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Abstract

Despite its potential benefits of reduced traffic congestion and discounted trips, incorporating ride-pooling
in a city comes with a set of challenges that require thorough analysis, optimisation, and planning. Even
though, services like Uber have existed in Amsterdam for over a decade, city wide ride-pooling has yet to
be implemented. This paper uses an algorithm for exact matching of attractive shared rides (ExMAS) and
Albatross travel demand data to map and analyse the spatial disparities of key performance indicators of a
ride-pooling service in Amsterdam and discover the potential of certain areas in the city. The experiments
utilised a set of increasing discounted fares for ride-pooling with increasing travel demand levels. A ride-
pooling service with higher discounted fares generally increased the attractiveness of the system and reduced
the total vehicle hours, when compared to its non-shared counterpart. It was found that the largest vehicle
hour reduction were in areas on the periphery of Amsterdam (namely the West, North, and East areas)
where rides of higher degree and longer trips lengths were more likely. However, the user attractiveness of
the system tended to be higher in central areas of the city where trip density was higher, trip length shorter,
and ride degrees lower. The study also determined that variance of the vehicle hours and user attractiveness
decreased and stabilised with increasing demand level. This paper could be a starting point in optimising
the possible roll out schemes for a ride-pooling service in Amsterdam.
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1. Introduction

Transport demand is surging in the 21st Century since the majority of the human population now lives in
cities.1 This surge in transport demand allows for a market space in personalised transport services where
multiple transport modalities can be combined into one channel, usually referred to as Mobility-as-a-service
(MaaS). The idea is to integrate mobility services such as ride-pooling (also known as ride-sharing), ride-
sourcing, and bike-sharing with public transport which would ease the planning and paying of travel, thus
allowing for lower (personal) car oriented movement.2

A key concept for MaaS is ride-pooling, which essentially, permits users to travel at a reduced fee
(compared to ride-hailing) with other travellers that are heading approximately in the same direction. The
intention is to increase the usage of a vehicle, potentially reducing operator fleet size and traffic congestion,
which in turn could reduce travel times for multiple types of road users. However, the extent of these benefits
are still unclear and often disputed.1,3–5 Ride-pooling essentially penalises users’ travel times due to the
detours created by picking up and dropping passengers.

Research has shown that ride-pooling services are subject to various spatio-temporal patterns and travel
characteristics.6,7 The distribution of demand depends on the built environment and population distribution
of a city where certain areas, such as businesses districts and city centres, could generate a much higher
demand for mobility.3 The demographic of certain areas of a city would also influence the use of ride-pooling
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in a city. Methods such as spatial pricing may assist in controlling the state of supply while also maximising
platform revenue.8

For the case of Netherlands, Uber, available since 2012a, has grown as a major platform for mobility within
Amsterdam and other major Dutch cities. However, many of the platform’s innovations led to conflicts with
existing Dutch laws where attempts to institutionalise its innovations (UberPOP) took place and ultimately
failed.9 Such institutional conflicts could be a partial cause to the non existence of ride-pooling services in
Amsterdam (and the rest of the Netherlands), such as UberPOOL. Out of 50 countries that Uber operates
in, the Netherlands was the second highest on the list where a 5 km ride costs $10.07.b Such prices could be
unattractive by a user due to the country’s already extensive (and cheaper) public transport network and
transport infrastructure. Lowering the ride price to increase attractiveness could be unprofitable for Uber as
it could be that the demand is still not there to match the operating costs and thus rolling out a ride-sharing
platform still be very costly for the company. Understanding the disparities of performance of ride pooling
throughout a city could aid in successfully launching such a platform in Amsterdam.

1.1. Literature review

The benefits and detriments of the implementation ride-pooling systems in cities generates an extensive
amount of discussion in the mobility sector. The intentions of a ride-pooling system is to reduce the total
vehicle hours and the required fleet size of the operator thus alleviating the traffic congestion by lowering
car ownership in a city.10 Under some scenarios, the total travel and waiting times of both ride-hailing and
private car users.3,5 However, some research shows that successful ride-pooling designs draw patrons from
public transportation modes and that private-car users would tend to switch to ride-sourced services due the
reliability, comfort, privacy they provide.4 Usually people with higher income use a personal vehicle more
often and therefore finding ride-hailing more attractive. Public transport is most frequently used by people
with lower income for which ride-pooling services would be more attractive.11 In order to decrease traffic
congestion, ride-pooling must become a more attractive alternative to private car users.

