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Abstract

This research is conducted in the framework of a Master’s thesis within the Marine Engineering department

of the Maritime Transport and Technology branch and in joint collaboration with the Robotics branch of the

Mechanical Engineering Faculty of Tu Delft.

The precise control of robotic systems in granular underwater environments is essential for applica-

tions such as deep-sea mining, sediment sampling, and seabed infrastructure maintenance. In such

environments, the interaction between the robot and deformable substrates like sand and clay plays a

crucial role in operational efficiency and system stability. This research investigates how fine-tuning joint

stiffness in an impedance controller influences penetration depth accuracy, horizontal force distribution, and

force consistency along a trajectory mapped using 3D camera point cloud data. Understanding these re-

lationships is critical for optimizing force control strategies in unstructured and dynamic underwater settings.

Experiments were conducted using a KUKA iiwa 7 robotic arm equipped with an impedance con-

troller, following a mapped trajectory over a real sandbed in both dry and submerged conditions. The

point cloud data from a 3D camera provided accurate environmental mapping, ensuring precise trajectory

tracking. The results indicate a significant correlation between joint stiffness and penetration accuracy:

higher stiffness improved depth accuracy and reduced external disturbances but compromised adaptability

in cases where the robot encountered hard obstacles. Conversely, lower stiffness increased compliance,

allowing for smoother interactions but at the cost of greater sensitivity to force fluctuations.

Fluid damping in submerged conditions was found to reduce penetration error variability, highlight-

ing the stabilizing influence of water on force interactions. The study also revealed that current robotic

systems for deep-sea applications differ significantly from the 7-degree-of-freedom (DOF) KUKA arm used

in this research. In practical scenarios, deep-sea mining robots typically feature a single actuated DOF

(pitch), with other degrees of freedom facilitated by passive flexibility rather than active control. These

structural differences influence force distribution and overall system behavior, emphasizing the need for

future studies tailored to real-world deep-sea mining configurations.

Future research should extend beyond sand to softer seabed sediments such as clay, which behaves

more like a Bingham fluid and exhibits significantly lower shear strength—potentially by a factor of 5 to

10 compared to sand. Additionally, exploring adaptive stiffness strategies that dynamically adjust control

parameters in real time could enhance the efficiency and robustness of underwater robotic systems.

These advancements would contribute to optimizing force control for precise, adaptable interactions in

unstructured marine environments.
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Introduction

Impedance control strategies are vital for enhancing the performance of underwater robotic systems,

particularly in complex environments such as soft seabeds used in deep-sea mining and environmental

monitoring. This research builds upon established methods to refine the interactions between robots and

dynamic underwater terrains, focusing on the precision and adaptability required for effective operation.

By examining existing methodologies and their results, this study identifies key areas for technological

advancement and operational efficiency, with the aim of exploring solutions for deep sea robotics control

strategies.

0.1. Background
0.1.1. Impedance Control
Impedance control is a widely researched method for managing robotic interactions with dynamic and

unstructured environments. This technique focuses on regulating the relationship between force and

motion by adjusting parameters such as stiffness, damping, and inertia. The literature highlights impedance

control’s adaptability in managing tasks where precise force regulation is critical, such as tool interaction,

surface manipulation, and robotic grasping[1][2].

In underwater robotics, impedance control has been successfully applied to handle challenges aris-

ing from unpredictable hydrodynamic forces and varying surface properties. Studies emphasize the

trade-off between compliance and stability: lower stiffness offers better compliance but can lead to

inaccuracies, whereas higher stiffness improves stability but may increase sensitivity to disturbances [3] [4].

However, there is limited analysis of how fine-tuning stiffness affects penetration depth during soft-surface

interactions, such as with soft sea beds.

Recent advancements in impedance control have explored adaptive strategies that dynamically ad-

just stiffness based on real-time feedback, enhancing the robot’s ability to interact with unpredictable

environments [5][6]. These studies provide valuable insights into optimizing impedance control for

underwater robotics.

0.1.2. Sandbed Penetration Studies
Robotic penetration of granular materials like sand is a specialized application requiring careful force and

position control. Often the focus is on the mechanical challenges posed by such environments, including

their deformable and variable nature [7][8]. Accurate depth control is critical for applications like sediment

sampling, resource extraction, and ecological monitoring.

Existing studies highlight the difficulty of maintaining consistent penetration depth due to factors such

as uneven surface composition, compaction resistance, and granular flow behavior [9][10]. However,

many works rely on simplified assumptions or static control strategies, leaving a gap in understanding how

dynamic control techniques like impedance control perform in these scenarios. Additionally, there is limited

exploration of penetration accuracy in underwater sandbeds, especially under varying environmental

conditions (e.g., dry vs. submerged sand).

0.1.3. Trajectory Mapping with Point Clouds
Point cloud data has revolutionized trajectory planning in robotic systems by providing detailed 3D repre-

sentations of environments. In terrestrial and controlled laboratory settings, depth cameras such as the

Intel RealSense D455 are commonly used to generate point clouds. The RealSense D455 operates using

active infrared stereo vision, capturing depth information through structured light projection and stereo

image processing. This method is well-suited for environments with consistent lighting conditions and

relatively short depth ranges. However, in underwater applications, depth perception and environmental

v
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mapping rely on significantly different technologies due to the attenuation of light and the challenges posed

by murky water. Instead of infrared-based stereo vision, various types of sonar, including S-band and

X-band systems, are employed to map the topology of the seabed with greater range and robustness to

turbidity [11][12]. These sonar-based techniques enable large-scale seabed mapping, providing depth

information that is critical for underwater navigation and robotic trajectory planning.

The literature emphasizes the advantages of point cloud mapping for unstructured environments, allowing

robots to navigate obstacles, adapt to varying surface contours, and optimize paths for task execution

[13][14]. While most research focuses on navigation and obstacle avoidance, fewer studies have com-

bined point cloud-based mapping with force-sensitive tasks like sandbed penetration. The integration of

this technique with impedance control to ensure accurate force application along mapped trajectories

represents a small niche to study [15][16].

0.1.4. Identified Gaps
While significant advancements have been made in impedance control, granular material interactions, and

trajectory mapping, small gaps remain unaddressed:

• Integration of Control and Mapping: Limited studies explore the integration of impedance control

with point cloud-based trajectory mapping for tasks requiring precise surface interaction [2][11].

• Dynamic Environmental Conditions: Research has largely overlooked how control strategies

adapt to varying conditions like dry vs. submerged sand and flat vs. curved surfaces [10][8].

• Quantitative Analysis of Stiffness: The specific impact of joint stiffness tuning on penetration depth

accuracy has not been systematically studied, particularly in tasks involving dynamic trajectories [3].

• Comprehensive Testing: Most experiments focus on simplified scenarios, with limited cross-

condition analysis of control strategies under realistic operational conditions [4][16].

0.2. Research Objective
In the realm of underwater robotics, the ability to adapt to the dynamic and complex seabed terrain is

crucial for operational success. As robotic technologies evolve, there is an increasing demand for systems

that can effectively navigate and interact with these unpredictable environments. Impedance control,

which adjusts the mechanical properties of a robot in response to environmental feedback, presents a

significant opportunity to enhance this interaction. This study is motivated by the need to understand

how variations in impedance controller settings, particularly stiffness, can optimize robotic performance in

subsea operations.

The objective of this study is to evaluate the trade-offs between different impedance controller stiffness

configurations in robotic interactions with soft seabed surfaces. Rather than assuming higher stiffness

leads to better performance, this research examines whether lower stiffness can provide advantages in

real-world seabed conditions by improving adaptability in uncertain environments.

This study aims to achieve the following:

• Assess the Relationship Between Joint Stiffness and Environmental Interaction: Investigate

how varying stiffness levels impact penetration depth accuracy, force consistency, and overall

interaction with the sandbed.

• Identify the Trade-offs Between Stiffness, Force data, and Stability: Analyze how different

impedance settings affect the robot’s ability to respond to unexpected seabed features, such as

sudden changes in terrain or obstacles.

• Evaluate Controller Performance in Simulated Underwater Conditions: Determine whether

a middle-ground stiffness configuration may be more suitable for real-world applications where

accuracy, consistency, and adaptability must be balanced.

By leveraging point cloud-mapped trajectories, the study replicates real-world seabed navigation chal-

lenges to understand how impedance control strategies can be optimized for subsea robotic applications.
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0.3. Scope and Limitations
0.3.1. Scope
This research explores the role of impedance control in underwater robotic systems, focusing specifically

on how different stiffness configurations influence force distribution and trajectory tracking when interacting

with deformable surfaces. The study utilizes a controlled test environment to isolate and quantify the

effects of stiffness tuning on penetration accuracy and force response.

0.3.2. Limitations
Several factors constrain the applicability of the findings:

• Mismatch Between Experimental and Real-World Robotic Systems: The experiments are

conducted using a 7-degree-of-freedom (DOF) KUKA iiwa 7 robot, while industrial deep-sea

mining (DSM) robots typically use single-DOF actuators. This difference introduces a discrepancy

in force distribution and control complexity, affecting the generalizability of results.

• Controlled Test Environment: The study is conducted in a 2-meter laboratory water tank, which

lacks realistic environmental factors such as currents, irregular sediment composition, and

hard obstacles (e.g., rocks or debris). These real-world elements could significantly affect force

feedback, penetration resistance, and trajectory deviations.

