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Abstract

Ceramic matrix composites (CMCs) are advanced materials that consist of a ceramic ma-
trix reinforced with a high-strength, high-stiffness material, such as carbon fibers. They offer
excellent thermal and chemical stability while exhibiting low weight and exceptional mechan-
ical properties. A novel CMC material is the C/C-SiC produced with 2/2 twill weave fabric. It
consists of a carbon fiber-reinforced carbon (C) and silicon carbide (SiC) matrix. In this study,
a macroscopic non-linear constitutive model accounting for the damage-induced plasticity is
proposed for the 2/2 twill weave C/C-SiC composite.

In the context of this thesis, a computational model is developed, based on the framework
of continuum damage mechanics and general plasticity theory. A potential function inspired
by the Tsai-Wu criterion combined with a damage model is used to predict the strain and
damage evolution. An exponential damage evolution law is introduced while the coupling of
different damage modes is also considered. Moreover, an experimental investigation on the
macroscopic mechanical behavior and damage mechanisms of C/C-SiC under in-plane on-
and off-axis loading conditions is performed. Specimens with 0𝑜, 30𝑜 and 45𝑜 on- and off-axis
angles were manufactured and tested under monotonic and cyclic tensile and compression
loads. Furthermore, the microstructure of the pristine material and the fracture surfaces of the
tested specimens are studied through scanning electron microscopy (SEM). A Bayesian opti-
mization algorithm is finally used to optimize simultaneously the different material parameters
based on the experimental test data.

The predicted stress-strain curves are in good agreement with the experimental curves,
especially in the case of monotonic tensile loading. Both damage initiation and evolution are
predicted accurately by the chosen laws and coupling functions. Moreover, the combination
of the Tsai-Wu criterion with a damage evolution law is proven to predict the ultimate strength
well. Fiber pull-out is observed in tension, while interlaminar and translaminar cracks in com-
pression. This study thus provides an accurate constitutive model, a complete mechanical
characterization of the in-plane behavior and a better understanding of the fracture mecha-
nisms of C/C-SiC.
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1
Introduction

Ceramic matrix composites (CMCs) are a class of advanced materials that have gained
significant attention in recent years due to their excellent mechanical and thermal properties.
These materials consist of a ceramic matrix, typically made of silicon carbide or alumina, rein-
forced with a strong, stiff material such as carbon fibers or silicon carbide fibers. The combina-
tion of the ceramic matrix and the reinforcing material results in a material that is strong, stiff,
and withstands high temperatures and harsh environments. CMCs are commonly used in the
aerospace industry, where they are used to make lightweight structural components, engine
parts, and other critical components. They offer higher stiffness and strength-to-weight ratios
than metals, which means that they can support larger loads with less material. In addition to
their mechanical properties, CMCs also have excellent thermal stability and corrosion resis-
tance, which makes them well-suited for high-temperature applications. They can withstand
temperatures up to 1500°C in a non-oxidizing environment, which is much higher than the
melting point of most metals. They are also being explored for use in a wide range of other
applications, including energy production, automotive, and biomedical devices.

One of the challenges in the design of CMC structures is the prediction of mechanical
behavior under different loading conditions. To address this challenge, computational mod-
els that predict the behavior of these materials need to be developed. This study is focused
on developing a computational model for predicting the mechanical behavior of the 2/2 twill
weave Carbon fiber reinforced Carbon and Silicon Carbide (C/C-SiC) composite material. A
computational model for this material with this particular reinforcement is not available in the
literature. In order to construct such a model, experimental data for the material are needed
therefore characterizing the material through testing is also achieved in the current study. A
series of mechanical tests are performed and Scanning Electron Microscopy (SEM) images
are obtained for this reason. The experimental data are used to obtain certain material pa-
rameters, directly or indirectly through optimization methods, such as Bayesian optimization.

The report is structured as follows, a review of the available literature is presented in Chap-
ter 2. Details about the damage evolution and plasticity models used together with the numer-
ical implementation are discussed in Chapter 3. The characterization of the material through
mechanical tests and the SEM technique is presented in Chapter 4. Next, the identification of
the material parameters with the use of optimization methods, the final results and the com-
parison with the experimental data are presented in Chapter 5. Finally, conclusions and future
work recommendations are discussed in Chapter 6.

1





2
Literature review

The most important characteristics of C/C-SiC material manufactured via Liquid Silicon In-
filtration (LSI) and the current literature on the computational approaches developed for CMCs,
are presented in this chapter. An introduction to woven fabric and CMC materials is presented
in Section 2.1 and 2.2. The manufacturing process, microstructure and mechanical behavior
of C/C-SiC, is presented in Section 2.3. Failure theories of woven fabric composite materials
are discussed in Section 2.4. Finally, the state of the art in the modeling of the mechanical
behavior, damage evolution and failure of CMC materials is provided in Section 2.5.

2.1. Woven fabric composite materials
There are three fundamental types of textile weaves in textile technology, the plain weave,

the twill weave and the satin weave. By interlacing warp (0𝑜) and weft (90𝑜) fibers, the corre-
sponding weaving pattern is produced. Fibers are grouped in bundles and each fiber bundle
contains a certain number of fibers. In this work, the studied CMC materials are produced
with 3K 2/2 twill weave fabric. The 3K corresponds to the number of filaments in the fiber
bundle, in this case, 3000 filaments, and the 2/2 to a weave type where warp fiber bundles
are alternatively weaved over and under two weft fiber bundles repeatedly (Figure 2.1). Since
the weaving pattern is symmetric, the warp and weft directions are interchangeable and thus
when the fiber direction is mentioned later in this study, this can refer to either warp or weft
without the loss of generality.

Figure 2.1: Schematic of the 2/2 twill weave fabric. (a) The 2D projection and a cross-section and (b) a stack of
three layers of the fabric1.

1TexGen was used to create these images
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2.2. Ceramic matrix composite materials
2.2.1. Weak matrix and weak interface composites

There are two main categories of CMC materials, the Weak Matrix Composites (WMC)
and the Weak Interface Composites (WIC)2 [31]. Weak Interface composites exhibit weak
fiber-matrix interface, allowing debonding between fibers and matrix. When a unidirectional
(UD) WIC CMC material is loaded, matrix cracks start to develop and propagate in the matrix
since fibers are the stiffer constituent and exhibit higher strain to failure. The matrix cracks
propagate until they reach the fibers where they are being bridged between them. The fibers
remain intact as the interfacial energy at the fiber/matrix interface is small enough to induce
debonding and the cracks propagate in between the fibers. It is reported that the ratio between
fracture energies of the interface and the fibers should be Γ𝐼/Γ𝑓 ≤ 0.25, for non-brittle failure
to occur when the constituents have similar moduli [31]. Figure 2.2 presents the boundary
curve that separates brittle from non-brittle failure, with respect to the relative fracture energy
and relative Young modulus.

On the other hand, weak matrix composite materials are susceptible to multiple matrix
cracks that propagate in the matrix and are deflected by the fibers. Even though the matrix
fails early at low-stress values, the whole composite can be further loaded as long as the load
is transferred to the fibers. The final failure of the material occurs when a large volume of fibers
has failed. The mechanical behavior of the composite is mostly affected by the properties of
the fibers and is strongly dependent on the fiber orientation. Overall, the fibers should remain
intact and effectively carry the load when the material is loaded and cracks start to propagate,
in order to achieve high damage tolerance. For this reason, the crack resistance of the matrix,
the fiber-matrix interfacial energy and the strength of fibers should be chosen carefully when
developing these materials. The behavior of the CMC is more complicated when the material
is comprised of woven fabric plies, as in the case of the investigated material. The damage
mechanisms are more complicated due to the complex reinforced geometry. Therefore, the
investigated material lies between these two categories.

Figure 2.2: Boundary curve that separates brittle from non-brittle failure according to He and Hutchinson [24]

2This categorization was initially developed for unidirectional laminates.
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2.2.2. Damage mechanisms in woven fabric composites
In contrast to UD composites, the different damage mechanisms in woven3 or braided rein-

forced composites is difficult to be separated, if not impossible. Moreover, these mechanisms,
e.g., matrix cracking or microcracking, interface failure and crack propagation, can act and oc-
cur simultaneously and are called diffuse damagemechanisms. Damage accumulation occurs
due to these mechanisms, and catastrophic failure occurs shortly after. This phenomenon
characterizes the woven fabric composites [5]. Furthermore, the damage mechanisms that
are quantifiable, e.g., crack density, delamination lengths, are called discrete damage mech-
anisms.

Woven fabrics are preferred over unidirectional fabrics because they exhibit better out-of-
plane and impact resistance properties compared to UD fabrics and offer the possibility of
manufacturing complex surfaces with low manufacturing costs. Therefore, C/C-SiC manufac-
tured with woven fabrics seems to have promising potential, especially due to the complex
loading that the CMC structures are subjected to.

2.3. C/C-SiC
In this section, the most essential characteristics of C/C-SiC material are presented. It

is important to examine how the manufacturing process affects the microstructure which is
closely related to the mechanical properties. The investigated laminate comprises of several
3K (0𝑜/90𝑜) 2/2 twill weave fabric plies stacked upon each other. For the manufacturing of the
Carbon Fiber Reinforced Polymer (CFRP) plates, a phenolic resin is used as a precursor, that
is rich in carbon (∼ 60 % mass) and produces a structure that is stable, in terms of structural
integrity and dimensions, even after the pyrolitic process [54]. The LSI method is preferred
due to the low cost and short manufacturing time. LSI-manufactured C/C-SiC has improved
oxidation resistance properties due to the formation of SiC/C zones. Moreover, it exhibits a
low coefficient of thermal expansion, intermediate Young’s modulus, high thermal conductivity
and great thermal shock resistance [26]. The material lies somewhere between the WIC and
WMC categories but is closer to the WIC side of the spectrum [31].

The mechanical properties of CMCs are strongly dependent on the microstructure, the
bonding between fiber and matrix and the operating temperature. Specifically, the mechanical
properties of C/C-SiC are higher at elevated temperatures and at a non-oxidizing atmosphere
compared to the properties at room temperature. It is reported though that after 2000 𝑜𝐶
in vacuum condition, there is a slight decrease in the tensile strength [17]. The maximum
temperature range for C/C-SiC under stationary conditions is 1500-1700 𝑜𝐶 [45]. Also, these
CMCs can be used for temperatures up to 3000 𝑜𝐶 when the life expectancy of the structure
is restricted to a few minutes.

The restriction of this material to short-term applications is mostly due to the oxidation of
carbon fibers, over 450 𝑜𝐶. The oxygen in the atmosphere penetrates the material from ma-
trix cracks on the surfaces and also reacts with the open ends of fibers. These cracks are
created during the manufacturing procedure but also during the application of tensile loads.
The application of surface coating improves slightly the lifetime of the material, but still, their
application is restricted to short-lifetime applications. Table 2.1 summarizes the most impor-
tant mechanical properties of C/C-SiC developed via the LSI process and the corresponding
values, based on the available literature [25] [45].

3Woven fabric composites are the plain weave, twill, harness satin, bi-axial weave composites, etc.
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Property Units Values
Density g/cm3 1.9 − 2.0
Porosity % 2 − 5
Tensile Strength MPa 80 − 190
Failure Strain % 0.15 − 0.35
Shear strength MPa 55 − 60
Young’s Modulus GPa 50 − 70
Compression Strength MPa 210 − 320
Flexural Strength MPa 160 − 300
Fiber Content % 55 − 65
Coefficient of Thermal Expansion (CTE) ∥ 10−6 K−1 −1.1 − 4.4
Coefficient of Thermal Expansion (CTE) ⟂ 10−6 K−1 2.1 − 7.0
Thermal Conductivity ∥ W/mK 17.0 − 22.6
Thermal Conductivity ⊥ W/mK 7.5 − 10.3
Specific Heat J/kgK 690 − 1550

Table 2.1: Mechanical properties of C/C-SiC manufactured via-LSI process [25] [45].

2.3.1. Manufacturing process
There are different manufacturing techniques and sequences that can be followed to pro-

duce CMC materials. To manufacture the C/C-SiC material, a procedure that consists of three
stages is followed, 1) manufacturing of a CFRP part with dimensions close to the desired di-
mensions, 2) conversion of the polymeric matrix of the CFRP part, into a porous C/C preform
via pyrolysis (∼ 1100 𝑜𝐶 in a N2 atmosphere) and finally 3) infiltration of Si into the porous pre-
form via liquid silicon infiltration and conversion of the C/C preform into C/C-SiC. A schematic
representation of the different stages is shown in Figure 2.3.

Figure 2.3: Manufacturing steps for the production of C/C-SiC.

Choosing a manufacturing technique for producing the CFRP part depends on the desired
quality (open porosity) of the CFRP part, the type of reinforcement used, the shape of the final
component, and time and cost. The open porosity, density and quality of the CFRP affect the
final CMCmaterial. Specifically, controlling the open porosity and density of the CFRP part, the
microstructure and morphology of the CMC can be controlled as well. Different techniques are



2.3. C/C-SiC 7

available, e.g., Resin Transfer Molding (RTM), autoclave, filament winding, and press-forming,
therefore, choosing the right process at this stage is essential. Finally, once the CFRP part is
manufactured, intermediate machining may take place if required.

During the pyrolysis step, the polymeric matrix of the CFRP part is converted into carbon
and a porous C/C preform is created. The procedure is taking place in a N2 atmosphere and at
a temperature, of 1100 𝑜𝐶 (mostly between 1100-1600 𝑜𝐶) [4]. The presence of fibers restricts
the contraction of the part and therefore, tensile stresses are developed in the matrix. This
leads to the formation of micro-cracks and a trans-laminar channel system of interconnected
porosity [17]. The porosity after pyrolysis strongly depends on the fiber volume fraction [32].
If necessary, graphite molds may be used in this step, to restrict the shrinkage and support
the CFRP part in sections where accuracy in dimensions is important. Moreover, various C/C
preforms can be joined together after the pyrolysis stage and before siliconization.

Next, the C/C porous preform is subjected to LSI. During this stage, the preform is fed with
silicon granules and placed in the siliconization furnace. By increasing the temperature inside
the furnace to ∼ 1650 𝑜𝐶 and under pressure, the silicon melts. The molten Si is diffused
into the C/C preform’s channels via capillary forces. Silicon reacts with the carbon matrix and
fibers, but only locally at the channel’s walls. Therefore, the resulting microstructure consists
of C/C segments which are separated by SiC and Si matrix. The reaction of Si with C is
described by [17].

𝑆𝑖liquid + 𝐶solid → 𝑆𝑖𝐶solid [Δ𝐻 = −68 kJmol−1] (2.1)

It is apparent that the manufacturing process and microstructure are closely related and
the latter affects highly the mechanical behaviour of C/C-SiC.

2.3.2. Microstructure
To understand the resulting microstructure of the final CMC material, it is important to

examine the microstructure after every stage of the manufacturing process. Scanning electron
microscopy (SEM) pictures after every stage are presented in Figure 2.4. In sub-figure (a) the
microstructure of the CFRP part is presented, where the different stacked woven plies and
fiber bundles can be seen. With a closer inspection, fine porosity and somemicrocracks inside
the fiber bundles are also visible, as a result of the manufacturing step. In sub-figure (b) the
microstructure after pyrolysis is presented. It consists of C fibers and Cmatrix, after the carbon
yield of the precursor is approximately 60 wt %. The resin is shrunk about 10 - 20 % in the
thickness direction, though the shrinkage in the fiber direction is restricted by the stiffer fibers
[50]. A large number of cracks are visible as a consequence of the shrinkage. Therefore, the
crack formation is dependent on the type of fibers, weaving modes and fiber-matrix bonding
forces. In sub-figure (c) the microstructure after the siliconization stage is presented. The
dark regions correspond to C/C segments, surrounded by dark grey regions of SiC and some
light grey areas that correspond to unreacted Si [45] [50]. Carbon in the amorphous state is
surrounding the carbon fiber bundles (C𝑓 /C). The dark black regions are residual pores and
cracks that contribute to the measured open porosity [19]. It is also reported that there are
two types of SiC in the microstructure, a fine-grained SiC and a coarse-grained SiC [50]. The
fine-grained SiC can be found at the C/SiC interface, while the coarse-grained can be found
further away from the interface. Sub-figure (d) provides a closer look at the microstructure
after the LSI process.
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(

Figure 2.4: SEM images of the material during the manufacturing steps. (a) CFRP part with woven fabric, (b) C/C
preform after the pyrolysis step, c) the final C/C-SiC part after the LSI step (x100 magnification) and (d) the

C/C-SiC with x300 magnification. [17]

Each fiber bundle is divided by vertical cracks, called segmentation cracks, in sub-bundles
or segments. These cracks are a result of the shrinkage that the body is subjected to during
the manufacturing steps [22], especially during the pyrolysis step. These cavities of the crack
pattern are later filled with liquid silicon that reacts with the carbon and produces SiC. It is
found experimentally that each bundle is divided on average by five cracks per bundle [19].
All these characteristics of the microstructure directly affect the mechanical behavior of the
material.

2.3.3. Mechanical behaviour
To study the mechanical behavior of the investigated material, uniaxial tensile tests at vari-

ous orientations relative to the (0𝑜/90𝑜) reinforcement need to be conducted. All the available
literature regarding the mechanical tests of C/C-SiC is presented in this section. The material
response to uniaxial tensile, 3-point bending and shear loads is presented in Figures 2.5 and
2.6. When the load is applied at an angle of 0𝑜 relative to the fibers, the behavior is slightly
non-linear and this non-linearity is more apparent as the angle between the load and fibers is
increased. Moreover, the stiffness and ultimate strength are decreased as the loading angle
increases. On the contrary, the strain (both elastic and plastic) is increased with increasing
angle [65]. Furthermore, the ultimate tensile strength is almost 100 MPa less than the corre-
sponding bending strength in every distinct angle. The overall stress-strain behavior is also
dependent on the properties of the constituents and the type of reinforcement. Depending on
the elastic and fracture properties of the constituents, it can be either linear or non-linear [33].
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Figure 2.5: Stress-strain behavior of C/C-SiC 2/2 twill weave fabric (0𝑜/90𝑜) under uniaxial tensile, compression
and pure shear loading with 𝑉𝑓 = 57 [%], open porosity = 2.0 [%] and density = 2.0 [g/cm3] [55].

Figure 2.6: Stress-strain curves of C/C-SiC 2/2 twill weave fabric (0𝑜/90𝑜) from uniaxial tensile and 3-point
bending tests with 𝑉𝑓 = 56.8 [%], open porosity = 0.92 [%] and density = 1.86 [g/cm3] [28] [27].

2.3.4. Damage and failure

The shape of the stress-strain curves can give an indication of the damage and failure
mechanisms of the material. The steep load drop after the ultimate failure load is reached,
indicates that the final failure of C/C-SiC is brittle [27] or quasi-brittle [19]. Fracture is produced
by a combination of normal and shear stresses. Figure 2.7 (a) presents the microscopic dam-
age state and the resulting macroscopic strain of SiC/SiC material [48] which present similar
damage mechanisms to the investigated C/C-SiC material.
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Figure 2.7: (a) Stress-strain curve of SiC/SiC CMC under uniaxial tension. [48].

At small stresses, the material response is linear followed by a gradually decreasing slope
and material hardening. The size of each of these regions is varied with the material system.
The presence of manufacturing defects (microcracks, porosity) affects the shape of the curve
and in some cases, the curve is completely nonlinear. The initial slope and proportionality limit
are affected by the existence of manufacturing defects.

The end of region 1 is described by the proportionality limit4. Recent reports suggest that,
due to low fracture strain in the brittle CMC, matrix microcracking occurs below the propor-
tional limit stress [36]. At small stresses, transverse microcracks start to appear, mostly within
the transverse tows. These microcracks can be pre-existing defects like ”gaps” within fiber
bundles due to insufficient matrix infiltration and these gaps open up at low loads. Residual
stresses from the manufacturing stage affect the onset of microcracking.

As the load increases, the microcracks propagate (enlarge) and the formation of new mi-
crocracks continues. This is described as progressive matrix cracking and propagation. Splits
start to form when the microcracks have propagated enough and reach other fiber bundles.
With further increase of the load, these splits are enlarged and grow in the transverse direction
(parallel to the loading direction). At this stage, fiber/matrix interface debonding takes place
as well. Finally, in stage 4 the load is carried mostly by the longitudinal fiber bundles which
eventually fracture, at stage 5, in a rapid manner and composite rupture occurs [48]. The
loading and unloading cycles (hysteresis loops) can provide more information on the state of
damage at different stress values.

All these damage mechanisms result in the gradual decrease of Young’s modulus. When
the load is small enough and the material is still in the elastic regime, the Young modulus is
constant. After the proportionality limit is reached and exceeded significant damage occurs
and the degradation of the stiffness is increased until the point where catastrophic failure
occurs. During the stiffness degradation, a permanent plastic strain is also observed, due
4proportionality limit is the stress value where a deviation from the initial linearity is apparent. It can be considered
as the equivalent yielding point in metals.
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to incomplete crack closure during unloading [54]. The fiber bundle was described by Hahn,
Ansorge, and Bruckner-Foit [22] as the origin of final failure for C/C-SiC, therefore it can be
assumed as a representative feature that triggers the ultimate composite failure [19]

Figure 2.8: Fractured surfaces of 2/2 twill weave C/C-SiC material tested at room temperature with 0𝑜 angle
between loading and fiber direction [54]. The red arrows show the fiber bundles that have experienced pull-out

and cracks in the matrix regions.

Figure 2.9: Fractured, plane weave (0𝑜/90𝑜) C/C-SiC, specimens after uniaxial tensile loads. a) The
macroscopic failure of the specimen, b) the fractured surface obtained through SEM micrographs. The fractured

surface can be seen as well as the fiber pull-out effect [19].

