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Abstract

In the rapidly evolving semiconductor industry, precise material characterization is crucial. This the-
sis focuses on enhancing Ion Beam Analysis (IBA), a pivotal tool in semiconductor characterization,
through the integration of differential evolution optimization. This research proposes a single and multi
spectra optimization algorithm approach controlled by a web application. Central to this work is a com-
parative analysis of the proposed algorithms to simulated annealing and the DE algorithm proposed by
Heller et al. [5]. This analysis shows a good performance of the proposed algorithms and a potential for
industry application. The web application offers users a robust, user-friendly, and scalable interface for
IBA optimization. By proposing and testing new IBA optimization methods, this thesis contributes signif-
icantly to semiconductor technology, offering new methods for material characterization at microscopic
level.

This project is a joint project between Imec (Leuven, Belgium) and HZDR (Dresden, Germany).
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1
Introduction

In 1965, when Gordon Moore predicted that the amount of transistors on an integrated circuit would
double every two years [4], it would have been hard to belief that this prediction still holds almost 60
years later. Moore’s prediction, known as Moore’s law, has since been used in the semiconductor
industry to guide long-term planning and to set targets for research and development, thus functioning
to some extent as a self-fulfilling prophecy.

The will to keep up with Moore’s law made semiconductor technology, the cornerstone of modern tech-
nological progress, rapidly evolve. At the core of nearly every digital device, semiconductors become
increasingly smaller and complex. This rapid evolution has been largely driven by the continuous
scaling down of semiconductor components, and there seems to be no sign of slowing down. The
miniaturization trend has lead to unprecedented progress in terms of computing, communication, and
automation. Increasing miniaturization leads to efficiency and better performance but it also presents
the need for significant challenges in material characterization at microscopic level.

Ion Beam Analysis (IBA) stands as a critical tool in this area. It offers a precise method to analyse the
structure and composition of materials, offering precision and depth at atomic level. This microscopic
precision makes ion beam analysis a perfect fit for semiconductor material characterization. However,
as semiconductors become smaller and complex, the limitations of traditional IBA methods become
evident. Using IBA optimization techniques, we aim to determine material characteristics.

This thesis work is situated at the intersection of two pivotal fields, both having the goal to improve
current IBA techniques.

Differential Evolution (DE) is an optimization algorithm that belongs to the family of evolutionary algo-
rithms. DE is known for its simplicity, speed, and robustness, which could make it a powerful method
to improve IBA optimization.

Software Engineering (SE) entails the systematic application of engineering approaches to the devel-
opment of software. Software engineering plays a crucial role in creating sophisticated tools and appli-
cations that can implement advanced algorithms like DE. The development of user-friendly, scalable,
and robust software solutions enables researchers and professionals in the semiconductor industry to
conduct more effective and precise material characterizations.

This thesis aims to explore howDifferential Evolution optimization and Software Engineering techniques
can be combined to enhance Ion Beam Analysis, addressing the challenges of microscopic material
characterization.

1.1. Problem Statement
Heller et al. [5] developed Ruthelde, a software package, to perform IBA using differential evolution
optimization. While it significantly contributed to the field of material characterization, its practical ap-
plication has brought some challenges to light that underscore the need for innovation.

1



1.2. Research Questions 2

Ruthelde supports single spectra IBA where the optimization values are evaluated using only one mea-
surement. With multiple spectra measurements, the optimization values are evaluated to multiple mea-
surements thus making the search space smaller. This will be more apparent for a complex material.
The current algorithm’s architecture, tailored for single spectra analysis, constrains the software’s ca-
pability in more complex, real-world applications. Next, the core optimization algorithm of Ruthelde is
custom-built using Java which could make it less optimized than well-tested and open-source alterna-
tives from a software library.

Another significant hurdle Ruthelde presents, is the fact that Ruthelde is a desktop application. This
software engineering choice imposes restrictions on the usability and scalability of the software. The
installation process can be tedious and could require specific requirements and dependencies that may
not be available on every system and device. Next, complex experiments require a lot of computation.
Ruthelde is limited to the hardware of the device the desktop application is installed on. This limitation
poses a significant challenge in research environments where scalability and flexibility are important.

1.2. Research Questions
This research aims to explore several pivotal questions to advance the application of differential evolu-
tion optimization in ion beam analysis. This research mainly focuses on solving the problems that are
identified in Ruthelde.

These questions include:

1. How can Differential Evolution optimization be effectively applied to multi-spectra Ion Beam Anal-
ysis to improve material characterization accuracy and efficiency?

2. What are the key software engineering challenges in developing an advanced Ion Beam Analysis
platform that incorporates Differential Evolution optimization, and how can these challenges be
addressed?

3. In what ways do the newly developed optimization algorithms improve upon Ruthelde in terms of
accuracy and efficiency?

Previous questions guide the research towards a comprehensive understanding and improvement of
ion beam analysis methods, assessing both theoretical and practical aspects.

1.3. Contribution
This thesis work makes several significant contributions to the field of Ion Beam Analysis by using tech-
niques from the fields of Differential Evolution and Software Engineering. The author’s contributions
can be summarized in:

• Selection, implementation and comparison of suitable DE mutation strategies.
• Implementation and analysis of the single spectra DE optimization algorithm.
• Implementation and analysis of the multi spectra DE optimization algorithm.
• Implementation and analysis of the simulated annealing optimization algorithm.
• Comparative analysis of the single spectra DE optimization algorithm to the simulated annealing
optimization algorithm.

• Comparative analysis of our proposed optimization algorithms to the algorithm proposed by Heller
et al. [5].

• Design and implementation of a web application to control the proposed algorithms.

1.4. Thesis outline
This report is organized as follows. Chapter 2 provides an introduction to relevant background topics
Ion Beam Analysis, Differential Evolution, and Ruthelde. Chapter 3 presents the optimization part of
this research. First we look at the motivation behind IBA optimization followed by the optimization’s
requirements. After, the chosen library is discussed followed by details on the DE optimization model
for both single and multi spectra optimization. At the end of the chapter, simulated annealing, as
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an alternative optimization model is discussed in detail. Chapter 4 comprises a description of the
software engineering part of this research. Followed by the motivation and requirements for the web
application, the chosen technology stack and interesting design choices are discussed. Chapter 5
shows the experiments and results that test the optimization models presented in Chapter 3. The
chapter ends with a thorough comparative analysis between all proposed models and Ruthelde by
Heller et al. [5]. Finally, Chapter 6, concludes the thesis with a review of the key points and a look at
future work.



2
Prior work and background

This chapter presents the fundamentals of ion beam analysis and differential evolution. Furthermore,
Ruthelde, a software package for simulation and automated fitting of IBA spectra is discussed. Ruthelde
will function as the baseline of this research.

2.1. Ion Beam Analysis
Ion Beam Analysis is a suite of analytical techniques used in material science to find the composition
and structure of materials by analyzing the interaction between a high-energy ion beam and the target
material. IBA is known for its depth profiling, non-destructive and quantitative nature.

The core principles of IBA involve an ion beam targeted at a sample material. The ion beam is gen-
erally consisting of protons or helium ions. The particles of the ion beam hit the target material atoms
causing scattering, energy loss and nuclear reactions. These interactions provide a wealth of informa-
tion about the sample’s structure and composition. The most frequently used techniques that utilize
this information are Rutherford Backscattering Spectrometry (RBS), Particle-Induced X-ray Emission
(PIXE), Nulear Reaction Analysis (NRA) and Elastic Recoil Detection Analysis (ERDA). This research
focuses on improving Rutherford Backscattering Spectrometry.

Figure 2.1: Rutherford Backscattering Spectrometry [16]

Rutherford Backscattering Spectrometry (RBS) is a technique where Lord Rutherford laid the founda-
tion in 1911 [11]. In RBS, a high-energy beam of ions are impinging the nuclei of the target atoms
sample and this causes the ions being scattered. A detector capable of measuring the energies of
backscattered ions is used to gather the spectrum measurement. Figure 2.1 gives a simple depiction
of the ion beam, target material and scattered ions caught by the detector.

This measurement can then be used to determine the composition of the sample, more specifically the
areal density of each layer and each element ratio in the layer. The areal density is calculated as the
mass per unit area. The SI derived unit is atoms per square centimeter (atoms∙cm−2). The ratio of an
element in a layer is the percentage of the layer that is that specific element. The areal density of an
element in a layer is found by multiplying the areal density of the layer with the ratio of the element.

4
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Rutherford Backscattering Spectrometry (RBS) can be solved using different algorithms. Jeynes et
al. [6] used simulated annealing to approach RBS. Simulated annealing performs well early in the
optimization but struggles in the end. Barradas et al. [1] approached RBS with an artificial neural
network. Neural networks give instantaneous results but they have to be trained first. Training a neural
network is a long process and for every small change in the setup, all training has to be redone. Finally,
Heller et al. [5] used differential evolution and demonstrated that their implementation is robust and
achieved good precision and accuracy. Section 2.3 will give a more in-depth explanation of Ruthelde.

2.2. Differential Evolution
Differential evolution (DE) is a powerful and efficient algorithm for optimization problems, introduced
by Storn and Price in 1997 [13]. DE is a member of the evolutionary algorithms family where it is
distinct from other algorithms by two main points. The genotype is some form of real-valued vector
and the mutation/crossover operations make use of the difference between two or more vectors in
the population to create a new vector. DE is particularly efficient in non-linear, non-differentiable, and
complex multidimensional problems with a large searchspace. The main drawback of DE is that the
optimization can get stuck in a local optima which causes a sub-optimal solution.