• Restricted Speed Testing Due to Safety Features: The KUKA robot’s internal safety limitations

prevent testing at higher speeds, which may limit the ability to analyze how increased velocity

influences force variation and penetration accuracy.

• Simplified Sandbed Model: The homogeneous sand layer used in experiments does not fully

replicate the stratified and highly variable nature of real seabeds, where differences in grain size,

compaction, and moisture levels affect penetration behavior.

• Fixed Control Parameters: While this study adjusts joint stiffness, other impedance parameters

such as damping and inertia remain constant. In real-world applications, dynamic tuning of multiple

impedance parameters would be necessary to optimize interaction forces based on seabed variability.

• Sensor Accuracy and Data Processing Limitations: The 3D camera and point cloud mapping

system introduce potential errors due to sensor noise, data processing delays, and depth

estimation inaccuracies. These factors may cause minor trajectory deviations that affect penetration

depth accuracy measurements.

By acknowledging these limitations, the study aims to provide insights into impedance control trade-offs

while recognizing the constraints of a laboratory setting compared to real-world seabed conditions.

0.4. Research question
What are the trade-offs associated with different impedance control settings in underwater conditions, and

how do these settings affect the accuracy of sandbed penetration depth along a trajectory mapped using

3D camera point cloud data?



Methodology

Figure 1: Experimental procedure block-diagram

0.5. Experimental Setup
The experimental setup consists of a KUKA iiwa 7 robotic arm equipped with an impedance controller,

operating within a controlled test environment. The system includes a sandbed, a water tank, a RealSense

D455 camera for trajectory mapping, and a force estimation framework using joint torque measurements.

The following figure provides an overview of the experimental configuration, indicating the key components

used in the study.
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Figure 2: First step of experimental setup with key system components.

Figure 3: Second step of experimental setup with key system components.
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Robotic System: The KUKA robotic arm follows a predefined trajectory while trying to maintain a

consistent 2 cm penetration depth into the sandbed. A rod, 34 cm in length with a 4 cm width, is attached

at a 60-degree angle to the end effector. The inclined angle minimizes sand buildup, reducing obstruction

effects.

Plastic Tank: The test environment consists of a 200 cm long, 40 cm wide, and 100 cm tall plas-

tic tank with 4.5 cm thick plexiglass walls. For submerged conditions, 20 cm of water was added to the

tank, ensuring full submersion of the sand and the robotic tool while preventing excessive buoyancy effect

that could influence force readings.

Sandbed: The sandbed consists of Stonewish filling sand (0–2 mm grain size). For flat conditions,

the sand is uniformly leveled at a 5 cm depth. For curved conditions, a terrain profile was created with two

peaks (8 cm and 9 cm height) and one valley (2 cm depth). After each test, a flat plate matching the tank’s

width was used to reshape the sand according to a predefined profile.

0.6. Camera System and Trajectory Mapping
Camera System: The RealSense D455 camera, mounted 60 cm above the sanded, captures RGB and

depth data for trajectory mapping. The original camera intrinsics do not work in 2D mapping, therefore the

camera is mounted parallel to the tank’s bottom on a fixed rod and in the middle of the desired trajectory to

maintain parallelism on each side of the trajectory from point y=0.

In submerged conditions, ensuring an undisturbed water surface was critical for accurate depth imaging.

Reflections from surface ripples or turbidity in the water could interfere with infrared depth measurements.

To minimize distortions:

• The water surface was allowed to settle for a sufficient time between runs.

• Low ambient lighting was maintained to prevent infrared interference.

• The water was clear but not perfectly transparent, allowing effective depth sensing.

Calibration: A one-meter ruler was placed in the tank to define a length scale in the camera’s RGB

feed. Green dots were marked at reference points to calibrate intrinsic parameters.

Trajectory Definition: The trajectory was mapped using two predefined red dots that are manualy

picked by clicking in the RGB feed screen, marking the start and end positions. Two visual markings

should be present on the screen to indicate to the used where to put the dots like the empty sand patch

showed on 4. The motion path spans from y = −0.5 m to y = +0.5 m with a fixed horizontal position at

x = +0.45 m. The Z depth coordinates are automatically subtracted -0.02m from the defined trajectory as

seen4 before delivering the desired trajectory 5.

Figure 4: Trajectory definition example with axis labeled (x as horizontal and y as depth). Left photo is the
RGB image and right photo is the Depth Infrared image.
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Point Cloud Processing: The camera captures the elevation spectrum of the sandbed along the

defined path. These depth coordinates are used to create the reference trajectory for the robot.

Figure 5: Trajectory coordinate spectrum example (desired trajectory adjusted by -2 cm for penetration

depth). Left picture is the RGB image, right picture is the generated elevation spectrum trajectory.

0.7. Experimental Procedure
Control Variations:

• Three impedance controllers were tested, each with different stiffness values: 300 N/m, 200 N/m,

and 100 N/m.

• Three velocities were tested per controller: 0.0125 m/s, 0.025 m/s, and 0.05 m/s, resulting in nine

total combinations.

The selected stiffness values represent a range from highly flexible to highly rigid controllers. This

range was chosen based on preliminary studies in robotic impedance control for deformable surfaces and

aligns with real-world considerations for seabed exploration.

Environmental Conditions:

• Tests were conducted in four conditions: dry-flat, dry-curved, submerged-flat, and submerged-curved.

Robot Movement: The robot starts at its initial position of z=-0.5m and follows the defined trajectory

while trying to maintain a penetration depth of 2 cm. the rod attached to the end effector is reactive to the

robot motion and tries to be set at a normal angle to the sand tank bottom and enters contact with the

sand bed thus creating the penetration in the sand.

0.8. Data Collection and Processing
Force Estimation: Forces at the tip of the rod are computed using joint torque measurements mapped

through the Jacobian transpose method. This approach involves converting the joint torques τ into end-

effector forces F using the Jacobian matrix J of the robotic arm. The relationship between joint torques

and end-effector forces can be expressed by the following equation:

F = J(q)T τ

Where:

• F is the vector of forces and moments at the end-effector.

• J(q)T is the transpose of the Jacobian matrix, which depends on the current configuration q of the

robot’s joints.

• τ is the vector of joint torques.
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The Jacobian matrix J is a function of the robot’s joint angles and links the velocities and forces in the

joint space with those in the Cartesian space. This matrix is critical for understanding how movements and

forces translate from the robot’s motors (at the joints) to the tip of the rod (the end-effector). The force at

the tip of the rod is then used

Rod Position Recording: The z-coordinate of the rod is logged during motion, allowing for a direct
comparison between the planned and executed trajectories.

Trajectory Comparison: The planned trajectory from point cloud data is compared with the recorded

trajectory from the robot. The desired penetration depth is Zextdesired − 0.02 m, and any deviation from this

is computed as an error.

Figure 6: Example of recorded vs. planned trajectory.

Extracted data format:The extracted data format for each test comprised of [Time;Y recorded; Z

recorded, Y desired, Z desired]

Figure 7: Example of recorded data table.

Data Processing for Speed Normalization: Since force data was collected every 0.4 seconds (less

time was considered between but would have lead to data files too large to be processed), lower-speed

tests resulted in more data points than higher-speed tests. To standardize the dataset across all speeds for

consistent comparison, a uniform resampling method was applied, ensuring equalized row counts across

test cases, with 200 rows of data per test. This method consisted in using the test with the least data row’s

and adapting the tests with a greater number of data row’s to match the same Y values, thus enabling the

comparison of Z values at a same vertical distance.
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0.9. Sand Surface Consistency
After each test, the sand surface was reset using a structured procedure:

• For flat tests, the sand was leveled to a uniform 5 cm depth.

• For curved tests, a shaping guide was placed on the sides of the tank to recreate two peaks (8 cm

and 9 cm) and a valley (2 cm).

• A wide, flat plate was passed over the sand to ensure consistency between tests.

Figure 8: Example of contour guide profile used for sand profile shaping in flat conditions.

The controlled leveling of the sandbed ensured repeatability in experiments by maintaining uniform

compaction and minimizing variations that could affect force measurements.

0.10. Data Analysis
Performance Metrics:

• Penetration Accuracy: Measures how closely the robot maintains the desired 2 cm penetration

depth.

• Force Consistency: Evaluates force fluctuations and stability during movement.

• Controller Effectiveness: Determines which stiffness-speed combination provides optimal perfor-

mance.

Visualization:

• Graphs comparing planned vs. executed trajectories.

• Force profiles along the y-axis to analyze stability.

• Computation of force standard deviation for consistency assessment.

This structured methodology ensures clarity, reproducibility, and relevance for future research.



Results Analysis

0.11. Mean Penetration Error by Controller Type
The mean penetration error varies significantly based on the stiffness of the controller. To illustrate the

penetration behavior before averaging, Figure 9 and 10 presents the raw penetration depth data over the

horizontal distance covered for Controller 1, showing how penetration fluctuates across all environmental

conditions (three speeds, flat and curved surfaces, dry and submerged). This provides insight into real-time

deviations before summarizing the data.

Figure 9: Raw data presentation of penetration depth Z over the vertical Y distance for Controller 1 across

all speeds in with a flat surface in both dried and flat conditions.

Figure 10: Raw data presentation of penetration depth over time for Controller 1 across all speeds in with

a curved surface in both dried and flat conditions.

xiv
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Figure 11: Raw data presentation of penetration depth Z over the vertical Y distance for Controller 2

across all speeds in with a flat surface in both dried and flat conditions.