Figures 2.8 and 2.9 show the fracture surfaces of 2/2 twill and plain weave C/C-SiC loaded
at 0𝑜 relative to fibers. Both images show a significant amount of fiber bundle pull-out (C/C
blocks embedded in SiC), together with cracks in the matrix areas (red arrows in Figure 2.8
(b) and (c)) [30].

Two-dimensional woven SiC-based CMCs were studied by Lamon [33] and it is reported
that the damage of material initiates between the fiber bundles. As the loading continues
the cracks propagate between the bundles and they are being deflected by them. It is again
reported that the ultimate failure of CMC materials occurs when the load is completely carried
by the fibers which happens after saturation of matrix cracking. The ultimate failure of the
fibers, in SiC-based CMCs, takes place after 12 − 17% of the fibers in a bundle have failed [7]
[39]. Moreover, when the failed fiber bundles reach a critical number (≥ 1), the final failure
occurs [33]. In general, the strength data of ceramic materials exhibit statistical distributions
since they are highly affected by their microstructural defects and the random distribution of
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these defects. Therefore, in many studies, statistical distribution theories, like the Weibull
distribution, are used to describe the strength of CMCs [33] [40] [66]. The Weibull distribution
function is also used widely to model various types of woven composites, to represent the
randomness of breaking thresholds [46].

2.4. Failure theories
In order to predict the failure of composites different failure theories can be used based

on the mechanical behavior of the material, type of reinforcement, available material data and
fidelity regarding the mode of failure5. Macromechanical failure theories for composite mate-
rials were initially developed based on the well-established failure criteria for homogeneous
isotropic materials. Composites exhibit anisotropy in stiffness and strength, therefore the ex-
isting and well-developed failure theories were extended to account for this behavior [47] [60]
[9]. The variety of theories are based on certain assumptions, homogeneity and linear behav-
ior until failure and most of them include terms that correspond to the strength properties in
the principle directions. Some of these theories provide information about the mode of failure
but others only indicate if or not failure occurred. The interaction between stress components
is also neglected in others. Therefore, there are three main categories for the lamina failure
theories:

1. Limit or non-interactive theories: where the ultimate stress or strain of each ply is directly
compared to the corresponding stress or strain without the consideration of any interac-
tion between stress components. The maximum stress and strain theory is an example
of a non-interactive theory.

2. Interactive theories: in which an expression includes all the different stress components.
The final failure is predicted but no information of the failure mode is given. The Tsai-Hill
and Tsai-Wu theories are included in this category.

3. Partially interactive or failure mode-based theories: in which the failure mode (fiber, ma-
trix) is predicted based on separate expressions. The Hashin-Rotem and Puck theories
are considered failure mode-based theories.

Interactive theories present quasi-elliptical failure envelopeswhile the non-interactive ones,
present rectangular/parallelogram-shaped envelopes [14]. The differences between failure
theories are subtle in the first quadrant of the failure envelope, as the comparisons between
theoretical and experimental results indicate [58]. The differences become significant when
combined compression and shear loads are acting simultaneously. Α difference of 100% −
200% is reported between various theories for the unidirectional lamina [57].

2.4.1. Tsai-Wu theory
A failure criterion that has been used to study orthotropic materials and CMCs specifically

is the Tsai-Wu criterion [52] [30]. It is usually combined with a damage model and it is proven
to be more accurate than other failure criteria, e.g., Hashin criterion [2].

The anisotropic failure criterion developed by Gol’denblat and Kopnov [20] was later mod-
ified by Tsai and Wu [61] in the stress space. The criterion is given as

𝑓𝑖𝜎𝑖 + 𝑓𝑖𝑗𝜎𝑖𝜎𝑗 = 1 (2.2)

5Fiber, inter-laminar tensile or compressive failure
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which includes only the second- and fourth-order tensors and 𝑖, 𝑗 = 1, 2, ..., 6. The ex-
panded form of (2.2) is

𝑓1𝜎1 + 𝑓2𝜎2 + 𝑓3𝜎3 + 𝑓4𝜎4 + 𝑓5𝜎5 + 𝑓6𝜎6 + 𝑓11𝜎2
1 + 𝑓22𝜎2

2 + 𝑓33𝜎2
3 + 𝑓44𝜎2

4
+ 𝑓55𝜎2

5 + 𝑓66𝜎2
6 + 2𝑓12𝜎1𝜎2 + 2𝑓13𝜎1𝜎3 + 2𝑓14𝜎1𝜎4 + 2𝑓15𝜎1𝜎5 + 2𝑓16𝜎1𝜎6

+ 2𝑓23𝜎2𝜎3 + 2𝑓24𝜎2𝜎4 + 2𝑓25𝜎2𝜎5 + 2𝑓26𝜎2𝜎6 + 2𝑓34𝜎3𝜎5 + 2𝑓35𝜎3𝜎6
+ 2𝑓36𝜎3𝜎6 + 2𝑓45𝜎4𝜎5 + 2𝑓46𝜎4𝜎6 + 2𝑓56𝜎5𝜎6 = 1.

(2.3)

An interaction between normal stresses is taken into account through the 𝑓12, 𝑓23 and 𝑓13
coefficients. The criterion is simplified further for unidirectional composites where the shear
strengths (𝐹4, 𝐹5, 𝐹6) are independent of the shear stress’s sign and all the corresponding
terms are zero. Also, by assuming transverse isotropy (UD material) in the 2-3 plane (𝑓2 =
𝑓3, 𝑓22 = 𝑓33, 𝑓55 = 𝑓66, 𝑓12 = 𝑓13) the criterion, for a three-dimensional stress state, is written
as

𝑓1𝜎1 + 𝑓2 (𝜎2 + 𝜎3) + 𝑓11𝜎2
1 + 𝑓22 (𝜎2

2 + 𝜎2
3) + 𝑓44𝜎2

4
+ 𝑓66 (𝜎2

5 + 𝜎2
6) + 2𝑓12 (𝜎1𝜎2 + 𝜎1𝜎3) + 2𝑓23𝜎2𝜎3 = 1 (2.4)

and for a two-dimensional stress state as

𝑓1𝜎1 + 𝑓2𝜎2 + 𝑓11𝜎2
1 + 𝑓22𝜎2

2 + 𝑓66𝜎2
6 + 2𝑓12𝜎1𝜎2 = 1. (2.5)

All the different coefficients in (2.4) and (2.5) are defined from uniaxial tests. By applying
unidirectional tensile and compressive loads in the longitudinal and transverse direction and
shear loads, the coefficients are defined by solving the system of equations and finally

𝑓1 = 1
𝐹1𝑡

− 1
𝐹1𝑐

, 𝑓11 = 1
𝐹1𝑡𝐹1𝑐

𝑓2 = 1
𝐹2𝑡

− 1
𝐹2𝑐

, 𝑓22 = 1
𝐹2𝑡𝐹2𝑐

𝑓3 = 1
𝐹3𝑡

− 1
𝐹3𝑐

, 𝑓33 = 1
𝐹3𝑡𝐹3𝑐

𝑓44 = 1
𝐹 2

4
, 𝑓55 = 1

𝐹 2
5

, 𝑓66 = 1
𝐹 2

6

(2.6)

The interaction coefficient 𝑓12 is calculated from

𝑓12 = 1
2 [ 1

𝜎2
𝑏𝑖

− 𝑓1 + 𝑓2
𝜎𝑏𝑖

− (𝑓11 + 𝑓22)] (2.7)

where 𝜎𝑏𝑖 is the failure load during the bi-axial tensile test. Due to the difficulty in performing
bi-axial stress tests, the coefficient is approximated. An empirical estimation that is mostly
used is

𝑓12 ≅ −1
2(𝑓11𝑓22)1/2 (2.8)

and the 𝑓23 coefficient (used in the three-dimensional case) is obtained as

𝑓23 = 𝑓22 − 𝑓44
2 . (2.9)

Certain reports suggest different values for the 𝑓12 coefficient [15] [16] [37] but the value is
nearly constant under different stress states [11]. Usually, the interaction coefficient satisfies
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− 1 < 𝑓12 < 0 (2.10)

In general, the Tsai-Wu criterion is selected in many cases due to its simplicity to imple-
ment in computational procedures, and as Tsai-Hill, it is expressed in a single equation but
the coefficients account for the difference between tensile and compressive strength and the
interaction coefficients are functions of them.

A safety factor 𝑆𝑓 can be implemented in the Tsai-Wu theory. This safety factor is applied
to every stress component and leads to a new critical state. For a two-dimensional stress state
(𝜎1, 𝜎2, 𝜏6) the new state becomes (𝑆𝑓𝜎1, 𝑆𝑓𝜎2, 𝑆𝑓𝜏6) and the Tsai-Wu criterion takes the form

𝑓1𝑆𝑓𝜎1 + 𝑓2𝑆𝑓𝜎2 + 𝑓11𝑆2
𝑓𝜎2

1 + 𝑓22𝑆2
𝑓𝜎2

2 + 𝑓66𝑆2
𝑓𝜏2

6 + 2𝑓12𝑆2
𝑓𝜎1𝜎2 = 1 (2.11)

The Tsai-Wu criterion is reported to successfully predict the strength properties of filament
wound C/C-SiC composites. A damage model can be used in combination with the Tsai-
Wu criterion to predict the tensile strength and tensile strain of C/C-SiC in different directions
[52] [30] (Figure 2.10). Overall, the criterion predicts strength values close to the experimen-
tal ones, especially when a damage-based Tsai-Wu criterion is used. A good agreement is
achieved for most of the loading directions with a slight underestimation of the strength at 30𝑜

and 45𝑜 where shear damage is most significant [30].

Figure 2.10: (a) The experimental strength of wound C/C-SiC in different loading directions and the calculated
strength with the use of a damage model and Tsai-Wu criterion [52] and (b) a comparison of the experimentally
determined material strength with the stress-based Tsai-Wu criterion and a damage-based Tsai-Wu criterion [30].

2.5. State of the art
Most of the developed modeling approaches, failure theories, micro- and macromechani-

cal models to predict the mechanical behavior are developed based on unidirectional fabrics.
In woven fabric composites, these theories and approaches need to be modified. On the other
hand, approaches to model CMC materials are less developed and more complicated com-
pared to those of FRP materials. Therefore, in this section, the most relevant approaches to
model woven CMC materials are presented. These state-of-the-art approaches are mostly fo-
cused on studying the constitutive material behavior of CMCs under the scope of phenomeno-
logical modeling. This approach is the most appropriate in this type of material since more than
one damage mechanisms act simultaneously after damage initiation.



2.5. State of the art 15

2.5.1. Modeling of porous CMC materials
An attempt to model the elasto-plastic response and failure of CMC materials took place in

recent years. A computational model to simulate the response of CMCs with porous matrices
(p-CMCs) based on continuum damage mechanics is proposed by Tushtev, Horvath, Koch,
and Grathwohl [62]. The construction of the model is based on results from uniaxial monotonic
and cyclic tensile tests on a C/C CMC with a 2D woven fabric. The material is loaded in the
axial (0𝑜) and diagonal direction (45𝑜) relative to the fibers. C/C is linear-elastic in the axial
direction and non-linear in the diagonal direction where shear stresses are developed. The
nonlinearity is caused due to matrix failure at low strains and the blocking of the matrix cracks
from the fibers which causes inelastic strains.

With the assumption of plane stress conditions and small strains, the total strains are a
summation of the elastic and plastic contribution 𝜖𝜖𝜖 = 𝜖𝜖𝜖𝑒 + 𝜖𝜖𝜖𝑝. The decrease in the material’s
stiffness is accounted for by a damage vector 𝐷𝐷𝐷 which is defined as

𝐷𝐷𝐷 = ⎡⎢
⎣

𝐷11
𝐷22
𝐷66

⎤⎥
⎦

; 𝐷11 = 1 − 𝐸11
𝐸0

11
; 𝐷22 = 1 − 𝐸22

𝐸0
22

; 𝐷66 = 1 − 𝐺12
𝐺𝑜

12
(2.12)

where the superscript (𝑜) denotes the initial material parameters before damage occurs.
The elastic strain energy is specified as

Ψ(𝜎𝜎𝜎,𝐷𝐷𝐷) =1
2 [ 𝜎2

11
𝐸𝑜

11 (1 − 𝐷11) + 𝜎2
22

𝐸𝑜
22 (1 − 𝐷22) − ( 𝜈𝑜

12
𝐸𝑜

11
+ 𝜈𝑜

21
𝐸𝑜

22
) 𝜎11𝜎22 + 𝜎2

12
𝐺𝑜

12 (1 − 𝐷66)]
(2.13)

where 𝜈𝑜
12 and 𝜈𝑜

12 are the initial Poisson’s ratio and the 𝜈12/𝐸11 = 𝜈𝑜
12/𝐸𝑜

11 is assumed to
remain constant. The partial derivation of the elastic strain energy with respect to stresses
gives the elastic strains, 𝜖𝑖 = 𝜕Ψ/𝜕𝜎𝑖,

⎡
⎢⎢⎢⎢⎢
⎣

𝜖𝑒
11

𝜖𝑒
22

𝛾𝑒
12

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
𝐸𝑜

11 (1 − 𝐷11) − 𝜈𝑜
21

𝐸𝑜
22

0

− 𝜈𝑜
12

𝐸𝑜
11

1
𝐸𝑜

22 (1 − 𝐷22) 0

0 0 1
𝐺𝑜

12 (1 − 𝐷66)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝜎11

𝜎22

𝜎12

⎤
⎥⎥⎥⎥⎥
⎦

. (2.14)

The thermodynamic forces which are related to the damage variables are defined as,

𝑌𝑌𝑌 = 𝜕Ψ
𝜕𝐷𝐷𝐷; 𝑌11 = 𝜎2

11
2𝐸0

11 (1 − 𝐷11)2 ; 𝑌22 = 𝜎2
22

2𝐸0
22 (1 − 𝐷22)2 𝑌66 = 𝜎2

12
2𝐺0

12 (1 − 𝐷66)2 (2.15)

respectively. Since the material stiffness changes as the applied load increases above
the damage initiation load, the damaged stiffness should be calculated. Using the continuum
damage mechanics theory, the effective stress, 𝜎𝜎𝜎𝑒, is expressed as a function of the nominal
stress as

𝜎𝜎𝜎 = (𝕀 − 𝐷𝐷𝐷) 𝜎𝜎𝜎𝑒 (2.16)

where 𝕀 is the second order identity tensor. Therefore, the stress and plastic strain com-
ponents are defined as
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𝜎𝑒11 = 𝜎11
1 − 𝐷11

; 𝜎𝑒22 = 𝜎22
1 − 𝐷22

; 𝜎𝑒12 = 𝜎12
1 − 𝐷66

𝜖𝑝
𝑒11 = 𝜖𝑝

11 (1 − 𝐷11) ; 𝜖𝑝
𝑒22 = 𝜖𝑝

22 (1 − 𝐷22) ; 𝛾𝑝
𝑒12 = 𝛾𝑝

12 (1 − 𝐷66) .
(2.17)

The evolution of the damage parameters is governed by a damage potential 𝑓𝑑 which is
given by

𝑓𝑑 = (𝑌11
𝑌𝑡

)
2

+ (𝑌22
𝑌𝑡

)
2

+ (𝑌66
𝑌𝑠

)
2

− 1 = 0 (2.18)

𝑌𝑡 and 𝑌𝑠 are the threshold values of the tensile and shearmode for the initiation of damage,
in the thermodynamic space. The damage variables are calculated once the thermodynamic
forces exceed the corresponding threshold values and they are defined as

𝐷̇𝐷𝐷 = 𝜆̇𝑑 𝜕𝑓𝑑

𝑌𝑌𝑌 (2.19)

where 𝜆𝑑 is a scalar multiplier that is calculated from the consistency conditions. The
growth of the damage surface in the thermodynamic space is given by a power-law that follows

𝑌𝑠(𝛿) = 𝑌 𝜊
12 + 𝐴𝛿𝑛 (2.20)

where 𝛿 = ∫𝑌𝑌𝑌 𝑑𝐷𝐷𝐷 is a scalar parameter and 𝑌 𝜊
12 is the threshold value of 𝑌12 for damage

initiation and 𝐴 and 𝑛 are coefficients. For the calculation of the plastic strains, a plastic
potential is required. The Hill criterion [10] is selected as plastic potential and is defined as

𝑓𝑝(𝜎𝜎𝜎) = 1
𝐹 2

1𝑡
(𝜎2

𝑒11 + 𝜎2
𝑒22 − 𝜎𝑒11𝜎𝑒22) + 1

𝐹 2
12

𝜎𝑒12
2 − 1 = 0. (2.21)

The plastic strain is calculated as

̇𝜖𝜖𝜖𝑝 = 𝜆̇𝜕𝑓𝑝

𝜕𝜎𝜎𝜎𝑒
(2.22)

where 𝜆 is the plastic scalar multiplier which is calculated from the consistency conditions.
The yield function is constructed from the plastic function potential with the subtraction of the
hardening law and is given as

𝑓 = 𝑓𝑝(𝜎𝜎𝜎) − 𝑘(𝜒) (2.23)

where
𝑘(𝜒) = 𝐹 𝑜

12 + 𝐵𝜒𝑚 (2.24)

is a power-law with 𝜒 being the inelastic work, 𝐹 𝑜
12 the shear strength for damage initia-

tion and 𝐵 and 𝑚 coefficients. The 𝐴, 𝐵, 𝑛 and 𝑚 parameters are determined by fitting the
unloading cycles in the diagonal tests.

The computational model is based on stress discretization and therefore the procedure
begins with the initialization of the different parameters and the increase of stress components.
Yielding is checked through (2.21). If no yielding occurs, the elastic strains are calculated from
(2.14), all quantities are updated and catastrophic failure is checked again from (2.21) but this
time the ultimate values for the strength are used. If yielding occurs though, the damage
variables and plastic strain are calculated before the calculation of elastic strains. Moreover,
if a catastrophic failure occurred the model stops otherwise the stresses are increased further
and the above procedure is followed once again.
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Figure 2.11: Experimental and theoretical stress-strain curves of C/C at (a) 𝜃 = 15𝑜 and (b) 𝜃 = 30𝑜 [62]

Tensile tests at 𝜃 = 15𝑜 and 30𝑜 prove that the experimental and theoretical results are
close. Although this approach models the tensile behavior of CMC materials with porous
matrices accurately, it has some drawbacks as well. Firstly, the model assumes that shear
forces are the main driver for anisotropy in the material. The material is assumed linear elastic
when the angle between the loading direction and fibers is 0𝑜. This might be true for C/C but not
all CMCs follow the same behavior, e.g., C/C-SiC behaves slightly non-linear when 𝜃 = 0𝑜.
Secondly, the compressive behavior of composite is not studied with the current approach.
Thirdly, the model’s dependence on experimental data should be mentioned and due to that,
its application to other CMC systems is restricted.

2.5.2. Constitutive models for 3D C/C-SiC
A material that is similar to the woven C/C-SiC material, is the 3D needled C/C-SiC, which

exhibits anisotropic elastoplastic and nonlinear behavior and similar mechanical properties.
Xie et al. [65] studied the mechanical behavior of this material that is manufactured through
a combination of Chemical Vapor Infiltration (CVI), Polymer Infiltration and Pyrolysis (PIP)
and Liquid Silicon Infiltration (LSI) processes. The plastic deformation is studied through an
innovative plastic potential and stiffness degradation through an exponential damage law. The
3D needled C/C-SiC presents randomly distributed defects, e.g., porosity andmicrocracks [38]
and their damage is characterized bymatrix cracking, fiber pull-out and fiber rupture [65], same
as the investigated woven C/C-SiC. A phenomenological material model and plasticity theory
are used to describe the residual strains that result from the damage in the material.

Different tests were performed, e.g., on- and off-axis uniaxial cyclic tensile tests in the 0𝑜,
15𝑜, 30𝑜 and 45𝑜 to the fibers direction and cyclic shear tests. For all these tests, the applied
global stresses are rotated to the principal material axis by

𝜎11 = 𝜎𝑥𝑥 cos2 𝜃
𝜎22 = 𝜎𝑥𝑥 sin

2 𝜃
𝜎12 = −𝜎𝑥𝑥 sin 𝜃 cos 𝜃.

