
Graph Learning on Financial Tabular Data
Cascade and Interleaved architectures using GNNs and Transformers

Enachioiu Sorin-Catalin1

Supervisor(s): Dr. Kubilay Atasu1, Halil Cagri Bilgi1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Enachioiu Sorin-Catalin
Final project course: CSE3000 Research Project
Thesis committee: Dr. Kubilay Atasu, Halil Cagri Bilgi, Dr. Thomas Hollt

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Detecting money-laundering activity in financial
transactions is challenging due to the multigraph
nature of the problem as well as the intricate
fraud patterns that exist. In this work we intro-
duce two architectures, Cascade and Interleaved.
These architectures combine the expressive power
of local message passing (MP) from Graph Neu-
ral Networks (GNNs) with the one of global mes-
sage passing from Transformers. Both models
leverage the Principal Neighborhood Aggregation
(PNA) GNN for capturing rich local structure. We
also incorporate the MEGA two-stage aggregation
scheme to distinguish transactions that have the
same source and destination accounts from other
transactions. We further enhance our architec-
tures with PEARL, a learnable positional encoding
framework that has a reduced overhead compared
to other techniques. We evaluate our models on
the IBM transactions for Anti-Money Laundering
(AML) synthetic datasets. We achieve significant
improvements compared to the PNA baseline, and
come close to tie SOTA results, while requiring less
feature engineering on the input graphs and also
show that the application of learnable positional en-
codings in financial fraud detection tasks is promis-
ing.

1 Introduction
Recent advances in machine learning such as using Trans-
formers on Graphs [1] bring many new possibilities to ex-
plore. One of them being how they can be combined with
GNNs[2]. This paper tackles the problem of detecting money
laundering based on financial transactions. Although these
records are stored in a relational database, as shown in Fig-
ure 1a, they can be represented as a graph [3], as shown
in Figure 1b, making it suitable for a large range of al-
gorithms. Furthermore, the ever-evolving nature of fraud
schemes makes it hard for traditional algorithms to detect
and adapt to them, thus, recent work focuses more on Graph
Learning approaches.

One important part of previous work was to establish a
viable way of generating synthetic data to train models for
fraud detection. One synthetic data generator is described by
Altman, E. et al. [4], and it is capable to incorporate intri-
cate money laundering patterns (see Figure 1c), that are also
present in real world financial data. This technique was used
to create the IBM Transactions for Anti Money Laundering
(AML) datasets [5] used in our research. Furthermore, mod-
els using GNNs [6] [7], more specifically Message Passing
Neural Networks (MPNNs) [8] with specific enhancements,
and also models using Transformers [9] have been imple-
mented to solve this task and have given promising results.

Even though some models that detect money laundering
use standalone GNNs and Transformers, there are still a lot of
unexplored architectures that combine them. This is exactly
the contribution that this paper brings. More specifically, we

(a) Transactions in Tabular Format

(b) Transactions in Graph Format (c) Fraud Patterns

Figure 1: (a) Tabular representation of financial transactions, the
ones highlighted in pink are illicit. (b) Graph representation of fi-
nancial transactions in which nodes represent accounts, and edges
represent transactions. There can be multiple transactions between
two accounts, making the transaction graph a multigraph. Red nodes
represent fraudsters, black nodes represent innocent entities. Red
edges are illicit transactions, one account can make both illicit and
non-illicit transactions depicted with black. (c) Shows some exam-
ples of possible fraud patterns.

will look into how a Transformer able to perform Global Mes-
sage Passing (MP) on Nodes can be combined with a MPNN
that performs local message passing and compare their per-
formance, F1 score, to a baseline obtained from running a
PNA [10], which is a type of GNN, on the same task.

The main research question this paper addresses is: How
well do Cascade and Interleaved models, that use Transform-
ers for Global message passing on Nodes, perform on the
IBM Anti Money Laundering (AML) datasets compared to a
PNA baseline ?

In summary, the main contributions of this paper are:

• Models. We introduce two models that integrate Global
Message passing on nodes, Cascade and Interleaved.
These models show that the performance of PNA on fi-
nancial fraud detection can be enhanced by combining it
with a Transformer.