Extensive research was also conducted on the spatio-temporal disparities of ride-pooling and ride-sourcing
along with the public transport and car. Research shows that only a few areas in a city would PT travel time
favours that of a car6 where the former usually has shorter travel durations for shorter distances (i.e. ¡ 3
km) and during peak hours. Furthermore, the use of cars seem to dominate in the night and areas when and
where the PT schedule is limited. On the other hand, ride-sourcing has significant increases in usage during
peak hours where operational characteristics such as fleet size and utilisation rate with distinct patterns in
residential and business areas.12 Ride-sharing is also seen not to be balanced in different neighbourhoods
in a city as service usage is not only limited to gender and income distribution but PT and amenities
accessibility.13 This could lead to spatial pricing of ride-pooling and sourcing systems is also able to control
the supply state of the provider in certain areas.8

In all, the research thus far analyses the disparities of ride-pooling and hailing with respect to pool-
matching probability, matching windows and service-fares. Limited research exists on the spatial disparities
of the performance and level of service (LOS) of a ride-pooling system with respect to discount price (when
compared to the ride-hailing counterpart). This leads to a research gap where little is known about area
specific attractiveness and performance of ride-pooling in a city. Understanding such areas could allow the
operator to optimise their service in areas with higher car ownership and poorer PT accessibility. Allowing
for a successful roll-out in Amsterdam, for instance.

ExMAS is an exact, replicable demand driven algorithm that complements trips into shared rides. The
algorithm is composed of utility-based formulation where the search is bound to attractive shared rides and
graph searches with a sequence of predetermined nodes which then derives an exact solution to the search
space. Subsequently, cross-scenario sensitivity analyses such as pricing strategies can be easily conducted
where the developments in travel behaviour research can be incorporated into the analyses.14 Other real-time
solutions are mostly supply driven models which deter effective supply-demand feedback loops.15,16

1.2. Study objective and research questions

The possibilities of conducting supply driven sensitivity analyses with ExMAS guided this research’s study
objectives. With that, the prime study objective is to examine the effects that ride-pooling pricing has on

aURL: https://tinyurl.com/y5hlc2gr[Retrieved on 28/01/2021]
bURL: https://tinyurl.com/y5p35k28 [Retrieved on 28/01/2021]
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its vehicle hour reduction (VHR), LOS, and ride degree in Amsterdam (when compared to it ride-hailing
counterpart). The term VHR relates the vehicle hours saved when using a pooled ride instead of a private
ride. In essence, the spatial disparities of the performance of operator and user costs are investigated in this
paper. This study objective would ultimately aid with spatial pricing schemes of such ride-pooling platforms
in Amsterdam. Additionally, this research would further increase the knowledge on the operating costs and
end user benefits of ride-pooling systems in Amsterdam.

The study objective can also be further elaborated as a set of research questions that aid with obtaining
the relevant results. The main research questions (RQ) are as follows:

1. When subject to a specific discount, what parts of the city are the most promising for the user and
operator of a ride-pooling service?

2. At what demand levels do the level of service and profitability stabilise across the city?

An area is deemed promising by quantifying the level of service and profitability of the user operator respec-
tively. This done with the use key performance indicators (KPIs) which are further elaborated in Section 2,
along with with the travel demand data used and the design of experiments for this research. The results of
the experiments are reported in Section 3. Finally, the results, experiment limitations, and future work are
discussed in Section 4.

2. Method

In this section the underlying formulas used to compute the performance indicators for the vehicles hour
reduction and LOS are showcased in Section 2.1, these formulas are all based on the ExMAS algorithm.14

The tools use to generate the network graph and the travel demand are presented in Section 2.2. The
experiment outline for this paper is then shown in Section 2.3.

2.1. Identifying the performance indicators from ExMAS

With ExMAS, travellers only choose a pooled ride if they deem it more attractive than a non-shared trip. The
algorithm essentially attempts to assign trips to shared rides. The (dis)utilities of the shared (pooled) and
non-shared (hailed) trips are Usi,r and Unsi respectively, where i indicates the traveller. The attractiveness of
a shared ride can be expressed as the difference between these two utilities (also seen in Equation 1). Here,
a shared ride r is deemed attractive if Ui,r is positive.

