
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

EVSegNet:
Self-supervised Motion
Segmentation using
Event Cameras
Thesis Report

AE5310: Thesis Control and Operations
Youssef Farah

EVSegNet:
Self-supervised

Motion
Segmentation using

Event Cameras
Thesis Report

by

Youssef Farah

to obtain the degree of Master of Science

at Delft University of Technology,

to be defended publicly on Thursday July 13, 2023 at 14:00.

Student number: 4651510

Project Duration: May, 2022 - July, 2023

Thesis committee: Prof. dr. ir. G.C.H.E. de Croon TU Delft, supervisor

Dr. Ir. E. Mooĳ TU Delft

Dr. Ir. J. Ellerbroek TU Delft

Ir. F. Paredes-Vallés Sony

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Alhamdulillah.

Youssef Farah
Delft, July 2023

i

Contents

Preface i

Nomenclature iv

1 Introduction 1
1.1 Background . 1

1.2 Problem Statement . 1

1.3 Report Structure . 2

I Scientific Paper 3

II Literature Study 18
2 Event Cameras 19

2.1 Principle of Operation of Event Cameras . 19

2.2 Advantages and Challenges of Event Cameras . 20

2.3 Event Representations and Processing . 20

3 Optical Flow Estimation with Event Cameras 22
3.1 Motion Compensation (Contrast Maximization) . 22

3.2 Self-supervised learning of optical flow via contrast maximization 24

4 Motion Segmentation 27
4.1 Review on Motion Segmentation . 27

4.1.1 Image Difference . 28

4.1.2 Layers . 28

4.1.3 Optical Flow . 28

4.1.4 Statistical Theory . 29

4.1.5 Deep Learning . 29

4.1.6 Brief Evaluation . 30

4.2 Self-Supervised Frame-based Motion Segmentation . 30

4.2.1 Image Reconstruction . 30

4.2.2 Optical Flow Reconstruction . 32

4.3 Event-based Motion Segmentation . 40

4.3.1 Event-based Motion Segmentation by Motion Compensation 40

4.3.2 Supervised Event-Based Motion Segmentation . 42

5 Conclusion 45

References 46

ii

List of Figures

2.1 Black dot moving in a circular motion on a grey disk. The frame camera register all pixels

values, whereas the event camera only records the motion of the ball, hence the event

camera will only record the black dot when it is moving 19

3.1 a) Events caused by moving edges (blue is brightness increase, red is brightness decrease).

(b) events visualized according to the point trajectories, revealing the edges that have

caused them [6] . 22

3.2 (a) variance of H as a heat map. (b) Images of Warped Events (IWE) 24

3.3 Self-supervised optical flow estimation using event volumes and Artificial Neural Net-

works (ANN) [53] . 24

3.4 Pipeline for self-supervised optical flow estimation using events and SNN [11] 25

4.1 Sequence of video frames along with their image difference results [1] 28

4.2 An example of layer-based method [17] . 28

4.3 Optic flow field: darker zones are the regions where velocity vectors are greater than

zero [49] . 29

4.4 Visual example of the Layered Differentiable Image Synthesis (LDIS). Image 𝐼1 is separated

into layers that are individually warped and then combined together to obtain a prediction

of the second image 𝐼2 . 31

4.5 Visuals results of LDIS on two scenes of Moving Cars dataset a) RGB frames b) ground

truth (GT) . 32

4.6 Overview of our approach. We use motion cues to segment objects in videos without

any supervision. We then train a ConvNet to predict these segmentations from static

frames, i.e. without any motion cues. We then transfer the learned representation to

other recognition tasks . 33

4.7 Pipeline [44] . 33

4.8 Pipeline of the method described in [46]. The generator tries to hide the optic flow of the

moving object with a mask, while the inpainter tries to compute the hidden optic flow by

using the optical flow available from the generator . 35

4.9 Diagrams showing the performance of the generator (G): upper diagram shows an

example of a poorly trained generator, whereas the lower diagram shows a well-trained

generator [46] . 35

4.10 Multi-scale motion and appearance information. In A, the green boxes represent different

moving regions at different temporal scales. In B, the blue boxes indicate regions of

the background that should be incorporated in the foreground since they belong to the

same moving object, whereas the red boxes shows regions of the background that are

wrongly labelled as foreground. Image inpainting can solve these issues using contextual

information [45] . 37

4.11 Comparison between CIS [46] and MASNet [45]. 𝐼 is the image, 𝐹 the optical flow map

and 𝑀 the predicted mask. As indexes, 𝑁 is the frame index, 𝑟 recovered, 𝑎 average, and

𝑚 masked . 38

4.12 MASNet architecture [45] . 38

4.13 Pipeline of the method in [41] . 40

4.14 Event-cluster associations (a, b, c) and final segmentation (d) [9010] 41

4.15 DodgeNet pipeline [36] . 43

4.16 SpikeMS pipeline [32] . 43

4.17 Neuron model . 44

iii

Nomenclature

Abbreviations
Abbreviation Definition

ALIF Adaptive Leaky-Integrate-and-Fire

ANN Artificial Neural Network

CNN Convolutional Neural Networks

DVS Dynamic Vision Sensor

EM Expectation Maximisation

G Generator

HDR High Dynamic Range

I Inpainter

IMIP IMage InPainter module

IRR Information Reduction Rate

IWE Image of Warped Events

LDIS Layered Differentiable Image Synthesis

LIF Leaky-Integrate-and-Fire

MAP Maximum A-posteriori Probability

MASNet Multimotion and Appearance Self-supervised Net-

work

MOD Moving Object Dataset

MFE Multibranch Flow Encoding module

OF Optical Flow

PF Particle Filter

PLIF Presynaptic Leaky-Integrate-and-Fire

SLAM Simulatenous Localization And Mapping

SNN Spiking Neural Networks

SRM Spike Response Model

VOS Video Object Segmentation

XLIF Crossover Leaky-Integrate-and-Fire

Symbols
Symbol Definition Unit

𝛼 membrane decay

𝛼 alpha map

𝛿 Dirac function

𝜀𝑑 spike response kernel

𝜇𝐻 mean of warped events

𝜂 threshold decay

𝜙w1 inpainter network

𝜒w2 mask generator network

𝜏𝑟 refractory time constant

𝜏𝑟 spike response time constant

Φ
bind

iterative binding module

Φ
dec

CNN decoder

Φenc CNN encoder

iv

List of Figures v

Symbol Definition Unit

Ω spatial grid

Ω image domain foreground

Ωc
image domain background

ℰ event packet

𝑐 scaling factor

𝐼 photocurrent

𝐼 synaptic current

𝐼 Image

𝐹 Feature Map

H Shannon Entropy

𝐿 log photocurrent

𝐿 RGB intensity map

ℒ Loss

ℒcontrast temporal loss

ℒcons consistency loss

ℒ
flow

flow loss

ℒrecon reconstruction loss

ℒ
smooth

Charbonnier smoothness loss

ℒ
total

total loss

Δ𝐿 intensity increment

∇𝐿 brightness gradient

𝜃 synaptic threshold

𝑒 event

𝑡 time

𝑡
ref

reference time

𝑡bw

ref
reference time backward

𝑡fw

ref
reference time forward

Δ𝑡 time increase

𝐶 contrast threshold

𝐶+ upper contrast threshold

𝐶− lower contrast threshold

𝑑 delay

𝐷 image domain

𝐹 Flow map

𝐹m
masked flow map

𝐹r
not masked flow map

𝑀 segmentation mask

𝑝 polarity

𝑝 pixel index

v velocity vector

𝑥 x-coordinate pixel location in x-y coordinate system

x pixel location

𝑦 y-coordinate pixel location in x-y coordinate system

𝑁𝑒 number of events

𝑁𝑙 number of neurons

𝑁𝑝 number of pixels

𝜃 model parameters

𝐻 model parameters

𝐻 horizontal dimension output

𝐻0 horizontal dimension input

ℋ(𝑡) Heaviside function

𝑓 objective function

𝑓𝑠 thresholding function

𝑃 presynaptic trace

List of Figures vi

Symbol Definition Unit

𝑆 neuron spike

𝑇𝑝′ average timestamp per pixel

𝑢 optic flow

𝑢in foreground optic flow

𝑢out background optic flow

𝑈 membrane potential

v velocity vector

W Warping function

𝑊 optical flow map

𝑊ff
feedforward weight connections

𝑊 rec
recurrent weight connections

𝑤 flow map

𝑊 vertical dimension output

𝑊0 vertical dimension input

1
Introduction

1.1. Background
Event cameras are revolutionizing the field of computer vision. In contrast to traditional cameras, these

bio-inspired devices operate on a distinct principle, making them exceptional tools for capturing and

processing visual information.

Unlike conventional frame cameras that capture static snapshots, event cameras are designed to detect

and record changes in brightness within a scene. Rather than registering pixel color values, these

remarkable devices focus solely on recording the occurrence of brightness variations. This dynamic

approach sets them apart from their traditional counterparts.

Another noteworthy distinction lies in the asynchronous nature of event camera recordings. Instead of

capturing frames at a fixed rate, event cameras only record and relay information when a significant

brightness change takes place. Consequently, these cameras excel in scenarios where the scene exhibits

substantial changes, effectively eliminating redundant data capture in light-invariant situations.

The recorded brightness changes in event cameras are represented as a series of events, providing precise

information about when and where these alterations occurred within the visual field. This unique data

structure opens up to a large number of applications, particularly in the domains of computer vision

and robotics.

One compelling application of event cameras is motion segmentation, a process aimed at identifying

and delineating the shapes of moving objects within a scene observed by a mobile camera. While

extensive research exists on motion segmentation, the existing methods are not-compatible for event

cameras due to the fundamental differences in data structure.

To fully harness the potential of event cameras in motion-related computer vision tasks, new algorithms

tailored specifically to their data characteristics must be developed. Moreover, contemporary frameworks

heavily rely on training with large annotated datasets, which are expensive to create and limit the

scalability of such methods. Thus, the development of event-based motion segmentation methods that

can operate effectively without the need for annotated training data would unlock the full potential of

event cameras in various computer vision applications.

1.2. Problem Statement
Existing algorithms for event-based motion segmentation combine statistical methods and neural

networks. However, the learning-based methods rely on ground truth, which poses several limitations.

First, events alone carry very little information, as each one of them just represents a change in brightness

in a specific pixel at a specific time. Therefore, creating ground truth for each single event is still

extremely difficult.

Second, the only way to generate ground truth for event data is by using additional sensors and cameras.

1

1.3. Report Structure 2

And the problem with generating ground truth with other sensors is that any other sensor does not have

the same high temporal resolution as the event cameras. This inevitably brings error measurements in

the generation of ground truth.

Finally, methods that learn using ground truth are limited by the ground truth itself, meaning that they

work well only in scenes similar to the ones included in the training set.

The main question at this point is whether it is possible to perform event-based motion segmentation

without the need of ground truth, and it is possible. Current unsupervised methods rely on statistics to

cluster together the events generated by the same moving object. Nevertheless, the computational time

to generate the clusters is too long to be deployed in real-word applications.

Hence the next question would be whether it possible to perform event-based motion segmentation

without using ground truth, and such that it could be implemented in real-word applications. In this

regard, self-supervised learning allows deep learning architectures to learn from events without the

use of ground truth. However, there is no existence of a self-supervised method to perform motion

segmentation using events, which brings us to the main problem statement of this thesis project:

Research Question: How can we perform motion segmentation using event cameras without

using ground truth during training, given the nature of event data and the state-of-the-art

methods in motion segmentation?

1.3. Report Structure
To address the research question, the report is structured as follows.

Part I contains the main contribution of this thesis report, which is the scientific article. This chapter

can be read as a stand-alone document, and introduces the first self-supervised method for motion

segmentation using events. It provides an overall overview of the state-of-the-art in motion segmentation,

and introduces a new motion segmentation method in the event domain by getting inspiration from

the most recent advancements in frame-based computer vision. The article also introduces a new

dataset that is used to train and test the newly develop architecture. At the end of the article, the final

conclusions are drawn and directions for future work are provided.

Part II introduces the literature study results. The literature study was carried at the beginning of the

project, and served to gather all the necessary knowledge in motion segmentation (both event-based and

image-based), and self-supervised learning using events. First, a general explanation of the working

principle behind event cameras is given in chapter 2, along with advantages and challenges in using

this type of sensors. Second, in chapter 3 the topic of optical flow estimation is introduced, where the

most relevant advancements in self-supervised learning have been made. Finally, motion segmentation

is reviewed in chapter 4 by giving a general overview of the methods, and then diving deep into the

state-of-the-art in both event domain and image domain. The literature study was concluded with a

preliminary outline of the subsequent steps in chapter 5.

Part I

Scientific Paper

3

EV-LayerSegNet: Self-supervised Motion
Segmentation using Event Cameras

Youssef Farah ∗

Micro Air Vehicle Laboratory
Delft University of Technology

Delft, The Netherlands
Y.Farah@student.tudelft.nl

Federico Paredes-Vallés †

Micro Air Vehicle Laboratory
Delft University of Technology

Delft, The Netherlands
F.ParedesValles@tudelft.nl

Guido C.H.E. de Croon †

Micro Air Vehicle Laboratory
Delft University of Technology

Delft, The Netherlands
G.C.H.E.deCroon@tudelft.nl

Input Events

Optic Flow Background Optic Flow Foreground

Mask Background Mask Foreground

Combined Optic Flow Image of Warped Events

Fig. 1. Our method takes as input an event volume that results in a blurry scene. It then attempts to generate two different masks to differentiate the background
from the foreground. Next, it estimates the affine optical flow for both models, and combines the flow together using the masks. Finally, it warps the events
according to the combined flow. A successful motion deblur leads to accurate segmentation.

Abstract—Event cameras are novel bio-inspired sensors that
capture motion dynamics with much higher temporal resolution
than traditional cameras, since pixels react asynchronously to
brightness changes. They are therefore better suited for tasks
involving motion such as motion segmentation. However, training
event-based networks still represents a difficult challenge, as
obtaining ground truth is very expensive and error-prone. In this
article, we introduce EV-LayerSegNet, the first self-supervised
CNN for event-based motion segmentation. Inspired by a layered
representation of the scene dynamics, we show that it is possible
to learn affine optical flow and segmentation masks separately,
and use them to deblur the input events. The deblurring quality
is then measured and used as self-supervised learning loss.

Index Terms—event-based vision, self-supervised learning,
deep learning, motion segmentation, affine layered motion model

1*Student, †Supervisor
2Our code: https://github.com/Fulmen67/event segmentation.git

I. INTRODUCTION

Event cameras, such as the Dynamic Vision Sensor (DVS),
are novel bio-inspired sensors that perceive motion by detect-
ing brightness changes instead of capturing intensity changes
in images within a time interval [4]. In other words, if at time
t a brightness change larger than the threshold C is detected
by a pixel with x and y coordinates, an event is generated
by recording the brightness increase or decrease, the pixel
location and the time the event was generated. In contrast,
traditional cameras record color intensities in all pixels at a
specified frame rate.

This fundamental shift in the acquisition of visual informa-
tion brings several advantages. High temporal resolution and
low latency (in the order of µs) make event cameras well
suited for recording very fast moving scenes without suffering
from motion blur as frame-based cameras. The High Dynamic
Range (HDR) allows the cameras to capture details in very

dark or very bright scenes, making them appropriate to be
used in light challenging environments such as the underwater
ocean, night driving or fireworks display. The asynchronous
recording of brightness leads to very low power consumption,
thus event cameras can be deployed on platforms such as very
small drones, where weight and power consumption are major
constraints.

The combination of these advantages unlocks the possibility
of performing tasks inaccessible until now for frame-based
cameras such as low-latency optical flow estimation, high-
speed control and tracking, and Simultaneous Localization
and Mapping (SLAM) [4]. Nevertheless, a new generation of
event-based vision algorithms needs to be developed to enable
the event cameras to express their full potential, as the data
structure of events is not compatible with the conventional
algorithms based on images.

Furthermore, an additional challenge is posed by the lack
of ground truth from real-word datasets, at microsecond res-
olution and with HDR. In image-based datasets (COCO [14],
BD100K [33]), the ground truth is often obtained by humans
manually annotating each frame. This process is already ex-
pensive and laborious for image-based datasets, and becomes
unfeasible for event data, which are sparse and have low
latency. To avoid manual annotation, additional sensors and
cameras were used to generate the ground truth in traditional
event-based datasets such as DSEC [6] and MVSEC [38].
Yet, sensors and cameras are limited by their natural Field
Of View (FOV), spatial and temporal resolution. Therefore,
it is of paramount importance to develop algorithms that are
able to perform their tasks by relying on the nature of events,
without the use of ground truth that are expensive to collect
and that carry error measurements from additional sensors.

In the context of motion estimation and its use in other
tasks such as surveillance, tracking or obstacle avoidance,
segmenting the scene into independently moving objects is
fundamental and often referred as motion segmentation [25].
Even though great progress has been made using frame-based
cameras, the latter are not ideally suited for tasks involving
motion as they suffer from motion blur and keep track of all
pixel values even when no motion occurs [25]. On the other
hand, assuming constant illumination, event cameras are well
suited for this task, since events are sampled at exactly the
same rate of the scene dynamics and the information acquired
is only related to the motion of the camera and the objects in
the scene .

Event-based motion segmentation can be broadly catego-
rized in model-based methods ([25], [36], [18]) and learning-
based methods ([23], [17], [19]). Model-based methods exploit
the nature of event data to cluster events generated by Inde-
pendently Moving Objects (IMO) in an iterative fashion, thus
they are unsupervised and do not use ground truth. Yet, the
iterative approach requires long computational time and limits
their real-word applicability. On the other hand, learning-based
methods apply deep learning techniques while also relying
on the event characteristics. In some instances, they perform
motion segmentation in combination with other tasks such as

tracking and optical flow, but they all require ground truth
during training. To the best of our knowledge, there is no
existence of a learning-based method that is self-supervised,
thus learning directly from the input events instead of relying
on ground truth.

Looking outside of the event domain, significant progress
has been made in self-supervised image segmentation. These
methods segment the scene into the dominant moving object as
foreground and the rest as background, and learning is driven
by image or optic flow reconstruction. In most instances,
they frequently make use of layered representation [27]. The
pixels are separated into layers based on motion similarity,
and they are moved according to the associated motion and
synthesized together to reconstruct the next image in the
sequence. Recently, Shrestha et al. [24] integrated this process
into a end-to-end differentiable CNN pipeline which segments
the dominant moving object in a video using two consecutive
frames.

Inspired by their work, we propose the first self-supervised
and learning-based method for motion segmentation using
events. Specifically, we transfer the CNN segmentation ap-
proach from [24] to the event domain, and combine it with
the encoder-decoder structure from [39]. We show that, under
the assumption of affine motion and constant brightness, it
is possible to segment independently moving objects using
contrast maximization loss.