(2.25)

Plane stress conditions and small strains are assumed. The plastic yield function is ex-
pressed as
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𝑓(𝜎𝜎𝜎) − 𝑘(𝜖𝑝) = 0. (2.26)

It is expressed with respect to the plastic potential, 𝑓(𝜎𝜎𝜎), and a hardening function, 𝑘(𝜀𝑝),
which is a function of the effective plastic strain. A power law function [59] described as

𝜅(𝜖𝑝) = 𝐴(𝜖𝑝)𝑛 (2.27)

is assumed for the hardening law. The associate flow rule (2.22) is used in this case as
well, to calculate the plastic strains. Under the plane stress condition, the proposed plastic
potential function is

𝑓(𝜎11, 𝜎22, 𝜎12) = 𝑘√𝛼1𝜎2
11 + 𝛼2𝜎2

22 + 𝜎2
12 = 𝜎 (2.28)

with 𝛼1, 𝛼2 being the parameters that correspond to the anisotropy in the principal axes,
𝑘 is a hardening rate parameter that corresponds to different hardening rates under different
loading conditions and 𝜎 is the equivalent stress. By assuming that 𝛼1, 𝛼2 and 𝑘 are constants
the plastic strains are obtained from the associate flow rule (2.22) as

̇𝜖𝑝
11 = 𝜕𝑓

𝜕𝜎11
𝜆̇ = 𝑘2 𝛼1𝜎11

𝜎 𝜆̇

̇𝜖𝑝
22 = 𝜕𝑓

𝜕𝜎22
𝜆̇ = 𝑘2 𝛼2𝜎22

𝜎 𝜆̇

̇𝛾𝑝
12 = 𝜕𝑓

𝜕𝜎12
𝜆̇ = 𝑘2 𝜎12

𝜎 𝜆̇

(2.29)

and

̇𝜖𝑝
11
̇𝛾𝑝
12

= 𝛼1𝜎11
𝜎12

⇔ 𝛼1 = ̇𝜖𝑝
11
̇𝛾𝑝
12

𝜎12
𝜎11

̇𝜖𝑝
22
̇𝛾𝑝
12

= 𝛼2𝜎22
𝜎12

⇔ 𝛼2 = ̇𝜖𝑝
22
̇𝛾𝑝
12

𝜎12
𝜎22

.
(2.30)

In this work, it is assumed that the plastic strain increments do not change as given in
(2.29), but the parameters 𝛼1, 𝛼2 and 𝜅 are corrected with the use of experimental data during
the loading process. The plastic multiplier is taken as Δ𝜆 = ̇𝜖𝑝. Also, the equivalent stress
from (2.28) is re-written as

𝜎 = ℎ(𝜃)𝜎𝑥𝑥 = (𝑘√𝛼1 cos4 𝜃 + 𝛼2 sin
4 𝜃 + cos2 𝜃 sin2 𝜃) 𝜎𝑥𝑥. (2.31)

by using the rotation of stress equations. By equations (2.29), ℎ(𝜃) and Δ𝜆 = ̇𝜖𝑝 the
incremental plastic strain is given by

̇𝜖𝑝
𝑥𝑥 = ℎ(𝜃) ̇𝜖𝑝 (2.32)

and the equivalent plastic strain for proportional loading is

𝜖𝑝 = 𝜖𝑝
𝑥𝑥

ℎ(𝜃) . (2.33)

For the case of the in-plane shear test, the hardening rate parameter is set to be 𝑘 = 1 so
the equivalent stress and strain becomes
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𝜎 = 𝑘𝑠𝜎12 = 𝜎12

𝜖𝑝 = 𝛾𝑝
12

𝑘𝑠
= 𝛾𝑝

12
(2.34)

where 𝑘𝑠 is the hardening parameter in the shear test. Therefore, equations (2.34) show
that the relationship between equivalent stress and equivalent plastic strain can be determined
through the shear tests. To obtain the parameters of the hardening law function (2.27), a
master curve is determined for all the shear tests of 15𝑜, 30𝑜 and 45𝑜. By fitting a power-law
function to this master curve, the 𝐴 and 𝑛 parameters of (2.27) is determined. The rest of the
anisotropic parameters, 𝛼1 and 𝛼2, are obtained from the following expressions [65]

𝛼1 = 𝜓(𝑟1, 𝜎)
𝛼2 = 𝜓(𝑟2, 𝜎) (2.35)

since the 𝛼1 and 𝛼2 parameters are assumed to change continuously as the load changes.
The 𝑟1 and 𝑟2 are given by

𝑟1 = 𝜎11

√𝜎2
11 + 𝜎2

11

+ 𝜎22

√𝜎2
11 + 𝜎2

22 + 𝜎2
12

𝑟2 = 𝜎22

√𝜎2
11 + 𝜎2

11

+ 𝜎11

√𝜎2
11 + 𝜎2

22 + 𝜎2
12

(2.36)

the stress components in (2.36) take positive values. The same expression of 𝜓 can be
used for the anisotropic parameters 𝛼1, 𝛼2 since the composite is symmetric in the 1- and
2-principal directions. A power law function is assumed for the 𝜓

𝛼1 = 𝜓(𝑟1, 𝜎) = 𝐴(𝑟1)(𝜎)𝐵(𝑟1) + 𝐶(𝑟1)
𝛼2 = 𝜓(𝑟2, 𝜎) = 𝐴(𝑟2)(𝜎)𝐵(𝑟2) + 𝐶(𝑟2)

(2.37)

with 𝐴(𝑟𝑖), 𝐵(𝑟𝑖) and 𝐶(𝑟𝑖) being parameters that need to be determined through fitting. To
do that, the curves of 𝛼1 and 𝛼2 versus 𝜎 for the on- and off-axis cases need to be plotted. For
that, the equations (2.36) and (2.34) are used. The 𝐴, 𝐵 and 𝐶 parameters are also expressed
as a linear function of the stress ratio 𝑟𝑖 [65]

𝐴(𝑟𝑖) = 𝐴0 + 𝐴𝑟𝑟𝑖
𝐵(𝑟𝑖) = 𝐵0 + 𝐵𝑟𝑟𝑖 𝑖 = 1, 2
𝐶(𝑟𝑖) = 𝐶0 + 𝐶𝑟𝑟𝑖

(2.38)

So, by fitting the 𝐴, 𝐵, 𝐶 vs 𝑟𝑖 linear curves and the 𝛼1 and 𝛼2 versus 𝜎 curves, the 𝐴0,
𝐵0, 𝐶0, 𝐴𝑟, 𝐵𝑟 and 𝐶𝑟 are obtained. On the other hand, the hardening rate parameter affects
the behavior of the material, the higher the 𝑘 value, the faster the hardening rate. An extra
parameter 𝑟𝑇 𝑆 is defined as

𝑟𝑇 𝑆 = 𝜎11 + 𝜎22 + 𝜎12

√𝜎2
11 + 𝜎2

22 + 𝜎2
12

(2.39)

which is a tensile-shear combination parameter. The hardening rate parameter is ex-
pressed again as a linear function of 𝑟𝑇 𝑆

𝑘(𝑟𝑇 𝑆) = 𝑘0 + 𝑘𝑟𝑟𝑇 𝑆. (2.40)

To determine the function’s coefficients, a linear fitting of the 𝑘 vs 𝑟𝑇 𝑆 is performed.
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Regarding the damage model, the damage variables are defined as in (2.12). The evolu-
tion of damage parameters is assumed to be similar to the evolution of plastic strains. There-
fore, as (2.29) the damage evolution law is given by

𝐷11 = 𝑘∗2 𝛼1𝜎11
𝜎∗ 𝐷(𝜎∗)

𝐷22 = 𝑘∗2 𝛼2𝜎22
𝜎∗ 𝐷(𝜎∗)

𝐷66 = 𝑘∗2 𝜎12
𝜎∗ 𝐷(𝜎∗)

(2.41)

where

𝜎∗ = 𝑘∗√𝛼1𝜎2
11 + 𝛼2𝜎2

22 + 𝜎2
12 (2.42)

is the damage equivalent stress, 𝐷(𝜎∗) corresponds to the damage state of the material
and 𝑘∗ is the damage rate parameter. Moreover, the damage rate parameter is expressed as
the linear function of the tensile-shear combination parameter as

𝑘∗(𝑟𝑇 𝑆) = 𝑘∗
0 + 𝑘∗𝑟𝑇 𝑆. (2.43)

Due to the random distribution of the defects in the CMC, a Weibull distribution is assumed
for the ultimate strength of the material [65] [64]. Therefore, the failure probability is given as

𝐹(𝜎∗) = 1 − exp[− (𝜎∗

𝜎0
)

𝑚
] (2.44)

where 𝜎0 is a scale parameter and 𝑚 the Weibull modulus. The probability of failure is
considered as the measurement of the damage state of the CMC when subjected to a load
𝜎∗. So, the damage state is expressed as

𝐷(𝜎∗) = 1 − exp[− ( 𝜎∗

𝜎𝑤
)

𝑛𝑤

] (2.45)

and the 𝜎𝑤 and 𝑛𝑤 are determined through fitting of the 𝜎∗ vs 𝐷(𝜎∗) curves. Once the
damage variables are defined, the compliance matrix is determined from (2.14).

After the 𝛼1, 𝛼2, 𝐴𝑟, 𝐴0, 𝐵𝑟, 𝐵0, 𝐶𝑟, 𝐶0, 𝜎𝑤, 𝑛𝑤, 𝑘𝑟, 𝑘0, 𝑘∗
𝑟 and 𝑘∗

0 are determined through the
fitting of the corresponding curves, themechanical response of thematerial is predicted through
the proposed material model. The data from uniaxial on- and off-axis tensile tests are com-
pared to the predicted curves in Figure 2.12. The theoretical curves are in good agreement
with the experimental ones, especially the 𝜖11 and 𝜖𝑥𝑥 strains. For the 𝜖22 and 𝜖𝑦𝑦 the model
underestimates the response of the material. The reason for this difference is the small values
of strains in this direction that make it difficult to measure them accurately, as Xie et al. [65]
reported.
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Figure 2.12: Experimental data and predicted curves for the (a) 𝜃 = 0𝑜, (b) 𝜃 = 15𝑜, (c) 𝜃 = 30𝑜 and (d) 𝜃 = 45𝑜

[65].

Overall, the material model is following the phenomenological approach to model the dam-
age and the plasticity in the 3D C/C-SiC material. The proposed plastic potential function in-
cludes terms to model the anisotropy in the material, but it is symmetric to the stress axis.
Therefore, the material response to compressive loads is assumed similar to the response to
tensile loads. Moreover, the mechanical behavior of the material in compression is neglected
in this case.

2.5.3. Phenomenological modeling of woven fabric composites
A phenomenological damage model for textile composites is presented by Böhm, Gude,

and Hufenbach [5]. The research is based on hybrid glass-polypropylene woven thermoplastic
composites. This research is worth mentioning since woven composites present often similar
damage mechanisms to woven CMCs due to the same type of reinforcement. Moreover, the
phenomenological approach and the structure of the model are relevant to the current work.

The most important features of the model are the damage definition and evolution equa-
tions and the criteria for the final failure of the composite. Damage is defined on the basis of
continuum damage mechanics as a change in the elastic tensor. A novel failure criterion is
used to describe the initiation of damage. The whole composite structure is decomposed into
equivalent layers of bidirectional orthotropic layers, called idealized bidirectional layers. For
the calculation of the stress-strain behavior of the laminate, the classical laminate theory is
used. The plastic deformations are neglected and a non-linear elastic behavior is assumed
for each layer. The degradation analysis, for the stiffness and strength, takes place in each
individual layer.
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Regarding the constitutive equations for each damaged layer, a fourth-order damage ten-
sor 𝐷𝐷𝐷 is defined. Effective stress is defined as in (2.16) and the stress-stain relationship for
each damaged layer takes the form of

⎡⎢
⎣

𝜎11
𝜎22
𝜎12

⎤⎥
⎦

= ⎡⎢
⎣

𝑄11 𝑄12 0
𝑄21 𝑄22 0

0 0 𝑄66

⎤⎥
⎦

⎡⎢
⎣

𝜖11
𝜖22
𝛾12

⎤⎥
⎦

(2.46)

where 𝑄𝑖𝑗 is the reduced stiffness matrix components (see Appendix A). A damage ten-
sor is chosen appropriately to reflect the degradation mechanisms. The model proposed by
Audoin and BASTE [3] is used due to the fact that no further assumptions about the crack ori-
entation and stiffness degradation coupling, are needed. Furthermore, it is valid for anisotropic
materials and is equivalent even if the material (or layer) symmetry changes during damage.
By this definition, the stiffness tensor is given by

ℚ = ℚ0 − ℚ𝑑 (2.47)

where ℚ0 is the undamaged stiffness tensor and ℚ𝑑 is the tensor that corresponds to the
loss of stiffness during damage and its components are unknown. The proposed damage
tensor coefficients are

𝐷𝑖𝑗 = 1 − 𝑄𝑖𝑗
𝑄0

𝑖𝑗
, 𝑖 = 1, 2, 6; 𝑖 = 𝑗.

𝐷𝑖𝑗 =
𝑄0

𝑖𝑗 − 𝑄𝑖𝑗

𝑄0
𝑖𝑗 + √𝑄0

𝑖𝑖 (1 − 𝐷𝑖𝑖) 𝑄0
𝑖𝑗 (1 − 𝐷𝑗𝑗)

, 𝑖, 𝑗 = 1, 2; 𝑖 ≠ 𝑗.
(2.48)

By solving (2.48) for the equivalent stiffness tensor the following relations are obtained

𝑄11 = (1 − 𝐷11) 𝐸11
1 − 𝑣12𝑣21

(2.49)

𝑄22 = (1 − 𝐷22) 𝐸22
1 − 𝑣12𝑣21

(2.50)

𝑄66 = (1 − 𝐷66) 𝐺12 (2.51)

𝑄12 = 𝑄21 = (1 − 𝐷12) 𝑣21𝐸22
1 − 𝑣12𝑣21

− 𝐷12√(1 − 𝐷11) (1 − 𝐷22) 𝐸11𝐸22
(1 − 𝑣12𝑣21)2 (2.52)

The 𝐸11, 𝐸22, 𝐺12 and 𝜈12 and 𝜈21 are the elastic properties of the bidirectional orthotropic
layer. 𝐷11, 𝐷22, 𝐷66 and 𝐷12 denote the stiffness degradation in the principal, shear directions
and Poisson’s ratio, respectively.

The criterion used to predict the final failure of the material is based on the ideas of Böhler
and Raclin [6] and Cuntze [12]. For a three-dimensional stress state, nine failure modes are
defined while for plane stress conditions five of them remain. These are the tensile and com-
pressive strength in the 1-direction and 2-direction and shear strength in the 1-2 plane. The
criterion uses a series spring model and an interaction parameter 𝑚, that accounts for prob-
abilistic and micromechanical effects, and is defined for every bidirectional orthotropic layer
as

(𝜎11
𝐹1𝑡

)
𝑚

+ (−𝜎11
𝐹1𝑐

)
𝑚

+ (𝜎22
𝐹2𝑡

)
𝑚

+ (−𝜎22
𝐹2𝑐

)
𝑚

+ (𝜎12
𝐹6

)
𝑚

= 1. (2.53)
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The terms in (2.53) are called stress effort terms and correspond to the ultimate failure
of the material. A similar criterion is used to predict the damage initiation6. The strength
values at the onset of damage initiation are defined as 𝐹 𝜊

1𝑡, 𝐹 𝜊
1𝑐, 𝐹 𝜊

2𝑡, 𝐹 𝜊
2𝑐 and 𝐹 𝜊

6 for tensile and
compressive strength in the 1-direction and 2-direction and shear strength in the 1-2 plane,
respectively. A similar interaction coefficient 𝑛 is defined to account for all the aforementioned
effects and the damage initiation criterion takes the form of

(𝜎11
𝐹 𝜊

1𝑡
)

𝑛
+ (−𝜎11

𝐹 𝜊
1𝑐

)
𝑛

+ (𝜎22
𝐹 𝜊

2𝑡
)

𝑛
+ (−𝜎22

𝐹 𝜊
2𝑐

)
𝑛

+ (𝜎12
𝐹 𝜊

6
)

𝑛
= 1 (2.54)

the stress effort terms correspond in this case to the initiation of damage. After damage
initiation, the shape of the damage surface changes as the load increases. The surface can
be described by the function 𝐻(𝜎𝜎𝜎,𝐷𝐷𝐷, 𝑠). The 𝑠 parameter indicates the size of the elastic
domain and can be considered as the equivalent to the yield stress in the plasticity theory.
The threshold value takes five different values for each damage mode. The damage surfaces
are described by

𝐻𝑡
1 = 𝜎11 (1 − 𝐷11)

𝐹 𝜊
1𝑡

− 𝑠𝑡
11 = 0, 𝐻𝑐

1 = −𝜎11 (1 − 𝐷11)
𝐹 𝜊

1𝑐
− 𝑠𝑐

11 = 0

𝐻𝑡
2 = 𝜎22 (1 − 𝐷22)

𝐹 𝜊
2𝑡

− 𝑠𝑡
22 = 0, 𝐻𝑐

2 = −𝜎22 (1 − 𝐷22)
𝐹 𝜊

2𝑐
− 𝑠𝑐

22 = 0,

𝐻12 = 𝜎12 (1 − 𝐷66)
𝐹 𝜊

6
− 𝑠12 = 0

(2.55)

with 𝑠𝑡
11, 𝑠𝑐

11, 𝑠𝑡
22, 𝑠𝑐

22 and 𝑠12 being the threshold variables for the tensile and compressive
loading in the 1- and 2-direction and the shear loading in the 1-2 plane, respectively. The
damage surface with the 𝑛 coefficient in the stress space is

𝐻 = [(𝜎11
𝐹 𝜊

1𝑡
)

𝑛
+ (−𝜎11

𝐹 𝜊
1𝑐

)
𝑛

+ (𝜎22
𝐹 𝜊

2𝑡
)

𝑛
+ (−𝜎22

𝐹 𝜊
2𝑐

)
𝑛

+ (𝜎12
𝐹 𝜊

6
)

𝑛
]

1
𝑛

= 𝑠. (2.56)

The final part of this computational approach is the damage evolution law. For the damage
parameters, (2.57) is fulfilled,

𝐷𝐷𝐷 = [ 𝐷11 𝐷12 𝐷22 𝐷66 ] = { 0 for 𝑠 < 1
𝐷 for 𝑠 ⩾ 1 (2.57)

The damage parameters are assumed to depend exclusively on the corresponding stress
component. The damage parameters increase individually as well as simultaneously. There-
fore, the evolution equations consist of five terms corresponding to a damage mode together
with a rounding-off coefficient 𝑛.

𝐷𝑛
𝑖𝑗 =

2𝑡
∑
𝑘=1𝑡

(𝜙𝑘𝑞𝑖𝑗
𝑘 )𝑛 +

2𝑐
∑
𝑙=1𝑐

(𝜙𝑙𝑞𝑖𝑗
𝑙 )𝑛 + (𝜙12𝑞𝑖𝑗

12)𝑛 𝑖, 𝑗 = 1, 2, 6 (2.58)

where 𝜙𝑘,𝑙 (𝑘, 𝑙 = 1𝑡, 1𝑐, 2𝑡, 2𝑐, 12) is a scalar function that describes the individual damage
variable 𝐷𝑖𝑗 in mode 𝑖𝑗. The 𝑞𝑖𝑗

𝑘,𝑙 with (𝑘, 𝑙 = 1𝑡, 1𝑐, 2𝑡, 2𝑐, 12 and 𝑖, 𝑗 = 1, 2, 12) describes the
coupled damage growth of 𝐷𝑖𝑗. Different damage evolution laws can be used to model non-
linear behavior, similar to the damage evolution of unidirectional plies. The damage evolution
law that is used considers two model parameters 𝛽𝑘 and 𝛼𝑘 with
6The damage initiation and diffuse damage initiation terms are used to describe the same phenomenon.
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𝜙𝑘 = { 0 for 𝐻𝑘 ⩽ 0
tanh [𝛽𝑘 (𝑠𝑘 − 𝑠𝑘0)𝛼𝑘] for 𝐻𝑘 > 0 , 𝑘 = 1𝑡, 1𝑐, 2𝑡, 2𝑐, 12 (2.59)

𝛽𝑘 is the driving damage growth parameter and 𝛼𝑘 is a parameter that models the transi-
tion from the elastic to the damaged regime. The 𝑠𝑘0 considers multi-axial stress states and
describes the stress effort when 𝑠 = 1 in mode 𝑗 when it is reached for the first time. For
example, for the uniaxial stress state 𝑠𝑘0 = 1 and for the multi-axial 𝑠𝑘0 < 1. Parameters 𝑞𝑖𝑗

𝑘𝑙
are assumed constant.

To determine the different parameters, uniaxial tests in tension and compression, ultrasonic
wave speed measurements to determine the degradation of stiffness and SEM images to
identify the damage progress, are used. Therefore, the strength values of damage initiation
and ultimate failure are determined from tensile and compression tests. Eventually, 𝑚 = 3
and 𝑛 = 2.5 are chosen as the appropriate values for the interaction parameters. The damage
evolution parameters (𝛽𝑘, 𝛼𝑘, 𝑞𝑖𝑗

𝑘,𝑙) are determined from the non-linear part of the uniaxial
tensile curves and from ultrasonic degradation measurements [29].

Finally, the model is validated based on off-axis tensile tests at 𝜃 = 15𝑜 and 𝜃 = 30𝑜. The
agreement between experimental and predicted results is good and the results are promising
(Figure 2.14). Moreover, the damage initiation and ultimate failure of the composite are closely
predicted by the proposed criteria. Therefore, the development of a phenomenological dam-
age model to predict the anisotropy in the damage behavior of woven composites is proven to
be reasonable. The degradation interactions and different failure modes are important in this
case.

Figure 2.13: Evolution of damage parameters, measured by ultrasonic technique, and the resulted stiffness
degradation [5].
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Figure 2.14: Comparison of the experimental and predicted on- and off-axis tensile curves of woven glass-fiber
composite [5].

Attempts to model wound C/C-SiC and oxide CMCs are presented by Shi et al. [52] and
Shi et al. [51]. The computational models are based on introducing an inelastic deformation
factor in the equations of CLT to calculate the stiffness of the laminate. Moreover, a parameter
that accounts for the manufacturing defects is introduced. The final failure is predicted via
the Tsai-Wu criterion. These reports make an attempt to introduce manufacturing parameters,
e.g., 𝑉𝑓 , fiber orientation and porosity in the model but they are restricted to simulating the
behavior of wound C/C-SiC and ignore plasticity and damage evolution.

After the discussion on the current literature regarding the modeling of CMCs and woven
composites, there are certain conclusions that are worth mentioning. Firstly, the mechanical
behavior of the 2/2 twill weave C/C-SiC has not been extensively studied so far. There are
only a few reports about the tensile and 3-point bending behavior of C/C-SiC and no data
about the compressive behavior except for the case of 𝜃 = 0𝑜. Secondly, there is a lack of
accurate computational models to predict the elastoplastic behavior of woven C/C-SiC. Also,
most of the computational models do not account for the compression, partially due to the lack
of experimental data for C/C-SiC and CMCs in general.

2.6. Research objective
The scientific objective of the current work is to develop a constitutive model to predict the

in-plane mechanical behavior of C/C-SiC. A phenomenological formulation of the damage-
induced plasticity will be used since it results in a computationally efficient approach. Both
tensile and compression in-plane material response will be included in this work. Mechanical
and optical characterization of the material and its fractured surfaces is required since a suf-
ficient number of experimental data is needed to optimize and evaluate the model. Further
research questions are also defined to help achieve the main objective.