Figure 2.2: [2]

Figure 2.2 gives a diagram of the different steps in DE. In the next couple of subsections, every step is
discussed in depth.

2.2.1. Initial population
In the first step of the DE optimization algorithm we decide on a set of parameters. The first thing to
consider is the amount of variables we want to find and the minimum and maximum value each variable
can be. The minimum and maximum tuple of a variable is called the bound. The next thing to choose
are the stopping conditions. Examples of stopping conditions are discussed in subsection 2.2.5. The
last thing to choose is the population size. The population size N is the amount of vector solutions each
generation encompasses.

After all DE parameters are chosen, the initial population is constructed. Each generation, also the
initial generation holds a population SG of N solutions. A solution consists of individuals. An individual
is a P dimensional vectors X = {x1, x2, ..., xP } where each element represents the fit variable of the
problem. The individuals of the initial generation are chosen randomly with the constraint that the
values are between the variables bounds.

2.2.2. Mutation
In themutation phase, new solution vectors are generated by combining existing solutions of the current
generation. In this step, each individual of the current generation can be used to generate new solutions.
There are different mutation strategies, but typically, for each individual in the current population, a
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mutated vector V is generated using equation 2.1.

V = X1 + F ∗ (X2 −X3) (2.1)

F ∈ [0, 1] is the differential weight andX1, X2, andX3 are randomly chosen individuals of the population
that are distinct. A typical setting of F is 0.8.

2.2.3. Recombination
In the recombination phase, mutated solutions are combined with existing solutions to form crossover
individuals. This step ensures that old and new information and properties are both part of the next
population. This step also helps diversification of the solutions. Typically, equation 2.2 is used in the
recombination step.

U =

{
V if rand(0, 1) ≤ CR,

X otherwise,
(2.2)

CR ∈ [0, 1] is the crossover probability and rand(0,1) is a uniformly distributed random number ri ∼
U(0, 1). A typical setting of CR is 0.9.

2.2.4. Selection
In the selection phase, a decision is made which solutions are kept for the next generation. The DE
algorithm evaluates both the existing as the new solutions for their fitness. The best solution vectors
are then chosen to be in the next generation. Equation 2.3 is typically used in the selection step.

X =

{
U if f(U) ≤ f(X),

X otherwise.
(2.3)

f is the fitness function that needs to be minimized. The fitness function is problem dependent. The
fitness function influences the runtime of the DE algorithm a lot. An inefficient or complex fitness funtion
can lead to long runtimes.

2.2.5. Termination
The DE algorithm loops through the mutation, recombination, and selection step until a termination cri-
teria is met. There are different termination criteria to be chosen and combined. Typically the following
two criteria are used for termination.

• Max iterations: when the DE algorithm reaches a predefined number of generations, the program
terminates and returns the solution with the best fitness value of the last generation.

• Adequate fitness reached: when solution m has a fitness equal or smaller than a predefined
desired fitness, the DE algorithm terminates and returns solution m as the result.

An optimal solution m is the solution where f(m) ≤ f(p) for all p in the search-space. Because the
DE algorithm is often used for problems with a complex shaped search space, the exact real-valued
solution m is very hard to find.

2.3. Ruthelde
Ruthelde is a software package for simulation and automated fitting of IBA spectra developed by Heller
et al. [5]. Material characterization is done using Rutherford Backscattering (RBS). Ruthelde is an
open-source software application that uses differential evolution for the fitting of RBS-spectra. This tool
tackles different challenges in the analysis of RBS data, facilitating deeper understanding of material
properties at microscopic level. Screenshots of the most important pages of Ruthelde can be found in
Appendix B.

2.3.1. Functionality
The first feature of Ruthelde is the ability to simulate RBS-spectra on predefined target models. This
allows users to predict how changes in material composition and structure affect the spectrum. This
feature is essential for interpreting experiment data and fitting a target model.
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Ruthelde can also do automated target model fitting. Using differential evolution, Ruthelde automates
the process of fitting simulated spectra to experimental data. This reduces the time and expertise
needed to analyse RBS-spectra. Ruthelde makes the analysis of RBS-spectra more accessible to
researchers and professionals.

The second feature is the ability to asses the uncertainties associated with RBS measurements. Un-
derstanding these uncertainties is crucial for the interpretation of material properties and the reliability
of these.

Finally, Ruthelde offers a variety of tools to support different aspects of IBA. These include a stopping
calculator, an IBA kinematics calculator, and an ion penetration depth plotter. The tools provides ways
to get additional insights into the interactions between ion beams and target materials.

2.3.2. Technical details
Ruthelde is written in the programming language Java, which makes it usable on different operating
systems. This platform independence makes Ruthelde a valid option in the scientific community, re-
gardless of the preferred computer environment. The codebase of Ruthelde is publicly available on
GitHub [10] which makes the software accessible and possible to make custom changes. Being writ-
ten in Java, all calculations and optimization is performed on the user’s local machine. The performance
of Ruthelde is thus limited to the performance of the local machine and there is no way to use Ruthelde
on a more performant server or super computer.

2.3.3. Differential evolution
Target model fitting in Ruthelde is done using differential evolution. The mutation function used is the
same as in the general differential evolution algorithm. Themutation vector V G

j can be found by formula
2.4.

V G
j = XG

r1 + F ∗ (XG
r2 −XG

r3) (2.4)

F ∈ [0, 1] is the scaling factor and XG
r1, X

G
r2, and XG

r3 are randomly chosen individuals of the population
of this generation G and r1 ̸= r2 ̸= r3.

In the selection step, the fitness function of a solution is achieved by minimizing the sum of squared
residuals (χ2) between the simulated and the experimental spectra using formula 2.5.

χ2 =

N∑
i=0

(
xexperimental
i − xsim

i

)2

(2.5)

N is the amount of energy channels, this is typically 1024. xoriginal
i is the height of the ith channel of

the original spectrum. xsim
i is the height of the ith channel of the simulated spectrum.

This sum is then normalized by formula 2.6.

f :
χ2
SG

χ2
(2.6)

χ2
SG is the sumof squared residuals of the experimental spectrum and the simulated spectrum smoothed

by applying a Savitzky-Golay filter.

Selection is done by maximizing the fitness value found by the above formula. A more in depth discus-
sion of the selection step can be found in Section 3.5.2.



3
Optimization

This chapter will look at the optimization part of the research. First we discuss the motivation of this
research in terms of optimization. Next, we look at the requirements for IBA optimization. Then we
discuss the chosen Python library. After we have chosen a library, we look at the mutation and selection
step of the algorithm. Next, we discuss at how multi-spectra optimization is implemented and we end
the chapter with an explanation of the technique we also compare our approach to, namely simulated
annealing.

3.1. Motivation
Precise material characterization at microscopic level is crucial in the semiconductor industry. Ion beam
analysis, as a technique, allows analysis at this precision. This research build further on the work done
by Heller et al. [5] in which they proposed an approach for IBA where differential evolution is used.
By moving to a well-tested and widely used open-source library for differential evolution, this study
aims to further improve the performance and usability of DE in the context of IBA. In principle, multiple
composition depth profiles may lead to an identical RBS spectrum. We hypothesize that moving to
multi-objective DE optimization by adding multiple experimental spectra would limit the search space
and increase the precision to give better results.

This challenge is a necessary step to meet the ever-increasing demands of material characterization at
microscopic level. By pushing the boundaries of existing techniques, this research work helps build the
characterization tools of the future, essential for contiuous advancements in technology and research.

3.2. Requirements
The optimization algorithm of Ruthelde is written from scratch in Java and is thus potentially not as
efficient as well-tested and used open source libraries. The results by Heller et al.[5] are very promising.
This research builds on top of the work by Heller et al. by implementing differential evolution using a
popular open source library. The first requirement is thus that the optimization is done by a well-tested
and popular open source library that supports differential evolution. Being popular and open source
makes the library less prone to bugs and performance bottlenecks.

The second requirement is that the programming language used is already known by the author and
allows for fast development. Time on this research work is limited and avoiding the need to learn a
language from scratch allows for more time for experiments. The possibility for fast development in the
language also allows for more time elsewhere in this work.

The next requirement is the possibility to modify the DE algorithm to the requirements of the problem.
The mutation step will be modified to create mutation vectors that better suit our problem. The fitness
function in the selection step is also problem-specific and for this problem it requires the integration of
a IBA simulator solver.

8
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3.3. SciPy
Based on the previous requirements, Python library SciPy1 [15] is chosen. SciPy is a libary that, among
other things, provides algorithms for optimization. SciPy wraps highly-optimized implementations writ-
ten in low-level languages, like C. This offers the speed of compiled code with the flexibility of Python.
The library is open source and publicly maintained on GitHub by an active community. SciPy supports
differential evolution natively using a dedicated function call. The mutation strategy and fitness function
are fully customizable and allow the integration of a IBA simulator.

3.4. Vector parameters
Parameter choice is a vital part of solving a problem with differential evolution. It is essential that only
the necessary parameters are selected while still incorporating all essential parameters to solve the
problem. For IBA, the vector parameters can be split in two groups: target material parameters and
experiment parameters.

