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I
ncreasingly more computing power is being demanded in the domain of multimedia applica-
tions. Computer architectures based on reconfigurable hardware are becoming more popular
now that classical drawbacks are diminishing. Field-Programmable Gate Arrays (FPGAs) are

constantly improving in terms of performance and area, and provide a technology platform that
allows fast and complex reconfigurable designs. The MOLEN polymorphic processor provides
the possibility of executing an application-specific core in a custom generated hardware unit,
which resides inside a reconfigurable fabric.

This thesis presents the architectural design and implementation of a reconfigurable and
extensible open source Very Long Instruction Word (VLIW) processor: ρ-VEX. In addition to
architectural extensibility, our processor also supports reconfigurable operations. Furthermore,
we present an application development framework to optimally exploit the freedom of reconfig-
urable operations. Because ρ-VEX is based on the VEX ISA, we already have a good compiler
which is able to deal with ISA extensibility and reconfigurable operations.

Our processor is targeted to be a Custom Computing Unit (CCU) within a MOLEN re-
configurable computing machine. To estimate the performance gains, we present a performance
analysis based on the VEX simulator. Results of benchmarks on real hardware show that differ-
ent configurations of our processor in a stand-alone environment lead to considerable cycle count
reductions for a selected benchmark application. 1-, 2-, and 4-issue ρ-VEX configurations were
synthesized and implemented in real hardware to operate at a maximum clock frequency of 89
MHz.
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Introduction 1
The demand for computing power in consumer electronics is increasing at a very high
rate. In the age of the Internet, multimedia and 3D visualizations, people need high-
performance (embedded) computers in order to cope with all modern applications. In or-
der to achieve even higher performances, computer systems with a single general-purpose
Central Processing Unit (CPU) are making place for computer systems with multiple
general-purpose CPUs, or a combination of CPUs and application-specific processing
units. This thesis presents an architectural alternative to current computing machines to
achieve a high performance within application-specific computations in general-purpose
machines.

Section 1.1 presents the motivation behind the presented work. Subsequently, project
goals are identified in Section 1.2. Section 1.3 concludes this chapter with an overview
of this thesis’ organization.

1.1 Motivation

It was identified that the performance of application-specific computations within
general-purpose computing machines lacks behind the performance of the same com-
putations on application-specific computing machines. In order to achieve higher per-
formances within the application-specific domain, we combined several technologically
proven paradigms to provide a new architectural solution for a general-purpose comput-
ing machine.

The design of computer architectures on reconfigurable hardware is becoming more
popular now that classical drawbacks are diminishing. Field-Programmable Gate Arrays
(FPGAs) are constantly improving and provide a technology platform that allows fast
and complex reconfigurable designs. In many cases, the utilization of FPGAs implies
a large reduction in development costs, an enormous speedup of the implemented algo-
rithm, or both. Nowadays, a broad spectrum of reconfigurable architectures are used
for applications that would have been implemented in Application-Specific Integrated
Circuit (ASIC) technologies or as software for a general-purpose processor [4].

The MOLEN polymorphic processor [2, 5, 6] provides the possibility of executing
an application-specific core in a custom generated hardware unit, which resides inside
a reconfigurable fabric. The general-purpose processor within a MOLEN machine takes
care of general-purpose calculations, concurrently with application-specific calculations
by the custom unit. Overall application speedups of more than 3 times have been
achieved on different state-of-the-art multimedia applications [7].

Very Long Instruction Word (VLIW) processors are efficient machines for calculations
that contain a lot of Instruction Level Parallelism (ILP) that can be exposed by a good
compiler. Applications in the multimedia domain happen to contain a lot of ILP, because

1



2 CHAPTER 1. INTRODUCTION

they typically consist of many independent repetitive calculations.
By means of embedding a VLIW co-processor inside the reconfigurable fabric of a

MOLEN machine, we aim to bridge the gap between the execution time of an application-
specific kernel on the general-purpose processor and a custom generated hardware unit.
This would result in a compromise between two fields. The first is the execution time of
the application-specific kernel, and the second is the on-chip area used for the hardware.
One VLIW co-processor is able to perform a large number of different calculations within
a fixed area footprint, whilst a custom hardware unit is probably only able to perform
one type of calculation on a fixed area footprint.

Most processor Instruction Set Architectures (ISAs) define many atomic operations.
However, in many applications a custom operation1 would result in an increase of the
performance (and a decrease in power dissipation). This is why we want our processor
to have support for reconfigurable operations.

In this thesis, the design and implementation are presented of an embedded recon-
figurable and extensible open source VLIW processor, accompanied by a development
framework. Our processor architecture is based on the VLIW Example (VEX) ISA, as
introduced in [1]. The VEX ISA offers a scalable technology platform for embedded
VLIW processors, that allows variation in many aspects, including instruction issue-
width, organization of Functional Units (FUs), and instruction set. A software devel-
opment compiler toolchain for VEX is made publicly available by Hewlett-Packard [8].
The reasons to choose the VEX ISA for this project are merely its extensibility and the
quality of the available compiler. Our design provides mechanisms that allow parametric
extensibility of the new processor, called ρ-VEX. Both reconfigurable operations, as well
as the versatility of VEX machine models are supported by ρ-VEX. Our processor and
framework are targeted at VLIW prototyping research and embedded processor design
in a stand-alone environment. After some further work regarding MOLEN integration,
ρ-VEX will be a scalable co-processor for the utilization within a MOLEN machine. The
results of our preliminary performance analysis in Chapter 3 show that the inclusion of
a VLIW co-processor within a MOLEN machine pays off in terms of performance.

1.2 Project Goals

The main goal of this project is to design and implement an extensible and reconfigurable
VLIW processor according to the VEX ISA, that can be eventually used as a co-processor
within a MOLEN machine. To justify the existence of such a VEX co-processor, a

1Throughout this thesis, the following naming conventions are used for operation, instruction and
syllable:

• An operation is defined as an atomic command for the processor to be executed, e.g. the addition
of two operands.

• An instruction is defined as the data fetched from the instruction memory, in which a number of
operations is defined together with their operands and destinations.

• A syllable is defined as a combination of a single operation together with its operands and desti-
nation. A syllable is the same as an instruction in RISC machines.
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preliminary performance analysis was performed in Chapter 3 in order to show the
benefits.

The following stages have been identified in order to achieve the main goal of this
project:

1. For the first stage of the processor design, a 1-issue RISC version of ρ-VEX should
be designed and implemented. This processor implementation should be able to
issue one operation at a time.

2. After the RISC version of ρ-VEX, a 4-issue version should be implemented, using
the default VEX machine model. This version of ρ-VEX should allow parametric
extensibility so that the operation issue-width, the configuration of Functional
Units (FUs) and the operations could be easily adapted.

3. After the hardware platform is implemented, an assembler tool (ρ-ASM) should
be created to assemble VEX assembly instructions to machine code which can be
executed by the ρ-VEX processor.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. A background on related work and
underlying technologies as the VEX VLIW architecture and the MOLEN polymorphic
processor is presented in Chapter 2. Chapter 3 discusses the results of our prelimi-
nary performance and configuration analysis of ρ-VEX serving as a co-processor within
a MOLEN machine. Subsequently, the architectural design of ρ-VEX is presented in
Chapter 4. Next, we present our hardware implementation and testing methods in
Chapter 5. Chapter 6 discusses the ρ-VEX application development framework and de-
sign flow that we designed. Results obtained practical experiments are presented and
discussed in Chapter 7. Finally, this thesis is concluded in Chapter 8 where recommen-
dations for future work can also be found.

A clarification of the chosen name and logo is given in Appendix A. Appendix B
presents an overview of the VEX operations, their semantics and the corresponding ρ-
VEX opcode and operation type. The VEX machine model for ρ-VEX is presented in
Appendix C. Appendix D enlists the assembly code used for the different benchmarks
on Fibonacci’s Sequence. Appendix E presents waveform diagrams of behavioural and
post-place and route simulations of Fibonacci’s Sequence benchmark. In Appendix F, a
Quickstart Guide is presented to easily deploy ρ-VEX on an FPGA development board.
Appendix G presents the contents of the ρ-VEX package as it can be downloaded from
the project website.

All latest hardware and software source code of this project can be found on the
project website at http://r-vex.googlecode.com. All source code is released under
the GNU General Public License v3 [9].

http://r-vex.googlecode.com
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Background 2
Our work is mainly based on two projects in computer architectural design, namely the
VEX VLIW ISA, and the MOLEN polymorphic processor. This chapter presents a
background on the underlying technologies.

Section 2.1 presents an overview of related work done by others in the past. Sec-
tion 2.2 discusses exploiting Instruction Level Parallelism (ILP) and the general ideas
behind Very Long Instruction Word (VLIW) processors. Subsequently, the VEX VLIW
architecture is presented in Section 2.3. The MOLEN processor architecture is presented
in Section 2.4. Finally, this chapter is concluded in Section 2.5.

2.1 Related Work

Different softcore approaches resulted in FPGA-based system designs that achieved no-
table performances. An overview of related work is presented, structured per processor
type.

2.1.1 RISC Softcore Processors

Well-known Reduced Instruction Set Computer (RISC) softcore processors MicroBlaze
[10] by Xilinx and Nios II [11] by Altera provide efficient sequential architectures, op-
timized for the reconfigurable devices of their respective designers. Both Xilinx and
Altera provide a software development toolchain with an extensive library base for fast
application development. The toolchains provided for MicroBlaze and Nios II are based
on the GNU tools, including the GNU C Libraries.

Both softcores are widely used, and are proved to provide efficient application devel-
opment cycles. However, these processors do only expose a small degree of extensibility.
Some parts of the processor are parametric within their accompanying Integrated De-
velopment Environment (IDE), but the largest part of the design is fixed. As they are
RISC processors, no changes can be made to e.g. the issue-width. Additionally, they are
not open source and in many situations require costly licenses to be used.

A well-known open source RISC processor is OpenRISC [12]. This processor core
has fully ported GNU toolchain, and extended connectivity options like a Wishbone [13]
bus interface. uClinux has also been ported to run on this processor. However, internal
customizability is not very high, and the issue-width can not be changed throughout the
toolchain.

A 32-bit open source softcore processor by Lattice Semiconductor is LatticeMico32
[14]. The source code of the processor and software development toolchain is provided
through a custom open source license. LatticeMico32 has many of the features that

5
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OpenRISC has, like Wishbone connectivity. The same disadvantages concerning cus-
tomizability can be accounted to this processor as well.

MicroCore [15] is another open source softcore processor, targeted at hardware devel-
opers that want to have full control over the microprocessor and the embedded hardware
connected to it, as well as the software running on it. A software toolchain is provided,
and the architecture is very customizable. However, a wider issue-width than 1 is not
architecturally supported.

2.1.2 VLIW Softcore Processors

The first VLIW softcore processor found in existing literature is Spyder [16, 17]. The
architecture of Spyder consists of three reconfigurable execution units, of which the com-
piler toolchain decides their configuration based on a library of known configurations. A
developer could also add his own configurations to this library. Spyder did not evolve
extensively, but its design and implementation marked the beginning of more (recon-
figurable) VLIW softcore processor designs. One of the drawbacks of Spyder was that
both the processor architecture as well as the compiler were designed from scratch. This
implied that the designers had to work on improvements of both the processor and the
toolchain.

Later, several customizable VLIW softcore projects like [18], [19] and [20] were pre-
sented. A limitation of the former architectures is mainly the absence of extensibility
(like adjusting the issue-width and changing the number of functional units), or the
absence of a good software toolchain.

In [21], a parametric customizable VLIW processor based on a subset of the EPIC
ISA [22] is presented. This processor also supports reconfigurable operations. However,
the complete support for custom operations throughout the (simulation) software &
hardware toolchain and the flexible machine models that enable fast trade-off studies on
functional units make our design stand out.

Another hardware implementation of a VEX machine is presented in [23]. However, in
this implementation VEX assembly is used as an input to a more conventional hardware
compiler. More specifically, instead of building a general-purpose VEX VLIW processor
to execute code, it converts the assembly code into custom hardware.

2.1.3 Reconfigurable Processors

The Chimaera [24] architecture supports issuing reconfigurable operations, like the
MOLEN architecture. The Chimaera system describes a reconfigurable functional unit
within a fixed core general purpose processor. This reconfigurable unit is able to access
the register files directly, as it resides within the processor pipeline. This in contrast to
the MOLEN architecture, where reconfigurable computing units reside outside the core
processor.

The Garp [25] system was designed specifically for accelerating loops within general-
purpose software applications. A Garp machine consists of a single-issue MIPS processor,
together with a reconfigurable co-processor. A custom compiler is used to compile appli-
cation code for the architecture. The MIPS instruction set is augmented with a number
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of non-standard instructions to load a new configuration, moving data, and starting the
execution of the reconfigurable co-processor.

2.2 ILP and VLIW

A computer system embodies Instruction Level Parallelism (ILP) when it has the abil-
ity to execute multiple different operations at the same time, while a single stream of
instructions is presented. Because it is an architectural technique, it is independent on
changes in technology, like circuit speed [1]. Because the effects on the system perfor-
mance can be notably significant, most processors exploit ILP in one way or another
these days.

ILP is often compared or confused with other types of processor parallelism, as
discussed in [1]. Other types of parallelism include:

• Vector processing – A vector processor is able to perform a single operation on
a vector of operands. For example, an operation for addition can operate on a pair
of 128-bit operands that both contain four 32-bit integer values. Vector processors
are based on the Single Instruction, Multiple Data (SIMD) principle.

• Multiprocessing – A multiprocessor computer has multiple processors to execute
multiple programs, or parts of programs, at the same time.

• Multithreading – Multithreading is a system in which multiple light independent
processes on a system are alternatingly given focus of a single processor. Most of the
time, these processes have their own set of registers but share the same Functional
Units.

• Micro-SIMD – Micro-SIMD is a system in which vector operations operate on
standard-sized architecture registers. This only incorporates selected operations
per architecture. MMX [26] by Intel is an example of a micro-SIMD system.

These techniques may share the same kind of parallelism that is exposed in ILP.
When this occurs, only one of the techniques to exploit the parallelism can be used. In
other cases, multiple forms of parallelism are exposed and can be exploited separately
by using the aforementioned techniques.

Current trends in exploiting ILP in single processor cores are mainly represented by
architectures known as ‘superscalar’ and ‘Very Long Instruction Word (VLIW)’. Both
architectures exploit ILP by issuing more than one operation per issue slot to addi-
tional FUs. The main difference between these two architectures is that a superscalar
processor issues operations from a single-operation instruction stream, while a VLIW
processor issues operations from a multi-operation instruction stream. This means that
a superscalar processor should have hardware that enables dynamic scheduling, while
a VLIW processor can issue pre-scheduled operations (in this case, the operations are
scheduled by the compiler). The big advantage of a superscalar architecture is that com-
piled application code for a single-issue scalar RISC processor with the same ISA can
be executed directly on a superscalar processor. To execute the same application on a
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VLIW processor, the original application source code should be recompiled for the new
ISA. Because the scheduling logic and the logic to detect ánd omit data dependencies
consume quite some area on the die of a superscalar processor as well as a lot of energy,
these are less attractive for embedded applications (that require devices as small and
energy-efficient as possible).

VLIW architectures require a more powerful compiler than superscalar and Reduced
Instruction Set Computer (RISC) architectures, because of the scheduling of operations.
As quoted in [1]:

“The VLIW design philosophy is to design processors that offer ILP in ways
completely visible in the machine-level program and to the compiler.”

This basically means that the hardware is not allowed to perform actions that the
programmer cannot directly infer.

In [27], Corporaal presents Transport Triggered Architectures (TTAs) as an alterna-
tive to (and an evolution of) VLIW architectures. In a TTA, not the FUs are specified
per operation, but the data transports. This implies that unnecessary data transports
do not have to take place.

Explicitly Parallel Instruction Computing (EPIC) [22] is the architecture designed
cooperatively by Hewlett-Packard and Intel. EPIC strongly relies on VLIW design prin-
ciples, but the architectural name was changed by Intel for marketing reasons [1] (because
enough innovative changes were applied to differentiate the architecture). The first pro-
cessor that was designed on this architecture was the Intel Itanium. The architectural
name was called IA-64 (for Intel Architecture with 64 bit word length, as opposed to IA-
32). When the Itanium processor was released, the name was changed to IPF (Itanium
Processor Family), again for marketing reasons.

2.3 The VEX VLIW Architecture

The VEX (VLIW Example) ISA [1] is loosely modeled on the ISA of the HP/STMi-
croelectronics Lx [3] family of embedded VLIW processors. The VEX ISA supports a
multi-cluster implementation, where each cluster provides a separate (possibly differ-
ent) VEX ISA implementation. Each cluster has the ability to issue multiple operations
in the same instruction (that is, each cluster acts as a separate VLIW core). A VEX
multi-cluster processor shares one instruction fetch unit and one memory controller. The
extensibility of the instruction set enables the definitions of special-purpose instructions
in an organized way. VEX does not support floating point operations.

2.3.1 The VEX ISA

Figure 2.1 depicts the structure of a default VEX cluster, with an instruction issue-width
of 4. By default, a VEX cluster has 4 ALU units, 2 multiplier units, 1 branch control
unit and 1 memory access unit per cluster. Also, an instruction- and data-memory cache
of 32 kB is present. A VEX instruction consists of one or more syllables, depending on
the issue-width. A syllable can be seen as a single ‘RISC-style’ instruction.
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Figure 2.1: Structure of the default VEX cluster [1]

A publicly available VEX software toolchain is provided by Hewlett-Packard Labo-
ratories [8], which offers a VEX C compiler and a VEX simulator. The compiler allows
the user/designer to easily adjust parameters of the VEX processor (like the number of
clusters and the issue-width). The VEX simulator offers an architecture-level simula-
tor that comes with a set of POSIX-like libraries, a cache simulator, and an Application
Programming Interface (API). The simulator is able to output many statistical run-time
data of simulated applications.