1. Can a Tsai-Wu-inspired potential function be used to accurately model the orthotropic
nature of C/C-SiC?

2. How accurately can the failure of C/C-SiC in tension and compression be modeled by
the Tsai-Wu failure criterion combined with a damage evolution law?

3. How does the damage in the CMC evolves during on- and off-axis loading?

4. Which are the failure mechanisms of C/C-SiC in tension and compression?
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Constitutive model

3.1. Macromechanics of composite lamina
Composite materials fall under the category of anisotropic materials. Depending on the

fiber orientation, layup and type of fiber reinforcement these materials can behave differently.
Starting from the general case of an anisotropic material, the stress and strain states are
represented by nine components, respectively. The generalized Hook’s law is given as

𝜎𝜎𝜎 = ℂ 𝜖𝜖𝜖
𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙

(3.1)

where 𝐶𝑖𝑗𝑘𝑙 are the stiffness components with 𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3. In this general case the
stiffness matrix would comprise of 81 elastic constants but due to the symmetry in the stress
and strain tensors (𝜎𝑖𝑗 = 𝜎𝑗𝑖 and 𝜖𝑖𝑗 = 𝜖𝑗𝑖), the number of independent constants reduces to
36. Therefore, the stress-strain relation for an anisotropic material is written as

⎡
⎢⎢⎢⎢⎢
⎣

𝜎11
𝜎22
𝜎33
𝜎23
𝜎31
𝜎12

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16
𝐶21 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26
𝐶31 𝐶32 𝐶33 𝐶34 𝐶35 𝐶36
𝐶41 𝐶42 𝐶43 𝐶44 𝐶45 𝐶46
𝐶51 𝐶52 𝐶53 𝐶54 𝐶55 𝐶56
𝐶61 𝐶62 𝐶63 𝐶64 𝐶65 𝐶66

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝜖11
𝜖22
𝜖33
𝛾23
𝛾31
𝛾12

⎤
⎥⎥⎥⎥⎥
⎦

. (3.2)

The stiffness components can be expressed in the form 𝐶𝑖𝑗 for simplicity. The indepen-
dent components of the stiffness matrix are reduced to 21 due to the stiffness matrix being
symmetric (𝐶𝑖𝑗 = 𝐶𝑗𝑖) [14]. Coming to the case of an orthotropic material, which has three
mutually perpendicular planes of symmetry, the independent stiffness components reduce to
nine. Moreover, when the reference system is taken along the principal material axis, the
stress-strain relation becomes

⎡
⎢⎢⎢⎢⎢
⎣

𝜎11
𝜎22
𝜎33
𝜎23
𝜎31
𝜎12

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

𝐶11 𝐶12 𝐶13 0 0 0
𝐶21 𝐶22 𝐶23 0 0 0
𝐶31 𝐶32 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝜖11
𝜖22
𝜖33
𝛾23
𝛾31
𝛾12

⎤
⎥⎥⎥⎥⎥
⎦

. (3.3)

When an orthotropic material is loaded under the plane stress condition, the out-of-plane
stress components are zero and (3.3) becomes

27
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⎡
⎢⎢⎢⎢⎢
⎣

𝜎11
𝜎22
0
0
0
𝜎12

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

𝐶11 𝐶12 𝐶13 0 0 0
𝐶21 𝐶22 𝐶23 0 0 0
𝐶31 𝐶32 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝜖11
𝜖22
𝜖33
𝛾23
𝛾31
𝛾12

⎤
⎥⎥⎥⎥⎥
⎦

(3.4)

and in the expanded form

𝜎11 = 𝐶11𝜖11 + 𝐶12𝜖22 + 𝐶13𝜖33
𝜎22 = 𝐶12𝜖11 + 𝐶22𝜖22 + 𝐶23𝜖33
0 = 𝐶13𝜖11 + 𝐶23𝜖22 + 𝐶33𝜖33

𝛾23 = 𝛾31 = 0
𝜎12 = 𝐶66𝛾12

(3.5)

by eliminating 𝜖33, the above equations become

𝜎11 = (𝐶11 − 𝐶13𝐶13
𝐶33

) 𝜖11 + (𝐶12 − 𝐶13𝐶23
𝐶33

) 𝜖22 = 𝑄11𝜖11 + 𝑄12𝜖22

𝜎22 = (𝐶12 − 𝐶23𝐶13
𝐶33

) 𝜖11 + (𝐶22 − 𝐶23𝐶23
𝐶33

) 𝜖22 = 𝑄12𝜖11 + 𝑄22𝜖22

𝜎12 = 𝐶66𝛾12 = 𝑄66𝛾12

(3.6)

The reduced stiffness matrix components are defined as

𝑄𝑖𝑗 = 𝐶𝑖𝑗 − 𝐶𝑖3𝐶𝑗3
𝐶33

(𝑖, 𝑗 = 1, 2, 6) (3.7)

so the stress-strain relationship becomes

⎡⎢
⎣

𝜎11
𝜎22
𝜎12

⎤⎥
⎦

= ⎡⎢
⎣

𝑄11 𝑄12 0
𝑄21 𝑄22 0

0 0 𝑄66

⎤⎥
⎦

⎡⎢
⎣

𝜖11
𝜖22
𝜖12

⎤⎥
⎦

(3.8)

or [14]

⎡
⎢⎢⎢⎢⎢
⎣

𝜎11

𝜎22

𝜎12

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐸1
1 − 𝜈12𝜈21

𝜈12𝐸2
1 − 𝜈12𝜈21

0
𝜈12𝐸2

1 − 𝜈12𝜈21

𝐸2
1 − 𝜈12𝜈21

0

0 0 𝐺12

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝜖11

𝜖22

𝜖12

⎤
⎥⎥⎥⎥⎥
⎦

. (3.9)

The studied material consists of layers of (0𝑜/90𝑜)1 2/2 twill weave fabric, so the lamina is
orthotropic with three mutually perpendicular planes of symmetry.

Two coordinate systems are important in this work, the global coordinate system (x-y-z)
of the whole laminate and the local coordinate system (1-2-3) of the plies. In composites,
these are the two most used coordinate systems because each ply often has a different local
coordinate system since the fibers are aligned differently.
1The two tows of the fabric are perpendicular to each other
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Figure 3.1: The two coordinate systems, global (red) and local (blue) coordinate system.

For a thin lamina, the transformation matrix takes the form

𝑇𝑇𝑇 = ⎡⎢
⎣

𝑐2 𝑠2 2𝑐𝑠
𝑠2 𝑐2 −2𝑐𝑠

−𝑐𝑠 𝑐𝑠 𝑐2 − 𝑠2
⎤⎥
⎦

(3.10)

where 𝑐 = cos 𝜃 and 𝑠 = sin 𝜃. Therefore,

⎡⎢
⎣

𝜎11
𝜎22
𝜎12

⎤⎥
⎦

= 𝑇𝑇𝑇 ⎡⎢
⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤⎥
⎦

⎡⎢
⎣

𝜖11
𝜖22
𝛾12

⎤⎥
⎦

= 𝐿𝐿𝐿 ⋅ 𝑇𝑇𝑇 ⋅ 𝑇𝑇𝑇 𝑇 ⎡⎢
⎣

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

⎤⎥
⎦

= ⎡⎢
⎣

𝑐2 𝑠2 𝑐𝑠
𝑠2 𝑐2 −𝑐𝑠

−2𝑐𝑠 2𝑐𝑠 𝑐2 − 𝑠2
⎤⎥
⎦

⎡⎢
⎣

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

⎤⎥
⎦

(3.11)

where

𝐿𝐿𝐿 = ⎡⎢
⎣

1 0 0
0 1 0
0 0 2

⎤⎥
⎦

. (3.12)

For the rotation of the engineering strains the 𝐿𝐿𝐿 matrix is used since the rotation is applied
to tensorial strain (2𝜖12 = 𝛾12). Finally, to transform the stress-strain relation from the local
system to the global system, (3.13) is followed

⎡⎢
⎣

𝜎11
𝜎22
𝜎12

⎤⎥
⎦

= ℚ ⎡⎢
⎣

𝜖11
𝜖22
𝛾12

⎤⎥
⎦

= ⎡⎢
⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤⎥
⎦

= 𝑇𝑇𝑇 𝑇 ⋅ ℚ ⋅ 𝐿𝐿𝐿 ⋅ 𝑇𝑇𝑇 ⋅ 𝐿𝐿𝐿𝑇 ⎡⎢
⎣

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

⎤⎥
⎦

= ℚ̅ ⎡⎢
⎣

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

⎤⎥
⎦

(3.13)

where ℚ̅ is the reduced transformed stiffness matrix.

3.2. Constitutive model
The classical laminate theory and the reduced stiffness matrix that was mentioned in Sec-

tion 3.1 refer to the linear regime of composites, which is the elastic regime of the laminate.
Various composites and CMCs, present nonlinear stress-strain behavior, especially under off-
axis loading directions. This nonlinearity is a result of damage-induced plastic strains that are
developed as the stress is increased. To model this behavior, plasticity and a damage model
based on continuum damage mechanics are used.
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Continuum damage mechanics is a branch of mechanics based on the theory of elastic-
ity that deals with the study of the progressive deterioration of materials under the action of
external forces. The material is considered to be a continuous medium, and the damage is
modeled as a field variable that evolves over time. In this theory, the material is considered to
be an elastic solid, which means that it can recover its original shape after the external forces
are removed. However, in the case of damage, the material is no longer able to recover its
original shape, and the damage accumulates over time. This progressive deterioration of the
material is modeled using the concept of a damage variable, which represents the amount of
damage that has occurred in the material. Mathematical models are used to describe the evo-
lution of the damage variable over time. These models are based on principles of mechanics
and thermodynamics, and they take into account factors such as material properties, loading
conditions, and the state of the damage. In this section, the damage evolution laws and the
two-dimensional plasticity model are discussed.

3.2.1. Damage evolution
Damage has a significant contribution to the mechanical behavior of fiber-reinforced mate-

rials with non-ductile matrices. The irreversible formation and evolution of microcracks, cause
primarily stiffness degradation and small permanent deformations. To study this phenomenon,
a set of variables, denoted as damage variables, is introduced to characterize the state of
anisotropic damage within the homogenized continua theory. These damage variables are
treated as phenomenological internal variables since they have no direct relation to the mi-
cromechanics of crack and void formation and evolution. Due to the phenomenological intro-
duction of damage, different states of damage are needed for each stress sign. The growth
of defects under tension and under compression is different. Therefore, a set of defects has
a different influence on the effective elastic properties of the material under different loading
directions [41].

It is important to mention the constitutive assumptions that hold in the model:

1. Plane stress condition is assumed.

2. The effective elastic properties on the loading and unloading path, depending on the
current state of damage variables.

3. The orthotropic nature of the composite does not change during the damaging process.
This means that the defects are treated as disk-like cracks and they are oriented longitu-
dinal and transverse to the fiber direction. So, the material symmetry remains the same
for all damage states.

4. Is possible for the damage parameters to take different values for tension and compres-
sion.

5. The state of damage is unchanged in the elastic regime. The proportionality limit (dam-
age threshold) determines the size of the elastic regime.

6. The evolution of damage is governed by 𝜎𝜎𝜎 and the damage variables. The damage
variables increase monotonically with stress since no damage recovery is assumed.

In continuum damage mechanics, only the undamaged area of the cross-section carries
the load. Therefore, the effective stresses 𝜎𝜎𝜎𝑒, are defined and refer to the net cross-section
area of the damaged medium. The failure criteria hold in terms of the effective stresses 𝜎𝜎𝜎𝑒,
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rather than the nominal stresses 𝜎𝜎𝜎. The nominal stress can be expressed as a function of the
effective stress as

𝜎𝜎𝜎 = (𝕀 − 𝐷𝐷𝐷) 𝜎𝜎𝜎𝑒 (3.14)

where 𝐷𝐷𝐷 is the damage tensor and 𝕀 is the identity tensor. Three non-negative damage
parameters are defined for the two-dimensional plane stress condition, 𝐷11, 𝐷22 and 𝐷66

2.
These damage parameters are components of the damage tensor. Therefore, (3.14) can be
expressed in the extended form as

⎡
⎢⎢⎢⎢⎢
⎣

𝜎11
𝜎22
𝜎33
𝜎23
𝜎31
𝜎12

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

1 − 𝐷11 0 0 0 0 0
0 1 − 𝐷22 0 0 0 0
0 0 1 − 𝐷33 0 0 0
0 0 0 1 − 𝐷44 0 0
0 0 0 0 1 − 𝐷55 0
0 0 0 0 0 1 − 𝐷66

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝜎𝑒11
𝜎𝑒22
𝜎𝑒33
𝜎𝑒23
𝜎𝑒31
𝜎𝑒12

⎤
⎥⎥⎥⎥⎥
⎦

(3.15)

or in the plane stress condition,

⎡⎢
⎣

𝜎11
𝜎22
𝜎12

⎤⎥
⎦

= ⎡⎢
⎣

1 − 𝐷11 0 0
0 1 − 𝐷22 0
0 0 1 − 𝐷66

⎤⎥
⎦

⎡⎢
⎣

𝜎𝑒11
𝜎𝑒22
𝜎𝑒12

⎤⎥
⎦

. (3.16)

The two damage parameters 𝐷11 and 𝐷22 take different values for tension and compres-
sion, 𝐷1𝑡, 𝐷1𝑐 and 𝐷2𝑡, 𝐷2𝑐, while the shear damage parameter is independent of the sign of
shear stress [41].

The constitutive relation is given by

𝜎𝜎𝜎 = ℚ 𝜖𝜖𝜖𝑒 (3.17)

where 𝜖𝜖𝜖𝑒 is the elastic strain. Moreover, (3.17) can be expressed in terms of total strain
and plastic strain as

𝜎𝜎𝜎 = ℚ (𝜖𝜖𝜖 − 𝜖𝜖𝜖𝑝) (3.18)

where 𝜖𝜖𝜖𝑝 is the plastic strain. These relations can be modified to be expressed in terms of
effective stresses. From the compliance relationship for plane stress orthotropic elasticity, the
elastic strains are given by

⎡
⎢⎢⎢⎢⎢
⎣

𝜖𝑒
11

𝜖𝑒
22

𝛾𝑒
12

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
𝐸11(1 − 𝐷11) − 𝑣21

𝐸22
0

− 𝑣12
𝐸11

1
𝐸22(1 − 𝐷22) 0

0 0 1
𝐺12(1 − 𝐷66)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

𝜎11

𝜎22

𝜎12

⎤
⎥⎥⎥⎥⎥
⎦

(3.19)

and the inverse of the compliance matrix exists while 𝐷11, 𝐷22, 𝐷66 < 1, so the damaged
stiffness matrix is given by
2Six non-negative damage parameters are defined for the three-dimensional case.
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ℚ𝑑 = 1
𝑡

⎡⎢
⎣

𝐸11 (1 − 𝐷11) 𝜈21𝐸11 (1 − 𝐷11) (1 − 𝐷22) 0
𝜈12𝐸22 (1 − 𝐷11) (1 − 𝐷22) 𝐸22 (1 − 𝐷22) 0

0 0 𝑡𝐺12 (1 − 𝐷66)
⎤⎥
⎦

(3.20)

with 𝑡 = 1 − 𝜈12𝜈21(1 − 𝐷11)(1 − 𝐷22).

At this point, it is important to mention some remarks on the compliance and stiffness
matrix of equations (3.19) and (3.20). Firstly, the term 1/𝐸11(1−𝐷11) depends on the damage
parameter in the 1-principal direction and is independent of the damage parameter in the 2-
principal direction. The same holds for the 1/𝐸22(1 − 𝐷22) parameter, which is independent
of the 𝐷11 parameter. Secondly, the Poisson’s ratio 𝜈12 is not affected by the evolution of the
damage parameters as it is reported by Nuismer [43], Carlsson et al. [8] and Matzenmiller
et al. [41]. Moreover, the equality 𝜈12/𝐸11 = 𝜈21/𝐸22 remains valid for both the pristine and
damaged material. Thirdly, the elastic response of the material between shear stresses and
strains is assumed linear as well.

Regarding the growth functions of the damage variables, they need to be carefully chosen
in order to satisfy certain requirements. The growth functions should allow the damage vari-
ables to grow independently of each other or an appropriate coupling should exist between
them. In continuum damage mechanics the evolution laws need to be consistent with the first
and second thermodynamic laws [2]. The elastic strain energy, per volume due to damage
evolution is given by

Ψ(𝜎𝜎𝜎,𝐷𝐷𝐷) =1
2 [ 𝜎2

11
𝐸11 (1 − 𝐷11) + 𝜎2

22
𝐸22 (1 − 𝐷22) − ( 𝜈12

𝐸11
+ 𝜈21

𝐸22
) 𝜎11𝜎22 + 𝜎2

12
𝐺12 (1 − 𝐷66)] .

(3.21)
The thermodynamic forces are given by

𝑌𝑌𝑌 = 𝜕Ψ
𝜕𝐷𝐷𝐷 = 1

2 𝜎𝑇𝜎𝑇𝜎𝑇 𝜕𝕊𝑑

𝜕𝐷𝐷𝐷 𝜎𝜎𝜎; 𝑌11 = 𝜎2
11

2𝐸11 (1 − 𝐷11)2 ; 𝑌22 = 𝜎2
22

2𝐸22 (1 − 𝐷22)2

𝑌66 = 𝜎2
12

2𝐺12 (1 − 𝐷66)2 .
(3.22)

The inelastic contributions to the strain energy are not taken into account, since no evo-
lution of damage is assumed in the stress-free body. This phenomenon can be significant in
the case of damage induced by environmental factors.

Some remarks on the energy release rates 𝑌𝑌𝑌 , are that all components are positive and
each stress component corresponds to one component of the thermodynamic forces. Since
the thermodynamic forces are always positive, the damage model is thermodynamically ad-
missible when (3.23) is fulfilled [2] [42]

𝑌𝑌𝑌 𝐷𝐷𝐷 ≥ 0. (3.23)
Moreover, this condition is satisfied when the damage variables are positive and are always

increasing. This remark gives room for a more simplified model for damage evolution.

To determine the evolution functions of the model, the reported damage mechanisms in
CMCs are studied. As it is mentioned in Section 2.3.4, the random distribution of defects
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in CMCs and ceramic materials and brittle nature results in a statistical distribution of the
ultimate strength of the composite [13] [53]. The failure probability can be considered as the
measurement of the damage state of the composite under stress [65]. In many studies, an
exponential function, similar to the Weibull distribution function, is used to account for this
phenomenon [33] [40] [66] [49] [48] as well as the randomness of breaking thresholds [46]. In
this study, the proposed damage evolution function is given by [63]

𝐷𝑖 = 𝐴𝑖 (1 − exp [− (𝑅𝑚𝑖
𝑖

𝑚𝑖𝑒
)]) 𝑖 = 1𝑡, 1𝑐, 2𝑡, 2𝑐 (3.24)

where 𝐴𝑖, 𝑚𝑖 and 𝑒 are constants that correspond to the maximum degradation value of
the current damage mode, the material response and Napier’s constant, respectively. The
damage state functions 𝑅𝑖 are given by

𝑅𝑖 =

⎧{{{{{{
⎨{{{{{{⎩

(𝜎11
𝐹1𝑡

)
2

for 𝑖 = 1𝑡

(𝜎22
𝐹2𝑡

)
2

for 𝑖 = 2𝑡

(−𝜎11
𝐹1𝑐

)
2

for 𝑖 = 1𝑐

(−𝜎22
𝐹2𝑐

)
2

for 𝑖 = 2𝑐

(3.25)

Four independent damage variables and evolution functions are defined, one for each
mode. Coupling between different modes is considered in order to calculate the directional
damage variables. As it is reported by Li et al. [35], coupling between damage variables
exists and it can be significant, therefore, it needs to be taken into account. For example,
the damage in the 1-principal material direction is affected by the value of 𝐷1𝑡 and 𝐷66 which
are the damage variables of tension along the 1-direction and shear or the 𝐷1𝑐 and 𝐷66 for
compression. Based on that, the damage variables can be expressed as

𝐷11 = [1 − (1 − 𝐷1𝑡)(1 − 𝐷1𝑐)] + 𝛼66𝐷𝛽66
66

𝐷22 = [1 − (1 − 𝐷2𝑡)(1 − 𝐷2𝑐)] + 𝛼66𝐷𝛽66
66

𝐷66 = 1 − (1 − 𝐷1𝑡)(1 − 𝐷2𝑡)(1 − 𝐷1𝑐)(1 − 𝐷2𝑐)
(3.26)

where 𝛼66 and 𝛽66 are proportional constants. Experimentally, a quantitative analysis can
be performed to analyze the damage characteristics of the material [34]. To measure the
damage state, the degradation ratio of the damaged modulus to the initial, undamaged elastic
modulus is given by

𝐷 = 1 − 𝐸𝑑

𝐸𝑜 (3.27)

and it is measured from the loading and unloading cyclic stress-strain curve. Hysteresis
effects are not considered in the current study. The most important characteristics of the cyclic
stress-strain curves are presented in Figure 3.2.
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Figure 3.2: Main characteristics of the cyclic stress-strain curve.

3.2.2. Plasticity model
In the current section, the plasticity model used in the model is discussed. Plasticity is

expressed through the yield function, which is a function of the plastic potential and the hard-
ening law. Any stress or strain state lies within the linear regime or on the boundary of the
yield surface. A yield function is a scalar function that describes the limit of elastic deformation
for a material before it begins to yield (i.e., undergo plastic deformation). It is used to predict
the onset of plastic deformation in a material under various loading conditions and is often
used in conjunction with a potential function3 to describe the behavior of the material during
plastic deformation. It is defined in the stress or strain space. Below two potential functions
are presented and compared.

