
Daniele Ludovici

Technology Aware
Network-on-Chip Connectivity

and Synchronization Design





Technology Aware Network-on-Chip
Connectivity and Synchronization Design

from the NoC concept to actual NoC technology

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op

donderdag 30 Juni 2011 om 10:00 uur

door

Daniele LUDOVICI

Master of Science in Computer Systems Engineering
University of Pisa, Italië
geboren te Alatri, Italië



Dit proefschrift is goedgekeurd door de promotor:
Prof. dr.ir H.J. Sips

Copromotor:
Dr.ir. G.N. Gaydadjiev

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr.ir. H.J. Sips Technische Universiteit Delft, promotor
Dr.ir. G.N. Gaydadjiev Technische Universiteit Delft, copromotor
Prof. dr.ir. A.J. van der Veen Technische Universiteit Delft
Prof. dr.ir. G.J.M. Smit Universiteit Twente
Prof. dr. D.N. Pnevmatikatos University of Crete & FORTH, Griekland
Prof. dr. L. Carro Universidade Federal do Rio Grande do Sul, Brazilië
Dr. D. Bertozzi University of Ferrara, Italië
Prof. dr.ir. C.I.M. Beenakker Technische Universiteit Delft, reservelid

ISBN 978-90-72298-18-8

Keywords: Network-on-Chip, Globally Asynchronous Locally Synchronous (GALS),
Topology Exploration, Synchronizers

Copyright © 2011 Daniele Ludovici
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without permission of the author.

Printed in The Netherlands



To Serena, and our dreams together





Technology Aware NoC
Connectivity and Synchronization Design

Daniele Ludovici

Abstract

NOCS have been considered as the new design paradigm for large MP-
SoC systems in the past ten years. In the beginning NoCs were rad-

ically different compared to the current state of the art mainly due to
the unexpected unique challenges that system designers had to solve with the
evolving CMOS technology. In fact, various hidden physical level issues may
potentially degrade system performance, exceed the available power budgets or
even endanger the overall design feasibility. The connectivity among different
multi-core elements is such an issue that has to be addressed during the design
of the overall communication infrastructure. Two different classes of implica-
tions related to the aggressive CMOS technology scaling, resulting in growing
process variations, reduced power budgets per unit area and worsening signal
integrity on chip, have to be considered. On one hand, a good topology is re-
quired to provide adequate sub-system connectivity while also satisfying the
bandwidth and performance requirements. On the other hand, increasing syn-
chronization issues make the system design difficult and in some cases even
impossible to be realized under a rigid synchronization model. For instance,
the topology strongly depends on the physical effects as consequence of the
wire delay reverse scaling while the synchronization issues are tightly related
to process variation effects. Therefore, in the current and the future CMOS
technology nodes, ad-hoc counter measures must be adopted to cope with the
above problems. In this thesis we propose a system-level analysis framework
and design methodology both considering real layout effects. Our analysis is
not only limited to classical layout effects such as the non-regularity of a rect-
angular tile; the real wire delays of inter-switch links; the number of pipeline
stages required to provide the requested link performance; the maximum toler-
ated skew of a certain synchronization scheme; and more. We also consider the
implications of the above physical phenomena while re-designing our archi-
tectural blocks. The ultimate result is a framework which is truly technology
aware, ready to meet the challenges of the future CMOS technology landscape.

i





Acknowledgements

I have dreamed of this moment for a long time during my PhD. Now here I
am, trying to sort out all the memories related to the last five years. Not easy,
for sure, but I will give it a try.

All this started because somebody gave me the opportunity to join the CE-
group upon just a couple of exchanges of email. Stamatis was certainly the
enabler of my PhD journey and although I did not have much time to enjoy
his company, I will be always indebted to him. After having such an opportu-
nity, my PhD trip went through some initial turbulences and I owe deep and
sincere gratitude to my co-promotor Georgi Gaydadjiev and to my advisor Da-
vide Bertozzi for helping to work things out. Georgi had me under his wing for
the time I spent in Delft; he trusted my choice to move back to Italy for an ini-
tial internship with Davide. That internship actually turned out to be a crucial
point of my PhD studies and, in fact, it started what ended up being my final re-
search topic. I am indebted to him also for the effort he put into reviewing this
manuscript. Davide is the key person I met in my short but exciting research
career. He taught and shaped my way of approaching to challenging research
problems. Needless to say, he has been also a good friend and a person I could
always count on. I hope this thesis is a good way to thank him for his hard and
enthusiastic work in establishing a great research group in Ferrara, and for the
possibility I had to work on ambitious topics.

Work apart, my PhD journey has been lucky twice because it was split between
two countries. In The Netherlands, I had unforgettable moments with my clos-
est friends: Carlo, Christos, Dimitris, Lotfi, Yiannis and Sebastian. All of you
guys left me something during a coffee in Kobus, a dinner at Carlo and Niki’s
or a discussion while biking under the rain. Your friendship is among the best
things I could desire out of such a PhD experience. A special thank you goes
to Carlo and Dimitris for helping with many thesis practicalities.

I will never forget also the initial Delft period in the company of Giacomo,
Gennaro, Mattia, Francesco, Mauro, Maristella, Mario, Corrado, Christian,
Alessandro, Gianni, Sergio, Christian, Alessandro, Maria, and the dozens of

iii



other Italians I met during these years in Delft. It has been like home thanks to
all of you guys.

A special thank you is due to all the people that helped me with administrative
and technical problems during my years at the CE-group: Lidwina Tromp,
Monique Tromp, Bert Meijs, Erik de Vries and Eef Hartman. Many thanks
also to Arjan van Genderen who contributed to the Dutch translation of this
thesis abstract.

Ferrara has been the other half of my PhD life, many friends, exciting mo-
ments, hard work and sleepless nights but eventually it worked out. This could
happen only because I had the luck to meet amazing friends: Simone and
Alessandro in the beginning; we shared hard work and great fun during our
spritz evenings. After some time, Alberto, Hervé and Luca joined Davide’s
group. Rapidly, we created a larger and harmonious environment to work to-
gether in, but above all we established something more than just work. Sergio
and Valeria have been also a large part of my life in Ferrara. I also want to
mention and I hope not to forget anybody: Cristian, Daniele, Francesco, En-
rico, Raffaele, Andrea, Giorgio, Valerio and Gery. Thanks to all of you my
friends. I also owe Federico, Igor, Antonio and Mohammad many thanks for
their help with the problems I had during the development of my PhD work.
Last, I could not forget the Spanish team: Paco, Samuel and Crispin. I had
many enjoyable moments during your internships in Ferrara and I hope you
had at least the half of what I got from you.

Finally, needless to say, I owe my parents and my whole family more than I
can write on a piece of paper. You are the engine of my dreams and all I am is
just because of you.

My last thought is for Serena, I could not desire a more beautiful person for
sharing the amazing journey of life, together.

Daniele Ferrara, Italy – Delft, The Netherlands, June 2011

iv



Table of contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Acronyms and Symbols . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Connectivity design with layout-awareness . . . . . . 4
1.1.2 The synchronization design issue . . . . . . . . . . . 5

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Topology Exploration . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 2D and Multi-Dimensional Meshes . . . . . . . . . . 9
2.1.2 Fat-trees . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Link Design Techniques . . . . . . . . . . . . . . . . . . . . 12
2.3 The GALS Design Style . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Synchronization Interfaces . . . . . . . . . . . . . . . 14

3 Relaxing the Synchronization Assumption in Networks-on-Chip . . . 17
3.1 Limitations of the Fully Synchronous Approach . . . . . . . . 17
3.2 A Possible Solution: the GALS Design Style . . . . . . . . . 18
3.3 Target GALS Architecture . . . . . . . . . . . . . . . . . . . 20
3.4 ×pipesLite switch architecture . . . . . . . . . . . . . . . . . 22
3.5 Baseline Synchronization Architecture . . . . . . . . . . . . . 25

v



3.5.1 Optimizations of the baseline architecture: the loosely
coupled synchronizer . . . . . . . . . . . . . . . . . . 26

3.6 Tightly Integrated Synchronizer Architecture . . . . . . . . . 28
3.6.1 Operating principle . . . . . . . . . . . . . . . . . . . 29

3.7 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . 31
3.7.1 Architecture flexibility: the Hybrid solution . . . . . . 33

3.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 34
3.8.1 Comparative latency Analysis . . . . . . . . . . . . . 35

3.9 Mesochronous Link Design Characterization . . . . . . . . . 38
3.9.1 Design tradeoffs . . . . . . . . . . . . . . . . . . . . 39
3.9.2 Skew Tolerance . . . . . . . . . . . . . . . . . . . . . 40
3.9.3 Target frequency . . . . . . . . . . . . . . . . . . . . 43
3.9.4 Switch radix . . . . . . . . . . . . . . . . . . . . . . 44

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 A Design Flow for GALS NoCs . . . . . . . . . . . . . . . . . . . . 47
4.1 The Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 GALS enhancement: the ×pipes compiler . . . . . . . 48
4.2 The Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 A Traditional View of the Back-End Design Flow . . . 50
4.2.2 The ×pipes Back-End Infrastructure . . . . . . . . . . 52
4.2.3 GALS enhancement: Hierarchical Clock Tree Synthesis 53
4.2.4 Routing . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.5 Placement-Aware Logic Synthesis . . . . . . . . . . . 56

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Contrasting Synchronous vs. Mesochronous Networks-on-Chip . . . 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Target GALS Architectures . . . . . . . . . . . . . . . . . . . 62

5.2.1 The dual-clock FIFO overhead . . . . . . . . . . . . . 63
5.3 Synthesis of GALS Platforms . . . . . . . . . . . . . . . . . . 65
5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Area and Wiring Overhead . . . . . . . . . . . . . . . 66
5.4.2 Power analysis . . . . . . . . . . . . . . . . . . . . . 67

5.5 Variability robustness . . . . . . . . . . . . . . . . . . . . . . 70
5.5.1 Performance considerations . . . . . . . . . . . . . . 74

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



6 Layout-Aware Exploration
of 16-tile systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Topology exploration framework . . . . . . . . . . . . . . . . 80
6.3 Backend synthesis flow . . . . . . . . . . . . . . . . . . . . . 81
6.4 Multi-dimensional Topologies . . . . . . . . . . . . . . . . . 82

6.4.1 Communication semantics . . . . . . . . . . . . . . . 83
6.4.2 Post-layout analysis . . . . . . . . . . . . . . . . . . 85
6.4.3 System Level Analysis . . . . . . . . . . . . . . . . . 86
6.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Multi-stage Interconnection Networks . . . . . . . . . . . . . 89
6.5.1 Topology analysis . . . . . . . . . . . . . . . . . . . 91
6.5.2 Floorplan design . . . . . . . . . . . . . . . . . . . . 94
6.5.3 Floorplan scalability to 64 cores . . . . . . . . . . . . 96
6.5.4 Post-Layout analysis . . . . . . . . . . . . . . . . . . 96
6.5.5 System Level Analysis . . . . . . . . . . . . . . . . . 100
6.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Link Design Techniques Evaluation . . . . . . . . . . . . . . . . . . 103
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Topologies analysis . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Link Design Techniques . . . . . . . . . . . . . . . . . . . . 109
7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 110

7.4.1 Timing Closure . . . . . . . . . . . . . . . . . . . . . 110
7.4.2 Implementation Cost . . . . . . . . . . . . . . . . . . 112
7.4.3 Energy Efficiency . . . . . . . . . . . . . . . . . . . . 113

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 A Methodology for Assessing Large Scale Systems with Layout-
Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.2 High-level Topology Exploration . . . . . . . . . . . . . . . . 121
8.3 Physical Modeling Framework . . . . . . . . . . . . . . . . . 122

8.3.1 Characterization Methodology . . . . . . . . . . . . . 123
8.3.2 64-tile topologies . . . . . . . . . . . . . . . . . . . . 124
8.3.3 Pipeline stage insertion for 64-tile systems . . . . . . 126

vii



8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9 Large Scale GALS Systems Analysis . . . . . . . . . . . . . . . . . 131
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 System-level Exploration . . . . . . . . . . . . . . . . . . . . 132

9.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . 132
9.2.2 Experimental results . . . . . . . . . . . . . . . . . . 133

9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.2 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . 139
10.3 Open Issues and Future Directions . . . . . . . . . . . . . . . 140

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Samenvatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

viii



List of Tables

5.1 Top Clock Tree Power for a 64 cores system. . . . . . . . . . 70

6.1 Topologies under test. . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Physical parameters of topologies under test. . . . . . . . . . . 85

6.3 Network topologies under test. . . . . . . . . . . . . . . . . . 91

6.4 Physical synthesis reports. . . . . . . . . . . . . . . . . . . . 97

7.1 Topologies under test. . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Timing results. . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 High level parameters of topologies with 64-tile. . . . . . . . . 121

8.2 Post-place&route results of the 64-tile topologies under test. . 125

8.3 Post-place&route results of 64-tile topologies with pipeline
stage insertion. . . . . . . . . . . . . . . . . . . . . . . . . . 128

ix





List of Figures

3.1 Target Design Platform. . . . . . . . . . . . . . . . . . . . . . 22

3.2 Baseline switch architecture. . . . . . . . . . . . . . . . . . . 23

3.3 GALS switch architecture. . . . . . . . . . . . . . . . . . . . 24

3.4 Baseline synchronizer architecture of [91]. . . . . . . . . . . . 26

3.5 The loosely coupled synchronizer of this work. . . . . . . . . 27

3.6 Proposed tightly coupled synchronizer. . . . . . . . . . . . . . 29

3.7 Waveforms example of the tightly coupled synchronizer. . . . 30

3.8 The hybrid architecture with a 1-bit synchronizer on the re-
ceiver end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Test-case platform under analysis. . . . . . . . . . . . . . . . 35