The VEX C compiler is a derivation of the Lx/ST200 C compiler, itself a descendant
of the Multiflow C compiler. It uses trace scheduling as its main scheduling method.
Trace scheduling implies that operations will be restructured in order for large ‘traces’
to appear without branches. Profiling of compiled applications is supported via the GNU
Profiler gprof.

2.3.2 VEX Machine Configurations

As described in [1], a VEX machine is a highly customizable. Figure 2.2 depicts the
structure of a VEX multi-cluster implementation. A well-defined VEX machine should
have at least one cluster (cluster 0). For each cluster, the number of resources per
instruction (Arithmetic Logic Units (ALUs), Multiplier units (MULs), issue-width and
memory ports) can be indicated, as well as the delay per computational element and the
number of registers. Figure 2.1 depicts the default structure of a VEX cluster. We can
distinguish some basic VEX machine configurations:

• 1-cluster VEX – A 1-cluster configuration is a default configuration. The machine
has one VEX cluster (cluster 0), for which the various parameters can be altered.

• multi-cluster VEX – On a multi-cluster machine, cluster configurations can be
altered per cluster. This implies that cluster 2 and cluster 3 can both have a
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Figure 2.2: Structure of a VEX multi-cluster implementation [1]

different ISA.

• 1-issue (RISC) – VEX This machine variation is actually a subset of the 1-
cluster VEX machine models. The issue-width is 1 by default, so only one ALU is
available, one MUL, etc.

2.3.3 Cache Configuration

As well as per-cluster configurations, global configurations like cache sizes and miss
penalties can be defined. These configurations are passed as directives to the simulator.
Instruction- and data-cache sizes are of significant importance for the performance of a
processor. Cache misses can heavily influence the number of executed cycles by intro-
ducing stall cycles. The following equations from [28] show us what the influences of
cache misses are:

CPU time = (CPU cycles + Memory stall cycles)× Cycle time (2.1)

Memory stall cycles = Instruction count× Memory accesses

Instruction
×Miss rate×Miss penalty (2.2)

It is clear that for applications with many memory accesses, or with badly constructed
cache mechanisms (resulting in a high miss rate), the memory stall cycles can account
for a significant part of the total number of execution cycles.

As for our research on the ρ-VEX processor, we suggest three configurations for which
simulations should be done, in order to define a good design space:
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• Configuration with default cache sizes (DEF) A default VEX machine has
both an instruction- and data-cache of 32 KB. The cache mechanism is organized
4-way set associative.

• Configuration without cache (NO) To gain insight in VEX performances where
no cache is available, simulations should be done on VEX machines where no cache
is available.

• Configuration with cache trade-off (PROP) Because memories are expensive
to implement in reconfigurable fabric, we want to propose a design that uses less
cache memory than the default 32 KB.

These configurations are used in the performance benchmarks in Chapter 3.

2.3.4 The VEX Simulation System

The VEX simulator is a ‘compiled simulator’, contrary to an ‘interpreted simulator’.
An interpreted simulator is the most straightforward, but slowest, way of simulating
an architecture. The interpreter mimics the target processor, and performs the same
actions as the target processor performs on the instructions. Because of the interpretation
overhead this is a slow solution (but relatively easy to implement). A compiled simulator
translates the target executable binary code to a binary executable that can run on the
host system. This removes a lot of the interpretation overhead in a interpreted simulator,
and is thus a lot faster.

2.4 The MOLEN Polymorphic Processor

The MOLEN paradigm provides a solution to the growing processor hardware design
challenges, by reconfigurable processors (processors that adapt their micro-architecture
according to the application’s requirements). This is being achieved by Custom Com-
puting Units (CCUs) and reconfigurable microcode (ρµ-code) [6].

Figure 2.3 presents an overview of the MOLEN machine organization, including a
General-Purpose Processor (GPP) with a fixed instruction set, and a reconfigurable co-
processor. Application code is executed on the GPP, except for selected functions that
were identified to have a very efficient hardware implementation. Those are executed
within the reconfigurable processor, by a CCU. The ρµ-unit takes care of the control
flow within the reconfigurable processor.

The process of application generation and execution for a MOLEN machine is as
follows [5]:

1. From a given application source code, one or more pieces should be determined
and isolated for execution on a hardware CCU. These are being determined by
high-level to high-level instrumentation within the Delft Workbench [29] toolchain,
and benchmarking. This results in a set of candidate code pieces.

2. From these code pieces, it has to be determined which pieces are suitable for
hardware execution, by means of the effort it takes to map them onto hardware.
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mation example.

3. Eliminate the identified code ”α” from program P. Insert an
equivalent code A (e.g., SAD a,b,c), which calls the hard-

ware through a preestablished SW/HW calling interface. This

interface comprises:

• Parameters and results for communication between the
GPP and the reconfigurable processor.

• Configuration code, inserted to configure the hardware.
• Emulation code, used to perform the functionality of

the hardware accelerated kernel ”α”.

4. Compile and execute program P’ with original code plus

code having functionality A (equivalent to ”α”, i.e., SAD
a,b,c) on the GPP/reconfigurable processor.

It is noted that the only constraint on ”α” is its implementability,
which possibly implies complex hardware. Due to the complexity

of this hardware, the microarchitecture may have to support em-

ulation [11], which in turn requires the utilization of microcode.

This reconfigurable microcode is termed as ρµ-code and it is dif-
ferent from the traditional microcode. The difference is that such

microcode does not execute on fixed hardware facilities. It operates

on facilities that the ρµ-code itself ”designs” to operate upon.
Processor organization: The twomain components in theMolen

machine organization (depicted in Figure 2) are the Core Proces-

sor, which is a general-purpose processor (GPP), and the Reconfig-

urable Processor (RP). The ARBITER performs a partial decoding

on the instructions in order to determine where they should be is-

sued. Instructions implemented in fixed hardware are issued to the

GPP. Instructions for custom execution are redirected to the RP.

Data transfers from(to) the main memory are handled by the Data

Load/Store unit. The Data Memory MUX/DEMUX unit is respon-

sible for distributing data between either the reconfigurable or the

core processor. The reconfigurable processor consists of the recon-

figurable microcode (ρµ-code) unit and the custom computing unit

(CCU). The CCU consists of reconfigurable hardware and memory,

intended to support additional and future functionalities that are not

implemented in the core processor. Pieces of application code can

be implemented on the CCU in order to speed up the overall exe-

cution of the application. A clear distinction exists between code

that is executed on the RP and code that is executed on the GPP.

The parameter and result passing between the RP targeted code and

the remainder application code is performed utilizing the exchange

registers (XREGs), depicted in Figure 2.

Main Memory 

Instruction 

Fetch 

Data 

Load/Store 

ARBITER 

DATA 

MEMORY 

MUX/DEMUX 

Reconfigurable Processor 

Core 

Processor 
reconfigurable 

microcode 

unit 

CCU 

Register File 

Exchange 

Registers 

Figure 2: The Molen machine organization

Polymorphic operations: An operation, executed by the RP, is

divided into two distinct phases: set and execute. The set phase

is responsible for reconfiguring the CCU for the operation. In the

execute phase, the actual execution of the operations is performed.

No specific instructions are associated with specific operations to

configure and execute on the CCU. Instead, pointers to reconfig-

urable microcode (ρµ-code) are utilized. The ρµ-code emulates
both the configuration and the execution of CCU implementations

resulting in two types of microcode: 1) reconfiguration microcode

that controls the CCU configuration; and 2) execution microcode

that controls the execution of the configured CCU implementation.

The complete polymorphic instruction set: The complete list

of the eight instructions, supporting the Molen paradigm (for de-

tails see [12]) is denoted as polymorphic instruction set architecture

(πISA). These instructions are:
1) partial set (p-set<address>) performs common and frequently
used configurations;

2) complete set (c-set <address>) completes the CCU’s configu-
ration to perform less frequent functions;

3) execute <address>: controls the execution of the operations
on the CCU configured by the set instructions;
4) set prefetch <address>, and 5) execute prefetch:
prefetch the needed microcodes responsible for CCU reconfigura-

tions and executions into a local on-chip storage (the ρµ-code unit);
6) break: synchronizes parallel executions on the RP and the GPP;

7) movtx XREGa← Rb, and 8) movfx Ra← XREGb:

move the content of general-purpose register Rb to/from XREGa.

The<address> field denotes the location of the reconfigurable

microcode responsible for the configuration and the execution. In

the prototype processor, described hereafter, we have implemented

a minimal πISA, comprising c-set, execute, movtx, and movfx.

3. DESIGN DESCRIPTION
In this section, we describe the particular design considerations

regarding the separate parts of the Molen Virtex II Pro prototype.

Our experiments have been carried out on an Alpha-Data develop-

ment board ADM-XPL (http://www.alpha-data.com/)

equipped with the Xilinx Virtex II Pro chip xc2vp20-5 [13]. The

mounted FPGA chip is an engineering silicon with vendor recom-

mended PowerPC clock frequency of 250 MHz. We have described

the Molen organization in VHDL. The Xilinx standard develop-

ment tools embedded in the ISE 5.2. SP3 have been utilized both

for the synthesis (with the Xilinx XST tool) and for the FPGAmap-

ping. Behavioral hardware simulations have been performed with

ModelSim SE 5.7c. The programs have been compiled with GCC.

Figure 2.3: The MOLEN machine organization [2]

3. A hardware implementation in an Hardware Description Language (HDL) should
be generated either automatically, or manually (for timing-critical parts).

4. Calls to these particular hardware mapped functions should be replaced in the
software code by calls to the hardware unit. Data exchange between the hard-
ware units and the general-purpose processor is done by using exchange registers
(XREGS).

5. Upon execution of the application, the reconfigurable fabric should be configured
(or reconfigured) with the corresponding functions in time.

The design and implementation of new concepts for the MOLEN paradigm are very
active topics at the Computer Engineering Laboratory of Delft University of Technology,
ever since its conceptual introduction in 2001 [6].

A prototype [7] of the MOLEN processor is currently available, based on the Xilinx
Virtex-II Pro platform. This FPGA platform features two PowerPC 405 general-purpose
CPU cores embedded in the reconfigurable fabric. One PowerPC 405 core running at a
clock speed of 300 MHz serves as the GPP in the current prototype. This prototype is
the platform at which the ρ-VEX co-processor is targeted at. ρ-VEX should be imple-
mented as a CCU for the MOLEN processor, as a part of the reconfigurable processor.
The application code which is targeted for execution by ρ-VEX will be directed to the
VEX compiler, where binary executable code will be generated. Figure 2.4 depicts the
workflow for a MOLEN machine featuring an ρ-VEX co-processor. An application ker-
nel identifier as part of the Delft Workbench toolchain identifies a code fragment to
be executed by a CCU (ρ-VEX). This code is then passed to the VEX compiler by
Hewlett-Packard, instead of being transformed into an application-specific hardware so-
lution. The resulting VEX assembly code will be assembled by ρ-VEX’ accompanying
assembler, ρ-ASM. The ρ-VEX executable is then loaded into the instruction memory
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Figure 2.4: ρ-VEX integration within the MOLEN workflow

of ρ-VEX. When ρ-VEX receives that CCU ‘start’ signal, it will execute the application
kernel. ρ-VEX raises CCU ‘finished’ signal when the execution has finished.

2.5 Conclusions

This chapter presented a background on the technologies used in our research. Different
softcore approaches by others resulted in designs and implementations of several proces-
sors. These approaches vary between relatively fixed designs with extensive toolchains,
to flexible designs with weak or no toolchains. Some approaches provided support for
reconfigurable operations, through different mechanisms.

Instruction Level Parallelism (ILP) is exposed within an application when a com-
puter system is able to execute multiple different operations, when a single stream of
instructions is presented. Superscalar and VLIW are architectures that are able to ex-
ploit ILP by issuing more than one operation per issue slot. These operations are issued
to additional Functional Units (FUs) available within the processor. Superscalar ma-
chines demand dynamic operation scheduling logic in hardware, while operations are
pre-scheduled by the compiler for VLIW machines.

The VEX architecture is designed at Hewlett-Packard, based on the Lx VLIW pro-
cessor architecture. The VEX ISA supports multi-cluster computing machines with a
variable issue-width. A compiler and simulator toolchain are made freely available by
Hewlett-Packard.

The MOLEN paradigm presents a reconfigurable processor architecture, consisting
of a General-Purpose Processor with a fixed instruction set and a reconfigurable co-
processor. Custom operations are placed in the co-processor as Custom Computing
Units. The co-processor is instructed and configured by reconfigurable microcode (ρµ-
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code) operations. An arbiter decodes the instructions to decide whether to target the
reconfigurable processor or the fixed core processor.



Performance and Configuration
Analysis 3
In order to give more insight in the performance gain the ρ-VEX co-processor would
give to a MOLEN machine, we performed a preliminary performance and configuration
analysis. We also analyzed what a good ρ-VEX configuration would be when it serves as
a co-processor within a MOLEN machine.

Our performance analysis is divided in two parts. The first part consists of an analysis
of the commercially available Lx processor, since the VEX architecture is a descendant
of the Lx architecture. The second part consists of an analysis of custom benchmarks
executed on different architectures: inside the VEX simulator using different machine
models, on a PowerPC 405 processor and on a MOLEN hardware CCU when possible.

In Section 3.1, the performance of the Lx processor is evaluated. Section 3.2 describes
the benchmarks and results obtained from our own simulations on the aforementioned
architectures. Conclusions are drawn in Section 3.3.

3.1 Lx Analysis

Because the VEX ISA is very similar to the Lx ISA by Hewlett-Packard and STMicro-
electronics, we considered the performance measurements of Lx based processors with
different ISA configurations to be valuable. In [3], performance measurements have been
done on different Lx machine configurations against a cycle-accurate simulator. The
benchmarks used are a subset of the SPECINT’95 suite, consisting of application-specific
benchmarks, as well as general-purpose benchmarks. Table 3.1 presents an overview of
the performed benchmarks. All application-specific benchmarks (except adpcm) were
optimized with source-level compiler pragmas, as well as code restructuring to expose
more Instruction Level Parallelism (ILP). Figure 3.1 depicts performance charts for an
Lx processor running on a clock frequency of 300 MHz1. The cluster-width of the Lx
processor varies between 1,2 and 4 clusters (corresponding to an issue-width of 4, 8 or
16 operations). Performances are compared to an Intel Pentium II running at 333 MHz,
with a performance scale of 1.00.

These results clearly show that specializing for an application domain pays off in
terms of performance gain in contrast to general-purpose applications. This is expected
behaviour, as general-purpose applications are not able to expose a lot of ILP. The
general-purpose results are of less interest for our research, as ρ-VEX is intended to be
an embedded co-processor within a MOLEN machine, dedicated to execute application-
specific kernels. The general-purpose code will be executed by the GPP inside the

1In [3], performance of 200 and 400 MHz Lx processors was also measured, and all results were
compared to a 275 MHz StrongARM processor. These have been left out because of no significant
importance.

15
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Application-specific General-purpose

Name Description Name Description

bmark Printing imaging pipeline boise Printing rendering pipeline
copymark Color copier pipeline dhry Dhrystone 1.1 and 2.1
crypto Cryptography code gcc GCC
csc Color-space conversion go GO
mpeg2 MPEG-2 decoder li LISP interpreter
tjpeg JPEG-like codec m88ksim M88000 simulator
adpcm ADPCM audio codec gs Ghostscript PS interpreter

Table 3.1: The Lx benchmark set taken from SPECINT’95 [3]
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Figure 3.1: Lx performance chart, varying cluster-width from 1 to 4 [3]

MOLEN machine. However, these benchmarks show the negative impact of general-
purpose applications on a VLIW architecture when ρ-VEX serves as a GPP itself (in a
stand-alone environment).

Except for the adpcm benchmark, increasing the issue-width of the Lx processor
improves the performance. This heavily depends on the application. Both the largest
and the smallest performance gain can be found in the bmark benchmark: going from 1
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to 2 clusters (issue-width increases from 4 to 8) yields a performance gain of about 28%.
Contrary, the gain from 2 clusters to 4 clusters can be neglected. Generally speaking,
it can be concluded that the increase from 1 to 2 clusters has a bigger influence on the
achieved performance than scaling from 2 to 4 clusters.

3.2 VEX Analysis

To gain more insight in the performance of ρ-VEX processor we performed benchmarks
on the VEX ISA. To investigate the performance and real-world pay-off of different VEX
configurations we performed the benchmarks on different machines:

• RISC-VEX machine – A VEX machine in RISC configuration equals a VEX
machine with an instruction issue-width of 1. By default, a VEX cluster has an
issue-width of 4. We performed the benchmarks on a RISC-VEX configuration,
because this would clearly show the advantage of a higher issue width when the
results are compared to a 1- or 2-cluster VEX machine.

• 1-cluster VEX machine – The single cluster in this machine has a default con-
figuration concerning computation resources.

• 2-cluster VEX machine – Both clusters of this machine have default resources
configured. Because our original intentions were to design either a 1- or 2-cluster
ρ-VEX processor, this machine is included in the set.