We identify our main contributions as follows:
1) We propose a novel self-supervised network for learning

event-based motion segmentation in an end-to-end CNN
with raw events as input.

2) We introduce a novel optical flow module that enables
self-supervised learning of affine optical flow and a
segmentation module that learns separately the masks
corresponding to the independently moving objects.

3) We show that our network is able to learn motion
segmentation without the use of any sort of ground truth
or other inputs apart from the event data. We contribute
a new event-based dataset of background and several
objects moving according to affine motion.

II. RELATED WORK

In computer vision, motion segmentation is defined as the
task of retrieving the shape of moving objects [35]. Image
difference such as in [34] attempt to detect moving objects
by finding intensity differences between pixels across video
frames. Layer-based techniques ([5],[9]) divide frames into
layers, based on the number of uniform motions. Statistical
methods such as Expectation Maximization (EM) are among
the most common methods used. Recent developments in deep
learning and optical flow estimation allowed a sharp improve-
ment in this motion task, often combined with statistics and
layer-based techniques. However, the main limitation of the
state-of-the-art methods in motion segmentation is the reliance
on ground truth labels, which limit the applicability of such
methods scenes outside the annotated datasets. In this regard,
attempts to develop self-supervised methods have resulted in

frameworks developed in the frame domain, while methods
for event cameras were yet to be found.

A. Frame-based Motion Segmentation

In literature, many methods are considered unsupervised or
self-supervised, but only during inference and test. In reality,
parts of their architecture (i.e. networks, masks) are pretrained
on ground truth. For example, COSNet [15] uses co-attention
to capture rich correlations between frames of a video, but
masks are pretrained on ground truth. Similarly, Ye et al.
[32] perform motion segmentation using global sprites, but
it also requires precomputed masks. Li et al. [12] propose
the use of instance embeddings to find the moving object
based on motion saliency and objectness. However, the dense
embeddings are obtained from an instance segmentation that
is performed by a network pretrained on static images. In
contrast, we consider as self-supervised methods only the ones
which do not need any type of ground truth during training
and inference.

Early attempts of self-supervised or unsupervised learning
of motion segmentation start from ConvNet [21]. The network
learns high-level features in single frames as follows. A set of
single frames with optical flow maps is passed to the network.
It then generates the segmentation masks by associating optical
flow vectors with similar direction and rate. Using these masks
as pseudo-ground truth, the network tries to reproduce the
masks by looking only at the static frames .

Yang et al. [28] propose a network that performs fore-
ground/background motion segmentation by using a precom-
puted optic flow as input. Slot attention is then used to group
together pixels with visual homogeneity, but the result are very
sensitive to the accuracy of the optical flow estimation.

While in [24] and [28] the models try to segment the moving
object by using the optical flow of the object itself, Yang
et al. [30] propose to find the moving object by using a
Generator (G) and an Inpainter (I) network. The generator
applies a mask to the input optic flow, with the aim of hiding
the optic flow of the foreground. Next, the generator passes
the masked optic flow to the inpainter, which has the task
of reconstructing the optic flow that has been hidden by the
generator. Accurate motion segmentation is achieved when
the optic flow reconstruction works poorly. It obtains good
result in public datasets, however the model fails to capture
complete objects or differentiate regions in the background.
This is because it operates with one single scale temporal
information and it also introduces the bias from the camera
motion. To solve this issue, Yang et al. [29] extend this work
with MASNet, where they expand the network pipeline with
more generator and inpainter modules to deal with multiple
input optic flow maps.

Finally, Shrestha et al. [24] propose LayerSegNet, a network
that combines a layered representation of the scene and affine
optical flow estimation. The network takes two images as input
and aims to separately estimate the motion models (foreground
and background) and the masks. Subsequently, they apply the
masks to the first image and warp the masks according to

the associated motion models. They then combine the two
masks together to generate the second image, and they use
the difference between the generated second image and actual
second image as learning parameter.

B. Event-based Motion Segmentation

Event-based motion segmentation is very recent and at-
tempts to make use of the outstanding properties of event
cameras.

Stoffregen et al. [25] use Expectation Maximization and pro-
pose the idea of segmenting moving objects by simultaneously
grouping the events into different clusters and estimating the
motion model associated to each cluster. The events are then
warped according to the associated motion model to produce
an Image of Warped Events (IWE). An iteration process is
then used to find the right motion models and clusters such
that the objective function is maximized. The model is proven
not to be sensitive to the number of clusters specified in the
iteration process and works well in real-world dataset,but it
is not able to estimate the number of moving objects in the
scene.

Zhou et al. [36] propose to solve this issue by introduc-
ing two spatial regularizers, which minimize the number of
clusters. The underlying concept remains the same as in [25],
however the input events are first initialised in a space-time
event graph cut and the clusters are smoothly sharped via the
addition of energy terms in the objective function.

Always based on event clustering, Chethan et al. [18] splits
the scene into multiple motions and merges them, allowing
also for feature tracking.

Despite these methods produce promising results, they are
not appropriate to be deployed in real-world applications as
the iteration processes takes considerable amount of time and
computational effort, which inhibit the potential applications
on mobile platforms such as drones. Therefore, a learning-
based approach needs to be developed.

Sanket et al. [23] proposes EVDodgeNet, an learning-based
pipeline that solves simultaneously motion segmentation, op-
tical flow and 3-D motion, but relies on ground truth masks.
Instead, Mitrokhin et al. [17] uses Graph Convolutional Net-
works to learn motion segmentation from a 3-D representation
of events. Chethan et al. [19] also propose SpikeMS, the
first Spiking Neural Network (SNN) for event-based motion
segmentation.

Despite these efforts, the aforementioned methods continue
to depend on ground truth, leaving a gap in the availability of
self-supervised approaches.

Inspired by LayerSegNet [24], we propose an end-to-end
CNN architecture that learns motion segmentation by jointly
estimating affine optical flow and segmentation masks, using
contrast maximization as learning loss.

III. METHOD

In this section, the overall methodology is explained.
The approach to the segmentation task is inspired by [24].

However, given the unique nature of event data, a distinct

approach to the input is needed. To this end, we use the input
event representation and from [39]. We then jointly estimate
the segmentation masks and the affine optical flow maps. Next,
we apply the segmentation masks to the associated optical
flow, and we combine these maps to obtain a single optical
flow map. We then use this map to warp the events forward
and backward in time, and we apply the self-supervised loss
as in [7]. The more the image of warped events is deblurred
with respect to the input events, the more accurate are the
segmentation masks.

A. Input Event Representation

Selecting the right representation of events for a given
task is still a challenging problem. Event-based methods can
process single events ek

.
= (xk, tk, pk), however events alone

carry very little information and are subject to noise. It is
often preferred to process a group of events E .

= {ek}Ne

k=1 that
yields a sufficient signal-to-noise ratio, which also carries more
information for the given task. The most common methods
either discretize the group of events in different frames of event
counts ([11],[10],[20],[26],[39]) or the per-pixel average/most
recent event timestamps ([13],[31],[37]).

Since we develop a non-recurrent CNN pipeline, temporal
information need to be encoded in the input, thus we adopt the
event representation from [39]. Given N input events and B
bins, we first scale the event timestamps in the range [0, B−1]
and generate the event volume:

t∗i = (B − 1) (ti − t0) / (tN − t1) (1)

V (x, y, t) =
∑

i

pikb (x− xi) kb (y − yi) kb (t− t∗i) (2)

kb(a) = max(0, 1− |a|) (3)

In order to perform 2D convolutions, the time domain is
treated as a channel in a traditional 2D image.

B. Motion Model

The authors in [24] propose the segmentation of the domi-
nant moving object in the scene using a two-layer representa-
tion. The foreground layer captures the dominant object, while
the background layer represents the rest of the scene.

In our case, assuming constant illumination, events are
generated by the relative motion between the camera and
the scene. Since events are triggered by brightness changes,
these are produced by moving edges. Hence, if the camera
is moving and the scene is static, the events are generated
by the motion of the camera. When objects are also moving
within the scene, the generation of events occurs due to both
the edges of moving objects and the edges of static objects
caused by the egomotion of the camera.

Let us assume a scene where an object and background are
moving distinctively. We also assume that the motion is affine,
hence the scene undergoes may undergo translation, rotation,
shearing and scaling. The two motions can then be described
by two motion models A1 and A2:

Wi(x, y) = Ai

1
x
y

 =

[
a1i a2i a3i
a4i a5i a6i

]

1
x
y

 , i ∈ {1, 2}

(4)
where Wi represent the dense flow maps corresponding to

affine motion matrix Ai.
Corresponding to the two affine motions, we separately

generate two alpha masks, which represent the moving objects.
Ideally, the segmentation masks should be a one-hot vector for
each pixel, which assigns the pixel to the corresponding object.
However, such operation would be non differentiable, prevent-
ing the backpropagation of the gradients during training. We
overcome this issue by assigning two arbitrary numbers for
each pixel, where each number corresponds to one layer. We
then apply softmax to ensure that the values are bounded in
[0,1] and the values sum up to 1. For each pixel, we then retain
the maximum value in the two layers, and set the other one
to zero. This operation, called maxout operation, makes the
classification differentiable. It also makes sure that one pixel
can not belong to two objects at the same time.

Next, we compute the combined optical flow by element-
wise multiplication of the affine flow maps with the corre-
sponding alpha maps:

Wcomb = α1 ⊙W1 + α2 ⊙W2 (5)

The maxout operation ensures that each pixel will have
flow components from only one motion model, scaled with
the respective value of the alpha map to which the pixel is
associated. During training, we expect that the network will
adjust itself to the scaling effect of the flow computation.

C. Self Supervision by Contrast Maximization

Self-supervised learning is achieved by applying contrast
maximization [3]. As described in [7], events which are
generated by the same moving edge encode exact optical flow.
Since these events are misaglined in the input partition (motion
blur), the events can be propagated to a reference time tref
using per-pixel optical flow u(x) = (u(x), v(x))T to realign
them and show the initial edge that has generated the events:

x′
i = xi + (tref − ti)u (xi) (6)

The metric used to measure the deblurring quality is the
the per-pixel and per-polarity average timestamp of the image
of warped events ([16],[39]). The lower the loss, the better
the deblurring, which consequently means that the estimated
optical flow and alpha maps are more accurate.

We initially generate an image of the average timestamp at
each pixel for each polarity using bilinear interpolation, as in
[7]:

Tp′ (x;u | tref) =
∑

j κ(x−x′
j)κ(y−y′

j)tj∑
j κ(x−x′

j)κ(y−y′
j)+ϵ

j = {i | pi = p′} , p′ ∈ {+,−}, ϵ ≈ 0
(7)

512
256

64
12

Segmentation Module

Optic Flow Module

Contrast Maximization
Loss

Encoder

Residual Block

Decoder

Convolution

Skip
Connection

Feedforward

Input Events Combined Optic Flow

Fig. 2. EV-LayerSegNet architecture. Events are passed downsampled by 4 encoding layers before being passed to 2 residual blocks. The output of the
residual blocks is then passed to the segmentation and optical flow module. The segmentation module upsamples with 4 decoder layers connected with the
encoders by skip connections. The optical flow module is composed of 6 convolutions and a feedforward network of 4 layers.

The loss is then the sum of the squared temporal images.
This is also scaled by the sum of pixels with at least one event,
in order to prevent the network from keeping events with large
timestamps out of the image space, such that they would not
contribute to the loss function.

Lcontrast (tref) =

∑
x T± (x;u | tref)2∑
x [n (x′) > 0] + ϵ

(8)

The warping process is performed both forward (tfwref) and
backward (tbwref) to prevent temporal scaling issues during back-
propagation. The total loss is then the sum of the backward
and forward warping loss, and λ is a scalar balancing the
Charbonnier smoothness prior Lsmooth [2].

Lcontrast = Lcontrast
(
tfwref

)
+ Lcontrast

(
tbwref

)
(9)

Lflow = Lcontrast + λLsmooth (10)

Notice that the self-supervised loss becomes a strong su-
pervisory signal only when there is enough blur in the input
event partition. It is of paramount importance to check that
the input partition contains enough events for linear blur.

IV. NETWORK IMPLEMENTATION

Our network EV-LayerSegNet is similar to encoder-decoder
architectures and it is inspired by [24] and [39].

As in [39], events are downsampled by 4 encoder layers
and passed to 2 residual blocks. We then stack the output of
the residual blocks and pass it to the segmentation module and
optical flow module.

A. Optical Flow Module

The optical flow module contains 6 convolutional layers,
each followed by leaky ReLU activation. We then flatten the
output of the last convolution layer and pass it to a feedforward
network consisting of 4 layers (512, 256, 64 and 12 output
units), followed by tanh activation except the last layer. We
then use the output of the feedforward network and split it to
two sets of 6 affine motion parameters, and we compute the
two flow maps W1 and W2.

B. Segmentation Module

In the segmentation part, the output of the residual blocks
is bilinearly upsampled by 4 decoding layers. Each decoding
layer is connected to the respective encoding layer by skip
connection. We apply a leaky double-rectified ReLU activation
(leaky DoReLU, [24]) which promises an increase in segmen-
tation performance:

y(x) =

1 + x−1
γ , x > 1

x , if 0 ≤ x ≤ 1
x
γ , x < 0

(11)

In this module, each decoding layer is followed by leaky
DoReLU activation with γ = 10. At the last layer, softmax is
applied instead to ensure that the channel values are bounded
[0,1] and sum up to 1.

V. EXPERIMENTS

A. Training Details

We implement our pipeline in Pytorch. We use Adam
optimizer [8] and a learning rate of 1 · 10−5 . At training, we
used a batch size of 8 and train for 5000 epochs. The input
consists of N = 200,000 events, which is a sufficient number
of events to obtain blur in the scene. The Charbonnier loss is
balanced with weight λ = 0.001 .

ESIMMultiple 2D Objects
rendering engineLayer 2

Layer 1

Simulated Events

Motion
Parameters

Motion
Parameters

Fig. 3. Working principle of ESIM, as explained in [22]. The images are passed to the rendering engine along with the associated motion model. The
rendering engine generates an irradiance map E and motion field map V at time tk . ESIM then computes the brightness change, which is used to generate
the simulated events and choose the next rendering time tk+1. .

B. Dataset

We train EV-LayerSegNet on our dataset named Affi-
neObjects. The dataset is generated using the Event Camera
Simulator (ESIM) from [22]. Specifically, we make use of
the Multiple 2D Objects rendering engine to generate the
simulated events. The working principle of the simulator using
the rendering engine is shown in Figure 3. We explicitly
model the motion of the objects in the scene using the
affine transformation parameters in Table I. While the affine
motion parameters in Equation 4 are coefficients for the linear
transformation, the parameters in Table I represents the start
and end points for each motion in the image plane. The layers
then undergo affine motion from t0 = 0 to t = tmax from
start to end. In this work, we generate recordings that span 5
seconds.

TABLE I
AFFINE MOTION PARAMETERS IN ESIM

Parameter Symbol

Rotation θ0, θ1
Translation x0, x1, y0, y1

Scaling Sx,0, Sx,1, Sy,0, Sy,1

The training dataset was generated using the images in
Figure 4. We use similar settings as in a DVS camera, with
resolution 640x480 pixels and threshold C = 0.5.

Fig. 4. Images used to generate AffineObjects training set. Top row: images
used as background. Bottom row: images used as foreground.

After training, we test the network in the test set. In order to
test the segmentation module, we generate the test set using
the images in Figure 5. In each layer, we specify different
motion parameters compared to the training set such that also
the optical flow module is tested.

Fig. 5. Images used to generate AffineObjects test set. Top row: images used
as background. Bottom row: images used as foreground.

During the generation of the recordings, we notice that
it is important to choose images that have similar levels of
brightness. For example, when generating the recording shown
in Figure 3, we notice that the rugby image plays a shading
effect on the background, resulting in fewer events generated
by the background when the rugby ball enters the field of
view of the camera. This differs from the reality, where the
brightness level would be the same. As the difference between
the brightness levels increases, the shading effect becomes
larger.

VI. RESULTS

A. Optical Flow

Before training EV-LayerSegNet on motion segmentation, it
is of paramount importance that the optical flow module is able
to estimate the flow map correctly and that the network is able
to deblur the input events. Thus we first omit the segmentation
module and train the pipeline on optical flow.

To generate the training set for learning optical flow, we
use the backgrounds shown in Figure 4. For each scene, we
make 2 recordings for each distinct affine motion: translation
(right and left), rotation (clockwise and counterclockwise), and

(a) (b) (c)

Fig. 6. Shading effect. In (a), only the background moves. In (b), the rugby
image enters the camera’s field of view, shading the background and thus
generating fewer events. When the ball exits the scene, the background regains
its own level of brightness (c).

scaling (zoom in and zoom out). Single-direction shearing
is not considered since rotation already includes coupled
shearing in both x-y directions. Finally, we make 2 additional
recordings including a combination of all motion types. This
resulted in 24 recordings.

In testing, we use the building image in Figure 5 and test the
network in unseen translations, rotations, scalings and complex
motions. The test results are shown in Figure 8. Successful
deblurring demonstrates that the optical flow pipeline inspired
from [24] is able to learn event-based optical flow using
contrast maximization.

B. Segmentation - Train Results on AffineObjects

With the optical flow module working, it is now possible to
train the entire EV-LayerSegNet pipeline.

To ensure a progressive increase in difficulty, we initially
start with training the network to learn segmentation in the
simplest possible scenes. In this case, the background and fore-
ground undergo horizontal translations in opposite directions.
For this, we take the rugby ball and translate it horizontally
left and right, while the background translates in the other
direction. This results into 6 recordings.

We next focus on scenes where the background and fore-
ground move in the same direction. Clearly, if the foreground
and background move at the same speed, distinguishing be-
tween them becomes a challenging task even for human ob-
servers. However, different speeds provide crucial information
for discerning the two in such cases. We then generate other
6 recordings where the rugby ball translates much faster than
the background, but in the same direction.

Finally, we challenge the network to learn segmentation in
scenes with intricate dynamics. We extend the dataset with
additional 8 recordings, where the rugby ball and the chair
take in turn complex motions with the office and the carpet
as background. The results on the training set are shown in
Figure 7.

The segmentation of the rugby ball from the background is
highly accurate when it undergoes opposite translation.

Furthermore, the network demonstrates its ability to seg-
ment the ball when it moves in the same direction as the
background at a higher speed. However, in these cases, the
borders of the ball are mislabeled as background. As a result,

it becomes evident that the borders are the only regions in the
scene that remain blurry in the image of warped events.

When it comes to more complex motions, the network
successfully captures the majority of the foreground, although
it does miss some parts. It is important to note that in these
instances, the rugby ball moves at a faster pace compared
to the previous examples, resulting in increased blurriness.
Similarly to the previous scenario, we believe that the network
faces challenges in accurately performing segmentation as the
blurriness of the scene intensifies.