• Application of SOTA Multigraph Techniques. We in-
tegrate the MEGA [6] framework in our models, en-
hancing the way information is propagated in message
passing for multigraphs. We show that the integration of
MEGA in our models can enhance their performance.

• Applying Learnable Positional Encodings for Fraud
Detection Rather than just computing positional encod-
ings with a meaningful overhead, we study the usage of
PEARL [11], a novel and efficient way to make learn-
able positional encodings for graphs. We show that the
integration of PEARL can enhance model performance.

2 Related Work
In this section, we present the most important previous work
related to the AML datasets. We then introduce PEARL, the
type of positional encodings that we use within this research.

2.1 GNN improvements
Since a transaction graph is a multigraph, as we can have mul-
tiple edges between two nodes, there was a need to augment
normal methods using Graph Neural Networks to be better
suited for this kind of task. Thus, in the paper by Egressy
et al. Multi-GNN [7], transaction graphs are equipped with
egoIDs, port numbering, and reverse message passing. Out of
these three additions, port numbering is the most relevant to
our work, as it enables distinguishing messages coming from
the same neighbor from the rest in message passing rounds.

In Mega GNN[6], the idea of port numbering was refined,
and, instead of trying to add extra features to the edges of the
graph, to distinguish messages coming from the same neigh-
bor, the aggregation step of MPNNs was modified in order
to take two stages, first aggregate messages from the same
neighbor together, and then in the second stage combine these
aggregations coming from each neighbor. In this work we
only use the variant of MEGA with unidirectional MP which
is simpler to implement but not as powerful as the one that
integrates both reverse MP and egoIDs.

2.2 Transformer-based models
To address the limitations that GNNs face when learning in-
tricate patterns, a new model called FraudGT [9] was intro-
duced, using a graph transformer on nodes, with extra addi-
tions such as edge-based message passing, and edge-based
attention bias. This model also uses the three enhancements
introduced in Multi-GNN and has shown that it is worth con-
sidering Transformers for fraud detection tasks.

2.3 Positional Encodings - PEARL
Positional encodings are usually computed statically based
on various properties of a graph. Kanatsoulis et al. [11] in-
troduce a novel technique in which positional encodings are
approximated and also learnable, thanks to the use of a GNN,
the use of pooling functions, and a filter that uses the Lapla-
cian of the graph. This technique also comes with a small
overhead compared to others. The PEARL framework can
be integrated into existing GNN or Transformer architectures
as a standalone module, producing positional encodings that
are directly combined with the initial input or passed on to
downstream layers of the model.

3 Background
In this section, we introduce the most important building
blocks necessary to understand our research. For a better un-
derstanding of the notation used within this study, we have
included the most important ones in Table 1.

3.1 Multigraphs and Financial Transactions
Let G be a directed transaction multigraph, G =
(V, E ,H,E). Then V is the node set representing accounts,

Table 1: Notation utilised in this study.

Notation Description

G = (V, E) A graph G contains node set V and edge set
E .

n ∈ R Number of nodes in the graph.
dn, de Dimensions of node and edge attributes

H ∈ Rn×dn Node features in the graph.

Ĥ ∈ Rn×dn Updated node representations of the graph.
E ∈ Rn×n×de Edge features in the graph.

muv Message from node u to node v.
euv Edge feature between nodes u and v.
hu Node feature of node u.

N (v) Neighborhood of node v.
W Learnable weight matrix .

Q, K, V Query, key, and value matrices in the atten-
tion mechanism.

|| Concatenation

E ⊆ V ×V is the edge set, which can consist of multiple par-
allel edges, corresponding to transactions between accounts.
Node attributes are represented by H ∈ Rn×dn , whilst edge
attributes are represented by E ∈ Rn×n×de .

3.2 Message Passing Neural Networks (MPNNs)
Since graphs are a natural way of representing many prob-
lems, Machine Learning algorithms able to work on them
were a must. This is what lead to the development of MPNNs
[8], which are one of the most common family of GNNs.
They are based on a message-passing mechanism, which
combines the information of a node with that of its neighbors.
More precisely, in a MPNN, one layer in which node features
are updated consists of the following three steps, also shown
in Figure 2: (1) each node computes a message muv with its
current state and sends it to all its neighbors, (2) each node
aggregates all the messages it received in an embedding au,
and (3) each node updates its state based on hu and au

Message: m(l)
uv = f (l−1)

(
h(l−1)
u , e(l−1)

uv

)
, (1)

Aggregate: a(l)u = AGG
{
{m(l)

uv : v ∈ N (u)}
}
, (2)

Update: h(l)
u = g(l−1)

u

(
h(l−1)
u , a(l)u

)
. (3)

Where f (l−1) is a function that computes the message for a
node, AGG is usually a permutation invariant operation, and
g
(l−1)
u is an update function for the embedding of a vertex.