Figure 12: Raw data presentation of penetration depth over time for Controller 2 across all speeds in with

a curved surface in both dried and flat conditions.
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Figure 13: Raw data presentation of penetration depth Z over the vertical Y distance for Controller 3

across all speeds in with a flat surface in both dried and flat conditions.

Figure 14: Raw data presentation of penetration depth over time for Controller 3 across all speeds in with

a curved surface in both dried and flat conditions.

In both graphs of controller 3, tests done at the higer speed of 0.05m/s only show a short penetration

path in the Y direction (black boxes). This is due to the saftey features of the KUKA iiwa 7 robot being

triggered. Indeed, if the robot is requiring more force to keep up with the desired trajectory and speed, this

can lead to the maximum allowable exerted force of the KUKA to be reached which leads to a full stop,

thus failing all tests at minimum strifness (100 N/m) and maximum speed (0.05m/s).

To provide an overall view, Figure 15 presents the mean penetration error per controller, averaged over

all test conditions. This includes variations in speed, surface type, and environmental conditions, ensuring

a comprehensive representation of controller performance.

• Controller 1 (300 N/m): 0.013 m

• Controller 2 (200 N/m): 0.025 m

• Controller 3 (100 N/m): 0.03 m



0.12. Effect of Speed and Environmental Conditions on Penetration Error xvii

Figure 15: Penetration Error vs. Controller Type. This figure represents the average penetration error

per controller, considering variations in speed (three levels), surface type (flat/curved), and environment

(dry/submerged).

The results indicate that higher stiffness controllers exhibit lower penetration errors, following the

desired trajectory more accurately. However, as controller stiffness decreases, penetration deviations

increase, particularly under high-speed conditions and curved surface scenarios.

0.12. Effect of Speed and Environmental Conditions on Penetration

Error
The relationship between speed and penetration error is analyzed for all three controllers, as shown

in Figures 16, 17 and 18. Across all controllers, an increase in speed consistently results in greater

penetration error, indicating reduced tracking accuracy at higher velocities. This trend is evident regardless

of the controller’s stiffness settings:

• At lower speeds, all controllers maintain relatively low penetration errors, with Controller 1 (300

N/m) performing the best overall. The errors are minimal, and the robotic system closely follows the

desired trajectory.

• As speed increases, penetration errors become more pronounced. Controller 1 continues to exhibit

the lowest errors, but the difference between controllers becomes more apparent. Controller 2 (200

N/m) shows moderate errors, while Controller 3 (100 N/m) experiences the highest errors, particularly

at the highest speeds.

• At the highest speeds, the system’s ability to maintain accurate penetration depth is significantly

compromised. Controller 3 was unable to record data at the highest speed due to safety constraints,

highlighting the challenges of high-speed operation.

Another observation is that submerged conditions mitigate the impact of increasing speed on penetration

error. The presence of water provides fluid resistance, which stabilizes the robotic interaction and reduces

errors compared to dry conditions. This effect is most likely due to dilatant strengthening of the sediment,

meaning that at higher deformation rates, the sediment becomes stiffer. The restriction of water movement

within the low-permeability sandbed increases resistance to penetration, effectively strengthening the

substrate and reducing excessive deviations.

Additionally, the type of surface (flat vs. curved) influences how speed affects penetration error. Curved

surfaces generally result in higher errors at increased speeds, as the uneven terrain introduces additional

challenges for the controller to maintain a steady penetration depth.
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Figure 16: Graphical representation of Mean Penetration Error as a function of speed for different

controllers and conditions.
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Figure 17: Graphical representation of Mean Penetration Error as a function of speed for different

controllers and conditions.



0.13. Effect of Speed and Environmental Conditions on Mean Force xix

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.02

0.04

0.06

0.08

0.1

Speed (m/s)

M
e
a
n
P
e
n
e
tr
a
ti
o
n
E
rr
o
r
(c
m
)

Effect of Speed on Mean Penetration Error per Controller for Flat and Submerged Conditions

Controller 1, Flat, Submerged

Controller 2, Flat, Submerged

Controller 3, Flat, Submerged

Figure 18: Graphical representation f Mean Penetration Error as a function of speed for different

controllers and conditions.
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Figure 19: Graphical representation f Mean Penetration Error as a function of speed for different

controllers and conditions.

0.13. Effect of Speed and Environmental Conditions on Mean Force
The variation of mean force under different speed, surface, and environmental conditions is analyzed for

all three controllers, as illustrated in Figures 21, 22 and 23.

A general trend observed across all controllers is that:

• Increasing speed leads to a rise in mean force, suggesting that at higher velocities, the robot exerts

greater interaction forces on the sandbed.

• Surface type influences force application: Curved surfaces generally lead to higher mean forces than

flat surfaces, particularly in dry conditions.
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• Submerged environments result in lower mean forces compared to dry conditions, likely due to fluid

damping effects reducing resistance.

Breaking down the results per controller:

• Controller 1 (300 N/m) maintains relatively stable mean force levels across conditions, with a gradual

increase at higher speeds, especially in curved, dry scenarios.

• Controller 2 (200 N/m) shows greater sensitivity to speed changes, with a sharper increase in mean

force at higher speeds.

• Controller 3 (100 N/m) exhibits the highest mean force values across all conditions, particularly in dry

environments. This suggests that lower stiffness results in greater force oscillations and fluctuations

during interaction.

To further analyze the impact of terrain, Figure 20 presents the penetration error. The penetration

error is computed by abstracting the desired penetration (2cm) by the recorded penetration (Z desired- Z

recorded). This allows for a clearer assessment of whether deviations are due to hills, valleys, or both.

In both flat and curved cases, the submerged conditions have a lower average error and present less

deviations overall. One noticeable aspect of the figure is that the concentration of error deviations from the

average error are not uniform over the y axis. Indeed for speed 1, Curved and submerged case (light blue

line), there is an accumulation of error deviation towards the beginning and the middle of the horizontal

path. These are two abrupt (first going up, second going down) slopes on the curved trajectory path. This

suggests that terrain variation may have affected the penetration error. The green and light blue lines start

later on the graph as some skewed values had to be taken out in order to make the graph more readable.

Figure 20: Penetration error over time, showing the impact of terrain variations and fluid medium on error

variation.

In addition, if Figures 21, 22, 23 are analyzed in the context of sand cutting theory assuming steady-state

models. In submerged conditions, force is expected to increase linearly with velocity due to the uniform

resistance provided by the water column. This trend is visible in the submerged test cases, where the force

measurements show a proportional increase with speed, indicating that the fluid environment stabilizes

the interaction forces and prevents abrupt changes in resistance.

Conversely, in dry conditions, force scales with velocity squared, as increased velocity leads to greater

inertia effects and higher resistance from the granular medium. This effect is particularly evident in Figures

21 and 22, where force measurements in dry conditions exhibit a more pronounced increase at higher

speeds. The squared scaling behavior suggests that at greater velocities, the tool is experiencing ad-

ditional resistive forces from the compacting sand, which aligns with expectations from granular flowmodels.

Furthermore, the increased force fluctuations at higher speeds in dry conditions highlight the insta-

bility introduced by rapid deformation of the sandbed. The lack of fluid support in dry conditions leads to

greater variance in the measured forces, as seen in Controller 2 and particularly Controller 3, where the

lowest stiffness setting results in larger force deviations. This is in contrast to the submerged conditions,
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where force values remain more stable due to the presence of water, which dampens sudden fluctuations.

The results indicate that while a stiffer controller generally exerts lower mean forces, submerged conditions

help mitigate force fluctuations across all configurations. This damping effect is particularly evident for

Controllers 2 and 3, where force values are noticeably reduced in the submerged setting. The observed

behavior suggests that underwater environments provide natural stabilization, reducing the need for

excessive stiffness in impedance control strategies when operating in fluidic conditions.
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Figure 21: Graphical representation of Mean Force as a function of speed for different controllers and

conditions.
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Figure 22: Graphical representation of Mean Force as a function of speed for different controllers and

conditions.
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Figure 23: Graphical representation Mean Force as a function of speed for different controllers and

conditions.
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Figure 24: Graphical representation of Mean Force as a function of speed for different controllers and

conditions.

0.14. Force Standard Deviation vs. Speed
The relationship between speed and force standard deviation across different controllers is analyzed using

Figures 25,26 and 27. Observations are as follow:

• Force standard deviation increases with speed across all controllers, indicating that higher velocities

introduce greater force fluctuations.

• Controller 3 (Stiffness = 100 N/m) exhibits the lowest overall force standard deviation, particularly at

higher speeds. This suggests that lower stiffness allows for more flexibility and better absorption of

force variations, maintaining stability even as speed increases.
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• Controller 2 (Stiffness = 200 N/m) shows moderate force variations, aligning with its intermediate

stiffness level. However, force standard deviation rises more steeply compared to Controller 3.

• Controller 1 (Stiffness = 300 N/m) presents the highest force standard deviation, especially at higher

speeds, reflecting increased resistance and reduced control stability under high stiffness conditions.

• Submersion reduces force variability across all controllers, confirming the damping effect of the fluid

medium. This effect is particularly pronounced for Controller 3, where the lowest stiffness combines

with fluid damping to minimize force fluctuations.