C. Segmentation - Test Results on AffineObjects

To assess the generalization of EV-LayerSegNet, we extend
AffineObjects to include test scenes with completely unseen
scenarios and motions, and test the network trained on the
training set.

The test results on AffineObjects dataset are shown in
Figure 9.

As in the training set, the network works remarkably well
when the background and foreground undergo opposite trans-
lations. It also shows that is able to segment the foreground
moving in the same direction as background. In contrast
to the training case where the network struggled to deblur
certain parts of the rugby ball, in this particular instance,
the bird exhibits less blurriness compared to the rugby ball.
Consequently, the segmentation is more accurate. Finally, the
network also showcases good segmentation results with more
complex motions.

Based on these findings, we can conclude that the network
performance does not solely rely on memorization of the
scenes in the dataset but rather showcases the ability to
generalize effectively.

In almost all scenarios, including both the train and test
results, we observe that certain pixels are misclassified as
foreground. This occurrence may be attributed to the fact that
the events contained in these pixels, although generated by
the background motion, contribute significantly to the loss
function when they are warped with the foreground.

As last note, it is important to realize that the segmentation
is performed on the input events, which leads to ”blurry”
segmentation masks.

D. Motion Segmentation with only Background Motion

As the network shows good performance in segmenting both
the foreground and the background, we investigate its behavior
when confronted with scenes where only the background is in
motion.

Theoretically, we would expect the network to cluster all
events into a single mask, corresponding to a unified motion
model. The second mask would remain empty as there is no
foreground present in the scene.

To test this hypothesis, we evaluate the network on a scene
featuring only horizontal motion, as illustrated in Figure 8.
The resulting segmentation is presented in Figure 10.

We observe that the network struggles to accurately segment
the scene in the first row. Upon closer examination of the

Input Events Estimated Mask 1 Estimated Mask 2 Estimated Flow Map 1 Estimated Flow Map 2 Combined Flow Map Image of Warped Events

Fig. 7. Train results on AffineObjects dataset. In the first row, the rugby ball and the poster translate in opposite directions, leading to a simple segmentation.
In the second row, the network is then challenged to segment the ball when it translates in the same direction of the background but with different speed. In
the last row, both background and the ball have complex motion, resulting in a more difficult segmentation. The color scheme can be found in Appendix.

Input Events Estimated Flow Map Image of Warped Events

Fig. 8. Motion deblur. From top to bottom: translation, rotation, scaling, and
combinations of all three. From left to right: input events, estimated optic
flow map, and deblurred events. The color encoding scheme can be found in
Appendix.

input events and the two masks, we notice that the region
segmented in the second mask coincides with the portion of
the input events that exhibits greater blurriness compared to
the rest of the scene. It appears that the network creates a
distinct class for this region and associates it with a motion
model specifically designed to deblur it more effectively than

the rest of the scene.
To verify this new hypothesis, we reduce the number of

input events from 200,000 to 100,000 events, resulting in
reduced blurriness in that particular region and enough in the
rest of the scene. The corresponding results, shown in the
second row of Figure 10, demonstrate that because the region
now possesses a similar level of blurriness to the rest of the
scene, it is appropriately grouped into a single class, with only
a few sparse pixels assigned to the second class.

E. Motion Segmentation with more Objects than Classes

Having explored the network behavior when only the back-
ground is in motion, we now investigate its performance in
scenarios where two objects are in motion. Since the network
considers background and foreground as two distinct clusters,
the additional object in the scene will be incorporated in one
of these clusters.

Our hypothesis is rooted in the learning process being driven
by the objective of improving deblurring quality. We expect
that the network aims at maximizing the alignment between
events, taking into account the clusters that contribute most
significantly to the loss function. Given that the background
typically generates events throughout the entire scene, it often
constitutes the primary contributor to the loss function. As for
the remaining two objects, we believe the network considers
object that generates the highest number of events, whether
due to its faster motion or larger size. Consequently, the
network assigns a motion model capable of deblurring the
dominant object after the background to the second cluster.
The remaining object is allocated to either the background or
the other object cluster, depending on its contribution to the
learning loss.

We validate our hypothesis in Figure 11, where a rugby ball
and chair are set in motion against the background.

Input Events Estimated Mask 1 Estimated Mask 2 Estimated Flow Map 1 Estimated Flow Map 2 Combined Flow Map Image of Warped Events

Fig. 9. Test results on AffineObjects dataset. In the first row, the drone translates in opposite direction with respect to the building. In the second row, the
network is then challenged to segment a bird when it translates in the same direction of the bricks but with different speed. In the third row, the complex
motion of the helicopter and city background lead to difficult segmentation. The color scheme can be found in Appendix.

Input Events Estimated Mask 1 Estimated Mask 2 Estimated Flow Map 1 Estimated Flow Map 2 Combined Flow Map Image of Warped Events

Fig. 10. EV-LayerSegNet test results on scene with background-only motion. In the first row, the network struggles in accurately segmenting the scene, with
the second mask erroneously capturing the region of higher blurriness. By reducing the number of input events from 200,000 to 100,000 in the second row,
the blurriness in that specific region is reduced, resulting in improved segmentation with the majority of pixels assigned to a single class and sparse pixels to
the second class.. The color scheme can be found in Appendix.

The test results confirm the validity of our hypothesis.
The background and the rugby ball, being the primary event
generators, exhibit improved deblurring. However, since the
chair contributes to a lesser extent in terms of generated events,
it is assigned to the rugby ball cluster. Consequently, the
chair experiences increased blurriness as the associated motion
model is tailored to deblur the rugby ball rather than the chair.

F. Increasing Number of Classes in EV-LayerSegNet

The proposed method treats the event streamline as fore-
ground/background segmentation. Nevertheless, the architec-
ture can be adapted to include more masks. For example, it is
possible to adjust the final layer of the feedforward network in
the optical flow module to include 6 more outputs for a third
mask. In the segmentation part, a third channel can be added
in the last decoder layer to have a similar number of masks.

We then extend the network to generate 3 motion models
and 3 masks, hence enabling the model to segment the

background and 2 independently moving objects.
We generate a second training set in AffineObjects. As

background, we use the office and the carpet images from
Figure 4. For foreground, we use the chair and rugby ball
from Figure 4 and the drone from Figure 5.

The training results are depicted in Figure 12. Surprisingly,
the network accurately defines the background, but it fails to
distinguish the other two moving objects, in this case the rugby
ball and the drone. However, by examining the estimated flow
maps, it becomes visible that the motions of these, which are
opposite translations, can be effectively represented by one
single motion model. Thus the network considers the two
opposite translations as one single counterclockwise rotation.

In conclusion, the observed behavior of the network indi-
cates a tendency to group as many events as possible into
a single class. To achieve accurate motion segmentation, it
is necessary to design strategies that appropriately reward
pixels in close proximity while penalizing cases where distinct

Input Events Estimate Mask 1 Estimated Mask 2 Estimated Flow Map 1 Estimated Flow Map 2 Combined Flow Map Image of Warped Events (IWE)

Fig. 11. EV-LayerSegNet test results on AffineObjects scene with 2 moving objects on background. The network assigns the dominant object, the rugby ball,
and the background to separate clusters, resulting in improved deblurring. However, the chair, contributing fewer events, is assigned to the rugby ball cluster,
leading to increased blurriness due to the tailored motion model. The color scheme can be found in Appendix.

Input Events Estimated Mask 1 Estimated Mask 2 Estimated Flow Map 1 Estimated Flow Map 2 Combined Flow Map Image of Warped Events Estimated Flow Map 3Estimated Mask 3

Fig. 12. Train Results on AffineObjects dataset, with EV-LayerSegNet adapted to segment up to 3 masks. The network correctly identifies the background
but tries to cluster the events generated by the drone and the ball in one single class. In this case, the drone and the ball translate in opposite directions, and
the network tries to retrieve a motion model that captures both translations in one single rotation. The color scheme can be found in Appendix.

Input Events Estimated Mask 1 Estimated Mask 2 Estimated Flow Map 1 Estimated Flow Map 2 Combined Flow Map Image of Warped Events Estimated Flow Map 3Estimated Mask 3

Fig. 13. Training results on EVIMO-2 dataset. While the network demonstrates efficient deblurring of the background, it faces challenges in accurately
segmenting the independently moving objects. The color scheme can be found in Appendix.

groups of pixels are erroneously assigned to the same class.

G. Evaluation on EVIMO-2 Dataset

After examining the behavior of our network with different
numbers of classes and moving objects in the scene, we aim
to evaluate its performance on a public dataset. We choose
to test our method on the EVIMO-2 dataset, the most recent
event-based dataset available [1]. The dataset consists of events
recorded using two Prophesee Gen3 cameras (left and right)
and one Samsung Gen3 camera (central). For our specific
analysis, we focus on the motion segmentation subset of the
dataset.

Initially, we train our network using the daylight record-
ings of EVIMO-2 since the night conditions pose significant
challenges due to high levels of noise. Additionally, since
all scenes in the dataset feature background motion and at
most two independently moving objects, we adopt a three-
class configuration in our EV-LayerSegNet, while being aware
of the tendency of the network to cluster together as many
events as possible.

Subsequently, we train our network on the EVIMO-2
dataset and present the training results in Figure 13. In most
scenes of the training set, the network effectively deblurs the
background. However, it encounters difficulties in accurately
segmenting the independently moving objects, in this case a

toy car (IMO). We believe this challenge arises due to the
high level of noise, which poses a significant obstacle for
our current pipeline. While reducing the noise by passing less
events in the voxel grid is a possible solution, it introduces
the risk of insufficient blurring of the background, which
would then hinder accurate background labeling. We therefore
suggest further research on noise filtering techniques and their
integration into our pipeline.

VII. ABLATION STUDY

A. Event Voxel vs Event Count

In our proposed method the temporal information is encoded
in the input event representation. As explained in [7], temporal
information need to be encoded in the input event represen-
tation. This is vital for accurate optical flow estimation using
non-recurrent neural networks such as EVFlowNet [31] and
ours.

To test this, we change the input event representation
to be per-pixel and per-polarity event count as in [7]. By
implementing this adjustment, we ensure that only spatial
information are passed to the network. We then train and test
our network on AffineObjects.

The training and test results are shown in Figure 14.
While the network demonstrates to learn accurate flow

maps and segmentation masks during training, we observe a

Input Events Estimated Mask 1 Estimated Mask 2 Estimated Flow Map 1 Estimated Flow Map 2 Combined Flow Map Image of Warped Events

Fig. 14. Comparison of training and test results using per-pixel and per-polarity event count. The first row shows the training results, while the second row
displays the test results. Despite the network’s ability to learn accurate flow maps and segmentation masks during training, it struggles to generalize effectively
during testing. This highlights the limitations of using event count representation alone. The color scheme can be found in Appendix.

significant performance drop during testing. This discrepancy
can be attributed to a clear case of overfitting during training.
As a result, our findings emphasize the vital role of encoding
temporal information within the input representation for miti-
gating overfitting and improving the generalization capabilities
of our proposed method.

B. Leaky ReLU vs Leaky DoReLU

In [24] the authors discover that using their leaky DoReLU
activation function instead of leaky ReLU improves seg-
mentation. The key distinction between these two activation
functions lies in the restriction of the slope for input values
above 1 in leaky DoReLU. The authors argue that the reason
for the segmentation improvement with leaky DoReLU is the
enhanced stability of gradients, considering their alpha maps
are limited to the range [0,1].

Inspired by their segmentation approach, we chose to im-
plement leaky DoReLU instead of leaky ReLU. However,
it is crucial to investigate the significance of this modified
activation function in our specific case.

For this reason, we create an alternative EV-LayerSegNet
architecture where leaky ReLU activations are used instead of
leaky DoReLU. We train it on the AffineObjects dataset and
subsequently test on a scene featuring horizontal motion, as
depicted in Figure 9.

The results in Figure 17 show that the network encounters
difficulties in accurately segmenting the entire drone from the
background, managing only to segment the outer borders of
the drone correctly. This observation strongly suggests that
the leaky DoReLU activation function plays a vital role in our
network’s ability to achieve successful segmentation.

C. Decreasing the slope in Leaky DoReLU

By establishing the significance of the leaky DoReLU
activation function in our segmentation module, we now turn
our attention to exploring the impact of modifying the slope
coefficient γ. In our investigation, we seek to understand
how adjusting γ affects the segmentation performance of our
network.

Leaky ReLU Leaky DoReLU Leaky DoReLU

x xx

y(x)

Fig. 15. Visualization of leaky ReLU (left) and leaky DoReLU with slope
coefficient γ = 10 (center) and γ = 10(right). The x-axis is the input x
and the y-axis is the output y(x).

First, let us examine the characteristics of the activation
functions involved, as depicted in Figure 15. Notably, we ob-
serve that leaky DoReLU exhibits a smaller slope compared to
leaky ReLU. This reduced slope plays a vital role in stabilizing
the flow of gradients beyond the range of [0,1]. Thus we
embark on exploring the consequences of further decreasing
the slope in our specific context, effectively increasing the
slope coefficient.

Empirical observations reveal that augmenting γ leads to a
near-flattening of the activation function slope beyond the [0,1]
region, as depicted in Figure 15. A diminished slope implies
that the gradients during training will be correspondingly
smaller. While employing γ = 10 already provides improved
gradient stability compared to leaky ReLU in the segmentation
task, a nearly flat activation function may result in less
substantial updates to the network parameters. Consequently,
this can lead to slower convergence or the network becoming
trapped in suboptimal solutions, a phenomenon commonly
referred to as the vanishing gradient problem.

To validate our hypothesis, we proceed to increase the value
of γ from 10 to 100 and train the network on the AffineOb-
jects dataset. The corresponding test results are presented in
Figure 16. Although certain regions of the drone are correctly
segmented as foreground, the network does not mislabel any
significant portion of the background. This outcome suggests
that while striving to deblur the scene, the network may have

Input Events Estimated Mask 1 Estimated Mask 2 Estimated Flow Map 1 Estimated Flow Map 2 Combined Flow Map Image of Warped Events

Fig. 16. test results obtained by increasing γ to 100 in the leaky DoReLU activation function. The segmentation output shows partial correctness in identifying
the foreground regions of the drone, while accurately preserving the background. This outcome suggests that the network, in its pursuit of deblurring the
scene, may have reached a suboptimal solution for the segmentation task. The color scheme can be found in Appendix.

Input Events Estimated Mask 1 Estimated Mask 2 Estimated Flow Map 1 Estimated Flow Map 2 Combined Flow Map Image of Warped Events

Fig. 17. Segmentation test results of the leaky ReLU variant of EV-LayerSegNet. Poor segmentation indicates the importance of the leaky DoReLU activation
function in achieving accurate motion segmentation. The color scheme can be found in Appendix.

arrived at a suboptimal solution for the segmentation problem
at hand.

By investigating the effects of both the leaky DoReLU
activation function and its slope, we gain valuable insights
into the interplay between these factors and their influence on
the segmentation performance of our network. These findings
contribute to a deeper understanding of the optimization chal-
lenges inherent in the design of our segmentation module.

VIII. CONCLUSION

We present the first end-to-end CNN network that performs
self-supervised motion segmentation using event cameras. We
take inspiration from the state-of-the-art methods in unsuper-
vised motion segmentation, and use the latest development
in event-based optical flow estimation using artificial neural
networks. We show that it is possible to learn motion models
and segmentation masks separately from a blurry scene, and
combine them together to deblur the input events. To train and
test our method, we generate a new dataset with background
and objects moving affinely. We show that the network is able
to correctly segment the background and the independently
moving objects in the event stream. Next, we show that our
method is not strictly dependent on the number of moving
objects in the scene, but can be extended to include more
objects. On the other hand, our method shows to be sensitive to
motion complexity, significant blurriness and noise, for which
we recommend the integration of noise filtering techniques in
the pipeline. Furthermore, we discover the tendency of the
network to fit as many events as possible in one single class,
by estimating the motion model that fits most of the events. For
this reason, we recommend the inclusion of spatial regularizers
for future work. As last recommendation for future work, we
suggest to develop the method using Spiking Neural Networks,

therefore allowing for fast and low-power consuming compu-
tation on board of weight-constrained vehicles such as drones.
We hope that our work draws attention to the potential that
self-supervised learning can unlock for event-based cameras,
allowing for learning-based methods to be trained and used
without expensive ground-truth annotations.

REFERENCES

[1] L. Burner et al. “EVIMO2: An Event Camera Dataset
for Motion Segmentation, Optical Flow, Structure from
Motion, and Visual Inertial Odometry in Indoor Scenes
with Monocular or Stereo Algorithms”. In: May 2022.
URL: https://arxiv.org/abs/2205.03467.

[2] P. Charbonnier et al. “Two deterministic half-quadratic
regularization algorithms for computed imaging”. In:
Proceedings of 1st International Conference on Image
Processing. Vol. 2. 1994, 168–172 vol.2. DOI: 10.1109/
ICIP.1994.413553.

[3] Guillermo Gallego, Mathias Gehrig, and Davide Scara-
muzza. “Focus Is All You Need: Loss Functions for
Event-Based Vision”. In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).
2019, pp. 12272–12281. DOI: 10 . 1109 / CVPR . 2019 .
01256.

[4] Guillermo Gallego et al. “Event-based Vision: A Sur-
vey”. In: (Apr. 2019).

[5] Liyue Ge et al. “Optical Flow Estimation from Layered
Nearest Neighbor Flow Fields”. In: Oct. 2018, pp. 1–6.
DOI: 10.1109/CISP-BMEI.2018.8633120.

[6] Mathias Gehrig et al. “DSEC: A Stereo Event Camera
Dataset for Driving Scenarios”. In: IEEE Robotics and
Automation Letters 6.3 (2021), pp. 4947–4954. DOI: 10.
1109/LRA.2021.3068942.

[7] Jesse Hagenaars, Federico Paredes-Valles, and Guido de
Croon. “Self-Supervised Learning of Event-Based Opti-
cal Flow with Spiking Neural Networks”. In: Advances
in Neural Information Processing Systems. Ed. by M.
Ranzato et al. Vol. 34. Curran Associates, Inc., 2021,
pp. 7167–7179. URL: https : / /proceedings .neurips .cc /
paper/2021/file/39d4b545fb02556829aab1db805021c3-
Paper.pdf.

[8] Diederik P. Kingma and Jimmy Ba. “Adam: A Method
for Stochastic Optimization”. In: CoRR abs/1412.6980
(2014).

[9] M. Kumar, Philip Torr, and A. Zisserman. “Learning
Layered Motion Segmentations of Video”. In: Inter-
national Journal of Computer Vision 76 (Mar. 2008),
pp. 301–319. DOI: 10.1007/s11263-007-0064-x.