Target material parameters refer to the variables IBA aims to determine. The main goal is to find the
areal densities of elements in a target layer. The areal density refers to the amount of atoms per square
cm. In Figure 3.1, a thin layer with strontium, titanium and oxygen is shown on top of a Silicon substrate.
For this example, the target is to find the areal densities of strontium, titanium, and silicon. These areal
densities can be found by the multiplication of the ratio of each element with the total areal density of
the SrTiOx layer. The DE parameters for the target material would then consist of the areal density of
the SrTiOx layer, the ratio of strontium, the ratio of titanium, and the ratio of oxygen.

Figure 3.1: Thin film of SrTiOx with Si substrate

Experiment parameters refer to the variables that link to IBA experiment setup. These 4 parameters
need to vary between predefined bounds to allow DE to converge to the correct target material param-
eters. The first parameter is the total applied beam charge (µC). The detector calibration factor and
offset are the second and third parameters. The detector resolution is the last parameter.

There is an improvement to be made in the amount of parameters necessary. The ratio of each element
but one can also be substituted by using proportions to other elements. This further reduces the amount
of DE parameters by 1 for each material layer. For the SrTiOx layer in Figure 3.1, we could represent
the ratio of strontium as parameterA and the ratio of titanium parameter asB. Then the ratio of oxygen,
C, can be found using equation 3.1.

C =

{
1−A−B if 1−A−B > 0,

0 otherwise,
(3.1)

Using these parameters for the SrTiOx layer, the amount of parameters necessary for DE optimization
would be 1 less than before.

3.5. Differential evolution
3.5.1. Mutation
The mutation step is an important step in the DE algorithm. In this step, new solutions are generated
by combining existing solutions of the current generation. Scipy offers 12 different mutation strategies
to choose from. Qiang et al. [9] outlined all available strategies in detail. This research chooses and
compares 3 of the most promising strategies for the ion beam analysis problem.

1https://github.com/scipy/scipy
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During each generation, for each target vector i X = {x1, x2, ..., xP } a new mutant vector is generated
by following the strategy. We chose the following mutation strategy equations.

rand1bin : Vi = Xr1 + Fxc ∗ (Xr2 −Xr3) (3.2)

best1bin : Vi = Xb + Fxc ∗ (Xr1 −Xr2) (3.3)
randtobest1bin : Vi = Xr1 + Fcr ∗ (Xb −Xi) + Fxc ∗ (Xr2 −Xr3) (3.4)

Fxc is a real scaling factor that controls the differential evolution variation. Fcr is a weigt for the com-
bination between original target vector and the best parent vector. Xb is the best solution among the
current population. r1, r2, or r3 are chosen randomly from the interval [1, P].

The first strategy, rand1bin, is the most widely used mutation strategy proposed by Storn and Price
[13]. The second strategy, best1bin, is the default strategy used by Scipy. This strategy takes advan-
tage of the best solution found in the previous generation. Best1bin allows for a faster convergence
towards the optimal solution according to Mezura-Montes et al. [8]. The last strategy, randtobest1bin,
compromises between exploitation of the best solution while also exploring the parameter space. By
choosing a randomly selected parent vector instead of the current parent vector, larger diversity should
be achieved.

In Section 5.2, all 3 aforementioned strategies are compared in an experiment on a sample material.
The most suitable mutation strategy is chosen and used in further experiments.

3.5.2. Selection
In the selection phase, a decision is made which solutions are kept for the next generation. Solutions
are compared by feeding the DE parameters in a fitness function. The vector with the smallest fitness
value is the best solution and will be kept for the next generation. The fitness function is problem
specific and influences for a large part the runtime of the DE algorithm. The fitness function used is
very similar to the fitness function used by Heller et al. [5].

For IBA, the fitness will be calculated by comparing the original spectrum measurement to a simulated
spectrum measurement. This simulated measurement is found by feeding the DE parameters to an
IBA simulator. In Figure 3.2 the simulation process is shown. The DE parameters, together with a list
of fixed experiment and material specific values, is sent to the simulator. The simulator analytically
calculates the IBA spectrum according to the underlaying physical processes. Developing our own IBA
simulator is out of scope for this project. Ruthelde, developed by Heller et al. [5] is used as a simulator
using a WebSocket connection.

Figure 3.2: IBA simulation

The fitting is achieved by minimizing the sum of squared residuals (χ2) between the simulated and the
experimental spectra. Equation 3.5 is used for this calculation.

χ2 =

N∑
i=0

(
xexperimental
i − xsim

i

)2

(3.5)

N is the amount of energy channels, this is typically 1024. xexperimental
i is the counts of the ith channel

of the experimental spectrum. xsim
i is the counts of the ith channel of the simulated spectrum.

Savitzky et al. [12] proposed the Savitzky-Golay filter, a mathematical technique to smooth a list of data
points. This increases the smoothness of the data without distorting the signal tendency. A Savitzky-
Golay filter of width equal to the detector resolution is applied to the original spectrum. The squared
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residuals between the filtered original spectrum and the simulated spectrum is calculated using equa-
tion 3.6.

χ2
SG =

N∑
i=0

(
SG(xexperimental

i )− xsim
i

)2

(3.6)

N is the amount of energy channels, this is typically 1024. xexperimental
i is the counts of the ith channel

of the original spectrum. xsim
i is the counts of the ith channel of the simulated spectrum. SG is the

Savitzky-Golay filter function which is used for smoothing the original spectrum.

The sum of squared residual for a detector with 1024 channels can be very large and is dependent of
the noise and shape of the experimental spectra. A normalized fitness function is needed that makes
the fitness more intuitive. Fitness equation 3.7 ensures normalization of the data.

f :
χ2
SG

χ2
(3.7)

The Savitzky-Golay filter ensures a very smooth representation of the input data points. The squared
residuals of smoothed data is inherently smaller than not smoothed data. χ2

SG is thus always smaller
than χ2. A good solution has a higher fitness value χ2

SG

χ2 than a worse solution. Because Scipy only
minimizes fitness functions, the fitness function for minimization is the inverse. The fitness function
used for single spectra optimization in this research is equation 3.8.

f : 1− χ2
SG

χ2
(3.8)

3.5.3. Multi spectra optimization
Going from single spectra to multi spectra optimization requires changes in the amount of DE vector
parameters and the fitness function. In multi spectra optimization, there is more than 1 experimental
spectra for the same target material. This extra spectra gives the optimization algorithm additional
information to find the optimal solution. For each additional spectra, there are 4 additional experiment
parameters which have to be optimized.

The selection step requires some changes in multi spectra optimization. For each experimental spectra,
a simulated spectra is generated using the IBA simulator. Such as in single spectra optimization, the
inverse normalized squared residuals are used to find the fitness of a solution. The total fitness in multi
spectra optimization is the average fitness of all spectra. Equation 3.9 is used to calculate the fitness
in multi spectra optimization for n spectra.

f : 1− 1

n

n∑
i=0

(
χ2
SGi

χ2
i

)
(3.9)

An important thing to note is that the amount of simulations needed in multi spectra optimization scales
linearly with the amount of spectra. When we compare single with multi spectra optimization using n
spectra, single spectra is O(1) and multi spectra fitting is O(n). This means that there is 1 simualion
per individual for single spectra and n simulations per individual for multi spectra optimization. IBA
simulation is relatively time consuming thus there has to be a balance in the amount of extra information
we want to add and how much time it will take to simulate all spectra.

3.6. Simulated Annealing
Simulated annealing (SA) is a probabilistic technique for finding the global minimum of an objective
function. Simulated annealing is inspired by the process of annealing in metallurgy, where heating and
cooling of a material is used to reduce defects. Simulated annealing mimics this process by allowing
random variations in the solution with a decreasing probability of accepting suboptimal solutions over
time. This makes the algorithm good for avoiding local optima and finding the global optimum.

Simulated annealing uses a temperature parameter that gradually decreases using a cooling sched-
ule. A high temperature makes the algorithm more likely to accept suboptimal solutions which helps
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for exploration of the search space. When the temperature parameter decreases, fewer suboptimal
solutions get accepted. This makes the algorithm better for exploitation of good solutions and reduce
the search space at the end of the algorithms runtime.

The objective of the simulated annealing process is to find a state s where the function E(s) is to be
minimized. The goal is to go from an arbitrary inital state to the state with the minimum possible energy.

Each iteration, the simulated annealing algorithm considers a neighbouring state s∗ and decides with
a probability to move there or not. This step is then repeated until a good enough solution is found or
a maximum amount of iterations is reached.

Standard simulated annealing in SciPy is deprecated since 2014. For our project we use the Dual An-
nealing optimization method from SciPy which replaced simulated annealing. This approach combines
the generalization of Classical Simulated Annealing and Fast Simulated Annealing coupled to a strat-
egy that does local search on accepted locations [17]. The algorithm uses a distorted Cauchy-Lorentz
visiting distribution with its shape controlled by paramter qv calculated using equation 3.10. This visiting
distribution is used to generate a trial jump distance ∆x(t) of variable x(t) under artificial temperature
Tqv for an artificial time t. For an in depth explanation of this distribution we refer to the work done by
Xiang et al. [18].

gqv (∆x(t)) ∝ [Tqv (t)]
− D

3−qv[
1 + (qv − 1)

(
∆x(t)
Tqv (t)

)2
2

3−qv

] 1
qv−1+

D−1
2

(3.10)

Next to the used distribution, 2 main equations are important for this algorithm. These are the chance
of acceptance and the cooling schedule.