• PowerPC 405 at 300 MHz – The PowerPC is one of the direct ‘competitors’ of
ρ-VEX, because it is the GPP inside the current MOLEN prototype. ρ-VEX has
to perform at least better than this processor to expose advantages.

• MOLEN hardware CCU – The other ‘competitor’ of ρ-VEX is a MOLEN hard-
ware CCU. The performance of ρ-VEX is targeted to be in between the perfor-
mances of the PowerPC and a CCU.

It is clear that we chose not to benchmark a 4-cluster VEX machine. There mainly
are two reasons for this: a 4-cluster VEX machine is beyond the scope of the ρ-VEX
project, and the performance gain of a 4-cluster compared to a 2-cluster Lx machine
is minimal, as was shown in Section 3.1. We did not perform benchmarks including
custom operations as it was initially not planned to have support for custom operations
in ρ-VEX.

We performed all benchmarks with the VEX machines in three different configura-
tions, the ones presented in Section 2.3.3: the default (DEF) VEX cluster configuration
(32 KB 4-way set associative instruction- and data-cache), the ‘no cache’ (NO) con-
figuration, and the proposed (PROP) configuration. Currently, in the 3.41 version of
the VEX toolchain, we could not de-activate the cache system totally for simulation
purposes. We were however able to bring it down to a 16 byte, direct mapped cache.
This resulted in a 16 B direct mapped instructio- and data-cache organization for the
‘no cache’ configuration. For te proposed configuration, a 4 KB 4-way set associative
instruction- and data-cache seemed to be a good trade-off, performance-wise.
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Except for performance, ρ-VEX also competes area-wise with other CCUs, because
they are both configured in the same reconfigurable fabric. A user may opt for an
instantiation of the ρ-VEX co-processor in the reconfigurable fabric of the MOLEN
machine, or save area to have more CCUs. ρ-VEX is supposed to perform ‘reasonably’ on
many application-specific kernels, whereas a CCU is supposed to perform ‘considerably’
on one specific task. When making this trade-off, the user has to take the number
of application-specific kernels in the particular application into account, as well as the
relative speedup for a CCU compared to ρ-VEX and to the PowerPC 405 processor. It
should be noted that the current MOLEN prototype is configured without I- and D-cache
for the PowerPC 405 processor, because of limitations in the used FPGA technology.

3.2.1 Simulator Benchmark Set

Our benchmark set consisted of four benchmarks that will be discussed below. Two of our
benchmarks are modified examples from the MOLEN prototype example set [30]. This
means that a representable hardware CCU is available and we can have benchmark results
from all machines. The other two kernels are chosen within the (media) application
domain, because ρ-VEX is meant to excel in this domain.

• G.723 Audio Encode The G.723 [31] audio encoding technique is used for the
encoding of (voice) audio in Voice over IP (VoIP) telephony applications. For this
benchmark, an 8-bit A-law input audio signal of 928 bytes is encoded to a 24
kbps G.723 encoded signal. The G.723 implementation used in our project was
released to the public domain by Sun Microsystems [32]. This benchmark was
chosen because it is a real-world application in the domain where the computing
machine is targeted at.

• Matrix Multiplication We created an application which multiplies two 64 × 64
semi-randomly integer-filled matrices. We created this application because both
ALU parallelism would be exposed, as well as prefetching possibilities.

• Min/Max from Array This application resides within the MOLEN prototype
examples set. It determines the minimum and maximum values of a semi-randomly
filled array with 16 integers (the unmodified demo application operates on an array
with 8 integers). This benchmark exposes a lot of branches and comparisons.

• Moving Filter This last application also originates from the MOLEN prototype
examples set. It transfers a signal represented by a semi-randomly filled array
of 32 integers through a filter (the unmodified demo application operates on an
array with 16 integers). This benchmark was chosen because it showed a lot of
parallelism in terms of ALU usage.

The VEX simulator generates extensive log files after each simulation, of which we
were able to obtain the cycle counts of the different VEX machines. To obtain the
number of execution cycles for the PowerPC 405, we used the internal cycle counter of
the PowerPC. We obtained the cycle count with inline assembly lines. The number of
execution cycles for the MOLEN CCU are relative to the PowerPC. We let the PowerPC



3.2. VEX ANALYSIS 19

G.723 Matrix Multiplication
DEF NO PROP DEF NO PROP

VEX RISC 2108515 10782609 3363355 2320266 24803442 12337487
VEX-1 1148287 9871235 2442257 1277970 22492006 11431185
VEX-2 1118928 10314585 2244582 1023833 22201002 11413672

PPC-EDK 17213803 27015717
PPC-MOLEN N/A N/A
CCU N/A N/A

Min/Max from Array Moving Filter
DEF NO PROP DEF NO PROP

VEX RISC 1017 3789 1332 1944 14458 2349
VEX-1 940 3878 1255 1517 14468 1922
VEX-2 976 3797 1291 1347 12929 1783

PPC-EDK 2170 6942
PPC-MOLEN 2754 7530
CCU 360 558

Table 3.2: Number of clock cycles executed per system in the VEX benchmark set

start counting cycles at the call to a CCU function, and we stopped the counter after
obtaining a result.

All benchmarks have been performed with the compiler set to medium optimization.
Because the MOLEN prototype GCC -based compiler 2.0α (PPC-MOLEN) currently
only compiles with low optimization, we repeated those benchmarks with the GCC -based
PowerPC compiler that is bundled with the Xilinx Embedded Development Kit (EDK)
8.1i (PPC-EDK).

3.2.2 Simulator Benchmark Results

The results of our benchmarks are presented in Table 3.2. Since the different cache
configurations only apply to the VEX machines, the PowerPC and MOLEN CCU results
are only presented once per benchmark. Figure 3.2 depicts the performance chart based
on default VEX configurations. The performance in clock cycles of the PowerPC 405
processor (with application code compiled by the GCC compiler included with EDK) is
used as reference. Subsequently, Figure 3.3 depicts the performance chart based on the
‘no cache’ configurations. Finally, Figure 3.4 depicts the performance chart based on the
proposed cache configurations.

It can be seen from the charts that cache size heavily influences the results of the VEX
machines. The biggest differences can be seen in the Matrix Multiplication benchmark.
With default cache sizes, a 2-cluster VEX machine outperforms the PowerPC processor
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Figure 3.2: VEX performance chart based on default cache configurations (DEF)
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Figure 3.3: VEX performance chart based on ‘no cache’ configurations (NO)
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Figure 3.4: VEX performance chart based on proposed cache configurations (PROP)

by a factor of 27. In contrast, when data- and instruction-cache is used, the PowerPC
and the VEX machines perform equally. When the proposed cache sizes of 4 KB are
applied, the VEX machines outperform the PowerPC by a factor 2 approximately.

When looking at the performance difference between a VEX machine in RISC config-
uration and a 1-cluster VEX machine (in the default cache configuration benchmarks),
we see performance improvements ranging from 10% to 100%. When the differences
between a 1-cluster VEX machine and a 2-cluster VEX machine are observed, we see
improvements ranging from -5% to 20%.

When no cache is used, we can see that VEX machines perform worse than the
PowerPC in the Min/Max and Moving Filter benchmarks. The proposed configuration
performs well, considering its relative small cache sizes. The 1-cluster VEX machine
and the RISC VEX machine even outperform their counterparts in the default configu-
ration with 8 times the amount of cache memory available in the Matrix Multiplication
benchmark. Generally speaking, the performance gain of the VEX machines with 4 KB
instruction- and data-cache ranges between 80% and 700% compared to the PowerPC.

It should be kept in mind that in particular the Matrix Multiplication and the Min/-
Max benchmarks only represent a very small part of a real-world application. A speedup
of the full application is heavily influenced by Amdahl’s law:

Si =
T

T − TPPCi + TV EXi
=

1

1− (ai − ai
si

)
(3.1)

In (3.1), Si is the total speedup of the application, T is the total amount of execution
cycles needed of the application in software only, TPPCi is the amount of execution
cycles of the application kernel in software, TV EXi is the amount of execution cycles
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of the application kernel on a VEX machine. ai is the percentage of time used by the
application kernel in software (TPPCi

T ), and si is the speedup of the application kernel on
a VEX machine compared to software execution ( TPPCi

TV EXi
).

3.3 Conclusions

In this chapter we first presented performance benchmarks done in earlier work for the
Lx processor family. Benchmarks were performed with 1-, 2- and 4-cluster Lx machines
running at 300 MHz compared to an Intel Pentium II running at 333 MHz. The results
showed significant performance gains in application-specific benchmarks for the Lx con-
figurations compared to the Pentium II configuration. For general-purpose benchmarks,
the performance was worse for Lx configurations than for the Pentium II configuration.
When looking at the differences per cluster-configuration, we see that increasing the
cluster-width from from 1 to 2 results in performance gains of about 28%. Increasing
the cluster-width to 4 has a negligible effect in most benchmarks.

We performed benchmarks on three different VEX machine configurations, a Pow-
erPC 405 processor (within a Xilinx Virtex-II PRO FPGA), and a MOLEN hardware
CCU (when applicable). For the VEX machine configurations we used a 1-issue, 1-
cluster RISC machine, a standard 1-cluster machine, and a 2-cluster machine. We used
a custom coded matrix multiplication benchmark, two benchmarks from the MOLEN ex-
ample set, and a G.723 audio encoder. To measure performances on the VEX machines,
the VEX simulator by Hewlett-Packard was used with different cache configurations.
The benchmarks showed that the VEX machines scored in-between the PowerPC 405
and a MOLEN CCU performance-wise, as we expected. Furthermore, the performance
gain from a 1-cluster to a 2-cluster configuration was again negligible in many cases.
These benchmarks resulted in the decision to first implement a 1-issue RISC ρ-VEX
configuration, followed by a 1-cluster 4-issue standard configuration ρ-VEX.
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ρ-VEX was designed to be an extensible and parametric processor from the ground up.
This led to a modular design and an instruction layout that exposes enough freedom to
extend the standard set of VEX operations. The design is based on a 1-cluster VEX
machine with a default configuration.

Section 4.1 presents the ρ-VEX organization. The used instruction layout is presented
in Section 4.2. Subsequently, the extensibility of ρ-VEX is discussed in Section 4.3. This
chapter is concluded in Section 4.4.

4.1 Organization

The design of ρ-VEX is based on a Harvard architecture, which defines physically sepa-
rated memories for program instructions and data. This implies that the widths of data
busses may differ per memory type. This is especially useful for VLIW architectures,
because we want to issue very wide words from instruction memory. This contrasts a
von Neumann architecture that defines one memory structure where both program code
and data reside.

A four-stage design consisting of fetch, decode, execute, and writeback stages was
used for ρ-VEX. The standard configuration of a 1-cluster VEX machine was used for
the default configuration. This implies the availability of four Arithmetic Logic Units
(ALUs), two Multiplier units (MULs), one Control unit (CTRL), one Memory unit

Figure 4.1: ρ-VEX organization (4-issue)

23
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Opcode Class VEX ρ-OPS

1------ ALU 42 10
000---- MUL 11 4
010---- CTRL 11 5
001---- MEM 9 5

Table 4.1: Opcode space distribution

(MEM), a General-purpose Register (GR) file with 64 32-bit registers and a Branch
Register (BR) file with 8 1-bit registers. We decided not to design instruction- and data-
memory caches for our prototype, because the memory would be on-chip. Appendix C
presents a more detailed overview of the ρ-VEX machine model.

Figure 4.1 depicts the organization of a 4-issue ρ-VEX processor. The fetch unit
fetches a VLIW instruction from the attached instruction memory, and passes it on the
decode unit. In this stage, the instruction is being split into syllables. Also, the register
contents used as operands are fetched from the register files. The actual operations take
place in either the execute unit, or in one of the parallel CTRL or MEM units. ALU1

and MUL operations (respectively, A and M in Figure 4.1) are performed in the execute
stage. This stage is designed parametric, so that the number of ALU and MUL functional
units could be adapted. ρ-VEX should have exactly one (by definition of the VEX ISA)
CTRL and MEM unit, so these units are designed outside the parametric execute unit.
All jump and branch operations are handled by the CTRL unit, and all data memory
load and store operations are handled by the MEM unit. To ensure that all results to
the GR and BR registers, external data memory and the internal Program Counter (PC)
are written at the same time per instruction, all write activities are performed in the
writeback unit.

4.2 Instruction Layout

The standard set of VEX operations consists of 73 operations (excluding NOP – no
operation). Opcodes for the two inter-cluster operations (SEND and RECV) described
by the VEX ISA are reserved, but not used as ρ-VEX (currently) supports only 1-cluster
VEX machine configurations. We complemented this default set of operations with two
extra operations: STOP and LONG IMM. The former operation tells ρ-VEX when
to stop fetching instructions from the instruction memory. The latter is used when
long immediate operands are handled. To assign a unique opcode to every operation,
at least 7 bits are needed to encode the opcodes. Table 4.1 presents the opcode space
distribution per functional unit, and the number of operations the VEX ISA describes.
A few exceptions to this scheme are discussed later, as well as the meaning of the values
in the ρ-OPS column.

As VEX supports up to 64 GR registers, 6 bits are required to address them all. Up
to 8 BR registers are supported, so 3 bits are needed to address them. To be able to

1Both integer arithmetic operations as well as logical, compare and select operations are performed
by ALU units.
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Figure 4.2: Instruction layout

Immediate type Size Immediate switch

no immediate operand N/A 00
short immediate 9 bit 01
branch offset immediate 12 bit 10
long immediate 32 bit 11

Table 4.2: Immediate types

fit opcode bits, register addresses bits and syllable meta-data bits in one syllable, 32 bit
syllables are used.

An instruction, by default consisting of four syllables, is a concatenation of all syl-
lables (even NOP syllables), with syllable 0 starting at bit 0. Figure 4.2 shows the
instruction layout. So the default instruction size is 128 bit. This is not very efficient,
and there are many possible instruction packing/compression techniques to reduce the
instruction size. As this was not our primary concern for the current ρ-VEX design,
we left this unoptimized. Even VEX’ XNOP operation, which issues multiple NOP
operations, is implemented as a regular NOP operation.

Figure 4.2 also shows what syllables are able to issue operations on the various
functional units. As a standard VEX cluster contains 4 ALU units, all syllables are able
to issue an ALU operation. To use the functional units optimally, the other operation
classes are distributed evenly among the syllables. Syllable 0 is able to issue CTRL
operations, syllables 1 and 2 are able to issue MUL operations and syllable 3 is able to
issue MEM operations.

Appendix B presents an overview of all VEX operations together with their semantics.
The VEX standard defines the use of three types of immediate operands: 9 bit

short immediate operands, 24 bit branch offset immediate operands and 32 bit long
immediate operands. The first two types are embedded in a single syllable, but the
last one is spread over more syllables. For ρ-VEX, we decided to change the size of a
branch offset immediate operand to 12 bit. This was done in order to use our syllable
layout templates more efficient. Every syllable has an immediate switch field consisting
of 2 bits that describe the type of immediate operand that the operation affects. Every
VEX ALU/MUL operation is overloaded to support both register operands as well as
immediate operands by default. Table 4.2 presents an overview of all immediate types
and the corresponding value of the immediate switch.

Figure 4.3 depicts the syllable layout templates that we designed for ρ-VEX. The
shaded bit-fields shows the content of the immediate switch. All variations of this bit-
field are depicted in the figure. Not all fields are evaluated in all cases. For example,
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Figure 4.3: Generic syllable layout

when an ALU operation has no BR destination operand, the 3 bit dst BR field holds
‘don’t care’ values.

ρ-VEX syllables include two bits with syllable meta-data, the L and F bits. The L
bit denotes whether a syllable is the last syllable of an instruction and the F bit denotes
whether it is the first syllable in an instruction. The VEX standard defines such meta-
data to be available in every syllable. In the current ρ-VEX prototype these fields are
not used, but these bit-fields allow the implementation of a more sophisticated syllable
packing mechanism (instructions with variable length can be evaluated this way).

Special attention should be paid to the long immediate syllables. As a long immediate
operand is always spread over two syllables, a syllable with opcode LONG IMM could
not occur without a preceding syllable where the immediate switch is set to 11 (nor can
a long immediate operand be issued in a 1-issue configuration). As the first syllable of a
long immediate operand could not be the last syllable in an instruction, this syllable does
not provide an L field. It should be noted that the current implementation of ρ-VEX
does not support the utilization of long immediate operands.

4.2.1 ALU and MUL Syllables

In principle, all ALU and MUL syllables fit in the syllable templates in Figure 4.3. All
logical and select ALU operations (types II and IV as defined in Appendix B) can have a
GR register or a BR2 register as a destination operand. To decide which destination reg-
ister should be targeted, the GR destination address field is evaluated in the decode unit.
When the GR destination address equals $r0.0 (which is hardwired to zero/ground),
the BR destination address is used to store the result of the operation.

The ADDCG, DIVS, SLCT and SLCTF ALU operations operate on three source
operands: two GR register operands, and one BR register operand. Because some of these

2In the current ρ-VEX implementation, immediate operands are not supported when the operation is
targeting a BR register. This is caused by the fact that part of the immediate operand field is used by the
BR destination address field. A possible way to solve this could be the utilization of the immediate switch
for branch immediate operands when a BR register is the target destination, and for short immediate or
long immediate operands when a GR register is the target destination. All destination addresses (GR
and BR) could then be placed in the GR destination address field. In case of a long immediate operand
in a BR-targeting operation, one of the extra bits in the GR address field could be set.
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Figure 4.4: Syllable layout for ADDCG and DIVS syllables

operations are also able to operate on either a GR register or BR register as destination, a
new location for the BR source register address should be assigned. We chose opcodes for
these operations, so that the 4 most significant bits are unique. The least significant bits
of the opcode field are used in this case to pack the BR source address. Figure 4.4 depicts
this technique of source address packing as well as the syllable layout for ADDCG and
DIVS syllables. Because these operations do not support immediate operands, there is
no problem that all bit-positions are always in use.