[10] Chankyu Lee, Adarsh Kumar Kosta, and Kaushik Roy.
“Fusion-FlowNet: Energy-Efficient Optical Flow Esti-
mation using Sensor Fusion and Deep Fused Spiking-
Analog Network Architectures”. In: 2022 International
Conference on Robotics and Automation (ICRA). 2022,
pp. 6504–6510. DOI: 10 . 1109 / ICRA46639 . 2022 .
9811821.

[11] Chankyu Lee et al. “Spike-FlowNet: Event-based Opti-
cal Flow Estimation with Energy-Efficient Hybrid Neu-
ral Networks”. In: European Conference on Computer
Vision. 2020.

[12] Siyang Li et al. “Instance Embedding Transfer to
Unsupervised Video Object Segmentation”. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2018, pp. 6526–6535. DOI: 10 . 1109 /
CVPR.2018.00683.

[13] Zhuoyan Li, Jiawei Shen, and Ruitao Liu. “A
Lightweight Network to Learn Optical Flow from Event
Data”. In: 2020 25th International Conference on Pat-
tern Recognition (ICPR). 2021, pp. 1–7. DOI: 10.1109/
ICPR48806.2021.9413238.

[14] Tsung-Yi Lin et al. “Microsoft COCO: Common Ob-
jects in Context”. In: CoRR abs/1405.0312 (2014).
arXiv: 1405.0312. URL: http://arxiv.org/abs/1405.0312.

[15] Xiankai Lu et al. “See More, Know More: Unsupervised
Video Object Segmentation With Co-Attention Siamese
Networks”. In: 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2019,
pp. 3618–3627. DOI: 10.1109/CVPR.2019.00374.

[16] Anton Mitrokhin et al. “Event-Based Moving Object
Detection and Tracking”. In: 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS). 2018, pp. 1–9. DOI: 10 . 1109 / IROS . 2018 .
8593805.

[17] Anton Mitrokhin et al. “Learning Visual Motion Seg-
mentation Using Event Surfaces”. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2020, pp. 14402–14411. DOI: 10.1109/
CVPR42600.2020.01442.

[18] Chethan M. Parameshwara et al. “0-MMS: Zero-Shot
Multi-Motion Segmentation With A Monocular Event

Camera”. In: 2021 IEEE International Conference on
Robotics and Automation (ICRA). 2021, pp. 9594–9600.
DOI: 10.1109/ICRA48506.2021.9561755.

[19] Chethan M. Parameshwara et al. “SpikeMS: Deep Spik-
ing Neural Network for Motion Segmentation”. In:
2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2021, pp. 3414–3420. DOI:
10.1109/IROS51168.2021.9636506.

[20] Federico Paredes-Vallés and Guido C. H. E. de Croon.
“Back to Event Basics: Self-Supervised Learning of
Image Reconstruction for Event Cameras via Photo-
metric Constancy”. In: 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).
2021, pp. 3445–3454. DOI: 10.1109/CVPR46437.2021.
00345.

[21] Deepak Pathak et al. “Learning Features by Watching
Objects Move”. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2017,
pp. 6024–6033. DOI: 10.1109/CVPR.2017.638.

[22] Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza.
“ESIM: an Open Event Camera Simulator”. In: Conf.
on Robotics Learning (CoRL) (Oct. 2018).

[23] Nitin J. Sanket et al. “EVDodgeNet: Deep Dynamic
Obstacle Dodging with Event Cameras”. In: 2020 IEEE
International Conference on Robotics and Automa-
tion (ICRA). 2020, pp. 10651–10657. DOI: 10 . 1109 /
ICRA40945.2020.9196877.

[24] Sahir Shrestha et al. “Learning To Segment Domi-
nant Object Motion From Watching Videos”. In: 2021
Digital Image Computing: Techniques and Applications
(DICTA). 2021, pp. 01–08. DOI: 10.1109/DICTA52665.
2021.9647227.

[25] Timo Stoffregen et al. “Event-Based Motion Segmen-
tation by Motion Compensation”. In: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV).
2019, pp. 7243–7252. DOI: 10.1109/ICCV.2019.00734.

[26] Timo Stoffregen et al. “Reducing the Sim-to-Real Gap
for Event Cameras”. In: European Conference on Com-
puter Vision. 2020.

[27] J.Y.A. Wang and E.H. Adelson. “Representing moving
images with layers”. In: IEEE Transactions on Image
Processing 3.5 (1994), pp. 625–638. DOI: 10.1109/83.
334981.

[28] Charig Yang et al. “Self-supervised Video Object Seg-
mentation by Motion Grouping”. In: 2021 IEEE/CVF
International Conference on Computer Vision (ICCV).
2021, pp. 7157–7168. DOI: 10.1109/ICCV48922.2021.
00709.

[29] Fan Yang et al. “Multi-motion and Appearance
Self-Supervised Moving Object Detection”. In: 2022
IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV). 2022, pp. 2101–2110. DOI: 10.
1109/WACV51458.2022.00216.

[30] Yanchao Yang et al. “Unsupervised Moving Object
Detection via Contextual Information Separation”. In:
2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). 2019, pp. 879–888. DOI:
10.1109/CVPR.2019.00097.

[31] Chengxi Ye et al. “Unsupervised Learning of Dense
Optical Flow, Depth and Egomotion with Event-Based
Sensors”. In: 2020 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2020,
pp. 5831–5838. DOI: 10 . 1109 / IROS45743 . 2020 .
9341224.

[32] Vickie Ye et al. “Deformable Sprites for Unsuper-
vised Video Decomposition”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). June 2022, pp. 2657–2666.

[33] Fisher Yu et al. “BDD100K: A Diverse Driving Video
Database with Scalable Annotation Tooling”. In: ArXiv
abs/1805.04687 (2018).

[34] Luca Zappella et al. “Enhanced Local Subspace Affinity
for feature-based motion segmentation”. In: Pattern
Recognition 44 (Feb. 2011), pp. 454–470. DOI: 10.1016/
j.patcog.2010.08.015.

[35] Yun Zhang, Bin Luo, and Liangpei Zhang. “Permutation
Preference Based Alternate Sampling and Clustering
for Motion Segmentation”. In: IEEE Signal Processing
Letters 25.3 (2018), pp. 432–436. DOI: 10.1109/LSP.
2017.2777997.

[36] Yi Zhou et al. “Event-Based Motion Segmentation With
Spatio-Temporal Graph Cuts”. In: IEEE Transactions
on Neural Networks and Learning Systems (2021),
pp. 1–13. DOI: 10.1109/TNNLS.2021.3124580.

[37] Alex Zihao Zhu et al. “EV-FlowNet: Self-Supervised
Optical Flow Estimation for Event-based Cameras”. In:
ArXiv abs/1802.06898 (2018).

[38] Alex Zihao Zhu et al. “The Multivehicle Stereo Event
Camera Dataset: An Event Camera Dataset for 3D
Perception”. In: IEEE Robotics and Automation Letters
3.3 (2018), pp. 2032–2039. DOI: 10.1109/LRA.2018.
2800793.

[39] Alex Zihao Zhu et al. “Unsupervised Event-Based
Learning of Optical Flow, Depth, and Egomotion”. In:
2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2019, pp. 989–997. DOI:
10.1109/CVPR.2019.00108.

APPENDIX

Fig. 18. Optical flow color coding scheme. Direction is encoded in color hue,
and speed in color brightness.

Part II

Literature Study

18

2
Event Cameras

Event cameras represent a new form of acquisition of visual information. As the aim of this research

project is to develop a computer vision method for event cameras, it is of paramount importance to first

understand the working principle of these types of cameras, along with the advantages and challenges

that their data output pose. In section 2.1, the working principle of the event cameras is explained,

whereas in section 2.2 the advantages and challenges are shown. Finally, a brief explanation of the

representation and processing of the event data is given in section 2.3.

2.1. Principle of Operation of Event Cameras
Event cameras are bio-inspired sensors that pose a paradigm shift in the way visual information is

acquired. In contrast to conventional cameras, which acquire full images at a fixed rate, event cameras

such as the Dynamic Vision Sensor (DVS) respond to changes of brightness in the scene asynchronously

and independently for every pixel [20]. To understand the difference, a comparison between traditional

camera and event camera is given in Figure 2.1. In Figure 2.1a the black dot is not moving, hence the

event camera is not recording any data, whereas the standard camera generates an output at fixed rate.

In Figure 2.1b, the black dot starts moving and the event camera records the motion at a higher time

resolution.

(a) No motion (b) Counterclockwise motion

Figure 2.1: Black dot moving in a circular motion on a grey disk. The frame camera register all pixels values, whereas the event

camera only records the motion of the ball, hence the event camera will only record the black dot when it is moving

Events cameras work as follows. An event camera has independent pixels that respond to changes in

brightness, hence to changes in their log photocurrent 𝐼, as shown in Equation 2.1 [20]:

𝐿 � log(𝐼) (2.1)

19

2.2. Advantages and Challenges of Event Cameras 20

Assuming a noise-free scenario, an event 𝑒𝑘 is triggered at pixel x𝑘 (with 𝑥𝑘 and 𝑦𝑘 coordinates) at time

𝑡𝑘 as soon as the brightness change since the last event at the pixel (Equation 2.2) reaches a temporal

contrast threshold ±𝐶 as in Equation 2.3, where 𝐶 > 0, Δ𝑡𝑘 is the time elapsed the since the last event at

the same pixel, and the sign of the brightness change is described by the polarity 𝑝𝑘 ∈ {−1,+1} [20].

Δ𝐿 (x𝑘 , 𝑡𝑘) � 𝐿 (x𝑘 , 𝑡𝑘) − 𝐿 (x𝑘 , 𝑡𝑘 − Δ𝑡𝑘) (2.2)

Δ𝐿 (x𝑘 , 𝑡𝑘) = 𝑝𝑘𝐶 (2.3)

Contrast Sensitivity

Essentially positive events ("ON", brightness increase) and negative events ("OFF", brightness decrease)

are triggered when the upper threshold 𝐶+ or lower threshold 𝐶− are exceeded. This contrast is

generally determined by the pixel bias currents [29][30], and typical DVS cameras set the thresholds

between 10% and 50% [20][40]. Setting the lower threshold too low results in a storm of noise events [7].

Moving Edges

Assuming constant illumination, for a small Δ𝑡 the intensity increment Δ𝐿 can be approximated as in

Equation 2.4:

Δ𝐿 ≈ −∇𝐿 · vΔ𝑡 (2.4)

This means that the intensity increment is caused by a brightness gradient ∇𝐿(x𝑘 , 𝑡𝑘) = (𝜕𝑥𝐿, 𝜕𝑦𝐿)𝑇 with

velocity v(x𝑘 , 𝑡𝑘) on the image plane, over a displacement Δx = vΔ𝑡. If the motion is parallel to the edge,

there is no event generated since 𝑣 ¤∇𝐿 = 0. However, if the motion is perpendicular to the edge (v || ∇𝐿),

events are generated at the highest rate, since minimal time is required to achieve brightness change.

2.2. Advantages and Challenges of Event Cameras
Event cameras offer numerous potential advantages over traditional frame-based cameras. First, event

cameras have high temporal resolution. In analog circuitry, monitoring of brightness changes is fast and

the read-out of events is digital with 1 MHz of frequency [7]. This means that events are detected and

stamped with microsecond resolution, hence this type of camera is able to capture fast motions without

suffering from motion blur, which is recurrent in frame-based cameras. Second, event cameras have

low latency. Since every pixel works independently, there is no need to wait that every pixel detects a

brightness change to generate an event, hence the latency is minimal. The latency ranges from 10 𝜇𝑠 on

the lab bench to sub-millisecond in the real world [7]. Third, the power consumption is low because only

brightness changes are detected and transmitted, thus removing redundant data. Among the range of

different event cameras, the power consumption is usually less than 100 mW [7]. Last, the cameras have

a very High Dynamic Range (HDR), hence they can adapt to very dark as well as very bright stimuli.

This is because the pixels operate on a logarithmic scale and independently.

Nevertheless, event cameras represent a complete different approach in the acquisition of visual

information, and this poses the challenge of designing novel methods to unlock their potential. First,

the main challenge arises from the different space-time output of the cameras. While frames are

synchronous and dense, events are asynchronous and spatially sparse. This different space-time

distribution makes the current frame-based vision algorithms not suitable for event data. Second, the

photo-metric sensing is different. While standard cameras provide grayscale information, event contain

only contain brightness changes, which are represented by binary values for increase and decrease.

Additionally, changes in brightness do not depend only on the scene but also on the relative motion

between scene and camera. Last, the noise from photoreceptors to transistor circuits is substantial and

quite complex to model and filter out. Therefore new methods are needed to rethink about how to

model the noise in event data so as to make them more meaningful for post-processing.

2.3. Event Representations and Processing
The shift towards event data poses questions regarding the methods to acquire meaningful information

from events for a given task. As mentioned before, event cameras acquire information in an asynchronous

2.3. Event Representations and Processing 21

and sparse way, with low latency and high temporal resolution. This means that the temporal aspect of

events plays a central role when processing the events. Depending on how many events are processed at

the same time, algorithms can be divided into methods that operate on a event-by-event basis or process

groups of events, which introduce some latency.

Individual Events

Methods that operate using single events 𝑒𝑘 � (𝑥𝑘 , 𝑡𝑘 , 𝑝𝑘) are usually Spiking Neural Networks (SNN)

and filters. Deterministic filters (e.g. space-time convolution filters and activity filters) have been used

for noise reduction, feature extraction [2], image reconstruction [34][38] and brightness filtering [37].

Also probabilistic filters such as Kalman and particle filters have been used for pose tracking in SLAM

(Simultaneous Localization And Mapping) systems [8][13][14][42]. The advantage of processing one

event a time is that the state of the system (estimated unknowns) can change when another event arrives,

therefore the latency is minimal. However, the main disadvantage is that events alone carry very little

information for state estimation. Furthermore, they can be very sensitive to noise. Filters and SNNs use

additional information to leverage from this drawback. This information is usually built up from past

events or given by external knowledge (i.e. sensors data fused with events).

Event Packet

Since each single event carries little information and is subject to noise, events are grouped to yield

a sufficient signal-to-noise ratio event packets ℰ � {𝑒𝑘}𝑁𝑒

𝑘=1
are usually a collection of event that form

a spatio-temporal neighbourhood and are processed together to produce a meaningful output. The

number of events processed simultaneously 𝑁𝑒 is critical for the assumptions of the algorithm used for

the given task (i.e. constant motion speed). Many processing methods just perform pre-processing to

enable the usage of frame-based computer vision tools with events by generating event frames. Event

frames have been used for example in traditional stereo methods [15][16] and optical flow computation

[21]. With this respect, event frames offer many advantages. First, event frames have an intuitive

interpretation for the human eye (i.e. edge map). Second, they inform not only about the presence of

events but also about their absence. Last, the data structure is compatible with traditional computer

vision. However, using event frames is not ideal since they disregard event sparsity and are very

sensitive to the number of events used to generate the frame. Other methods, such as in [27], use a 3D

representation of the events, where the third dimension becomes a geometric one i.e. (𝑥𝑘 , 𝑦𝑘 , 𝑡𝑘) ∈ 𝑅3

3
Optical Flow Estimation with Event

Cameras

As already mentioned in chapter 2, events represent a paradigm shift in the way visual information

acquired. In particular, the fast-changing nature of events represent a substantial advancement in

computer vision tasks such as optic flow. As the objective of this research project lies in elaborating

a self-supervised framework for motion segmentation, in a similar way self-supervised optical flow

estimation is analyzed. For this task, establishing a correspondence between events is essential. In

section 3.1, such establishment is sought with motion compensation, whereas in section 3.2 the current

state-of-the-art frameworks on self-supervised optical flow are analyzed in depth.

3.1. Motion Compensation (Contrast Maximization)
Assuming constant illumination in a scene, event cameras detect moving edges. In absence of other

appearance information, for most computer vision tasks such as depth and optical flow estimation

the problem of establishing correspondence between the events becomes of primary importance. In

this regard, Gallego et al. [6] elaborated a framework aimed at maximising the alignment between the

events. This is known as motion compensation or contrast maximization. An example is shown in Figure 3.1.

The events shown in Figure 3.1.a do not have any data correlation between them. By maximising an

objective function (the contrast) the events are best aligned to reveal the edges that have caused them

first Figure 3.1.b.

Figure 3.1: a) Events caused by moving edges (blue is brightness increase, red is brightness decrease). (b) events visualized

according to the point trajectories, revealing the edges that have caused them [6]

More specifically, given a set of 𝑁𝑒 events, continuous in time, the purpose is to find the point trajectories

x(𝑡) that best fit the event data. The events are generated on an image plane where the geometric model

22

3.1. Motion Compensation (Contrast Maximization) 23

of the problem addressed (i.e. optical flow) is known. Then the objective becomes estimating the

parameters 𝜃 of such model from the events, assuming that there are fewer unknown parameters than

events, they are shared among the events and that they are observable. Then the process can be broken

down as follows:

1. Warp the events and create an image of warped events 𝐻, according to the point trajectories

defined by the candidate parameters

2. Compute the objective function 𝑓 based on 𝐻

3. Optimize 𝑓 with respect to 𝜃

As an example, the problem of optical flow estimation is considered. Recall that each event 𝑒𝑘 �
(𝑥𝑘 , 𝑦𝑘 , 𝑡𝑘 , 𝑝𝑘) consist of space-time coordinates and brightness change defined by the polarity 𝑝𝑘 ∈
{−1,+1}. In optical flow, the ideal is that the measurement is taken over a very small time interval,

such that the trajectories followed by the points are locally straight. Then the geometric model can be

approximated as the translation shown in Equation 3.1, where x � (𝑥, 𝑦)𝑇 is the point and v its velocity

(optical flow). Corresponding events should lie in such trajectories.

x(𝑡) = x(0) + v𝑡 (3.1)

Next, given a candidate optical flow v (which from now represents the motion parameters 𝜃), the

objective is to sum the polarities lying on the same point trajectory. For this, events need to be translated

to a reference time 𝑡
ref

. This is known as warping and it is shown in Equation 3.2, where W stands for

warping function.

x′𝑘 � W (x𝑘 , 𝑡𝑘 ;𝜃) = x𝑘 − (𝑡𝑘 − 𝑡ref)𝜃 (3.2)

Then, an Image of Warped Events (IWE or 𝐻) is built as in Equation 3.4, where 𝑏𝑘 can either be 1 or have

the value of the sum of polarities at the specific pixel. As mentioned in the supplementary material

of [6], the main difference lies in the extension of the basin around the optimal value of the objective:

using the polarities for 𝑏𝑘 results in a narrower basin that is mainly due to the cancellation of polarities

when thin edges are causing the events and overlap. Therefore, 𝑏𝑘 = 1 is more often considered.