To better understand the role of fluid, a distinction is made between the effects of the water column and

the sandbed. The water column primarily acts as an external damping medium, absorbing sudden force

spikes and reducing fluctuations caused by rapid movements. This is evident in the reduction of force

standard deviation in submerged conditions across all controllers. Conversely, the sandbed influences

force variability through its granular structure, where variations in compaction and sediment displacement

contribute to force instability. In dry conditions, the lack of water resistance leads to increased force

fluctuations due to uncontrolled sand displacement upon tool interaction.

Additionally, the performance of force standard deviation is analyzed relative to the mean force. The

ratio of standard deviation to mean force provides insight into the consistency of force application. In dry

conditions, this ratio is higher, indicating more erratic force variations. In submerged conditions, the ratio is

lower, meaning force application remains more stable across the trajectory.

These results indicate that while higher stiffness can improve force stability in certain conditions, it

also increases resistance during contact, leading to higher force standard deviations at increased speeds.

Conversely, lower stiffness allows for greater flexibility and better absorption of force variations, resulting

in lower force standard deviations, especially in submerged environments.
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Figure 25: Graphical representation of Force Standard Deviation as a function of speed for different

controllers and conditions.
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Figure 26: Graphical representation of Force Standard Deviation as a function of speed for different

controllers and conditions.
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Figure 27: Graphical representation pf Force Standard Deviation as a function of speed for different

controllers and conditions.
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Figure 28: Graphical representation of Force standard Deviation as a function of speed for different

controllers and conditions.

0.14.1. Effect of Surface on Penetration Error Variation
To assess the influence of surface topology and fluid conditions on penetration error variation, two distinct

analyses were conducted: one comparing flat and curved surfaces and another examining dry versus

submerged conditions.

Figure 29: Penetration error variation as a function of surface topology (flat vs. curved).

As shown in Figure 29, penetration error exhibits greater variability on curved surfaces compared to flat

ones. The increased deviation observed in curved surfaces suggests that maintaining trajectory accuracy

is more challenging when the contact surface is uneven. This effect can be attributed to variations in force

distribution across the surface, which affects the controller’s ability to maintain a steady penetration depth.

Figure 30 demonstrates the impact of fluid conditions on penetration error variation. Submerged conditions

result in reduced penetration error variability compared to dry conditions. The presence of fluid appears

to dampen fluctuations, likely due to hydrodynamic resistance and increased stability in the interaction



0.15. Sources of Experimental Error xxvi

Figure 30: Effect of fluid conditions on penetration error variation (dry vs. submerged).

force. This reduction in variation suggests that underwater conditions inherently contribute to improved

consistency in penetration depth, which is beneficial for robotic applications requiring precise substrate

interaction.

Overall, these results highlight the trade-offs between different surface and environmental conditions.

While submerged conditions mitigate penetration error variability, curved surfaces introduce greater

challenges in trajectory adherence, necessitating optimized control strategies to compensate for these

deviations.

0.15. Sources of Experimental Error
Understanding the potential sources of error in the experimental setup is crucial for refining impedance

control strategies and improving the accuracy of future studies. Several key factors were identified that

may have contributed to deviations in penetration error, force variability, and trajectory accuracy.

One significant factor was the effect of low stiffness on rod inclination. Due to the reduced transverse

stiffness in lower stiffness controllers, the rod was more prone to bending, particularly at higher velocities.

This caused the rod angle to deviate from the ideal vertical position normal to the tank bottom, influencing

penetration depth accuracy and force application.
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Figure 31: Rod inclination due to lower transverse stiffness left photo, Rod in desired straight up position

right photo.

Additionally, the rod’s geometry contributed to sand accumulation during movement. The shape of

the rod, combined with its movement trajectory, resulted in significant sand buildup around the leading

edge, which increased penetration resistance and may have influenced force readings. This accumulation

effect was more pronounced at lower stiffness levels, where the rod experienced greater flexibility and

deformation.

Figure 32: Sand accumulation on the rod during penetration.

Another critical source of error was water turbidity caused by sand displacement during the tests. As

the rod moved through the sandbed, the disturbance created suspended particles in the water column. If

not given sufficient time to settle between tests, these suspended particles could interfere with trajectory

tracking and depth perception from the 3D camera, potentially introducing errors in recorded penetration

depths and force measurements.
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Figure 33: Example of poor water turbidity level affecting visibility and trajectory tracking.

One notable source of error observed in the experiments is the formation of a ripple pattern along the

sandbed during robotic motion. This effect, as shown in Figure 34, occurs because the controller follows a

discrete trajectory, moving in small incremental steps rather than a perfectly continuous motion.

Figure 34: Ripple effect caused by discrete point-to-point trajectory execution.

Each step in the trajectory slightly displaces sand, creating small ridges and valleys along the movement
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path. Over time, these small accumulations result in a noticeable ripple pattern, particularly in dry conditions

where there is no water to smooth out the disturbances. This effect may lead to deviations in penetration

depth readings and increase variability in force measurements, as the rod encounters varying resistance

across the rippled surface.

Additionally, the ripple effect may compound with other sources of error, such as sand accumula-

tion on the rod and turbidity in submerged conditions, further influencing trajectory tracking accuracy.

Future improvements could involve refining the control algorithm to generate smoother trajectories or

introducing interpolation techniques to minimize abrupt changes in movement.

Beyond the identified environmental and mechanical error sources, inherent limitations within the

KUKA robotic system also contributed to certain test failures and unexpected variations in motion execution.

The robot’s 7-degree-of-freedom (DOF) architecture introduces additional complexity in force distribution

and trajectory tracking. Unlike the single-DOF actuators typically used in real-world applications such as

deep-sea mining, the KUKA system’s redundant degrees of freedom create uncertainties in how joint-level

motions translate to end-effector behavior. This makes it difficult to precisely estimate the impact of joint

movement variations on the rod’s trajectory, particularly when interacting with deformable media like sand.

Additionally, safety features integrated into the KUKA system played a crucial role in limiting certain test

conditions. The robot is equipped with joint angle tolerance limits and force threshold mechanisms that

automatically halt motion if excessive forces are detected. This was particularly evident in low-stiffness

controller tests, where the lack of rigidity led to greater rod deflection under force. At the highest tested

speed of 0.05 m/s, all trials using Controller 3 (100 N/m) failed, as the robot’s safety features triggered

emergency stops when forces exceeded allowable limits. These failures highlight the constraints of using

an industrial robotic arm with built-in safeguards in experiments designed to simulate applications where

external force variations are expected and must be tolerated.

While these limitations ensured the protection of the robotic hardware, they also prevented the full

exploration of high-speed behavior under low-stiffness conditions. Future studies could mitigate these

constraints by utilizing robotic platforms specifically designed for controlled force applications, allowing for

more accurate replication of impedance-controlled interactions in real-world environments.

These errors are important to identify as they play an important role in data error, and may lead to

a better understanding of certain data patterns.

0.16. Summary of Findings
The experiments conducted in this study varied three key parameters: stiffness, speed, and environmental

conditions. Three different stiffness settings (300 N/m, 200 N/m, and 100 N/m) were tested across three

speeds (0.0125 m/s, 0.025 m/s, and 0.05 m/s) in four environmental conditions (dry flat, dry curved,

submerged flat, and submerged curved). The results provided insights into the trade-offs between

penetration accuracy, force stability, and adaptability.

• Higher stiffness reduces penetration error but does not necessarily ensure the best overall perfor-

mance. While stiffer controllers followed the trajectory more accurately, they also exhibited higher

force fluctuations, which could lead to instability when encountering obstacles.

• Submerged conditions reduce force variability and penetration error, improving trajectory tracking.

The fluid damping effect stabilizes interactions, allowing for better depth control and minimizing force

deviations compared to dry conditions.

• Higher speeds increase both penetration error and force variation across all conditions. This is

particularly evident in dry environments, where higher speeds amplify force fluctuations due to

increased inertia effects in granular media.

• Lower stiffness leads to lower force magnitudes and allows greater compliance. In this context,

compliance refers to the ability of the system to absorb external disturbances, reducing abrupt force

variations when encountering uneven terrain or obstacles. This trade-off, however, results in higher

penetration error, particularly in curved surfaces.
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• Curved, dry surfaces produce the highest penetration errors and force variations. The lack of fluid

support and increased terrain irregularities create higher deviations in both penetration and force

stability, making control more challenging.

Based on the combined evaluation of penetration accuracy and force stability, the best overall per-

formance was observed with the 200 N/m stiffness setting in submerged conditions at moderate speeds

(0.025 m/s). This configuration provided a balance between accuracy and compliance, minimizing pen-

etration error while avoiding excessive force fluctuations. The findings suggest that an optimal setup

should consider not only spatial accuracy but also stability in force application, especially in unstructured

environments where external disturbances are common.



Discussion

The data collected provids valuable insights into the trade-offs associated with different impedance control

settings in underwater environments, particularly in the context of robotic interactions with granular media

such as sandbeds. The data reveal that while higher stiffness in an impedance controller generally leads

to better spatial precision and reduced penetration errors, this is not necessarily the optimal configuration

for all underwater applications. The main limitation arises from increased force fluctuations and instability

when encountering unexpected terrain variations or obstacles, particularly in high-velocity conditions.

Additionally, excessive stiffness can result in higher resistance upon impact with hard surfaces, which may

disrupt the control system’s stability in unstructured environments.