First, a generalized quadratic potential function, 𝑔, can be used for orthotropic materials
and is defined as [44]

2𝑔(𝜎𝜎𝜎) = 𝛼11𝜎2
𝑒11 + 𝛼22𝜎2

𝑒22 + 𝛼33𝜎2
𝑒33+

+ 2𝛼12𝜎𝑒11𝜎𝑒22 + 2𝛼13𝜎𝑒11𝜎𝑒33 + 2𝛼23𝜎22𝜎33+
+ 2𝛼44𝜎2

23 + 2𝛼55𝜎2
13 + 2𝛼66𝜎2

12

(3.28)

and for the two-dimensional case of plane stress, the equation is simplified to

2𝑔(𝜎𝜎𝜎) = 𝛼11𝜎2
𝑒11 + 𝛼22𝜎2

𝑒22 + 2𝛼12𝜎𝑒11𝜎𝑒22 + 2𝛼66𝜎2
12 (3.29)

The yield function, 𝑓 , can be defined as

𝑓 = 𝑔(𝜎𝜎𝜎) − 𝑘(𝜖𝑝) (3.30)

where 𝑘(𝜖𝑝) is a function that describes the isotropic hardening with the property 𝑘(𝜖𝑝 =
0) = 1 .The plastic strains are given by the associated flow rule

̇𝜖𝜖𝜖𝑝 = 𝜕𝑓
𝜕𝜎𝜎𝜎𝑒

𝜆̇ (3.31)

The derivatives of the yield function are given by

3A potential function is used to describe the internal state of a material during plastic deformation, while a yield
function is used to predict the onset of plastic deformation.
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𝜕𝑓
𝜕𝜎𝑒11

= 𝛼11𝜎𝑒11 + 𝛼12𝜎𝑒22

𝜕𝑓
𝜕𝜎𝑒22

= 𝛼22𝜎𝑒22 + 𝛼12𝜎𝑒11

𝜕𝑓
𝜕𝜎𝑒12

= 2𝛼66𝜎𝑒12

(3.32)

Let the equivalent stress be defined as

𝜎 = √3𝑔. (3.33)
while the equivalent plastic strain is defined as4

̇𝜖𝑝 = 2
3𝜎𝜆̇. (3.34)

For the case of 2/2 twill weave fabric, the 𝛼11 = 𝛼22 since the anisotropy in the 1- and
2-axis is the same. Therefore, (3.29) becomes

2𝑔(𝜎𝜎𝜎) = 𝛼11𝜎2
𝑒11 + 𝛼11𝜎2

𝑒22 + 2𝛼12𝜎𝑒11𝜎𝑒22 + 2𝛼66𝜎2
12 (3.35)

Moreover, the hardening law of the composite is established by the power-law function

𝑘(𝜖𝑝) = (𝜖𝑝

𝐴 )
𝑛−1

(3.36)

where 𝑛 is a strain hardening coefficient (no units) and 𝐴 is a strength coefficient [MPa−𝑛].
Both of these parameters are hardening constants.

A second function that can be used as a potential function is the equation of the Tsai-Wu
criterion. The use of a failure criterion as a potential function has been reported before [41].
The function used in the present work is given by

𝑔(𝜎𝜎𝜎) = 𝑓1𝜎𝑒11 + 𝑓2𝜎𝑒22 + 𝑓11𝜎2
𝑒11 + 𝑓22𝜎2

𝑒22 + 𝑓66𝜎2
𝑒12 + 2𝑓12𝜎𝑒11𝜎𝑒22 (3.37)

and the coefficients are given by (2.6) and (2.8). The advantage of this equation is that it
includes coupling parameters between the stress components and the coefficients are directly
related to the strength of the material. Moreover, the Tsai-Wu criterion is proven to describe
the behavior and failure of orthotropic materials with reasonable accuracy, therefore, the onset
of plasticity is better predicted through this equation.

The complete yielding function is again described by (3.30) and the plastic strains by (3.31).
A hardening law that follows a power-law function is established in this case as well given by
(3.36). The coefficients in (3.37) are expressed in terms of the proportionality limit values to
indicate the onset of plasticity. Therefore, the coefficients become

𝑓𝑜
1 = 1

𝐹 𝑜
1𝑡

− 1
𝐹 𝑜

1𝑐
, 𝑓𝑜

11 = 1
𝐹 𝑜

1𝑡𝐹 𝑜
1𝑐

𝑓𝑜
2 = 1

𝐹 𝑜
2𝑡

− 1
𝐹 𝑜

2𝑐
, 𝑓𝑜

22 = 1
𝐹 𝑜

2𝑡𝐹 𝑜
2𝑐

𝑓𝑜
66 = 1

𝐹 𝑜
6

2 , 𝑓𝑜
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4The analytical explanation is presented in Appendix A.
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The ultimate strength values are used to determine the final failure of the material after
hardening occurred.

Regarding the plasticity model, some assumptions hold and they are presented below:

• Yield surface growth and translation are assumed.

• Linear elastic behavior is assumed followed by plastic behavior with isotropic and kine-
matic hardening.

• Small strains and plane stress conditions are assumed.

In order for the yield function to grow and translate, it has to be dependent on the accumu-
lated plastic multiplier and back stress. These are internal history variables that evolve with
plastic deformation. Moreover, the strain tensor can be split into an elastic contribution and
a plastic contribution, 𝜖𝜖𝜖 = 𝜖𝜖𝜖𝑒 + 𝜖𝜖𝜖𝑝 with the plastic strain being an internal (history) variable.
The elastic properties of the material are given by the reduced stiffness matrix and the linear
elastic behavior is given by (3.17). The plastic properties are described via the yield func-
tion 𝑓(𝜎𝜎𝜎, 𝜆,𝐷𝐷𝐷,𝜎𝜎𝜎𝑏𝑎𝑐𝑘). The evolution of plastic strains is governed by the plastic evolution law
given by (3.31). The plastic evolution law has to fulfill the Kuhn-Tucker loading and unloading
conditions

𝑓 ≤ 0, 𝜆̇ ≥ 0, 𝑓𝜆̇ = 0 (3.39)

and the consistency equation

𝑓 = 0, ̇𝑓𝜆̇ = 0 (3.40)

Finally, the isotropic hardening equation is given by

𝑘(𝜆) = ( 𝜆
𝐴)

𝑛−1

(3.41)

and the kinematic hardening [1] by the Armstrong-Frederick kinematic hardening equation,
which is defined as

̇𝜎𝜎𝜎back = 𝐻1 ̇𝜖𝜖𝜖𝑝 − 𝐻2𝜆̇𝜎𝜎𝜎back. (3.42)

𝐻1 [GPa] and 𝐻2 (dimensionless) are the unknown, non-negative material constants. Fi-
nally, the relative principal stresses are given by 𝜎𝜎𝜎rel = 𝜎𝜎𝜎 − 𝜎𝜎𝜎back.

The two potential functions presented above can be used to determine the catastrophic
failure of the material. The main difference between them is that the quadratic potential func-
tion does not include the anisotropy between tension and compression. The failure envelope
is symmetric to both axes. The Tsai-Wu failure envelope accounts for the difference in tensile
and compression of the material and therefore, the envelope is asymmetric. A comparison
of the two envelopes is presented in Figure 3.3. This asymmetry results in an elongated part
of the curve in the third quadrant (compression). In general, the different anisotropic failure
criteria used in composites differ mostly in the third quadrant and this should be considered
when selecting a criterion. In this study, the Tsai-Wu equation is used as a potential func-
tion due to this asymmetry in the material behavior. Another reason for choosing the Tsai-Wu
function is that its coefficients are directly related to the strength of the material which can be
experimentally obtained.
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Isotropic hardening is related to the way the envelope surface or yield surface develops. In
the case of isotropic hardening, the yield surface grows in size isotropically in every direction
as a response to the material flow. Figure 3.3 shows an example of the isotropic growth of
the two surfaces. In kinematic hardening, the yield surface is shifting or translating instead
of growing. Kinematic hardening models capture better the behavior of the material when it
is subjected to tension-compression loading cycles. When a material is loaded in tension-
zero-tension loading cycles (same direction), isotropic hardening is adequate. An indicator of
kinematic hardening is the stress-strain behavior after the material is loaded in tension over
the yielding point and then loaded in compression over the yielding point in compression. The
yielding point in compression in this case will be different than the one in tension. Finally, a
mixed hardening model is often used in the literature, with isotropic and kinematic hardening
acting at the same time. This type of hardening is used in this study as well.

Figure 3.3: Schematic representation of the failure envelopes of the Tsai-Wu and the quadratic potential and the
expansion of the corresponding envelopes.

3.3. Implementation in Python

The damage and plasticity models presented in Section 3.2, need to be combined and
implemented in a computational procedure. This procedure is developed in Python. The most
important part of the plasticity models is their approach to calculating the plastic multiplier or
equivalently the plastic strain. Calculating the plastic multiplier through the analytical plasticity
equations can be a difficult and inefficient approach. In computational mechanics, plasticity
problems are typically solved iteratively. In this study, a numerical method named return map-
ping algorithm is used to update the internal state of material during plastic deformation [18]
[56] [23].
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Figure 3.4: Schematic representation of the return mapping algorithm. (a) Representation of the algorithm in the
stress space and (b) how the algorithm predicts the stress-strain curve.

The basic idea behind the return mapping algorithm is to determine the amount of plastic
strain that has occurred in a material under a given set of loading conditions. This is done
by comparing the current stress state to the yield surface via the yield function. If the current
stress state is within the yield surface, the material is still in the elastic range and no plastic
deformation has occurred. If the current stress state is outside the yield surface, the material
has undergone plastic deformation, and the return mapping algorithm is used to determine the
amount of plastic strain that has occurred. The algorithm starts by assuming an initial guess
for the plastic strain increment and calculates the corresponding stress increment using the
material’s constitutive equation. If the stress increment is greater than the yield stress, the
material has undergone plastic deformation, and the plastic strain increment is adjusted based
on the material’s yield function. A schematic of the algorithm in the stress state and how the
algorithm predicts the stress-strain curve is presented in Figure 3.4.

The overall approach is based on strain incrementation. Firstly, all history variables ℎℎℎ =
{𝜖𝜖𝜖𝑝, 𝜆,𝐷𝐷𝐷,𝜎𝜎𝜎𝑏𝑎𝑐𝑘} and the reduced stiffness matrix are collected and initiated. Secondly, the
strain in the global coordinate system5, 𝜖𝜖𝜖𝑡, is increased. A prediction of the stress, 𝜎𝜎𝜎𝑡,trial, is
calculated based on the assumption that the material is in the elastic regime and no evolution
of damage and plastic strain has occurred. Therefore, the history variables are equal to those
of the previous time step. The stress in the global coordinate system is calculated from𝜎𝜎𝜎𝑡,trial =
ℚ𝑑(𝜖𝜖𝜖𝑡 −𝜖𝜖𝜖𝑝

𝑡,trial). The equivalent stress in the principal material system is calculated through the
rotation matrix (3.11). Based on this stress, the yield function 𝑓(𝜎𝜎𝜎𝑡,trial,ℎℎℎ𝑡,trial) is calculated.
If the yield function is less or equal to zero the trial stress is permissible and no evolution or
correction of the plastic strain is required. If the yield function is greater than zero the trial stress
is not permissible and the evolution of plastic strain occurs. The stress and plastic multiplier
take some guess values and the 𝜖𝜖𝜖𝑝

𝑡 , Δ𝜆 and 𝜎𝜎𝜎back need to be calculated so that 𝑓 = 0, (3.31),
(3.41) and (3.42) are satisfied. These equations are re-written in the following form [18]

𝜖𝜖𝜖𝑝
𝑡 = 𝜖𝜖𝜖𝑝

𝑡−1 + Δ𝜆𝑡 𝜕𝑓 𝑡

𝜕𝜎𝜎𝜎
(𝜎𝜎𝜎back )𝑡 = (𝜎𝜎𝜎back )𝑡−1 + 𝐻kin

1 Δ𝜆𝑡 𝜕𝑓𝑡

𝜕𝜎 − 𝐻kin
2 Δ𝜆𝑡 (𝜎𝜎𝜎back )𝑡

(3.43)

5The externally applied strain is always in the global (laminate) coordinate system
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with 𝜖𝜖𝜖𝑝
𝑡 = 𝜖𝜖𝜖𝑡 − 𝕊d

𝑡 𝜎𝜎𝜎𝑡. This system of non-linear equations can be solved iteratively for
𝜎𝜎𝜎𝑡, Δ𝜆 and Δ𝜎𝜎𝜎back. It should be noted that the system of equations above refers to the local
coordinate system, so all the required rotations should be considered. After the corrected
stress and plastic strain values are obtained, the damage variables are calculated based on
(3.24), (3.25) and (3.26) and the damaged stiffness matrix is updated. The history variables
are updated and stored to be used in the next iteration. Finally, the equation of the final failure
is calculated and checked and if the value is greater than zero the whole approach is stopped.
If no final failure has occurred the procedure is followed again until failure occurs. It should be
noted that the elastic properties in the developed model, are expressed in GPa so the stresses
and strength values are expressed in GPa for consistency reasons.
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Figure 3.5: Flow chart of the algorithm for the calculation of 𝜎𝜎𝜎 = 𝑓(𝜀𝜀𝜀) curve.



4
Material testing

Understanding the in-planemechanical behavior and the damage characteristics of 2/2 twill
weave C/C-SiC is one of the objectives of this work. Mechanical tests are important not only
to characterize the behavior of the material, which is not extensively studied in the literature
but also to obtain the necessary data to be used in the material model. On the other hand,
optical characterization is important to study the microstructure and validate that the infiltration
of silicon was successful and resulted in the desired microstructural characteristics. Moreover,
the fractured surfaces of the tested samples are studied to identify the failure mechanisms of
C/C-SiC.

4.1. Specimens preparation

A number of specimens were produced and tested under in-plane monotonic and cyclic
tension and compression loading, in order to study the mechanical behavior and damage
evolution law of C/C-SiC. The angle 𝜃, between fibers and loading direction, are 0𝑜, 30𝑜 and
45𝑜 in tension and in compression.

For specimen preparation, six C/C-SiC plates were manufactured from which the speci-
mens were cut via waterjet-cutting. The manufacturing route is the same as the one described
in Section 2.3.1. Specifically, two CFRP plates were manufactured via the autoclave technique
and four via the warm-press technique. The pyrolysis and siliconization stages were followed
and finally, the six CMC plates were produced. X-ray images of the plates were taken after
the LSI process to validate that the silicon infiltration was uniform across the plates. Finally,
the test specimens were cut from the plates via water-jet cutting. A schematic of the manufac-
turing timeline is presented in Figure 4.1. Pictures of the manufactured plates are presented
in Appendix B.

41
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Figure 4.1: Timeline of the preparation of the specimens.

The dimensions of the tensile and compression test specimens are presented in Figure
4.2. These dimensions follow the DIN EN 658-1 and DIN EN 658-2 standards, respectively.
Non-straight-sided test specimen geometry is chosen for the tensile tests over the straight-
sided specimen geometry because it is more appropriate for determining the strength of the
material, according to DIN EN 658-1.

Figure 4.2: (a) Schematic of the tension specimens and (b) schematic of the compression specimens.

A unique name is given to every test specimen. The letters M and C refer to monotonic
or cyclic loading, the letters T and C refer to tensile or compressive load, and the numbers 0,
30 and 45 refer to the angle 𝜃 between the fibers and the loading direction, respectively. For
example, the MT3-30 refers to a specimen that is loaded with monotonic tensile load, is the
third specimen of the batch and the angle between the loading direction and the fibers is 30𝑜.

As it is mentioned six CMC plates were manufactured in total. For the two of them, the
autoclave technique was used to produce the CFRP preform and for the rest of them the
warm-press technique was used. The only difference between the manufactured plates is at
the first manufacturing stage. The pyrolysis and siliconization cycle that was used, was the
same for all the plates. Therefore, not all the specimens are manufactured from the same
plate. Even though two different techniques were used in the first stage of the manufacturing
process, the density, porosity and fiber volume fraction is kept within the same range of values.
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This is critical to assure that all the different specimens have the same microstructural proper-
ties. In Table 4.1 the actual values of the micromechanical parameters and the manufacturing
technique that was used for the production of each specimen, are presented.

Micromechanical properties
Specimen Process Density [g/cm3] Porosity [%] 𝑉𝑓 [%]

MT#-0, CT#-0 Autoclave 1.86 1.91 53
MT#-30, CT#-0 Warm-press 1.88 2.33 56
MT#-45, CT#-45 Warm-press 1.87 1.98 55
MC#-0, CC#-0 Autoclave 1.85 2.02 56

MC#-30, CC#-30 Warm-press 1.87 1.98 57
MC$-45, CC#-45 Warm-press 1.87 1.81 56

Table 4.1: Density, porosity and fiber volume fraction of the manufactured specimens.

4.2. Scanning electron microscopy
It is important to study the resulting microstructure of the tested material/specimens in

order to validate that it is the same as the one presented in the literature. It is also important
to check for any differences between the plates manufactured via autoclave and warm-press
processes and finally study the fractured surfaces of the tested specimens. SEM is used to
obtain magnified pictures of the microstructure and fractured surfaces.

Small pieces of material from every plate are used to prepare SEM samples. For the sam-
ple preparation, a conductive resin (Technovit 5000) was used to embed the material. Then
the samples were sanded and polished in order to flatten the studied surfaces and remove
most of the scratches that were present. Before the samples are placed in the SEM, they
need to be cleaned with isopropanol and be out-gassed in the out-gassing chamber. SEM
(Jeol JSM IT-100) is used with energy-dispersive X-Ray spectroscopy (EDS).

The microstructure of the specimens manufactured via autoclave and of those manufac-
tured via warm-press are similar. The two microstructures are presented in Figure 4.3. The
main characteristics are the C/C areas (black) and the SiC areas (grey). The samples present
vertical SiC areas as a result of the infiltrated Si inside the fiber bundle cracks of the C/C pre-
form. Consequently, the fiber bundles are separated in C/C blocks which are surrounded by
SiC. Some of these vertical cracks are formed during the manufacturing of the CFRP part and
some of them after the pyrolysis step due to the shrinkage of the material. Both microstruc-
tures present more vertical SiC areas than themicrostructure presented in the literature though
(Figure 2.4). The samples produced via warm-press presents also wide SiC areas that are
extended horizontally. These SiC isles are mostly located in the area between the fiber bun-
dles. This means that the CFRP part manufactured via the warm-press technique presented
gaps in the resin that were filled with Si after siliconization.

A closer examination of the SiC areas shows that Si has only reacted with C close to the
filaments while Si further away is unreacted. As a result, a thin layer of SiC is formed next
to the C/C areas. This observation is validated by the EDS measurements at three different
locations (see Appendix C, Figure C.11). Indeed, the light grey areas are almost entirely Si, the
dark grey areas are SiC and the black areas are the carbon reinforcement. Moreover, inside
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Figure 4.3: SEM pictures of the specimens manufactured via (a) autoclave process and (b) warm-press process

the fiber bundle, the filaments are surrounded by dark C areas as a result of the pyrolysis
stage, therefore these areas are referred to as C/C areas (Figure 4.4).

Overall, the microstructure of the tested material is similar to the one presented in the
literature. SiC and Si areas are visible in the material and SiC is located close to the C/C
areas as it was expected. The fiber bundle is divided into C/C blocks that are surrounded by
SiC/Si areas. A larger number of C/C blocks is observed compared to the literature and in
some of the specimens, the SiC/Si areas are more extended. Furthermore, the SiC areas in
the SiC/Si isles are narrower than the SEM pictures presented in the literature (Section 2.4).
This means that Si did not react efficiently with C to convert into SiC.
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Figure 4.4: SEM picture of the SiC area with higher magnification. The Si (light grey) and SiC (dark grey) area
are apparent.

4.3. Mechanical testing
Through mechanical tests, the material response is studied and correlated to the mi-

crostructure that was presented in Section 4.2. All four types of mechanical tests (mono-
tonic and cyclic, tensile and compression tests) were conducted on a 10-kN Zwick/Roell Z010
machine at room temperature, pictures of which are presented in Appendix C. A position-
controlled testing mode with a deformation rate of 1.0 [mm/min] was used. For the cyclic
tensile tests, certain force limits were set in order to obtain the loading and unloading cycles.
The lower force limit was always at 0 N and the upper force limit was initialized at 200 N and
was increased by 200 N after each cycle. For the cyclic compression tests the lower force limit
was 0 N, and the upper limit started at 400 N and was increased by 400 N after every cycle.
For the gripping of the specimens, wedged-type grip faces were used for the tensile tests and
flat plates for the compression tests. An extensometer was used during the tensile tests to
measure the strain while the deformation was measured from the load cell in the compression
tests. Due to the lack of available extensometers for the compression tests, the strain had to
be calculated from the measured deformation. In order to promote the accuracy of the results,
at least five valid measurements were obtained for each case according to the DIN standards.

4.3.1. Tensile tests
The monotonic and cyclic tensile response of the material is presented first. The load and

strain data were simultaneously recorded during the tests and the stress was calculated for
every measurement by dividing the recorded load, F [N], with the cross-section, A [mm2], of
each specimen, 𝜎 = 𝐹/𝐴 [MPa].

When the angle 𝜃 between the loading direction and the 1-principal material direction is
0𝑜 the response of the material in the monotonic loading is slightly non-linear (Figure 4.5). A
small linearly elastic regime can be identified at small stresses, typically between 0−20 [MPa]
and after that, the response is non-linear. The failure is brittle and abrupt.

For 𝜃 = 0𝑜 the material response in cyclic loading is presented in Figure 4.6. Narrow
hysteresis loops are observed in this case which means that a small amount of energy is lost
during the cycles in the form of heat. The dissipated energy for each cycle is given by the
area between the loading and unloading curves. Moreover, upon reloading the apparent yield
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strength is equivalent to the maximum stress seen in the previous loading sequence.

Figure 4.5: Monotonic tensile stress-strain curves of C/C-SiC with 𝜃 = 00.