3.6.1. Chance of acceptance
The chance P that a new solution is accepted, even if the solution is worse than the current solution is
given by equation 3.11.

pqa = min
{
1, [1− (1− qa)β∆E]

1
1−qa

}
(3.11)

∆E is the difference in energy between the current and next state. β is the Lagrange parameter and
qa is the acceptance parameters coming from the Cauchy-Lorentz distribution in equation 3.10.

For qa < 1 zero acceptance probability is assigned to the cases where [1− (1− qa)β∆E] < 0.

The energy e used for ∆E is determined using the fitness function from the DE algorithm. The fitness
function is calculated using equation 3.8.

Equation 3.10 and 3.11 ensure that at a high temperature Tqv , more suboptimal choices are accepted.
When temperature Tqv decreases, the chance of acceptance of a suboptimal solution is low.

3.6.2. Cooling schedule
The cooling schedule determines the speed of decrease of the temperature parameter Tqv . Equation
3.12 shows the cooling schedule used by the Dual Annealing optimization method of Scipy.

Tqv (t) = Tqv (1)
2qv−1 − 1

(1 + t)qv−1 − 1
(3.12)

Tqv (1) is the starting temperature, t is the artificial time, and qv is the visiting parameter.



4
Web application

This chapter will look at the web application part of this research. First the motivation and requirements
of the web application are defined. Then, a technology stack is chosen that adheres to the requirements.
Next, different interesting software engineering design choices are elaborated further on. Finally we
discuss the DevOps choices that help to validate and deploy the software package.

4.1. Motivation
In chapter 3, the need for efficient optimization techniques in IBA is substantiated. For an optimization
technique to be useful, it needs to be configurable and usable in practice. This research builds further
on the work done by Heller et al. [5] on Ruthelde. The codebase of Ruthelde is too complex and has
a lot of component dependency which makes it hard to build new features. Extending and altering
the actual Ruthelde code is out of scope for this project. We thus have decided that building a new
application will bemore time efficient. As such, we could tackle some challenges that Ruthelde currently
has.

Ruthelde is a desktop application developed in Java. This has as a consequence that the application
is limited to the resources available on the users machine. Having a desktop application also has
the problem that there is an install procedure necessary. The user has to install the application on
his machine and has to have all necessary data available to him at any time. Another problem of a
desktop application is that the machine has to be on for the full duration of an experiment. This could
pose difficulty for complex problem instances that take a long time.

According to finding by Gartner [3], worldwide cloud services are forecast to grow by 19.6% each year
until 2027. There is a broader trend in software development to shift towards cloud computing and
platform independent solutions. In this work, a step towards these new technologies can be made to
make IBA methods more up to date to the current state of the art in software engineering.

4.2. Requirements
The graphical user interface that we will build to communicate with the optimiziation models has some
important requirements.

1. The first requirement is that it has to be a web application. This eliminates the requirement for
the user to install the application before use. A web application also has the advantage that the
application can be used from more devices and theoretically anywhere in the world where there
is an internet connection. A web application also enables the user to have the necessary data on
a shared server which makes it less likely to get lost and everyone has the same version of the
data.

2. Another requirement is that the amount of boilerplate code is minimized. There is a fixed amount
of time for this research work and we should aim for a framework that works as efficiently as
possible.

13
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3. The next requirement is that the final software package should be easy to install and use. This
research work requires dependencies such as e.g. an IBA simulator. The aim for this project
should be to set up the final product as such that install on a server is easy and straightforward.

4. Next, the web application should be compatible with the file types and structure as Ruthelde. This
enables researchers to use their data from Ruthelde in this web application.

5. Finally, the web application should be easy to work with. The amount of bugs should be reduced
as long as time is sufficient. Unit tests or test coverage could help achieve this goal.

4.3. Streamlit
Streamlit1 is a Python package that turns Python data scripts in a shareable web application. Streamlit
is developed and maintained in an open source nature on GitHub. The package emerged as a tool
for the development of web applications at the intersection of data science and software engineering.
Streamlit allows the developers to create web applications with minimal effort and boilerplate code,
accelerating the transition from data analysis to an interactive application.

The decision to use Streamlit for this project was driven by its ability to streamline the development
process by keeping everything in Python. With Streamlit, the complexity of building a web application
is reduced so most of the focus of this project can be on the optimization part rather then being slowed
down by web development details.

The first advantage of Streamlit is the ease of use. The straightforward syntax and simple workflow
makes it accessible for the developer or data scientist. Another advantage is the large library of quality
components made by the community such as e.g. sliders and buttons. Finally, Streamlit allows for
rapid prototyping enabling quick iterations and new features.

Based on the requirements defined in section 4.2, Streamlit is a perfect fit. The library is made to build
web applications, does not require a lot of boilerplate, and is easy to work with. The library supports
our needs seamlessly and easily integrates with other Python data science libaries to enable advanced
features.

In Appendix C, screenshots of a subset of pages of our Streamlit application can be found.

4.4. Docker
Docker has revolutionized the way developers package, deploy, and manage applications by encap-
sulating them in containers. These containers are lightweight, standalone, and executable software
packages that include everything needed to run the application.

This project is complex, containing a lot of dependencies. The project consists of a web application built
using Streamlit and other Python libraries, the Ruthelde executable built in Java that is used for IBA
simulation, and a DE algorithm built using SciPy and other libraries. This diverse collection of depen-
dencies and programming languages requires a complex environment. We chose to encapsulate each
complex part of the project in a Docker container. Docker Compose is used to orchestrate and connect
the containers. The robust environment isolation capabilities are essential for achieving consistency
across development, testing, and production environments. By using Docker and Docker Compose,
we ensure that our web application and associated services run seamlessly regardless of where it is
deployed.

We define three containers as can be seen in Figure 4.1. The first container encapsulates the Streamlit
web application and core Python logic. That container is the only container accessible to the user and
the default access port is port 8501. The second container contains the Ruthelde server application.
This container is accessible on port 9090. Finally, the DE container contains the DE optimization al-
gorithm implemented using SciPy. The DE container is accessible on port 9080. There is a direct
connection between the DE and Ruthelde container to perform IBA simulations on Ruthelde to aid
the DE algorithm. Connections between containers are set up using WebSockets, offering two-way
communication at all times. All shared data is stored in the files directory which is mounted to each
container to allow for shared access.

1https://github.com/streamlit/streamlit
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Figure 4.1: Container architecture diagram

Docker has been a an appropriate choice for this research project. It allows the user to install the
software without worrying about dependencies and installations. A great advantage of Docker in this
project is that the web application and optimization models are divided. When the user closes the
web application or Streamlit crashes, the optimization on the other containers can continue without a
problem. Docker not only simplified the development workflow but also ensured that our application is
portable, scalable, and consistent across all deployment environments.

4.5. Ruthelde integration
In section 3.5.2, the IBA simulator from Ruthelde is discussed. Our DE optimization algorithm needs to
integrate the IBA simulator from Ruthelde to evaluate possible solutions. In this section, the different
methods of connecting the DE and Ruthelde containers that were tried are discussed.

4.5.1. Command line
The first method uses the command line functionality of Ruthelde. Using the subprocess libary in
Python, the following terminal command is executed that starts the Ruthelde Client jar using command
line options.

1 $ java -jar Ruthelde_Client.jar requestType input.json output.json ip 9090

requestType depends on the desired functionality and can be SIMULATE, OPTIMIZE or OPTIMIZE_MS,
input.json is the path to the input file, output.json is the path to the output file, ip is the ip address of the
machine the server is running on, and 9090 is the port the server is listening to.

There are some disadvantages with this method. The Java client has to exist in the same container
as the Python code and have access to the input file. The duo setup of Java and Python makes
the container more complex and larger in size. Another disadvantage is that if the Python container
crashes, the Ruthelde Client also crashes and the server does not have a return point to send the
result to. Finally, with this method there is no way of tracking optimization or simulation progress from
the Python application. After the command is executed, there is no connection between Python and
Ruthelde Client.

4.5.2. WebSockets
In the Streamlit application it is necessary to track the progress of a simulation or optimization. This
is not possible with the command line method as there is not a fixed connection between Python and
Ruthelde Client. We chose to investigate the possibility of replacing the Ruthelde Client with a Python
client. This Python client will directly connect to Ruthelde Server using a WebSocket.

WebSockets provide a full-duplex communication over a single, long-lived connection. This allows real-
time data exchange between a client and a server. Unlike with HTTP, where the client has to start all



4.6. Storage setup 16

requests, in WebSockets the server can push data to the client when it comes available. The client
does not have to request data repeatedly. For our project, WebSockets are a good choice because the
server would then push the progress or intermediate data to the client when it becomes available.

In the public codebase of Ruthelde [10], it can be seen that ObjectOutputStream andObjectInputStream
methods are used to communicate with Ruthelde Client. Unfortunately, the code for Ruthelde Client
is not public. After reverse engineering the Ruthelde Client and trying numerous Python libraries such
as but not limited to pickle, multiprocessing.Pipe, python-javaobj we learned that Java uses a unique
protocol for ObjectOutputStream and ObjectInputStream. Back and forth connection from Python to
Java ObjectOutputStream and ObjectInputStream is at the time of this research, an unsolved problem
but there is some progress done by developers on Github [14].