0.16.1. Penetration Error and Controller Stiffness
The data show that higher stiffness values correlate with lower penetration errors, with Controller 1 (300

N/m) exhibiting the lowest mean penetration error of 0.013 m, followed by Controller 2 (200 N/m) at 0.025

m, and Controller 3 (100 N/m) at 0.039 m. This suggests that stiffer controllers more closely follow the

desired trajectory, reducing deviation. However, the benefits of higher stiffness are not uniform across all

conditions. For instance, in submerged environments, the damping effect of the fluid medium significantly

mitigates the impact of increasing velocity on penetration error. This is evident in the reduced penetration

errors observed in submerged conditions compared to dry conditions, indicating that fluid resistance plays

a stabilizing role in the robotic interaction.

The distribution of penetration errors suggests that errors are not normally distributed but skewed,

particularly in lower stiffness controllers. More flexible controllers cause larger errors because compliance

allows for greater deformation under applied forces, leading to instability in trajectory tracking. The

fluctuations observed are not limited to the vertical direction but also include trajectory deviations due

to unintended tilting of the end effector. In theory, penetration error should remain 2 cm vertically along

the rod, which is expected to stay perpendicular to the bottom of the tank. However, in practice, at lower

stiffness settings (Controller 3), the rod experienced noticeable bending, particularly at 0.05 m/s. This

bending introduced additional deviations along the trajectory and, in extreme cases, led to failure, causing

the robot to stop mid-test due to excessive force build-up and instability.

These findings emphasize the importance of selecting an appropriate balance between compliance

and stiffness in impedance control design. While higher stiffness improves spatial accuracy, it may

also amplify force instability, whereas lower stiffness improves adaptability but at the cost of increased

penetration error and potential system failures at high velocities.

It is important to note that the system was tested at a fixed penetration depth. However, in practi-

cal applications, an impedance-controlled system should not only ensure contact but also dynamically limit

excessive penetration. When operating above the bed, the system should allow for rapid repositioning

back to the top of the bed. Conversely, as soon as penetration occurs, flexibility is needed to enable

smooth movement out of or onto the bed. Implementing an adaptive stiffness strategy that adjusts based

on penetration depth could improve operational efficiency in real-world conditions.

0.16.2. Effect of velocity on Penetration Error
The relationship between velocity and penetration error is particularly noteworthy. Across all controllers, an

increase in velocity consistently results in greater penetration error, indicating reduced tracking accuracy at

higher velocities. This trend is evident regardless of the controller’s stiffness settings. At lower velocities, all

controllers maintain relatively low penetration errors, with Controller 1 performing the best overall. However,

as velocity increases, penetration errors become more pronounced, with Controller 3 experiencing the

highest errors, particularly at the highest velocities. This highlights the challenges of high-velocity operation

and the need for careful consideration of velocity in the design of impedance control strategies.

xxxi
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The distribution of penetration errors indicates that the errors are not normally distributed but skewed,

particularly in lower stiffness controllers. The more flexible control causes larger errors because compliance

leads to increased deformation under force, making it difficult to maintain a stable trajectory. These errors

are not limited to the vertical direction but also include fluctuations along the trajectory path. Ideally, the

penetration error should remain at 2 cm vertically along the rod, which is theoretically perpendicular to the

bottom of the tank. However, in practice, at lower stiffness settings (Controller 3), the rod experienced

noticeable bending, particularly at 0.05 m/s. This bending resulted in additional deviations along the

trajectory and, in extreme cases, led to failure, causing the robot to stop mid-test due to excessive

force build-up and loss of trajectory stability. This suggests that at low stiffness and high velocity, both

translational and tilting errors contribute to increased penetration error, emphasizing the importance of

maintaining an appropriate balance between compliance and stiffness in impedance control design.

.

0.16.3. Mean Force and Environmental Conditions
The variation of mean force under different velocity, surface, and environmental conditions further under-

scores the complexities of impedance control in underwater environments. Increasing velocity leads to a

rise in mean force, suggesting that at higher velocities, the robot exerts greater interaction forces on the

sandbed. This effect is more pronounced on curved surfaces, which generally lead to higher mean forces

than flat surfaces, particularly in dry conditions. Submerged environments, however, result in lower mean

forces compared to dry conditions, likely due to fluid damping effects reducing resistance.

Breaking down the results per controller, Controller 1 maintains relatively stable mean force levels across

conditions, with a gradual increase at higher velocities, especially in curved, dry scenarios. Controller 2

shows greater sensitivity to velocity changes, with a sharper increase in mean force at higher velocities.

Controller 3 exhibits the highest mean force values across all conditions, particularly in dry environments.

This is mainly due to the deeper penetration depth of the rod in the sand, which creates more matter to go

through and therefore requires more force.

Additionally, the increased effect of mean force on curved surfaces can be partially attributed to the

complexity of the robotic system used in this experiment. The KUKA robot, with its 7 degrees of freedom,

allows for highly adaptable movements, which differ from the simpler single-degree-of-freedom (1 DOF)

mechanisms typically found in real-life applications such as seabed excavation and deep-sea mining. In

an actual operational setting, a 1 DOF system would likely experience less variability in force application,

as it would not have the same range of kinematic adjustments to compensate for changes in terrain. This

means that while the increased forces on curves observed in this study are relevant, they may be amplified

due to the flexibility of the robotic arm, rather than being solely a result of surface topology.

0.16.4. Force Standard Deviation and Stiffness
The relationship between speed and force standard deviation across different controllers provides additional

insights. Force standard deviation increases with speed across all controllers, indicating that higher

velocities introduce greater force fluctuations. Notably, Controller 3 (100 N/m) exhibits the lowest overall

force standard deviation, particularly at higher speeds. This suggests that lower stiffness allows for more

flexibility and better absorption of force variations, maintaining stability even as speed increases. In

contrast, Controller 1 (300 N/m) presents the highest force standard deviation, especially at higher speeds,

reflecting increased resistance and reduced control stability under high stiffness conditions.

Submersion reduces force variability across all controllers, confirming the damping effect of the fluid

medium. This effect is particularly pronounced for Controller 3, where the lowest stiffness combines with

fluid damping to minimize force fluctuations. These findings indicate that while higher stiffness can improve

force stability in certain conditions, it also increases resistance during contact, leading to higher force

standard deviations at increased speeds. Conversely, lower stiffness allows for greater flexibility and

better absorption of force variations, resulting in lower force standard deviations, especially in submerged

environments.
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0.16.5. Damping Effect of Water in Submerged Conditions
The damping effect of water in submerged conditions plays a critical role in reducing penetration errors

and force variability. Fluid resistance acts as a natural stabilizer, attenuating the impact of external

disturbances and minimizing force fluctuations. This is evident in the data, where submerged conditions

consistently show lower penetration errors and force standard deviations compared to dry conditions. The

fluid medium’s ability to absorb and dissipate energy helps maintain more stable interactions between the

robotic system and the sandbed, even at higher velocities.

This damping effect is particularly beneficial in underwater environments, where the presence of water

provides a consistent and predictable medium for robotic operations. The results indicate that variability in

force measurements, which has been interpreted as noise in the results section, is significantly dampened

in submerged conditions. This suggests that the water column acts as a filtering medium that smooths

out force fluctuations, leading to more consistent robotic interactions. By leveraging this natural stabi-

lizing effect, impedance controllers can be optimized to enhance accuracy and reliability in underwater

applications, reducing the sensitivity to rapid force disturbances encountered in dry conditions.

0.16.6. Surface Topology and Fluid Conditions
The influence of surface topology and fluid conditions on penetration error variation is also significant.

Penetration error exhibits greater variability on curved surfaces compared to flat ones, suggesting that

maintaining trajectory accuracy is more challenging when the contact surface is uneven. This effect can

be attributed to variations in force distribution across the surface, which affects the controller’s ability to

maintain a steady penetration depth. Submerged conditions result in reduced penetration error variability

compared to dry conditions, as the presence of fluid dampens fluctuations, likely due to hydrodynamic

resistance and increased stability in the interaction force.

In light of these findings, the damping effect of water in submerged conditions emerges as a cru-

cial factor in optimizing impedance control strategies for underwater robotic applications. The ability

of the fluid medium to stabilize interactions and reduce force variability suggests that lower stiffness

controllers, which allow for greater flexibility and adaptability, may be particularly well-suited for underwater

environments. This insight underscores the importance of considering environmental conditions when

designing impedance control strategies for robotic systems operating in dynamic and unpredictable

underwater settings.

The experimental findings reveal important trade-offs between impedance control stiffness, penetra-

tion accuracy, force variability, and environmental adaptability. While high-stiffness controllers consistently

yield lower penetration depth deviations, this does not necessarily equate to optimal performance in

real-world underwater conditions. The assumption that stiffer control leads to better accuracy must be

reconsidered in the context of external disturbances, unforeseen obstacles, and operational constraints.

A high-stiffness controller exhibits superior spatial accuracy; however, it also presents increased vulner-

ability to external impacts. In an unpredictable seabed environment, where obstacles such as rocks or

debris may be present, excessive stiffness can result in force spikes upon collision, potentially disrupting

trajectory control or causing the robotic arm to halt movement abruptly. This could be detrimental to

applications such as deep-sea mining (DSM), where maintaining continuous operation is critical.

Conversely, lower-stiffness controllers allow for greater compliance when interacting with deformable

surfaces, mitigating the risk of system blockage in response to sudden external forces. However, the

trade-off comes in the form of higher penetration depth deviations, particularly in dry conditions where

environmental damping effects are absent.