3.10 Normalized cycle latency of the different synchronization
schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 Area breakdown of a switch block with its synchronization
scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 Normalized power consumption of different synchronization
schemes in different traffic scenarios. . . . . . . . . . . . . . . 39

3.13 Operating frequency and tolerated link delay of different syn-
chronizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.14 Basic mechanisms affecting skew tolerance. . . . . . . . . . . 41

3.15 Tsetup and Thold for the loose coupled varying the skew toler-
ance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.16 Tsetup and Thold for the tight coupled varying the skew tolerance. 42

3.17 Setup time as a function of negative skew. . . . . . . . . . . . 43

xi



4.1 The Network-on-Chip Design Flow. . . . . . . . . . . . . . . 48

4.2 A schematic view of a traditional design flow. . . . . . . . . . 51

4.3 The synthesis flow for ×pipes. . . . . . . . . . . . . . . . . . 52

4.4 Example usage of fences. . . . . . . . . . . . . . . . . . . . . 53

4.5 Hierarchical clock tree synthesis. . . . . . . . . . . . . . . . . 54

5.1 Paradigms for GALS synchronization. . . . . . . . . . . . . . 62

5.2 Switch area occupancy with different synchronization interfaces. 64

5.3 Area and wiring overhead for the mesochronous NoC. . . . . . 66

5.4 Power consumption in idleness and under various traffic pat-
terns.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Power consumption of an industrial Full-HD Video playback
application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Power of the top level clock tree as a function of required skew. 69

5.7 Skew tolerance with slack (enforced by the physical synthesis
tool). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8 Skew tolerance with no slack. . . . . . . . . . . . . . . . . . . 71

5.9 Variability-induced percentage deviations of maximum speeds
of the designs under test with respect to nominal ones. . . . . 73

6.1 Floorplan of a 2-ary 4-mesh with 1 tile per switch. . . . . . . 82

6.2 Tile abstraction and mapping of producer-consumer commu-
nication handshake on network transactions. . . . . . . . . . . 84

6.3 Normalized execution time for 16 tile topologies. . . . . . . . 87

6.4 (a)A 2-ary 3-tree topology. (b)A RUFT derived from a 2-ary
3-tree. Each switch port shows its reachable destinations. . . . 92

6.5 Floorplans of topologies under test. a) 4-ary 2-mesh b) 2-ary
4-tree RUFT. Only the main wiring patterns are reported. . . . 94

6.6 Floorplans of topologies under test. c) 4-ary 2-tree S-RUFT d)
2-ary 4-tree FT. Only the main wiring patterns are reported. . . 94

6.7 Normalized total power. . . . . . . . . . . . . . . . . . . . . . 99

6.8 16-core system. Normalized performance. . . . . . . . . . . . 101

xii



7.1 Floorplan directives for (a) the 2D mesh, (b) the 4-hypercube
and (c) the 2-ary 2-mesh. . . . . . . . . . . . . . . . . . . . . 107

7.2 Total wire length. . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 Normalized area. . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Normalized real elapsed time. . . . . . . . . . . . . . . . . . 114

7.5 Normalized total energy. . . . . . . . . . . . . . . . . . . . . 114

7.6 Normalized total power consumption. . . . . . . . . . . . . . 115

7.7 Clock tree power impact. . . . . . . . . . . . . . . . . . . . . 116

8.1 Characterization methodology flow. . . . . . . . . . . . . . . 124

8.2 Normalized area for 64-tile topologies. . . . . . . . . . . . . . 126

8.3 Normalized area for 64-tile topologies with pipeline stages. . . 127

8.4 64-tile topologies area overhead for pipeline stage insertion. . 129

9.1 High-level estimation. . . . . . . . . . . . . . . . . . . . . . . 133

9.2 Layout-aware, no pipelining. . . . . . . . . . . . . . . . . . . 134

9.3 Layout-aware, with pipelining. . . . . . . . . . . . . . . . . . 134

9.4 Normalized performance of 64-tile systems. . . . . . . . . . . 135

9.5 Normalized area efficiency of 64-tile systems. . . . . . . . . . 135

xiii





List of Acronyms and Symbols

ASIC Application-Specific Integrated Circuit
CMP Chip MultiProcessor
CTS Clock Tree Synthesis
DVFS Dynamic Voltage and Frequency Scaling
FF Flip-Flop
FHD Full High Definition
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
GALS Globally Asynchronous Locally Synchronous
GPP General Purpose Processor
GPU Graphics Processing Unit
HDL Hardware Description Language
ILM Interface Logical Model
IP Intellectual Property
ITRS International Technology Roadmap for Semiconductors
LEF Library Exchange Format
LUT Look-Up Table
MIN Multi-stage Interconnection Network
MPSoC Multi Processor System on Chip
MUX Multiplexer
NI Network Interface
NoC Network-on-Chip
OCP Open Core Protocol
P&R Place and Route
PDA Personal Data Assistant
RR Round Robin
RTL Register Transfer Level
SOCE Cadence SoC Encounter
SR Search&Repair
SoC System on Chip
TLM Transaction-Level Modeling
TTM Time-to-Market
VLSI Very Large Scale Integration

xv





1
Introduction

THE embedded system market is rapidly growing and features a rich vari-
ety of devices that are able to perform a wide multitude of diverse tasks.

Nowadays, appliances such as mobile phones, personal data assistants
(PDA) and ebook readers became mainstream in our everyday life. These mo-
bile devices are ubiquitous, can be utilized everywhere and their applicability
range span from pure computational tasks, through entertainment up to social
network connectivity. The tremendous complexity reached by such devices
represents a major challenge faced by engineers that have to design systems
under a constant and relentless time-to-market (TTM) pressure. In order to
shorten such TTM, the design of such devices is traditionally performed by
integrating existing components in a plug–and–play fashion into a System-on-
Chip (SoC) [1]. Therefore, a major challenge consists of interconnecting many
different components with each other in an efficient way. According to ITRS
roadmaps [89], thousands of cores will be integrated in a single chip during the
next few years. Such scenario opens up many questions regarding scalability
issues as all the cores in the single chip will have to be interconnected in a
power efficient and scalable way.

Classically, intellectual properties (IPs) (e.g., memory controller, CPUs,
GPUs, etc.) designed by different vendors are interconnected by dedicated
buses. AMBA, AXI, AHB [46,47] represent well-established industrial exam-
ples of such interconnection architectures. Unfortunately, they do suffer from
well known scalability problems due to arbitration penalties. This is one of
the driver dictating the adoption of a more scalable interconnection scheme:
Networks-on-Chip (NoCs). NoC architectures represent a viable, scalable
packet-switched micro-network interconnect scheme alternative to classical
bus architectures [92]. They are generally believed to be the long term so-
lution to the communication scalability issue.

1



2 CHAPTER 1. INTRODUCTION

However, the design of a NoC for a multi-core system comes with its own set
of challenges. The connectivity problem is certainly the key concern that sys-
tem designers have to cope with in the early design stages. Yet, this requires
thorough knowledge of the underlying technology platform for the sake of re-
alistic (and first-time-right) network architecture planning. For this reason,
the connectivity issue is addressed in this thesis and the challenge of bridging
the needed abstraction in the early design steps with the intricacy of nanoscale
physics is addressed. Network connectivity implies to address two inter-related
design concerns. On one hand, a proper connectivity pattern must be selected
in order to provide the adequate interconnection among the communication
pairs of the system meeting at the same time the required bandwidth and per-
formance of the design budget. On the other hand, due to increasing synchro-
nization issues, designing a system under a tight synchronization assumption
is already difficult and will be even impossible in the near feature because of
increasing process variation, limited power budget and signal integrity. There-
fore, ad-hoc counter measures must be adopted to relax the synchronization
assumption within the system.

Both aforementioned problems are very sensitive and related to the physical
design implications of the aggressive scaling of CMOS silicon technologies to
the nanoscale era. For instance, the efficiency and sometimes even the feasi-
bility of specific connectivity patterns suffer from the reverse scaling of inter-
connect delays, thus potentially countering the better abstract properties of the
connectivity pattern itself (e.g., bisection bandwidth). Similarly, the successful
design of synchronization interfaces needs to safeguard them against wire de-
lay variability and varying layout constraints and operating (e.g., speed ratio,
clock phase offset) conditions.

Clearly, in the landscape of nanoscale technologies connectivity design issues
cannot be addressed without technology awareness although they come very
early in the design process. The major contribution of this thesis consists of a
system-level analysis framework which is augmented with technology aware-
ness and therefore aims at advancing NoC design practice and architectures.
The thesis fosters technology awareness in two ways:

• constraints posed by the technology platforms with system-level impli-
cations are characterized, abstracted through proper modeling frame-
works and exposed to the system level design and exploration languages
for the sake of technology aware system performance evaluation. The
non-regularity of a rectangular tile, the real wire delay of an inter-switch
link, the number of link pipeline stages required to provide a specific



1.1. PROBLEM FORMULATION 3

link performance, the maximum tolerated skew between mesochronous
domains are a few examples of such constraints that this thesis exposes
up in the design hierarchy.

• Silicon aware decision making is enforced through the circuit and ar-
chitecture layers of the NoC design process. Not only physical design
effects are taken into account for the sake of architecture/circuit evalua-
tion, but the architectures/circuits themselves are shaped by the need to
be effectively implemented in the technology platform.

The ultimate result is a system-level analysis framework where the network-
on-chip (providing the global connectivity infrastructure) is designed with
technology-awareness from the ground up and those global parameters that are
directly determined by the technology platform are accounted for in the sys-
tem level evaluation. The thesis achieves two specific contributions. On one
hand, it deals with the interface design of network building blocks in such a
way that a true component-oriented and technology-aware design style can be
pursued. On the other hand, it captures the system-wide implications that link
synthesis techniques and switch connectivity patterns have on global system
performance, thus materializing the paradigm of interconnect-centric design.
Finally, the thesis combines these two aspects together thus coming up with
an insightful and accurate framework for NoC evaluation in the context of the
system-level analysis.

In the next section, we will start by looking at the problem of connectivity de-
sign (Section 1.1.1) whereas in Section 1.1.2 the synchronization design issue
will be presented and illustrated. The key approach proposed in this thesis is
described in Section 1.2 and finally, Section 1.3 provides an overview of the
remaining chapters of the thesis.

1.1 Problem Formulation

When connecting network switching elements and attached IP cores together,
two fundamental and inter-related problems immediately arise: determining
the connectivity pattern and absorbing the speed differences between the net-
worked entities. Such problems are hereafter detailed, with emphasis on the
inability of current NoC literature to effectively tackle them.



4 CHAPTER 1. INTRODUCTION

1.1.1 Connectivity design with layout-awareness

Many concepts of the on-chip networks are directly borrowed from the off-chip
domain, in fact, Networks-on-Chip closely resemble the interconnect architec-
ture of high-performance parallel computing systems and thus the interconnec-
tion topologies used in the early NoC prototypes can be traced back to the field
of parallel computing. In particular, NoC architectures aiming at low latency
communication, performance scalability and flexible routing selected fat-trees
as their reference topology. The switch for the butterfly fat-tree network of [8]
or the SPIN micronetwork [13] are prominent examples thereof. However,
other topologies have found wider application in common NoC design prac-
tice so far, namely 2D meshes and even folded tori [139, 140]. Unfortunately,
technology scaling to the nanoscale era brings physical design issues to the
forefront, such as the reverse scaling of the interconnects. In this context, 2D
mesh and torus topologies exhibit a grid-based regular structure which is intu-
itively considered to be matched to the 2D chip layout. In contrast, the higher
wiring irregularity and the larger switch radix of most fat-tree configurations
raise some skepticism about their practical feasibility in real SoCs. Moreover,
instead of aiming strictly for speed, designers increasingly need to consider en-
ergy consumption constraints. Fat-trees are in general, expected to pay for the
increased connectivity they provide with a significant area and power costs.
In spite of these concerns, constant attention has been devoted to tree-based
topologies in the NoC community, proving their superior performance with re-
spect to 2D meshes under different kinds of synthetic traffic patterns [141,142].
However, these analysis frameworks often rely on abstract network simulators
which cannot model the behavior of any real architecture and sometimes make
unrealistic assumptions, such as packet drop or TCP-compliant network trans-
port protocols for on-chip communication. Furthermore, most of the works
really miss an in-depth physical analysis of layout feasibility and efficiency.
Even when area synthesis results are provided, the impact of wiring congestion
and interconnect delay on network performance is only assessed by means of
analytical models. Last, the effectiveness of advanced design techniques such
as clock or power gating or link pipelining is usually ignored.

This thesis aims at overcoming the main limitations of previous network
topologies evaluations for NoC, by primarily investigating the layout feasibil-
ity and the implications of physical mapping efficiency on system-level perfor-
mance figures. This bottom-up approach to topology evaluation and selection
reflects the design paradigm shift pushed by nanoscale technology: silicon-
aware decisions are required at each level of the design hierarchy.