Ui,r = Usi,r − Unsi (1)

To efficiently compare the traveller utility, ∆Ur will be used. This is essentially the weighted difference of
the utilities of the shared and non-shared service, visualised in Equation 2. If ∆Ur = 0 then the traveller
will not find the pooled option attractive and thus opting for the non-shared ride. Since, the disutility of an
option is measured, a shared ride is chosen if and only ∆Ur < 0 which means that Usr < Unsr .

∆Ur =
Usr − Unsr
Unsr

(2)

The service fare of a shared & a non-shared ride in this paper is characterised as λs & λns, respectively
and are measured in (e /km). The fare of each ride is the product of the respective service fare and the
distance travelled. Furthermore, the discount offered for sharing a ride is computed as λ = λs − λns. In
order to create attractive shared rides, λs < λns and therefore λ < 0. This compensates for the downsides of
shared rides such as longer travel and the discomfort of sharing a trip. The experiments performed in this
study are conducted by varying the relative discount where, λ = −(λs − λns)/λns. As an example, λ = 0.15
represents a shared fare 15% lower than the non-shared alternative.

On the operator side, determining whether a shared ride generates a higher profit than non-shared rides
can be calculated with Equation 3. The revenues generated by a shared ride are the sum of trip lengths li
multiplied with λs while the costs are proportional to the ride length lr. The revenue of a non-shared trip is
similar, however here costs are not proportional to the sum of the trip lengths. In Equation 3, Qr represents
the sequence of served trips.
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∑
i∈Qr

λsli − lr >
∑
i∈Qr

λnsli −
∑
i∈Qr

li (3)

Rearranging Equation 3 would allow for the shared ride profitability to be expressed as:

λr = 1 − lr∑
i∈Qj

li
(4)

A selected shared ride is seen as profitable if λr > λ. It is important to note that a profitable ride of a high
degree may be composed of multiple non-profitable lower degree rides.

However, the term ‘profit’ will not be used to quantify the performance of the operator as it does not
account for multiple factors such as: drivers operating with an empty vehicle (i.e. driving to a passenger
or idle) and drivers waiting for the traveller. Moreover, numerous conditions influence the break-even point
which go beyond the scope of this report. For these reasons, the operator performance indicator will be
referred to as the average VHR which is represented in Equation 3 with λr. More travellers using the
sharing service (thus also allowing a higher degree of travellers per ride) should yield a higher reduction in
total vehicle hours than a non-sharing service. A positive λr indicates that vehicle hours of the shared ride
are reduced.

2.2. Generation of the travel behaviour and demand

The travel behaviour data was obtained from Albatross: A Learning Based Transportation Oriented Simu-
lation System.17 This activity based model of travel behaviour described which activities are conducted and
where, along with the transport mode involved.

The network graph of Amsterdam is generated using OSMnx.18 This allows Amsterdam’s complex street
network to be decomposed into nodes and thus generating a skim matrix. For this paper, 2019 PC4 of the
Netherlands is used to assign locations of the activities from the Albatross data which is then converted to
the nodal locations using OSMnx, facilitating map visualisations.

Furthermore, it is important to note that even though Albatross assigns a mode to a traveller, some
agents are given very long bike rides (i.e. longer than 10 km) or very short car car rides (i.e. less than a
kilometre). For such reasons, the data was filtered for trips longer than 1000 m. Regardless of the chosen
model stated in Albatross, all agents are assumed as potential ride pooling or hailing users.

The resulting trip requests Albatross file contained a total of 178651 potential trips that spanned over
the course of a full day. Only a sample of these trips is used for the experiments conducted as described in
following subsection.

2.3. Experiment configuration

The experiments in this study pertain to offering various discount prices where each experiment is replicated
five times. The trip requests (nP ) is sampled from the Albatross demand file. Depending on the attractive-
ness, trip requests will opt for a shared or a non-shared ride. The experiments are tested with the following
parameters:

• λ: 0.15, 0.2, 0.25, 0.3, 0.35

• nP : 400, 600, 800, 1000, 1400, 1800, 2200, 2600, 3000

All experiments assume that each ride maintains a constant speed of 28.8 km/h. Each vehicle is set
to have the same maximum capacity of 5 passengers. The distance-based price rate of each ride was held
constant at 1.5 e /km. The experiments also look to solve the assignment problem by maximising the
vehicles utility (or minimising the vehicle hours) where ‘non-profitable’ (i.e. λr < λ) are considered as well.
Also, since this study directly utilises the ExMAS algorithm, all of the assumptions presented in ExMAS for
system-wide strategic evaluations14 hold.