The accuracy of the 3D camera and the ability of the KUKA robot to follow a predefined trajectory

play a significant role in shaping these findings. The RealSense D455 camera provides depth perception

for trajectory mapping, but its precision is affected by water clarity, lighting conditions, and the reflectivity

of the sandbed. In submerged conditions, distortions due to light refraction and variations in water clarity

may introduce small deviations in the planned trajectory, impacting the accuracy of the depth estimation.

Similarly, the KUKA robot, with its 7DOF control system, is highly precise in trajectory execution but differs
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from real-world applications, where simpler 1DOF mechanisms are more common. These factors suggest

that some of the observed variations in penetration depth and force fluctuations may partially stem from

the combined limitations of the sensing and actuation systems, rather than being solely attributable to the

impedance control settings.

0.16.7. The Influence of Speed on Performance
The relationship between velocity and impedance control effectiveness is another crucial factor observed in

the experiments. As velocity increases, the accuracy of penetration depth decreases, and force variability

becomes more pronounced. This is particularly evident at higher stiffness levels, where increased velocity

exacerbates force fluctuations, making it difficult for the controller to maintain precise contact forces with

the sandbed.

Despite this, the damping effects of fluid environments help mitigate force instabilities, reducing fluctuations

in measured forces. This suggests that higher velocities may be more feasible in submerged conditions, as

natural damping provides additional stabilization. However, due to the safety limitations of the KUKA robotic

system, high-velocity testing was not possible in this study, restricting the analysis to lower operational

velocities. Future experiments should assess how impedance control behaves in higher-velocity conditions

to determine whether dynamic stiffness adjustments could optimize performance while maintaining stability.

A potential avenue for optimization is the implementation of a hybrid control strategy. In this con-

text, hybrid control refers to a combination of impedance control with an adaptive feedback mechanism

that adjusts stiffness dynamically based on sensed environmental conditions. The criteria for this dynamic

adjustment could be derived from real-time force measurements, penetration depth deviations, and

interaction stability. For instance, if excessive force fluctuations are detected, stiffness could be lowered to

allow for better compliance, whereas in stable conditions, higher stiffness could be maintained to optimize

accuracy. Implementing such a strategy would require integrating force sensors and environmental

mapping techniques to adjust control parameters in real-time, ensuring an optimal balance between

stability, compliance, and precision in varying seabed conditions.

0.16.8. Effect of Fluid Damping on Force Consistency
A significant observation in submerged conditions is the attenuation of force variability due to fluid damping.

The presence of water naturally reduces oscillations in applied forces, suggesting that underwater envi-

ronments may be better suited for more compliant (lower-stiffness) control strategies without significantly

sacrificing precision. This is supported by the data, where submerged conditions consistently show lower

force standard deviation compared to dry conditions.

One of the key contributors to this damping effect is the dilation phenomenon in granular media. When the

robotic system interacts with a submerged sandbed, the grains undergo shearing and rearrangement,

which temporarily increases pore volume and reduces internal resistance. This dilation effect leads to

a localized drop in pore pressure, affecting the force transmission through the medium. As a result,

the system experiences a form of passive force regulation, where the effective stiffness of the sandbed

changes dynamically in response to penetration depth and applied forces. This effect is particularly

relevant for impedance control, as it highlights the role of granular mechanics in modulating interaction

forces.

In addition to dilation, the surrounding fluid also contributes to force attenuation through viscous damping.

Water provides resistance to sudden force fluctuations by exerting drag on the moving components and

filling the voids created by grain displacement. While this effect is secondary to the dilation mechanism

in the given experimental conditions, it further stabilizes force interactions, particularly at lower speeds.

Understanding the interplay between these damping mechanisms is essential for refining impedance

control strategies in underwater environments, ensuring better adaptability and interaction stability in

real-world applications.

0.16.9. Trade-offs Between Stiffness, Accuracy, and Adaptability
The observed trade-offs between stiffness, force control, and adaptability emphasize the need for a

balanced approach to impedance control in underwater robotics. The following table summarizes the



0.17. Implications for Underwater Robotics xxxv

advantages and disadvantages of high- and low-stiffness configurations:

Table 1: Trade-offs Between Stiffness and Speed in Underwater Conditions

Factor Higher Stiffness Lower Stiffness

Penetration Accuracy Higher accuracy Lower accuracy

Adaptability to Obstacles Risk of blockage if encountering

rocks

More compliant, better adaptabil-

ity

Force Stability Higher force spikes Smoother force transitions

Response to Fluid Damping More stable due to damping More stable due to damping

Suitability for Unknown Terrain Less forgiving, high impact risks Allows safer interactions

Performance at Higher Speeds Less stable, increased force

spikes

More stable, reduced force

buildup

This analysis shows that a single, fixed stiffness configuration may not be optimal for real-world seabed

interactions. Instead, a hybrid control approach that adjusts stiffness dynamically based on sensed

environmental conditions may provide a superior balance between accuracy, stability, and adaptability.

0.17. Implications for Underwater Robotics
0.17.1. The Role of Adaptive Impedance Control
The findings of this study suggest that a pre-set high-stiffness control strategy is not always optimal for

seabed robotic operations. In environments where unexpected obstacles exist, a dynamically adjustable

impedance controller that can modulate stiffness in real-time based on force feedback and sensor inputs

would significantly improve the robot’s resilience to external disturbances.

For DSM applications, wheremaintaining consistent penetration depth is critical while avoiding excessive

force spikes, modulating stiffness instead of using a fixed high-stiffness setting may improve both efficiency

and safety. A robotic system that increases stiffness in stable conditions (e.g., uniform sand) but lowers

stiffness upon detecting an obstacle (e.g., rock or debris) could ensure continuous operation without

excessive disruptions.

0.17.2. Velocity Considerations for Practical Applications
In practical underwater operations, efficiency is a crucial factor. Lower velocities reduce force instability,

making high-stiffness configurations more effective. However, in real-world applications where operational

time is a constraint, slower velocities may not be viable. This highlights the need for an optimal balance

between velocity and stiffness, where a moderate stiffness setting combined with an appropriate velocity

threshold could provide stable yet efficient robotic performance.

Furthermore, since submerged conditions provide natural damping effects, the need for excessively

high stiffness may be reduced, suggesting that a more compliant controller may be preferable in fluidic

environments.

Additionally, the effect of velocity is significantly influenced by the geometry of the robotic end-effector

used. The shape and orientation of the tool determine the magnitude of the damping force exerted by

the fluid medium. In this study, the rod’s 60-degree angle affected how water resistance interacted with

the robotic movement. A different geometry, such as a broader or more streamlined shape, could lead to

variations in damping force, affecting both force stability and penetration accuracy. This emphasizes that

tool design should be considered alongside control parameters when optimizing robotic interactions in

underwater environments.
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0.18. Experimental Setup Considerations
The experimental setup relied on a KUKA robotic arm, which, while highly adaptable, introduces additional

complexity that may not be necessary for simplified impedance control testing. A setup allowing for 1DOF

operation, such as a manipulator mounted on a moving carriage, would reduce system variability and

better reflect real-world applications. While the KUKA arm provides precise control, a simplified setup

would allow for more direct assessments of impedance control parameters without additional kinematic

adjustments influencing force and penetration behaviors.

0.19. Suggestions for Improvement
Several improvements could enhance the experimental methodology and broader applicability of the

findings:

• Adaptive Impedance Control: Implementing a real-time adaptive stiffness controller that adjusts

based on force feedback and environmental conditions could improve both accuracy and stability.

• Extended Speed Ranges: Exploring lower and higher speed ranges could provide a more compre-

hensive understanding of the speed-stiffness trade-off.

• Material Variability: Future studies should investigate different granular compositions, including

varying particle sizes and moisture levels, to assess the broader applicability of impedance control in

non-uniform environments.

• Rod shape adaptation to prevent sand accumulation as this is not an important variable for the study.

• Strict horizontal stiffening of the rod to prevent bending and therefore skewed errors.

• Improved trajectory planning tool by setting reliable intrinsics in the 3D camera.

These improvements would contribute to more robust robotic systems capable of interacting effectively

with complex, deformable environments.



Conclusion

This study set out to answer the question: How does fine-tuning joint stiffness in an impedance controller

influence penetration accuracy and force stability in sandbeds under different environmental conditions?

The results demonstrate that while higher stiffness controllers minimize penetration errors, they also

introduce higher force variations, particularly in dry environments. Conversely, lower stiffness controllers

exhibit higher penetration errors but provide greater compliance, reducing the risk of trajectory deviations

in uneven terrain. The optimal stiffness setting is not a fixed value but rather depends on the operational

constraints, such as seabed consistency, velocity requirements, and obstacle presence.

0.20. Summary of Findings
This study investigated the effects of stiffness, speed, and environmental conditions on penetration accuracy

and force stability in robotic interactions with granular media. The findings indicate that higher stiffness

improves penetration accuracy and force stability, whereas increased speed leads to greater force variability

and reduced accuracy. Submerged conditions were found to attenuate penetration variability, largely due

to the damping effects of the surrounding fluid, which help stabilize robotic interactions. Additionally, the

failure of Controller 3 at the highest speed highlights the limitations of low-stiffness impedance control in

high-speed operations, reinforcing the need for an optimal balance between compliance and rigidity.