𝐻(x;𝜃) �
𝑁𝑒∑
𝑘=1

𝑏𝑘𝛿
(
x − x′𝑘

)
(3.3)

Finally, the objective function is computed. For optical flow estimation, the variance of 𝐻, known as

contrast, is shown in Equation 3.4, where 𝑁𝑝 is the number of pixels in 𝐻 and 𝜇𝐻 �
1

𝑁𝑝

∑
𝑖 , 𝑗 ℎ𝑖 𝑗 is the

mean of 𝐻:

𝑓 (𝜃) = 𝜎2(𝐻(x;𝜃)) � 1

𝑁𝑝

∑
𝑖 , 𝑗

(
ℎ𝑖 𝑗 − 𝜇𝐻

)
2

(3.4)

By maximizing the variance, the accumulation of events in the image plane is favoured. Since the

number of events is constant, the accumulation of events in certain regions of the image plane will

directly result in dispersion of events in other regions. Hence higher variance will result in a higher

contrast (hence contrast maximization) as shown clearly in Figure 3.2.

3.2. Self-supervised learning of optical flow via contrast maximization 24

Figure 3.2: (a) variance of H as a heat map. (b) Images of Warped Events (IWE)

Furthermore, Gallego et al. [5] extend the work in [6] by analysing 20 more loss functions from traditional

image processing techniques, with the conclusion that the variance, the gradient and the Laplacian

magnitudes are among the best loss functions in terms of accuracy and computational time

3.2. Self-supervised learning of optical flow via contrast maximiza-
tion

Early attempts on using contrast maximization for learning optical flow in a self supervised way have

been made by Zhu et al. [53]. The pipeline is shown in Figure 3.3. Events are treated as 2D image, hence

they are grouped in patches of different timestamps and passed to a convolutional encoder-decoder

network, which outputs the optical flow in the style of a traditional 2D image. Then the self-supervision

is done via motion compensation, hence the motion is reversed to a reference time and a temporal loss

inspired from Mitrokhin et al. [26] is applied along with a local smooth regularization loss. The main

limits of this method is that it disregards the neuronal dynamics of the event data, and rather treats

them as images for traditional applications with Artificial Neural Networks (ANN). A natural fit to

events would be the use of SNN, where time is not encoded in the input but directly fed in the spiking

network.

Figure 3.3: Self-supervised optical flow estimation using event volumes and Artificial Neural Networks (ANN) [53]

In this regard, Paredes et al. [11] propose the first SNN for self-supervised optical flow estimation. The

pipeline is shown Figure 3.4. The method can be seen as a conversion from ANN to SNN of the method

in [53]. In addition to this, the input is treated differently. While in [53] the event stream is split into

different time slots and treated the grouped events as a frame, in [11] the events are split into groups

of equal count and the temporal information is not encoded in the input but directly extracted by the

network.

3.2. Self-supervised learning of optical flow via contrast maximization 25

Figure 3.4: Pipeline for self-supervised optical flow estimation using events and SNN [11]

The self-learning is also based on contrast maximization as in [53], hence the deblurring quality is

used as measure, namely the per-pixel and per-polarity average timestamp of the IWE. As this metric

becomes smaller, the deblurring quality increases hence the optical flow estimation is more accurate.

However, in [11] the temporal loss is reformulated as follows. Similarly to [53], an image of the average

timestamp per pixel for each polarity 𝑝′ is generated as in Equation 3.5

𝑇𝑝′ (𝒙; 𝒖 | 𝑡ref) =
∑

𝑗 𝜅
(
𝑥−𝑥′

𝑗

)
𝜅
(
𝑦−𝑦′

𝑗

)
𝑡 𝑗∑

𝑗 𝜅
(
𝑥−𝑥′

𝑗

)
𝜅
(
𝑦−𝑦′

𝑗

)
+𝜖

𝑗 = {𝑖 | 𝑝𝑖 = 𝑝′} , 𝑝′ ∈ {+,−}, 𝜖 ≈ 0

(3.5)

Successively, the temporal loss in [53] is improved by scaling the sum of squared temporal images with

the number of pixels with at least one warped event. This is done in order to make the loss convex,

which is shown in Equation 3.6, where 𝑛(x′) is the per-pixel event count of IWE.

ℒcontrast (𝑡ref) =
∑

𝒙 𝑇+ (𝒙; 𝒖 | 𝑡ref)2 + 𝑇− (𝒙; 𝒖 | 𝑡ref)2∑
𝒙 [𝑛 (𝒙′) > 0] + 𝜖

(3.6)

To prevent temporal scaling issues during backpropagation, the warping process is done both forward

(𝑡fw

ref
) and backward 𝑡bw

ref
. The total final loss is shown in Equation 3.7, where 𝜆 is a scalar balancing the

two losses and ℒ
smooth

is a Charbonnier smoothness prior [4].

ℒcontrast = ℒcontrast

(
𝑡fw

ref

)
+ ℒcontrast

(
𝑡bw

ref

)
ℒ

flow
= ℒcontrast + 𝜆ℒsmooth

(3.7)

Spiking Neuron Model

The spiking neural network used in [11] is based on the leaky-integrate-and-fire (LIF) neuron, where

the membrane potential 𝑈 , the synaptic current 𝐼 and time 𝑡𝑘 are modelled as in Equation 3.8 and

Equation 3.9. Here 𝑗 and 𝑟 refer to presynaptic neurons, 𝑖 is for postsynaptic, 𝛼 is the membrane decay

or leak (which can be fixed or learned), 𝑆 ∈ {0, 1} a neuron spike, and 𝑊ff
and 𝑊 rec

feedforward and

recurrent weight connections:

𝑈 𝑘
𝑖 =

(
1 − 𝑆𝑘−1

𝑖

)
𝛼𝑈 𝑘−1

𝑖 + (1 − 𝛼)𝐼 𝑘𝑖 (3.8)

𝐼 𝑘𝑖 =
∑
𝑗

𝑊ff

𝑖 𝑗 𝑆
𝑘
𝑗 +

∑
𝑟

𝑊 rec

𝑖𝑟 𝑆𝑘−1

𝑟 (3.9)

A neuron fires a spike 𝑆 whenever the membrane potential exceeds a threshold 𝜃. The threshold can be

fixed, learned or adaptive, making the LIF model ALIF (adaptive). In Equation 3.10 and Equation 3.11,

the threshold is made adaptive by using a second state variable 𝑇. It acts as a low-pass filter over the

3.2. Self-supervised learning of optical flow via contrast maximization 26

output spikes, hence adapting the threshold based on the neuron activity. 𝛽{0,1} are learnable constants,

whereas 𝜂 is the learnable threshold decay.

𝜃𝑘
𝑖 = 𝛽0 + 𝛽1𝑇

𝑘
𝑖 (3.10)

𝑇 𝑘
𝑖 = 𝜂𝑇 𝑘−1

𝑖 + (1 − 𝜂)𝑆𝑘−1

𝑖 (3.11)

To regularize the neuron firing, presynaptic activity (PLIF model) is used by subtracting a presynaptic

trace 𝑃 to the input current, as shown in Equation 3.12 and Equation 3.13, where 𝜌{0,1} are learnable

addition and decay constants, and 𝑅𝑖 is the set of receptive fields of neuron 𝑖 over all channels:

𝐼 𝑘𝑖 =
∑
𝑗

𝑊ff

𝑖 𝑗 𝑆
𝑘
𝑗 +

∑
𝑟

𝑊 rec

𝑖𝑟 𝑆𝑘−1

𝑟 − 𝜌0𝑃
𝑘
𝑖 (3.12)

𝑃𝑘
𝑖 = 𝜌1𝑃

𝑘−1

𝑖 + 1 − 𝜌1

|𝑅𝑖 |
∑
𝑗∈𝑅𝑖

𝑆𝑘−1

𝑗 (3.13)

This is useful since the adaptation delay is minimized, a crucial feature for the fast-changing nature

of event data. Due to this, [11] propose a crossover between adaptive and presynaptic models (XLIF),

where the threshold is adapted based on presynaptic activity, as shown in Equation 3.14

𝜃𝑘
𝑖 = 𝛽0 + 𝛽1𝑃

𝑘
𝑖 (3.14)

4
Motion Segmentation

As mentioned in chapter 1, the aim of this research project is to develop a self-supervised motion

segmentation method for event cameras. The literature on motion segmentation (event-based and

frame-based) is very large, and a good understanding of the state-of-the-art methods in both kinds of

visual information acquisition is needed in order to combine the necessary knowledge and elaborate a

successful method which will be the first of its kind in event-based vision. In this regard, first a general

review on motion segmentation, aimed at identifying the most popular categories, is done in section 4.1.

Finally, the literature on self-supervised methods for traditional frame-based cameras is looked in depth,

and the relevant findings are shown in section 4.2.

4.1. Review on Motion Segmentation
Motion segmentation is the computer vision task that attempts to retrieve moving objects [52]. Despite

the methods being very different between each other, they present similar attributes. Here the main

ones are presented:

• Methods can be Feature-based or Dense-Based. In feature-based, the moving objects are represents by

few points or salient characteristics like corners or edges, whereas dense-based methods compute

pixel-wise motion [17].

• Occlusions: some methods are able to handle objects that are partially or fully hidden for a certain

period of time

• Multiple objects: methods can be able to distinguish multiple moving objects in a scene or simply

retrieve the main moving part (foreground) which can be one object or more (without any

distinction among them)

• Temporary stopping: the ability of handling the temporary stop of moving objects

• Prior knowledge: some methods need prior knowledge of the scene to train on or to be explicitly

included inside the model

• Training: some methods require training as they may use neural networks

First, motion segmentation can be feature-based or dense-based. In feature-based methods, the moving

objects is represented by a limited number of features like edges or salient points, whereas in dense-

based methods the algorithm computes pixel-wise motion to find the moving object [17]. Second,

motion segmentation presents the challenge of dealing with occlusions, which is the partial (or total)

disappearance of a moving object for a certain amount of time (for example, a car moving behind a tree).

Some methods fail when occlusions happen, and others are able to resolve occlusion to a certain extent.

Third, a large number of methods are able to recognize one moving object in the scene, however other

algorithms are able to deal with multiple objects moving at the same time. Fourth, some methods are

able to deal with temporary stopping of moving objects. Fifth, algorithms need to be able to deal with

missing data in the scene. Last, some methods require some inputs from the camera model in use for

motion segmentation.

27

4.1. Review on Motion Segmentation 28

The literature on motion segmentation is extensive and many approaches are specific to certain

applications. Despite the extensiveness, there are distinct working principles which allow the methods

to be classified into different categories. Here the main ones are reported [49][25]. In subsection 4.1.1,

image difference is explained, , whereas in subsection 4.1.4 and subsection 4.1.3 the statistical methods

and optic flow are shown respectively. Then, techniques based on layers and deep learning are

elaborated in subsection 4.1.2 and subsection 4.1.5. To end, a brief evaluation of all the methods is given

in subsection 4.1.6.

4.1.1. Image Difference
Image difference is the simplest method, which consists in detecting moving objects by simply finding

the intensity difference between pixels across video frames [49]. An example of image difference is

shown in Figure 4.1. Methods based on Image Difference are able to detect multiple independently

moving objects and can also handle occlusions, however these algorithms are very sensitive to noise,

brightness changes, temporary stopping, and can not discern the motion of the camera from the scene

[50]. The method in [18] uses the pixel variance and covariance to learn a statistical model of the

background, and uses average frame difference to achieve the segmentation.

Figure 4.1: Sequence of video frames along with their image difference results [1]

4.1.2. Layers
Layers based techniques aim at finding motion by dividing the frames into different layers based on

the number of uniform motions [9][17]. An example of this class of methods is shown in Figure 4.2.

Each layer contains information associated to the depth, the motion parameters and the parameters

regarding motion visibility (i.e. occlusions) This is the most natural solution to solve occlusions in the

scenes, however the complexity of the algorithms gets very high with increasing number of parameters,

leading to very long execution times. Moreover, some kind of priori knowledge is needed to provide an

initial estimate [49].

Figure 4.2: An example of layer-based method [17]

4.1.3. Optical Flow
Optical Flow (OF) methods rely on optic flow, which is the distribution of apparent velocities describing

the apparent motion pattern of brightness in the pixels [49]. It is one of the earliest methods used to

analyze motion in video sequences, but it fails to segment motion whenever there are occlusions or

temporary stoppings [43]. Since it is also sensitive to noise and changes in lightning conditions, optic

flow needs to be processed to reduce these effects and typical methods include the use of Convolutional

Neural Networks (CNN) [25].

4.1. Review on Motion Segmentation 29

Figure 4.3: Optic flow field: darker zones are the regions where velocity vectors are greater than zero [49]

4.1.4. Statistical Theory
Statistical theory is among the most common principles used in motion segmentation [49]. In essence,

motion segmentation can be seen as a classification problem, where the pixels either belong to the

background (the region where little to no motion is present) or the foreground, where the dominant

moving object of the scene is located. The most common frameworks are Maximum A Posteriori

probability (MAP), Particle Filter (PF) and Expectation Maximisation (EM).

Maximum A Posteriori Probability

MAP is based on the Bayes Rule as in Equation 4.1:

𝑃
(
𝑤 𝑗 | 𝑥

)
=

𝑝
(
𝑥 | 𝑤 𝑗

)
𝑃
(
𝑤 𝑗

)∑𝑐
𝑖=1

𝑝 (𝑥 | 𝑤𝑖)𝑃 (𝑤𝑖)
(4.1)

where 𝑃(𝑤 𝑗 |𝑥) is the ’a posteriori probability’ 𝑥 is the pixel to be classified, 𝑤1...𝑤𝑐 are the 𝑐 classes (often

only foreground and background), 𝑝(𝑥 |𝑤 𝑗) the conditional density, 𝑃(𝑤 𝑗) the ’a priori probability’ and∑𝑐
𝑖=1

𝑝 (𝑥 | 𝑤𝑖)𝑃 (𝑤𝑖) the density function. Essentially, MAP tries to classify pixel 𝑥 to one of the classes

𝑤 in order to maximise the a posteriori probability. therefore giving for every pixel the probability of

belonging to each class (background or foreground) and the objective is to maximise the posteriori

probability [7][12].

Particle Filter

In Particle Filter, the objective is to track the evolution of a variable over time by constructing a

sample-based representation of the probability density function. Often this variable is a geometric active

contour of the moving object is tracked with the help of a probability density function [25]. The method

is an iterative algorithm, where each iteration is composed of prediction and update. A series of actions

are taken, and each action modifies the state of the variable according to some model (prediction). Then

each copy of the variable state (particles) is memorized along with a weight that represents the quality of

that specific particle. The estimation of the future state of the variable is done by summing all previous

copies. After the new state is observed, the weights are re-evaluated (update) and the particles with

small weights are eliminated [35].

Expectation Maximization

Expectation Maximization is a powerful iterative algorithm that aims at estimating the model parameters

that best fist the observed data. This method is particularly convenient in scenarios where data are

hidden or missing. In the E-step, conditional expectation is applied to estimate the missing data. In the

M-step, the likelihood function is maximised by clustering the data into spatio-temporal patches

In general, all statistical methods require a prior (the statistical model) and show good performance

in scenes that are very well represented by the statistical model. In scenes that are different from the

models, the methods often fail, making the motion segmentation unsuccessful.

4.1.5. Deep Learning
Last, deep learning techniques became very popular in recent times. These kind of approaches

use machine learning techniques, such as artificial and convolutional neural networks, to solve the

segmentation problem. Most of the deep learning based methods need to be trained on annotated

4.2. Self-Supervised Frame-based Motion Segmentation 30

data to achieve good performance. The training stage highly influences the performance of these

methods. However recent works which do not require annotated data, such as the saliency-based

method developed by Lu et al [23], have shown to be able to achieve comparable performance when

using network architectures that can capture intrinsic properties in among video frames.

4.1.6. Brief Evaluation
To conclude, a global distinction between motion segmentation methods is the prior knowledge.

While it is true that many successful motion segmentation methods require prior knowledge for

supervised training, this limits their real world application, since they need very large datasets with

manually annotated data. The annotation is a very expensive and time-consuming task, which is

considered the main limitation of motion segmentation methods. Hence self-supervised motion

segmentation techniques have been recently developed, which do not require data to be labelled for

training. This advantage would make motion segmentation widely applicable in many real world data.

Current successful self-supervised motion segmentation methods show comparable performance to the

supervised ones, however the same performance is not guaranteed when dealing with very different

scenes or the challenges mentioned above. As currently there is no general solution to solve motion

segmentation for all types of motion including challenges such as occlusions, ongoing researches are

tailored towards how to best capture the scene dynamics in an self-supervised framework.

4.2. Self-Supervised Frame-based Motion Segmentation
As mentioned in section 4.1, the literature on motion segmentation is extensive. Furthermore, the

literature becomes even larger when Video Object Segmentation (VOS) is considered. The main

difference between these two tasks is found in the principle: while motion segmentation tries to separate

independently moving objects from the background, video object segmentation tries to separate the

foreground from the background. In the special case where the foreground is made up of one moving

object, the two computer vision tasks perform the same. In case two or more moving objects are present

in the foreground, motion segmentation is then required to make distinction between the two objects,

whilst VOS is only required to separate them from the background but not necessarily distinguish

between the two. Since the majority of state-of-the-art motion segmentation methods still rely on one

moving object per scene, VOS methods are investigated.

Since the aim of this research project is to develop a self-supervised framework for motion segmentation,

the current literature on self-supervised frame-based segmentation (motion and video) is explored.

Often self-supervised methods are labelled as unsupervised, since ground truth is not used. However,

the definition of unsupervised is ill-posed. In literature, many methods are unsupervised only during

inference and test, whilst including some parts of their architecture (i.e. networks, masks) that are

pretrained on an external dataset with ground truth. For example, COSNet [24] uses co-attention to

capture rich correlations between frames of a video, but masks are pretrained on ground truth. Similarly,

Ye et al. [48] perform motion segmentation using global sprites, but it also requires precomputed masks.

Li et al. [19] propose the use of instance embeddings to find the moving object based on motion saliency

and objectness. However, the dense embeddings are obtained from an instance segmentation that is

performed by a network pretrained on static images.

In general, frame-based methods that are self-supervised learn by either reconstructing the image

and/or reconstructing the optical flow. In subsection 4.2.1, methods relying on image reconstruction

are presented, whereas in subsection 4.2.2 methods that reconstruct optical flow are shown.