The visualisations of the computed KPIs are done with the use of H3: Uber’s Hexagonal Hierarchical
Spatial Index.c This decomposes the city of Amsterdam with a particular number of hexagons which is
controlled through an aperture size. For the sake of conciseness, this study reports aggregated KPIs per

cURL: https://eng.uber.com/h3/[Retrieved on 14/01/2021]

4

https://eng.uber.com/h3/


origin of a trip or a picked up traveller. With the use of H3. Each hexagon is a representation of average of
the KPIs within the bounds of that hexagon.

It is also important to note that this paper assumes that the total number of travellers (and their
positions) of an entire shared ride are known before the first traveller is picked up where each trip request
consists of only one traveller. So, if a ride were to consist of three different trips (i.e. a shared ride degree of
3) then it is assumed that the following passengers already made their trip requests when the first passenger
is picked up. A ride of a single degree represents a private ride while anything larger constitutes as a shared
ride. Thus, if a shared ride will consist of three different trips (i.e. a degree of three) then this ride degree
will be known and recorded from the origin of the first passenger. As well, the magnitude of λr is also
recorded from the origin of the first traveller and is constant for the entire ride. On the other hand, the
∆Ur represents the utility of selecting a service for the traveller, thus staying constant for the entirety of the
traveller’s trip. This KPI is different for each traveller, therefore the ∆Ur of the origin of every traveller is
recorded.

The study presents results from the experiments by means of maps and line plots. The maps showcase
the spatial disparities and pattern of the KPIs. The line plots utilise the coefficient of variance (CV) to
demonstrate the variation of each KPI across all hexagons. The histograms visualise the distribution of each
KPI over the hexagons.

3. Results

The results obtained in this study consist of hexagonal decompositions of Amsterdam, for which each hexagon
represents the average KPI of that area. These hexagonal decomposition are seen in Section 3.1. The CV
of KPIs across the city are further explained in Section 3.2 where the CV of each KPI is plotted in order to
explain the stability of each experiment.

The KPIs presented in this section quantify the VHR, LOS and ride degree. The former two are quantified
with λr and ∆Ur

, for which the computations are provided in Section 2.1. The analysis of these KPIs aims
to discover the most promising areas for ride-pooling in Amsterdam where areas with the highest VHR of
the operator and largest user attractiveness are visualised. As well, the visualisation of ride degree aids with
interpretation of locations with specific λr or ∆Ur .

3.1. KPI maps

A total of 135 maps visualising the KPIs across the city were created with the experiments illustrated in
Section 2. For the sake consistency, only the hexagonal decompositions of three different demand levels are
visualised, namely: low demand, medium demand, and high demand. These three demand levels are defined
by experiments where nP : 600, 1400, 2600. Furthermore, in Appendix A, maps of the trip densities and
travel times for the low, medium, and high demand levels are found and are be used to interpretation of the
KPIs.

Figures 1 to 3 show the map the hexagonal average λr, ∆Ur, and ride degree for the various discount
prices from low to high demand level. The value of λr in an area is described with a yellow, turquoise, or
blue colour. The yellow colours represents a state when λr < λ, or when the VHR is at ‘unprofitable’ level.
The turquoise colour indicates a profitable VHR up to λr = 0.4 and a blue colour indicates the highest VHR
in an interval of 0.4 to 0.6. The ∆Ur is illustrated with yellow, orange, or red. More negative values of
∆Ur indicate a higher attractiveness of the ride-sharing service which correspond to the yellow and orange
areas. The more yellow, the higher the attractiveness for ride-pooling. The red hexagons represent areas
where ∆Ur ≈ 0 which means that non-shared rides are predominantly chosen. The ride degree is described
with white and shades of green. Hexagons depicted in white represent an area where the ride degree is
approximately 1, with most rides being non-shared. The lightest shade of green represents areas of 1 to 1.5
degree, followed by an intermediate shade with degree 1.5 to 2.5 while the darkest represents areas with trips
mostly consisting of 3.5 degree. Within the ride degree maps, it can be regarded that non-white hexagonal
areas, on average, consist of shared trips.