Luckily, René Heller, the main developer of Ruthelde [5], agreed to make a change to the server so
a WebSocket connection from a different programming language is possible. The socket library from
Python communicates to Ruthelde Server from the Streamlit or DE containers.

4.6. Storage setup
In our web application we need a way of storing data and information. Our application has to be
compatible with Ruthelde data files and communication to the Ruthelde simulator module is through
json files. Based on this information we chose to store data using flat-file storage. In this approach,
data is stored in text or json files rather than in a structured database like SQL. Flat-file systems are
easy to setup, simple to maintain, and have lower overhead. Flat-file storage is a great choice when
advanced features of SQL databases are not a requirement. This method allows us to efficiently store
data in the same format as Ruthelde. As data is stored in files, it is easy to implement a upload or
download functionality in the web application.

input
logs
optimization
optimization-ms
setup

calculation
detector
differential
experimental

spectra
json
txt

In above diagram, the file structure is visualised. In the input directory, the data files are temporarily
stored which will be sent through Ruthelde for a simulation or optimization. The logs directory stores
logs for optimizations using the DE container. In the optimization and optimization-ms directory, all
result data is stored after respectively a single or multi spectra optimization. In the setup directory all
configuration files are stored necessary to start a simulation or optimization. The configuration files are
split in there different sub categories so the user can create and combine different setup configurations.
Finally, in the spectra directory experiment spectra and simulated spectra data is stored grouped by
their file type being json or txt.

4.7. DevOps
In a software engineering project there should be an emphasis on validation of the codebase. The com-
ponents and methods should do what they were implemented for. Tests are an important measurement
method to validate functionality in code.

In this project we chose to use pytest2 as the main testing framework. This project has external de-
pendencies such as the file system and Docker containers. Therefore, we used unittest.mock to mock

2https://github.com/pytest-dev/pytest
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these dependencies. Mock objects are simulated objects that mimic the behaviour of real dependency
objects in controlled ways. This way we can focus on the code being tested and not on the behavior
or state of external dependencies. With the coverage library, we can see which functionality is tested
and generate a coverage report. The coverage report can be found in section 5.7.

The codebase and used data is stored in a public repository on GitHub [7]. GitHub actions runs all
the pytest tests at every commit or pull request. This ensures no breaking changes are made in the
development process. The repository also includes install documentation and relevant shell scripts to
help the user install and use the software package.



5
Experimental Results

This chapter will talk about the experiments performed on the optimization models. We start with an
experiment on the best1bin, rand1bin, and randtobest1bin mutation strategies proposed in chapter 3.
Next, single spectra optimization experiments are performed on different materials. After, experiments
on the multi-spectra optimization approach are conducted and discussed. Next, an experiment on the
simulated annealing technique is discussed. Finally all previous results are compared to the results
from Ruthelde [5]. This chapter ends with a discussion of the tests performed on our code and the test
coverage.

All experiments are conducted on a 2020 Mac Mini with an 8-core M1 CPU and 8GB of RAM.

5.1. Metrics
When we want to evaluate the performance of algorithms, good comparison metrics are crucial. Before
we discuss all experiments, we will first define the metrics used. We chose these metrics because they
are also used in the work done by Heller et al. [5]. The use of the same metrics makes the comparison
fair.

5.1.1. Standard deviation
Standard deviation is a metric for the spread of a set of values around the mean. It indicates the degree
of consisteny of results between runs. A low standard deviation signifies high reliability of the algorithm.
This is important for complex problems with large search spaces like in IBA. Consistency is key for the
reliability of optimization results. The standard deviation can be calculated using equation 5.1.

σ =

√∑N
i=1(xi − x̄)2

N − 1
(5.1)

σ is the standard deviation. N is the number of values. xi is the ith value. x̄ is the mean of all values.
In a standard deviation graph, the standard deviation for some vector parameters is visualised over the
number of evaluations for an experiment. Ideally, the standard deviation of a parameter converges to
0, which means that all runs have identical parameter values at that point in time. It is important to note
that when calculating the standard deviation at a specific function evaluation, terminated experiment
runs at that point do not get included.

5.1.2. Fitness
Fitness is the next metric that is used for comparison in the chapter. Fitness is a measure of how well
a particular solution meets the objective of the optimization problem. In DE, fitness is used to assess
the quality of solutions within a population. A lower fitness value means that we have a better solution,
The definition of the fitness function is problem specific and further elaborated on in section 3.5.2 and
3.5.3. In a fitness graph, the average fitness over all runs is visualized in function of the amount of
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function evaluations. Ideally, the fitness shows a downward trend when function evaluations increase.

5.1.3. Survival rate
A faster optimization algorithm that finds an optimal solution is preferable. There should be a balance
between speed of convergence and fitness. The survival rate metric shows the time it takes for an
algorithm for each run to terminate. A run stops when a (sub)optimal solution is found. Ideally, all run
instances terminate before the predefined maximum amount of iterations. When a run is still converg-
ing but exceeding the predefined maximum amount of iterations, the algorithm is too slow to find the
optimal solution. In a survival rate graph, the amount of running instances in function of the amount of
function evaluations is shown. Ideally, all instances terminate before the maximum amount of iterations
is reached.

5.1.4. Simulated spectra
The last metric to evaluate a solution is a spectra simulation plot. In this plot, the original experiment
data is visualised in function of the counts. On top of that, the simulated spectra data for the best solution
found is generated and plotted on the same graph. We can then visually compare the experimental and
simulated spectra for inconsistencies. Ideally, the simulated data perfectly aligns with the experimental
data.

5.2. Mutation strategy
In the mutation step in the DE algorithm, new solutions are generated by combining existing solutions
of the current generation. The choice of a mutation strategy is important and there are a lot of strategies
to choose from. Below, three viable mutation strategy options are defined. In the following experiments,
we will compare each of these strategies using the standard deviation, fitness, and survival rate. Finally,
we compare the results and decide on the most suitable choice that will be used in further experiments.

For the mutation strategy experiments, a thin film of strontium-titanium-oxide is used on a silicon sub-
strate. This material is visualised in Figure 5.1. It is important to note that these experiments are
conducted using the old configuration. This means that the amount of vector parameters is not opti-
mized and contains more parameters than necessary. For these mutation strategy experiments we
will optimize 8 DE vector parameters. These being the 4 experiment parameters, the areal density of
the strontium-titanium-oxide layer and a separate parameter for each element ratio in the strontium-
titanium-oxide layer. For each mutation strategy, 10 experiment runs were conducted. We chose for
10 runs to get a balance between a good average result over multiple runs while also keeping the total
experiment time low. The DE parameters and average runtime for each strategy can be found in Table
A.1.

Figure 5.1: Thin film of strontium-titanium-oxide with Si substrate

It is important to note that the convergence termination criteria is 0.001 instead of 0.01. This means
that the algorithm does not stop as fast if the new solutions hardly improve. The reason for this choice
is to have the algorithm reach a large number of generations to better assess the mutation strategy
quality. The consequence is that the maximum amount of function evaluations reached for a run is
higher than for the other experiments.

5.2.1. Rand1bin
The first mutation strategy tested is the Rand1bin strategy. It is the most widely used mutation strategy
and can be calculated using equation 5.2.

rand1bin : Vi = Xr1 + Fxc ∗ (Xr2 −Xr3) (5.2)
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Fxc is a real scaling factor that controls the differential evolution variation. r1, r2, or r3 are chosen
randomly from the interval [1, P].

Figure 5.2: Thin film of strontium-titanium-oxide on a silicon
substrate standard deviation using rand1bin mutation strategy

Figure 5.3: Thin film of strontium-titanium-oxide on a silicon
substrate fitness using rand1bin mutation strategy

5.2.2. Best1bin
The next strategy, best1bin, is the default strategy used by Scipy. This strategy takes advantage of the
best solution found in the previous generation. Best1bin is calculated using equation 5.3.

best1bin : Vi = Xb + Fxc ∗ (Xr1 −Xr2) (5.3)

Fxc is a real scaling factor that controls the differential evolution variation. Xb is the best solution among
the current population. r1, and r2 are chosen randomly from the interval [1, P].

Figure 5.4: Thin film of strontium-titanium-oxide on a silicon
substrate standard deviation using best1bin mutation strategy

Figure 5.5: Thin film of strontium-titanium-oxide on a silicon
substrate fitness using best1bin mutation strategy

5.2.3. Randtobest1bin
The last strategy, randtobest1bin, compromises between exploitation of the best solution while also
exploring the parameter space. By choosing a randomly selected parent vector instead of the current
parent vector, larger diversity should be achieved. Randtobest1bin can be calculated using equation
5.4.

randtobest1bin : Vi = Xr1 + Fcr ∗ (Xb −Xi) + Fxc ∗ (Xr2 −Xr3) (5.4)

Fxc is a real scaling factor that controls the differential evolution variation. Fcr is a weigt for the com-
bination between original target vector and the best parent vector. Xb is the best solution among the
current population. r1, r2, or r3 are chosen randomly from the interval [1, P].
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Figure 5.6: Thin film of strontium-titanium-oxide on a silicon
substrate standard deviation using randtobest1bin mutation

strategy

Figure 5.7: Thin film of strontium-titanium-oxide on a silicon
substrate fitness using randtobest1bin mutation strategy

5.2.4. Survival rate
Such as discussed in section 5.1.3, a faster optimization algorithm that finds an optimal solution is
preferable. Figure 5.8 shows the survival rate of each mutation strategy.