4.2.1. Image Reconstruction
Currently the most promising self-supervised method based on image reconstruction is the Layered

Differentiable Image Synthesis (LDIS) proposed by Shrestha et al. [39]. A visual representation of the

newtork (LayerSegNet) is shown in Figure 4.4. Similarly to the method described in subsection 4.1.2, the

core concept is that, given two consecutive RGB frames 𝐼1 and 𝐼2, it is possible to segment the foreground

object from the background by splitting 𝐼1 into disjoint layers, warping and combining them together to

reconstruct 𝐼2. The reconstruction loss is used to learn and train the algorithm.

4.2. Self-Supervised Frame-based Motion Segmentation 31

Figure 4.4: Visual example of the Layered Differentiable Image Synthesis (LDIS). Image 𝐼1 is separated into layers that are

individually warped and then combined together to obtain a prediction of the second image 𝐼2

The method works as follows. Using coordinate notation x = (𝑥, 𝑦)𝑇 to describe pixel coordinates in

the image domains 𝐼1(𝜔1) and 𝐼2(𝜔2). The objective is to separate 𝐼1 into disjoint layers, move them

individually and then combine them together to form a reconstruction of the second image 𝐼2. Each

layer consist of:

• RGB intensity map 𝐿𝑖 :

(
Ω ⊂ R2

)
→ R3

• Alpha map 𝛼𝑖 :

(
Ω ⊂ R2

)
→ R1

• Flow map 𝑤𝑖 :

(
Ω ⊂ R2

)
→ R2

The motion in 𝐼1 and 𝐼2 are described by the transformation matrices 𝐴1 and 𝐴2, which are used to

calculate the optical flow maps 𝑊𝑖 :

(
Ω ⊂ R2

)
→ R2

for all x in Equation 4.2:

𝑊𝑖(𝑥, 𝑦) = A𝑖

1

𝑥
𝑦

 =
[
𝑎1

𝑖
𝑎2

𝑖
𝑎3

𝑖

𝑎4

𝑖
𝑎5

𝑖
𝑎6

𝑖

]
1

𝑥
𝑦

 , 𝑖 ∈ {1, 2} (4.2)

Successively 𝐼1 is split into layers using alpha maps. These maps define the spatial support regions.

Ideally, an one-hot vector would correspond to each pixel to indicate the layer membership, since each

pixel can either belong to the foreground or background. On the other hand, a discrete representation

of the scene would make the pipeline non differentiable. Instead, softmax binning [47] is used to

approximate hard binning (Equation 4.3).

𝛼𝑖(x) ∈ [0, 1], 𝑖 ∈ {1, 2} (4.3)

Using a modified maxout operation [51], the maximum value of the two alpha maps is retained, while

the other is set to 0. With these alpha maps, the optical flow field associated to each layer 𝑤𝑖 using

Equation 4.4, where ⊙ represents element-wise product with broadcasting.

𝑤𝑖 = 𝛼𝑖 ⊙𝑊𝑖 (4.4)

Finally, the RGB map for each layer 𝐿𝑖 by associating pixel intensities to the alpha maps (Equation 4.5).

𝐿𝑖 = 𝛼𝑖− binary ⊙ 𝐼1 (4.5)

To prevent the pixel intensities being scaled with the continuous alpha maps, Equation 4.6 performs

binarisation on the maps. This operation not only stops the learning process from performing

backpropagation through this operation, but also acts as a constraint such that the network can only

learn through Equation 4.4, hence learning to associate alpha maps to flow values in𝑊𝑖 without affecting

the pixel intensities in 𝐼1.

4.2. Self-Supervised Frame-based Motion Segmentation 32

𝛼𝑖− binary =

(
𝛼𝑖 > 0.5

)
(4.6)

Next, forward warping [28] in Equation 4.7 is used to obtain the warped intensity maps �̂�𝑖∈{1,2} and

alpha maps 𝛼𝑖∈{1,2} using their flows 𝑤𝑖∈{1,2}.

�̂�𝑖 (x + 𝑤𝑖(x)) ← 𝐿𝑖(x); �̂�𝑖 (x + 𝑤𝑖(x)) ← 𝛼𝑖(x); ∀x ∈ m𝑖 , 𝑖 ∈ {1, 2} (4.7)

It is now possible to synthesise a reconstruction of 𝐼2 using the warped layers. Due to the warp, the

layers would contend for the pixels where they overlap. To solve this, depth ordering via the alpha

map is used, thus the layer with the closer alpha map to the camera occludes the layer behind . This

is to mimic the results of occlusions. A simple rule to determine the depth order is that the smaller 𝑖

represents a layer closer to the camera. Hence 𝐼2 will be synthesised as in Equation 4.8 using �̂�1 on top

of 𝐿2, and only �̂�1 is needed for reconstruction since it is the first layer for support:

𝐼2 = �̂�
1− binary

· �̂�1 +
(
1 − �̂�

1− binary

)
· �̂�2 (4.8)

The learning process is done by pixel-wise comparison between the output 𝐼2 with the original

consecutive frame 𝐼2. However, the overlap of the layers will eventually lead to some regions of the

image where there is no pixel-value contribution, resulting in black regions. Equation 4.9 is used to find

these pixels, which are masked out during the loss calculation.

D(x) =
{

1 , if 𝐼2(x) = 0

0 , otherwise

(4.9)

Finally the learning is driven by a photometric loss (Equation 4.10), which uses a robust generalised

Charbonnier penalty function [3]:

Loss =
∑
x∈Ω2

(1 −D(x))𝜌
(
𝐼2(x) − 𝐼2(x)

)
𝜌(x) =

√
x2 + 0.001

2

(4.10)

Successful results on MovingCars dataset are shown in Figure 4.5.

Figure 4.5: Visuals results of LDIS on two scenes of Moving Cars dataset a) RGB frames b) ground truth (GT)

4.2.2. Optical Flow Reconstruction
Currently the vast majority of self-supervised methods for motion segmentation rely on the reconstruction

of optical flow. In most of the cases, the methods are a crossover between layer-based techniques where

the learning is implemented in a convolutional neural network. Following are the current state-of-the-art

in frame-based motion segmentation.

4.2. Self-Supervised Frame-based Motion Segmentation 33

Unsupervised Feature Learning with ConvNet

Early attempts of motion segmentation with optical flow reconstruction are seen in the ConvNet by

Pathak et al. [33]. The overall approach is shown in Figure 4.6. The aim is to train a network to segment

objects in single frames without any supervision. The core intuition behind the method is that the

network can learn high-level feature representation without any supervision. First, the single frames

with optical flow map are passed to the network. Moving objects are identified by pixels that have

similar optical flow (direction and rate). The resulting mask is used as pseudo-ground truth for the

network to learn to predict the same mask using the single frame only.

Figure 4.6: Overview of our approach. We use motion cues to segment objects in videos without any supervision. We then train a

ConvNet to predict these segmentations from static frames, i.e. without any motion cues. We then transfer the learned

representation to other recognition tasks

Slot Attention

Yang et al. [44] propose slot attention to solve the motion segmentation by solely using optic flow. The

underlying assumption is the common fate principle, which states that elements tend to be perceived as

a group if they move at the same rate in the same direction (similar optic flow). The pipeline is shown

in Figure 4.7. The model takes optical flow 𝐼𝑡→𝑡+𝑛1
(from time 𝑡 to 𝑡 + 𝑛1) as input, and aims at splitting

the foreground and background in two layers. Each layer consists of the respective optical flow and

alpha map.

Figure 4.7: Pipeline [44]

The network is composed of three main elements: feature encoding, iterative binding and decoding

4.2. Self-Supervised Frame-based Motion Segmentation 34

to layers. In feature encoding, he precomputed optical flow between two frames 𝐼𝑡→𝑡+𝑛 ∈ ℛ3×𝐻0×𝑊0

is passed to the CNN encoder Φenc, and the output is a lower-resolution feature map, as shown in

Equation 4.11, where 𝐻0 ,𝑊0 and 𝐻,𝑊 are the spatial dimensions of input and ouptut feature maps.

𝐹𝑡→𝑡+𝑛 = Φenc (𝐼𝑡→𝑡+𝑛) ∈ ℛ𝐷×𝐻×𝑊
(4.11)

The iterative binding module Φbind aims at grouping together pixels that have similar optical flow i.e.

similar velocity and direction. For this, slot attention is used [22]. More details can be found in [44].

Finally, the decoding is done by a CNN decoder Φdec decodes each of the slots from Φbind and outputs

to original resolution. The outputs are the reconstruct flow fields for foreground and background, as

well as their alpha maps. The learning is done via reconstruction loss of the input optic flow as shown

in Equation 4.12, where 𝑝 is the pixel index and Ω is the entire spatial grid.

ℒ𝑟𝑒𝑐𝑜𝑛 =
1

Ω

∑
𝑛∈∩

��𝐼𝑡→𝑡+𝑛(𝑝) − 𝐼𝑡→𝑡+𝑛(𝑝)
��2

(4.12)

Furthermore, pixel-wise entropy regularization loss is introduced in Equation 4.13 to force the mask to

be binary. The loss is zero when the alpha channels are one-hot, and maximum when they are of equal

probability.

ℒ𝑒𝑛𝑡𝑟 =
1

Ω

∑
𝑝∈Ω

(
−𝛼1

𝑡→𝑡+𝑛(𝑝) log 𝛼1

𝑡→𝑡+𝑛(𝑝)

−𝛼0

𝑡→𝑡+𝑛(𝑝) log 𝛼0

𝑡→𝑡+𝑛(𝑝)
) (4.13)

A third loss (consistency loss) is introduced in Equation 4.14 to address the issue of temporary stopping

of moving objects. In this case, a second set of frames is used to make another prediction of the moving

object, and the network is encouraged to predict the same foreground/background segmentation.

However, this loss is used only in training and not during inference.

ℒcons = 1

Ω
min

(∑
𝑝∈Ω

���𝛼1

𝑡→𝑡+𝑛1

(𝑝) − 𝛼1

𝑡→𝑡+𝑛2

(𝑝)
���2∑

𝑝∈Ω

���𝛼1

𝑡→𝑡+𝑛1

(𝑝) − 𝛼0

𝑡→𝑡+𝑛2

(𝑝)
���2) (4.14)

Finally, the total loss is shown in Equation 4.15. The model is robust when the following values for the

hyperparameters are used: 𝛾𝑟 = 10
2
, 𝛾𝑐 = 10

−2
and 𝛾𝑒 = 10

−2
.

ℒ
total

= 𝛾𝑟ℒrecon + 𝛾𝑐ℒcons + 𝛾𝑒ℒentr (4.15)

Contextual Information Separation (CIS)

While in [39] and [44] the models try to segment the moving object by using the optical flow of the object

itself, Yang et al. [46] propose to find the moving object by using only the information contained in the

background. The pipeline is shown in Figure 4.8. The idea is that the motion of the moving object is

independent of the background, therefore the motion of the background is uninformative of the motion

of the foreground and vice-versa.

4.2. Self-Supervised Frame-based Motion Segmentation 35

Figure 4.8: Pipeline of the method described in [46]. The generator tries to hide the optic flow of the moving object with a mask,

while the inpainter tries to compute the hidden optic flow by using the optical flow available from the generator

In this regard, the model is composed of two modules, a Generator (G) and Inpainter (I). The generator

applies a mask to the input optic flow, with the aim of hiding the optic flow of the foreground. Next, the

generator passes the masked optic flow to the inpainter. The inpainter has the task of reconstructing the

optic flow that has been hidden by the generator. An example is shown in Figure 4.9. The two diagrams

show the learning process of the Generator after the inpainter has learned how to inpaint a masked

flow. In the upper diagram, a poorly trained generator is shown. Due to the impecise masking, a part

of the foreground optical flow is visible to the inpainter, hence the inpainter can perform an accurate

reconstruction. The opposite is shown in the lower diagram. Here the generator is able to accurately

mask the foreground optic flow, therefore the inpainter has no information of the foreground optic flow

and performs a bad reconstruction. In essence, accurate motion segmentation is achieved when the

optic flow reconstruction works poorly.

Figure 4.9: Diagrams showing the performance of the generator (G): upper diagram shows an example of a poorly trained

generator, whereas the lower diagram shows a well-trained generator [46]

The method is formulated as follows. Given an image 𝐼 and its optical flow 𝑢, the foreground is any

region of the image whose motion is unexplainable from the context, that is, the joint probability

distribution of background and foreground optic flow equals the product of the marginals:

4.2. Self-Supervised Frame-based Motion Segmentation 36

𝑃(𝑢1 , 𝑢2) = 𝑃(𝑢1)𝑃(𝑢2) (4.16)

If optic flow in two locations 𝑖 and 𝑗 is considered, foreground can be formalized as a region Ω that is

uninformative by the background:{
I
(
𝑢𝑖 , 𝑢𝑗 | 𝐼

)
> 0, 𝑖 , 𝑗 ∈ Ω

I
(
𝑢𝑖 , 𝑢𝑗 | 𝐼

)
= 0, 𝑖 ∈ Ω, 𝑗 ∈ 𝐷\Ω (4.17)

The information separatation is implemented with the Information Reduction Rate (IRR) 𝛾 which takes

𝒙 , 𝒚 ⊂ 𝐷 and returns a non-negative scalar. H denotes Shannon entropy, and it is zero when two

variables are independent.

𝛾(𝒙 | 𝒚; 𝐼) =
I
(
𝑢𝒙 , 𝑢𝒚 | 𝐼

)
H (𝑢𝒙 | 𝐼)

= 1 −
H
(
𝑢𝒙 | 𝑢𝒚 , 𝐼

)
H (𝑢𝒙 | 𝐼)

(4.18)

The region of the image that belong to the foreground Ω are the ones that minimize the loss function in

Equation 4.19:

ℒ(Ω; 𝐼) = 𝛾 (Ω | Ω𝑐
; 𝐼) + 𝛾 (Ω𝑐 | Ω; 𝐼) (4.19)

However, this loss is intractable. Assumptions need to be taken on the underlying probability model so

that the loss in Equation 4.19 can be minimized. Given the optic flow of the foreground 𝑢in = {𝑢𝑖 , 𝑖 ∈ Ω}
and the background 𝑢out = {𝑢𝑖 , 𝑖 ∈ Ωc}, in the IRR the important term is H

(
𝑢in | 𝑢out , 𝐼

)
/H

(
𝑢in | 𝐼

)
,

which measures the information transfer from foreground to background. The term is more elaborated

in Equation 4.20: ∫
log𝑃

(
𝑢in | 𝑢out , 𝐼

)
𝑑𝑃

(
𝑢in | 𝑢out , 𝐼

)∫
log𝑃 (𝑢in | 𝐼) 𝑑𝑃 (𝑢in | 𝐼)

(4.20)

The assumptions on the probability models are as in Equation 4.21, where𝜙(Ω, 𝑦, 𝐼) =
∫
𝑢in 𝑑𝑃

(
𝑢in | 𝑢out , 𝐼

)
is the conditional mean given the image and complementary observation.

𝑃
(
𝑢in = 𝑥 | 𝐼

)
∝ exp

(
− ∥𝑥∥

2

𝜎2

)
𝑃
(
𝑢in = 𝑥 | 𝑢out = 𝑦, 𝐼

)
∝ exp

(
−
∥𝑥 − 𝜙(Ω, 𝑦, 𝐼)∥2

𝜎2

) (4.21)

Another assumption is that given a single image the best guess of the optical flow is zero (𝜙(Ω,∅, 𝐼) = 0).

This leads to the approximation of Equation 4.20 in Equation 4.22:∫ 𝑢in − 𝜙
(
Ω, 𝑢out , 𝐼

)2

𝑑𝑃
(
𝑢in | 𝑢out , 𝐼

)∫
∥𝑢in ∥2 𝑑𝑃 (𝑢in | 𝐼)

≈
∑𝑁

𝑖=1

𝑢in

𝑖
− 𝜙

(
Ω, 𝑢out

𝑖
, 𝐼
)2∑𝑁

𝑖=1

𝑢in

𝑖

2

(4.22)

Hence the loss can be minimized with the approximation given in Equation 4.23, where 𝑁 is the number

of samples available. The only remaining terms to be determined are the region Ω and the function 𝜙.

ℒ(Ω; 𝐼) =1 −
∑𝑁

𝑖=1

𝑢in

𝑖
− 𝜙

(
Ω, 𝑢out

𝑖
, 𝐼
)2∑𝑁

𝑖=1

𝑢in

𝑖

2 + 𝜖
+ 1 −

∑𝑁
𝑖=1

𝑢out

𝑖
− 𝜙

(
Ω𝑐 , 𝑢in

𝑖
, 𝐼
)2∑𝑁

𝑖=1

𝑢out

𝑖

2 + 𝜖
(4.23)

4.2. Self-Supervised Frame-based Motion Segmentation 37

The region Ω that minimizes Equation 4.23 is part of the power set of the image domain 𝐷, which can be

rewritten with the indicator function shown in Equation 4.24 such that Ω can be rewritten as 𝑢in

𝑖
= 𝜒𝑢𝑖

and the background as 𝑢out

𝑖
= (1 − 𝜒)𝑢𝑖 :

𝜒 : 𝐷 → {0, 1}
𝑖 ↦→ 1 if 𝑖 ∈ Ω; 0 otherwise

(4.24)

The function 𝜙 is non-linear,non-local and highly dimensional, since it has to predict the flow in a

region based on the flow information outside of that region. Since the generator and inpainter follow

an encoder-decoder architecture style, both 𝜙 and 𝜒 are parameterized with parameters 𝑤, such that

the corresponding functions are 𝜙𝑤1 and 𝜒𝑤2. Hence the negative terms of the loss (negative loss) in

Equation 4.23 can be rewritten as in Equation 4.25:

ℒ (𝑤1 , 𝑤2; 𝐼) =
∑

𝑖 ∥𝜒𝑤
2
(𝑢𝑖−𝜙𝑤

1
(𝜒𝑤

2
,𝑢out

𝑖
,𝐼))∥2∑

𝑖 ∥𝑢in

𝑖 ∥
2

+
∑

𝑖 ∥(1−𝜒𝑤
2
)(𝑢𝑖−𝜙𝑤

1
(1−𝜒𝑤

2
,𝑢in

𝑖
,𝐼)∥2∑

𝑖 ∥𝑢out

𝑖 ∥
2

(4.25)

𝜙w1 is the inpainter network, and must be chosen to minimize the loss in Equation 4.25. Conversely the

foreground, represented by 𝜒w2, is called mask generator network, and it should be chosen so that 𝑢out
is

as uninformative as possible of 𝑢in
. Therefore the loss in Equation 4.25 needs to be maximised. This

leads to the minimax problem shown in Equation 4.26:

�̂� = arg min

𝑤1

max

𝑤2

ℒ (𝑤1 , 𝑤2; 𝐼) (4.26)

Multi-motion and Appearance Self-supervised Network (MASNet)

The work in [46] obtains good result in public datasets. However, the model fails to capture complete

objects or differentiate regions in the background. The reasons are two-folded.