Furthermore, edge features can also be updated, by making
use of the updated embeddings of the source and destination
node features as follows:

e(l)uv = e(l−1)
uv + g(l−1)

e

(
h(l)
u , h(l)

v , e(l−1)
uv

)
(4)

Where g
(l−1)
e is an update function for the embedding of

an edge.

1 4

2

5

6

= , AGG()UPDATE

(1) Message

(3) Update

1 4

2

5'

6

5'

(2) Aggregate

1 4

2

5

6

AGG

5

Figure 2: Illustration of the MPNN three step update for a node
embedding.

Even though MPNNs are a powerful set of tools that can be
used when working with graphs, they still have some limita-
tions, such as over-smoothing and over-squashing [12] [13].

3.3 Principal Neighborhood Aggregation (PNA)

PNA [10] is a specific type of MPNN that encompasses mul-
tiple aggregation functions at the same time in the Aggregate
step presented above, thus being able to capture richer local
contexts. It also introduces scalers, which are functions based
on the number of aggregated messages within a node. The
scalers are multiplied with the aggregated value and can be:
an attenuation, an amplification or an identity.

A PNA equipped with an edge update (EU) function is
called PNA + EU, since edge updates are essential for our
task, we’ll simply refer to PNA + EU as PNA.

3.4 Transformer Encoder

The Transformer model was introduced in the Attention is
All You Need paper [14]. It comprises two main parts, a
Transformer Encoder and a Transformer Decoder. For our
graph tasks, we are only interested in the Transformer En-
coder, which we use to update nodes based on similarities
between them. This can also be thought about as a round of
global message passing, as each node attends and updates its
information based on the values of all the nodes in the graph,
including itself, treating the graph as fully connected and cap-
turing long-range dependencies.

The Transformer Encoder consists of a stack of L encoder
layers. Each encoder layer consists of two parts: a multi-
head self-attention (MHA) module, and fully connected feed-
forward networks (FFN). Both parts also employ skip con-
nections and layer normalization.

The Transformer Encoder works as follows: (1) projects
the input into the Query, Key and Value spaces, (2) com-
putes dot-product attention, (3) concatenates multiple atten-
tion heads and project back to the input dimension, (4) passes
the previous result to a Position-wise feed forward network
(FFN).

Given the input node representations H ∈ Rn×dn , we

compute

Q(l) = H(l−1)WQ,

K(l) = H(l−1)WK ,

V (l) = H(l−1)WV .

(5)

where WQ, WK , WV ∈ Rdn×dh are learnable weight
matrices, and dh is their feature dimension. The scaled dot-
product attention is then

Attn(Q,K, V) = softmax
(QK⊤
√
dh

)
V (6)

To allow the model to capture different types of relation-
ships in parallel and have better stability, H attention heads
are used. We denote with h the index of different attention
heads. The H head outputs are concatenated and projected
back to the input dimension:

MHA
(
H(l−1)

)
=

∥∥∥H
h=1

Attn
(
Q(h,l),K(h,l), V (h,l)

)
W

(l)
O

(7)

where W
(l)
O ∈ Rdn×dn is a learnable weight matrix.

Thus, by adding skip connections and normalization, one
Transformer Encoder layer updates initial features as follows:

Ĥ(l) = H(l−1) +MHA(H(l−1)), (8)

H(l) = Ĥ(l) + FFN(Ĥ(l)). (9)

3.5 Positional Encodings (PEs)

PEs are an important component for a transformer, as they
bind a notion of position to inputs, which is helpful when
looking for similarities between them, as the position might
also affect the impact one input has on others. For graphs,
there are multiple types of possible positional encodings, a
comparison between the power of various positional encod-
ings can be found in [15]. Some of the most common PEs
used for graphs are Laplacian positional encodings [16] and
Random walk positional encodings [17].