Furthermore, in Figures 1 to 3, a lower number of hexagons is generally seen in the λr maps when
compared to the ∆Ur and ride degree maps. This occurs as only the pooled rides represent the λr. Including
private ride data in the λr maps would pollute the data as private rides have data as for a private ride
λr = λ, thus impeding the spatial analysis of ride-pooling VHR. Both ∆Ur and ride degree maps visualise
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data from both modalities albeit the former utilises all traveller origins while the latter utilises the origin of
only the first picked up traveller (both shared and non-shared).

Figure 1: KPI maps generated when nP = 600 (low demand level). At low discounts, far fewer hexagons representing λr
are seen due to a low sample of selected shared rides. More hexagons are seen with ∆Ur and ride degree as they utilise all
traveller and ride data (shared and non-shared), respectively. The colour-bar for λr alters for every discount level, the interval
for yellow is from 0 to λ.

Figure 1 presents maps for a low demand level. At this demand level, the ride-sharing service is likely to
have unprofitable VHR for most discount prices. At λ = 0.15, most of the selected rides are private rides.
This is evident in ∆Ur

map as almost all of the hexagons are red. However, the ride degree map exhibits
a pattern where higher degree rides originate from the city periphery. At λ = 0.2, ride-pooling becomes an
attractive option for travellers where orange hexagons (slightly more negative ∆Ur) are in the Centre-West
parts of the city. There is a small increase in areas where λr > λ but a larger proportion of ‘unprofitable’
areas arise. At λ = 0.25, most of the city is highlighted as ‘unprofitable’ while the ∆Ur map shows far
more areas with higher preference for ride-pooling. Most of the red hexagons are located in the North and
East ends of the city. There is less of a periphery pattern with ride degree as now pooled-rides are seen to
originate over the entire city; although only some areas in the East, South, and West have an average degree
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higher than 1.5. At discounts of 0.3 and 0.35, up to five areas are ‘profitable’ for the operator. When subject
to these discounts, areas with a high VHR are situated in the periphery of the city. In the user’s perspective,
ride-pooling is far more attractive now with the least negative ∆Ur (and thus least attractive) areas seen in
the city periphery. At λ = 0.35, the highest attractiveness (yellow areas) for ride-pooling is in the central
areas of the city, this also corresponds to the areas with 1.1 to 1.5 average ride degree. On the contrary, the
periphery has lower attractiveness for ride-pooling which corresponds to the areas with higher ride degree.

Figure 2: KPI maps generated when nP = 1400 (medium demand level). More hexagons visible in λr due to the larger number
of travellers able to select ride-pooling option.

Figure 1 indicates that the operator is likelier to have more profitable areas at lower discounts when the
demand is low. However, no specific area stand out in providing the highest VHR in the city. Users tend
to find the ride-pooling service unattractive at these low discount prices, sharing only becomes noticeably
attractive when λ = 0.25 or higher. The peripheral areas of the city are the least attractive for a user to
select the ride-pooling. This could be due to the fact that trip travel times are substantially longer in areas
just outside the centre, as seen in Figure 6. At low demand levels, ride-pooling does not have specific areas
that significantly provide profitable VHR. Only at λ = 0.2 would there be a number of profitable VHR for the
operator wile travellers also find it an attractive option. At this low demand level, it could be possible that
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travellers are poorly matched for a shared ride (i.e. larger detours needed) and thus insufficiently reducing
the vehicle hours for a shared ride.

Figure 2 visualises the disparities of the KPIs when a medium demand level is present in the city. At
the lowest discount, most of the city is considered beneficial for the operator where a small number of
‘unprofitable’ areas exist. When λ = 0.2, it is immediately clear that attractiveness for ride-pooling slightly
increases city wide as the ∆Ur map consists mostly of orange hexagons. The areas with ∆ ≈ 0 are situated
on the city perimeter where are seen in the North, East, and South. The λr map shows an ‘unprofitable’
region in the Central and Southern regions of the city while the region with the largest group of ‘profitable’
hexagons is visible in the West. The areas with the highest ride degree are also seen in the West at this
discount price. With discounts of 0.25 and higher, the number of ‘unprofitable’ λr areas increase. The areas
with ‘profitable’ λr tend to remain in the West, North, and East areas of the city. Also at these discount
prices, areas with high VHR where λr ≥ 0.4 are visible in the West and North. The perimeter of the city
generally remains the least attractive for ride-pooling. This similar pattern is also clear within the ride
degree maps as rides with degrees higher than 1.5 tend to originate from the city perimeter. Although, at
λ = 0.35, most of the city is seen to operate with rides larger than an average degree of 1.5.