1.1. PROBLEM FORMULATION 5

1.1.2 The synchronization design issue

Although never quantified so far, a trade-off clearly exists between the ab-
stract theoretical properties of a topology and its silicon mapping efficiency.
In extreme cases, the maximum operating speed of the network architecture
should not constrain the speed of the networked IP cores. This calls for proper
decoupling at the network boundary by means of synchronization interfaces.
This is a key requirement also for power management strategies in the em-
bedded computing domain, requiring each core to run at an independent and
runtime variable voltage and speed. Nowadays, both application requirements
and technology effects call for a disruptive evolution of the synchronization
architecture. In fact, distributing a global clock throughout the entire chip with
tighly controlled skew is becoming increasingly power inefficient and even in-
feasible. Indeed, shifting the focus to a pure silicon technology viewpoint,
there are some other very important challenges to be faced by both indus-
try and academic research. In fact, as technology advances into aggressive
nanometer-level scaling, several design challenges emerge from technology
constraints which require a continuous evolution of the interconnection imple-
mentation strategy adopted at the circuit and architectural levels. Synchroniza-
tion of current and future chips with a single clock source and negligible skew
is extremely difficult if not close to be impossible [1]. Indeed, synchronization
is today definitely among the most critical challenges in the design of a global
on-chip communication infrastructure, as emerging technology variability, sig-
nal integrity, power dissipation limits are contributing a severe break-down of
the global synchronicitiy assumption when logical structures spans more than
a couple of mm on the die [62]. NoCs typically span the entire chip area and
there is now little doubt on the fact that a high-performance and cost-effective
NoC in 45nm and beyond can only be designed under relaxed synchronization
assumptions [118]. This is raising the need for easily extensible clock trees
and for self-assembly clock tree synthesis strategies as that utilized by Intel
in the Polaris chip [153]. A solution would be to design such systems using a
fully asynchronous global intra-chip communication. Such choice would elim-
inate the clock distribution concern and would make designs more modular
since timing assumptions are explicitly handled in the hand-shaking protocols.
Unfortunately, current design tools and IP libraries heavily rely on the syn-
chronous paradigm instead, thus making intermediate solutions more attractive
and affordable in the short run. As previously anticipated, synchronizer-based
globally asynchronous locally synchronous (GALS) systems represent an ap-
pealing solution in the mid term, and is therefore the focus of this thesis. In
such systems, the design can be partitioned in different frequency islands and



6 CHAPTER 1. INTRODUCTION

the interconnection infrastructure can be envisioned as mesochronous domain
(isolated by dual-clock FIFOs at the boundary) where a single clock spans the
whole communication infrastructure area relying on a loose synchronization
assumption. Such mesochronous assumption allows to tolerate an arbitrary
amount of space dependent time-invariant phase offset (i.e., skew) among the
leaves of the clock signal hence resulting in a lower power clock tree synthe-
sis. Unfortunately, the high cost of traditional synchronizer implementations in
terms of area, power and latency is typically the main reason preventing their
adoption as intermediate solution. Moreover, this is only one of the possible
GALS implementation variants within a large design space where it is difficult
to select the best solution for the underlying design. Last, there is a general
skepticism of industrial designers to relax the synchronization assumption in
their chips due to the usage of unconventional tool capabilities, to the poor
predictability of resulting designs and to the threat of process variations.

Aware of these challenging problems, the second goal of this thesis is to de-
velop all the required support for the building process of such GALS systems.
In particular, our contribution and emphasis is on the NoC infrastructure that
is augmented with all the necessary library components in a sort of galsifica-
tion process. Such GALS blocks are designed to considerably reduce area,
power and latency issues. Furthermore, we perform a crossbenchmarking be-
tween implementation variants, resulting in actual guidelines for designers that
want to migrate from synchronous to GALS solutions. Finally, the develop-
ment effort of the synchronization library is continuously validated with post-
place&route experiments and in variability-dominated scenarios, thus paving
the way for predictable and robust synchronizer-based GALS NoCs design.

1.2 Approach

Both the Connectivity and the Synchronization problems stated above suggest
that NoCs are more than a typical interconnection network mapped on a 2D
silicon surface. Challenges exposed by the technology scaling dramatically
changed what was believed to be a trivial problem. This thesis contributes
to the evolution of a pure theoretical NoC concept into a solid, mature and
well-established NoC technology.

Specifically, in order to tackle the synchronization problem, we design novel
globally asynchronous locally synchronous (GALS) interfaces able to meet
different layout constraints. Furthermore, we show that it is possible to mi-
grate from the synchronous to the GALS paradigm with a negligible area and



1.3. ORGANIZATION 7

power cost without impacting performance. Moreover, we implement a com-
plete design flow for building GALS NoCs and we utilize such flow to in-
stantiate and cross benchmark two GALS systems: the first implementing a
fully synchronous and the second implementing a mesochronous NoC. Both
systems leverage dual-clock FIFO interfaces to provide frequency decoupling
between the NoC and the computational units. We carry out a thorough com-
parison of these two GALS systems from the clock tree power, area/wiring,
power consumption, skew tolerance and variability robustness viewpoint.

For tackling the connectivity pattern issue, we analyze various small scale
topologies and assess their quality metrics accounting for physical level ef-
fects thus overcoming misleading high-level assumptions. Our analysis con-
siders the impact of NoC link inference techniques such as repeater insertion
and link pipelining. We extend our work by proposing a methodology for
evaluating large scale systems that is layout aware, prunes time and memory
requirements while retaining performance and area accuracy.

In both cases, our work is validated at post-layout level and the gained physical
insights are utilized to further optimize the system architecture thus matching
the technology challenges. The ultimate result of such combined contributions
is a set of most promising connectivity patterns which can work in a mature
GALS landscape while taking advantage of the speed decoupling offered by
the GALS paradigm. We benchmark such topologies showing that there are
several non-intuitive design opportunities depending on the available area and
power budget. Overall, the thesis results in a global framework for NoC con-
nectivity evaluation with technology awareness. Physical effects are not con-
sidered as an after-thought, but accounted for from the ground up in the circuit-
and architecture-level design stages.

1.3 Organization

The contributions of this thesis are organized in 10 chapters. Before present-
ing the contributions, Chapter 2 first provides the necessary background of the
work in this thesis. It surveys topology evaluation frameworks as well as the
design of globally-asynchronous locally synchronous interfaces for the build-
ing of GALS systems. Finally, it summarizes the shortcoming of the presented
work to be addressed in subsequent chapters.
Chapter 3 introduces the synchronization design issue. In a first step, the moti-
vation for adopting synchronization mechanisms in the NoC environment will
be discussed. Next, the target GALS platform of this thesis along with the ar-



8 CHAPTER 1. INTRODUCTION

chitecture of the basic switch block required to build it will be presented. Last,
the focus will be on the baseline mesochronous synchronizer and all its im-
provements that led to a new fully integrated and flexible switch architecture.
Chapter 4 presents a design flow to build GALS systems from the system spec-
ification, through synthesis and CTS thus reaching the layout level by perform-
ing place&route. In particular, a complete NoC design flow will be illustrated
in its front- and back-end part. For both parts, our contribution to make the
design flow suitable for building GALS systems will be discussed.
Chapter 5 performs a cross-benchmarking between two different GALS sys-
tems. The former leverages a fully synchronous NoC while the latter imple-
ments a mesochronous NoC. While the former chapters focused on a switch-
level analysis of such GALS system, in the following, a network-level perspec-
tive will be taken. Furthermore, both systems will be compared from many
viewpoints such as, clock tree power analysis, area and wiring overhead and
above all from a variability robustness viewpoint.
Chapter 6 explores the performance and physical feasibility of 16-tile NoCs
within several topology configurations. It is the first chapter where our system-
to layout-level approach for assessing NoC topologies is presented. Our analy-
sis framework encompasses different abstraction levels as physical key param-
eters from synthesis and place&route process are calculated and then exposed
to our system level simulation infrastructure thus materializing in a layout-
aware system-level performance analysis.
Chapter 7 assesses several NoC link inference techniques taking the system-
level perspective. In fact, performance speed-ups and power overheads are not
evaluated for the links in isolation but for the topology as a whole, thus show-
ing their sensitivity to the link inference strategy.
Chapter 8 extends the work presented in the previous chapters by proposing
a methodology for assessing topology implementation cost when scaling to
larger systems. Furthermore, such methodology captures the impact of link
pipelining on topology area and performance assessing whether and to which
extent theoretical benefits are preserved. Overall, such methodology enables
the analysis of large scale systems pruning time and memory requirements.
Chapter 9 performs a final comparison leveraging previous efforts: we bench-
mark several GALS topologies with IP core-network speed decoupling and we
carry out a system-level exploration with layout awareness.
Finally, Chapter 10 provides concluding remarks on the work presented. The
chapter summarizes the thesis, outlines its contributions and proposes future
research directions.



2
Background

THIS chapter starts by surveying several works in the field of topology ex-
ploration for significant topology families. Furthermore, contributions

concerning NoC link design techniques are also surveyed. Last, recent
works in the domain of globally asynchronous locally synchronous (GALS)
Networks-on-Chip are reported. The chapter highlights also the contribution
of this thesis with respect to the work available in the open literature.

2.1 Topology Exploration

2.1.1 2D and Multi-Dimensional Meshes

Although widely used across a number of Network-on-chip designs [125,130],
the 2D mesh NoC topology lacks of scalability and tends to concentrate traffic
in the center nodes [129]. This has motivated works in the open literature that
come up with optimized NoC topologies while keeping regularity properties
as much as possible. A novel interconnect topology called spidergon was pro-
posed in [131], where each core is connected to the clockwise, counterclock-
wise and diagonal node. A traditional wormhole-routed mesh augmented by a
hierarchical ring interconnect for routing global traffic is illustrated in [132].
NOVA is a hybrid interconnect topology targeted at an FPGA, and is com-
pared in [137] with star, torus and hypercube topologies. Gilabert et al. pro-
pose in [138] to use high-dimensional topologies, using different metal layers
to soft long link delay and trading-off dimensions with the number of cores
per router. The work in [129] proposes a concentrated mesh architecture with
replicated subnetworks and express channels. [138] trades-off the number of
dimensions with the number of cores per router, but lacks of physical insights.
Topology exploration is an active research area due to the large scale of on-chip

9



10 CHAPTER 2. BACKGROUND

networks and to the feasibility challenges posed by nanoscale technologies. An
effort to compare mesh and torus topologies under different routing algorithms
and traffic models with respect to their performance and power consumption
is described in [144]. Theoretical uniform traffic based on the request/reply
paradigm is used to assess ring, 2D-mesh, spidergon and unbuffered crossbar
topologies in [145]. Ring, Octagon and 2D-mesh topologies are also the focus
of [100], which emphasizes the communication overhead that has to be ex-
pected with wormhole switching, full duplex links and k-port non combining
nodes. The work in [39] addresses message-dependent deadlock in the context
of NoC topology synthesis. [147] claims that from an energy standpoint, high-
dimensional tori should never be selected over hierarchical or express cubes.
Different optimal topologies have also been indicated for different traffic pat-
terns. The analysis carried out by [9] shows that the fat-tree topology is a
strong candidate to fulfill the latency constraints of many applications. Several
interesting topologies emerge by incorporating the third dimension in NoCs.
Speed and power consumption of 2D and 3D NoCs are compared in [148].

As technology scales to the nanometer era, topology analysis and exploration
needs to be performed with novel methodologies and tools that account for
the effects of nanoscale physics, largely impacting final performance and even
feasibility of many NoC topologies. A general guideline driving NoC design
under severe technology constraints consists of silicon-aware decision-making
at each hierarchical level [149]. This is likely to result in less design iterations
and in faster timing closure. In this direction, new tools are emerging that
guide designers towards a subset of most suitable candidates for on-chip net-
work designs while considering the complex tradeoffs between applications,
architectures and technologies [153, 154].

2.1.2 Fat-trees

Fat-trees were first proposed by [4]. In [5] authors extend the notion to trees
with a varying number of switches in each level, and links between the levels.
In general, fat-trees exhibit variable-sized switches and large switch radix close
to the root, which complicates physical implementation. As a workaround,
two structures have been proposed featuring constant switch size: k -ary n -
trees [127] and butterfly fat-trees [37]. Low latency communication and per-
formance scalability are the main reasons motivating the use of fat-trees also
in early network-on-chip prototypes, like in the SPIN micronetwork [10, 13].
A 32-port SPIN network was laid out in less than 5 mm2 area with a 130 nm

process [32]. A butterfly fat-tree is used in [142,150], with the motivation that



2.1. TOPOLOGY EXPLORATION 11

the number of switches converges to a constant independent of the number of
levels. More recently, optimized tree-based architectures have been proposed
to address the implementation overhead of traditional fat-trees. One approach
is to combine the properties of grid-based topologies like mesh and torus with
those of tree-based topologies. In this direction, [11] proposes a fat H-tree
for on-chip realizations, i.e., a torus structure which is formed by only com-
bining two H-trees. The extension of this solution to 3D NoCs is illustrated
in [12]. The work in [120] proposes a deterministic routing algorithm for
fat-trees which is able to obtain at least the same performance than adaptive
routing. Taking advantage of some particular properties of this algorithm, an
unidirectional MIN is proposed in [119], that significantly simplifies fat-tree
switches. In that work, authors are concerned with possible wiring intricacies,
but no physical analysis is provided.

Comparative studies between fat-trees and 2D meshes have often been the fo-
cus of past research. Superior performance of fat-trees has been demonstrated
in an on-chip setting and for H.264 communication requirements by [141].
Converging indications come from [14] and [31]. However, the lack of syn-
thesis results, the abstract simulation framework and the sometimes unrealistic
architecture assumptions put hardness of experimental evidence in discussion.
The work in [142] is perhaps the most accurate and complete comparative anal-
ysis of fat-trees performed so far. It proves the high energy cost of fat-trees and
octagon, which is the price to pay for the higher throughput and lower latency
on the average. Although the network switches are synthesized, place&route
effects are captured only through analytical models and technology projections
and not from actual layouts.