4 Proposed Method

In this section, we begin with a short motivation for our
method and then introduce our models, Cascade and Inter-
leaved, which address the limitations that usual MPNNs face
when learning intricate fraud patterns. We then explain the
two enhancements we brought to them, MEGA and PEARL.

Figure 3: Model Architectures

4.1 Motivation
Effective fraud detection can benefit from considering both
local interactions and global ones because of the complex-
ity of fraud patterns. In our case we are investigating the use
of global node similarities by the means of a Transformer, be-
cause it can capture long-range dependencies that a purely lo-
cal GNN aggregation would miss due to its limitations. How-
ever, the AML graphs do not have any meaningful node fea-
tures, only edge ones. Thus we need a way to encode lo-
cal context, based on just transaction/edge information. To
this end, we apply a GNN to learn meaningful node embed-
dings that encapsulate local neighborhood information and
only use the transaction information. Then use these node
embeddings within a Transformer Encoder on Nodes to cap-
ture long-range dependencies and global similarities.

Therefore, by considering these two architectures, Cascade
and Interleaved, shown in Figure 3, we aim to assess how the
performance of a standalone MPNN, in our case PNA, can be
improved by combining it with a Transformer.

4.2 Cascade model
Our first model architecture, Cascade, shown in Figure 3,
does exactly the two step pipeline, combining local and global
information, described above. The Cascade model was first
introduced for capturing long-range dependencies in graph
representations by Zhanghao Wu et al. [18]. To the best of
our knowledge, prior work on the AML datasets do not in-
clude any similar models to Cascade.

The Cascade model works by taking the initial graph as in-
put, which does not have any node embeddings. Then, it first
passes the graph through a PNA to embed local structure and
also use the information existent in edges for creating mean-
ingful node embeddings. Next, we pass these embeddings
through a Transformer Encoder that is able to look for global
similarities and update the embeddings accordingly. In the
end these final embeddings are used to predict which transac-
tions are illicit. Thus, with the Cascade model we are able to
combine the benefits of both local and global information.

4.3 Interleaved model
Because in the Cascade model node embeddings gain a lot
of global information after passing them through the Trans-
former Encoder, we consider that it would be meaningful to
propagate locally this new information with one additional
MPNN at the end of the Cascade model. This inspired the
design of the Interleaved architecture, shown in Figure 3.

The Interleaved model as we introduce it does not seem
to have been presented before in literature, yet a similar no-
tion to it, in which local operators represented by Graph Con-
volutional Layers and global operators represented by Trans-
former layers are interleaved one after another was introduced
by Shuo Yin et al. in [19].

4.4 Enhancements
4.4.1 Integration of SOTA multigraph Techniques
In MEGA-GNN the results of PNA were considerably im-
proved by the addition of the two step aggregation. Thus, we
also integrate it within our PNA, and then use this MEGA-
PNA as a backbone to both Cascade and Interleaved models
to see if they can improve over MEGA-PNA as well.

1

4

2

5

3

1

4

2

5

3

PEARL Downstream
Model

Raw Graph
Graph with

PEs

Figure 4: Diagram showing how we integrated PEARL into our
work. On the left there is the Raw Graph, without any actual node
features, depicted as black nodes in the entire graph. Then, we use
PEARL on this graph to generate PEs for the nodes, which we then
concatenate to the node features, denoted by colors in the graph on
the right. This new Graph with PEs can then be passed to any Down-
stream model.

4.4.2 Applying Learnable Positional Encodings for
Fraud Detection

Because we are working with Transformers it is natural to
think about implementing positional encodings. There are
two main reasons why we considered using PEARL over
other methods: scalability, due to reduced overhead in both
memory and space, which is really helpful when working
with the AML datasets, as they encompass large graphs, with
a high amount of nodes, and expressive power. We use the
PEARL model as a pre-processing step that works separately
from our models, it takes the input graph and then concate-
nates to the node features the PEs. Then this new graph with
PEs is passed to any downstream model, as shown in Figure
4. Thus, making the use of PEARL easy with any model.
We only use a really simple PEARL model, that adds only