SLCT and SLCTF have similar layouts, but do not need a destination BR address.
These operations do support immediate operands. These are handled in the same way as
immediate operands are handled by other operations according to Figure 4.3. Because
there was not enough space left in the ALU opcode region (Table 4.1), SLCT and
SLCTF have opcodes outside the standard ALU region.

4.2.2 CTRL Syllables

Figure 4.5 depicts the syllable layout for the overloaded3 GOTO and CALL syllables.
Either one of the layouts is issued, depending on the assembly usage. As GOTO and
CALL are overloaded with IGOTO and ICALL functionality, the assembler should
issue one of these latter operations when the operation is called with a link register
address. An unconditional absolute indirect jump to the branch offset immediate (or
link register contents) is performed when a GOTO (or IGOTO) operation is issued.
When a CALL or ICALL operation is issued, the same jump is being performed, but
the link register is updated with the current PC value incremented by 1.

Figure 4.6 depicts the syllable layout for BR and BRF syllables. When the branch
condition evaluated on 3 bit src BR are evaluated as true (BR) or false (BRF), the
Program Counter will be updated with the branch offset immediate.

Figure 4.7 depicts the syllable layout for RETURN and RFI syllables. RETURN
and RFI pop the stack frame (the stack pointer residing in $r0.1) and jump to the
contents inside the link register.

4.2.3 MEM Syllables

Figure 4.8 depicts the syllable layout for memory load syllables, and Figure 4.9 for
memory store syllables. It should be noted that the source address for the source GR

3According a to a message on the VEX forum, the CALL & ICALL and GOTO & IGOTO
operations are overloaded in the latest VEX compiler, so ICALL and IGOTO are obsolete. These are
still supported in its original form to stay compliant to the original VEX ISA.

See http://www.vliw.org/vex/viewtopic.php?t=52 for more information.

http://www.vliw.org/vex/viewtopic.php?t=52
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Figure 4.5: Syllable layout for GOTO and CALL syllables

Figure 4.6: Syllable layout for BR and BRF syllables

Figure 4.7: Syllable layout for RETURN and RFI syllables

Figure 4.8: Syllable layout for memory load syllables

Figure 4.9: Syllable layout for memory store syllables

register in a store operation is located in the field where normally the destination GR
register address resides. The GR register that contains the address in memory where the
source register should be written to, resides in the 6 bit address GR field.

It should be noted that both load and store operations use an immediate switch that
indicates no immediate operand, although there is an immediate operand present. This
originates from some implementation issues when dealing with two source GR register
addresses, as well as an immediate operand.
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4.2.4 Other Syllables

Figure 4.10 depicts the syllable layout for NOP syllables, and Figure 4.11 for STOP
syllables. Apart from the opcode and first/last syllable bits, the other bits are of no
importance for these operations.

Figure 4.10: Syllable layout for NOP syllables

Figure 4.11: Syllable layout for STOP syllables

4.3 Extensibility

ρ-VEX extensibility is provided by two mechanisms, namely ρ-OPS and VEX machine
models. ρ-OPS are custom reconfigurable operations that can be easily added to the
execution model of ρ-VEX. VEX machine models define among others the configuration
of FUs, register files, and the issue-width.

4.3.1 ρ-OPS

The VEX software toolchain supports the use of custom instructions via pragmas inside
the application code, as described in [1]. With ρ-OPS we provide a mechanism to
execute these operations on the ρ-VEX processor. The good thing about ρ-OPS is that
they are not restricted combinatorial operators. Sequential ρ-OPS consisting of multiple
atomic operations are also allowed, as long as the design still gets properly synthesized
and routed. This depends strongly on the reconfigurable implementation technology
used, and is thus not architecturally bounded. Our benchmark in Chapter 7 also uses
sequential ρ-OPS.

In the current ρ-VEX implementation, it takes about 5 lines of VHDL code to add
a custom operation to the architecture. One of the available ρ-OPS opcodes as listed
in Appendix B should be chosen, and a template VHDL function should be extended
with the functionality of the operation. The Quickstart Guide in Appendix F presents
a practical example of using ρ-OPS.

Because 4 ALU operations used extra opcode space for BR address packing (as
explained in Section 4.2.1), there are 24 opcodes available for custom reconfigurable
operations, ρ-OPS. Table 4.1 presents the number of ρ-OPS available per operation
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class in the last column. Syllables for a reconfigurable ρ-OPS operation should use the
same layout as standard VEX operations within the corresponding class for an easy
implementation. It is possible to implement ρ-OPS within a certain opcode space that
does not use the corresponding functional unit. Then, some extra logic should be added
in the decode stage implementation to recognize these operations and handle the correct
syllable layout.

4.3.2 VEX Machine Models

A large amount of parametric options from the VEX machine models used by the VEX
compiler can be used to parameterize ρ-VEX. Currently, the following properties of
ρ-VEX are parametric:

• Issue-width (should be a power of 2)

• Number of ALU units

• Number of MUL units

• Number of GR registers (up to 64)

• Number of BR registers (up to 8)

• Types of accessible Functional Units (FUs) per syllable – Figure 4.2 depicts the
default configuration for FU accessibility. This configuration could be changed
according to demands and available FUs.

• Width of memory busses – By default, the width of the data bus from the instruc-
tion memory has a width of 128 bits. Because we used a Harvard architecture, this
width could be different than the data memory bus width (which is in fact 32 bits
by default). Because the instruction memory bus width is inherent to the global
issue-width of the processor, this should be scalable.

In principle, the number of CTRL and MEM units could also be changed. However,
the VEX standard only allows one CTRL unit per VEX (multi-cluster) machine (which
makes sense, because otherwise multiple CTRL operations could change the program flow
by changing the Program Counter to a different value). The acMEM unit is responsible
for memory load and store operations, as discussed earlier. The VEX standard defines
separate units for these actions, which can have multiple instances. This can be also
achieved by instantiating multiple MEM units in our design, but the memory interfacing
should support multi-port read/write access in this case.

To change the different parameters, some changes to the VHDL source code of ρ-VEX
have to be made. Depending on the parameter, this differs from changing a constant
signal declaration to adding or removing some logic (i.e. to change the issue-width).
In the current ρ-VEX implementation these changes have to be made manually. For a
future release a scripted parameterization based on the VEX machine model file format
(.fmm files) is planned, for example by using a file preprocessor.
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Because we present ρ-VEX as an open source platform, the whole architecture could
in principle be adjusted. However, with the parametric properties we provide a fast and
efficient way to adjust common configurations.

4.4 Conclusions

The ρ-VEX design as discussed in this chapter uses a Harvard-based architecture with
physically separated instruction- and data-memories. Four main stages can be identified
in the processor architecture: a fetch, decode, execute, and writeback stage.

The standard set of 73 VEX operations is supported by ρ-VEX. A VEX instruction
consists of four syllables (in case of a standard configuration), which can be seen as
separate RISC instructions. Three types of immediate operands are supported. A syl-
lable layout template was designed for all syllable configurations. For some operations,
address packing was applied within the opcode space to be able to stay compliant to the
defined templates.

Extensibility of ρ-VEX is provided by two mechanisms: ρ-OPS and VEX machine
models. ρ-OPS use the free opcode space to provide opcodes that can be used freely to
implement extra functionality. Both sequential and combinatorial operations are sup-
ported, as long as the design get properly synthesized. ρ-OPS can be easily added to the
existing VHDL code base by adding a few lines. Most of the parametric options within
VEX machine models are supported by ρ-VEX. Parameters like issue-width, number of
FUs, and the number of registers can be altered easily.
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Implementation 5
This chapter discusses the way we implemented the design presented in Chapter 4. Dif-
ferent types of signal flows were identified (those of stage control signals, the datapath and
the instructions) and discussed separately. For the different processor stages, a Finite
State Machine (FSM) is presented so that one is able to understand the design ρ-VEX,
and even extend it. A 4-issue ρ-VEX implementation is used in the explanations.

Section 5.1 presents the bottom-up implementation approach that was taken to imple-
ment our design. Section 5.2 discusses how our design is mapped to an implementation,
together with the different signal flows that can be identified in our implementation. FSMs
for all stages are presented in Section 5.3. Section 5.4 discusses the used hardware ver-
ification and testing methods. Encountered problems are presented in Section 5.5. This
chapter is concluded in Section 5.6.

5.1 Bottom-Up Implementation

A bottom-up implementation was used for ρ-VEX. The first goal was to implement a
1-issue RISC version of the processor. We started with the implementation of the ALU.
After the design of the ALU was verified, the MUL unit was implemented. When this
design was also verified, an execute stage wrapper was created, using the ALU and MUL
units as sub-entities. From this point on, every new implementation was added to the
bottom-up design. This made it relatively easy to detect errors and bugs in an early
stage.

Because the processor was meant to be parametric from the design stage on, as
much as possible was implemented in a parametric way from the beginning (even when
the RISC version did not require many things to be parametric). This helped a lot
at the point where the RISC version was working, and the VLIW version had to be
implemented. In many cases, it was just copying implemented parts to other issue-slots,
or adding new instances of implemented Functional Units. To ensure a system-wide
parametric implementation, all VHDL was hand-coded without the use of an Integrated
Development Environment (IDE) with automated design tools.

More about the used verification and testing methods used while implementing the
design can be read in Section 5.4.

5.2 Mapping the Design to an Implementation

To clarify the mapping from ρ-VEX’ architectural design to our implementation, we
identified three different (main) signal flows. The instruction flow shows how a fetched
VLIW instruction is distributed in the system as syllables, and later opcodes. The
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Figure 5.1: Instruction flow

datapath shows how data is being processed by the system. Finally, the inter-stage
control flow shows how the different stages are dependent on each other.

By convention, we are using bold signal names for a bundle of signals designated for
each issue slot (so data r1 equals the separate mentioning of data_r1_0, data_r1_1,
data_r1_2 and data_r1_3, where the last suffix indicates the issue slot).

5.2.1 Instruction Flow

Figure 5.1 depicts the instruction flow as it is implemented in the current prototype.
After a wide instruction is fetched from the instruction memory by the fetch stage, the
instruction is split into 4 VLIW syllables. Those are passed to the decode stage, where
opcodes are distilled. The opcodes are passed to the functional units inside the execute,
CTRL and MEM stages. Because the latter two can only operate on certain syllables
(see Figure 4.2), they only receive one opcode.

5.2.2 Datapath

The datapath is depicted in Figure 5.2. In this diagram all GR, BR and memory transac-
tions are presented as well as the Program Counter (PC) updates and readouts, because
all these transactions are treated similar.

5.2.2.1 Fetch Stage

The only ‘data’ that the fetch stage handles, is the current PC value (pc). It is used
to determine which instruction to fetch from the instruction memory. This value comes
directly from the Program Counter unit, and aligned to the used VLIW word size.
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Figure 5.2: Datapath

5.2.2.2 Decode Stage

The decode stage receives the register values used as operands via the signal bundles
data r1 , data r2 and data rb . The operands are presented to the execute stage
by means of the signal bundles operand1 , operand2 andoperandb (respectively
GR operand 1, GR operand 2 and BR operand). When an operation operates on an
immediate operand instead of a register operand, the result from the GR file is not used.
The branch offset immediate operand is passed via the offset signal. To determine the
write targets per syllable for the writeback stage, the target signal bundle is assigned.
This signal will be discussed in Section 5.2.2.4 about the writeback stage.

5.2.2.3 Execute, CTRL and MEM Stages

The next parallel stages are the execute, CTRL and MEM stages. The execute stage has
4 ALU and 2 MUL units in the standard VEX configuration, so the complete bundle of
operands is passed to this stage. Results of this stage are presented in the result (ALU
and MUL results) and resultb (carry-out values) signal bundles. CTRL and MEM
operations are only allowed to be issue in one issue-slot, so only one set of operands
are passed to these stages. In the CTRL unit, the operands could represent the current
values of the link register (lr) and the stack pointer (sp). The CTRL unit is only able
to operate on the first syllable (Figure 4.2), so these signals originate from operand1_0
and operand2_0. The CTRL unit also needs the current PC value (pc) to operate, and
a possible branch offset immediate (offset). The CTRL unit passes the next PC value
(pc_goto) in case of a branch, and the new stack pointer or link register value (result)
as results. The MEM unit receives its operand either from the data memory (data_ld) in
case of a memory load operation, or from the GR register file (data_reg, via operand2_3)
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target_i Writeback target Mnemonic

000 Don’t writeback WRITE_NOP
001 General-purpose Register (GR) WRITE_G
010 Branch Register (BR) WRITE_B
011 GR and BR WRITE_G_B
100 Program Counter (PC) (branch) WRITE_P
101 PC and GR WRITE_P_G
110 Data memory WRITE_M
111 GR (memory load) WRITE_MG

Table 5.1: Writeback targets in writeback stage

in case of a memory store operation. The data_st output signal represents the data to
be stored in data memory in case of a store operation, and data_2reg embodies the data
to be stored in the GR register file in case of a load operation.

5.2.2.4 Writeback Stage

In the writeback stage, all results from the previous stages are written back to one of the
accepting targets. Different write targets could be the GR register file, the BR register
file, data memory or the Program Counter. Table 5.1 presents all different writeback
targets, together with the value of a target_i signal, which is presented for every issue
slot in the signal bundle target . GR and BR results are presented in the signal bundles
data gr out and data br out . Data to be written to the data memory in case of a
memory store operation is presented in the data_mem_out signal. The new PC value is
presented in the data_pc signal. Even when no WRITE_P or WRITE_P_G target_i signal
is present, the PC will be written by the writeback stage. In this case, the old PC value
(pc) is increased by the size of 1 VLIW word, and written back to data_pc.

5.2.3 Inter-Stage Control Signals

Figure 5.3 depicts the inter-stage control signals, as used in our implementation. A
high-level description of these control signals will follow, organized per stage. The control
signals are used to control internal state machines that define the stage behaviour, which
are discussed at a lower level in Section 5.3.

5.2.3.1 Fetch and PC Stages

The fetch stage is the first stage within the chain of processor stages. The two control
signals that reach beyond the boundaries of the ρ-VEX top-level entity are both evaluated
and driven in this stage. The two signals are run and done, which are respectively being
routed to start and stop_out in the fetch stage. When start is driven high by a
module residing outside the ρ-VEX boundaries, ρ-VEX is supposed to start processing
instructions from the instruction memory (starting at address 0x0). When processing
is finished (thus when a STOP operation has been decoded), stop_out is being driven
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Figure 5.3: Inter-stage control signal flow

high by the fetch stage. Consecutively, the decode stage will notify the fetch stage by
means of the stop bit. When input next_instr is high, the fetch stage is supposed
to fetch a new instruction from the instruction memory. After an instruction has been
fetched successfully, out_valid will be driven high.

5.2.3.2 Decode Stage

A new instruction is being decoded after fetch_ok is raised by the fetch stage, and
operands are fetched from the GR and BR register files. The new operands are pre-
sented to the execute stage, and ops_ready will be driven high. The new_decode bit
indicates whether (one of) the execute, CTRL and MEM stages are done with process-
ing the current syllables. When the writeback stage is done writing the back results to
their targets, start is asserted. As long as start is low, the decode stage presents the
destination addresses used for writing back the results to the GR and BR register files
continuously. accept_in is driven high when the decode stage accepts a new instruction
from the fetch stage.

5.2.3.3 Execute, CTRL and MEM Stages

The execute, CTRL and MEM stages all have an in_valid bit that tells the stage
whether the opcodes and operands are ready to be processed. When processing finished,
these stages dive an out_valid bit high. The three out_valid bits are then passed
through a logical OR-gate, to create a single signal from them.
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5.2.3.4 Writeback Stage

When write_en is driven high by the combined out_valid signals from the previous
stages, the writeback stage is supposed to write back the results to their desired targets.
When everything is written back, the written bit is asserted.

5.2.4 Pipelining the Design

In the current implementation, one operation uses 6 (for ALU operations) or 7 (for
MUL operations) cycles to be fetched, decoded, executed and written back. To decrease
this number and potentially increase the clock frequency, the implementation could be
pipelined. ρ-VEX is designed to be easily pipelined, as can be seen from the various
stage diagrams with the signal flows. To have a pipelined implementation, these things
have to be done:

• Pass destination GR and BR addresses through the execute stage to the writeback
stage with pipeline registers, instead of ‘directly’ driving these addresses from the
decode stage to the corresponding register files.

• Pass the target signal bundle through the execute stage to the writeback stage
with pipeline registers, instead of bypassing it.

• Let consecutive stages only be dependent on control signals driven by their direct
neighbour stages, instead of ‘skipping’ stages.

• The stop bit for the fetch stage should be driven by the writeback stage, in order
not to lose operations inside the pipeline.

• The Program Counter should be updated by the fetch stage upon non-CTRL op-
erations (possible branches).

• The current PC value (for the syllables in a certain stage) should be registered
between each stage.

• When a CTRL syllable is decoded, a register flush_pipeline should be set, in
order to flush the pipeline before branching.

5.3 Internal Stage Control

To clarify the inner workings of the different stages, a Finite State Machine (FSM)
is presented for every processor stage. The inputs of the FSMs are the input signals
in the control signal diagram in Figure 5.3, the outputs are the corresponding output
signals in the same diagram. The presented FSMs only depict control signals, no data
or operational signals. These are inherent to the description. Upon power-on, all FSMs
are initialized in the reset state.