This thesis significantly extends the past work in the field of topology explo-
ration by taking a layout-aware approach. First, the emphasis is not on captur-
ing the sensitivity of the system performance to physical parameters, but rather
on the assessment of such parameters for selected k -ary n -mesh as well as k -
ary n -tree topologies when designed for maximum performance. Furthermore,
a design space exploration is performed through a transaction-level simulation
environment that is able to back-annotate key parameters (frequency, latency,
area) from the results of physical synthesis. When extending the analysis to
larger 64-tile networks, the unaffordable time and memory requirements for
the synthesis of such systems makes a comprehensive exploration based on
post-layout figures unfeasible. Therefore, in order to extend the exploration to
larger 64-tile networks, we propose a novel modeling methodology based on
selective synthesis runs that is able to capture the key post-layout parameters
of a large scale topology such as, maximum frequency and switch cell area.



12 CHAPTER 2. BACKGROUND

Moreover, such framework is able to capture the impact of link buffering and
link pipelining from the timing and area cost viewpoint. Furthermore, by uti-
lizing such physical parameters in our transaction-level simulator, it is possible
to perform a layout-aware system-level analysis. This way, overall area and
performance figures can be drawn. Last, the simulator is able to model GALS
systems where the cores and the network are completely frequency decoupled
since dual-clock FIFO interfaces have been implemented.

2.2 Link Design Techniques

When the performance of the NoC link needs to be improved, there are
several techniques to be exploited. For instance, stateless and stateful re-
peater insertion allow to speedup signal transmission over interconnection
wires [15, 28, 29]. Buffer insertion is considered a stateless techniques in the
sense that, the signal is boosted by breaking the wires and thus reducing RC
product because of its quadratic dependency on the link length. On the con-
trary, link pipelining is a technique that, at the cost of higher latency, enables to
shorten an interconnection link by adding one or more stateful (i.e., flip-flop)
elements along the wire. Power and energy implications of using such tech-
niques have been investigated in depth, e.g., Heo and Asanovic in [30] investi-
gate link optimization by varying repeater spacing, link pipelining and voltage
scaling to further reduce transmission energy across the chip. In [16] authors
explore the co-design of logic sizing and repeater insertion for improved delay,
power and placement. Non-uniform repeater insertion is used to combine cas-
caded sizing and distributed wire buffering and delivers less power consump-
tion. Xu et al. in [27] address the problem of interconnect pipelining from both
power and bit error rate point of view and try to find the optimal solution for
a given wire pipelining scheme. Using a graph representation of the intercon-
nects, Youssef et al. [17] introduce a low power multi-pin routing strategy to
mitigate the power consumed by the interconnect buffers. Macchiarulo et al.
present a study on a modified wire pipelining scheme and they build a floor-
planner based on adaptive and nonadaptive wire pipelining which optimizes
data rate taking block delay into account [19]. Same authors in [18] illustrate a
proposal that allows to use wire pipelining with no architectural changes while
increasing performance. Zhou et al. [21] explore retiming to pipeline long
wires in SoC design by applying retiming stages to a netlist of macroblocks.
Roy et al. present an in-depth analysis of the dependencies of the reliability
and power consumption of wire pipelining scheme on the number of inserted



2.3. THE GALS DESIGN STYLE 13

flip-flops and the size of repeaters [20]. Yuchun et al. first consider both block
and interconnect pipelining simultaneously by optimizing critical paths in the
micro-architecture and inserting pipeline stages in the interconnect wires [26].
Cong et al. extend the regular distributed register micro-architecture to support
interconnect pipelining in [22]. Zong et al. [25] propose a methodology to op-
timize power consuming elements (wires, buffers, clock distribution networks,
etc.) of the interconnects during high-level synthesis. Implications have been
theme of discussion also at system and architectural level in the NoC domain.
In [24], Carloni et al. illustrate an architecture-level technique for latency in-
sensitive design. Marculescu et al. estimate the impact of interconnection links
on the overall topology performance in [23] thus pointing out the importance
of link design techniques at architectural level.

In contrast to previous work, in this thesis we capture the sensitivity of quality
metrics of NoC topologies with a regular connectivity pattern to the specific
synthesis technique for their links. This way, the opportunity to invest more
in area and/or power to speed up the links of a topology is explored. Some
non-trivial implications are therefore demonstrated.

2.3 The GALS Design Style

The choice of the best topology candidate to interconnect a system as well as
the link synthesis technique to adopt are challenging tasks that have been ad-
dressed by many previous research efforts as pointed out previously. On the
same path, when the target system requires the interconnection of several com-
ponents working at different frequency, the adopted synchronization scheme
and its implementation is key for a successful result of the final system design.

A possible solution is to adopt the GALS philosophy which can be seen as
an intermediate design style between the fully synchronous and fully asyn-
chronous solutions. The GALS design paradigm was first proposed in [133]
and consists basically of partitioning the system architecture in independent
synchronous islands while the communication between them is achieved asyn-
chronously. It is therefore a natural enabler for low-power dynamic volt-
age and frequency scaling (DVFS) and low noise. The GALS paradigm has
been frequently experimented by using asynchronous logic [63, 65]. ETH
labs developed a complete GALS methodology leveraging the use of paus-
able clocks [7]. IHP labs designed a 802.11a GALS baseband processor in-
cluding various IP cores, a viterbi decoder, FFT, IFFT and a Cordic processor.
Several asynchronous NoCs have been also proposed: Mango [65], QNoC,



14 CHAPTER 2. BACKGROUND

ANoC, CHAIN [124], FAUST [72], Alpin, Magali. A chip dedicated to flex-
ible baseband processing for 3G/4G wireless telecommunication applications
and making use of an asynchronous NoC is described in [58, 59]. However,
currently the intricacy of asynchronous design and its poor CAD tool support
makes the design of hard macros with ad hoc techniques [49] the only viable
solution for industrial exploitation [60]. This comes at the cost of large area
and penalizes flexibility.

The practical viability of synchronizer-based GALS networks has been demon-
strated in [72], where the hierarchical clock tree synthesis technique for such
systems is detailed. Since there is no parametric exploration there, it is not
possible to validate a common opinion (for instance, reported in [50, 53, 73])
that large on-chip power consumption can be reduced by replacing the bal-
anced clock tree with a GALS clocking scheme which only guarantees mini-
mal clock skew within the local processing elements. Works in [35,44, 45,48]
claim that the clock tree design and tuning for variability robustness comes
at an non-negligible cost. A circuit switched source synchronous GALS link
is described in [55], making use of long distance interconnect paths. It is
then experimented on a 65nm reconfigurable NoC for an heterogeneous GALS
many-core platform. However, there is no comparison whatsoever with alter-
native clocking styles and/or implementations. In [121] a many-core hetero-
geneous computational platform employing GALS compatible circuit switch-
ing on-chip network has been presented. [103] presents an example of mesh-
connected GALS chip multiprocessor. The work shows that the typical perfor-
mance penalties of GALS systems (mainly due to additional communication
latency) can be hidden by using large FIFO buffers. In [72], the physical im-
plementation of the DSPIN network-on-chip in the FAUST architecture has
been presented. In [104] a cost effective solution for asynchronous delay-
insensitive on-chip communication is proposed. The solution is based on the
Berger coding scheme and allows to obtain a very low wire overhead. [107]
proposes a new asynchronous NoC architecture aiming at low latency trans-
fers. This architecture is implemented as a GALS system, where chip units
are built as synchronous islands, connected together using a delay insensitive
asynchronous Network-on-Chip topology.

2.3.1 Synchronization Interfaces

At interfaces level, many GALS wrappers have been proposed in [109], [117],
[99], [95], [96] to provide fast and reliable asynchronous communication ser-
vices. Several works leverage the timing determinism provided by GALS



2.3. THE GALS DESIGN STYLE 15

wrapper to facilitate debug and testing of GALS systems [135], [136]. A
mesochronous link is integrated within a multi-processor tiled architecture
based on a Network-on-Chip communication backbone on a CMOS 65nm
technology in [53]. The work builds on a full-duplex link architecture illus-
trated in [52] and on integrated flow control [51]. The baseline mesochronous
synchronizer is instead proposed in [73]. However, the synchronizer is still an
external module to the NoC. The same drawback is exposed by a different syn-
chronization architecture, detailed in [130]. GALS modularity has been used
also along with the concept of voltage-frequency islands (VFIs) which has
been recently introduced for achieving fine-grain system-level power manage-
ment. [81] proposes a design methodology for partitioning a NoC architecture
into multiple VFIs. [79] and [80] proposes a complete dynamic voltage and
frequency scaling architecture for IP units integration within a GALS NoC.

Examples at industrial level are presented in [78], [77], [102], [73]. In [77] au-
thors examine the use of GALS techniques to address on-chip communication
between different synchronous modules on a bus. Issues related to valida-
tion, module interfaces and tool flows, while looking at advantages in power
savings, timing closure and Time-to-Market/Time-to-Money (TTM) are ex-
plored. [102], [73] both suggest to implement the boundary interface with a
source-synchronous design style and propose some form of ping-pong buffer-
ing to counter timing and metastability concerns.

A well established solution for mesochronous synchronization is illustrated
in [113] consists of delay-line synchronizers, using a variable delay on the
data lines. This delay is computed in such a way to avoid switching in the
metastability window of the receiving registers. Variable delay lines make this
solution expensive and not always available in standard cell libraries. This is
the same problem of the works in [105, 106], which use voltage comparators.

Several periodic synchronizers are illustrated in [94], which avoid metastabil-
ity by delaying either the data or the clock signal to sample data when the clock
is stable. Configurable digital delay lines are again needed and experimented
frequency is very low. The same authors in [134] illustrate many ways to “fool”
a synchronizer thus showing several weaknesses of the proposed approaches.
The works in [70, 83, 105] achieve mesochronous data synchronization by us-
ing Muller C-elements and digital delay lines that are typically designed with a
full-custom approach. [83] presents a self-tested self-synchronization method
for mesochronous communication. The scheme uses two clocks with a phase
shift of 180◦ and a failure detector is used to select which one to use. In [70] a
phase detector in place of a metastability detector is used in the same scheme.



16 CHAPTER 2. BACKGROUND

Architectures based on FIFO synchronizers are proposed in [82,84,113]. FIFO
size in [84] depends on the skew, hence is link-dependent or given in the worst-
case. Implementation is also very expensive, as showed in [88]. More recently,
an optimized bi-synchronous FIFO has been proposed in [90] featuring low-
latency and small footprint. It can be adapted to the mesochronous needs while
proving able to tolerate skew only up to 50% of the clock period. An early
mesochronous scheme for the SoCBus NoC was proposed in [54], aiming at
compact realization while still lacking of a validation on an NoC test case. A
significant step forward comes from the OCN system [98], which uses a source
synchronous scheme. A matched-delay architecture is used to compensate the
strobe skew and enable high-speed mesochronous communication. A FIFO
synchronizer is used at the receiver side.

Summing up, mesochronous synchronizers surveyed so far incur several dis-
advantages: high implementation overhead, use of non-trivial or full-custom
components or low skew tolerance. Moreover, very few works are able to as-
sess timing margins with layout awareness. In this thesis, the same approach
to synchronization of [73, 91] is taken (source synchronous data transmission,
safe storage of data at the receiver side, sampling in the receiver domain only
when data is stable). However, the baseline architectures and circuits are im-
proved by providing a more compact and equally robust solution. This is used
just as the baseline architecture for the sake of comparison with the novel syn-
chronization structure that it is proposed. In general, a tight integration of
synchronization interfaces into NoC building blocks to cut down on latency,
area and power is advocated. Furthermore, a wide range of architecture alter-
natives and even port-level configuration capability is provided. Moreover, we
identify the distinctive design constraints of the new schemes and perform a
design space exploration of mesochronous NoC links and switches to capture
how timing margins can be preserved for different combinations of synthesis
and layout constraints. Finally, we provide a system-level demonstration of
the cost-effectiveness of the proposed GALS NoC. Last, we perform a cross-
benchmarking between a fully synchronous NoC and a mesochronous NoC
to be utilized in GALS systems where the frequency decoupling between the
NoC and the cores is achieved by using dual-clock FIFO interfaces.



3
Relaxing the Synchronization

Assumption in Networks-on-Chip

THIS chapter introduces the first challenge we aim to solve in this thesis:
the synchronization design issue. In a first step, the motivation for the

adoption of synchronization mechanisms in the Network-on-Chip envi-
ronment will be discussed. Next, the target GALS platform of this thesis along
with the architecture of the basic switch block required to build it will be pre-
sented. Last, the focus will be on the baseline mesochronous synchronizer and
its improvements that led to a new integrated and flexible switch architecture.
Furthermore, a design space exploration of the mesochronous link will be car-
ried out highlighting several interesting design points specific to each of the
synchronization alternatives.

3.1 Limitations of the Fully Synchronous Approach

Network-on-chip (NoC) communication architectures are being widely
adopted in multi-core chip design to ensure scalability and facilitate a
component-based approach to large-scale system integration. As technology
advances into aggressive nanometer-level scaling, a number of design chal-
lenges emerge from technology constraints which require a continuous evolu-
tion of NoC implementation strategies at the circuit and architectural level.

Synchronization is today definitely among the most critical challenges in the
design of a global on-chip communication infrastructure, as emerging variabil-
ity, signal integrity, power dissipation limits are contributing to a severe break-
down of the global synchronicity assumption when a logical structure spans
more than a couple of millimeters on die [62]. NoCs typically span the entire
chip area and there is today little doubt on the fact that a high-performance and

17



18
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

cost-effective NoC can only be designed in 45nm and beyond under a relaxed
synchronization assumption [118].