Models Small-HI Small-LI #params

PNA 63.48 ± 3.56 21.67 ± 1.96 32,197
+ PEARL 65.57 ± 3.97 25.35 ± 2.88 33,547
+ MEGA 72.58 ± 1.35 43.71 ± 1.14 41,837
+ MEGA + PEARL 74.45 ± 0.89 45.00 ± 1.02 43,187

Cascade 64.99 ± 2.31 25.42 ± 0.37 37,257
+ PEARL 61.84 ± 5.55 27.81 ± 3.42 38,607
+ MEGA 73.25 ± 0.66 45.50 ± 0.98 46,897
+ MEGA + PEARL 73.64 ± 1.82 46.07 ± 0.93 48,247

Interleaved 68.40 ± 2.86 31.30 ± 3.17 64,937
+ PEARL 67.63 ± 1.15 34.86 ± 2.17 66,287
+ MEGA 75.31 ± 0.45 46.05 ± 0.88 84,217
+ MEGA + PEARL 73.28 ± 2.18 44.15 ± 0.89 85,567

Table 2: Benchmark results of F1 scores (%) on the AML edge classification task, as well as the number of parameters for each model. We
highlight the first and second best results

1350 parameters for any of the models, thus, it is a really
lightweight and powerful enhancement.

5 Experimental Setup and Results
In this section, we describe the datasets used, implementa-
tion, baselines, and evaluation metrics, and then present our
experimental results.

5.1 Experimental Setup
Datasets. We use the synthetic, publicly-available IBM
Transactions for Anti Money Laundering (AML) [5] datasets.
Real transaction data is hard to obtain because it is subject to
privacy regulations and fragmented across multiple financial
institutions, making it hard for researchers to obtain a good
view of real laundering networks.

Table 3: Detailed view of the statistics for the Small AML datasets.

Dataset # nodes # edges Illicit Ratio
AML Small HI 0.5 M 5 M 0.07 %
AML Small LI 0.7 M 7 M 0.05 %

The AML datasets overcome these issues by simulating in-
terbank transaction graphs with ground-truth labels, and are
offered in three size variants: Small, Medium, and Large.
Each of the three variants has two illicit-transaction settings,
based on the rate of laundering transactions: Low Illicit (LI),
consisting of a highly imbalanced scenario, with rare money-
laundering events and High Illicit (HI), which considers a
scenario in which laundering transactions make up a larger
fraction of the total. Table 3 provides detailed statistics for
the Small AML datasets. We only use the High Illicit and
Low Illicit AML datasets of the Small size within this study.

Implementation. The models presented in this work are im-
plemented using PyTorch Geometric [20]. We use the same
60-20-20 temporal train-validation-test split as in Multi-GNN

for the datasets. To ensure statistical significance, we present
the mean ± standard deviation for each experiment, com-
puted over five runs, and initialized with random seeds. Mod-
els are trained for 80 epochs using the AdamW optimizer with
a cosine scheduler, and a weighted cross-entropy loss func-
tion to counter class imbalance.

Baselines. To evaluate whether the Cascade and Inter-
leaved models enhance the expressive power of a PNA, as
well as understand what benefits each PEARL and MEGA
can bring, we use four different configurations for the PNA
as baselines: PNA, PNA + PEARL, PNA + MEGA, PNA +
PEARL + MEGA. We use these PNA variants as backbones
for the Cascade and Interleaved models. Thus, we will first
compare what happens to the PNA with each addition, and
then compare what improvements we get to one PNA variant
when we integrate it within our models.

Evaluation. Because the AML datasets are highly imbal-
anced, we use the F1 score to assess performance, consis-
tent with previous works [7], [6] [9]. Given true positives
(TP), false positives (FP) and false negatives (FN) then, the
F1 score can be computed as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score = 2 · Precision× Recall

Precision + Recall
(10)

In our experiments, we report the F1 test score correspond-
ing to the highest F1 score in validation.

Hardware. We used NVIDIA A40 GPUs with 64 GB of
memory to perform training and inference.

5.2 Results
We now describe the experimental results that we obtained,
which are displayed in Table 2. We will begin by present-

ing the results achieved by applying MEGA and PEARL en-
hancements on PNA. Then, continue by presenting the results
achieved by Cascade and Interleaved for each PNA variant.