We can distinguish two different FSM types: a Moore [33] FSM and a Mealy [34]
FSM. In a Moore FSM, the output of the machine only depend on the current state in
which the machine resides. In a Mealy machine, the output depends on both the input
and the current state.
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Figure 5.4: Moore FSM for the fetch stage.

5.3.1 Fetch Stage

Figure 5.4 depicts the FSM for the fetch stage, which is of the Moore type. This stage
stays inside its reset state, until start is raised, which is connected to the run pin
of ρ-VEX. When in the waiting state, the fetch stage gets a VLIW word from the
instruction memory (the address comes directly from the Program Counter) containing
the instruction to be executed. When new syllables are demanded by the decode stage,
next_instr is high, and the send syllables state is reached. In this state, the split
syllables are presented to the decode stage, and out_valid is raised. When next_instr
becomes low again, the stage will fall back to the waiting state.

It should be noted that next to this state machine, the fetch stage has another
small mechanism which triggers the stop signal from the decode stage. When a low-to-
high transition is detected of this signal, stop_out is raised, and the state machine in
Figure 5.4 is disabled. ρ-VEX halts.

5.3.2 Decode Stage

A Mealy-type FSM for the decode stage is depicted in Figure 5.5. After landing in
the reset state directly after power-on, the machine will directly fall into the waiting
state where accept_in is raised. Upon a positive transition of fetch_ok, the stage
starts fetching register contents from the GR and BR register files. This occurs in the
fetch regs state. In the next cycle, a state-transition is made to send operands, where
ops_ready is raised. When a STOP operation has been decoded, done is raised. When
the execution stages and the writeback stage are finished (by sensing high signals on
new_decode and start), the state machine falls back in the waiting state.
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Figure 5.5: Mealy FSM for the decode stage.

Figure 5.6: Moore FSM for the execute stage.
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5.3.3 Execute Stage

The FSM for the execute stage is depicted in Figure 5.6. Again, this is a Moore machine.
After power-on or a system reset, the machine directly makes a transition to the waiting
state, where it is waiting for decoded opcodes and operands from the decode stage. When
a in_valid becomes high, a state transition is made. Depending on the kind of operation
(ALU or MUL), a transition is made to execute or wait mul. Because the Multiplier
unit has a delay of 2 cycles as defined by the VEX standard in [1], an extra single-cycle
waiting stage is implemented for these operations. In the execute state, out_valid is
raised, and output is kept valid for one more cycle in the output state.

5.3.4 CTRL Stage

The CTRL stage is not implemented as a state machine. This is a synchronous design
which raises out_valid upon receiving a valid opcode at its input, and performing the
corresponding processing.

Figure 5.7: Moore FSM for the MEM stage.
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5.3.5 MEM Stage

Figure 5.7 presents the Moore FSM for the MEM stage. Like the previous state machines,
this machine makes the transition to the waiting state directly after power-on. When
in_valid is high, and a memory load or store opcode is detected, a state transition
occurs to either the load or store state. As memory store operations take two extra
delay cycles in our implementation, two single-cycle delay stages are implemented for a
store operation: output store and output store1. A memory load operation has only
one extra delay cycle, in the output load state.

Figure 5.8: Moore FSM for the writeback stage.

5.3.6 Writeback Stage

The last state machine, describing the writeback stage is presented in Figure 5.8. Again, a
transition to the waiting state is being made after power-on. written is raised, in order
to tell the decode stage that decoding can start (as far as the writeback stage concerns).
If neither of the write target signals in the target bundle is WRITE_NOP (which is the
default value when the decode stage does not have a valid output), a transition is made
to the pre write state. When write_en is high, a transition to write takes place.
Here the actual writeback process takes place. When a CTRL operation was issued, an
extra transition to the single-cycle delay state waiting branch is made, in order for the
Program Counter to adjust.



5.4. SYSTEM VERIFICATION AND TESTING 43

5.4 System Verification and Testing

Although the process of designing and developing strictly according to a very extensive
methodology is quite time-consuming, we did recognize its importance. Especially con-
sidering the relatively short time span and the limited availability of human resources of
a MSc project, we had to define some custom verification trajectory. The methodology
we used is loosely modelled on the Unified Verification Methodology (UVM), developed
by Cadence Design Systems [35] in 2002.

To be able guarantee the correct operation of ρ-VEX, simulations and tests of the
design already started at an early stage. After pre-synthesis simulations with CAD/EDA
software were performed, post-place and route simulations were performed to ensure the
correct working on real hardware. After all simulations were successfully performed,
real-world tests were done on (multiple) FPGA development boards. A system wrapper
was created in order to use the same environment in all simulations and tests.

5.4.1 The Unified Verification Methodology

The UVM trajectory is based on four phases:

1. System-Level Design – The product is defined and an Functional Virtual
Prototype (FVP) is created. An FVP is a complete functional representation of
the design and its testbench.

2. Subsystem Verification – The design and verification of separate subsystems is
done.

3. System Integration – The final system is integrated efficiently because of test-
bench reuse and common models. Integration is done one subsystem at a time.

4. System Verification – The system is verified under real-world operating condi-
tions.

During the first phase, we defined all system constraints. Because the VEX ISA is
reasonably well documented (read more in Section 5.5), this went fairly fluently. During
the next phase, we implemented all identified subsystems separately (using the bottom-
up approach as described in Section 5.1). All functionality of the FUs (i.e. the ALU,
MUL, MEM, CTRL) was fully verified by simulations. As the UVM prescribes, the
final system was integrated one subsystem at a time. Because of the limited human
resources, we could not develop all subsystems concurrently. Therefore, each subsystem
was directly integrated in the final system after it was verified. The final system was
verified by means of behavioural simulations, post-place and route simulations and real-
world tests on FPGA platforms. To verify the final system, selected testbenches were
used that ran test applications from instruction memory.

5.4.2 System Wrapper

To be able to perform the different kinds of simulations and real-world tests in the same
environment, a system wrapper was designed. This system wrapper encapsulated a
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larger set of subsystems until the System Integration phase was reached from the Unified
Verification Methodology.

Figure 5.9 shows a schematic representation for the final iteration of the system
wrapper. Within this system wrapper, an instruction memory, a data memory, a UART
interface, and the ρ-VEX processor reside. The UART interface was designed and im-
plemented especially for real-world hardware tests, to easily obtain feedback results from
our system.

Figure 5.9: Schematic representation of the system wrapper

5.4.3 Simulations

Our simulations were mainly performed for functional testing and for limited manufac-
turing testing [36]. This is because the (research) nature of the project that does not
directly demand a product ready to be mass-produced. Still, the post-place and route
simulations and real-world hardware tests did help to eliminate technology-driven issues.

5.4.3.1 Pre-Synthesis Simulations

Every time a new subsystem implementation was finished, pre-synthesis behavioural
simulations were performed to verify the subsystem’s functionality. Simulations were
performed using Mentor Graphics ModelSim SE 6.3d.

A simulation testbench with a stimulus was used to verify the subsystem. When
these simulations resulted in the expected results, the subsystem was integrated with the
other verified parts and simulated with a higher-level behavioural testbench. Appendix E
presents waveform diagrams of the benchmark used in Chapter 7. Waveform diagrams
of pre-synthesis simulations are presented in Section E.1.
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5.4.3.2 Post-Place and Route Simulations

After behavioural simulations gave expected results, post-place and route simulations
were performed. To perform these simulations, the Xilinx-specific simprim, unisim,
and XilinxCoreLib libraries had to be compiled. These libraries include well-modelled
heterogeneous Xilinx FPGA parts, so that the correct timing constraints and delays
(including routing delays) were used.

Section E.2 presents waveform diagrams of post-place and route simulations of the
benchmark used in Chapter 7.

5.4.4 Verification on Hardware

Real-world tests on different FPGA platforms were performed to ensure an implemen-
tation as technology-independent as possible. During the course of the project, different
hardware debugging methods were used.

5.4.4.1 Target Technology

Initially, two different hardware platforms were chosen to verify our implementation on: a
platform based on the Xilinx Spartan-3E (XC3S500) FPGA and one based on the Xilinx
Virtex-II Pro (XC2VP30) FPGA. For both hardware platforms, we had development
boards from Digilent available.

As the Spartan-3E device we had only featured 500K gates, our implementation
could not be placed and routed correctly anymore after the 1-issue RISC implementa-
tion of ρ-VEX. From this point on, we exclusively used the Virtex-II Pro platform as
implementation target.

To synthesize the hardware, Xilinx Synthesis Technology (XST) from the Xilinx
Integrated Synthesis Environment (ISE) 8.1.03i suite was used. Chosen was for this
somewhat outdated (2006) release of the suite, because the current MOLEN prototype
was only successfully implemented with this toolchain at the time we started.

5.4.4.2 Hardware Debugging Methods

During the first hardware tests, we used a combination of LEDs and switches on the
FPGA development boards to present debugging feedback. With the switches, one was
able to select the GR register of which the content should be represented by the LEDs
(in binary). This worked fine when doing small tests, but later on, testing became rather
complex.

To ease debugging, an RS-232 compatible Universal Asynchronous
Receiver/Transmitter (UART) transmitter interface was designed implemented,
and added to our system. A small interface to control the UART transmitter and
obtain contents from the data memory was placed in-between the transmitter and
ρ-VEX. After ρ-VEX’ done bit is raised, the UART interface starts transmitting the
contents of the data memory together with the number of clock cycles used, in ASCII
representation. As this debugging interface appeared to be a useful addition to the
system, it was incorporated in the development framework. More details about the
UART interface can be read in Section 6.3.
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5.5 Encountered Problems & Solutions

The biggest issues that were encountered had to do with the conversion of VHDL code
that simulated well to synthesizable code. Before using the UVM, a relatively naive
verification ‘approach’ was used. Behavioural simulations were performed extensively,
but no post-synthesis simulations or real-world hardware tests were performed. At about
60% of the 1-issue RISC implementation with our initial approach, the first hardware
tests were performed (without any accompanying post-synthesis simulations). Synthe-
sization of the code went without errors, but a lot of warnings were generated by the
synthesizer. The resulting implementation did not give any positive results when pro-
grammed on an FPGA. After harvesting through the VHDL code (that simulated well)
for a couple of days, it was decided to start implementing the design all over again using
the Unified Verification Methodology. Of course most of the code could be reused after
some small modifications. It seemed that a lot of gated clocks were inferred, as well
as inefficient state machines. After doing more research about VHDL coding style [36]
for synthesizable designs, Xilinx specific code directives [37], and following the UVM,
increasingly better results were obtained.

Some smaller issues arose from the definition VEX ISA that was not always as
strict as possible. It was ‘accidentally’ found on the VEX Internet forum that the
GOTO/IGOTO and CALL/ICALL pairs were overloaded in the latest releases of
the VEX toolchain.

Some places in the VEX documentation refer to GR $r0.63 as the link register used
in some CTRL operations. However, it is undetermined what the link register will be
when the GR register file is scaled down to for example 32 registers.

The MTB (move GR to BR) operation was totally undocumented. It was found
by seeing an unrecognized in the assembly code generated by the VEX compiler. The
MOV (move GR to GR) was only half documented; this operation is allowed to operate
on immediate operands but this was not clear from the VEX documentation [1]. The
latter one was only found recently, while assembling compiler-generated assembly with
ρ-ASM. The current release of ρ-VEX does not support this, this is an open issue.

Additionally, a large part of the VEX semantics (Appendix B) had to be figured out
from compiled code. Because of some very recent discoveries, some (small) semantical
parts still have to be added to the semantical recognition part of ρ-ASM.

An issue tracker on the project website at http://r-vex.googlecode.com is used
to organize all issues and report about the status.

5.6 Conclusions

This chapter discussed different aspects that had to do with the implementation of ρ-
VEX. We used a bottom-up approach for the implementation of ρ-VEX. Starting by
implementing small Functional Units, we worked towards an implementation of a 1-
issue RISC ρ-VEX. When this model was verified, the design was extended to a 4-issue
processor.

To be able to map the design to an implementation, we identified three signal flows
within the processor. An instruction flow, a data flow, and an inter-stage control signal

http://r-vex.googlecode.com
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flow helped the implementation process. Every processor stage was implemented as
a small state machine. These state machines control the behaviour of the inter-stage
control signals.

For the implementation trajectory, the Unified Verification Methodology (UVM) was
used as a guideline. By dividing the implementation phase in multiple sub-stages UVM
seemed a structured methodology to ensure correct results. For each identified sub-
system, behavioural simulations as well as post-place and route simulations were per-
formed. After simulations presented correct results, verifications were done on real hard-
ware.

During the implementation of the processor, several problems were encountered. The
most notable issues had to to with the conversion of VHDL code that simulated well to
synthesizable code. Other problems arose from the fact that the VEX ISA definitions
were not always very consistent.
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Development Framework 6
To be able to efficiently perform experiments and develop applications for the ρ-VEX
platform, a framework was developed. This framework consists of a design flow, an
assembler (ρ-ASM), and a UART debugging interface.

Section 6.1 discusses the presented application development flow. The ρ-ASM as-
sembler is presented in Section 6.2. Next, the UART debugging interface is discussed in
Section 6.3. A description of the hardware development flow is presented in Section 6.4.
Section 6.5 concludes this chapter.

6.1 Application Development Flow

Figure 6.1 depicts a schematic representation of the ρ-VEX application development
framework that we present. It basically consists of two stages:

1. Compile an arbitrary piece of application code with the VEX C compiler [8]. When
targeting a non-standard ρ-VEX configuration (as discussed earlier), a VEX ma-
chine model should be present as a compiler directive (in the form of an .fmm file).
When ρ-OPS are used, the application code should be augmented with the correct
pragmas that define the ρ-OPS.

2. The VEX assembly file generated by the compiler should be the input for ρ-ASM,
which generates ρ-VEX object code. ρ-ASM should also receive the VEX ma-
chine model ant ρ-OPS definitions by means of a mapping between operation and
opcode/class.

Figure 6.1: ρ-VEX application development framework

49
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The framework model we present, currently has some limitations in accepting as-
sembly code generated by the VEX compiler. The current version of ρ-ASM does not
support initializing the data memory, and some undocumented (but where discovered by
coincidence) VEX assembly semantics as generated by the compiler are not recognized
by ρ-ASM. Also, within the compiler-generated assembly code, calls to functions within
the host’s system libraries are made. These are handled by the VEX compiled simulation
system, as no hardware implementation of a VEX processor is provided.

As ρ-VEX is mainly targeted to compute (small) application-specific kernels, it might
even not be desirable to execute the compiler-generated assembly directly. The VEX
assembly generated by the compiler could be used to extract the assembly code for a
particular function, and use this code as the input for ρ-ASM.

6.2 ρ-ASM Assembler

The assembler/instruction ROM generator for ρ-VEX is called ρ-ASM. It is a 2-pass
assembler written in C that is able to assemble an assembly file with VEX assembly (as
described in Appendix B) to an instruction ROM. The current release of ρ-ASM has the
following features:

• Assemble a VEX assembly file to an instruction ROM VHDL file which can be
synthesized directly together with the other parts of ρ-VEX.

• Support for ρ-OPS. However, currently ρ-OPS definitions should be manually
added to syllable.h of the application code. ρ-ASM should be recompiled af-
terwards to support the added operations.

• Support for different VEX .fmm machine model parameters. These could currently
only be applied in the rasm.h and syllable.h files currently, so recompilation is
needed.

The current version of ρ-ASM is not able to initialize the data memory with con-
tents. A future release should enable this, as well as the support of parametric input via
configuration files instead of direct source code modifications.

ρ-ASM always adds a STOP operation together with 3 NOP operations in an in-
struction after the last instruction defined. This is to make sure program execution
ends.

Open issues regarding the ρ-ASM implementation can be found in the issue tracker
on the project website at http://r-vex.googlecode.com.

6.3 UART Debugging Interface

As described in Section 5.4.4.2, we developed a debugging UART interface to transmit
data via the serial RS-232 protocol, at a data rate of 115200 bps. This interface invokes
a transmission of the hexadecimal representation of the data memory contents, as well
as the contents of the internal ρ-VEX cycle counter register. All data is transmitted

http://r-vex.googlecode.com
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using American Standard Code for Information Interchange (ASCII) encoding, so that
the output could be captured and evaluated on a terminal application on a Personal
Computer. An example of a data memory listing is presented below:

r-VEX
-----
Cycles: 0x0000002D

Data memory dump

addr | contents
-----+-----------
0x00 | 0x000000FF
0x01 | 0x0000000F
0x02 | 0x00000EF1
0x03 | 0x00000000
0x04 | 0x00000000
0x05 | 0x00000000
0x06 | 0x00000000
0x07 | 0x00000000
0x08 | 0x00000000
0x09 | 0x00000000
0x0A | 0x00000000
0x0B | 0x00000000
0x0C | 0x00000000
0x0D | 0x00000000
0x0E | 0x00000000
0x0F | 0x00000000

The interface can be easily disabled, as it resides in the system wrapper and not
within ρ-VEX itself.

For a future release, we might want to add the support to upload an executable
program file for ρ-VEX via the UART, and invoke a boot loader (so load the instruction
memory with the appropriate data, and soft-reset ρ-VEX).