Figure 4.6: A typical cyclic tensile stress-strain curve of C/C-SiC with 𝜃 = 00.

All tested specimens present relatively flat fracture surfaces (Figure 4.7 (a)). Analysis of
the fractured surfaces shows that for specimens with 𝜃 = 0𝑜, the effect of pull-out of the C/C
blocks and fibers is dominant (Figure 4.7). These C/C blocks are surrounded by SiC matrix
and they are debonded from the interface as the load increases. Finally, they are pulled out
resulting in protruding fiber blocks or cavities in the fractured surface. Moreover, cracks are
observed in the matrix areas and the surface pattern indicates that a brittle fracture occurred.
It should be mentioned that the specimens used in this case (𝜃 = 0𝑜) were manufactured via
the autoclave technique.
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Figure 4.7: (a) Fractured tensile specimen for the case of 𝜃 = 0𝑜 and (b) SEM picture of the fractured surface.
The red arrows show the pull-out of C/C blocks and the white arrows the fracture surface of the matrix areas.

In the case of 𝜃 = 30𝑜 the material response is almost completely non-linear (Figure 4.8). A
linear elastic regime is difficult to be identified in this case. Furthermore, the hysteresis loops
are wider which indicates higher dissipated energy and the resulting plastic strains are larger.

Figure 4.8: Monotonic tensile stress-strain curves of C/C-SiC with 𝜃 = 300.

Most of the tested specimens present relatively flat fracture surfaces with some protrud-
ing fiber bundles (Figure 4.10). Pull-out effect of fibers and fiber bundles is also apparent in
this case, especially for bundles along the 30𝑜 angle which are closer to the direction of the
applied load. The propagated cracks are deflected slightly by the fibers but no extended 30𝑜

or 60𝑜 fracture planes are observed. Once the cracks reach the C/SiC interface they cause
debonding of the interface and shortly after, the rapture of the C/C block occurs.
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Figure 4.9: A typical cyclic tensile stress-strain curve of C/C-SiC with 𝜃 = 300.

Figure 4.10: (a) Fractured tensile specimen for the case of 𝜃 = 30𝑜 and (b) SEM picture of the fractured surface.

The final case for the tensile tests is the case of 𝜃 = 45𝑜. A completely non-linear response
of the material is observed in this case as well (Figure 4.11). Identifying a linear elastic regime
is again difficult since no apparent linearity exists. The hysteresis loops are similar to the ones
of case 𝜃 = 30𝑜 but wider than the ones of 𝜃 = 0𝑜.

The tested specimens present a relatively flat fracture surface with a few protruding fibers
and fiber bundles in this case too (Figure 4.13). Fiber bundle pull-out is extensively observed
in the fractured surface. Ruptured C/C blocks are clearly visible and compared to the case
of 𝜃 = 30𝑜, the length of the blocks is almost the same everywhere. The specimens used for
tensile with 𝜃 = 30𝑜 and 45𝑜 were manufactured via the warm-press technique.
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Figure 4.11: Monotonic tensile stress-strain curves of C/C-SiC with 𝜃 = 450.

Figure 4.12: A typical cyclic tensile stress-strain curve of C/C-SiC with 𝜃 = 300.
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Figure 4.13: (a) Fractured tensile specimen for the case of 𝜃 = 45𝑜 and (b) SEM picture of the fractured surface.

4.3.2. Compression tests
For the compression tests, the deformation was recorded through the cross-head. The

measured deformation includes the deformation of various parts of the testing set-up. The
set-up can be considered as a springs-in-series system. Therefore, the pure deformation of
the material is given by the total deformation (measured), once the deformation of the rest
of the system is subtracted. In order to do that, steel coupons, with a known Young’s mod-
ulus and the exact dimensions as the CMC specimens, were prepared and tested using the
same experimental set-up. The Young modulus of the steel coupons is known and equal to
200 [GPa]. Therefore since the coupon’s length and cross-section are known, for every force
data, the deformation of the steel coupon is calculated. This deformation is subtracted from
the measured one and finally, the force-displacement curve of the experimental set-up is ob-
tained (Figure C.6). The curve is mostly linear with a small non-linear regime at small forces.
Therefore, from every value of deformation in every data set, the deformation of the machine
is subtracted and finally the strain is calculated as 𝜖 [%] = (𝑒/𝐿) × 100. The raw experimental
data of the compression tests as well as the procedure that was followed for processing them
are presented in Appendix C.

Monotonic and cyclic tests were performed in compression for 𝜃 = 0𝑜, 30𝑜 and 45𝑜 and the
results are presented below. When the angle between the fibers and the loading direction is
𝜃 = 0𝑜, the material response in the monotonically increased load is almost completely linear
(Figure 4.14). The final failure is brittle and abrupt without apparent material hardening before
that. It should be noted that the scatter in the compressive strength between the specimens
is caused by internal defects of the material due to the manufacturing process. Specifically,
after water-jet cutting, some of the specimens had suffered delamination especially close to
the edges. The ones with no apparent delamination were chosen for testing but internal, non-
visible delaminations might still exist.

The raw force-deformation curves of the cyclic compression tests are presented in Figure
4.15 as they were obtained from the machine since the stress-strain data after processing
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Figure 4.14: Monotonic compressive stress-strain curves of C/C-SiC with 𝜃 = 00.

could not be corrected entirely (Appendix C). Overall, the hysteresis cycles are narrow and
the material behavior is almost entirely linear in this case. Small permanent deformation is
observed after a few loading and unloading cycles.

Figure 4.15: Force-displacement curve of a specimen loaded with cyclic compression load and with 𝜃 = 0𝑜.

Regarding the fracture of the test specimens, macroscopically, they exhibit cracks and
separation in the thickness direction. This separation is mostly observed in the outer plies and
some specimens present fragmentation close to the edges. Microscopically, the SEM pictures
show that interlaminar cracks are present close to the fractured area. Translaminar and intra-
tow cracks through the fiber bundles are present in the fractured area. Moreover, the crushing
of the fibers that are aligned with the direction of the load can be seen. The specimens in this
case were manufactured via the autoclave technique.
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Figure 4.16: (a) Fractured compression specimen for the case of 𝜃 = 0𝑜 and (b) SEM picture of the fractured
specimen.

For the case of 𝜃 = 30𝑜, the monotonic response of the material is linear in the biggest part
of the stress-strain curve and a narrow hardening regime exists until the ultimate strength of
the material is reached (Figure 4.17). After that, a small region where the material softens is
present until the final failure point is reached. Failure is not as abrupt as in the previous cases,
due to the drop in stress. Wider hysteresis loops are observed compared to the case of 𝜃 = 0𝑜

(Figure 4.18).

Figure 4.17: Monotonic compressive stress-strain curves of C/C-SiC with 𝜃 = 300.

Macroscopically the tested specimens present fracture planes and fiber crushing. The
fibers oriented at 30𝑜 relative to the loading direction are the ones that have been crushed. Mi-
croscopically, a brittle fracture is observed in the structure due to a large number of interlaminar
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Figure 4.18: Force-displacement curve of a specimen loaded with cyclic compression load and with 𝜃 = 30𝑜.

Figure 4.19: (a) Fractured compression specimen for the case of 𝜃 = 30𝑜 and (b) SEM picture of the fractured
specimen.

and translaminar cracks. Moreover, a few intra-tow cracks are also observed. Crushing of the
fibers along the 30𝑜 can be seen as well. The fractured area shows a plethora of C/C blocks
due to the brittle nature of the material and the crack propagation process.

The last case is the compression test of 𝜃 = 45𝑜. The response of the material in the
monotonic load is presented in Figure 4.20. The stress-strain curve is again mostly linear with
a hardening regime before the ultimate strength of the material is reached. After that, the
material softens until the final failure. The fracture behavior is not as abrupt as in the case of
𝜃 = 0𝑜. Wider hysteresis loops are present in this case, wider than in the previous two cases
(Figure 4.21).
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Figure 4.20: Monotonic compressive stress-strain curves of C/C-SiC with 𝜃 = 450.

Figure 4.21: Force-displacement curve of a specimen loaded with cyclic compression load and with 𝜃 = 45𝑜.

The tested specimens present fracture planes with 45𝑜 angle and fiber crushing. Overall,
the fracture is similar to the case of 30𝑜 with a large number of interlaminar and intra-tow cracks
and fiber crushing in the fracture area. The 𝜃 = 30𝑜 and 45𝑜 specimens were manufactured
through the warm-press technique. A discussion on the overall material properties obtained
from tests is presented in Section 4.4.

4.4. Material characterization
The results from the mechanical tests are further processed and all the available and rela-

tive information is presented in this section. Specifically, the elastic and failure properties and
the damage evolution laws are obtained from the experimental data.
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Figure 4.22: (a) Fractured compression specimen for the case of 𝜃 = 45𝑜 and (b) SEM picture of the fractured
specimen.

The elastic modulus of the material is obtained from the linear regime of the stress-strain
curves. The tensile curves of 𝜃 = 30𝑜 and 45𝑜 are completely non-linear thus identifying a
linear regime is difficult if not impossible. Based on the DIN EN 658-1 and ASTM C 1275 – 00
standards, there are different types of CMC behaviors and approaches that can be followed to
obtain Young’s modulus. There are three main categories of CMCs based on their mechanical
response. In the first category, the linear behavior is located after an initial toe region and
before the non-linear part (hardening) of the stress-strain curve. In the second category, the
linear behavior starts at the origin of the curve until the non-linear part of the curve. In the third
and final category, the stress-strain curve is completely non-linear. When the linear behavior
starts at the origin the elastic modulus is obtained through the linear fit of the elastic region.
But for materials with no linear section, the recommended procedure is to fit linearly the region
between 0.1𝜎𝑡

𝑥𝑥 and 0.5𝜎𝑡
𝑥𝑥, where 𝜎𝑡

𝑥𝑥 is the tensile strength. It is mentioned that other limits
can also be used depending on the material. If the 0.1𝜎𝑡

𝑥𝑥 and 0.5𝜎𝑡
𝑥𝑥 limits are used, the value

of the elastic modulus is presented in Table 4.2.

Elastic properties
Loading angle 𝐸𝑡

𝑥𝑥 = 𝐸𝑡
𝑦𝑦 [GPa] 𝐸𝑐

𝑥𝑥 = 𝐸𝑐
𝑦𝑦 [GPa]

0𝑜 52.43 ±2.26 68.57 ±3.14
30𝑜 19.71 ±1.14 19.09 ±0.65
45𝑜 16.26 ±0.41 16.27 ±0.56

Table 4.2: Elastic properties determined according to the DIN standards.

The elastic modulus obtained within these limits is considered as the apparent Young mod-
ulus. These values are underestimating the actual modulus which is higher. As it can be seen
in Figures 4.6, 4.9 and 4.12, the plastic strains between 0.1𝜎𝑡

𝑥𝑥 and 0.5𝜎𝑡
𝑥𝑥 are significant and

the slope of the curve is a lot different than the unloading modulus. Therefore, different limits
are more appropriate in this case, since the elastic region is extended up to approximately 20
MPa (within the first couple of cycles). By selecting a section between 5 - 20 MPa for all the
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experimental curves, the true elastic modulus is calculated and presented in Table 4.3.

Moreover, the ultimate strength, 𝜎𝑡
𝑥𝑥, and strain at ultimate strength, 𝜖𝑡

𝑥𝑥, are determined
from the maximum stress value in every experiment and the corresponding strain. For the
determination of the proportionality limit, the ”deviation from the linearity method” is used.
With this method, the proportionality limit is selected as the stress value, 𝜎𝑖, at which there is
a 10% deviation from the stress calculated from the elastic relation 𝜎𝑖 = 𝐸𝜖𝑖. The equation
used is given by

%𝑑𝑒𝑣 = 100 [(𝐸𝜖𝑖) − 𝜎𝑖
𝜎𝑖

] (4.1)

where 𝜎𝑖, 𝜖𝑖 and 𝐸 are the 𝑖𝑡ℎ stress and strain of the curve and modulus of elasticity, re-
spectively. Therefore, the stress, 𝜎𝑡,0

𝑥𝑥 , and strain, 𝜖𝑡,0
𝑥𝑥, at the proportionality limit are presented

in Table 4.3.

Elastic properties
Loading angle 𝐸𝑡

𝑥𝑥 = 𝐸𝑡
𝑦𝑦 [GPa] 𝐸𝑐

𝑥𝑥 = 𝐸𝑐
𝑦𝑦 [GPa]

0𝑜 73.39 ±1.41 68.57 ±3.14
30𝑜 40.53 ±5.27 19.09 ±0.65
45𝑜 34.56 ±4.31 16.27 ±0.56

Strength properties
Stress [MPa] Strain [%] Stress [MPa] Strain [%]

Tensile - 0𝑜 𝜎𝑡
𝑥𝑥 = 𝜎𝑡

𝑦𝑦 𝜖𝑡
𝑥𝑥 = 𝜖𝑡

𝑦𝑦 𝜎𝑡,0
𝑥𝑥 = 𝜎𝑡,0

𝑦𝑦 𝜖𝑡,0
𝑥𝑥 = 𝜖𝑡,0

𝑦𝑦
96.87 ±7.29 0.21 ±0.02 14.65 ±2.75 0.02 ±0.01

Compression - 0𝑜 𝜎𝑐
𝑥𝑥 = 𝜎𝑐

𝑦𝑦 𝜖𝑐
𝑥𝑥 = 𝜖𝑐

𝑦𝑦 𝜎𝑐,0
𝑥𝑥 = 𝜎𝑐,0

𝑦𝑦 𝜖𝑐,0
𝑥𝑥 = 𝜖𝑐,0

𝑦𝑦
192.85 ±32.49 0.30 ±0.04 185.86 ±47.84 0.27 ±0.06

Tensile - 30𝑜 𝜎𝑡
𝑥𝑥 = 𝜎𝑡

𝑦𝑦 𝜖𝑡
𝑥𝑥 = 𝜖𝑡

𝑦𝑦 𝜎𝑡,0
𝑥𝑥 = 𝜎𝑡,0

𝑦𝑦 𝜖𝑡,0
𝑥𝑥 = 𝜖𝑡,0

𝑦𝑦
92.14 ±1.80 0.84 ±0.05 16.86 ±2.76 0.05 ±0.02

Compression - 30𝑜 𝜎𝑐
𝑥𝑥 = 𝜎𝑐

𝑦𝑦 𝜖𝑐
𝑥𝑥 = 𝜖𝑐

𝑦𝑦 𝜎𝑐,0
𝑥𝑥 = 𝜎𝑐,0

𝑦𝑦 𝜖𝑐,0
𝑥𝑥 = 𝜖𝑐,0

𝑦𝑦
131.43 ±8.22 0.78 ±0.05 109.84 ±10.49 0.58 ±0.06

Tensile - 45𝑜 𝜎𝑡
𝑥𝑥 = 𝜎𝑡

𝑦𝑦 𝜖𝑡
𝑥𝑥 = 𝜖𝑡

𝑦𝑦 𝜎𝑡,0
𝑥𝑥 = 𝜎𝑡,0

𝑦𝑦 𝜖𝑡,0
𝑥𝑥 = 𝜖𝑡,0

𝑦𝑦
88.40 ±2.28 1.07 ±0.10 13.56 ±1.65 0.04 ±0.01

Compression - 45𝑜 𝜎𝑐
𝑥𝑥 = 𝜎𝑐

𝑦𝑦 𝜖𝑐
𝑥𝑥 = 𝜖𝑐

𝑦𝑦 𝜎𝑐,0
𝑥𝑥 = 𝜎𝑐,0

𝑦𝑦 𝜖𝑐,0
𝑥𝑥 = 𝜖𝑐,0

𝑦𝑦
121.04 ±7.77 0.93 ±0.06 96.70 ±3.81 0.65 ±0.04

Table 4.3: Mechanical properties that are obtained from the tensile and compression tests.

The strength is decreased as the fiber orientation moves from 0𝑜 to 45𝑜 for both tensile and
compression cases. On the other hand, the strain is increased as the fiber orientation moves
from 0𝑜 to 45𝑜 for both cases again. The strength of the material in compression is more than
double for the case of 0𝑜. This is a direct consequence of the ceramic nature of the material. It
is common for ceramics to present higher strength values in compression compared to tension.
It should be noted that these values correspond to the ultimate material strength which in most
cases is the same as the failure strength. Only for the cases of 30𝑜 and 45𝑜 in compression,
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the material does not fail at the ultimate strength. Moreover, for the compression tests of 0𝑜

the stress-strain curve is almost entirely linear and the curves present some small fluctuations.
So, determining the proportionality limit, in this case, is not appropriate since it is difficult to
determine whether or not the material exhibits a non-linear regime. A representative stress-
strain curve for every test is presented in Figure 4.23 where the complete material behavior
can be seen.

Information about the damage in the material is obtained from the cyclic tensile curves.
The unloading modulus is determined for every loading and unloading cycle and the dam-
age is calculated from (3.27). Also, the evolution of damage for the on- and off-axis tensile
tests is presented in Figure 4.24. Damage is evolving faster for the off-axis tests. It should
be mentioned that the plot presents the evolution of damage in the global coordinate system.
Finally, the degradation of Young’s modulus is plotted, since the damaged modulus is calcu-
lated from the cyclic loading test curves (Figure 4.25). The degradation of the modulus follows
the inverse evolution of damage. From this plot, the true Young modulus is more obvious and
agrees with the one presented in Table 4.3.

Figure 4.23: Stress-strain curves of C/C-SiC for the on- and off-axis cases in tension and compression.
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Figure 4.24: Evolution of the damage variables (global coordinate system) in tension for the on- and off-axis tests.

Figure 4.25: Degradation of the Young modulus with stress for the on- and off-axis tensile tests.



5
Identification of parameters and results

In Chapters 3 and 4 the computational model and data from the mechanical tests were
presented. In this Chapter, the unknown variables and material parameters of the model
are presented. Some of these parameters are directly obtained from the experiments while
others need to be obtained indirectly from the experimental data. An optimization procedure,
to determine the material parameters and the final results are presented in this chapter. First,
the Bayesian optimization algorithm is discussed. Next, all the parameters of the model and
the approach to optimize each one of them are presented. Finally, the results are compared
to the experimental data and discussed.

5.1. Bayesian optimization
A Βayesian optimization algorithm is used in this study to optimize the various parameters.

Bayesian optimization is a powerful and effective approach for optimizing black-box functions
that are complex, expensive, or noisy. It is a method for finding the minimum or maximum
of a function when only noisy, indirect observations of the function are available. It is based
on Bayesian probability theory, which allows for building a probabilistic model of the function
that is being optimized. This model is used to sequentially select the next point to evaluate
in a way that maximizes the expected improvement in the function value, in order to find the
global maximum or minimum of the function. Bayesian optimization can be applied to a wide
range of problems, including hyperparameter tuning in machine learning algorithms, global
optimization of complex engineering systems, and optimization of complex simulation models.
It has several advantages over other optimization methods, such as the ability to handle noisy
or expensive functions and to incorporate prior knowledge or constraints into the optimization
process.

One of the key challenges in Bayesian optimization is constructing the probabilistic model
of the function that is being optimized. This typically involves selecting a suitable family of
probability distributions, such as Gaussian processes, and using Bayesian inference to esti-
mate the parameters of the model based on the data that has been collected so far. Gaussian
processes are a powerful probabilistic model that is used to estimate the unknown function
by using only a few evaluations of the function. The advantage of using Gaussian processes
is that they provide a distribution over possible functions, rather than a point estimate. This
allows to balance exploration and exploitation when selecting the next point to evaluate, which
can improve the convergence rate of the optimization algorithm. The quality of the model is

59
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critical to the success of the optimization, as it determines how well the optimizer can explore
the space of possible solutions and identify the global optimum.

One of the main advantages of Bayesian optimization is that it can handle constraints on
the input space and noisy, expensive, or multi-objective functions. This makes it a popular
choice for optimizing the parameters of material models with a large number of parameters,
where the objective function is often expensive to evaluate and the search space is typically
large and complex.

Α Python library for Bayesian optimization is the scikit-optimize, or skopt. The library uses
Gaussian processes to model the unknown function. To use skopt, first an objective function,
which needs to be to be minimized (or maximized), should be defined together with the bounds
on the input search space. One of the optimization algorithms provided by skopt to find the
minimum (or maximum) of the function needs to be selected. Skopt also provides tools for
visualizing the optimization process and evaluating the performance of different optimization
algorithms. It also provides utilities for searching the space of possible parameters in a par-
allel and efficient way, as well as tools for measuring and improving the performance of the
optimization algorithms.

Since the developed model is a function of strains and predicts the corresponding stresses
(𝜎𝜎𝜎 = 𝑓(𝜖𝜖𝜖)), the objective function needs to be a function of the predicted stresses. Therefore,
the objective function in this work is selected as

𝑓 =
𝑖=𝑛
∑
𝑖=1

|𝜎𝑚𝑜𝑛𝑜
𝑖 − 𝜎𝑚𝑜𝑛𝑜

𝑖,𝑒𝑥𝑝 |2 + 𝜆
𝑗=𝑚
∑
𝑗=1

|𝜎𝑐𝑦𝑐𝑙
𝑗 − 𝜎𝑐𝑦𝑐𝑙

𝑗,𝑒𝑥𝑝|2 with 𝜆 > 0 (5.1)

where 𝜆 is a constant that is chosen accordingly so that the two loss terms are equal1,
𝑙𝑜𝑠𝑠1 = 𝑙𝑜𝑠𝑠2, 𝑛 and 𝑚 are the numbers of experimental data for monotonic and cyclic tests,
respectively. Moreover, 𝜎𝑚𝑜𝑛𝑜

𝑖,𝑒𝑥𝑝 , 𝜎𝑐𝑦𝑐𝑙
𝑗,𝑒𝑥𝑝 are the stress values obtained from the experiments

and 𝜎𝑚𝑜𝑛𝑜
𝑖 , 𝜎𝑐𝑦𝑐𝑙

𝑗 are the stress values obtained from the model. This function is selected to
include the data of both loading conditions, monotonic and cyclic. This way the optimized
material parameters result in a model that predicts the material response for both these types
of loading.