3.2 A Possible Solution: the GALS Design Style

One effective method to address the synchronization issue is through the use
of globally asynchronous locally synchronous (GALS) architectures where the
chip is partitioned into multiple independent frequency domains. Each do-
main is clocked synchronously while inter-domain communication is achieved
through specific interconnect techniques and circuits. Due to its flexible porta-
bility and transparent features regardless of the differences among compu-
tational cores, GALS interconnect architecture becomes a top candidate for
multi- and many-core chips that wish to get rid of complex global clock distri-
bution networks.

In addition, GALS allows the possibility of fine-grained power reduction
through frequency and voltage scaling [36]. Since each core or cluster of cores
operates in its own frequency domain, it is possible to reduce the power dissi-
pation, increase energy efficiency and compensate for some circuit variations
on a fine-grained level.

Among the advantages of a GALS clocking style, it is worth mentioning [55]:

• GALS clocking design with a simple local ring oscillator for each core
eliminates the need for complex and power hungry global clock trees.

• Unused cores can be effectively disconnected by power gating, thus re-
ducing leakage.

• When workloads distributed to cores are not identical or feature different
performance requirements, we can allocate different clock frequencies
and supply voltages for these cores either statically or dynamically. This
allows the total system to consume a lower power than if all active cores
had been operated at a single frequency and supply voltage [42].

• We can reduce more power by architecture-driven methods such as par-
allelizing or pipelining a serial algorithm over multiple cores [43].

• We can also spread computationally intensive workloads around the chip
to eliminate hot spots and balance temperature.



3.2. A POSSIBLE SOLUTION: THE GALS DESIGN STYLE 19

The methodology of inter-domain communication is a crucial design point for
GALS architectures. One approach is the purely asynchronous clockless hand-
shaking, that uses multiple phases (normally two or four phases) of exchanging
control signals (request and ACK) for transferring data words across clock do-
mains [38,40]. Unfortunately, these asynchronous handshaking techniques are
complex and use unconventional circuits (such as the Muller C-element [41])
typically unavailable in generic standard cell libraries. Besides that, because
the arrival times of events are arbitrary without a reference timing signal, their
activities are difficult to verify in traditional digital CAD design flows.

The so-called delay-insensitive interconnection method extends clockless
handshaking techniques by using coding techniques such as dual-rail or 1-of-4
to avoid the requirement of delay matching between data bits and control sig-
nals [104]. These circuits also require specific cells that do not exist in com-
mon ASIC design libraries. Quinton et al. implemented a delay-insensitive
asynchronous interconnect network using only digital standard cells; however,
the final circuit has large area and energy costs [66].

Another asynchronous interconnect technique uses a pausible or stretchable
clock where the rising edge of the receiving clock is paused following the re-
quirements of the control signals from the sender. This stops the synchronizer
at the receiver until the data signals stabilize before sampling [67, 68]. The
receiving clock is artificial in the sense that its period can vary cycle by cycle,
therefore, it is not suitable for processing elements with synchronous clock-
ing that need a stable signal clock in a long enough time. Besides that, this
technique is difficult to manage when applied to a multiport design due to the
arbitrary and unpredictable arrival times of multiple input signals.

An alternative for transferring data across clock domains is the source-
synchronous communication technique that was originally proposed for off-
chip interconnects. In this approach, the source clock signal is sent along with
the data to the destination. At the destination, the source clock is used to sam-
ple and write the input data into a FIFO queue while the destination clock is
used to read the data from the queue for processing. This method achieves high
efficiency by obtaining an ideal throughput of one data word per source clock
cycle with a very simple design that is also similar to the synchronous design
methodology; hence it is easily compatible with common standard cell design
flows [69, 109–111]. Unfortunately, correct operation of source-synchronous
links is very sensitive to routing delay mismatches between data and the strobe
signals, and hence to delay variability. Therefore, it is very challenging in the
context of nanoscale silicon technologies.



20
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

In general, each GALS paradigm has its own pros and cons. Fully asyn-
chronous design techniques are a more disruptive yet appealing solution, al-
though their widespread industrial adoption might be slowed down by the rel-
evant verification and design automation concerns they raise. Moreover, they
tend to be quite area greedy, at least when timing robustness is enforced. In this
context, a full custom design style is still the safer strategy for their successful
utilization, hence asynchronous NoC building blocks are often instantiated as
hard macros.

For this reason, this chapter will not review fully asynchronous NoC archi-
tectures, but will rather focus on synchronizer-based GALS architectures, and
on source synchronous communication in particular. Using synchronizers for
GALS NoC design implies an incremental evolution of mainstream EDA de-
sign tools and paves the way for compatible architectures (with careful syn-
chronizer engineering) with a standard cell design flow. This chapter is fully
devoted to this kind of GALS architectures.

The remainder of this chapter is organized as follows: Section 3.3 will de-
scribe the target GALS architecture under analysis in this thesis. Section 3.4
will present the switch architecture of reference that has been evolved in a sort
of galsification process till building a GALS NoC switch. In order to achieve
this, Section 3.5 presents the baseline loosely coupled synchronizer architec-
ture and its optimizations that led to the novel tightly integrated synchronizer
architecture presented in Section 3.6. Section 3.7 presents a theoretical analy-
sis on the synchronization constraints which highlights the distinctive features
of each synchronization scheme studied in the chapter. Section 3.8 presents the
experimental results for such architectures. In Section 3.9, a design space ex-
ploration of the mesochronous link will be presented illustrating several design
points an architect can choose from when instantiating a GALS NoC. Finally,
Section 3.10 summarizes the contribution of this chapter.

3.3 Target GALS Architecture

There exist several options when implementing a GALS architecture. From a
pure implementation viewpoint, one method consists of asynchronous clock-
less handshaking, which uses multiple phases of signal exchange to transfer
data. Due to the round-trip signal exchange, the transfer latency between two
consecutive data words is high. Besides that, the asynchronous clock-less cir-
cuits are difficult to verify in traditional CAD flows, and they also demand a
comparatively large area and energy requirements [66, 109].



3.3. TARGET GALS ARCHITECTURE 21

In the system we implemented in this thesis, the on-chip network is seen as
an independent clock domain. Therefore, part of the circuitry is devoted to
reliably and efficiently move data across asynchronous clock boundaries be-
tween NoC switches and connected network interfaces. These latter are as-
sumed to be part of the clock domain of the IP core that they serve. Dual-clock
FIFOs are an effective solution to provide asynchronous boundary communi-
cation, especially in throughput-critical interfaces. However, many designers
are skeptical about their utilization due to the relevant latency, area and power
overhead they incur. Beyond urging research activities aiming at the optimiza-
tion of dual-clock FIFO architectures, this fact emphasizes the need for their
conscious use in GALS systems (see our work in [2] which is not in the focus
of this thesis though).

Aware of this, we try to minimize their usage as much as possible by instanti-
ating them only at IP core boundaries, after their respective network interfaces
(see Figure 3.1. However, this choice moves many chip-wide timing concerns
to the on-chip network. In fact, this latter ends up spanning the entire chip and
might be difficult to clock due to the growing chip sizes, clock rates, wire de-
lays and parameter variations. As previously anticipated, in 45nm and beyond,
a global clock signal spanning the whole chip area will be difficult to control
and even to realize with a controllable phase-offset.

In fact, we find that mesochronous synchronization can relieve the burden of
chip-wide clock tree distribution while requiring simpler and more compact
synchronization interfaces than dual-clock FIFOs. Hierarchical clock tree syn-
thesis is an effective way of exploiting mesochronous links, as already exper-
imented in [72]. During the first step, a clock tree is synthesized for each
network switch with a tightly controlled skew (e.g.,5%). Next, each clock tree
is characterized with its input delay, skew and input capacitance. This infor-
mation is used by the clock tree synthesis (CTS) tool to infer a top clock tree
balancing the leaves with a much looser skew constraint (e.g., 30/40%). The
ultimate result is a global clock tree which consumes less power then the tradi-
tional one generated by enforcing chip-wide skew constraints. For future large
multiprocessor systems-on-chip, the use of this methodology can be not just
an issue of power efficiency but even of CTS feasibility.

However, power savings with this methodology should not be taken for
granted, since it involves some overheads: the transmission of the clock signal
across mesochronous links, the mesochronous synchronizers themselves (im-
plementing power-hungry buffering resources) and the increased number of
buffer slots needed at link end-nodes to cover the larger round-trip time (asso-



22
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

ciated with the synchronization latency) for correct flow control management.

Clock Domain Clock Domain

CORE

Initiator
FIFO

Dual−ClockNetwork
Interface

CORE

Dual−Clock
FIFO

Clock Domain Clock Domain

Clock Domain Clock Domain

CORE

Initiator

SWITCH

FIFO
Dual−ClockNetwork

Interface

CORE

CORE

Initiator

SWITCH SWITCH

FIFO
Dual−ClockNetwork

Interface

CORE

Dual−Clock
FIFO

Dual−Clock
FIFO

SWITCHSWITCH

SWITCH

Target

Network
Interface

Target

Network
Interface

Target

Network
InterfaceMESOCHRONOUS

NETWORK−ON−CHIP

Figure 3.1: Target Design Platform.

Our design platform aims at minimizing such overheads through a novel
mesochronous architecture taking advantage of the tight integration of the syn-
chronizer into the switch architecture. However, since these solutions give rise
to timing constraints that might not be verified for specific layout conditions,
we provide architecture variants for these cases as well, thus coming up with a
flexible switch suitable for many design instances.

In this direction, moving from a system-level to a switch block view, next sec-
tion will present the fully synchronous baseline switch architecture that will be
used as starting point for the implementation of our target GALS architecture.
In fact, such an architecture will be augmented with various mesochronous
synchronizer variants as we will see later on in this chapter.

3.4 ×pipesLite switch architecture

The ×pipesLite network-on-chip architecture has been conceived for
the resource-constrained Multi-processor system-on-chip (MPSoC) domain.
Therefore, it features a high degree of parameterization and compact imple-
mentation [92]. It is unpipelined, fully synthesizable with a standard design
flow and achieves frequencies around 1.5GHz for the fastest configurations.

The ×pipesLite switch is conceived as a soft macro from the ground up. The
possibility of design-time tuning of parameters such as flit width, number of
I/O ports, buffer size and flow control policy makes it suitable to explore sev-
eral topologies and architectural variants.



3.4. ×PIPESLITE SWITCH ARCHITECTURE 23

The baseline architecture implements an in/out buffered switch implementing
wormhole switching and source-based routing, as depicted in Figure 3.2.

CROSSBAR

MANAGER

FLOW CONTROL

DATA

STALL

DATA

STALL

STALL

DATA

STALL

DATA
INPUT

BUFFER

INPUT

BUFFER

INPUT

BUFFER

INPUT

BUFFER

ARBITER

ARBITER

ARBITER

ARBITER

PATH SHIFT

PATH SHIFT

PATH SHIFT

DATA

STALL

DATA

STALL

DATA

STALL

DATA

STALL

PATH SHIFT

OUTPUT

BUFFER

OUTPUT

BUFFER

OUTPUT

BUFFER

OUTPUT

BUFFER

Figure 3.2: Baseline switch architecture.

The crossing latency is therefore equal to 1 cycle in the upstream/downstream
link and 1 cycle inside the switch itself. The choice for retiming at input and
output ports stems from the need to break the timing path across switch–to–
switch links. The first chapters of this thesis show that in 65nm technology the
delay of inter-switch links causes a significant performance drop for most reg-
ular NoC topologies depending on the intricacy of their connectivity pattern.
This is certainly technology-, architecture- and topology-specific and depends
on the specific link inference technique too, but a rule of thumb is that with
target operating speeds above 700 MHz, even for 2D mesh topologies, the tar-
get speed is likely to be achieved by leveraging input and output retiming in
the switch. This is due to the increasing role of RC propagation delay across
the interconnects and will hold even more in future technology nodes.

The ×pipesLite switch relies on a stall/go flow control protocol [3]. It re-
quires two control wires: one going forward and flagging data availability
(“valid”) and one going backward and signaling either a condition of buffer
filled (“stall”) or of buffer free (“go”). With this scheme, power is minimized
since any congestion issue simply results in no unneeded transitions over the
data wires. Moreover, recovery from congestion is instantaneous. The input
buffer serves as a retiming stage, while at the same time handling flow control.
For this purpose, it needs to be 2 slots deep. During normal operation, only one
slot is used. When a “stall” is notified by the downstream stage, output data



24
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

of the buffer is frozen. However, it takes one cycle to propagate the “stall”
upstream, during which a new input data is driven and needs to be stored in a
backup slot. This justifies the need for 2 slots. The architecture can be seen
as a synthesizable realization of the elastic buffer concept. The output buffer
has a tunable size for performance optimization, and handles flow control as
well. Therefore, it shares the underlying architecture design techniques with
the input buffer. Arbitration is not centralized, i.e., there is a round-robin ar-
biter for each output port serializing conflicting access requests for that output
port. The critical path of the switch starts from the finite state machine of the
switch input buffer, goes through the arbiter, the crossbar selection signals,
some header processing logic and finally includes a library setup time for cor-
rect sampling at the switch output port (see Figure 3.2). The combinational
logic shifts the routing bits in the packet header in such a way that each switch
reads the target output port for that packet in the first position.

In order to build our GALS platform, mesochronous synchronization needs
to be implemented by means of synchronizers. We envision the design of
such synchronizers as a seamless replacement of the switch input buffer of
Figure 3.2 thus effectively coming up with the new GALS switch architecture
depicted in Figure 3.3.