6.4 Hardware Development

To ease the hardware development of ρ-VEX, a Makefile for GNU’s Make tool was
created. This Makefile works in any Linux environment where the Xilinx ISE suite is
installed, and in any Microsoft Windows environment with ISE and Cygwin installed (the
basic Cygwin installation that comes with Xilinx’ EDK is supported). The Makefile
is based on a Xilinx 8.1 environment, but should work (or at least be easily adapted to
work) with any later versions. By using the Makefile, one is able to quickly synthesize,
place and route the hardware design by entering just 1 command. Other possibilities
are running a hardware behavioural simulation using Mentor Graphics ModelSim and
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programming the synthesized design to an FPGA. All log-files generated by the different
invoked Xilinx tools, are structurally concatenated into one new logfile in ASCII text.

The different Make targets as outputted when running the make command without
any arguments inside the source code directory of ρ-VEX is presented below:

---------------------------------
r-VEX stand-alone system deployer
---------------------------------

Usage: make <target>

Targets: v2p | Xilinx Virtex-II Pro VP30 Development Board

modelsim | Run modelsim simulation
vcom | Compile files for Modelsim

fpga | Download bitstream to FPGA
unlock | Unlock download cable

clean | Clean generated project files

A Quickstart Guide presenting a short user manual to easily deploy an instance of
ρ-VEX on an FPGA development board is presented in Appendix F. This guide also
provides information about adding ρ-OPS to your implementation, as well as on how to
extend the Makefile with targets for other development boards than the Xilinx Virtex-II
Pro VP30 board by Digilent.

6.5 Conclusions

An application development flow consisting of two phases was presented in this chap-
ter. The first phase consists of compiling an arbitrary application kernel described in C
code. The second phase converts the generated assembly code into an executable pro-
gram for ρ-VEX. Both phases support extensibility through ρ-OPS and machine model
configurations.

An assembler/instruction ROM generator ρ-ASM was created, to translate VEX as-
sembly applications into an executable application within the ρ-VEX instruction memory.
ρ-ASM also supports ρ-OPS custom operations and is parametric in order to support
multiple ρ-VEX configurations. Additionally, a UART interface was designed and imple-
mented to present the contents of the data memory in a human-readable (ASCII) way.
This allows easy debugging and prototyping. It can be easily disabled, as the interface
resides within the system wrapper (not in the processor itself). A Make environment
for extending the ρ-VEX hardware design was created. Our Quickstart Guide provides
information on how to start working with this environment.



Experimental Results 7
To measure the performance of ρ-VEX, we did benchmarks based on Fibonacci’s Se-
quence. The setup used for our benchmarks is discussed in Section 7.1. In Section 7.2,
the Fibonacci benchmark we used is presented, as well as the performance results. Re-
source utilization results of the ρ-VEX processor are discussed in Section 7.3. Conclu-
sions are drawn in Section 7.4.

7.1 Experimental Setup

The ρ-VEX organization has been described in VHDL and simulated with Mentor Graph-
ics ModelSim SE 6.3d. Synthesis was performed with XST from the Xilinx ISE 8.1.03i
suite. As the target reconfigurable technology, the Xilinx Virtex-II PRO (XC2VP30)
FPGA was chosen, embedded on the XUP V2P development board by Digilent. All
experiments were performed on a non-pipelined ρ-VEX system with 32 general purpose
registers (GR). A data memory of 1 kB implemented using Block RAM was connected
to ρ-VEX to store results. The issue width of ρ-VEX was varied between 1, 2 and 4.
All configurations had the same number of ALU units as their issue width. The 2- and
4-issue ρ-VEX configurations had 2 MUL units.

7.2 Fibonacci’s Sequence Benchmark

We hand coded an assembly program that calculates the 45th Fibonacci number from
Fibonacci’s Sequence:

Fn =


0 if n = 0;
1 if n = 1;
Fn−1 + Fn−2 if n > 1.

We created the code for 1-, 2- and 4-issue ρ-VEX configurations. The assembly code
for all configurations can be found in Appendix D. We created two ρ-OPS, FIB3 and
FIB4. These operations calculate, respectively, 3 and 4 Fibonacci iterations in one cycle.
The operations are done in a naive sequential way, to show the support for sequential
operations within ρ-OPS. More information on how we implemented the ρ-OPS in an
ρ-VEX processor can be found in Section F.4 of Appendix F.

We adapted our 4-issue code to use the ρ-OPS as a final benchmark. The resulting
numbers of executed clock cycles are presented in Table 7.1. Because the code was
efficient to parallelize, we can see that the number of clock cycles almost halves when
the issue width doubles. After using ρ-OPS, we see the expected speedup of almost 4.
Because the core of the application consists of only 2 VLIW instructions, we are able to
achieve such a high speedup by only adding 2 ρ-OPS.
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Configuration Cycles

1-issue 1906
2-issue 1080
4-issue 537
4-issue, ρ-OPS 141

Table 7.1: Results of Fibonacci sequence benchmark

Configuration Freq. (MHz) Slices Slices GR

1-issue 89.44 1895 (13%) 1 (0%)
2-issue 89.44 5105 (37%) 3370 (24%)
4-issue 89.44 10433 (76%) 3927 (28%)

Table 7.2: Resource utilization for different ρ-VEX configurations

7.3 Resource Utilization

The aforementioned ρ-VEX configurations were synthesized without any connected mem-
ories, to check the resource usage. Table 7.2 presents the results of the measurements.
Next to the number of slices, the percentage of slices used from the total available slices
on the FPGA is presented. Large increases in the usage of slices on the FPGA can
be seen when increasing the issue width of ρ-VEX. This can be mainly ascribed to the
growing GR register file. Because the GR register file in the 1-issue ρ-VEX can be totally
implemented in dedicated Xilinx 2-port Block RAM, the implementation uses no slices.
The 2- and 4-issue ρ-VEX configurations, however, require 4- and 8-port register files,
respectively. These memory configurations can not be instantiated as Xilinx primitive
elements, therefore they need to be formed by slices. This consumes a large number of
slices. An interesting trade-off might be a multi-cluster machine configuration consisting
of single-issue ρ-VEX cores instead of one single-cluster, multi-issue ρ-VEX machine.
As the VEX compiler has the ability to schedule data moves across VEX clusters, we
already have architectural support for this. All configurations were synthesized to run
at the same clock speed of 89.44 MHz.

7.4 Conclusions

This chapter presented the results of the benchmark we did on different ρ-VEX config-
urations. We hand coded an assembly application to calculate the 45th number from
Fibonacci’s Sequence. Different versions were created, to run on 1-, 2- and 4-issue ρ-
VEX processors. A version using ρ-OPS custom operations was also created for a 4-issue
ρ-VEX processor. The results showed speedups of factor 2 by doubling the issue-width
and adding ρ-OPS.

We synthesized the different ρ-VEX processor configurations without memories and
system wrapper to obtain the area utilization on the Xilinx XC2VP30 FPGA. A 1-
issue ρ-VEX configuration consumes 13% of the available logic slices on a XC2VP30
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device, a 2-issue configuration consumes 37%, and a 4-issue 76%. The largest impact
on these differences is caused by the GR register files. This is caused by the fact that
an n-issue ρ-VEX processor should have n-port register file memories, which can not be
instantiated as Xilinx primitive elements. All ρ-VEX configurations were synthesized to
work correctly with a maximum clock frequency of 89.44 MHz.
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Conclusions 8
This chapter presents the conclusions that could be drawn from the performed research.
Section 8.1 presents a summary of this thesis, organized per chapter. The main contri-
butions of our work are discussed in Section 8.2. Finally, recommendations for future
work are proposed in Section 8.3.

8.1 Summary

In this thesis, we presented ρ-VEX, an open source reconfigurable and extensible VLIW
processor based on the VEX ISA [1]. Various architectural aspects like the syllable
issue-width, the number of functional units and the sizes of register files are parametric.
Reconfigurable operations are also supported in the form of ρ-OPS. Because of the freely
available VEX compiler by HP [8], which supports the same extensibility options for its
code generation, we already possess a good compiler for our processor. The processor is
accompanied by an application development framework, to optimally exploit the various
degrees of freedom for development. Our processor and framework are targeted at VLIW
prototyping research and embedded processor design in a stand-alone environment. After
some further work regarding MOLEN integration, ρ-VEX will be a scalable co-processor
for the the utilization within a MOLEN machine.

In Chapter 2, a background was presented on the technologies used in our research.
Different softcore approaches by others resulted in designs and implementations of several
processors. These approaches vary between fixed and very extensible designs. Instruction
Level Parallelism (ILP) is exposed within an application when a computer system is
able to execute multiple different operations, when a single stream of instructions is
presented. Architectures that are able to exploit ILP are superscalar (by means of
hardware) and VLIW (by means of a compiler). The VEX architecture is designed at
Hewlett-Packard, based on the Lx VLIW processor architecture. The VEX ISA supports
multi-cluster computing machines with a variable issue-width. A compiler and simulator
toolchain are made freely available by Hewlett-Packard. The MOLEN paradigm presents
a reconfigurable processor architecture, consisting of a General-Purpose Processor with
a fixed instruction set and a reconfigurable co-processor. Custom operations are placed
in the co-processor as Custom Computing Units.

In Chapter 3, we presented performance benchmarks performed for the Lx processor
configurations (by others), and for different VEX configurations (by ourselves). When
looking at the differences per Lx cluster-configuration, we see that increasing the cluster-
width from from 1 to 2 results in performance gains of about 28%. Increasing the
cluster-width to 4 has a negligible effect in most benchmarks. Our own benchmarks
showed that VEX machines scored in-between the PowerPC 405 and a MOLEN CCU
performance-wise, as we expected. Furthermore, the performance gain from a 1-cluster
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to a 2-cluster configuration was again negligible in many cases. These benchmarks result
in the decision to first implement a 1-issue RISC ρ-VEX configuration, followed by a
1-cluster 4-issue standard configuration ρ-VEX.

In Chapter 4, the ρ-VEX design was discussed. Our design is based on a Harvard
architecture with physically separated instruction- and data-memories. Four main stages
can be identified in the processor architecture: a fetch, decode, execute, and writeback
stage. A syllable layout template was designed for all syllable configurations. For some
operations, address packing was applied within the opcode space to be able to stay com-
pliant to the defined templates. Extensibility of ρ-VEX is provided by two mechanisms:
ρ-OPS and VEX machine models. ρ-OPS use the free opcode space to provide opcodes
that can be used freely to implement extra functionality. Both sequential and combina-
torial operations are supported, as long as the design get properly synthesized. ρ-OPS
can be easily added to the existing VHDL code base by adding a few lines. Most of the
parametric options within VEX machine models are supported by ρ-VEX. Parameters
like issue-width, number of FUs, and the number of registers can be altered easily.

In Chapter 5, we discussed different aspects that had to do with the implementation
of ρ-VEX. We used a bottom-up approach for the implementation of ρ-VEX. Starting
by implementing small Functional Units, we worked towards an implementation of a
1-issue RISC ρ-VEX. When this model was verified, the design was extended to a 4-issue
processor. To be able to map the design to an implementation, we identified three signal
flows within the processor. An instruction flow, a data flow, and an inter-stage control
signal flow helped the implementation process. For the implementation trajectory, the
Unified Verification Methodology (UVM) was used as a guideline. For each identified
sub-system, behavioural simulations as well as post-place and route simulations were
performed. After simulations presented correct results, verifications were done on real
hardware.

In Chapter 6, we presented an application development flow consisting of two phases.
The first phase consists of compiling an arbitrary application kernel described in C code.
The second phase converts the generated assembly code into an executable program for
ρ-VEX. Both phases support extensibility through ρ-OPS and machine model config-
urations. An assembler/instruction ROM generator ρ-ASM was created, to translate
VEX assembly applications into an executable application within the ρ-VEX instruction
memory. ρ-ASM also supports ρ-OPS custom operations and is parametric in order to
support multiple ρ-VEX configurations. A UART interface was designed and imple-
mented to present the contents of the data memory in a human-readable (ASCII) way.
This allows easy debugging and prototyping. It can be easily disabled, as the interface
resides within the system wrapper (not in the processor itself). In Chapter 7, we pre-
sented the results of the benchmark we performed on different ρ-VEX configurations.
We hand coded an assembly application to calculate the 45th number from Fibonacci’s
Sequence. Different versions were created, to run on 1-, 2- and 4-issue ρ-VEX processors.
A version using ρ-OPS custom operations was also created for a 4-issue ρ-VEX proces-
sor. The results showed speedups of factor 2 by doubling the issue-width and adding
ρ-OPS. We synthesized the different ρ-VEX processor configurations without memories
and system wrapper to obtain the area utilization on the Xilinx XC2VP30 FPGA. A
1-issue ρ-VEX configuration consumes 13% of the available logic slices on a XC2VP30
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device, a 2-issue configuration consumes 37%, and a 4-issue 76%. The largest impact
on these differences is caused by the GR register files. This is caused by the fact that
an n-issue ρ-VEX processor should have n-port register file memories, which can not be
instantiated as Xilinx primitive elements. All ρ-VEX configurations were synthesized to
work correctly with a maximum clock frequency of 89.44 MHz.

8.2 Main Contributions

The following contributions can be assigned to our project:

• ρ-VEX – We delivered an open source, reconfigurable and extensible and VLIW
processor. The processor architecture is extensible in many ways, by means of
an extensible issue-width, register file sizes and available FUs. Reconfigurable
operations are supported by the means of ρ-OPS.

• ρ-ASM – A custom assembler/instruction ROM generator was created, to trans-
late VEX assembly code to an executable program for ρ-VEX.

• Application Development Framework – A development framework is pre-
sented to easily write applications to be executed on ρ-VEX, or make adaptations
to ρ-VEX’ hardware design. A UART interface was created to present human-
readable user feedback about the memory contents and executed cycles.

• Performance/pay-off analysis for MOLEN – To justify the existence of a
VEX VLIW co-processor within a MOLEN machine, we performed a performance
analysis. The relative performance of different VEX machine configurations were
compared to a MOLEN CCU and to the PowerPC 405 GPP within the current
MOLEN prototype.

8.3 Future Work

Recommended future work for the project can be divided in several sections, organized
by the four main contributions. The author of this thesis is planning to continue working
on several parts within this list as a hobby project.

ρ-VEX

• Investigate whether pipelining and variations of pipeline and memory latencies
would help the overall performance. Because the VEX machine model is already
parametric in these areas, we already possess a very flexible framework to exploit
such architectural trade-offs.

• Add General-Purpose Input/Output (GPIO) ports to support easy communication
to peripherals.

• Wishbone [13] bus connectivity could be added to support communication with
many Wishbone-compliant (open source) cores from OpenCores.
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• Because in our current implementation the GR register file consumes a significant
amount of area, it might be an interesting trade-off to have a multi-cluster machine
configuration consisting of single-issue ρ-VEX cores instead of one single-cluster,
multi-issue ρ-VEX machine. As the VEX compiler has the ability to schedule data
moves across VEX clusters, we already have architectural support for this.

• Support for changing ρ-OPS definitions at runtime, by means of partial reconfig-
urability could be investigated. This would make ρ-VEX a MOLEN replacement
instead of an addition.

ρ-ASM

• Support the output of a .coe file to initialize the BRAMs. This would imply that
re-synthesization of ρ-VEX is not needed after a change of instruction memory
contents.

• Support for ρ-OPS and .fmm configuration files, instead of changing these param-
eters directly in the -ASM source files.

• Support for data memory initialization. Currently, only the instruction memory is
initialized.

• Auto extract indicated application-kernel functions from VEX compiler assembly
output, and generate a stand-alone wrapper around them. Currently, this has to
be done manually.

Development Framework

• ‘Boot loader’ functionality – Support ρ-VEX executables to be uploaded to the
instruction memory via the UART interface. This is another method to prevent
completely re-synthesizing ρ-VEX when another application is loaded.

MOLEN Integration

• At the time of this project, the available MOLEN prototype exposed unmet timing
constraints. These timing constraints did not influence the example CCUs as they
came bundled with the prototype. However, as soon as the examples were modified
to work on a larger dataset, unpredicted behaviour was exposed. This was also the
case when we integrated an early RISC version of ρ-VEX in a custom CCU. To be
able to successfully integrate ρ-VEX inside a CCU, these timing constraints should
be solved. This could probably be done by adding some extra registers in-between
the CCU and ρ-VEX interfaces.
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List of Acronyms

ALU Arithmetic Logic Unit

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASIC Application-Specific Integrated Circuit

BR Branch Register

CAD Computer-Aided Design

CCU Custom Computing Unit

CPU Central Processing Unit

CTRL Control unit

EDA Electronic Design Automation

EDK Embedded Development Kit

EPIC Explicitly Parallel Instruction Computing

FSM Finite State Machine

FPGA Field-Programmable Gate Array

FU Functional Unit

FVP Functional Virtual Prototype

GPIO General-Purpose Input/Output

GPP General-Purpose Processor

GR General-purpose Register

HDL Hardware Description Language

IDE Integrated Development Environment

ILP Instruction Level Parallelism

ISA Instruction Set Architecture

ISE Integrated Synthesis Environment

MEM Memory unit

MUL Multiplier unit
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PC Program Counter

RISC Reduced Instruction Set Computer

SIMD Single Instruction, Multiple Data

SMT Simultaneous Multithreading

UART Universal Asynchronous Receiver/Transmitter

UCF User Constraints File

UVM Unified Verification Methodology

VEX VLIW Example

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLIW Very Long Instruction Word

XST Xilinx Synthesis Technology



Name and Logo A

Figure A.1: ρ-VEX logo

The name ρ-VEX stands for ‘reconfigurable VEX’ processor. Because the letter Rho
(P or ρ) is the Greek analogous for the Roman R or r, ρ-VEX is pronounced as r-VEX.
This is also the correct spelling when no Greek letters can be used (for example in ASCII
documents).

