A dedicated AF
detection algorithm, e.g., thresholding, or classifiers such as SVM or more sophisti-
cated artificial neural network techniques can be implemented on-chip to compute
the abnormalities in the signals can be used.

• Rakeness-based compressed sensing compresses the atrial electrograms with satis-
factory recovery results. As a future work, the proposed approach can be verified
and demonstrated through a silicon prototype.
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