ARBITER2

ARBITER0

ARBITER1

ARBITER3

PATH SHIFT

PATH SHIFT

PATH SHIFT

PATH SHIFT

DATA

STALL

DATA

STALL

DATA

STALL

DATA

STALL

MANAGER

FLOW CONTROL

DATA

STALL

CLK

DATA

CLK

DATA

STALL

FULLY

SYNCHRONOUS

INPUT BUFFER

HYBRID

MESOCHRONOUS

INPUT BUFFER

INPUT BUFFER

MESOCHRONOUS

COUPLED

LOOSELY

INPUT BUFFER

MESOCHRONOUS

COUPLED

TIGHTLY

CROSSBAR

STALL

CLK

RX

CLK

DATA

TX STALL

CLK

TX

OUTPUT

BUFFER

OUTPUT

BUFFER

OUTPUT

BUFFER

OUTPUT

BUFFER

Figure 3.3: GALS switch architecture.

The architecture flexibility, provided by all the synchronizer interfaces vari-
ants, enables a fully configurable switch building block that can be tailored
depending on different requirements. In fact, as it will be clear later on in this
chapter, different synchronizer implemention choices lead to different trade-



3.5. BASELINE SYNCHRONIZATION ARCHITECTURE 25

off in terms of performance/link-delay toleration. We see this as a very effi-
cient and cost-effective way to implement a GALS Network-on-Chip because
only those switch input ports, that have specific skew requirements, can be
equipped with a mesochronous synchronizer whereas in the remaining ports, a
fully synchronous input buffer can be instantiated.

All the developed mesochronous synchronizer architecture variants will be de-
tailed in the remainder of this chapter starting from the baseline synchroniza-
tion architecture described in the next section.

3.5 Baseline Synchronization Architecture

This work moves from the synchronizer architecture presented in [91] and il-
lustrated in Figure 3.4. The circuit receives as its inputs a bundle of NoC wires
representing a regular NoC link, carrying data and/or flow control commands,
and a copy of the clock signal of the sender. Since the latter wire experiences
the same propagation delay as the data and flow control wires, it can be used
as a strobe signal for them. The circuit is composed by a front-end and a back-
end. The front-end is driven by the incoming clock signal, and strobes the
incoming data and flow control wires onto a set of parallel latches in a rotating
fashion, based on a counter. The back-end of the circuit leverages the local
clock, and samples data from one of the latches in the front-end thanks to mul-
tiplexing logic which is also based on a counter. The rationale is to temporarily
store incoming information in one of the front-end latches, using the incoming
clock wire to avoid any timing problem related to the clock phase offset. Once
the information stored in the latch is stable, it can be read by the target clock
domain and sampled by a regular flip-flop.

Counters in the front-end and back-end are initialized upon reset, after observ-
ing the actual clock skew among the sender and receiver with a phase detector,
so as to establish a proper offset. The phase detector only operates upon the
system reset, but given the mesochronous nature of the link, its findings hold
equally well during normal operation.

Since few flow control wires are traveling backwards, another similar but much
smaller synchronizer needs to be instantiated at the sender to handle them.



26
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

Flip

Latch_0

Mux Flop
Flow Control
Data and

Front−end Back−end

Latch_1

Detector

counter
1−bit

counter
1−bit

Phase
clk_sender

Data and

Flow Control

clk_receiver

Figure 3.4: Baseline synchronizer architecture of [91].

3.5.1 Optimizations of the baseline architecture: the loosely cou-
pled synchronizer

In agreement with [91], it is always possible to choose a counter setup so that
the sampling clock edge in the back-end captures the output of the latches
in a stable condition, even accounting for timing margin to neutralize jitter.
Therefore, no more than 2 latches in parallel are needed in the front-end for
short-range (i.e., single cycle) mesochronous communication with this scheme.

However, other considerations suggest that a different choice may be desirable
at this point. In particular, by increasing the number of input latches by one
more stage, it becomes possible to remove the phase detector (see the new ar-
chitecture in Figure 3.5). This would be desirable due to the timing uncertainty
or the high area footprint or the non-compliance to a standard cell flow that af-
fects many phase detector implementations. A third latch bank allows to keep
latched data stable for a longer time window and to even find a unique and safe
bootstrap configuration (i.e., counters initialization) that turns out to be robust
in any phase skew scenario.

At regime, the output multiplexer always selects the output of the latch bank
preceding the bank which is being enabled by the front-end counter. Rotating
operation of both front- and back-end counters preserves this order. In contrast
to [91], the reset architecture is designed, as Figure 3.5 shows. In most SoCs,
the reset signal coming into the chip is an asynchronous input. Therefore, reset
de-assertion should be synchronized in the receive clock domain. In fact, if a
reset removal to a flip-flop occurs close to the active edge of its clock, flip-flops



3.5. BASELINE SYNCHRONIZATION ARCHITECTURE 27

Data and

Latch_0

Latch_1

Latch_2

Mux
Flip
Flop

local
reset

Front−end Back−end

Flow Control

external reset

clk_receiverclk_sender

Flow Control
Data and

Synchronizer

Reset

counter counter

Figure 3.5: The loosely coupled synchronizer of this work.

can enter a metastable state. We use a brute-force synchronizer (available in
several new technology libraries as a standard cell, e.g. ST65nm) for reset
synchronization with the receiver clock. Now, the challenge is how to reset
the front-end. Typically, a reset can be sent by the upstream switch. In our
architecture, we prevent metastability in the front-end by delaying the strobe
generation in the upstream switch by one clock cycle after reset de-assertion.
This way, on the first edge of the strobe signal, the receiver synchronizer is
already reset. Such strobe signal generation delay is compliant with network
packet injection delay after reset.

The transmitter clock signal is used as the strobe signal in our architecture.
Differently than [91], a larger timing margin is enforced for safe input data
sampling. In fact, the transmitter clock signal has to be processed at the re-
ceiver end in order to drive the latch enable signals. In actual layouts, this pro-
cessing time adds up to the routing skew between data and strobe and to the
delay for driving the latch enable high-fanout nets. As a result, the latch enable
signal might be activated too late, and the input data signal might have already
changed. In order to make the synchronizer more robust to these events, we
ensure that input data sampling occurs in the middle of the clock period. In
fact, a switching latch enable signal opens the sampling window of the next
latch during the rising edge, and closes the same during the falling one. As
a result, the latch enable activation has a margin of half clock cycle to occur.
Our post-layout simulations prove that this margin is largely met in practice.
Finally, in agreement with [91], we computed the minimum size of the input
buffer in the downstream switch to be 4 slots (flits). They are required by



28
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

the stall/go flow control protocol in order to cover the round trip latency and
not to drop flits in flight when a stall signal has to be propagated backwards.
The original input buffer size is 2 slots, reflecting the requirements of stall/go
without synchronization. Please refer to [91] for further details about this.

3.6 Tightly Integrated Synchronizer Architecture

The previous synchronizer, similarly to SKIL or to the Polaris one, is a mod-
ule of the NoC architecture, thus loosely coupled with the downstream switch.
The loose coupling stems from the fact that the flip-flop in the synchronizer
back-end belongs directly to the switch input buffer. The mux output is there-
fore sampled like any other input in the fully synchronous scenario. However,
our early exploration indicated that the area overhead induced in this input
buffer, as an effect of the added synchronization latency, is much larger than
the synchronizer area itself.

This hints that a tighter integration of the synchronizer into the switch input
buffer is desirable. In particular, the latch enable signals of the synchronizer
front-end could be conditioned with backward-propagating flow control sig-
nals, thus exploiting input latches as useful buffer stages and not just as an
overhead for synchronization. In this case, input data is at first stored in the
latches and then synchronized. This allows to completely remove the switch
input buffer and to replace it with the synchronizer itself. The synchronizer
output is then directly fed to the switch arbitration logic and to the crossbar.
The ultimate consequence is that the mesochronous synchronizer becomes the
actual switch input stage, with its latching stages acting as both buffering and
synchronization stages (see Figure 3.6). As a side benefit, the latency of the
synchronization stage in front of the switch is removed, since now the synchro-
nizer and the switch input buffer coincide. The main necessary change to make
the new architecture come true is to bring flow control signals to the front-end
and back-end counters of the synchronizer. This solution would still require 4
slot buffers, i.e., 4 latching banks. However, a further optimization is feasible.
The backward-propagating flow control signal (the stall/go signal) could be di-
rectly synchronized with the strobe signal in the synchronizer front-end before
being propagated to the upstream switch. This would save also the synchro-
nizer at the transmitter side. In fact, the backward-propagating signal would be
already in synch with the strobe, which in turn is in synch with the transmitter
clock. The ultimate result is the architecture illustrated in Figure 3.6. We are
aware that this latter choice shrinks timing margins for the backward flow con-



3.6. TIGHTLY INTEGRATED SYNCHRONIZER ARCHITECTURE 29

trol signal. The reason is that it leaves the downstream switch with a generation
delay across its synchronizer and also experiences the link propagation delay.
This margin will be assessed post-layout in the experimental section, proving
the applicability of the scheme. For this architecture solution, only 3 latching
banks are needed in the synchronizer. In practice, only 1 slot buffer more than
the fully synchronous input buffer. The tightly coupled synchronizer makes
the mesochronous NoC design fully modular like the synchronous one, since
no external blocks to the switches have to be instantiated for switch-to-switch
communication. Please notice that the reset architecture remains unchanged
with respect to Figure 3.5.

SWITCH INPUT BUFFER

Mux Stall

clk_receiver

Stall

Flow Control

andData
Flow Control

Data andLatch_1

Latch_0

Latch_2

counter

countercounter

counter

Latch_0

Front−end Back−end

Latch_1

Latch_2

clk_sender

Mux

Figure 3.6: Proposed tightly coupled synchronizer.

3.6.1 Operating principle

In case a go signal comes from the switch arbiter, at each clock cycle data are
latched in the input buffers of the synchronizer, synchronized with the local
clock and propagated to the switch arbiter and crossbar. When a stall occurs,
the output mux keeps driving the same output until communication can be re-
sumed. While the stall signal gets synchronized with the strobe and reaches
the front-end, the front-end latches keep sampling input flits in a rotating way.
When the stall signal finally leaves the synchronizer, it will stop the transmis-



30
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

sion of the upstream switch and the front-end counter operation at the same
time. At this point, the situation is frozen. When then a go arrives, the out-
put mux becomes operational again. Later, input latches and upstream switch
resume their operation again at the same time. Please observe that this mech-
anism does not waste bandwidth on flow resumption, since the synchronizer
backend can immediately start sweeping the output of front-end latches upon
receipt of a go. Interestingly, flow control logic in the synchronizer is sim-
plified with respect to that of the original switch input buffer. Before, a finite
state machine used to generate a stall by monitoring the number of elements in
the buffer. When it was equal to one and a stall came from the switch internal
logic, than a stall was also generated for the upstream switch. In the new ar-
chitecture, the synchronizer just synchronizes the stall signal from the switch
logic with the transmitter clock and propagates it upstream. This way, a large
amount of logic is saved.

A

clock_sender

strobe

latch_enable_0

latch_enable_1

latch_enable_2

data_in

latched_data_0

latched_data_1

latched_data_2

clock_receiver

data_out

t_skew

B C D E F G H

A

B

C

D

E

F

G

H

B C D E F G HA

t_delay

Figure 3.7: Waveforms example of the tightly coupled synchronizer.

Figure 3.7 reports the waveforms showing operation of the tightly coupled
synchronizer. A delay from the strobe signal is assumed for the latch enable
signals to account for their high-fanout.



3.7. THEORETICAL ANALYSIS 31

3.7 Theoretical Analysis

In this section we analyze the previously presented synchronizer architectures
(i.e., loose and tight) from a formal viewpoint.

The two synchronizer solutions presented so far have a series of common con-
straints regarding the correct sampling of data and flow control wires. In fact,
the basic idea consists of sending data (or stall hereafter) and clock signal with
a null phase offset, latching data at receiver end and performing the sampling
only when data is stable. Nonetheless, as discussed in previous sections, there
are some architectural peculiarities that differentiate the timing constraints of
each solution with respect to another. Let us first analyze the common con-
straints considering Formula 3.1.

Tsetup ≤
Tclock

2
+ Tlatch enable (3.1)

For the sake of simplicity, we consider the case where clock and data signals
are sent to the link channel without routing skew (perfect wires alignment).
At receiver end, when a rising edge of the clock signal occurs, after a further
Tlatch enable the latch window is transparent and data is captured. When a
clock falling edge occurs (after half clock cycle) data is sampled correctly if
and only if it was already stable for a Tsetup . Of course, considering a non-
zero routing skew between clock and data wires, a further T routing skew

has to be taken into account at left or right side of the equation depending on
the relative position between clock and data signals.

Furthermore, for a correct sampling, data has to be kept stable at least for
a Thold before changing. Therefore, within a clock cycle, a Tclock

2
and a

Tlatch enable are necessary to sample the data but a further Thold is needed
so that it can be considered stable (see Formula 3.2). As before, in a non-zero
routing skew exists, it has to be taken into account as it additionally reduces
the timing margin for a correct sampling.

Tclock

2
+ Tlatch enable ≤ Tclock − Thold (3.2)

So far, we have analyzed timing constraints common to all the proposed so-
lutions. We will now consider, synchronizer by synchronizer, a further timing
constraint that is specific for each architecture.

As our previous discussions already indicated, in the loosely coupled archi-
tecture, data sent from the upstream switch requires two clock cycles to be



32
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

sampled by the downstream switch input buffer. Therefore, within two clock
cycles, data has to traverse the link channel in Tlink , it requires a Tlatch enable

plus Tmux to correctly latch and output data from the external synchronizer
towards the switch. A further Tsetup is necessary to guarantee correct sam-
pling by the downstream switch input buffer (see Formula 3.3). The entire
data-path has to be traversed in two clock cycles, 1 cycle to synchronize data
by the loosely coupled synchronizer plus a further clock cycle to sample data
by switch input buffer. Obviously, a trade-off between clock frequency and
link length is necessary for a correct operation of the entire system that would
otherwise fail by violating the Tsetup of the input buffer.