5.2.1 PNA Variants
Table 2 displays at the top the four PNA variants on both the
Small-HI and Small-LI datasets. The addition of PEARL to
the vanilla PNA yields a modest increase, about 2% on HI
and 4% on LI, showing that positional encodings can boost
the performance of just a MPNN. The PNA + MEGA Vari-
ant sees a significant performance improvement across both
datasets. Lastly, the addition of both MEGA and PEARL
achieves the best performance, 74.45% on HI and 45.00% on
LI, showing that both enhancements bring benefits that are
complementary.

5.2.2 Cascade and Interleaved with each PNA Variant
PNA When using vanilla PNA as the backbone of both Cas-
cade and Interleaved we observe that the Cascade model is
able to improve just on the Small-LI dataset. Furthermore,
the Interleaved model is able to improve over the vanilla PNA
with 5% on the Small-HI and a 10% increase on the Small-LI,
meaning that using the final MPNN for refining local infor-
mation, in the Interleaved model, is beneficial.

PNA + PEARL The addition of PEARL positional encod-
ings leads to a decrease for the Cascade model in comparison
to PNA + PEARL on Small-HI and a slight increase on Small-
LI. Whilst for the Interleaved, there is a 9% increase on the
Small-LI and a small increase on the Small-HI. Both the Cas-
cade and Interleaved models have a decrease in performance
on the Small-HI dataset when compared to their implementa-
tion with just vanilla PNA.

PNA + MEGA For the PNA + MEGA we can see steady
improvements for both the Cascade and Interleaved models.
The Cascade model is able to achieve a 2% increase on the
Small-LI, and a small increase on Small-HI in comparison to
the PNA + MEGA. The Interleaved + MEGA model achieves
the best result for Small-HI, 75.31%, and the second best for
Small-LI, 46.05%.

PNA + MEGA + PEARL For the PNA + MEGA + PEARL
the Cascade model sees a slight decrease for the Small-HI
dataset, but achieves the best result for the Small-LI one,
46.07%. In the meantime, the Interleaved + MEGA + PEARL
model has a performance decrease on both datasets, com-
pared to the results of both Cascade and PNA with the same
enhancements, but also compared to Interleaved + MEGA as
well.

6 Discussion
In this section, we present both the advantages and limitations
of the Proposed Method.

6.1 Advantages of the Proposed Method
Our experimental results presented in the previous section
demonstrate several clear benefits of both the proposed mod-
els and of the enhancements.

PEARL adds expressive power at low cost. The PEARL
model that we use as a pre-processing step is only adding
1350 parameters and a small time overhead, yet, it is able to
improve consistently the result for most of the models that
use it.

PNA (Unidirectional MP) + MEGA + PEARL achieves
significant results. As stated previously, in this research we
use the PNA + MEGA with Unidirectional MP, meaning that
we do not use EgoIDs and Reverse MP. Even though we do
not make use of this additions, when using PEARL we get
results similar to those reported in the MEGA paper for the
model that does include them. Thus, showing that PEARL is
capable to add, with small overhead, expressive power similar
to that added by other, more complex solutions.

Constant improvements with each enhancement for PNA
and Cascade. The PNA and Cascade models really benefit
from each addition: PEARL, MEGA and MEGA + PEARL,
in exactly this order. Their performance increases with almost
each addition, except for Cascade + PEARL on Small-HI.
Cascade is able to improve slightly on almost all the PNA
results.

Interleaved model improves performance of PNA signif-
icantly. The Interleaved model is consistently performing
better than the PNA and Cascade for each of the variants, ex-
cept for MEGA + PEARL. Furthermore, the Interleaved +
MEGA model achieves the highest F1 on Small-HI and the
second best on Small-LI, thus making it one of the best mod-
els.

6.2 Limitations of the Proposed Method
Unstable Cascade + PEARL on Small-HI. The Cascade
+ PEARL model exhibited a very high standard deviation,
5.5%, for the SMALL-HI dataset driven by a run that scored
only 50.89% F1 score. This suggest that our training method
might be unstable, or that the addition of PEARL might cause
instability.

Overfitting in the Interleaved + MEGA + PEARL. The
Interleaved + MEGA + PEARL model results indicate that
it might be suffering from overfiting, as it continues to im-
prove on the training set, yet its validation and test perfor-
mance peak early and then gradually decrease. This issue
might be solvable by better tuning of hyperparameters.