First, the model works only with one single scale temporal information. Since moving objects are

composed of many regions, one single scale of temporal information may encode only a fraction of the

moving object. An example is shown in Figure 4.10. In A the flow from 𝑡 to 𝑡 + 1 detects only the left leg

of the dancer, whereas the flow from 𝑡 to 𝑡 + 2 captures the motion of his right leg and body, but not

the left leg. Therefore, single scale temporal information are insufficient to fully detect an articulated

moving object.

Second, the moving camera introduces a bias in the scene. The joint movement of camera and object

violates the motion independence hypothesis. For example, in Figure 4.10 B the object and background

motion are similar. Thus, it is impossible to differentiate object from background in the current

framework. In addition, moving camera can yield locally independent moving regions in background.

Such regions mislead the model to generate false detection in background (the red box of Figure 1B).

Figure 4.10: Multi-scale motion and appearance information. In A, the green boxes represent different moving regions at different

temporal scales. In B, the blue boxes indicate regions of the background that should be incorporated in the foreground since they

belong to the same moving object, whereas the red boxes shows regions of the background that are wrongly labelled as

foreground. Image inpainting can solve these issues using contextual information [45]

4.2. Self-Supervised Frame-based Motion Segmentation 38

In this regard, Yang et al. [45] developed a Multi-motion and Appearance Self-supervised Network

(MASNet) to solve the issues mentioned above. Specifically, MASNet is composed of two modules: a

Multibranch Flow Encoding module (MFE) and an IMage InPainter module (IMIP). The modules are

shown in Figure 4.11. The MFE module takes as input multiple optic flow maps to encode multi-scale

motion information over the different temporal scales to form a final detection. The IMIP module

is designed to tackle the problems caused by camera movement. To remove false detection in the

background, the IMIP exploits spatial appearance information. This is based on the hypothesis that

object appearance is different from background. Similarly, for missing detection in moving object, IMIP

can infer the masked region by the appearance in surrounding regions.

Figure 4.11: Comparison between CIS [46] and MASNet [45]. 𝐼 is the image, 𝐹 the optical flow map and 𝑀 the predicted mask.

As indexes, 𝑁 is the frame index, 𝑟 recovered, 𝑎 average, and 𝑚 masked

The architecture is shown in Figure 4.12. The MFE is composed of generator and inpainters. The

generators takes image 𝐼 and optical flow maps corresponding to frames 𝐹1 , ..., 𝐹𝑁 at time 𝑡1 , ..., 𝑡𝑁 . This

is to generate masks �̄�1 , . . . , �̄�𝑁 . Then the image 𝐼, segmentation mask �̄� and masked flow 𝐹𝑚
are

passed to the inpainter which attempts to recover the masked flow map 𝐹𝑟

Figure 4.12: MASNet architecture [45]

The generator can be expressed as �̄� = 𝐺(𝐹, 𝐼)where 𝐺(¤) is the generator function. The inpainter can

be expressed as 𝐹𝑟 = ℐ
(
�̄�, 𝐹𝑚 , 𝐼

)
, where 𝐼 is the inpainter function, 𝐹𝑚 = 𝐹 × (1 − �̄�) is the masked

flow map, and 𝐹𝑟
the flow map. The loss in the recovered flow map is described as in Equation 4.27,

where 𝐹𝑚
𝑖𝑛

is the flow in the mask:

4.2. Self-Supervised Frame-based Motion Segmentation 39

�̄� × (𝐹 − 𝐹𝑟)
2

2𝐹𝑚
𝑖𝑛

2

2

(4.27)

Whereas the loss in the region outside the mask is calculated as in Equation 4.28, where 𝐹𝑚
𝑜𝑢𝑡 is the flow

outside the mask: (1 − �̄�) × (𝐹 − 𝐹𝑟)
2

2𝐹𝑚
out

2

2

(4.28)

Therefore the final loss is shown in Equation 4.29. As in [46], the generator tries to hide the foreground

as much as possible whereas the inpainter tries to recover it the best way possible, and this gives rise to

a minimax problem as shown in Equation 4.30.

ℒ(𝒢 ,ℐ; 𝐼) =
𝒢(𝐹, 𝐼) × (

𝐹 − ℐ
(
𝒢(𝐹, 𝐼), 𝐹𝑚

out
, 𝐼
))2

2𝐹𝑚
𝑖𝑛

2

2

+(1 − 𝒢(𝐹, 𝐼)) × (
𝐹 − ℐ

(
1 − 𝒢(𝐹, 𝐼), 𝐹𝑚

𝑖𝑛
, 𝐼
))2

2𝐹𝑚
out

2

2

(4.29)

�̂� = arg min

ℐ
max

𝒢
ℒ(𝒢 ,ℐ; 𝐼) (4.30)

On the other hand, MASNet uses multi-scale information, hence there are multiple losses according

to each time-scale. Taking a look at the red box in Figure 4.12, given image 𝐼 at time 𝑡 and optical

flow maps 𝐹1 , ..., 𝐹𝑁 at time 𝑡1 , ..., 𝑡𝑁 , it is possible to identify the loss ℒ𝑛
as in Equation 4.31. The loss

function of the whole scheme including all generators and inpainters is summarized in Equation 4.32.

ℒ𝑛 (𝒢𝑛 ,ℐ𝑛
; 𝐼𝑡) =

𝒢𝑛 ×
(
𝐹𝑛 − ℐ𝑛

(
𝒢𝑛 , 𝐹𝑚

out
, 𝐼𝑡

))2

2𝐹𝑛
𝑖𝑛

2

2

+(1 − 𝒢𝑛) ×
(
𝐹𝑛 − ℐ𝑛

(
1 − 𝒢𝑛 , 𝐹𝑛

𝑖𝑛
, 𝐼𝑡

))2

2

∥𝐹out ∥22

(4.31)

ℒ𝑚𝑠 (𝒢 ,ℐ; 𝐼𝑡) =
𝑁∑
𝑛=1

ℒ (𝒢𝑛 ,ℐ𝑛
; 𝐼) (4.32)

Additional information can be retrieved when the segmentation masks produced by all generators are

combined together as an input for an extra inpainter to retrieve an average optical flow map. This adds

additional supervision to the generators during the training process. The function for the average loss

is shown in Equation 4.33, where 𝑎 indicates average over 𝑁 frames. The average inpainter will then

guide the training of generators in each branch.

ℒ𝑎𝑣𝑔 (𝒢𝑎 ,ℐ𝑎
; 𝐼) =

𝒢𝑎 ×
(
𝐹𝑎 − ℐ𝑎

(
𝒢𝑎 , 𝐹𝑎

out
, 𝐼
))2

2𝐹𝑎
in

2

2

+
(1 − 𝒢𝑎) ×

(
𝐹𝑎 − ℐ𝑎

(
1 − 𝒢𝑎 , 𝐹𝑎

𝑖𝑛
, 𝐼
))2

2

∥𝐹out ∥22

(4.33)

Finally, for the image inpainter IMIP the loss is shown in Equation 4.34, where 𝐼𝑚 is the masked image

4.3. Event-based Motion Segmentation 40

ℒ𝑖𝑚

(
𝒢𝑎 ,ℐ 𝑖𝑚

; 𝐼
)
=
𝒢𝑎 ×

(
𝐼 − ℐ

(
𝐼𝑚
out

))2

2

+
(1 − 𝒢𝑎) ×

(
𝐼 − ℐ

(
𝐼1−𝑚
in

))2

2

(4.34)

4.3. Event-based Motion Segmentation
Currently there is no existence of event-based motion segmentation methods that are self-supervised.

Nevertheless, the current literature on methods for motion segmentation with event cameras are

investigated. In subsection 4.3.1 the state-of-the-art application of motion compensation to motion

segmentation is shown, while in subsection 4.3.2 supervised and semi-supervised methods are explained.

4.3.1. Event-based Motion Segmentation by Motion Compensation
In the current literature, there is no method that performs motion segmentation with events in a

self-supervised way. Despite not having any learning framework, the only current method that performs

motion segmentation without any use of annotated data (hence unsupervised) is based on motion

compensation. Stoffregen et al. [41] propose the idea of segmenting moving objects with motion

compensation. The pipeline is shown in Figure 4.13. Similar to layer-based approaches, the idea is

to classify a set of events in a space-time window into different layers ("clusters") that each represent

a coherent motion, including background. This is done by estimating, at the same time, the motion

parameters that describe the moving object(s) and the likelihood of events belonging to clusters based

on motion compensation.

Figure 4.13: Pipeline of the method in [41]

Recalling the working principles of motion compensation from section 3.1, motion segmentation can be

done by just using motion compensation, in a scenario where only one object is moving. However, in

a scenario where multiple objects are moving with different motions, motion compensation alone is

not enough to discern the objects since the events are triggered by moving objects with no correlation.

Hence, depending on the number of objects in the scene, the same number of warps and motion models

are needed. Additionally, allocation of events to the correct cluster is necessary to make the warping

successful. In essence, if the motion model is correct and the events are correctly grouped in the cluster,

a sharp Image of Warped Events (IWE) is produced. In Figure 4.14, three motion models are generated

for background, pedestrian and cyclist. After the iteration shown in Figure 4.13, three sharp IWEs are

shown representing the different entities. If events are wrongly clustered, blurred IWE will be produced.

Hence the sharpness of these IWEs is used to evaluate the segmentation quality.

4.3. Event-based Motion Segmentation 41

Figure 4.14: Event-cluster associations (a, b, c) and final segmentation (d) [9010]

The method is mathematically formulated as follows. The event-cluster association is described with

𝑝𝑘 𝑗 = 𝑃
(
𝑒𝑘 ∈ ℓ 𝑗

)
, which is the probability of the 𝑘-th event belonging to the 𝑗-th cluster. P ≡

(
𝑝𝑘 𝑗

)
is a

𝑁𝑒 x 𝑁𝑙 matrix that contains all event-cluster probability associations. Each row must add up to 1 and

each entry must be non-negative. Events are warped to a reference time 𝑡𝑟𝑒 𝑓 as in Equation 4.35:

𝑒𝑘 � (x𝑘 , 𝑡𝑘 , 𝑠𝑘) ↦→ 𝑒′𝑘 �
(
x′𝑘 , 𝑡ref , 𝑠𝑘

)
(4.35)

Hence the weighted IWE is described as in Equation 4.36,with x′
𝑘 𝑗

= W
(
x𝑘 , 𝑡𝑘 ;𝜽 𝑗

)
the warped event

location and 𝛿 the Dirac delta. Equation 4.36 states that events are warped and the values 𝑝𝑘 𝑗 > 0 are

accumulated at the warped locations X′
𝑘
.

𝐼 𝑗(x) �
𝑁𝑒∑
𝑘=1

𝑝𝑘 𝑗𝛿
(
x − x′𝑘 𝑗

)
(4.36)

The sharpness of IWEs is estimated using the variance shown in Equation 4.37, where 𝜇𝐼𝑗 is the mean

over the image plane Ω [6]:

Var

(
𝐼 𝑗
)
�

1

|Ω|

∫
Ω

(
𝐼 𝑗(x) − 𝜇𝐼𝑗

)
2

𝑑x (4.37)

The problem is then formulated as finding the probability associations P and model parameters 𝜃 that

maximise the sum of contrast of all clusters, as shown in Equation 4.38:

(𝜽∗ , P∗) = arg max

(𝜽,P)

𝑁ℓ∑
𝑗=1

Var

(
𝐼 𝑗
)
. (4.38)

Unlike in traditional motion-compensation methods, the solution for the sharpest IWEs does not rely

only on the motion parameters 𝜃 but also on the probability matrix P. Therefore an iteration algorithm

is used. First, P is fixed and the motion parameters are updated as in Equation 4.39, hence by taking

a step (𝜇 > 0) in ascent direction of the objective function in Equation 4.38 with respect to the motion

parameters

4.3. Event-based Motion Segmentation 42

𝜽← 𝜽 + 𝜇∇𝜽 ©«
𝑁ℓ∑
𝑗=1

Var

(
𝐼 𝑗
)ª®¬ (4.39)

Once the motion parameters are updated, P is updated using the closed-form probability partitioning

law shown in Equation 4.40, where 𝑐 𝑗(x) ≠ 0 is the sharpness of 𝑗-th cluster at pixel x.

𝑝𝑘 𝑗 =
𝑐 𝑗

(
x′
𝑘

(
𝜽 𝑗

))
∑𝑁ℓ

𝑖=1
𝑐𝑖

(
x′
𝑘
(𝜽𝑖)

) (4.40)

Thus, each event is softly assigned to each cluster based on how it contributes to the sharpness of all

IWEs. The algorithm iterates until convergence.

Several initialization schemes for 𝜽 and P can be used to provide a preliminary estimation of the initial

parameters. In this case, a greedy approach is used. Equal probability associations are given to all

the events, and contrast is maximised for the first cluster with respect to its motion parameters. From

here it is possible to see the gradient of the local contrast of each event with respect to the motion

parameters. The events that are associated with the first cluster will appear less when moving away

from the optimized parameters, hence they will have a negative gradient and will be given a high

association probability to that cluster and low for all other ones. The process is repeated until all motion

parameters and probability associations have been filled.

The work in [41] is also used as a basis by Parameshwara et al. [31], where long term segmentation is

made more robust by adding feature tracking. However the method relies on tracklets and ground

truth data such as position and velocity of the camera.

4.3.2. Supervised Event-Based Motion Segmentation
Events represent a new paradigm for acquisition of visual information. For this reason, the majority

of the motion segmentation methods are supervised at this stage. Despite being supervised, it is of

primary importance to understand the underlying working principle of these methods, which can be

entirely or partially used for the method develop in this research project. For relevance, the following

methods on dodging obstacles (DodgeNet) and use of SNN for motion segmentation are shown.

Deep Dynamic Obstacle Dodging with Event Cameras (DodgeNet)

Sanket et al. [36] propose DodgeNet, a network with the aim of segmenting independently moving

objects (IMOs) and dogding them. The pipeline is shown in Figure 4.15. The input are the event

frames (𝐸𝐹
𝑡 , 𝐸𝐹

𝑡+1
) and the output are the segmentations along with the predicted optical flow, which is

further used to control the dogding mechanism of the drone. The architecture is mainly composed of

three CNN networks which solve the task of deblurring (EVDeblurNet), estimating the position of the

drone from the monocular event camera (homography with EVHomographyNet) and jointly estimate

the segmentation of the IMOs along with their optic flow (EVSegFlowNet). The main interest lies in

the segmentation part. To solve both the problem of complexity and accuracy, the EVSegFlowNet is

trained in a semi-supervised way, hence the ground truth for the segmentation mask is provided, but

no annotated data is provided for the optic flow part. The network is trained on Moving Object Dataset
(MOD).

4.3. Event-based Motion Segmentation 43

Figure 4.15: DodgeNet pipeline [36]

Deep Spiking Neural Networks (SpikeMS)

Currently the only application of spiking neural networks for event-based motion segmentation is done

by Parameshwara et al. [32]. The pipeline is shown in Figure 4.16. The SNN has an encoder-decoder

structure (SpikeMS), where the input event stream is passed (red is brightness increase, blue is brightness

decrease) and the output are the regions containing only the moving objects.

Figure 4.16: SpikeMS pipeline [32]

The main advantage of using SNN is that this type of network also encodes temporal information.

In contrast with artificial neural networks, where all the neurons are used, in SNN only the neurons

triggered by the corresponding pixels are used, reducing the computational effort required. Therefore

SNN are very suitable for exploiting the nature of the events data structure. The working principle of a

spiking neuron is shown in Figure 4.17. The neuron receives input either from data or other neurons

from lower layers (colored arrows) which generate bump in the membrane voltage 𝑢(𝑡). If the voltage

exceeds a threshold 𝜃 (dotted line), the neuron outputs a spike, and then enters a refractory phase where

most likely it will not output other spikes for a short period of time. In [32], the Spike Response Model

(SRM) is used, where the refractory phase and the influence of the incoming pulses on the voltages are

governed by 𝜀 and 𝜈.

4.3. Event-based Motion Segmentation 44

Figure 4.17: Neuron model

For a given neuron i at timestep t, the incoming voltage 𝑢(𝑡) is expressed as in Equation 4.41, where

Equation 4.41 takes into account all weight connections from pre-synaptic neurons 1, .., 𝑗, 𝑠𝑖(𝑡) is an

input spike train in a neuron and ∗ denotes the convolution operator.

𝑢𝑖(𝑡) = ©«
∑
𝑗

𝑤 𝑗

(
𝜀 ∗ 𝑠 𝑗

)ª®¬ + (𝜈 ∗ 𝑠)
= w⊤a + (𝜈 ∗ 𝑠)

(4.41)

SRM is chosen since the refractory behaviour is modeled in such a way that there is no need of

running multiple differential equations. The filters are modelled according to [10] in Equation 4.42 and

Equation 4.43, whereℋ(𝑡) is the Heaviside function, 𝜏𝑠 is the time constant for the spike response and

𝜏𝑟 is the refractory time constant.

𝜀(𝑡) = 𝑡

𝜏𝑠
𝑒1− 𝑡

𝜏𝑠ℋ(𝑡) (4.42)

𝜈(𝑡) = −2𝜃𝑒1− 𝑡
𝜏𝑟ℋ(𝑡) (4.43)

SNN neurons are structured in layers, similarly as ANN. The feed-forward weight matrix W(𝑙) =
[w1 , ...,w𝑁𝑙+1] resulting from a layer 𝑙 with 𝑁𝑙 neurons is applied to the activity resulting from the spike

response kernel, added to the refractory activity and then thresholded with thresholding function 𝑓𝑠 .
Thus for all layers the activity if forward-propagated as follows, with 𝜀𝑑 the spike response kernel with

delay 𝑑. The event data is represented with 𝑠(0).

𝑎(𝑙)(𝑡) =
(
𝜀𝑑 ∗ 𝑠(𝑙)

)
(𝑡) (4.44)

𝑢(𝑙+1)(𝑡) = W(𝑙)𝑎(𝑙)(𝑡) +
(
𝜈 ∗ 𝑠(𝑙+1)(𝑡)

)
(4.45)

𝑠(𝑙+1)(𝑡) = 𝑓𝑠

(
𝑢(𝑙+1)(𝑡)

)
(4.46)

5
Conclusion

The purpose of this report was to show the findings of the literature study, which was done on event

cameras and the current state-of-the-art motion segmentation methods, both for traditional frame-based

cameras and events. The literature started with a preliminary investigation on the working principles of

event cameras and techniques for optical flow estimation, followed by a wider study on the motion

segmentation methods for event cameras and then for traditional cameras. For the latter, a particular

focus was given to the self-supervised methods, as the research scope of this project is to develop a

self-supervised method.