5.2. Identification of material parameters
There is a large number of parameters that affect the model and need to be identified. In

particular, there are 28 parameters for the most general case of an orthotropic lamina. The
complete set of parameters is given through the parameter vector 𝜙,

𝜙 = [𝐸11, 𝐸22, 𝑣12, 𝐺12, 𝐴, 𝑛, 𝐻1, 𝐻2, 𝐹 𝑜
1𝑡, 𝐹1𝑡, 𝐹 𝑜

1𝑐, 𝐹1𝑐, 𝐹 𝑜
6 , 𝐹6,

𝐹 𝑜
2𝑡, 𝐹2𝑡, 𝐹 𝑜

2𝑐, 𝐹2𝑐, 𝐴1𝑡, 𝑚1𝑡, 𝐴1𝑐, 𝑚1𝑐, 𝐴2𝑡, 𝑚2𝑡, 𝐴2𝑐, 𝑚2𝑐, 𝛼66, 𝛽66] (5.2)

These parameters can be reduced to 19 since the investigated composite is produced with
2/2 twill weave fabric therefore the elastic, strength and damage properties, in the two principal
material directions, are assumed to be the same. The 𝜙 vector becomes,

1The two loss terms should have the same order of magnitude so that the weights of both these terms are similar.
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𝜙 = [𝐸11, 𝑣12, 𝐺12, 𝐴, 𝑛, 𝐻1, 𝐻2, 𝐹 𝑜
1𝑡, 𝐹1𝑡, 𝐹 𝑜

1𝑐, 𝐹1𝑐, 𝐹 𝑜
6 , 𝐹6, 𝐴1𝑡, 𝑚1𝑡, 𝐴1𝑐, 𝑚1𝑐, 𝛼66, 𝛽66] (5.3)

Some of the remaining parameters are obtained directly from the experimental results,
such as the proportionality limits and the ultimate strength values in tension and compres-
sion. The shear strength value is taken directly from the literature to be equal to 𝐹6 = 71.7
[MPa] [55]. The shear strength can not be obtained from the current experimental data and
the model’s dependence on it is small to be included in the optimization procedure. Further-
more, the damage evolution parameters, 𝐴1𝑡 and 𝑚1𝑡, are obtained directly from fitting the
damage evolution curve to the experimental data. Some further assumptions are made, since
the damage evolution parameters for compression (𝐴1𝑐, 𝑚1𝑐) could not be obtained from the
current cyclic compression data. Therefore, the 𝐴1𝑐, 𝑚1𝑐 are assumed to be the same for
compression as in tension (𝐴1𝑡 = 𝐴1𝑐 and 𝑚1𝑡 = 𝑚1𝑐). Moreover, the elastic properties are
obtained from a separate optimization procedure with the use of the rotation matrix (given in
(3.13)) and the linear regime of the experimental curves. In the end, the number of parameters
left is reduced to seven,

𝜙 = [𝐴, 𝑛, 𝐻1, 𝐻2, 𝐹 𝑜
6 , 𝛼66, 𝛽66] (5.4)

These parameters are obtained from an optimization procedure based on (5.1) with the use
of the experimental data and the stress prediction from the model. A Bayesian optimization
algorithm is used to determine the parameters of (5.4). All the data from the tensile monotonic
and cyclic tests are used. The reason that the data from the monotonic compression tests are
not used is that the stress-stain curves present a smaller slope (elastic modulus) compared
to the equivalent case in tension (see Table 4.3). This difference is a result of the testing
approach and processing of the data and would cause a wrong estimation of the parameters.
Therefore, the compression test data are used only to validate the model after the optimization
procedure.

5.2.1. Optimization of elastic properties
The Bayesian optimization algorithm is firstly used to optimize the elastic properties and

the stiffness matrix in the local coordinate system. The elastic modulus (𝐸𝑥𝑥) in the global
coordinate system for the three test cases, is known. Therefore, the unknown parameters are
the elastic properties (𝐸11, 𝜈12, 𝐺12) in the local coordinate system. The stiffness matrix for
the three tests (𝜃 = 0𝑜, 30𝑜 and 45𝑜) is calculated by rotating the stiffness matrix of the local
coordinate system through (3.13). Given the strains as inputs, the stresses are predicted
through the linear elastic constitutive equation, 𝜎𝜎𝜎 = ℚ 𝜖𝜖𝜖. Therefore, the objective function
used in this optimization algorithm is given by the first term of (5.1). Only the data from the
tensile tests are used since the compression stress-strain curves present a smaller Young’s
modulus due to the way that the experiments were conducted. Furthermore, only the data
that correspond to the linear regime of the monotonic stress-strain curves are used in this
optimization procedure.

For the implementation of the Bayesian optimization algorithm in Python, the scikit-optimize
library is used. Expected improvement (EI) is used as the acquisition function, 200 evaluations
of the objective function and six random initialization points are used. The bounds of the
uniform priors and the optimized elastic properties are presented in Table 5.1.
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Elastic properties Units Min. Max. Opt.
𝐸11 = 𝐸22 [GPa] 40.0 80.0 64.121

𝑣12 [-] 0.01 0.02 0.0159
𝐺12 [GPa] 1.0 12.0 2.207

Table 5.1: Bounds and optimized values of the elastic properties obtained from the optimization procedure.

Moreover, the elastic properties as a function of the angle 𝜃 are presented in polar plots
in Figure 5.1. The plots present the resulting curves from the different iterations and opti-
mum values. The experimentally obtained Young modulus for the various loading directions
is displayed in Figure 5.1 (a).

Overall, the optimized values predict the tensile Young modulus well but overpredict the
compression modulus. If the compression data were to be used in the optimization scheme,
the converged solution would underpredict the tensile and overpredict the compression mod-
ulus and the optimized values would not have any physical meaning (e.g., 𝐺12 ≈ 𝜈12 ≈ 0).

Figure 5.1: Elastic properties as a function of fiber orientation 𝜃𝑜 and the experimentally determined values of the
𝐸𝑥𝑥 modulus for 0𝑜, 30𝑜 and 45𝑜. The curves corresponding to the different iterations (solid lines) are plotted

together with those corresponding to the optimized properties (black dashed lines).
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5.2.2. Damage parameters
The damage parameters, 𝐴1𝑡 and 𝑚1𝑡, are determined through the fitting of the exper-

imental data. Specifically, these two parameters refer to the damage along the 1-principal
direction which is studied in Figure 4.24. Therefore, by fitting (3.24) in the experimental data
the damage parameters are obtained. Only the data from the tensile tests of 𝜃 = 0𝑜 can be
used to obtain these damage parameters. The data of 𝜃 = 30𝑜 and 𝜃 = 45𝑜 correspond to the
degradation of the stiffness matrix which is not aligned with the principal directions. Finally,
the values of the damage variables obtained from fitting are 𝐴1𝑡 = 0.6747 and 𝑚1𝑡 = 0.6514.

Figure 5.2: Damage evolution in the 1-principal direction and the fitted curve. The experimental data correspond
to the tensile tests of 𝜃 = 0𝑜.

5.2.3. Parameter optimization
The last part of the procedure for identifying the material parameters is the optimization of

the remaining seven parameters (5.4). For that, Bayesian inference is applied and a seven-
dimensional search space2 is defined. A flow chart of the optimization algorithm is shown
in Figure 5.3. The algorithm starts with defining the search space and its bounds. Uniform
priors are assumed for every parameter and the bounds of these priors are shown in Table
5.2. Expected improvement (EI) is used as the acquisition function, 500 evaluations of the
objective function and 15 random initialization points are used. The gp_minimize() function
of scikit-optimize is called and predicts a set of values for every entry of the search space.
These values are separated into six different parameters. Next, the dataset is loaded and the
monotonic and cyclic strain and stress values are separated and organized in four different
arrays, each for the strains and stresses of monotonic and cyclic tests. Next, the two loss terms
of 𝑓 are calculated separately and the overall value of 𝑓 is calculated after 𝜆 is multiplied with
the second term. For the determination of 𝜆, the order of magnitude of the two loss terms is
checked and eventually, 𝜆 = 5 × 10−1 is selected (see Appendix D). The constitutive model
described in Chapter 3 (Section 3.3) is used as a function here to predict the stress values from
the input strains but the failure criterion for checking if the final failure occurred, is deactivated.
Equation (5.1) is used as the objective function, 𝑓 , so both data from monotonic and cyclic
loading tests are used. Finally, the value of the objective function is returned and the procedure
is repeated with a different set of predictions until the maximum number of evaluations is
reached. It should be noted once again that the optimization of these material parameters
is performed on the data of tensile tests for the reasons mentioned before. Moreover, in the

2The domain of the function to be optimized.
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optimization algorithm, the stresses and elastic properties are given in GPa so all the other
parameters are expressed in the appropriate units for consistency. The optimized values for
the material parameters are presented in Table 5.2.

Figure 5.3: Flow chart of the algorithm in Python used for the optimization of the material parameters.

Parameter Units Min. Max. Opt.
𝐴 [MPa−n] 10−10 10−7 4.2808 × 10−8

𝑛 [-] 0.001 1.0 0.5217
𝐻1 [GPa] 0.001 1.0 0.3271
𝐻2 [-] 103 108 59403.7563
𝐹 𝑜

6 [GPa] 1.0 40.0 6.5785
𝛼66 [-] 0.1 1.0 0.74259
𝛽66 [-] 0.1 1.0 0.49651

Table 5.2: Bounds of the uniform priors used in the optimization and the optimized values of the material
parameters.

Initial validation of the units and the magnitude of values mentioned in Table 5.2 is per-
formed by checking the magnitude of key parameters such as plastic strain, back stress and
stresses in the principal material directions. The case of the monotonic tensile test with 𝜃 = 45𝑜

is selected as an example. In this case, the plastic strain predicted at the point of ultimate
strength by this set of values is in the order of 10−1 [%], the 𝜎11 in the local coordinate system
is ≈ 80 [MPa] and the 𝜎𝑏𝑎𝑐𝑘

11 ≈ 0.60 [MPa]. Further verification of the optimized values is pre-
sented in Section 5.3 where experimental plots are directly compared to the predictions of the
model.
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5.3. Results and discussion
To validate the results and the optimization procedure, the predictions from the compu-

tational model are directly compared to the experimental results. First, the tensile and com-
pression stress-strain curves are presented in Figures 5.4 and 5.5. For the construction of the
predicted curves, the experimental strains are used as inputs and the stresses are predicted
from the model. The predicted and the corresponding experimental curves are presented to-
gether. Moreover, the final failure criterion is deactivated in this case. The predicted tensile
stress-strain curves are close to the experimental ones. A minor deviation is observed for the
case of 𝜃 = 45𝑜 where the shear stresses are maximum.

Figure 5.4: Comparison of the theoretically predicted and experimentally observed tensile stress–strain curves of
C/C-SiC. The optimized values of Table 5.2 were used to predict the theoretical curves.

Figure 5.5: Comparison of the theoretically predicted and experimentally observed compression stress–strain
curves of C/C-SiC. The optimized values of Table 5.2 were used to predict the theoretical curves.

On the other hand, the compression test data are used for further validation of the model.
These data are not used in the optimization procedure to tune the parameters due to the differ-
ence in Young modulus between the model and experiment. To obtain the curves presented
in Figure 5.5 the proportionality limit in compression is assumed to be the same as in ten-
sion, 𝐹 𝑜

1𝑐 = 𝐹 𝑜
1𝑡. This assumption is made since the compression curve for 𝜃 = 0𝑜 is linear
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and the proportionality limit can not be predicted correctly. Moreover, the cyclic compression
test curves show that plastic deformation is present at small force values. If a proportional-
ity limit close to the ultimate strength were to be used, then due to the extended area of the
yield function in the third quadrant (Tsai-Wu criterion), the material would yield at large stress
values.

Except in the case of 𝜃 = 0𝑜, the model gives reasonably close results in compression
as well. For 𝜃 = 0𝑜 the assumption leads to a difference in the predicted stress close to the
ultimate strength point. For the other two cases, differences in the initial slope are observed
since the Young modulus in the model is different than the experimental one. Moreover, the
model does not include a softening detection and prediction feature so a deviation from the
experiment is observed in the softening regime.

To compare the damage evolution prediction of the model, a direct comparison between
the experimentally and theoretically obtained damaged Young modulus is presented in Figure
5.6. The evolution of damage in the model follows closely the experimental values in all three
cases. The deviation observed in the case of 𝜃 = 0𝑜 is due to the difference in the initial
(undamaged) Young modulus (𝐸𝑜𝑝𝑡

11 = 64.12 [GPa] compared to 𝐸𝑒𝑥𝑝
11 = 73.39 [GPa]). It is

also confirmed that the damage coupling functions lead to a good prediction of the damage
evolution in the cases of 𝜃 = 30𝑜 and 𝜃 = 45𝑜 where the shear stresses are higher.

Another feature of the model is that it predicts the material response under cyclic loading.
This feature is compared to the experimentally obtained curves in Figure 5.7. The results
are reasonably close but there are some areas with some deviation. The unloading modulus
(unloading slope) is slightly smaller than the experimental one, especially in the case of 𝜃 = 0𝑜.
This is caused by the deviation of the initial Young modulus from the experimental (𝐸𝑜𝑝𝑡

11 <
𝐸𝑒𝑥𝑝

11 ), which is apparent in Figure 5.6. Also, the stress at the lowest point of the cycle is
different from the experiment. This is affected by the hardening parameters and their values.
In addition, under reloading, the point where the material enters again the hardening regime
is approximated well and so is the envelope stress-strain curve.

Figure 5.6: Degradation of Young modulus with stress in the three different tensile cases. The solid lines are the
prediction of the model and the dots are the experimental observations.
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Figure 5.7: Predicted and experimental stress-strain curves under cyclic tensile loading.

Finally, the ability of the model to predict the final material failure is studied. A comparison
between the theoretical predictions and experimental results for the tensile and compression
cases of 𝜃 = 0𝑜, 30𝑜 and 45𝑜 is presented in Figures 5.8 and 5.9.

Figure 5.8: Comparison of the experimentally obtained and theoretically predicted tensile and compression
strength values for the different fiber orientations.
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Figure 5.9: Comparison of the experimentally obtained and theoretically predicted tensile and compression strain
at the strength for the different fiber orientations.

As most reports in the literature suggest, the Tsai-Wu criterion in combination with damage
evolution can predict accurately the ultimate tensile strength of CMCs and therefore of C/C-
SiC. The tensile strength when fibers are oriented at 30𝑜 and 45𝑜 is underpredicted slightly
but it is reasonably close to the experimental strength. Some deviation is observed for the
predicted strain at the ultimate tensile strength when the fibers are oriented at 𝜃 = 30𝑜 and
45𝑜. On the other hand, the prediction for compressive strength and strain is not included in the
literature. The Tsai-Wu criterion presents deviations in the predicted strength and strain in this
case. Specifically, the predicted strength in compression is higher than the experimental in all
three cases, especially for 𝜃 = 0𝑜. The same phenomenon is observed for the predicted strain,
the criterion overestimates the strain for all three cases. This happens due to the fact that the
failure envelope is extended more in the third quadrant (𝜎11 − 𝜎22 plot). The anisotropy of the
criterion is proven to be advantageous, compared to other criteria, for predicting the strength
when shear stresses are developed, but overestimates the compression strength and strain.



6
Conclusions and recommendations

A 2-D elastoplastic constitutive model for the C/C-SiC CMC was presented and validated
in this study. The damage-induced plasticity was modeled with a combination of plasticity and
damage models. An elastic predictor-plastic corrector return mapping algorithm was used to
calculate the evolution of plastic strains. Moreover, a series of mechanical tests that help in
understanding the mechanical behavior of the material were presented. The different material
parameters were addressed and identified based on the experimental data through the imple-
mentation of a Bayesian optimization algorithm. Finally, the predictions from the model and
certain features of it were compared to experimental data and they were discussed.

6.1. Conclusions
The main conclusions of this study are as follows:

1. The constitutive model presented in this thesis successfully predicts the mechanical be-
havior of the 2/2 twill weave C/C-SiC under in-plane on- and off-axis loading. Both mono-
tonic and cyclic loading conditions are predicted.

2. The combination of the Tsai-Wu criterion with the damage model can predict the tensile
failure stress of C/C-SiC with reasonable accuracy while overpredicting the compres-
sion failure strength. Regarding the strain at the point of failure strength, the criterion
underpredicts the strain in tension and overpredicts the strain in compression.

3. The overall tensile and compressive behavior of C/C-SiC is reported. Cyclic tensile and
compression tests in different loading directions, relative to the fibers, are reported for
the first time in literature.

4. The failure mechanisms of the material in the different loading directions are studied
through SEM. Fiber bundle pull-out is mostly observed in the tensile specimens, while
interlaminar and translaminar cracks are observed in the compression specimens.

5. Through the cyclic tensile tests, the damage evolution of the material in different direc-
tions is presented. The dissipated energy is larger for the case of 𝜃 = 30𝑜 and 𝜃 = 45𝑜

in both tension and compression.

6.2. Recommendations
As in every scientific research, there are certain limitations and restrictions that the current

study presents. These limitations offer opportunities for further improving the current work. In
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addition, there are certain ideas and directions that were developed during the course of this
thesis and they are presented below.

Regarding the mechanical tests and the experimental data, there is a need to perform the
compression tests with the use of strain gauges as a measuring device. An alternative could
be to perform the tests and record the deformation using the crosshead but with the lower
force limit over the non-linearity of the machine (instead of zero). This way the non-linearity,
that could not be corrected in the current data, can be avoided. Then, the damage evolution
parameters in compression can be corrected and a parameter optimization with all the test
data can be performed again.

One thing that can improve further the accuracy of the current model is to perform the opti-
mization based on more test data. By performing more tests under different loading directions,
the optimization of the material parameters can be more accurate. Furthermore, the model
can be extended to include more material parameters such as 𝑉𝑓 , the content of the matrix
constituents etc.. For example, the dependence of the elastic and failure properties from 𝑉𝑓
can be studied by manufacturing and testing different specimens with different values of 𝑉𝑓 .

Given the current computational framework, the model can be extended and adjusted to
model other CMCs. Different plasticity and damage models can be included and a certain
number of mechanical tests are required to make this possible. Furthermore, by making some
assumptions the number of necessary tests can be reduced. For example, another woven
CMC system can be modeled by selecting the appropriate hardening and damage models,
conducting cyclic tensile and compression tests at 𝜃 = 0𝑜 and 𝜃 = 45𝑜 and with the use of
Bayesian optimization, optimize the rest of the material parameters.

Finally, the model can be extended to account for the 3-D elastoplastic material response.
A similar approach followed by Gupta et al. [21] can be followed in this case. In particular,
the stiffness matrix can be extended to its 3-D form (see (3.15)) and three more damage
parameters (𝐷33, 𝐷44 and 𝐷55) need to be introduced together with their evolution law. The
potential function needs to be adjusted accordingly.

The model can be translated to be used in a numerical scheme such as in finite element
analysis (e.g., Abaqus) as a user-defined subroutine (VUMAT). It can be further validated by
comparing the results from simulations and real-life experiments on more complex structures.



A
Constitutive model

Additional information about the constitutive model are provided in this chapter.

A.1. Classical laminate theory
In this section, the Classical laminate theory is explained. The CLT is used to predict the

behavior of the whole laminate. The following assumptions are made [14], which are based
on the Kirchhoff hypothesis:

1. Each ply is orthotropic and quasi-homogeneous

2. The thickness of the plies is small and the other two dimensions are much larger than
the thickness and the plies are loaded in plane stress condition.

3. The theory is valid for continuous through the thickness displacements that are small
compared to the thickness of the laminate.

4. The in-plane axial and lateral displacements are a linear function of 𝑧 to the thickness
direction.

5. Plane sections that are initially normal to the mid-plane remain normal to the mid-plane
after deformation.

6. The stress-strain relations vary linearly.

7. Transverse normal to the mid-plane is not extensible, therefore 𝜖𝑧 = 0.

The stress-strain relation in the local coordinate system (material axes of the 𝑘𝑡ℎ UD-ply)
is given by

⎡⎢
⎣

𝜎11
𝜎22
𝜎12

⎤⎥
⎦𝑘

= ⎡⎢
⎣

𝑄11 𝑄12 0
𝑄21 𝑄22 0

0 0 𝑄66

⎤⎥
⎦𝑘

⎡⎢
⎣

𝜖11
𝜖22
𝜖12

⎤⎥
⎦𝑘

(A.1)

The stress-strain relation in the global coordinate system of the laminate is

⎡⎢
⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤⎥
⎦𝑘

= ⎡⎢
⎣

𝑄𝑥𝑥 𝑄𝑥𝑦 𝑄𝑥𝑠
𝑄𝑦𝑥 𝑄𝑦𝑦 𝑄𝑥𝑦
𝑄𝑠𝑥 𝑄𝑠𝑦 𝑄𝑠𝑠

⎤⎥
⎦𝑘

⎡⎢
⎣

𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑥𝑦

⎤⎥
⎦𝑘

(A.2)
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where 𝑄𝑖𝑗 is the reduced stiffness components that are given by

𝑄𝑖𝑗 = 𝐶𝑖𝑗 − 𝐶𝑖3𝐶𝑗3
𝐶33

(𝑖, 𝑗 = 1, 2, 6) (A.3)

due to the plane-stress assumption (𝜎33 = 𝜎23 = 𝜎13 = 0 therefore 𝜖23 = 𝜖31 = 0) in the
orthotropic stress-strain relations.