Figure 5.8: Thin film of strontium-titanium-oxide on a silicon substrate mutation strategies survival rate

5.2.5. Discussion
If we compare the standard deviation graphs of the mutation strategies in Figures 5.2, 5.4, and 5.6 we
can conclude that all strategies converge quite well. The randtobest1bin strategy in Figure 5.4 gives
the worst result. The rand1bin and best1bin standard deviations follow a comparable trend with the
rand1bin strategy in Figure 5.2 giving the best result.

All mutation strategies have a fitness that converges to a sufficient value which can be seen in Figure
5.3, 5.5, and 5.7. Again, randtobest1bin has the worst convergence. Rand1bin and best1bin follow the
same trend and both perform well. The rand1bin and randtobest1bin mutation strategies both converge
to a fitness value of 0.0346 . The best1bin mutation strategy converges to a fitness value of 0.0218 .
This means that the best1bin strategy found on average the best solution.

If we look at the survival rate in Figure 5.8, we can conclude that best1bin finds a solution the fastest.
An interesting observation to be made is that the rand1bin strategy seems to have a hard time to find
a sufficient solution and terminate the algorithm. The randtobest1bin strategy lays somewhere in the
middle in terms of survival rate.

The best1bin strategy is the default mutation strategy in SciPy which makes it an often used and tested
strategy. Research by Mezura-Montes et al. [8] proves that the best1bin strategy allows for a faster
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convergence towards the optimal solution compared to other strategies like the rand1bin and rand-
tobest1bin strategies. The best1bin strategy has a slightly worse standard deviation trend then rand1bin
in our tests but in terms of fitness it is comparable and converges to a better solution. The survival rate
metric shows that best1bin finds a solution the fastest of all the tested strategies. Based on all this
information, the best1bin strategy is chosen to be the best choice for further experiments.

5.3. Single spectra optimization
In this section, we test our DE algorithm for single spectra optimization on different material configura-
tions. All DE experiments are conducted using the best1bin strategy, which was proven to be the best
choice in the previous section. For each material we ran the experiment 20 times to have a good and
representative average result.

5.3.1. Au SiO2 Si
The first material we want to determine the material composition for is a gold film on a silicon-oxide layer
on a silicon substrate. This material is visualised in Figure 5.9. We want to find the areal densities of
both the gold film and the silicon and oxygen of the silicon-oxide layer. We have 7 DE vector parameters
being the 4 experiment parameters, the areal density of gold, the areal density of the silicon-oxide layer
and the ratio of oxygen. We performed 20 experiment runs for this material which took an average of
6 minutes each. The DE parameters used can be found in Table A.1.

Figure 5.9: Gold film on a silicon-oxide layer on a silicon substrate

Figure 5.10: Gold film on a silicon-oxide layer on a silicon
substrate standard deviation

Figure 5.11: Gold film on a silicon-oxide layer on a silicon
substrate fitness
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Figure 5.12: Gold film on a silicon-oxide layer on a silicon substrate synthetic spectrum

In Figure 5.10, the standard deviation of the charge, calibration factor, gold areal density, and oxygen
areal density are plotted. We can see that all variables converge to a lower standard deviation. The
algorithm has a relatively hard time finding the areal density of the silicon-oxide layer. In Figure 5.11,
the average fitness of all runs is shown in function of the amount of function evaluations. We can see
that the algorithm is able to minimize the problem efficiently and it converges to a small fitness value.
The simulated spectrum generated using an optimal solution of one of the runs is plotted in fig 5.12. It
can be seen that the simulated spectrum follow the experiment spectrum, even at difficult points like
e.g. at energy level 1400.

From these metrics we can conclude that the DE algorithm finds a good solution for this material in
sufficient time. The predefined maximum amount of iterations is never reached, all vector parameters
converge to the solution over time and the fitness slowly decreases.

5.3.2. SrTiOx Si
The second experiment will assess the performance of our DE algorithm on a thin film of strontium-
titanium-oxide on a silicon substrate. This material is visualised in Figure 3.1. The objective is to find
the areal densities of strontium, titanium, and oxygen in the top layer. We have 7 vector parameters
being the 4 experiment parameters, the areal density of the stronium-titanium-oxide layer, and the ratio
of strontium and titanium. We performed 20 experiment runs for this material which took an average
of 4 minutes each. The DE parameters used can be found in Table A.1.

Figure 5.13: Thin film of strontium-titanium-oxide on a silicon substrate
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Figure 5.14: Thin film of strontium-titanium-oxide on a silicon
substrate standard deviation

Figure 5.15: Thin film of strontium-titanium-oxide on a silicon
substrate fitness

Figure 5.16: Thin film of strontium-titanium-oxide on a silicon substrate synthetic spectrum

The standard devitation, in Figure 5.14, shows a downward trend for all parameters. All parameters
except of the charge converge very well to the same value. In Figure 5.15, the average fitness over
all runs is shown in function of the amount of function evaluations. We can see that the algorithm
efficiently converges to a small fitness value. It can be seen that a good solution is found at 4000
function evaluations and the algorithm does not improve much after. The simulated spectrum is plotted
in Figure 5.16. The experiment and simulated spectra follows the same trends, even large spikes are
followed.

Based on this observations we can conclude that the proposed DE algorithm works very well on this
material instance. The algorithm is able to find a good solution in an acceptable time.

5.3.3. SrTiO3 LaFeO3 SiO2 Si
The final single spectra DE optimization experiment is on a multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate. This multilayer material will test the perfor-
mance of the proposed DE optimization algorithm in a complex setting. The material is visualised in
Figure 5.17. The aim is to find the areal densities of strontium, titanium, oxygen layer 1, lanthanum,
iron, oxygen layer 2, silicium, and oxygen layer 3. We have 12 DE parameters being the 4 experiment
parameters, the areal density of the strontium-titanium-oxide layer, the areal density of the lanthanum-
iron-oxide layer, the areal density of the silicon-oxide layer, and the ratios of strontium, titanium, lan-
thanum, iron, and silicon. For the experiment we performed 20 runs which took an average of 35
minutes each. The algorithm stops if the maximum amount of funtion iterations of 12000 is reached.
The DE parameters can be found in Table A.1.
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Figure 5.17: Multilayer stack of strontium-titanium-oxide, lanthanum-iron-oxide, silicon-oxide on a silicon substrate

Figure 5.18: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate

standard deviation

Figure 5.19: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate fitness

Figure 5.20: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate

survival rate

Figure 5.21: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate

synthetic spectrum

In Figure 5.18, the standard deviation of the the desired parameters of this problem are plotted. We can
see that there is a downward trend for all parameters but the charge lacks a bit behind. An interesting
thing to note is the drop at the 6000 function evaluations mark. The fitness, in Figure 5.19, gradually
converges which is desirable. The same drop at the 6000 function evaluation mark can also be noticed.
Because of the strange behaviour at the 6000 function evaluation mark, I chose to also investigate the
survival rate. In Figure 5.20, we can see that around the 6000 function evaluation mark, 3 runs found
a solution and stopped the run. These runs were probably stuck in a local minima different from the
absolute minimum. This difference in convergence point causes the standard deviation and fitness
to be relatively high. When the 3 runs that got caught in the local minima stop their run, the standard
deviation and fitness drop significantly. In Figure 5.21, the simulated and experiment spectra are plotted
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on top of each other. We can see that the simulated spectra is fitted well and follows the experiment
spectra trends very well.

From these observation we can conclude that our algorithm works well for this problem instance. The
standard deviation and fitness converge quite well. It is good to mention that only 3 of the 20 runs
converged to a sufficient solution themselves. The other runs had to be stopped by the maximum
amount of function evaluations stopping condition. If we look at the simulated spectra plot in Figure
5.21, we can see that the proposed approach is able to find a good solution.

5.4. Multi-spectra optimization
For the multi spectra optimization experiment we chose to use a complex material, being a multilayer
stack of strontium-titanium-oxide, lanthanum-iron-oxide, silicon-oxide on a silicon substrate. The ma-
terial is visualised in Figure 5.17. We have a duo spectra setup where the difference between both
spectra is in the incidence angle of the beam. The first spectra has an angle of 170° (alpha), 110°
(theta), and 10° (beta). The second spectra has an angle of 20° (alpha), 170° (theta), and 10° (beta).
The difference in incident angle of the beam creates a totally different spectra measurement.

The objective is to find the areal densities of strontium, titanium, oxygen layer 1, lanthanum, iron, oxygen
layer 2, silicium, and oxygen layer 3. We have 16 DE parameters being 4 experiment parameters for
the first spectra, 4 experiment parameters for the second spectra, the areal density of the strontium-
titanium-oxide layer, the areal density of the lanthanum- iron-oxide layer, the areal density of the silicon-
oxide layer, and the ratios of strontium, titanium, lanthanum, iron, and silicon. For this experiment we
performed 20 runs which took an average of 72 minutes. The algorithm stops if the maximum amount
of function iterations of 20000 is reached. The DE parameters can be found in Table A.1.