In the very wide literature on motion segmentation, it was found that the most popular methods can be

categorized in image difference, layer-based methods, methods that use statistical knowledge, optical

flow and neural networks. Most of these methods can not be categorized in only one of these categories,

but are most of the time combining them. For self-supervised frame-based methods, the self-supervision

relies heavily on the reconstruction of the input optic flow, suggesting that using layer representation

of the optic flow and neural networks is currently the most promising path towards self-supervised

algorithms. As the optic flow plays a central part in the acquisition of motion information from event

cameras, it is concluded that motion compensation has a fundamental role in finding correlations

between events, since it used for other applications such as depth and ego-motion estimation. As motion

compensation does not require any ground truth, self-supervised optical flow estimation with motion

compensation is found to be a crucial element to include in the framework for motion segmentation

using event cameras. Finally, in event-based motion segmentation, it was found that methods typically

use motion compensation with a likelihood-cluster assignment framework or other inputs such as

ego-motion. Other methods demonstrate the feasibility of using spiking neural networks for segmenting

moving objects with event cameras. Nevertheless, currently there is no existence of a method that

operates with self-supervision, leaving a research gap and high potential for this project.

As a recommendation to the continuation of this research project, efforts should be tailored towards

the development of a framework which uses self-supervised estimates of optical flow combined with

either a likelihood-cluster assignment framework or an active Generator-Inpainter network. In the

case a neural network is to be used, spiking neural networks are the recommended choice, since they

naturally fit with the neuronal data structure of events. At this stage it is not yet possible which of

the two methods might bring the most accurate results, nevertheless motion compensation will play a

central role in both methods as it is currently the most promising self-supervision method.

45

References

[1] A. Bobick and J. Davis. “An appearance-based representation of action”. In: Proceedings of 13th
International Conference on Pattern Recognition. Vol. 1. 1996, 307–312 vol.1. doi: 10.1109/ICPR.1996.
546039.

[2] Tobias Brosch, Stephan Tschechne, and Heiko Neumann. “On event-based optical flow detection”.

In: Frontiers in neuroscience 9 (Apr. 2015), p. 137. doi: 10.3389/fnins.2015.00137.

[3] Andres Bruhn, Joachim Weickert, and Christoph Schnörr. “Lucas/Kanade Meets Horn/Schunck:

Combining Local and Global Optic Flow Methods”. In: International Journal of Computer Vision 61

(Feb. 2005), pp. 211–231. doi: 10.1023/B:VISI.0000045324.43199.43.

[4] P. Charbonnier et al. “Two deterministic half-quadratic regularization algorithms for computed

imaging”. In: Proceedings of 1st International Conference on Image Processing. Vol. 2. 1994, 168–172

vol.2. doi: 10.1109/ICIP.1994.413553.

[5] Guillermo Gallego, Mathias Gehrig, and Davide Scaramuzza. “Focus Is All You Need: Loss

Functions for Event-Based Vision”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2019, pp. 12272–12281. doi: 10.1109/CVPR.2019.01256.

[6] Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza. “A Unifying Contrast Maximization

Framework for Event Cameras, with Applications to Motion, Depth, and Optical Flow Estimation”.

In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018, pp. 3867–3876. doi:

10.1109/CVPR.2018.00407.

[7] Guillermo Gallego et al. “Event-based Vision: A Survey”. In: (Apr. 2019).

[8] Guillermo Gallego et al. “Event-Based, 6-DOF Camera Tracking from Photometric Depth Maps”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 40.10 (2018), pp. 2402–2412. doi:

10.1109/TPAMI.2017.2769655.

[9] Liyue Ge et al. “Optical Flow Estimation from Layered Nearest Neighbor Flow Fields”. In: Oct.

2018, pp. 1–6. doi: 10.1109/CISP-BMEI.2018.8633120.

[10] Mathias Gehrig et al. “Event-Based Angular Velocity Regression with Spiking Networks”. In:

2020 IEEE International Conference on Robotics and Automation (ICRA). 2020, pp. 4195–4202. doi:

10.1109/ICRA40945.2020.9197133.

[11] Jesse Hagenaars, Federico Paredes-Valles, and Guido de Croon. “Self-Supervised Learning of

Event-Based Optical Flow with Spiking Neural Networks”. In: Advances in Neural Information
Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc., 2021, pp. 7167–7179. url:

https://proceedings.neurips.cc/paper/2021/file/39d4b545fb02556829aab1db805021c3-
Paper.pdf.

[12] S. Khan and M. Shah. “Object based segmentation of video using color, motion and spatial

information”. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001. Vol. 2. 2001, pp. II–II. doi: 10.1109/CVPR.2001.991039.

[13] Hanme Kim, Stefan Leutenegger, and Andrew Davison. “Real-Time 3D Reconstruction and 6-DoF

Tracking with an Event Camera”. In: vol. 9910. Oct. 2016, pp. 349–364. isbn: 978-3-319-46465-7. doi:

10.1007/978-3-319-46466-4_21.

[14] Hanme Kim et al. “Simultaneous Mosaicing and Tracking with an Event Camera”. In: Proceedings
of the British Machine Vision Conference. BMVA Press, 2014. doi: http://dx.doi.org/10.5244/C.
28.26.

[15] Jürgen Kogler, Christoph Sulzbachner, and Wilfried Kubinger. “Bio-inspired Stereo Vision

System with Silicon Retina Imagers”. In: Oct. 2009, pp. 174–183. isbn: 978-3-642-04666-7. doi:

10.1007/978-3-642-04667-4_18.

46

https://doi.org/10.1109/ICPR.1996.546039
https://doi.org/10.1109/ICPR.1996.546039
https://doi.org/10.3389/fnins.2015.00137
https://doi.org/10.1023/B:VISI.0000045324.43199.43
https://doi.org/10.1109/ICIP.1994.413553
https://doi.org/10.1109/CVPR.2019.01256
https://doi.org/10.1109/CVPR.2018.00407
https://doi.org/10.1109/TPAMI.2017.2769655
https://doi.org/10.1109/CISP-BMEI.2018.8633120
https://doi.org/10.1109/ICRA40945.2020.9197133
https://proceedings.neurips.cc/paper/2021/file/39d4b545fb02556829aab1db805021c3-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/39d4b545fb02556829aab1db805021c3-Paper.pdf
https://doi.org/10.1109/CVPR.2001.991039
https://doi.org/10.1007/978-3-319-46466-4_21
https://doi.org/http://dx.doi.org/10.5244/C.28.26
https://doi.org/http://dx.doi.org/10.5244/C.28.26
https://doi.org/10.1007/978-3-642-04667-4_18

References 47

[16] Jürgen Kogler et al. “Address-Event Based Stereo Vision with Bio-Inspired Silicon Retina Imagers”.

In: Advances in Theory and Applications of Stereo Vision. Ed. by Asim Bhatti. Rĳeka: IntechOpen,

2011. Chap. 9. doi: 10.5772/12941. url: https://doi.org/10.5772/12941.

[17] M. Kumar, Philip Torr, and A. Zisserman. “Learning Layered Motion Segmentations of Video”.

In: International Journal of Computer Vision 76 (Mar. 2008), pp. 301–319. doi: 10.1007/s11263-007-
0064-x.

[18] A. K. S. Kushwaha et al. “Adaptive real-time motion segmentation technique based on statistical

background model”. In: The Imaging Science Journal 62.5 (2014), pp. 285–302. doi: 10.1179/
1743131X13Y.0000000056. eprint: https://doi.org/10.1179/1743131X13Y.0000000056. url:

https://doi.org/10.1179/1743131X13Y.0000000056.

[19] Siyang Li et al. “Instance Embedding Transfer to Unsupervised Video Object Segmentation”. In:

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018, pp. 6526–6535. doi:

10.1109/CVPR.2018.00683.

[20] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. “A 128× 128 120 dB 15 𝜇s Latency

Asynchronous Temporal Contrast Vision Sensor”. In: IEEE Journal of Solid-State Circuits 43.2 (2008),

pp. 566–576. doi: 10.1109/JSSC.2007.914337.

[21] Min Liu and Tobi Delbruck. “Adaptive Time-Slice Block-Matching Optical Flow Algorithm for

Dynamic Vision Sensors”. In: Sept. 2018.

[22] Francesco Locatello et al. “Object-Centric Learning with Slot Attention”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020,

pp. 11525–11538. url: https://proceedings.neurips.cc/paper/2020/file/8511df98c02ab60
aea1b2356c013bc0f-Paper.pdf.

[23] Xiankai Lu et al. “Learning Video Object Segmentation From Unlabeled Videos”. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 8957–8967. doi:

10.1109/CVPR42600.2020.00898.

[24] Xiankai Lu et al. “See More, Know More: Unsupervised Video Object Segmentation With Co-

Attention Siamese Networks”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2019, pp. 3618–3627. doi: 10.1109/CVPR.2019.00374.

[25] Jana Mattheus, Hans Grobler, and Adnan M. Abu-Mahfouz. “A Review of Motion Segmentation:

Approaches and Major Challenges”. In: 2020 2nd International Multidisciplinary Information Technol-
ogy and Engineering Conference (IMITEC). 2020, pp. 1–8. doi: 10.1109/IMITEC50163.2020.9334076.

[26] Anton Mitrokhin et al. “Event-Based Moving Object Detection and Tracking”. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2018, pp. 1–9. doi: 10.1109/IROS.
2018.8593805.

[27] Anton Mitrokhin et al. “Learning Visual Motion Segmentation Using Event Surfaces”. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 14402–14411.

doi: 10.1109/CVPR42600.2020.01442.

[28] Simon Niklaus and Feng Liu. “Softmax Splatting for Video Frame Interpolation”. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 5436–5445. doi:

10.1109/CVPR42600.2020.00548.

[29] Yuji Nozaki and Tobi Delbruck. “Authors’ Reply to Comment on “Temperature and Parasitic

Photocurrent Effects in Dynamic Vision Sensors””. In: IEEE Transactions on Electron Devices 65.7

(2018), pp. 3083–3083. doi: 10.1109/TED.2018.2841205.

[30] Yuji Nozaki and Tobi Delbruck. “Temperature and Parasitic Photocurrent Effects in Dynamic

Vision Sensors”. In: IEEE Transactions on Electron Devices 64.8 (2017), pp. 3239–3245. doi: 10.1109/
TED.2017.2717848.

[31] Chethan M. Parameshwara et al. “0-MMS: Zero-Shot Multi-Motion Segmentation With A Monoc-

ular Event Camera”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021,

pp. 9594–9600. doi: 10.1109/ICRA48506.2021.9561755.

[32] Chethan M. Parameshwara et al. “SpikeMS: Deep Spiking Neural Network for Motion Segmen-

tation”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2021,

pp. 3414–3420. doi: 10.1109/IROS51168.2021.9636506.

https://doi.org/10.5772/12941
https://doi.org/10.5772/12941
https://doi.org/10.1007/s11263-007-0064-x
https://doi.org/10.1007/s11263-007-0064-x
https://doi.org/10.1179/1743131X13Y.0000000056
https://doi.org/10.1179/1743131X13Y.0000000056
https://doi.org/10.1179/1743131X13Y.0000000056
https://doi.org/10.1179/1743131X13Y.0000000056
https://doi.org/10.1109/CVPR.2018.00683
https://doi.org/10.1109/JSSC.2007.914337
https://proceedings.neurips.cc/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://doi.org/10.1109/CVPR42600.2020.00898
https://doi.org/10.1109/CVPR.2019.00374
https://doi.org/10.1109/IMITEC50163.2020.9334076
https://doi.org/10.1109/IROS.2018.8593805
https://doi.org/10.1109/IROS.2018.8593805
https://doi.org/10.1109/CVPR42600.2020.01442
https://doi.org/10.1109/CVPR42600.2020.00548
https://doi.org/10.1109/TED.2018.2841205
https://doi.org/10.1109/TED.2017.2717848
https://doi.org/10.1109/TED.2017.2717848
https://doi.org/10.1109/ICRA48506.2021.9561755
https://doi.org/10.1109/IROS51168.2021.9636506

References 48

[33] Deepak Pathak et al. “Learning Features by Watching Objects Move”. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 6024–6033. doi: 10.1109/CVPR.2017.638.

[34] Christian Reinbacher, Gottfried Munda, and Thomas Pock. “Real-Time Intensity-Image Recon-

struction for Event Cameras Using Manifold Regularisation”. In: International Journal of Computer
Vision 126 (Dec. 2018). doi: 10.1007/s11263-018-1106-2.

[35] Ioannis M. Rekleitis. “Cooperative Localization and Multi-Robot Exploration”. http://www.cim.mcgill.ca/

˜yiannis/Publications/thesis.pdf. PhD thesis. Montreal, Quebec, Canada: School of Computer

Science, McGill University, Feb. 2003.

[36] Nitin J. Sanket et al. “EVDodgeNet: Deep Dynamic Obstacle Dodging with Event Cameras”. In:

2020 IEEE International Conference on Robotics and Automation (ICRA). 2020, pp. 10651–10657. doi:

10.1109/ICRA40945.2020.9196877.

[37] Cedric Scheerlinck, Nick Barnes, and Robert Mahony. “Asynchronous Spatial Image Convolutions

for Event Cameras”. In: IEEE Robotics and Automation Letters 4.2 (2019), pp. 816–822. doi: 10.1109/
LRA.2019.2893427.

[38] Cedric Scheerlinck, Nick Barnes, and Robert Mahony. “Continuous-time Intensity Estimation

Using Event Cameras”. In: Asian Conf. Comput. Vis. (ACCV). Dec. 2018, pp. 308–324. doi: 10.1007/
978-3-030-20873-8_20.

[39] Sahir Shrestha et al. “Learning To Segment Dominant Object Motion From Watching Videos”.

In: 2021 Digital Image Computing: Techniques and Applications (DICTA). 2021, pp. 01–08. doi:

10.1109/DICTA52665.2021.9647227.

[40] Bongki Son et al. “4.1 A 640×480 dynamic vision sensor with a 9µm pixel and 300Meps address-

event representation”. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC). 2017,

pp. 66–67. doi: 10.1109/ISSCC.2017.7870263.

[41] Timo Stoffregen et al. “Event-Based Motion Segmentation by Motion Compensation”. In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV). 2019, pp. 7243–7252. doi: 10.1109/
ICCV.2019.00734.

[42] David Weikersdorfer and Jörg Conradt. “Event-based particle filtering for robot self-localization”.

In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2012, pp. 866–870. doi:

10.1109/ROBIO.2012.6491077.

[43] Li Xu, Jianing Chen, and Jiaya Jia. “A Segmentation Based Variational Model for Accurate Optical

Flow Estimation”. In: Computer Vision – ECCV 2008. Ed. by David Forsyth, Philip Torr, and

Andrew Zisserman. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 671–684. isbn:

978-3-540-88682-2.

[44] Charig Yang et al. “Self-supervised Video Object Segmentation by Motion Grouping”. In: 2021
IEEE/CVF International Conference on Computer Vision (ICCV). 2021, pp. 7157–7168. doi: 10.1109/
ICCV48922.2021.00709.

[45] Fan Yang et al. “Multi-motion and Appearance Self-Supervised Moving Object Detection”. In:

2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2022, pp. 2101–2110.

doi: 10.1109/WACV51458.2022.00216.

[46] Yanchao Yang et al. “Unsupervised Moving Object Detection via Contextual Information Sepa-

ration”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019,

pp. 879–888. doi: 10.1109/CVPR.2019.00097.

[47] Yongxin Yang, Irene Morillo, and Timothy Hospedales. Deep Neural Decision Trees. June 2018.

[48] Vickie Ye et al. “Deformable Sprites for Unsupervised Video Decomposition”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2022, pp. 2657–2666.

[49] Luca Zappella, Xavier Llado, and Joaquim Salvi. “Motion Segmentation: a Review”. In: vol. 184.

Jan. 2008, pp. 398–407. doi: 10.3233/978-1-58603-925-7-398.

[50] Luca Zappella et al. “Enhanced Local Subspace Affinity for feature-based motion segmentation”.

In: Pattern Recognition 44 (Feb. 2011), pp. 454–470. doi: 10.1016/j.patcog.2010.08.015.

https://doi.org/10.1109/CVPR.2017.638
https://doi.org/10.1007/s11263-018-1106-2
https://doi.org/10.1109/ICRA40945.2020.9196877
https://doi.org/10.1109/LRA.2019.2893427
https://doi.org/10.1109/LRA.2019.2893427
https://doi.org/10.1007/978-3-030-20873-8_20
https://doi.org/10.1007/978-3-030-20873-8_20
https://doi.org/10.1109/DICTA52665.2021.9647227
https://doi.org/10.1109/ISSCC.2017.7870263
https://doi.org/10.1109/ICCV.2019.00734
https://doi.org/10.1109/ICCV.2019.00734
https://doi.org/10.1109/ROBIO.2012.6491077
https://doi.org/10.1109/ICCV48922.2021.00709
https://doi.org/10.1109/ICCV48922.2021.00709
https://doi.org/10.1109/WACV51458.2022.00216
https://doi.org/10.1109/CVPR.2019.00097
https://doi.org/10.3233/978-1-58603-925-7-398
https://doi.org/10.1016/j.patcog.2010.08.015

References 49

[51] Xi Zhang et al. “Layered Optical Flow Estimation Using a Deep Neural Network with a Soft

Mask”. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. ĲCAI’18.

Stockholm, Sweden: AAAI Press, 2018, pp. 1170–1176. isbn: 9780999241127.

[52] Yun Zhang, Bin Luo, and Liangpei Zhang. “Permutation Preference Based Alternate Sampling and

Clustering for Motion Segmentation”. In: IEEE Signal Processing Letters 25.3 (2018), pp. 432–436.

doi: 10.1109/LSP.2017.2777997.

[53] Alex Zihao Zhu et al. “Unsupervised Event-Based Learning of Optical Flow, Depth, and Ego-

motion”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019,

pp. 989–997. doi: 10.1109/CVPR.2019.00108.

https://doi.org/10.1109/LSP.2017.2777997
https://doi.org/10.1109/CVPR.2019.00108

	Preface
	Nomenclature
	Introduction
	Background
	Problem Statement
	Report Structure

	I Scientific Paper
	II Literature Study
	Event Cameras
	Principle of Operation of Event Cameras
	Advantages and Challenges of Event Cameras
	Event Representations and Processing

	Optical Flow Estimation with Event Cameras
	Motion Compensation (Contrast Maximization)
	Self-supervised learning of optical flow via contrast maximization

	Motion Segmentation
	Review on Motion Segmentation
	Image Difference
	Layers
	Optical Flow
	Statistical Theory
	Deep Learning
	Brief Evaluation

	Self-Supervised Frame-based Motion Segmentation
	Image Reconstruction
	Optical Flow Reconstruction

	Event-based Motion Segmentation
	Event-based Motion Segmentation by Motion Compensation
	Supervised Event-Based Motion Segmentation

	Conclusion
	References