From the definition of strains through the Classical Plate Theory the stresses in the global
system for each ply are written as

𝜎𝜎𝜎𝑘 = ℚ̄(𝑘)𝜖𝜖𝜖0 + ℚ̄(𝑘)𝑧𝜅𝜅𝜅0 (A.4)

where 𝑄̄(𝑘)
𝑖𝑗 is the reduced transformed stiffness matrix of the 𝑘𝑡ℎ ply and is given by

ℚ̄(𝑘) = (𝑇𝑇𝑇 (𝑘))𝑇 ⋅ ℚ(𝑘) ⋅ 𝐿𝐿𝐿 ⋅ 𝑇𝑇𝑇 (𝑘) ⋅ 𝐿𝐿𝐿𝑇 (A.5)

with

ℚ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐸1
1 − 𝜈12𝜈21

𝜈12𝐸2
1 − 𝜈12𝜈21

0
𝜈12𝐸2

1 − 𝜈12𝜈21

𝐸2
1 − 𝜈12𝜈21

0

0 0 𝐺12

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.6)

and 𝑇𝑇𝑇 being the transformation and

𝐿𝐿𝐿 = ⎡⎢
⎣

1 0 0
0 1 0
0 0 2

⎤⎥
⎦

(A.7)

The forces per unit length in a single ply are

𝑁𝑁𝑁 = ⎡⎢
⎣

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

⎤⎥
⎦

=
⎡⎢⎢
⎣

∫𝑧𝑘
−𝑧𝑘−1

𝜎𝑥𝑥 𝑑𝑧
∫𝑧𝑘
−𝑧𝑘−1

𝜎𝑦𝑦 𝑑𝑧
∫𝑧𝑘
−𝑧𝑘−1

𝜎𝑥𝑦 𝑑𝑧

⎤⎥⎥
⎦

(A.8)

The bending moments per unit length in a single ply are

𝑀𝑀𝑀 = ⎡⎢
⎣

𝑀𝑥𝑥
𝑀𝑦𝑦
𝑀𝑥𝑦

⎤⎥
⎦

=
⎡⎢⎢
⎣

∫𝑧𝑘
−𝑧𝑘−1

𝜎𝑥𝑥𝑧 𝑑𝑧
∫𝑧𝑘
−𝑧𝑘−1

𝜎𝑦𝑦𝑧 𝑑𝑧
∫𝑧𝑘
−𝑧𝑘−1

𝜎𝑥𝑦𝑧 𝑑𝑧

⎤⎥⎥
⎦

(A.9)

where 𝑧𝑘−1 and 𝑧𝑘 are the coordinates of the upper and lower surface of the 𝑘𝑡ℎ ply. From
(A.4) the forces become

𝑁𝑁𝑁 = ∫
𝑧𝑘

−𝑧𝑘−1

(ℚ̄(𝑘)𝜖𝜖𝜖0 + ℚ̄(𝑘)𝑧𝜅𝜅𝜅0) 𝑑𝑧 (A.10)

In a similar way, the moments become

𝑀𝑀𝑀 = ∫
𝑧𝑘

−𝑧𝑘−1

(ℚ̄(𝑘)𝜖𝜖𝜖0 + ℚ̄(𝑘)𝑧𝜅𝜅𝜅0) 𝑧 𝑑𝑧 (A.11)
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For the whole laminate structure, the forces andmoments are the summations of the forces
in every layer so

𝑁𝑁𝑁 =
𝑁𝑝𝑙𝑖𝑒𝑠

∑
𝑘=1

∫
𝑧𝑘

−𝑧𝑘−1

(ℚ̄(𝑘)𝜖𝜖𝜖0 + [ℚ̄](𝑘)𝑧𝜅𝜅𝜅0) 𝑑𝑧

=
𝑁𝑝𝑙𝑖𝑒𝑠

∑
𝑘=1

(ℚ̄(𝑘)(𝑧𝑘 − 𝑧𝑘−1)𝜖𝜖𝜖0 + ℚ̄(𝑘) (𝑧2
𝑘 − 𝑧2

𝑘−1
2 )𝜅𝜅𝜅0)

(A.12)

𝑁𝑁𝑁 = 𝐴𝐴𝐴 ⋅ 𝜖𝜖𝜖0 + 𝐵𝐵𝐵 ⋅ 𝜅𝜅𝜅0 (A.13)

𝑀𝑀𝑀 =
𝑁𝑝𝑙𝑖𝑒𝑠

∑
𝑘=1

∫
𝑧𝑘

−𝑧𝑘−1

(ℚ̄(𝑘)𝜖𝜖𝜖0 + ℚ̄(𝑘)𝑧𝜅𝜅𝜅0) 𝑧 𝑑𝑧

=
𝑁𝑝𝑙𝑖𝑒𝑠

∑
𝑘=1

(ℚ̄(𝑘) (𝑧2
𝑘 − 𝑧2

𝑘−1
2 )𝜖𝜖𝜖0 + ℚ̄(𝑘) (𝑧3

𝑘 − 𝑧3
𝑘−1

3 )𝜅𝜅𝜅0)
(A.14)

𝑀𝑀𝑀 = 𝐵𝐵𝐵 ⋅ 𝜖𝜖𝜖0 + 𝐷𝐷𝐷 ⋅ 𝜅𝜅𝜅0 (A.15)

Therefore, from equations (A.13) and (A.15) the constitutive equation for the laminate is

[ 𝑁
𝑀 ] = [ 𝐴 𝐵

𝐵 𝐷 ] [ 𝜀0

𝜅0 ] (A.16)

So the ABD matrix is

ABD =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16
𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26
𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16
𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26
𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.17)

where

𝐴𝑖𝑗 =
𝑁plies

∑
𝑘=1

(𝑄̄(𝑘)
𝑖𝑗 (𝑧𝑘 − 𝑧𝑘−1))

𝐵𝑖𝑗 =
𝑁plies

∑
𝑘=1

1
2 (𝑄̄(𝑘)

𝑖𝑗 (𝑧2
𝑘 − 𝑧2

𝑘−1))

𝐷𝑖𝑗 =
𝑁plies

∑
𝑘=1

1
3 (𝑄̄(𝑘)

𝑖𝑗 (𝑧3
𝑘 − 𝑧3

𝑘−1))

(A.18)

A.2. Plasticity model
Analytical expressions about the quadratic and Tsai-Wu potential functions are presented

here.
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A.2.1. Quadratic potential function
The incremental plastic work per unit volume is given as

𝑊̇ 𝑝 = 𝜎𝜎𝜎 ̇𝜖𝜖𝜖𝑝 (A.19)

and by substituting equations (3.31) and (3.32) to (A.19)

𝑊̇ 𝑝 = 𝜎𝑒11 ̇𝜖𝑝
11 + 𝜎𝑒22 ̇𝜖𝑝

22 + 𝜎𝑒12 ̇𝛾𝑝
12 = 2𝑔𝜆̇ (A.20)

Let the equivalent stress be defined as

𝜎 = √3𝑔. (A.21)

The equivalent plastic strain can be defined as

𝑊̇ 𝑝 = 𝜎𝜎𝜎 ̇𝜖𝜖𝜖𝑝 = 𝜎 ̇𝜖𝑝 (A.22)

and from (A.20) and (A.21)

̇𝜖𝑝 = 2
3𝜎𝜆̇ (A.23)

and

𝜆̇ = 3
2 (

̇𝜖𝑝

𝜎̇ ) (𝜎̇
𝜎) (A.24)

From equations (3.31) and (3.32) the incremental plastic strains can be written as

⎡⎢
⎣

̇𝜖𝑝
11
̇𝜖𝑝
22
̇𝛾𝑝
12

⎤⎥
⎦

= ⎡⎢
⎣

𝛼11 𝛼12 0
𝛼12 𝛼22 0
0 0 2𝛼66

⎤⎥
⎦

⎡⎢
⎣

𝜎𝑒11
𝜎𝑒22
𝜎𝑒12

⎤⎥
⎦

𝜆̇ (A.25)

Therefore, the 𝛼11, 𝛼22, 𝛼12, 𝛼66 and 𝜆̇ parameters need to determine in order for the plastic
flow to be defined. For off-axis uniaxial tensile tests, the stresses in the principal material axes
(local coordinate system) are given by (3.11) and (2.25). Substitution of (3.11) into (3.29) and
(A.21) gives

𝜎 = ℎ(𝜃)𝜎𝑥𝑥 (A.26)

where

ℎ(𝜃) = √3
2(𝛼11 cos4 𝜃 + 𝛼22 sin

4 𝜃 + 2(𝛼12 + 𝛼66) sin2 𝜃 cos2 𝜃) (A.27)

For the strain transformation, (3.11) is used, therefore

̇𝜖𝑝
𝑥𝑥 = ̇𝜖𝑝

11 cos2 𝜃 + ̇𝜖𝑝
22 sin

2
𝜃 − ̇𝛾𝑝

12 cos 𝜃 sin 𝜃 (A.28)

By substituting (A.25) and (3.11) into (A.28) the

̇𝜖𝑝
𝑥𝑥 = 2

3ℎ2(𝜃)𝜎𝑥𝑥𝜆̇ (A.29)

is obtained. Or equivalently from (A.26)

̇𝜖𝑝
𝑥𝑥 = 2

3ℎ2(𝜃)𝜎𝜆̇ (A.30)



A.2. Plasticity model 75

By equating (A.23) and (A.30), the incremental equivalent strain is given by

̇𝜖𝑝 = ̇𝜖𝑝
𝑥𝑥

ℎ(𝜃) (A.31)

and if the loading is monotonic the above equation becomes

̇𝜖𝑝 = 𝜖𝑝
𝑥𝑥

ℎ(𝜃) (A.32)

This means that from the experimental 𝜎𝑥𝑥 and 𝜖𝑝
𝑥𝑥, the relation between 𝜎 and 𝜖𝑝 can be

obtained as well. Equations (A.26) and (A.32) give

𝜎̇
̇𝜖𝑝 = ℎ2(𝜃) 𝜎̇𝑥𝑥

̇𝜖𝑝
𝑥𝑥

(A.33)

and from (A.24)

𝜆̇ = 3
2

1
ℎ2(𝜃) ( ̇𝜖𝑥𝑥

𝜎̇𝑥𝑥
) (𝜎̇𝑥𝑥

𝜎𝑥𝑥
) (A.34)

For the case of 2/2 twill weave fabric

2𝑔(𝜎𝜎𝜎) = 𝛼11𝜎2
𝑒11 + 𝛼11𝜎2

𝑒22 + 2𝛼12𝜎𝑒11𝜎𝑒22 + 2𝛼66𝜎2
12 (A.35)

and

ℎ(𝜃) = √3
2(𝛼11 cos4 𝜃 + 𝛼11 sin

4 𝜃 + 2(𝛼12 + 𝛼66) sin2 𝜃 cos2 𝜃). (A.36)

A.2.2. Tsai-Wu potential function
For the Tsai-Wu-inspired potential function, some further equations are presented here.

The derivatives of the yield function are given by

𝜕𝑓
𝜕𝜎𝑒11

= 𝑓1 + 2𝑓11𝜎𝑒11 + 2𝑓12𝜎22

𝜕𝑓
𝜕𝜎22

= 𝑓2 + 2𝑓22𝜎𝑒22 + 2𝑓12𝜎𝑒11

𝜕𝑓
𝜕𝜎𝑒12

= 2𝑓66𝜎𝑒12

(A.37)

Let the equivalent stress be defined as

𝜎 = 𝑔 (A.38)

and in the same manner, the equivalent plastic strain, in this case, is defined as

̇𝜖𝑝 = 𝜆̇(2𝑔 − 𝜎𝑒11𝑓1 − 𝜎𝑒22𝑓2)
𝑔 (A.39)





B
Specimen preparation

In this section, all the extra information about specimen preparation is presented. In Fig-
ures, B.1 and B.2 pictures of the CFRP plate inside the mold that was used in the warm-press
technique and the final CMC plate, are presented, respectively.

Figure B.1: CFRP plate inside the mold that was used in the warm-press process.
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Figure B.2: One of the CMC plates that were used to prepare the test specimens.

Pictures of the final specimens before testing are presented in Figures B.3, B.4.

Figure B.3: Monotonic and cyclic tensile specimens with 𝜃 = 30𝑜 before testing.

Tables B.1-B.11 present the dimensions of each specimen. Multiple measurements were
taken to assure the minimization of error and to check compliance with the standards. The
average values of the dimensions of each specimen are presented below.

Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
MT1-0 120.03 8.10 2.47 20.05
MT2-0 120.04 8.05 2.53 20.36
MT3-0 120.03 8.09 2.48 20.05
MT4-0 120.05 8.07 2.51 20.27
MT5-0 120.02 8.07 2.47 19.92
MT6-0 119.99 8.06 2.46 19.85

Table B.1: MT#-0 specimen dimensions.
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Figure B.4: Tensile and compression specimens of 30𝑜 before testing.

Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
MT1-30 120.11 8.24 2.69 22.14
MT2-30 120.02 8.06 2.73 22.02
MT3-30 120.07 8.04 2.74 22.00
MT4-30 120.05 8.14 2.71 22.06
MT5-30 120.03 8.10 2.73 22.10
MT6-30 120.02 8.09 2.73 22.05

Table B.2: MT#-30 specimen dimensions.

Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
MT1-45 119.96 8.04 2.69 21.60
MT2-45 119.96 8.00 2.71 21.65
MT3-45 119.91 8.00 2.70 21.57
MT4-45 119.97 8.05 2.70 21.73
MT5-45 120.04 8.07 2.69 21.69
MT6-45 120.02 8.10 2.72 22.01
MT7-45 119.99 8.04 2.66 21.40

Table B.3: MT#-45 specimen dimensions.
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Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
CT1-0 120.04 8.08 2.50 20.22
CT2-0 120.00 8.11 2.46 19.92
CT3-0 120.00 7.98 2.56 20.42
CT4-0 120.04 8.13 2.46 19.97
CT5-0 120.03 8.05 2.48 19.98
CT6-0 120.03 8.11 2.47 20.00

Table B.4: CT#-0 specimen dimensions.

Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
CT1-30 120.04 8.08 2.74 22.15
CT2-30 120.01 8.11 2.72 22.02
CT3-30 120.08 8.10 2.72 22.03
CT4-30 120.05 8.08 2.73 22.03
CT5-30 120.00 8.05 2.71 21.84
CT6-30 120.00 8.05 2.72 21.87
CT7-30 120.06 8.10 2.65 21.45

Table B.5: CT#-30 specimen dimensions.

Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
CT1-45 119.97 8.04 2.65 21.26
CT2-45 120.02 8.03 2.66 21.39
CT3-45 119.91 8.03 2.68 21.53
CT4-45 120.02 8.04 2.66 21.38
CT5-45 119.98 8.03 2.65 21.30
CT6-45 119.94 8.03 2.64 21.17
CT7-45 119.99 8.04 2.66 21.40

Table B.6: CT#-45 specimen dimensions.

Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
MC1-0 25.03 10.06 3.29 33.07
MC2-0 25.02 10.05 3.31 33.27
MC3-0 25.06 10.04 3.27 32.87
MC4-0 25.06 10.05 3.24 32.50
MC5-0 25.07 10.02 3.28 32.88
MC6-0 25.02 10.07 3.25 32.71

Table B.7: MC#-0 specimen dimensions.
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Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
MC1-30 25.06 10.06 2.78 28.00
MC2-30 25.05 10.10 2.74 27.64
MC3-30 25.08 10.10 2.78 28.04
MC4-30 25.08 10.04 2.81 28.18
MC5-30 25.04 10.10 2.75 27.77
MC6-30 25.07 10.09 2.76 27.87

Table B.8: MC#-30 specimen dimensions.

Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
MC1-45 25.00 10.04 2.78 27.89
MC2-45 25.01 10.07 2.77 27.86
MC3-45 25.00 10.08 2.73 27.48
MC4-45 25.03 10.03 2.74 27.51
MC5-45 25.00 10.20 2.72 27.76
MC6-45 24.96 10.00 2.74 27.35

Table B.9: MC#-45 specimen dimensions.

Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
CC1-0 25.08 10.06 3.24 32.62
CC2-0 25.06 10.04 3.27 32.78
CC3-0 25.02 10.03 3.21 32.21
CC4-0 25.06 10.09 3.25 32.73
CC5-0 25.09 10.03 3.27 32.83
CC6-0 25.05 10.01 3.21 32.12

Table B.10: CC#-0 specimen dimensions.

Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
CC1-30 25.10 10.03 2.81 28.21
CC2-30 25.09 10.09 2.77 27.93
CC3-30 25.06 10.05 2.79 28.04
CC4-30 25.05 10.07 2.76 27.73
CC5-30 25.06 10.13 2.73 27.67
CC6-30 25.06 10.12 2.77 28.00

Table B.11: CC#-30 specimen dimensions.
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Specimen Average length (mm) Average width (mm) Average thickness (mm) Cross-section (mm^2)
CC1-45 25.02 10.07 2.71 27.27
CC2-45 25.00 10.04 2.75 27.56
CC3-45 25.01 10.07 2.70 27.18
CC4-45 25.04 10.04 2.76 27.74
CC5-45 25.03 10.07 2.77 27.91
CC6-45 25.03 10.01 2.74 27.42

Table B.12: CC#-45 specimen dimensions.

Finally, all the tested specimens are presented in Figure B.5.

Figure B.5: All the specimens after the tests.



C
Material characterization

C.1. Experimental set-up
Extra information regarding the mechanical tests is presented in this section. The Zwick

machine with the wedged-type grips and the extensometer can be seen in Figure C.1. The
compression set-up with a specimen placed inside the compression plates can be seen in
Figure C.2.

Figure C.1: Zwick/Roell Z010 machine and tensile set-up.
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Figure C.2: Compression set-up.

Finally, pictures from a tensile and a compression specimen after testing are presented in
Figures C.3 and C.4. In Figure C.3 the location of fracture is shown and it is located within the
gauge length, which means that the test was accurate.

Figure C.3: Fractured tensile specimen after testing.
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Figure C.4: Fractured compression specimen after testing.

The experimental set-up used for the compression test of the steel coupons is presented
in Figure C.5. The set-up is exactly the same as the one used for the compression tests of the
C/C-SiC specimens.

Figure C.5: Compression of steel coupon.

The calculated force-displacement curve of the experimental set-up is presented in Figure
C.6.
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Figure C.6: Force-displacement curve of the testing machine.

C.2. Data processing
Regarding the processing of the data to obtain the material deformation, two procedures

can be followed. The first one is to determine the slope of the linear part of the force and
displacement curve shown in Figure C.6. Since the slope is known at this point, for each
measurement of force in the raw data1, the deformation of the experimental set-up can be
calculated. This deformation needs to be subtracted from the corresponding total deformation.
This way the force-displacement curve of the material is determined. The stress-strain curve
can be calculated with the use of 𝜎 = 𝐹/𝐴 and 𝜖 = 𝑒/𝐿. In case a small ”toe” regime is still
present at small stresses, the linear regime of the plot can be extrapolated to correct the data
according to the DIN and ASTM standards. This toe may be an artifact of the test specimen or
test conditions and may not represent a property of the material. The curve can be corrected
for this toe by extending the linear region of the curve to the zero stress point on the strain
axis.

The second approach concerns the subtraction of the whole force-displacement curve of
the testing set-up (Figure C.6) from the raw data of the specimens. The force and deformation
values of the experimental set-up and the specimens were loaded in separate columns. The
VLOOKUP() function was used to find the force value from the set-up’s data, which is closer
to the one from the specimen’s data. Then the deformation of the set-up was subtracted from
the equivalent deformation of the specimen’s data. The allowed difference between the force
values was set to 1 N. The stress-strain curve was calculated similarly to the previous case.
This procedure is the only way possible to process the data from the cyclic compression tests,
especially at small force values (less than 1 kN).

C.3. Experimental results
In this Section, some of the experimental curves that were not presented in the main text,

are presented here. Firstly, the cyclic tensile curves are presented in Figure C.7.

1Force-deformation data of each specimen measured via the cross-head of the machine
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Figure C.7: Cyclic tensile stress-strain curves of C/C-SiC for (a) 𝜃 = 0𝑜, (b) 𝜃 = 30𝑜 and (c) 𝜃 = 45𝑜.

The raw force-displacement curves of the specimens loaded with a monotonic compres-
sion load, the raw load-displacement and processed stress-strain curves of the cyclic com-
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pression tests are presented in Figures C.8 and.

Figure C.8: Force-displacement curves of C/C-SiC loaded with monotonic compression load for (a) 𝜃 = 0𝑜, (b)
𝜃 = 30𝑜 and (c) 𝜃 = 45𝑜.
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Figure C.9: Stress-strain curves of C/C-SiC loaded with cyclic compression load for (a) 𝜃 = 0𝑜, (b) 𝜃 = 30𝑜 and
(c) 𝜃 = 45𝑜.
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Figure C.10: A typical stress-strain curve of C/C-SiC loaded with cyclic compression load for (a) 𝜃 = 0𝑜, (b)
𝜃 = 30𝑜 and (c) 𝜃 = 45𝑜.



C.4. EDS 91

C.4. EDS

The energy-dispersive X-Ray spectroscopy (EDS) measurements of the material are pre-
sented below. Three different measurements in the areas of interest were conducted. The
results are presented in the Figure below.

Figure C.11: EDS measurement at three different locations.

C.5. Digital image correlation

A trial experiment was performed with the use of the DIC system. Initial skepticism about
the ability of the DIC system to capture the small deformation that CMCs exhibit was proven
wrong. The DIC system can be used in this type of material.
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Figure C.12: Strain measurement of a tensile specimen with 𝜃 = 0𝑜 loaded in tension with the use of the DIC
technique.



D
Bayesian optimization

Further information about Bayesian optimization and parameter optimization is presented
here. Regarding the selection of 𝜆, the two loss terms of the objective function (5.1) are
presented in Figures D.1 and D.2.

Figure D.1: Convergence plot for the first loss term (monotonic test data).

Figure D.2: Convergence plot for the second loss term (cyclic test data).
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Figure D.3: Convergence plot of the objective function.
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