Figure 3: KPI maps generated when nP = 2600 (medium demand level).
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Figure 2 shows that increasing the discount price of ride-pooling greatly affects the number of profitable
areas in the city. Eventually, with λ ≥ 0.3, ride-pooling becomes almost completely unprofitable while when
λ = 0.25, most of the central and southern areas are unprofitable. Even though most of the city finds
ride-pooling a very attractive alternative at these high discount prices, it does not seem to pay off for the
operator. Regions with areas with higher ride degree usually corresponded to the lowest attractiveness while
VHR for the operator was higher. In Figure 6, the largest trip lengths originate from the city perimeter and
the highest trip density is seen in the central areas. A correlation emerges between areas with higher VHR
and regions with lower trip requests and higher trip lengths. This could also be a reason to why higher ride
degrees originate from the city perimeter as it could be easier for a shared vehicle to pick up passengers if
driving inwards to the city. However, these higher degree rides in the city perimeter could have higher travel
times than the non-shared counterpart. It could be that travellers prefer ride-pooling when the ride degree
is lower and travel time shorter.

At high demand level, Figure 3 visualises the spatial disparities of ride-pooling of the KPIs where a
similar pattern is seen to that of a medium demand level. With λ = 0.15 at high demand, ride-pooling is
able to serve a lot more travellers where its operations are profitable city-wide. This is seen in the degree
map as average degrees higher than 1.1 are seen more in the central and not just the perimeter. However,
higher demand level does not seem to alter the attractiveness off ride-pooling at low discounts as ∆ ≈ 0 for
across the city. At λ = 0.2, groups of ‘unprofitable’ λr areas become slightly more prominent with the groups
in the central and southern parts of the city. Most of the city remains in a profitable VHR interval as the
average ride degree is at least 1.1 across the entire city. This means that a much larger portion of travellers
chooses ride-pooling at this high demand. This is evident in the ∆Ur map almost the all of the travellers find
ride-pooling the more attractive option. A much smaller portion of areas have ∆Ur ≈ 0 when comparing to
the low and medium demand levels, yet still located on the perimeter of the city. At λ = 0.25, it becomes
clear that the Centre and South are unprofitable for ride-pooling in the city. The West and North have the
highest VHR fro ride-pooling, however the ride degree is larger in the West than in the North. Areas with
∆Ur ≈ 0 become more sporadic but still the lowest attractiveness is seen on the periphery. For discounts
of 0.3 and higher, the number of profitable hexagons decrease but the West remains as the most profitable
area for ride-pooling. At these discount, ride-pooling is seen as a very attractive, when λ = 0.35 option as
∆Ur ≤ 0.3 and the average ride degree at least 1.5. However, at this highest discount, almost all of the
hexagons in the city represent unprofitable VHR.

At this high demand level, Figure 3 that the ride-pooling service can generate sufficient attractiveness at
λ = 0.2. This is beneficial for the operator as most of the city still allows for profitable VHR. At λ = 0.25,
the Southern areas of the city become significantly unprofitable while most of travellers across the city find
ride-pooling attractive increases. This is the trade-off that a provider should examine, offering a slightly
higher discount price will undoubtedly increase the attractiveness, but a large portion of the city loses its
profitability. In Figure 6, the trip density is much higher in the centre while the highest trip lengths are
are most common on the West and North peripheral areas. Ride-pooling seems to be the most suitable
option for the operator when travel times are longer and trip density lower. At discounts of 0.25 and 0.3,
the ‘profitable’ λr areas are most prominent in North, and Wast. However, the ∆Ur maps show that that
central areas areas are more attractive for ride-pooling as the city perimeter At this discount price there
is no evidence that a higher ride degree is less attractive for travellers. This could be due to the fact that
highest trip density seen in the central regions of Amsterdam where the travel time is lowest. Travellers
could prefer higher degree pooled rides for travel with short duration. On the other hand, these short trips
could be unprofitable for operator as the detour for each trip would be relatively high and thus not allowing
for high VHR.