ρ-VEX’ logo as depicted in Figure A.1 is assembled by LEGO bricks. The LEGO
bricks resemble the extensibility that ρ-VEX provides. A 1-issue slot with the 4-stage
model used by ρ-VEX is depicted. The third stage (the execute stage) allows placement
of additional Functional Units. Because ρ-VEX can have a variable issue-width, more
issue slots can be connected in parallel to the one depicted. Because we present an open
source design, the individual functional blocks can be altered as well, as is the case in
the LEGO analogy. The logo was created using the LEGO Digital Designer [38] tool.
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VEX Operations & Semantics B
ALU Operations

Operation Type Opcode Mnemonic Description
ADD I 1000001 ALU_ADD Add
AND I 1000011 ALU_AND Bitwise AND
ANDC I 1000100 ALU_ANDC Bitwise complement and AND
MAX I 1000101 ALU_MAX Maximum signed
MAXU I 1000110 ALU_MAXU Maximum unsigned
MIN I 1000111 ALU_MIN Minimum signed
MINU I 1001000 ALU_MINU Minimum unsigned
OR I 1001001 ALU_OR Bitwise OR
ORC I 1001010 ALU_ORC Bitwise complement and OR
SH1ADD I 1001011 ALU_SH1ADD Shift left 1 and add
SH2ADD I 1001100 ALU_SH2ADD Shift left 2 and add
SH3ADD I 1001101 ALU_SH3ADD Shift left 3 and add
SH4ADD I 1001110 ALU_SH4ADD Shift left 4 and add
SHL I 1001111 ALU_SHL Shift left
SHR I 1010000 ALU_SHR Shift right signed
SHRU I 1010001 ALU_SHRU Shift right unsigned
SUB VI 1010010 ALU_SUB Subtract
SXTB VII 1010011 ALU_SXTB Sign extend byte
SXTH VII 1010100 ALU_SXTH Sign extend half word
ZXTB VII 1010101 ALU_ZXTB Zero extend byte
ZXTH VII 1010110 ALU_ZXTH Zero extend half word
XOR I 1010111 ALU_XOR Bitwise XOR
MOV VII 1011000 ALU_MOV Copy s1 to other location
CMPEQ II 1011001 ALU_CMPEQ Compare: equal
CMPGE II 1011010 ALU_CMPGE Compare: greater equal signed
CMPGEU II 1011011 ALU_CMPGEU Compare: greater equal unsigned
CMPGT II 1011100 ALU_CMPGT Compare: greater signed
CMPGTU II 1011101 ALU_CMPGTU Compare: greater unsigned
CMPLE II 1011110 ALU_CMPLE Compare: less than equal signed
CMPLEU II 1011111 ALU_CMPLEU Compare: less than equal unsigned
CMPLT II 1100000 ALU_CMPLT Compare: less than signed
CMPLTU II 1100001 ALU_CMPLTU Compare: less than unsigned
CMPNE II 1100010 ALU_CMPNE Compare: not equal
NANDL II 1100011 ALU_NANDL Logical NAND
NORL II 1100100 ALU_NORL Logical NOR
ORL II 1100110 ALU_ORL Logical OR
MTB V 1100111 ALU_MTB Move GR to BR
ANDL II 1101000 ALU_ANDL Logical AND
ADDCG IV 1111--- ALU_ADDCG Add with carry and generate carry.
DIVS IV 1110--- ALU_DIVS Division step with carry and generate carry
SLCT III 0111--- ALU_SLCT Select s1 on true condition. (exceptional opcode)
SLCTF III 0110--- ALU_SLCTF Select s1 on false condition. (exceptional opcode)
N/A N/A 1000000 N/A ALU ρ-OP
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N/A N/A 1000010 N/A ALU ρ-OP
N/A N/A 1100101 N/A ALU ρ-OP
N/A N/A 1101001 N/A ALU ρ-OP
N/A N/A 1101010 N/A ALU ρ-OP
N/A N/A 1101011 N/A ALU ρ-OP
N/A N/A 1101100 N/A ALU ρ-OP
N/A N/A 1101101 N/A ALU ρ-OP
N/A N/A 1101110 N/A ALU ρ-OP
N/A N/A 1101111 N/A ALU ρ-OP

MUL Operations

Operation Type Opcode Mnemonic Description
MPYLL I 0000001 MUL_MPYLL Multiply signed low 16 x low 16 bits
MPYLLU I 0000010 MUL_MPYLLU Multiply unsigned low 16 x low 16 bits
MPYLH I 0000011 MUL_MPYLH Multiply signed low 16 (s1) x high 16 (s2) bits
MPYLHU I 0000100 MUL_MPYLHU Multiply unsigned low 16 (s1) x high 16 (s2) bits
MPYHH I 0000101 MUL_MPYHH Multiply signed high 16 x high 16 bits
MPYHHU I 0000110 MUL_MPYHHU Multiply unsigned high 16 x high 16 bits
MPYL I 0000111 MUL_MPYL Multiply signed low 16 (s2) x 32 (s1) bits
MPYLU I 0001000 MUL_MPYLU Multiply unsigned low 16 (s2) x 32 (s1) bits
MPYH I 0001001 MUL_MPYH Multiply signed high 16 (s2) x 32 (s1) bits
MPYHU I 0001010 MUL_MPYHU Multiply unsigned high 16 (s2) x 32 (s1) bits
MPYHS I 0001011 MUL_MPYHS Multiply signed high 16 (s2) x 32 (s1) bits, shift left 16
N/A N/A 0001100 N/A MUL ρ-OP
N/A N/A 0001101 N/A MUL ρ-OP
N/A N/A 0001110 N/A MUL ρ-OP
N/A N/A 0001111 N/A MUL ρ-OP

CTRL Operations

Operation Type Opcode Mnemonic Description
GOTO1 XIII 0100001 CTRL_GOTO Unconditional relative jump
IGOTO1 XIX 0100010 CTRL_IGOTO Unconditional absolute indirect jump to link register
CALL1 XVI 0100011 CTRL_CALL Unconditional relative call
ICALL1 XX 0100100 CTRL_ICALL Unconditional absolute indirect call to link register
BR VIII 0100101 CTRL_BR Conditional relative branch on true condition
BRF VIII 0100110 CTRL_BRF Conditional relative branch on false condition
RETURN XVII 0100111 CTRL_RETRN Pop stack frame and goto link register
RFI XIV 0101000 CTRL_RFI Return from interrupt
XNOP XV 0101001 CTRL_XNOP Multicycle NOP
N/A N/A 0100000 N/A CTRL ρ-OP
N/A N/A 0101100 N/A CTRL ρ-OP
N/A N/A 0101101 N/A CTRL ρ-OP
N/A N/A 0101110 N/A CTRL ρ-OP
N/A N/A 0101111 N/A CTRL ρ-OP
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MEM Operations

Operation Type Opcode Mnemonic Description
LDW X 0010001 MEM_LDW Load word
LDH X 0010010 MEM_LDH Load halfword signed
LDHU X 0010011 MEM_LDHU Load halfword unsigned
LDB X 0010100 MEM_LDB Load byte signed
LDBU X 0010101 MEM_LDBU Load byte unsigned
STW XI 0010110 MEM_STW Store word
STH XI 0010111 MEM_STH Store halfword
STB XI 0011000 MEM_STB Store byte
PFT XII 0011001 MEM_PFT Prefetch
N/A N/A 0011010 N/A MEM ρ-OP
N/A N/A 0011011 N/A MEM ρ-OP
N/A N/A 0011101 N/A MEM ρ-OP
N/A N/A 0011110 N/A MEM ρ-OP
N/A N/A 0010000 N/A MEM ρ-OP

Miscellaneous Operations

Operation Type Opcode Mnemonic Description
STOP XIV 0011111 STOP STOP operation
NOP XIV 0000000 NOP No operation
SEND2 IX 0101010 INTR_SEND Send s1 to the path identified by path

RECV2 XVIII 0101011 INTR_RECV Assigns the value from the path identified by path to t

N/A N/A 0011100 SYL_FOLLOW Syllable contains second half of long immediate

VEX Assembly Semantics

Type Semantics

I
operation $r0.t = $r0.s1, $r0.s2

operation $r0.t = $r0.s1, s2

II

operation $r0.t = $r0.s1, $r0.s2

operation $r0.t = $r0.s1, s2

operation $b0.b = $r0.s1, $r0.s2

operation $b0.b = $r0.s1, s2

III
operation $r0.t = $b0.b1, $r0.s1, $r0.s2

operation $r0.t = $b0.b1, $r0.s1, s2

IV operation $r0.t, $b0.b = $b0.b1, $r0.s1, $r0.s2

V operation $b0.b = $r0.s1

VI
operation $r0.t = $r0.s2, $r0.s1

operation $r0.t = s2, $r0.s1

VII operation $r0.t = $r0.s1

VIII operation $b0.b, label

IX operation $r0.s1, path

X operation $r0.t = offset[$r0.s1]

XI operation offset[$r0.s1] = $r0.s2
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XII operation offset[$r0.s1]

XIII
operation label

operation $r0.lr

XIV operation

XV operation n

XVI
operation $l0.t = label

operation $l0.t = $l0.t

XVII operation $r0.t = $r0.t, label, $r0.lr

XVIII operation $r0.t = path

XIX operation $r0.lr

XX operation $l0.t = $l0.t

Symbol Declarations

operation The operation as presented in one of the lists above, lowercase
$r0.* GR register where * can be t (target), s1 (source 1), s2 (source 2) or lr (link register)
$b0.* BR register where * can be b (target) or b1 (source 1)
s2 Immediate operand (without preceeding $r0.)
label Label to jump to when branching
offset Offset used when loading or storing to data memory
n Number of cycles (in XNOP)
path Path for sending/receiving inter-cluster contents (unsupported in ρ-VEX)

1According a to a message on the VEX forum, the CALL & ICALL and GOTO & IGOTO
operations are overloaded in the latest VEX compiler, so ICALL and IGOTO are obsolete. These are
still supported in its original form to stay compliant to the original VEX ISA.

See http://www.vliw.org/vex/viewtopic.php?t=52 for more information.
2The inter-cluster operations SEND and RECV are not supported by ρ-VEX, but their opcodes are

reserved.

http://www.vliw.org/vex/viewtopic.php?t=52


ρ-VEX Machine Model C
The VEX machine model (in .fmm format) as used in our benchmarks is presented
below. It should be noted that this is the default VEX machine configuration, except
for the number of General-purpose Register (GR). This number has been scaled down
to 32 (instead of the default value 64), because this causes the synthesization time to be
halved and the on-die area usage to be lowered significantly (because implementing an
8-port register file is very inefficient in FPGA logic slices).

RES: IssueWidth 4
RES: MemLoad 1
RES: MemStore 1
RES: MemPft 1
RES: IssueWidth.0 4
RES: Alu.0 4
RES: Mpy.0 2
RES: CopySrc.0 1
RES: CopyDst.0 1
RES: Memory.0 1
DEL: AluR.0 0
DEL: Alu.0 0
DEL: CmpBr.0 1
DEL: CmpGr.0 0
DEL: Select.0 0
DEL: Multiply.0 1
DEL: Load.0 2
DEL: LoadLr.0 3
DEL: Store.0 0
DEL: Pft.0 0
DEL: Asm1L.0 0
DEL: Asm2L.0 0
DEL: Asm3L.0 0
DEL: Asm4L.0 0
DEL: Asm1H.0 1
DEL: Asm2H.0 1
DEL: Asm3H.0 1
DEL: Asm4H.0 1
DEL: CpGrBr.0 1
DEL: CpBrGr.0 0
DEL: CpGrLr.0 2

73



74 APPENDIX C. ρ-VEX MACHINE MODEL

DEL: CpLrGr.0 0
DEL: Spill.0 0
DEL: Restore.0 2
DEL: RestoreLr.0 3
REG: $r0 31
REG: $b0 8



Fibonacci Benchmark
Assembly Code D
D.1 1-Issue VEX Assembly Code

1 # Fibonacci Sequence demo

2 # -----------------------

3 # Copyright (c) 2008, Thijs van As

4 #

5 # Calculates 45th Fibonacci number , and stores it in data memory

6 # at address 0x00

7 #

8 # 1-issue version

9
10 add $r0.1 = $r0.0, 1

11 ;;

12 mov $r0.2 = $r0.0

13 ;;

14 mov $r0.3 = $r0.0

15 ;;

16 mov $r0.4 = $r0.0

17 ;;

18 add $r0.6 = $r0.0, 45

19 ;;

20 mtb $b0.7 = $r0.0

21 ;;

22 LABEL_BEGIN:

23 br $b0.7, LABEL_END

24 ;;

25 cmpeq $b0.7 = $r0.3, $r0.6

26 ;;

27 add $r0.3 = $r0.3, 1

28 ;;

29 mov $r0.4 = $r0.1

30 ;;

31 add $r0.1 = $r0.1, $r0.2

32 ;;

33 mov $r0.2 = $r0.4

34 ;;

35 goto LABEL_BEGIN

36 ;;

37 LABEL_END:

38 add $r0 .15 = $r0.0, 1

39 ;;

40 stw 0x0[$r0 .15] = $r0.1

41 ;;
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D.2 2-Issue VEX Assembly Code

1 # Fibonacci Sequence demo

2 # -----------------------

3 # Copyright (c) 2008, Thijs van As

4 #

5 # Calculates 45th Fibonacci number , and stores it in data memory

6 # at address 0x00

7 #

8 # 2-issue version

9
10 add $r0 .15 = $r0.0, 1

11 add $r0 .10 = $r0.0, 45

12 ;;

13 mov $r0.1 = $r0.0

14 add $r0.2 = $r0.0, 1

15 ;;

16 LABEL_BEGIN:

17 cmpeq $b0.0 = $r0.9, $r0.10

18 br $b0.7, LABEL_END

19 ;;

20 add $r0.2 = $r0.1, $r0.2

21 add $r0.3 = $r0.0, $r0.2

22 ;;

23 add $r0.9 = $r0.9, 1

24 add $r0.1 = $r0.0, $r0.3

25 ;;

26 goto LABEL_BEGIN

27 ;;

28 stw 0x0[$r0 .15] = $r0.1

29 ;;

D.3 4-Issue VEX Assembly Code

1 # Fibonacci Sequence demo

2 # -----------------------

3 # Copyright (c) 2008, Thijs van As

4 #

5 # Calculates 45th Fibonacci number , and stores it in data memory

6 # at address 0x00

7
8 add $r0 .15 = $r0.0, 1

9 mov $r0.1 = $r0.0

10 add $r0 .10 = $r0.0, 44 # 44 + 1 iterations

11 add $r0.2 = $r0.0, 1

12 ;;

13 LABEL_BEGIN:

14 add $r0.2 = $r0.1, $r0.2

15 add $r0.3 = $r0.0, $r0.2

16 cmpeq $b0.0 = $r0.9, $r0.10 # if ($r0.9 == $r0 .10) $b0.0 = 1;

17 br $b0.0, LABEL_END # if ($b0.0 == 1) goto LABEL_END;

18 ;;

19 add $r0.9 = $r0.9, 1

20 add $r0.1 = $r0.0, $r0.3

21 goto LABEL_BEGIN
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22 ;;

23 LABEL_END:

24 stw 0x0[$r0 .15] = $r0.1

25 mov $r0.9 = $r0.0

26 ;;

D.4 4-Issue VEX Assembly Code With ρ-OPS

1 # Fibonacci Sequence demo

2 # -----------------------

3 # Copyright (c) 2008, Thijs van As

4 #

5 # Calculates 45th Fibonacci number , and stores it in data memory

6 # at address 0x00

7 #

8 # r-OPS FIB3 and FIB4

9
10 add $r0 .15 = $r0.0, 1

11 mov $r0.1 = $r0.0

12 add $r0 .10 = $r0.0, 9

13 add $r0.2 = $r0.0, 1

14 ;;

15 LABEL_BEGIN:

16 fib4 $r0.2 = $r0.1, $r0.2

17 fib3 $r0.3 = $r0.1, $r0.2

18 cmpeq $b0.0 = $r0.9, $r0.10 # if ($r0.9 == $r0 .10) $b0.0 = 1;

19 br $b0.0, LABEL_END # if ($b0.0 == 1) goto LABEL_END;

20 ;;

21 add $r0.9 = $r0.9, 1

22 add $r0.1 = $r0.0, $r0.3

23 goto LABEL_BEGIN

24 ;;

25 LABEL_END:

26 stw 0x0[$r0 .15] = $r0.1

27 mov $r0.9 = $r0.0

28 ;;
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Fibonacci Benchmark
Simulation Waveforms E
The waveforms presented in this Appendix resulted from the benchmark simulations
running the VEX assembly code for calculating the 45th Fibonacci number as presented
in Section D.3 of Appendix D. Section E.1 presents the waveforms of the behavioural
simulations and Section E.2 presents the waveforms of the post-place and route simula-
tions.

The resulting value in the data memory at address 0 equals 0x43A53F82, which is
the hexadecimal representation of the 45th Fibonacci number 1134903170. It should be
noted that only selected signals are presented in the waveforms, to avoid losing overview.

E.1 Behavioural Simulation Waveforms

The simulation results presented in Figure E.1 depict the first 1330 nanoseconds of the
behavioural simulations of our benchmark with Fibonacci’s Sequence. The first two
iterations of the second and third instructions in Section D.3 are presented. Figure E.2
depicts the last 1330 nanoseconds of the behavioural simulations. The last iteration of
the second and third instructions is presented, as well as the last instruction. It should
be noted that ρ-ASM always adds a STOP operation together with 3 NOP operations
in an instruction after the last instruction defined. This to make sure program execution
ends.