0.21. Contributions
This research contributes to the advancement of robotic impedance control by systematically analyzing

the trade-offs between stiffness, speed, and environmental factors in deformable terrain interactions. The

findings provide critical insights for the design and optimization of robotic systems operating in granular,

fluidic, and soft environments, with implications for applications such as planetary exploration, excavation

robotics, deep-sea mining, and minimally invasive robotic surgery. Specifically, this study:

• Demonstrates the quantitative relationship between stiffness and penetration accuracy across differ-

ent speeds and environmental conditions.

• Identifies the trade-offs between accuracy and force stability in impedance-controlled robotic systems.

• Highlights the stabilizing effects of submerged environments, which mitigate force variability and

improve consistency in robotic operations.

• Provides empirical evidence of failure points in low-stiffness controllers operating at high speeds,

reinforcing the need for adaptive control strategies.

These contributions serve as a foundation for future advancements in impedance-controlled robotics,

particularly for dynamic and unstructured environments where material consistency and external force

interactions introduce additional complexity.

0.22. Practical Implications
For underwater robotic applications such as deep-sea mining and subsea infrastructure maintenance,

these findings highlight the need for a dynamically adaptive impedance control system rather than a single

fixed-stiffness configuration. Given that submerged environments inherently dampen force fluctuations,

controllers with moderate stiffness settings may achieve sufficient penetration accuracy while maintaining

adaptability in unstructured terrains.

Additionally, this study revealed that at low stiffness settings and high velocities, the robotic system

may experience failures due to excessive force accumulation. This suggests that operational velocity

constraints must be carefully calibrated based on stiffness selection to prevent system instability.

xxxvii
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0.23. Future Work
Future research should focus on several areas to further develop the applicability of impedance control in

underwater robotics:

• Dynamic Impedance Control Strategies: Investigate real-time stiffness and damping adjustments

based on force feedback, integrating feedback loop models to optimize control responses dynamically.

• High-Speed Testing: Extend experiments to higher operational speeds, particularly in submerged

conditions, to evaluate how impedance control settings behave under rapid movement constraints.

• Testing on Heterogeneous Seabeds: Implement stratified seabeds with variable sediment compo-

sitions, embedded obstacles, and varying compaction levels to better simulate real-world seabed

interactions.

• Single-DOF Actuator Studies: Conduct experiments using simplified robotic systems with single-

DOF actuators, which are more representative of actual DSM machinery, ensuring that the findings

translate effectively to industry applications.

• Integration with Advanced Sensing Technologies: Enhance real-time environmental awareness

using advanced sonar, LiDAR, or other methods. Millimetric Penetration Depth Analysis: Explore

the precise control of penetration depth at a millimetric level using single-DOF actuators in underwater

robotics tailored for deep-sea mining. This study would focus on the precise adjustments required to

manage tool entry into varying sediment types, which is crucial for optimizing extraction processes

and minimizing environmental impact. Developing specialized robotic platforms with enhanced

sensing and control capabilities could provide the necessary precision and adaptability for these

operations.

These advancements would provide a more comprehensive understanding of how impedance control

can be optimized for subsea robotics, leading to safer, more efficient, and more adaptable underwater

robotic systems.
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Appendices

This appendix contains the Python script used for controlling the KUKA robot, recording force data,

and executing the trajectory.

0.24. Full Robot Controller Python Script

1 import rospy
2 import actionlib
3 import numpy as np
4 from datetime import datetime
5 from cor_tud_msgs.msg import ControllerAction, ControllerGoal
6 from sensor_msgs.msg import JointState
7 from roboticstoolbox.robot.ERobot import ERobot
8

9 # Initialize the robot model
10 kuka = ERobot.URDF("/home/josepht/catkin_ws/iiwa_ros/src/iiwa_description/urdf

/iiwa7.urdf.xacro")
11

12 # Global variables for force recording
13 recorded_data = []
14 current_positions = None
15 current_torques = None
16 start_time = None
17 last_recorded_time = None # For time-based recording
18

19 # Callback for joint states
20 def joint_states_callback(msg):
21 global current_positions, current_torques
22 current_positions = np.array(msg.position)
23 current_torques = np.array(msg.effort).reshape(-1, 1) # Reshape torques

to column vector
24

25 # Record data including test time, Cartesian position , and forces in X and Y
directions at the tip of the rod

26 def record_data():
27 global recorded_data, current_positions, current_torques, start_time,

last_recorded_time
28 if current_positions is not None and current_torques is not None:
29 current_time = rospy.get_time()
30

31 # Only record if 2 seconds have passed since the last recorded time
32 if last_recorded_time is None or (current_time - last_recorded_time)

>= 2.0:
33 last_recorded_time = current_time
34

35 # Compute Jacobian and force
36 J = np.array(kuka.jacob0(current_positions))
37 J_transpose_pinv = np.linalg.pinv(J.T)
38 end_effector_force_vector = np.dot(J_transpose_pinv,

current_torques).flatten()
39

40 # Compute Cartesian position of the end effector
41 cartesian_position = kuka.fkine(current_positions).t.flatten()
42

43 # Extract forces in x and y directions and round to nearest
integer

44 force_in_x_direction_N = round(end_effector_force_vector[0])
45 force_in_y_direction_N = round(end_effector_force_vector[1])
46

47 # Record data with end effector's Cartesian z-coordinate
48 recorded_data.append([

xl
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49 round(current_time - start_time, 2), # Relative time
50 round(cartesian_position[0], 2), # X
51 round(cartesian_position[1], 2), # Y
52 round(cartesian_position[2], 2), # Z (unchanged end

effector position)
53 force_in_x_direction_N ,
54 force_in_y_direction_N
55 ])
56

57 if __name__ == "__main__":
58 try:
59 rospy.init_node('trajectory_with_force_recording')
60

61 # Set up joint states subscriber
62 joint_states_sub = rospy.Subscriber('/iiwa7/joint_states', JointState,

joint_states_callback)
63 rospy.wait_for_message('/iiwa7/joint_states', JointState)
64

65 # Define action client
66 ns = rospy.get_param('/namespaces', default='robot')
67 client = actionlib.SimpleActionClient(ns + '/torque_controller',

ControllerAction)
68 client.wait_for_server()
69

70 # Initial joint position setup
71 goal = ControllerGoal()
72 goal.mode = 'joint_ds'
73 goal.time = 4
74 goal.rate = 200
75 goal.reference = np.zeros(7)
76 goal.stiffness = 0.7 * np.array([100.0, 100.0, 50.0, 50.0, 25.0, 25.0,

10.0])
77 goal.damping = 2 * np.sqrt(goal.stiffness)
78

79 print("Press a key to go to initial joint position")
80 input()
81 client.send_goal(goal)
82 client.wait_for_result()
83

84 # Waypoints for intermediate joint positions
85 current_position = np.zeros(7)
86 waypoints = [
87 (0, np.radians(-47)),
88 (1, np.radians(42)),
89 (3, np.radians(-68)),
90 (5, np.radians(65))
91 ]
92

93 print("Press a key to move through intermediate joint waypoints")
94 input()
95

96 for joint_index, angle in waypoints:
97 current_position[joint_index] = angle
98 goal = ControllerGoal()
99 goal.mode = 'joint_ds'
100 goal.time = 3
101 goal.rate = 200
102 goal.reference = current_position
103 goal.stiffness = 0.7 * np.array([100.0, 100.0, 50.0, 50.0, 25.0,

25.0, 10.0])
104 goal.damping = 2 * np.sqrt(goal.stiffness)
105 client.send_goal(goal)
106 client.wait_for_result()
107

108 print("Intermediate joint waypoints completed. Press a key to move to
final Cartesian position.")

109 input()
110

111 # Final target Cartesian position
112 goal = ControllerGoal()
113 goal.mode = 'ee_cartesian_ds'
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114 goal.time = 4
115 goal.rate = 200
116 goal.reference = np.array([0.48, -0.5, 0.45, -np.pi, 0, -np.pi])
117 goal.stiffness = np.array([300.0, 300.0, 300.0, 10.0, 10.0, 10.0])
118 goal.damping = 2 * np.sqrt(goal.stiffness)
119 client.send_goal(goal)
120 client.wait_for_result()
121

122 print("Final Cartesian position reached!")
123

124 # City-like path
125 print("Press a key to start city-like path")
126 input()
127 start_time = rospy.get_time() # Start recording relative time
128

129 # Generated trajectory
130 path_segments = [
131 [-0.500, 0.487],
132 [-0.495, 0.476],
133 ]
134

135 steps_per_segment = 10
136 target_velocity = 0.025
137

138 for i in range(len(path_segments) - 1):
139 start_y, start_z = path_segments[i]
140 end_y, end_z = path_segments[i + 1]
141 distance = np.linalg.norm(np.array([end_y, end_z]) - np.array([

start_y, start_z]))
142 time_per_segment = distance / target_velocity
143

144 for step in range(steps_per_segment):
145 progress = step / float(steps_per_segment)
146 current_y = start_y + (end_y - start_y) * progress
147 current_z = start_z + (end_z - start_z) * progress
148

149 goal.mode = 'ee_cartesian_ds'
150 goal.time = time_per_segment / steps_per_segment
151 goal.reference = np.array([0.48, current_y, current_z, -np.pi,

0, -np.pi])
152 goal.stiffness = np.array([300.0, 300.0, 300.0, 40.0, 40.0,

40.0])
153 goal.damping = 2 * np.sqrt(goal.stiffness)
154 client.send_goal(goal)
155 client.wait_for_result()
156 record_data()
157