Combining single and multi spectra fitting directly with each other is an unfair comparison. In multi
spectra fitting there are more parameters and each generation takes twice or more as much function
evolutions as single spectra fitting. As such we decided to also perform 20 runs of a multi spectra
setup but with 2 identical spectra measurements. The identical spectra used is the multilayer stack
of strontium-titanium-oxide, lanthanum-iron-oxide, silicon-oxide on a silicon substrate from Figure 5.17
with an incident angle of the beam of 170° (alpha), 110° (theta), and 10° (beta). We hypothesise that
multi spectra fitting with different spectra gives a comparable or better result than fitting with identical
spectra. This is due to the added information the algorithm receives by including an extra spectra.

Figure 5.22: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate multi

spectra fitting standard deviation

Figure 5.23: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate multi

spectra fitting standard deviation experiment parameters
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Figure 5.24: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate multi

identical spectra fitting standard deviation

Figure 5.25: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate multi

identical spectra fitting standard deviation experiment
parameters

Figure 5.26: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate multi

identical and different spectra fitting standard deviation

Figure 5.27: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate multi

different spectra fitting standard deviation experiment
parameters

Figure 5.28: Multilayer stack of strontium-titanium-oxide, lanthanum-iron-oxide, silicon-oxide on a silicon substrate multi
different spectra fitting survival rate
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Figure 5.29: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate multi

different spectra synthetic spectrum 1

Figure 5.30: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate multi

different spectra synthetic spectrum 2

In Figure 5.22 the standard deviation of the elements found using multi spectra fitting with different
spectra is plotted over time. At first, the runs seem to have a hard time converging to the same solution.
After 10000 function evaluations, the algorithm starts converging and over time find a good common
solution. Next, in Figure 5.23 the experiment parameters are plotted for multi spectra fitting with different
spectra. Here we can see that the algorithm converges well for both spectra which means that the
algorithm is able to use both spectra for finding an optimal solution.

Next, in Figure 5.24 we can see the standard deviation of the elements found using multi spectra fitting
with identical spectra. We can see, as with the different spectra optimization that the algorithm has
a hard time converging before the 10000 function evaluations mark. After that point, there is a drop
and the standard deviation gradually converges to a common solution. In Figure 5.25, the standard
deviation of the experiment parameters is plotted. Just as with multi spectra fitting with different spectra,
the experiment parameters converge good. Both spectra of the identical spectra fitting converge equally
good and help to find an optimal solution.

In Figure 5.26, the fitness of multi spectra fitting of both different and identical spectra is plotted over
time. We can see that the fitness of different spectra fitting gradually converges to a very good fitness.
The fitness for identical spectra fitting also converges to a very good fitness but does it with bigger
drops. After the 10000 function evaluations point, the fitness drops a large amount. This drop is at the
same time as the drop in standard deviation as shown in Figure 5.24. This is probably caused by the
termination of some runs that were stuck in local minima. In Figure 5.27 the fitness of spectra 1 and
2 of multi spectra fitting with different spectra is fitted over time. Both the fitness of spectra 1 and 2
gradually converge over time and end at a very good fitness. This observation confirms the observation
made based on Figure 5.23 that both spectra are used to find an optimal solution.

The survival rate for multi spectra fitting using different spectra, which can be seen in figure 5.28, shows
us that the algorithm needs at least 10000 function evaluations to find an optimal solution. Another
observation is that only 4 out of 20 runs were stopped based on the maximum amount of function
evaluations stopping condition. This means that 20000 is a good stopping value for this experiment.

In Figure 5.29 and 5.30, the simulated and experiment spectra for both spectra of multi spectra fitting
with different spectra are plotted on top of each other. The experiment and simulated spectra follow the
same trends in both figures. Even large spikes are followed. The artificial noise in spectra 2 does not
cause a problem and we can still see a good fit.

Based on these observations, we can conclude that our multi spectra fitting algorithm works as ex-
pected. The algorithm is able to find good fits for both spectra and the solutions converge over time.
We observed that both spectra are equally used to find the material parameters as both standard devi-
aton and fitness improves over time. We even see a more gradually decline in fitness of using different
spectra than using identical spectra. The addition of a different spectra possibly avoids the algorithm
to go in local minima as often as with identical spectra.The simulated spectra follows the experiment
spectra very well, even at spikes as can be seen in Figure 5.29 and 5.30. In comparison to multi spectra
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fitting with identical spectra, our algorithm has at least a comparable performance in terms of standard
deviation and fitness.

5.5. Simulated annealing
An important part of this research is to assess if differential evolution is a good technique for IBA. There-
fore, in the following experiment we will test simulated annealing as an alternative. We use a multilayer
stack of strontium-titanium-oxide, lanthanum-iron-oxide, silicon-oxide as material so a comparison can
be made to the results gathered in section 5.3.3. The material is visualised in Figure 5.17. The objec-
tive is to find the areal densities of strontium, titanium, oxygen layer 1, lanthanum, iron, oxygen layer
2, silicium, and oxygen layer 3. We have 12 parameters being the 4 experiment parameters, the areal
density of the strontium-titanium-oxide layer, the areal density of the lanthanum-iron-oxide layer, the
areal density of the silicon-oxide layer, and the ratios of strontium, titanium, lanthanum, iron, and silicon.
The experiment is conducted 20 times which took an average of 58 minutes each. The algorithm stops
if the maximum amount of iterations of 20000 is reached. We used the SciPy default initial temperature
of 5230. Relevant DE parameters can be found in Table A.1.

Figure 5.31: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate

simulated annealing standard deviation

Figure 5.32: Multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, silicon-oxide on a silicon substrate

simulated annealing fitness

Figure 5.33: Multilayer stack of strontium-titanium-oxide, lanthanum-iron-oxide, silicon-oxide on a silicon substrate simulated
annealing synthetic spectrum

In Figure 5.31 the standard deviation of the areal densities of strontium, titanium, lanthanum, and
iron is shown. The starting standard deviation of all parameters is quite good but there is barely a
downward trend over time. Lanthanum and iron converge only at the end to a good standard deviation
but strontium and titanium stay rather static over time. In terms of fitness, in Figure 5.32, we can clearly
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see a downward trend over generations but it spikes back up and we never reach a fitness below 0.2.
This indicates that the algorithm has a hard time converging to the final optimal solution. Finally, in
Figure 5.33, the simulated and experiment spectra are plotted on top of each other. We can see that
the simulated spectra follows the trends but it sometimes is a bit of such as at energy level 1200.

Following these insights we can conclude that the SciPy implementation of the simulated annealing
algorithm performs worse than the DE algorithm. Such as stated in the work by Jeynes et al. [6],
simulated annealing works well in the exploration phase at the start of the run. The implementation
of SciPy also includes a local search algorithm on accepted locations but it still underperforms in the
exploitation phase. The algorithm finds average solutions and keeps improving them. From Figure
5.31 and 5.32 we can confirm this behaviour. The algorithm finds average solutions but the algorithm
has a hard time exploiting these solutions later in the run to find the optimal solution. We conclude that
the SciPy implementation of simulated annealing is a suboptimal technique to find IBA solutions.

5.6. Ruthelde comparison
This research work uses the work by Heller et al. [5] as a basis. In this section, we see how our
approach compares to Ruthelde. It is important to note that the data from Ruthelde is not validated in
this research work due to time constraints. As this project is in very close collaboration with the original
researchers we saw no need for data validation. Data validation is the process in which we ensure
results from another research work are correct by rerunning the experiments and confirm that these
results are in line with the described results.

Figure 5.34: (a) Synthetic spectrum obtained for a Au film on a silicon-oxide layer on a silicon substrate, (c) for a SrTiO layer
on a silicon substrate, (e) for a InGaZnO layer on a silicon substrate, and (g) for a SrTiO LaFeO SiO multilayer stack on Si.
Black data points are the synthetic spectrum obtained with the Monte Carlo method. The red line corresponds to the best fit
obtained after fitting the synthetic spectrum with differential evolution using Ruthelde. (b), (d), (f), and (h) Evolution of the

convergence of the various parameters during the fitting as a function of the number of evaluations using Ruthelde. Figures
made by Heller et al. [5].

In Figure 5.34, the sythetic spectrum and standard deviation graphs for 4 experiments using Ruthelde
are shown. The first experiment is the same material as we tested in section 5.3.1. Ruthelde seems to
converge better over generations in terms of the standard deviation. A large difference is the amount
of function evaluations reached. While all the runs with our approach stop after 5000 evaluations,
Ruthelde goes on untill 15000 but with minor improvement. Ruthelde has a better standard deviation
on average but if we look at the synthetic spectrum and fitness graph we can see that both approaches
are able to converge to a good solution. Experiment 2 in Figure 5.34 is the same material we tested
in section 5.3.2. As with experiment 1, our approach converges a lot faster with only 6000 function
evaluations. The standard deviation of most parameters of both our approach and Ruthelde goes
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below the 0.01 threshold which is good. In terms of the synthetic spectrum plot, both find a good
solution regardless of the artificial noise. Finally, experiment 4 in Figure 5.34 shows the results for the
same material used in section 5.3.3. Our approach has a better standard deviation for most of the
parameters going below the 0.01 threshold. Ruthelde, however, stays above the 0.1 threshold. The
synthetic spectra plots are good for both approaches but for our approach, the simulated spectra follows
the experiment data very close. Overall, we can observe that our algorithm is more likely to be stuck
in local minima than Ruthelde. This can be observed by the drop in standard deviaition and fitness
when certain runs terminate. This is probably because in Ruthelde, an individual can be mutated with
random values based on a small probability at each generation. This allows the algorithm to retain
variation of the population and escape local minima.