The instr signal represents the 128-bit instruction fetched by ρ-VEX. run is the
external signal that should be raised to invoke execution. done will be raised after
execution is finished. pc and pc_goto represent the current and next value of the PC,
respectively. d_memory represents the contents of the data memory.

Table E.1 maps the hexadecimal syllable codes from the waveforms to human-
readable VEX assembly code. This resembles the assembly code in Section D.3.

E.2 Post-Place and Route Waveforms

Figures E.3 and E.4 depict the same transitions as Figures E.1 and E.2, but after a
simulation that also simulated the electrical behaviour of the circuitry. Delays caused by
logical path lengths and several heterogeneous components within the chosen XC2VP30
FPGAtechnology were taken into account.

The presented signal names are slightly different from the behavioural simulations.
As the pc_goto signal is measured at another point in the design, this value differs
sometimes from the behavioural simulations.
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831E0006B0... 8204084... 8312480... 8204084... 8312480...

000... 83040005 4A800061 42800021 4A800061 42800021

000... 831400B0 B2004940 00000000 B2004940 00000000

000... B0020000 82060040 82020060 82060040 82020060

000... 831E0006 82040842 83124806 82040842 83124806

01 02 02 03 01 02 02 03 01

00 01 02 01 02

{00000000} {00000000} {00000000} {00000000} {00000000} {00...

0 ns 500 ns 1000 ns

/tb_system/system_0/rvex0/clk

/tb_system/system_0/rvex0/reset

/tb_system/system_0/rvex0/instr 831E0006B0... 8204084... 8312480... 8204084... 8312480...

/tb_system/system_0/rvex0/run

/tb_system/system_0/rvex0/done

/tb_system/system_0/rvex0/syllable_0_s 000... 83040005 4A800061 42800021 4A800061 42800021

/tb_system/system_0/rvex0/syllable_1_s 000... 831400B0 B2004940 00000000 B2004940 00000000

/tb_system/system_0/rvex0/syllable_2_s 000... B0020000 82060040 82020060 82060040 82020060

/tb_system/system_0/rvex0/syllable_3_s 000... 831E0006 82040842 83124806 82040842 83124806

/tb_system/system_0/rvex0/pc0/pc_goto 01 02 02 03 01 02 02 03 01

/tb_system/system_0/rvex0/pc0/pc 00 01 02 01 02

/tb_system/system_0/d_mem0/d_memory {00000000} {00000000} {00000000} {00000000} {00000000} {00...

Figure E.1: Behavioural simulation: 0 – 1330 ns

8204084... 8312480... 8204084... 2C02780... 000000020000...

4A800061 42800021 4A800061 00000001 3E000001

B2004940 00000000 B2004940 00000000

82060040 82020060 82060040 B0120000 00000000

82040842 83124806 82040842 2C027802 00000002

02 02 03 01 02 03 04 05

01 02 01 03 04

{00000000} {00000000} {00000000} {000000... {43A53F82} {00...

21500 ns 22000 ns 22500 ns

/tb_system/system_0/rvex0/clk

/tb_system/system_0/rvex0/reset

/tb_system/system_0/rvex0/instr 8204084... 8312480... 8204084... 2C02780... 000000020000...

/tb_system/system_0/rvex0/run

/tb_system/system_0/rvex0/done

/tb_system/system_0/rvex0/syllable_0_s 4A800061 42800021 4A800061 00000001 3E000001

/tb_system/system_0/rvex0/syllable_1_s B2004940 00000000 B2004940 00000000

/tb_system/system_0/rvex0/syllable_2_s 82060040 82020060 82060040 B0120000 00000000

/tb_system/system_0/rvex0/syllable_3_s 82040842 83124806 82040842 2C027802 00000002

/tb_system/system_0/rvex0/pc0/pc_goto 02 02 03 01 02 03 04 05

/tb_system/system_0/rvex0/pc0/pc 01 02 01 03 04

/tb_system/system_0/d_mem0/d_memory {00000000} {00000000} {00000000} {000000... {43A53F82} {00...

Figure E.2: Behavioural simulation: 21490 – 22820 ns
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FF 00 01 02 01 02

00 02 01 02

00000000

0 ns 500 ns 1000 ns

/tb_system/system_0/clk05_clk_s1

/tb_system/system_0/reset

/tb_system/system_0/run_s_514

/tb_system/system_0/rvex0_done_s

/tb_system/system_0/rvex0_pc0_pc_current_i FF 00 01 02 01 02

/tb_system/system_0/rvex0_ctrl0_pc_goto_i 00 02 01 02

.../system_0/d_mem0_mram_d_memory_ren1_doa 00000000

Figure E.3: Post-place and route simulation: 0 – 1330 ns

01 02 01 03 04

01 02 01 03 00

00000000 43A53F82

21500 ns 22000 ns 22500 ns

/tb_system/system_0/clk05_clk_s1

/tb_system/system_0/reset

/tb_system/system_0/run_s_514

/tb_system/system_0/rvex0_done_s

/tb_system/system_0/rvex0_pc0_pc_current_i 01 02 01 03 04

/tb_system/system_0/rvex0_ctrl0_pc_goto_i 01 02 01 03 00

.../system_0/d_mem0_mram_d_memory_ren1_doa 00000000 43A53F82

Figure E.4: Post-place and route simulation: 21490 – 22820 ns
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Address Syllable VEX Semantics

00

0x831E0006 add $r0.15 = $r0.0, 1
0xB0020000 mov $r0.1 = $r0.0
0x831400B0 add $r0.10 = $r0.0, 44
0x83040005 add $r0.2 = $r0.0, 1

01

0x82040842 add $r0.2 = $r0.1, $r0.2
0x82060040 add $r0.3 = $r0.0, $r0.2
0xB2004940 cmpeq $b0.0 = $r0.9, $r0.10
0x4A800061 br $b0.0, 3

02

0x83124806 add $r0.9 = $r0.9, 1
0x82020060 add $r0.1 = $r0.0, $r0.3
0x00000000 nop
0x42800021 goto 1

03

0x2C027802 stw 0x0[$r0.15] = $r0.1
0xB0120000 mov $r0.9 = $r0.0
0x00000000 nop
0x00000001 nop

04

0x00000002 nop
0x00000000 nop
0x00000000 nop
0x3E000001 stop

Table E.1: Syllables explained from the Fibonacci’s Sequence benchmark



Quickstart Guide F
This is a Quickstart Guide to easily deploy ρ-VEX, mainly focused on the utilization
with a Xilinx University Program Virtex-II Pro FPGA board by Digilent. If you want to
use this guide together with another FPGA platform, you should first add the definitions
of your board to the workflow as described in Section F.6.

F.1 Requirements

• A Xilinx University Program Virtex-II Pro board (http://www.digilentinc.
com/Products/Detail.cfm?av1=Products&Nav2=Programmable&Prod=XUPV2P)

• PC running Linux or Windows1

• Xilinx ISE Suite (tested with 8.1.03i, should work with later versions too)

F.2 Deploying ρ-VEX on an FPGA

1. Acquire the latest snapshot from the ‘Downloads’ section at the ρ-VEX website,
or checkout the latest code from the Subversion repository. The project page can
be found at http://r-vex.googlecode.com/.

2. Inside the r-VEX/src/ directory, synthesize ρ-VEX by entering the following com-
mand:

make v2p

3. After the synthesis process has completed, the generated bit-file can be uploaded
to the FPGA board by entering:

make fpga

4. Connect a serial cable to the RS-232 interface on the XUP V2P board. Connect
the other side of the cable to a PC and start a terminal application, like Minicom
(Linux), Putty or Hyperterminal (Windows). Connect using the following settings:
115200 bps transfer rate, 8 data bits, no parity

1When you want to make use of the Makefile method described below on a Windows machine, a
Cygwin installation should be present with GNU Make. Xilinx EDK automatically installs a version of
Cygwin. However, some GNU tools like cat are not included. This results in an error while combining
the individual log files after synthesis. This can be safely ignored.
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5. Press button SW2 on the XUP V2P board, which acts as the reset button. In
the terminal application, you will see the contents of the first 16 data memory
addresses, as well as a cycle counter.

By default, an application to calculate the 45th Fibonacci number is loaded and syn-
thesized. The VEX assembly source code of this application can be found in Section D.3
of Appendix D, or in the demos/ directory. The output of ρ-VEX transmitted over the
UART will be the following:

r-VEX
-----
Cycles: 0x00000231

Data memory dump

addr | contents
-----+-----------
0x00 | 0x43A53F82
0x01 | 0x00000000
0x02 | 0x00000000
0x03 | 0x00000000
0x04 | 0x00000000
0x05 | 0x00000000
0x06 | 0x00000000
0x07 | 0x00000000
0x08 | 0x00000000
0x09 | 0x00000000
0x0A | 0x00000000
0x0B | 0x00000000
0x0C | 0x00000000
0x0D | 0x00000000
0x0E | 0x00000000
0x0F | 0x00000000

F.3 Assembling and Running Code

The instruction memory ROM can be found in the file i_mem.vhd. A new instruction
ROM file can be generated by the ρ-ASM tool. This tool requires a UNIX operating
system with the GNU C libraries to be compiled.

1. To compile ρ-ASM, go to the r-ASM/src/ directory, and enter the command

make

2. To assemble a VEX assembly file, run ρ-ASM by entering the following command:
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./rasm <source.s>

To see more options of ρ-ASM (like enabling debug output) run the application
without any arguments. Some demo applications with their corresponding outputs
can be found in the demos/ directory.

3. By default, the resulting instruction ROM is written to i_mem.vhd in the current
directory. Copy or move this file to the ρ-VEX source directory. When using the
standard repository structure, this can be accomplished by entering

mv i_mem.vhd ../../r-VEX/src/

4. Now, repeat the steps from the Quickstart in Section F.2.

F.4 Using ρ-OPS

This guide on adding ρ-OPS to an implementation of ρ-VEX is based on the example of
adding the FIB3 and FIB4 operations, as used in our benchmark in Chapter 7.

Adapting ρ-VEX

1. Determine what FU will execute the operation. An unused ρ-OPS opcode can be
obtained from Appendix B.

2. In r-vex_pkg.vhd, constant definitions should be added for the new operations.
1 constant ALU_FIB4 : std_logic_vector (6 downto 0) := "1000010";

2 constant ALU_FIB3 : std_logic_vector (6 downto 0) := "1101100";

3. In the determined FU, support for the new operations should be added in the
corresponding VHDL file. In our benchmark, lines 9 – 12 are added in alu.vhd
from the code snippet below.

1 alu_control : process(clk , reset)

2 begin

3 if (reset = ’1’) then

4 out_valid <= ’0’;

5 result_s <= (others => ’0’);

6 cout_s <= ’0’;

7 elsif (clk = ’1’ and clk ’event) then

8 ...

9 elsif std_match(aluop , ALU_FIB4) then

10 result_s <= f_FIB4 (src1 , src2);

11 elsif std_match(aluop , ALU_FIB3) then

12 result_s <= f_FIB3 (src1 , src2);

13 ...

14 end if;

15 end process alu_control;

4. Functions and function prototypes should be added to the corresponding file. In
our example, the code below was added to alu_operations.vhd.
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1 function f_FIB4 ( s1, s2 : std_logic_vector (31 downto 0))

2 return std_logic_vector;

3
4 function f_FIB3 ( s1, s2 : std_logic_vector (31 downto 0))

5 return std_logic_vector;

6
7 ...

8
9 function f_FIB4 ( s1, s2 : std_logic_vector (31 downto 0))

10 return std_logic_vector is

11 begin

12 return (s1 + s2 + s2 + s1 + s2 + s2 + s1 + s2);

13 end function f_FIB4;

14
15 function f_FIB3 ( s1, s2 : std_logic_vector (31 downto 0))

16 return std_logic_vector is

17 begin

18 return (s1 + s2 + s2 + s1 + s2);

19 end function f_FIB3;

Adapting ρ-ASM

To adapt ρ-ASM to support the new ρ-OPS, two small additions should be made in
syllable.h. A new opcode define should be made, as well as an addition of the new
opcode’s mnemonic to the operation_table lookup table (lines 11 – 12).

1 #define FIB3 108

2 #define FIB4 66

3
4 ...

5
6 static struct operation_t {

7 const char *operation;

8 int opcode;

9 } operation_table [] = {

10 ...

11 { "fib3", FIB3 },

12 { "fib4", FIB4 },

13 ...

14 };

F.5 Running ModelSim Simulations

To run ModelSim simulations within the workflow, you should have installed a version
of Mentor Graphics ModelSim (we simulated with the SE 6.3d edition). To run the
simulations using the system wrapper testbench r-VEX/testbenches/tb_system.vhd
(which simulates the execution of the current instruction memory in i_mem.vhd), enter
the following command in r-VEX/src/:

make modelsim
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F.6 Adding Support For Other FPGA Boards

To add support for other FPGA boards with Xilinx a FPGA in this workflow, the file
r-VEX/src/Makefile should be edited. The following changes should be applied:

1. Choose a mnemonic for your new target. For example, we used v2p for the XUP
V2P board containing a Virtex-II Pro FPGA. This mnemonic will be referred
to as <mnemonic>. Check the Xilinx identifier for this FPGA. For example, the
identifier for the Virtex-II Pro chip we used is xc2vp30-ff896-7. This identifier will
be referred to as <xilinx_identifier>.

2. Add the Xilinx FPGA identifier as a new variable. Use the following template:

XIL_PART_r-vex_<mnemonic> = <xilinx_identifier>

3. Add a ‘help’ text to the default Make target.

4. Create a new Make target according to this template:

<mnemonic>: r-vex_<mnemonic>.deps r-vex_<mnemonic>.bit log_<mnemonic>.txt

5. Create a new Make target r-vex_<mnemonic>.ut and let it write your preferred
options to the .ut file.2

6. Create a new Make target r-vex_<mnemonic>.xst and let it write your preferred
options to the XST configuration file.2

7. Create a new Make target r-vex_<mnemonic>.ucf and let it write your UCF user
constraints to the .ucf file.2

8. Create a new Make target r-vex_<mnemonic>.cmd and let it write the commands
for Xilinx IMPACT to program your FPGA.2

2As a reference, you could use the Make target with the mnemonic v2p.
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Package Contents G
A listing of the directories and remarkable files as they can be found in the ρ-VEX package
at http://r-vex.googlecode.com/ is presented below, together with a description.

All ρ-VEX and ρ-ASM source code is released under the GNU General Public License
v3 (GPL) [9].

General Overview

.

|-- demos/ Demo VEX assembly applications
| ‘-- reference_outputs Reference outputs of demos
|-- doc/ Documentation files
| |-- diagrams/ Some diagram .svg files as used in this thesis
| |-- logo/ ρ-VEX logo files
| |-- instruction_layout.txt The ρ-VEX instruction layout description as presented in Chapter 4
| |-- quickstart_xupv2p.txt A Quickstart Guide
| ‘-- syllable_layout.txt The ρ-VEX syllable layout description as presented in Chapter 4
|-- r-ASM/ Root directory of ρ-ASM assembler
| ‘-- src/ C source files of ρ-ASM
‘-- r-VEX/ Root directory of ρ-VEX processor

|-- src/ VHDL source files of ρ-VEX
‘-- testbenches/ Testbench for the system wrapper

‘-- old/ Old testbenches for individual Functional Unit (FU) simulations

ρ-VEX Source Files

.

|-- Makefile Automated synthesize, simulate and build instructions for Make
|-- alu.vhd Arithmetic Logic Unit
|-- alu_operations.vhd Individual ALU operations as functions
|-- clk_div.vhd Clock divider to use XUP V2P’s on-board clock directly
|-- ctrl.vhd Control unit
|-- ctrl_operations.vhd Individual CTRL operations as functions
|-- d_mem.vhd Data memory
|-- decode.vhd Decode stage
|-- execute.vhd Execute stage
|-- fetch.vhd Fetch stage
|-- i_mem.vhd Instruction memory (generated by ρ-ASM)
|-- mem.vhd Memory unit
|-- mem_operations.vhd Individual MEM operations as functions
|-- mul.vhd Multiplier unit
|-- mul_operations.vhd Individual MUL operations as functions
|-- pc.vhd Program Counter
|-- r-vex.vhd ρ-VEX top-level entity
|-- r-vex_pkg.vhd Common package with opcode definitions and parameters
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|-- registers_br.vhd General-purpose Register file
|-- registers_gr.vhd Branch Register file
|-- system.vhd Top-level system-wrapper entity including memories and UART
|-- uart/ Universal Asynchronous Receiver/Transmitter code
| |-- clk_18432.vhd Clock generator for 115200 bps data transmission
| |-- uart.vhd UART top-level entity and data memory interface
| |-- uart_pkg.vhd Common package with UART functions
| ‘-- uart_tx.vhd UART transmitter unit
‘-- writeback.vhd Writeback stage

ρ-ASM Source Files

.

|-- Makefile Automated compile instructions for Make
|-- rasm.c The biggest part of ρ-ASM code
|-- rasm.h Common parameter definitions
|-- syllable.c Syllable-manipulating helper functions
|-- syllable.h Common opcode definitions
|-- util.c Common (I/O) helper functions
|-- util.h util.c function prototypes
|-- vhdl.c VHDL printing functions
‘-- vhdl.h vhdl.c function prototypes
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