2 · TClock ≥ Tskew + Tlink + Tlatch enable+

+Tmux + Tsetup
(3.3)

The same reasoning holds for the tightly coupled architecture with some differ-
ences though. In fact, sampling elements in the switch–to–switch data-path are
the respective output buffers of the upstream and downstream switches. This
path has to be traversed in two clock cycles: a first clock cycle is needed to
send data from the upstream switch and to synchronize it by the multi-purpose
switch input buffer. A second clock cycle is required to forward data from the
switch input buffer to the output buffer of the same switch building block (see
Formula 3.4).

2 · Tclock ≥ Tskew + Tlink + Tlatch enable+

+Tmux + Tarbiter + Tcrossbar+

+Tshift header + Tsetup

(3.4)

Differently from the loosely coupled architecture, Formula 3.4 points out the
extra timing required to traverse the switch building block (e.g., arbitration
time, crossbar traversal, etc.). In this case, a violation of the above would
result in a sampling failure of the output buffer. A further timing constraint for
the tightly coupled architecture is that illustrated by Formula 3.5.

Tclock ≥ Tgeneration + 2 · Tlink + Tcounter+
+Tmux + Tsetup

(3.5)

We name this constraint as the round-trip dependency of the tightly coupled
synchronizer. In fact, within a single cycle, the clock sent by the upstream



3.7. THEORETICAL ANALYSIS 33

switch triggers the bottom counter of the downstream switch synchronizer
front-end (that is in charge of flow control synchronization, see Figure 3.6).
Once a multiplexer output has been selected, the just synchronized stall signal
can be forwarded to the upstream switch output buffer to stop data transmis-
sion. Obviously, for a correct sampling, the output buffer requires the stall
signal to be stable for at least Tsetup . The reason of this constraint is that in
a single clock cycle, the stall signal has to be synchronized (at downstream
switch end) and forwarded to the upstream switch to stop data transmission.
The loosely coupled synchronizer is not affected by this constraint as the flow
control synchronization is performed by a 1-bit synchronizer instantiated at
upstream switch side. Intuitively, this constraint strongly limits the maximum
operating frequency for a given link length of the tightly coupled architecture.

3.7.1 Architecture flexibility: the Hybrid solution

Mux Stall

clk_receiver

Flow Control

andData
Flow Control

Data andLatch_1

Latch_0

Latch_2

countercounter

counter

Front−end Back−end

clk_sender

Mux

Stall

counter

Latch_0

Latch_1

Latch_2

Latch_1

Latch_2

Mux

Stall

upstream

switch

clk_receiverclk_receiver

SWITCH INPUT BUFFER

counter

1−bit
synchronizer

To the Latch_0

Figure 3.8: The hybrid architecture with a 1-bit synchronizer on the receiver end.

In order to alleviate the limitation of the tightly coupled architecture, resem-
bled by Formula 3.5, the hybrid architecture has been envisioned. In fact, the
stall signal generated by the downstream switch arbiter is not synchronized in
the backend of the hybrid synchronizer but is directly forwarded to a 1-bit syn-
chronizer instantiated in front of the upstream switch. This way, the round-trip
dependency can be broken and Formula 3.5 does not hold for such an architec-
ture anymore. Obviously, being the data-path of the hybrid architecture exactly
the same as that of the tightly one, Formula 3.4 still remains valid but a new
constraint for the stall signal path arises. The new constraint (see Formula 3.6)
encompasses the time required to generate the stall signal by the arbiter (the
higher the switch radix, the slower is the stall generation as the arbiter size



34
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

increases); a Tlink to traverse the link channel; the time necessary to the 1-bit
synchronizer to latch and output the stall signal towards the upstream switch
output buffer which requires a further Tsetup to sample the stall signal.

2 · Tclock > Tstall generation + Tskew + Tlink+

+Tlatch enable + Tmux + Tsetup
(3.6)

Results in Section 3.9.1 will give an experimental evidence of the analysis
presented above. While describing the specific constraints for each architec-
ture, we omitted commenting Tskew parameter. It represents a misalignment
between upstream and downstream clock (same clock frequency f , different
phase offset). In all the presented architectures, Tskew is a decreasing factor for
a correct operation as it reduces the timing margin of the analyzed system.

Another degree of flexibility of our architecture is that a switch can be assem-
bled out of a mix of synchronous and mesochronous ports. In fact, the out-
put architecture of the tightly coupled synchronizer resembles that of a syn-
chronous switch input buffer, therefore for the switch data-path and control
logic it is irrelevant whether the input port is synchronous or mesochronous. A
flexible heterogeneous switch architecture can therefore be built, where input
ports are either the conventional 2-slot buffer of synchronous switches or the
tightly coupled synchronizer. Finally, an external mesochronous synchronizer
can also be instantiated in front of the synchronous switch input ports to infer,
whenever needed, the loosely coupled synchronization architecture.

Summing up, the three synchronizer architectures described so far enable the
building process of GALS systems in a flexible and scalable way. In fact,
depending on the link length (and an associated link delay), one of the different
three solutions can be implemented in order to achieve a reliable timing margin
for a correct operation of the system.

3.8 Experimental Results

This part of the chapter will characterize the mesochronous interfaces pre-
sented so far from the, latency, area footprint and power consumption view-
point. In order to achieve such goal, both loose, tight and hybrid mesochronous
interfaces have been implemented by means of the ×pipesLite NoC library
[92]. Synthesisis and place&route have been performed through a backend
synthesis flow leveraging industrial tools. The technology library utilized is a
low-power low-Vth 65nm STMicroelectronics library (CMP project [146]).



3.8. EXPERIMENTAL RESULTS 35

3.8.1 Comparative latency Analysis

Since the tightly coupled synchronizer not only changes the synchronizer im-
plementation but also affects the entire network architecture, we performed
basic tests to capture the macroscopic performance differences implied by the
different synchronization architectures. We focus on synchronization latency,
since the stall/go mechanism implemented in our synchronizer ensures that
a stall-to-go transition of the flow control signal can be immediately propa-
gated to the next stage. Hence, there are no wasted cycles at flow resumption,
differently than [91]. Since what matters here is not a network-wide perfor-
mance analysis, but just to investigate the latency of each scheme, this feature
can be more conveniently stimulated and analyzed in a simple ad-hoc exper-
imental test case for fine-grain performance analysis. We opted for a simple
processor–NoC–memory topology (see Figure 3.9).

NI NI
RX

TX

RX

TX

Switch 0Processor MemorySwitch 1

Figure 3.9: Test-case platform under analysis.

The investigated NoC is comprised of a couple of 2x2 switches respectively
connected to the processor and the memory. Furthermore, each network switch
is connected to its own RX-, TX-mesochronous part meant for synchronizing
received data and flow control signals. For the sake of comparison, the SKIL
synchronizer is considered as well. This is another loosely coupled module
with the switch architecture [73].

The traffic pattern consists of full-bandwidth read and write transactions, i.e.,
the target memory never stops the access flow. Of course, the only perfor-
mance differentiation is seen for read transactions, since they are blocking for
the processor core, hence they rely on the network ability to keep latency to
a minimum. Performance results could be easily interpreted by means of a
simple analytical model (Formula 3.7). It relates performance results to the
intrinsic design characteristics of each synchronizer.

cycles = n + latency× 2× #transactions (3.7)

In fact in the best case, SKIL exposes two cycles synchronization overhead
plus a further execution cycle for traversing the network switch; whereas our



36
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

loosely coupled solution only requires one cycle latency in the mesochronous
plus one cycle in the network switch. Even better, the tightly coupled
mesochronous synchronizer requires the same computational resources of the
vanilla switch (i.e., 1 execution cycle). The reason is that the tightly coupled
solution seamlessly replaces the input buffer of the network switch thus pro-
viding a fast, reliable and robust mechanism for data synchronization. As for
the tightly coupled, the hybrid solution as well only requires a single execution
cycle in order to synchronize the data. The reason is that the synchronization
circuit of the data path is the same as that of the tightly coupled interface (i.e.,
1 cycle). Regarding the flow control, the stall signal in the hybrid architecture
is directly forwarded from the arbiter to the TX- module instantiated in front
of the upstream switch. This module is the one taking care of synchronizing
the flow control signal in the same clock cycle when it has been forwarded.

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

tight hybrid loose SKIL

execution_cycles

Figure 3.10: Normalized cycle latency of the different synchronization schemes.

Summarizing, whenever the system with the tightly (or hybrid) coupled
mesochronous synchronizer performs a computational task in n cycles, the
alternative schemes, i.e., SKIL and the loosely coupled synchronizer respec-
tively require a number of cycles equal to Formula 3.7, where latency is the
number of clock cycles of the deployed mesochronous architecture whereas
#transaction is the number of read operations performed by the processor unit.
As depicted in Figure 3.10 there is a direct impact of the adopted synchroniza-
tion solution on the overall system performance. While the tightly coupled and
hybrid solutions keep the same performance as the vanilla network switch, a
performance drop up ranging from 3% up to 6% incurs when using a loosely
coupled or the SKIL scheme respectively.



3.8. EXPERIMENTAL RESULTS 37

Area Overhead

In order to estimate the area savings by using the tight integration design strat-
egy, we went through a commercial synthesis flow and refined RTL descrip-
tion of the mesochronous switches (tightly, hybrid and loosely coupled) down
to the physical layout. All the systems were synthesized, placed and routed
at the same target frequency of 1GHz. In Figure 3.11, the area footprint of
switches is reported along with a breakdown pointing out the contribution of
synchronizers and/or input buffers.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

vanilla tight hybrid loose

N
o

rm
a

liz
e

d
 A

re
a

 B
re

a
k
d

o
w

n

input_buffer / synchronizer
other

tx external synch.
rx external synch.

Figure 3.11: Area breakdown of a switch block with its synchronization scheme.

The tightly, hybrid and loosely coupled solutions are compared against a
vanilla (i.e., fully synchronous) switch; input buffer area for this switch only
refers to the area occupancy of a normal 2 slot input buffer. For the loosely
coupled solution, a 4 slot buffer is needed to cover the round trip latency, and
this is most of the overhead for this solution. As clearly pointed out by the area
breakdown in Figure 3.11, the sum of the transmitter and of the receiver syn-
chronizers is almost equal to that of a 2 slot buffer, i.e., of the input buffer in
the vanilla switch. For the tightly coupled solution, input buffer/synchronizer
area refers to the multi-purpose switch input buffer (which is also the syn-
chronizer). As for the latter, the hybrid architecture result refers to multi-
purpose switch input buffers plus as many instances of TX- synchronizer as
input ports. Clearly, there is almost no area overhead when moving from a
fully synchronous to a tightly (or hybrid) integrated mesochronous switch as
they employ similar buffering resources.

From the performance viewpoint, our post-layout synthesis results confirm that



38
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

the critical path of the switch is not impacted by the replacement of the vanilla
input buffer with the tightly integrated mesochronous synchronizer. By exper-
imenting with different switch radix, the critical path deviates only marginally
in the two cases, therefore no performance penalty should be expected for the
mesochronous switch.

Power Consumption

A further step of our exploration was to contrast power consumption of the
proposed mesochronous schemes. Our target design is a 5x5 switch in four dif-
ferent variants: the first is a fully synchronous switch block, the second has a
tightly integrated mesochronous synchronizer per each input port; the third one
is a switch utilizing a hybrid mesochronous synchronizer per input port thus
requiring also a tx-synchronizer on the sender side; the last variant has a pair of
loosely coupled rx- and tx-synchronizers per input port. Three different traffic
patterns have been utilized to carry out an accurate power analysis: idle, re-
quest for a random output port and parallel communication flows. Post-layout
simulation frequency was 700MHz for all the designs. As showed in Figure
3.12, in all the cases, the highest power consumption is consumed by the most
buffer demanding solution, i.e., the loosely coupled design. Power consump-
tion of the vanilla and tightly coupled designs are similar as expected; this is
mainly due to the equivalent buffering resources deployed in both switches.
The hybrid solution is a bit more expensive compared to the tight and the
vanilla mainly because there is a small extra buffering due to the 1-bit syn-
chronizer for each mesochronous port.

Next section will perform a design space exploration of the mesochronous
link architecture in order to assess several quality metrics of the synchronizer
interface presented so far.

3.9 Mesochronous Link Design Characterization

The above architecture provides degrees of freedom for port-level selection
of the most suitable synchronization option based on timing and layout con-
straints. The following design space exploration of a mesochronous link im-
plemented with our architecture will provide the guidelines for such port-level
selection, and is therefore an essential enabler for automatic assembly of the
target GALS NoC.



3.9. MESOCHRONOUS LINK DESIGN CHARACTERIZATION 39

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

idle random parallel

N
o

rm
a

liz
e

d
 T

o
ta

l 
P

o
w

e
r

vanilla
tight

hybrid
loose

Figure 3.12: Normalized power consumption of different synchronization schemes in
different traffic scenarios.