Figure 5.35: Multilayer stack of strontium-titanium-oxide, lanthanum-iron-oxide, silicon-oxide on a silicon substrate simulated
annealing synthetic spectrum

In Figure 5.35, we aggregated all fitness data from this research project on the multilayer stack of
strontium-titanium-oxide, lanthanum-iron-oxide, silicon-oxide on a silicon substrate material. The pur-
ple line shows the plot of a single run of Ruthelde on this material using the same parameters as the
simulated annealing experiment in section 3.6. In this plot we can see that our approach is able to
find a good solution using both single and multi fitting for this material. Simulated annealing performs
the worst because his lack of exploitation capability of found solutions at the end of the run. Ruthelde
converges quite well. At the end of this research work we identified that the fitness calculation in the
used version of Ruthelde is different than the fitness calculation we used throughout the thesis. This
explains the difference with the results of our algorithm. An important note is that Ruthelde only has as
single run because of time constraints and functionality limitations. Ruthelde does not have a method
to run x amount of experiments and aggregate the data easily.

Based on these observations, we can conclude that our approach is able to find good solutions in
reasonable time. Compared to Ruthelde, our algorithm is more likely to get stuck in local minima
because of the lack of a good implemented technique to escape local minima. The proposed multi
spectra fitting algorithm uses both spectra equally to find a good common solution. Finally, we can
conclude that differential evolution outperforms simulated annealing.

5.7. Test coverage
For an optimization model it is quite straightforward to see how it performs. For a web application this is
harder. Unit and integration tests are an often used method to measure the correctness of a codebase.
Therefore, we chose to test all logic functionality of the web application and the optimization models.
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Listing 5.1: Coverga report generated with 104 tests
1 Name Stmts Miss Cover
2 ------------------------------------------------------------
3 src/GA/ga_input_output.py 111 2 98%
4 src/GA/multi_spectra_optimization.py 182 17 91%
5 src/GA/server.py 52 19 63%
6 src/GA/single_spectrum_optimization.py 106 18 83%
7 src/__init__.py 0 0 100%
8 src/logic/config.py 14 0 100%
9 src/logic/convert.py 9 0 100%

10 src/logic/file.py 268 6 98%
11 src/logic/helper.py 38 0 100%
12 src/logic/input.py 32 0 100%
13 src/logic/spectra_reader.py 90 18 80%
14 ------------------------------------------------------------
15 TOTAL 902 74 92%

As discussed in section 4.7, pytest and unittest are used for unit testing and the mock libary is used for
integration tests. The high dependency on the filesystem and Ruthelde container required a lot of mock
objects which made testing hard and complex. In the end, 104 tests are written which tested most of
the necessary functionality. The statements that are missed are either not testable or not important. In
Listing 5.1, the coverage report is shown in which we achieved a coverage of 92%.

5.8. Summary
This section summarizes the findings and outcomes of the experiments conducted on the optimization
models for IBA proposed in Chapter 3.

Our experimental journey began with the examination of different mutation strategies, namely rand1bin,
best1bin, and randtobest1bin, as introduced in Chapter 3. Based on the results we found that overall
best1bin is the best strategy. The strategy constantly finds superior solutions and converges to a good
fitness.

Next, our single spectra optimization approach was tested on various material. Across different ma-
terial configurations we found optimal solutions which proves the robustness of the chosen DE strat-
egy best1bin. Even in a complex scenario such as with a multilayer stack of strontium-titanium-oxide,
lanthanum-iron-oxide, and silicon-oxide on a silicon substrate the algorithm was able to give good re-
sults.

The performance of our algorithm on multi spectra optimization experiments was impressive. The
algorithm utilized the additional data from both spectra the search for optimal solutions. This approach
even matched the performance of the single spectra optimization while finding a good solution for both
spectra.

A comparative analysis between DE and simulated annealing showed an interesting observation. While
simulated annealing has its strengths in exploration, it fell short in exploitation phases. This shortcoming
substantiates the same finding by Jeynes et al. [6] and shows that DE is a better choice for IBA
optimization.

Finally, the testing of our codebase, which achieved a good 92% test coverage, ensured the relibility
of the optimization models and web application. These tests, together with the experimental results,
show the robustness and accuracy of the proposed optimization models.
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Conclusion

In this thesis, we have explored different techniques to determine the composition of a material using
IBA optimization. Based on the work done by Heller et al. [5], we decided to further explore the
possibilities of using differential evolution. The proposed algorithms are controlled by a web application.
In this thesis we investigated the following research questions:

1. How can Differential Evolution optimization be effectively applied to multi-spectra Ion Beam Anal-
ysis to improve material characterization accuracy and efficiency?

2. What are the key software engineering challenges in developing an advanced Ion Beam Analysis
platform that incorporates Differential Evolution optimization, and how can these challenges be
addressed?

3. In what ways do the newly developed optimization algorithms improve upon Ruthelde in terms of
accuracy and efficiency?

Our investigation revealed several insights about them:

• Mutation strategy: The comparative analysis of mutation strategies -rand1bin, best1bin, and
randtobest1bin- underscored the superiority of the best1bin strategy. Besides being the default
strategy of SciPy and favoured by Mezura-Montes et al. [8], best1bin achieves high-quality solu-
tions in reasonable time.

• Single vs. Multi spectra optimization: This thesis demonstrated the effectiveness in both sin-
gle and multi spectra optimization problems. Multi spectra optimization presented an innovative
approach to leverage additional data for finding search parameters. Experiment results under-
scored the potential of multi spectra DE optimization in handling complex material compositions
within IBA.

• Comparison with Simulated Annealing: A critical evaluation of simulated annealing revealed
its limitations. While simulated annealing excels in the exploration phase, the exploitation phase
underperforms. This finding aligns with existing literature and establishes DE as a preferable
choice for IBA optimization.

• Comparison with Ruthelde: Our proposed single spectra optimization algorithm achieved com-
parable results to Ruthelde. However, for the complex material in Section 5.3.3, our approach
outperformed Ruthelde in terms of standard deviation and fitness. This observation should be
taken with a grain of salt due to the limited data validation of Ruthelde. An interesting insight is
that our approach is more likely to be stuck in local minima due to the lack of a technique to easily
escape local minima such as in Ruthelde.

• Web application: This thesis presented a web application to control the proposed DE algorithms.
By manipulating Docker containers, we offered a robust, user-friendly and scalable software pack-
age.

In conclusion, this thesis contributes significantly to the field of IBA by providing a comprehensive

33
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evaluation of DE and simulated annealing. We show the potential of multi spectra IBA optimization.
The findings do not only enhance our understanding of optimization algorithms for IBA but also show
future research directions. These open avenues for future research could elevate the precision and
efficiency the evolving semiconductor industry needs.

6.1. Future work
While this study has provided interesting insights, the field of IBA optimization methodologies requires
further exploration. we conclude with the identification of a series of interesting research directions,
namely:

1. Testing the multi spectra optimization algorithm on more experiments. It would be especially
interesting to test a material where the single spectra optimization algorithm underperforms on
and then see how the multi spectra optimization algorithm performs.

2. Explore techniques to reduce the probability that our DE algorithm gets stuck in a local minima.
In Ruthelde, an individual can be mutated with random values based on a small probability at
each generation. This technique allows the algorithm to retain variation in the population. In our
current DE algorithms, no such techniques are implemented.

3. Explore different optimization techniques offered by SciPy. SciPy offers a wide variety of opti-
mization algorithms1 and an easy way to substitute. Interesting algorithms to explore are Basin-
Hopping, Conjugate-Gradient, or Broyden-Fletcher-Goldfarb-Shanno.

1https://docs.scipy.org/doc/scipy/reference/optimize.html
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A
Experiment parameters

# runs N F CR Max fun eval # params Time/run Time SD
Rand1bin 20 20 0.6 0.85 / 7 25 min 8.2 min
Best1bin 20 20 0.6 0.85 / 7 19 min 3.3 min
Randtobest1bin 20 20 0.6 0.85 / 7 21 min 4.2 min
Au SiO2 Si 20 20 0.6 0.85 12000 7 6 min 1.6 min
SrTiO3 20 20 0.6 0.85 12000 7 4 min 0.5 min
SrTiO3 LaFe03 Si02 Si 20 20 0.5 0.7 120000 12 35 min 5.4 min
Multi spectra fitting 20 20 0.5 0.7 20000 16 72 min 12.5 min
Simulated annealing 20 / / / 20000 12 58 min 4.3 min

Table A.1: Experiment parameters for optimization model experiments
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B
Ruthelde screenshots

Figure B.1: Screenshot of Ruthelde main screen.

Figure B.2: Screenshot of Ruthelde target screen.
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Figure B.3: Screenshot of Ruthelde DE status screen.

Figure B.4: Screenshot of Ruthelde spectrum screen.



C
Web application screenshots

Figure C.1: Screenshot of web application optimization main screen.

39



40

Figure C.2: Screenshot of web application experimental setup screen.

Figure C.3: Screenshot of web application detector setup screen.
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Figure C.4: Screenshot of web application calculation setup screen.

Figure C.5: Screenshot of web application differential evolution setup screen.
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Figure C.6: Screenshot of web application target screen.

Figure C.7: Screenshot of web application spectra viewer screen.
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