158 print("City-like path completed!")
159

160 # Save recorded data to file
161 timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
162 file_name = f'recorded_data_{timestamp}.py'
163 with open(file_name, 'w') as f:
164 f.write("# Recorded trajectory data\n")
165 f.write("# Time\tX\tY\tZ\tForce_X\tForce_Y\n")
166 for entry in recorded_data:
167 f.write(f"{entry[0]}\t{entry[1]}\t{entry[2]}\t{entry[3]}\t{

entry[4]}\t{entry[5]}\n")
168

169 print(f"Data recorded and saved to {file_name}")
170

171 # Return home
172 print("Press a key to return home")
173 input()
174 goal = ControllerGoal()
175 goal.mode = 'joint_ds'
176 goal.time = 4
177 goal.rate = 200
178 goal.reference = np.zeros(7)
179 goal.stiffness = 0.7 * np.array([100.0, 100.0, 50.0, 50.0, 10.0, 10.0,

10.0])
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180 goal.damping = 2 * np.sqrt(goal.stiffness)
181 client.send_goal(goal)
182 client.wait_for_result()
183

184 print("Done, pizza!")
185

186 except rospy.ROSInterruptException:
187 pass

Listing 1: Full Robot Controller Python Script

0.25. Full Trajectory Defining Script

1 import pyrealsense2 as rs
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import cv2
5 import os
6

7 # Initialize RealSense pipeline
8 pipeline = rs.pipeline()
9 config = rs.config()
10 config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
11 config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
12

13 # Start streaming
14 pipeline.start(config)
15

16 # Align RGB and depth frames
17 align_to = rs.stream.color
18 align = rs.align(align_to)
19

20 # Global variables
21 calibration_points = [] # Green points for scaling factor
22 measurement_points = [] # Red points for depth profile
23 scaling_factor = None # Meters per pixel
24

25 # Mouse callback function
26 def select_point(event, x, y, flags, param):
27 global calibration_points, measurement_points, scaling_factor
28

29 if event == cv2.EVENT_LBUTTONDOWN:
30 # Step 1: Collect calibration points (Green)
31 if scaling_factor is None:
32 if len(calibration_points) < 2:
33 calibration_points.append((x, y))
34 print(f"Calibration Point {len(calibration_points)} selected

at ({x}, {y})")
35

36 if len(calibration_points) == 2:
37 calculate_scaling_factor()
38 print("Calibration complete. Now select two red points for the

graph.")
39

40 # Step 2: Collect red points after calibration
41 elif len(measurement_points) < 2:
42 measurement_points.append((x, y))
43 print(f"Measurement Point {len(measurement_points)} selected at ({

x}, {y})")
44

45 if len(measurement_points) == 2:
46 print("Two points selected. Calculating depth profile...")
47 plot_depth_profile()
48

49 # Function to calculate the scaling factor
50 def calculate_scaling_factor():
51 global scaling_factor, calibration_points
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52

53 x1, y1 = calibration_points[0]
54 x2, y2 = calibration_points[1]
55

56 # Pixel distance between calibration points
57 pixel_distance = np.hypot(x2 - x1, y2 - y1)
58 known_distance = 1.0 # 1 meter
59

60 # Scaling factor in meters per pixel
61 scaling_factor = known_distance / pixel_distance
62 print(f"Scaling factor: {scaling_factor:.6f} meters/pixel")
63

64 # Function to plot the depth profile and export coordinates
65 def plot_depth_profile():
66 global measurement_points, scaling_factor, depth_frame
67

68 x1, y1 = measurement_points[0]
69 x2, y2 = measurement_points[1]
70

71 # Interpolate points along the line
72 num_points = int(np.hypot(x2 - x1, y2 - y1))
73 x_values = np.linspace(x1, x2, num_points).astype(int)
74 y_values = np.linspace(y1, y2, num_points).astype(int)
75

76 # Collect depths and scaled distances
77 depths = []
78 distances = [0.0] # Start at 0 for the first point
79

80 for i in range(1, len(x_values)):
81 depth = depth_frame.get_distance(x_values[i], y_values[i])
82 if 0.1 < depth < 10: # Exclude invalid depths
83 depths.append(depth)
84 else:
85 # Replace invalid depth values with the last valid value or 0
86 depths.append(depths[-1] if depths else 0)
87 pixel_distance = np.hypot(x_values[i] - x_values[i-1], y_values[i] -

y_values[i-1])
88 real_distance = pixel_distance * scaling_factor
89 distances.append(distances[-1] + real_distance)
90

91 # Handle outliers: Replace values that deviate too much from neighbors
92 cleaned_depths = replace_outliers(depths, threshold=0.1)
93

94 # Smooth depths using weighted moving average
95 smoothed_depths = weighted_moving_average(cleaned_depths, window_size=7)
96

97 # Invert depths for heights
98 max_depth = max(smoothed_depths)
99 inverted_heights = [max_depth - d for d in smoothed_depths]
100 distances = distances[:len(inverted_heights)]
101

102 # Export as city-like path
103 export_path_script(distances, inverted_heights)
104

105 # Plot the inverted depth profile
106 plt.figure()
107 plt.plot(distances, inverted_heights, label="Height Profile", color="blue"

)
108 plt.xlabel("Distance Along Line (meters)")
109 plt.ylabel("Height (meters)")
110 plt.title("Height Profile Along Selected Line")
111 plt.legend()
112 plt.show()
113 measurement_points.clear()
114

115 # Function to replace outliers in depth values
116 def replace_outliers(data, threshold=0.1):
117 """Replace values that deviate too much from their neighbors."""
118 cleaned_data = data[:]
119 for i in range(1, len(data) - 1):
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120 if abs(data[i] - data[i-1]) > threshold and abs(data[i] - data[i+1]) >
threshold:

121 # Replace outlier with the average of neighbors
122 cleaned_data[i] = (data[i-1] + data[i+1]) / 2
123 return cleaned_data
124

125 # Function to apply weighted moving average
126 def weighted_moving_average(data, window_size=7):
127 """Smooth data using a weighted moving average."""
128 half_window = window_size // 2
129 smoothed_data = []
130

131 for i in range(len(data)):
132 # Define the window range
133 start = max(0, i - half_window)
134 end = min(len(data), i + half_window + 1)
135

136 # Apply weights (linear weights for smoother transitions)
137 weights = np.arange(1, end - start + 1)
138 weighted_sum = np.dot(data[start:end], weights)
139 smoothed_value = weighted_sum / weights.sum()
140

141 smoothed_data.append(smoothed_value)
142

143 return smoothed_data
144

145 # Function to export the path script to the 'realsens' folder
146 def export_path_script(distances, heights):
147 save_folder = "realsens"
148 os.makedirs(save_folder, exist_ok=True)
149

150 # Shift the starting point to x = -0.5
151 x_shift = -0.5 - distances[0]
152 shifted_distances = [d + x_shift for d in distances]
153

154 # Add 0.429m + 0.1m to each height coordinate (1mm penetration depth)
155 adjusted_heights = [h + 0.437 for h in heights]
156

157 # Add an extra 0.04m to the first 3 points
158 for i in range(min(3, len(adjusted_heights))):
159 adjusted_heights[i] += 0.05
160

161 # Generate points for every 0.005 meters (half a centimeter) along the x-
axis

162 interpolated_distances = np.arange(shifted_distances[0], shifted_distances
[-1] + 0.005, 0.005)

163 interpolated_heights = np.interp(interpolated_distances , shifted_distances
, adjusted_heights)

164

165 # Create the path script
166 file_path = os.path.join(save_folder, "city_path.py")
167 script_content = "path_segments = [\n"
168 for d, h in zip(interpolated_distances , interpolated_heights):
169 script_content += f" [{d:.3f}, {h:.3f}],\n"
170 script_content += "]\n"
171

172 # Save the script to a file
173 with open(file_path, "w") as file:
174 file.write("# Generated City-Like Path Script\n")
175 file.write(script_content)
176

177 print(f"Path script saved as '{file_path}'.")
178

179 # OpenCV window setup
180 cv2.namedWindow("RGB Image")
181 cv2.namedWindow("Depth Image")
182 cv2.setMouseCallback("RGB Image", select_point)
183

184 try:
185 while True:
186 frames = pipeline.wait_for_frames()
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187 aligned_frames = align.process(frames)
188 depth_frame = aligned_frames.get_depth_frame()
189 color_frame = aligned_frames.get_color_frame()
190

191 if not depth_frame or not color_frame:
192 continue
193

194 depth_image = np.asanyarray(depth_frame.get_data())
195 color_image = np.asanyarray(color_frame.get_data())
196 depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image,

alpha=0.03), cv2.COLORMAP_JET)
197

198 for point in calibration_points:
199 cv2.circle(color_image, point, 5, (0, 255, 0), -1)
200 cv2.circle(depth_colormap, point, 5, (0, 255, 0), -1)
201

202 for point in measurement_points:
203 cv2.circle(color_image, point, 5, (0, 0, 255), -1)
204 cv2.circle(depth_colormap, point, 5, (0, 0, 255), -1)
205

206 cv2.imshow("RGB Image", color_image)
207 cv2.imshow("Depth Image", depth_colormap)
208

209 if cv2.waitKey(1) & 0xFF == ord('q'):
210 break
211

212 finally:
213 pipeline.stop()
214 cv2.destroyAllWindows()

Listing 2: Full Trajectory Defining Script
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Figure 35: KUKA robot technical sheet
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Figure 36: RealSense D455 technical sheet
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