3.2. Coefficient of variance of each map

This section examines the stability of each KPI across all the hexagons of each map. CV is used to quantify
the stability as it reports the relative precision of each experiment by taking the ratio of experiments’
standard deviation with its mean. Knowing the CV of each experiment would allow a provider to expect a
specific variation of VHR or LOS when a certain demand level is projected. ?? visualises the CV of each
experiment. The mean KPI of each experiment is plotted in ??. Additionally when nP = 3000, ExMAS
tends to crash when the discount is set to 0.35 and was therefore not considered in the analysis as five
replications were not obtainable. It is likely that this high demand level and high discount, all travellers opt
for using the ride-pooling service for which the algorithm might not be able to handle.
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Figure 4a shows plots the λr CV across all hexagons of a map with increasing demand level. An expo-
nential trend is visible for discounts of 0.2 and higher while a discount of 0.15 has more of a proportionally
negative trend. A discount of 0.15 provides the highest variation across the hexagons while discounts of
0.2 and higher have a generally lower coefficient of variation. For low (nP = 800) and high (nP = 2600)
demand levels, λ = 0.15 has up to 73% higher CV than that of discounts 0.2 and higher. For all discount
prices, the CV is highest when demand is low. This is due to the low number of available travellers to select
ride-sharing; for each replication, the change in traveller origins is more significant than at medium or high
demand levels. For discounts of 0.2 and higher, CV converges to a value around 0.2. This shows that at high
demand levels, the variation of λr throughout the city stabilises where discounts of 0.2 and higher generate
the same level of precision.

Figure 5a shows that the mean λr increases with λ. Only the line representing λ = 0.15 consistently
provides ‘profitable’ VHR. For λ = 0.2, ride-pooling only becomes profitable for nP > 1400. The mean λr of
higher discounts never surpasses λ. However, only lines of λ ≥ 0.2 follow a logarithmic trend while λ = 0.15
follows a slight positive trend. With respect to the CV of each discount, since experiments of λ of 0.2 and
higher have similar values, their trends of mean λr will always be around the same. The mean trend of
λ = 0.15 is the most unstable and the largest variance of λr is expected at this discount price, relative to
the larger discounts.

Figure 4b represents the CV for ∆Ur where an exponential trend similar to that of Figure 4a is seen. With
this KPI, all discounts follow a similar exponential trend, however the trend of λ = 0.15 is still noticeably
higher than the trends of the higher discounts. The trends of discounts 0.2 to 0.35 follow similar CV, albeit
the trend of λ = 0.2 contains slightly higher CV values. If the average CV values of discounts 0.2 to 0.35 are
taken, then CV of λ = 0.15 is around 80% larger at all low, medium, and high demand levels. Furthermore,
the CV is three to four times larger than that of λr. This is most likely due to the ∆Ur utilising results from
both shared and non-shared rides whereas λr only utilised shared ride results.

(a) λr (b) ∆Ur (c) Ride degree

Figure 4: Figures representing the CV across all hexagons of each discount under a certain demand level (nP ). CV is unit-less
while nP is the number of travellers.

The mean values of ∆Ur for every λ are plotted in Figure 5b. Evidently, the KPI becomes more negative
with increasing discount, the general attractiveness for ride-pooling increases with larger discounts. However,
the CV of λ = 0.15 is higher for ∆Ur than λr due to its mean being close to zero. A pitfall of utilising
CV to describe precision is that means close to zero will cause CV to approach infinity. The mean would
be closest to zero when λ = 0.15 because all travellers (both shared and non-shared) are considered while
λr only considers a ride shared. Thus, the reasons for ∆Ur CV being larger is not strictly due to larger
variations across the map but rather ∆Ur being closer to zero, a traveller that selects a non-shared ride has
a ∆Ur = 0. In essence, the CV converges to 0.4 for discounts of 0.25 and higher with increasing nP .

Figure 4c represents the CV for the average degree for all the rides. Unlike the the Figures 4a and 2,
there is only a slight positive trend for the different discounts. The average CV increases with larger discount
prices, however this is expected as Figure 5c shows that the mean ride degree increases with higher discounts.
Essentially, if the average ride degree increases, the variation of ride degree also increases. When λ = 0.15,
CV is lowest due to most of the rides being either one or two degree. With higher discounts, travellers opt
for using higher degree rides which increases the variation of the results. Even though the mean ride degree
increases with nP (where this positive trend increases with discount), CV exhibits only a slight positive
trend. It can be concluded that The increase of nP has a minimal effect on the CV for larger discounts and
average degree proves to have the lowest variation out of the three KPIs.
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(a) λr (b) ∆Ur (c) Ride degree

Figure 5: Figures representing the mean KPI of all hexagons of each discount under a certain demand level (nP ).