7 Responsible Research
7.1 Reproducibility
To ensure reproducibility of the experiments, we open-source
the codebase at https://github.com/hcagri/aml-sorin. In the
repository we also included the configurations that achieved
the best result for each model, for each dataset.

7.2 Ethics Statement
The financial datasets used in this research are publicly avail-
able and artificially generated without any personally identi-
fiable information. Thus, they do not pose any privacy risks
or discrimination concerns. Finally, by contributing methods
combining GNNs and Transformers, and by integrating novel

techniques for positional encodings for this task, this work
supports the global fight against financial fraud.

8 Conclusions and Future Work
8.1 Conclusions
In this work, we have shown that combining local message
passing with global message passing on nodes can achieve
improved results on the Small AML datasets compared to
just a PNA. We began by showing that the Cascade and In-
terleaved models can improve a vanilla PNA. We then added
MEGA to the PNA model that is the backbone for both mod-
els, a SOTA Multigraph Technique, which has improved the
results for all the models.

There are three significant results that we obtained. First,
enhancing PNA with both PEARL and MEGA has gained a
11% increase over vanilla PNA on Small-HI and a 24% on
Small-LI. Second, the Cascade model has achieved the best
results with the PEARL and MEGA enhancements as well,
and has the best F1 score for Small-LI, 46.07%. Lastly, the
Interleaved + MEGA model has achieved the best result for
Small-HI, 75.31%, and the second best on Small-LI, 46.05%.
This shows both that the enhancements we made, PEARL and
MEGA, were effective and also that the Cascade and Inter-
leaved models were able to improve over the PNA baselines.

Another interesting finding was that including learnable
positional encodings, by using PEARL into our models in-
creases their performance, and also adds a really small over-
head to them, thus showing this method is worth considering
for future work in fraud detection.

8.2 Limitations and Future Work
Despite the strong performance that the Cascade and Inter-
leaved architectures achieved, our work was constrained by
limited hyperparameter tuning due to time constraints.

Thus, future work could investigate what impact various
sampling schemes could have on the performance of these
models. Another interesting research direction would be to
use the FraudGT transformer, which uses both node and edge
features instead of just a Transformer Encoder on nodes in the
Cascade and Interleaved models. Furthermore, as PEARL
shows promise in improving the results of the models, at a
really small cost, we consider that it would be worth exper-
imenting more with its hyperparameters as well as trying to
integrate it with other previous works, such as Multi-GNN,
and FraudGT to see what results would it give.

9 Acknowledgement
Research reported in this work was partially or completely fa-
cilitated by computational resources and support of the Delft
AI Cluster (DAIC) at TU Delft (RRID: SCR_025091), but
remains the sole responsibility of the authors, not the DAIC
team.

References
[1] Ahsan Shehzad, Feng Xia, Shagufta Abid, Ciyuan Peng,

Shuo Yu, Dongyu Zhang, and Karin Verspoor. Graph
transformers: A survey, 2024.

[2] Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji,
and Jiawei Han. Large language models on graphs: A
comprehensive survey. IEEE Transactions on Knowl-
edge and Data Engineering, 36(12):8622–8642, 2024.

[3] Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric
Lenssen, Rishabh Ranjan, Joshua Robinson, Rex Ying,
Jiaxuan You, and Jure Leskovec. Position: Relational
deep learning - graph representation learning on rela-
tional databases. In Ruslan Salakhutdinov, Zico Kolter,
Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan
Scarlett, and Felix Berkenkamp, editors, Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pages 13592–13607. PMLR, 21–27 Jul 2024.

[4] E. Altman, J. Blanuša, L. von Niederhäusern,
B. Egressy, A. Anghel, and K. Atasu. Realistic syn-
thetic financial transactions for anti-money laundering
models. arXiv preprint arXiv:2306.16424, 2024. doi:
10.48550/arXiv.2306.16424.

[5] IBM Research. Ibm transactions for
anti money laundering (aml). https:
//www.kaggle.com/datasets/ealtman2019/
ibm-transactions-for-anti-money-laundering-aml,
2023.