4. Conclusions and recommendations

This study utilises the recently developed ExMAS algorithm to examine the disparities in performance of a
ride-sharing service in Amsterdam. The VHR and LOS were spatially analysed in relation to trip origins.

Returning back to the first RQ of this study, this paper aims at determining the most promising areas
of Amsterdam for the user and operator of a ride-pooling service. The spatial disparities in VHR, LOS, and
ride degree between ride-pooling with a set discount and its ride-hailing counterpart, these disparities were
visualised in a series of maps that ranged from low to high demand with increasing ride-pool discount. The
maps of VHR and LOS had inverted patterns, areas where VHR was high and profitable were areas where
attractiveness was low. At all demand levels, ride-pooling with a low discount provided the greatest number
of profitable VHR areas, however travellers in all areas of the city deemed the service unattractive. With
increasing discount, travellers’ attractiveness for the service increased while the number of unprofitable VHR
areas also increased. For higher demand levels and increasing discount, some areas of the city consistently
remained profitable, these areas were located on the city periphery, namely the West, North, and East of
Amsterdam. These areas usually consisted of rides with a higher degree, lower trip density, and larger trip
travel times. On the other hand, travellers had lower attractiveness for ride-pooling in the city periphery
while attractiveness was highest in the central regions where trip density was highest and ride degree generally
lower.

The study also examined the stability of VHR and LOS of the operator and user. The variation of each
KPI over an entire map was characterised using CV plotted with respect to increasing demand where each
data-set was split according to the ride-pool discount. The lowest discount was seen to have the highest CV
for both VHR and LOS, around 80% larger than the higher discounts. For VHR, the CV stabilised with
increasing demand levels. As well, discounts of 0.2 and almost identical exponential trends which means that
ride-pooling at these discounts have a similar level of precision in terms of VHR and LOS. Higher demand
levels allow for a more stable performance for ride-pooling, which was also partially seen in the maps as
patterns were more profound at these demand levels.

In all, The maps showed that a medium to high demand is required to have a reliable ride-pool service.
With discount equal to 0.25, the findings indicate that the West, North, and East regions of Amsterdam are
the most promising for the operator; at this discount most of the travellers find the service attractive except
on the peripheral areas of the city. The attractiveness of the tide-pooling service decreases services when
the discount is set to 0.2 yet almost the entire city is promising for the operator. Low demands are prone to
large instabilities in VHR and are seen to consist mostly of unprofitable VHR areas. It is important to know
that the service fare was fixed throughout the experimentation, it could be possible that different patterns
emerge with higher or lower service fares. This could also lead to further studies the usage of ride-pooling
with respect to the demographic in a city.

This research is limited to the uncertainty that low discount prices have on the performance of different
areas in a city. The CV plots provided evidence that higher demand levels are able to realise a higher level of
precision of the KPIs. It could be possible to obtain a pattern and further insights on the spatial disparities of
low demand levels if experiments with a higher number replications are conducted. Furthermore, this paper
only examines the performance of the service with respect to the origin of the travellers; future experiments
should investigate how this performance differs with respect to the destination of travellers. Future studies
could also clarify and formulate an accurate cost model of the sharing and non-sharing service where realistic
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profitable areas of a city could be discovered. In addition, the objective function used in this report was to
maximise the utilities of the vehicle (minimise travel time of vehicles). Such an objective function heavily
leans on the operator side and it could be a reason to why the ∆Ur patterns did not match the patterns of
the λr. Future experiments, should analyse the spatial disparities of the two objective functions as different
patterns could arise with respect to an objective functions. Moreover, this research is limited to only two
mode choices, future research should incorporate other modes such as public transport and personal vehicles
as this would definitely influence the attractiveness of using a ride-pooling service.

In all, the results of the paper could be beneficial to services such as Uber Express POOL, which are yet
to roll out in Amsterdam. The information provided in this report could be used to help idealise an efficient
and reliable platform in the city of Amsterdam. The scripts created for this paper are scalable, which means
that results obtained with ExMAS from other cities, with additional and/or different experiment parameters
could be easily applied.
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Appendix

A. Trip Lengths

Figure 6: Maps of trip density and trip lengths w.r.t. trip origin for a set of nP at λ = 0.3.
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