[6] H. Çağrı Bilgi, Lydia Y. Chen, and Kubilay Atasu.
Multigraph message passing with bi-directional multi-
edge aggregations, 2024.

[7] Beni Egressy, Luc von Niederhäusern, Jovan Blanuša,
Erik Altman, Roger Wattenhofer, and Kubilay Atasu.
Provably powerful graph neural networks for directed
multigraphs. In Proceedings of the Thirty-Eighth
AAAI Conference on Artificial Intelligence and Thirty-
Sixth Conference on Innovative Applications of Artifi-
cial Intelligence and Fourteenth Symposium on Educa-
tional Advances in Artificial Intelligence, volume 38 of
AAAI’24/IAAI’24/EAAI’24, pages 11838–11846. AAAI
Press, February 2024.

[8] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. Neural message
passing for quantum chemistry, 2017.

[9] Junhong Lin, Xiaojie Guo, Yada Zhu, Samuel Mitchell,
Erik Altman, and Julian Shun. Fraudgt: A simple, effec-
tive, and efficient graph transformer for financial fraud
detection. In Proceedings of the 5th ACM International
Conference on AI in Finance, ICAIF ’24, page 292–300,
New York, NY, USA, 2024. Association for Computing
Machinery.

[10] Gabriele Corso, Luca Cavalleri, Dominique Beaini,
Pietro Liò, and Petar Veličković. Principal neighbour-
hood aggregation for graph nets, 2020.

[11] Charilaos I. Kanatsoulis, Evelyn Choi, Stephanie
Jegelka, Jure Leskovec, and Alejandro Ribeiro. Learn-
ing efficient positional encodings with graph neural net-
works, 2025.

[12] Uri Alon and Eran Yahav. On the bottleneck of graph
neural networks and its practical implications, 2021.

https://scicrunch.org/resolver/RRID:SCR_025091
https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml
https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml
https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml

[13] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper
insights into graph convolutional networks for semi-
supervised learning, 2018.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need,
2023.

[15] Mitchell Black, Zhengchao Wan, Gal Mishne, Amir
Nayyeri, and Yusu Wang. Comparing graph transform-
ers via positional encodings, 2024.

[16] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan
Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bres-
son. Benchmarking graph neural networks, 2022.

[17] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Lau-
rent, Yoshua Bengio, and Xavier Bresson. Graph neural
networks with learnable structural and positional repre-
sentations, 2022.

[18] Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia
Mirhoseini, Joseph E. Gonzalez, and Ion Stoica. Rep-
resenting long-range context for graph neural networks
with global attention, 2022.

[19] Shuo Yin and Guoqiang Zhong. Lgi-gt: Graph trans-
formers with local and global operators interleaving. In
Edith Elkind, editor, Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence
(IJCAI-23), pages 4504–4512. International Joint Con-
ferences on Artificial Intelligence Organization, 8 2023.
Main Track.

[20] Matthias Fey and Jan Eric Lenssen. Fast graph repre-
sentation learning with pytorch geometric, 2019.

A Statement on the use of Large Language
Models

In accordance with the Course Policy on the Use of Large
Language Models (LLMs) / ChatGPT, LLMs were used for
improving the clarity of paragraphs or fixing grammatical er-
rors. The prompts used had the following patterns: "Is this
sentence (...) clear ?", "Are there any grammatical errors in
the following paragraph: (...)".

	Introduction
	Related Work
	GNN improvements
	Transformer-based models
	Positional Encodings - PEARL

	Background
	Multigraphs and Financial Transactions
	Message Passing Neural Networks (MPNNs)
	Principal Neighborhood Aggregation (PNA)
	Transformer Encoder
	Positional Encodings (PEs)

	Proposed Method
	Motivation
	Cascade model
	Interleaved model
	Enhancements
	Integration of SOTA multigraph Techniques
	Applying Learnable Positional Encodings for Fraud Detection

	Experimental Setup and Results
	Experimental Setup
	Results
	PNA Variants
	Cascade and Interleaved with each PNA Variant

	Discussion
	Advantages of the Proposed Method
	Limitations of the Proposed Method

	Responsible Research
	Reproducibility
	Ethics Statement

	Conclusions and Future Work
	Conclusions
	Limitations and Future Work

	Acknowledgement
	Statement on the use of Large Language Models