3.9.1 Design tradeoffs

A series of experiments have been carried out in order to characterize, for each
synchronizer architecture, the maximum operating frequency for a given link
length between two switch building blocks. In practice, a 5x5 switch, ideally
extracted from the center of a 2D mesh, has been considered after place&route.
The switch has been synthesized with a very tight timing constraints (1 GHz),
so that after place&route the critical path for all the architectures will be in
the switch–to–switch link. The switch is connected to a tester injecting clock
and data with an increasing delay. The utilized testbench assumes an ideal
alignment between clock signal and data as well as no routing skew. This
way, we can assess for a certain operating frequency, the relative link delay
supported by each architecture. Obviously, a certain link delay corresponds to
a relative channel length depending on how the link synthesis policy is chosen.

The theoretical analysis discussed in Section 3.7 is here confirmed by experi-
mental results. In fact, Figure 3.13 reports maximum operating frequency of
each synchronization scheme for a certain link delay. Obviously, being af-
fected by the round-trip constraint, the tightly coupled architecture turns out
to be the less delay tolerant. Indeed, an increment of either frequency or de-
lay would result in packets loss due to the late arrival of the backward prop-
agating signal. However, such supported link delays enable the tightly cou-
pled architecture to sustain a correct communication within a typical range of
link length in nanoscale technologies. On the other hand, the hybrid alterna-



40
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 2750

555MHz 617MHz 714MHz 833MHz 1GHz

L
in

k
 D

e
la

y
 (

p
s
)

tightly
hybrid

loosely

Figure 3.13: Operating frequency and tolerated link delay of different synchronizers.

tive is quite effective as it relieves the round-trip constraint while keeping the
area and power cost as low as the tightly coupled architecture. In fact, by us-
ing a small single-bit synchronizer at transmitter end for the backward signal,
round trip dependency can be removed thus increasing maximum achievable
frequency. Best results in terms of link delay toleration for a given frequency
are achieved by the loosely coupled architecture. However, this result comes
at a high area/power and also latency cost.

3.9.2 Skew Tolerance

Skew tolerance of our architecture schemes depends on the relative alignment
of data arrival time at latch outputs, multiplexer selection window and sam-
pling edge in the receiver clock domain. A few basic definitions help to assess
the interaction among these parameters in determining skew tolerance. For
the loosely coupled synchronizer, such definitions are pictorially illustrated in
Figure 3.14(a).

During the mux window, data at latch outputs is selected for forwarding to the
sampling flip-flop in the switch input port. Its duration closely follows that of
the clock period. Sampling occurs on the next rising edge of the receiver clock
inside the mux window. We denote the time between the starting point of the
mux window and such sampling instant as the Setup time. Conversely, after an
Hold time since the rising edge of the clock the mux window terminates. This



3.9. MESOCHRONOUS LINK DESIGN CHARACTERIZATION 41

MUX WINDOW

LATCH OUTPUT

SETUP TIME

HOLD

TIME

(a) Loosely coupled synch.

Txbar

LATCH OUTPUT

HOLD

TIME

SETUP TIME

Tarb+

Txbar

Tarb+

(b) Tightly coupled synch.

Figure 3.14: Basic mechanisms affecting skew tolerance.

is the time required by the counter to switch the multiplexer selection signals.

When we consider the tightly coupled architecture (Figure 3.14(b)), then the
same metrics are taken at the switch output port rather than at the multiplexer
output of the synchronizer. Therefore, the starting time of the mux window is
delayed due to the worst case timing path between the synchronizer output and
the switch output port, which includes the arbitration time, crossbar selection
time and some more combinational logic delay for header processing. At the
same time, the sampling rising edge of the receiver clock remains unaltered,
therefore the ultimate effect is a shortening of the Setup time for the tightly
integrated mesochronous switch architecture.

Figure 3.15 quantifies these timing margins for the loosely coupled switch ar-
chitecture. Results are referred to a 2x2 switch working at 660 MHz after
place&route. X-axis reports negative and positive values of the skew, ex-
pressed as percentage of the clock period. Setup and hold times have been
experimentally measured by driving the switch under test with a clocked test-
bench, by inducing phase offset with the switch clock and by monitoring wave-
forms at the switch. The connecting link between the testbench and the switch
is assumed to have zero delay. A positive skew means that the clock at the
switch is delayed with respect to the one at the testbench. The figure also
compares setup and hold times with the minimum values required by the tech-
nology library for correct sampling (denoted FF-Tsetup and FF-Thold).

First of all, we observe that both times are well above the library constraints,
thus creating some margin against variability. For the whole range of the skew,



42
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

T
im

e
 M

a
rg

in
 (

p
s
)

Skew Tolerance [% of the clock period]

Tsetup
Thold

FF-Tsetup
FF-Thold

Figure 3.15: Tsetup and Thold for the loose coupled varying the skew tolerance.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

T
im

e
 M

a
rg

in
 (

p
s
)

Skew Tolerance [% of the clock period]

Tsetup
Thold

FF-Tsetup
FF-Thold

Figure 3.16: Tsetup and Thold for the tight coupled varying the skew tolerance.

the hold time stays the same. The result is relevant for positive skew, since its
effect is to shift the mux window to the right, close to the region where latch
output data switches. However, the stability window of the latch output data is
long enough to always enable correct sampling of stable data before the point
in time where it switches.

In contrast, a negative skew causes the mux window to shift to the left, therefore
as the negative skew grows (in absolute values) the latch output data ends up
switching inside the mux window, which corresponds to the knee of the setup



3.9. MESOCHRONOUS LINK DESIGN CHARACTERIZATION 43

time in Figure 3.15. From there on, the switching transient of data becomes
closer to the sampling edge of the receiver clock and correct sampling can be
guaranteed until the setup time curve equals the FF-Tsetup one. However, even
for -100% skew synchronizer operation is correct.

Figure 3.16 illustrates the same results for the tightly coupled mesochronous
switch. As anticipated above, the setup time is decreased by 370ps, corre-
sponding to the time for arbitration, crossbar selection and shifting of routing
bits. Interestingly, the knee of the setup time occurs for the same value of the
negative skew, in that the switching instant of the latch output data enters the
mux window at exactly the same point in time. The ultimate implication is that
the tightly coupled synchronizer cannot work properly with -100% skew, since
the crossing point with the FF-Tsetup occurs at around -95%. In practice, we
can conclude that a 2x2 switch with tight coupling of the synchronizer on each
port consumes 40% less area and power than its loosely coupled counterpart
while incurring a 23% degradation of the maximum skew tolerance.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0% 20% 40% 60% 80% 100% 120%

S
e

tu
p

 T
im

e
 (

p
s
)

Negative Skew

1.25ns
1.5ns

ideal 2ns
2ns

Figure 3.17: Setup time as a function of negative skew.

3.9.3 Target frequency

We now extend the above results to the case where the same RTL design (a
2x2 switch) is synthesized for a higher and lower target frequency and observe
implications on the timing margins of a tightly coupled mesochronous NoC
architecture. Figure 3.17 shows setup time as a function of negative skew for
different target cycle times. The skew is expressed as percentage of the cycle



44
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

time, and the assumption behind this plot is that as we relax the cycle time also
the maximum skew constraint can be proportionally relaxed.

If we assume that by relaxing the target speed all delays scale proportionally
in the design, then we would expect that by relaxing the speed from 1.5ns
to 2ns the setup time increases by 1.33x (see starred line). This is not the
case, since the real setup time increases much more, as the figure shows. The
reason for this is that the arbitration and switching logic inside the switch can
be optimized for area as the timing constraint is relaxed only up to a certain
point, beyond which no more netlist transformations are feasible. Therefore,
the shifting of the mux window to the right, illustrated in Figure 3.14(b) for the
tightly coupled architectures, scales ideally only up to a certain point, beyond
which we observe a more-than-linear increase of the setup time. This is what
happens for the 2ns target period.

Another deviation of the ideal curve from the real one regards the knees. In
fact, although the target period increases from 1.25 to 2ns, a given skew per-
centage on the x-axis actually means a different absolute phase offset for the
different cases. Therefore, the switching instant of synchronizer latch outputs
should enter the mux window at the same percentage skew for all target periods
(see starred line in Figure 3.17 for a 2ns target).

This is again not the case, indicating that a delay has not scaled proportion-
ally to the clock period. The rationale for this is the time to generate the
latch enable signals in the synchronizer front-end. For a tight 1.25ns con-
straint, this netlist was already non-critical, therefore by relaxing the timing
constraint its delay stays more or less the same. Therefore, the knee appears
later for large cycle times, as the real curve for a 2ns target proves. The key
take-away from this characterization is that by relaxing the target clock fre-
quency for the same RTL design an improvement of the skew tolerance and of
the timing margins can be generally achieved for the tightly coupled architec-
ture. In addition, a larger cycle time provides the physical synthesis tool more
margin to enforce the feasibility constraint of Formula 3.4.

3.9.4 Switch radix

A last degree of freedom that we explored is the switch radix. We assume that
for the same given target frequency, the switch radix is increased from 2 to 5.
The effect on the timing margins is similar to what happens when we move
from a loosely coupled to a tightly coupled mesochronous architecture. In
fact, an increase of arbitration and crossbar selection time takes place, which



3.10. SUMMARY 45

results in a decrease of the setup time. Conversely, the knee occurs for the same
amount of negative skew, since the modification concerns only the switch in-
ternal architecture, not the time at which latch outputs switch. Overall, by
combining the two effects we have an additional reduction of the maximum
(negative) skew tolerance, which is equal to the increase in delay of the combi-
national logic described above. In general, for high radix switches it has to be
verified that the reduced setup time is still above the minimum value required
by the technology library.

In contrast, synthesis constraints help relieve the above limitation. In fact,
for both the 2x2 and the 5x5 switch, the synthesis tool tries to meet the same
target cycle time and to exploit the available slack to save area. In practice, the
syntheses of both the 2x2 and the 5x5 designs converge with almost no slack.
Therefore, control logic with 5 and 2 inputs takes almost the same delay with
a large difference in area. In this way, the setup time in the two cases is almost
unaffected because of the netlist transformations performed by the synthesis
tool in the area-performance plane. In our experiments, a 5x5 switch exhibits
a setup time which is only 5% lower than the one in the 2x2 switch. For those
NoC architectures where the above netlist optimizations are ineffective or for
very high radix switches, it is necessary to verify that the reduced setup time
is still above the minimum value required by the technology library.

Another implication of the switch radix concerns timing closure of the hybrid
synchronization architecture. As already noted while commenting Figure 3.8,
the critical path starts in the switch arbiter (which generates the stall signal)
and includes the propagation of the stall signal to the upstream switch. As the
switch radix increases, the delay for stall generation by the arbiter increases,
and might make this timing path critical for the entire NoC. This timing path
is compared with those of the tightly and loosely coupled architectures in the
following section.

3.10 Summary

The motivation behind the adoption of a GALS design paradigm has been pre-
sented in this chapter. The fully synchronous switch building block of our
NoC has been described and its flexible mesochronous counterpart presented.
In particular, to build such mesochronous alternative, a baseline synchronizer
interface has been proposed and all the improvements that led to our loose cou-
pled mesochronous synchronizer described. Furthermore, it has been shown
that the switch input logic can be utilized for buffering, synchronization and



46
CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

flow control thus coming up with a novel tight integrated mesochronous inter-
face. A theoretical analysis characterizing such interfaces has been detailed
and such considerations led to a further architectural improvement: the hybrid
synchronizer, which significantly improves upon the previously described ar-
chitectures. Post-layout results have been presented demonstrating the benefits
of our novel approach from a performance, area and power consumption view-
point. A design space exploration of the mesochronous link has been provided
highlighting several interesting design points.



4
A Design Flow for GALS NoCs

THE previous chapter detailed the architecture of the interfaces required
to enable the building process of an actual GALS switch block. This

chapter moves a step forward towards the system-level. In fact, the de-
sign flow described in this chapter will enable to build an entire GALS system
from the system specification, through synthesis and CTS thus reaching the
layout level by performing place&route. In particular, a complete Network-
on-Chip design flow will be presented in its front- and back-end part. For both
parts, our contribution to make the design flow suitable for building GALS
systems will be discussed.

4.1 The Front-end

The design flow adopted in this thesis is depicted in Figure 4.1 and it is based
on that developed in [85]. As for many typical design flows leveraging indus-
trial toolchain, it can be split in two main branches: front-end and back-end.
In the front-end part, the user has to specify the network characteristics that
might be hand written or automatically generated by a tool, e.g. Sunfloor [151].
Once the network topology specification has been created, it can be fed to the
×pipescompiler [152] for the automatic generation of the topology instance.
The tasks performed by ×pipescompiler involve:

• Performing checks on the input file, verifying the full connectivity of
all the system components. (This step is key since the input topology
description does not necessarily come from SunFloor; it can also be
manually written).

• Configuring the blocks of the ×pipes component library according to the
specifications in its input description.

47



48 CHAPTER 4. A DESIGN FLOW FOR GALS NOCS

NoC RTLNoC RTL

NoC Power,NoC Power,
Area ModelsArea Models

User Goals,User Goals,
ConstraintsConstraints

IP CoreIP Core
RTLRTL

Back-EndBack-End
FlowFlow

FPGAFPGA

FloorplanFloorplan

ApplicationApplication
CommComm
GraphGraph

NoCNoC
BlocksBlocks

ASICASIC

TopologyTopology
Generation,Generation,

FloorplanningFloorplanning TopologyTopology
InstantiationInstantiation

Front-endFront-end Back-endBack-end

Figure 4.1: The Network-on-Chip Design Flow.

• Creating top-level modules to connect all the blocks together, according
to the desired topology.

• Producing suitable routing tables for the NIs, based on the specified
communication flows and routes.

• Creating testbenches for the whole topology, capable of stressing all the
paths among communicating IP cores in the topology.

• Generating component lists to be imported in the physical implementa-
tion scripts.

×pipesCompiler generates code at the RTL level, both in SystemC and Ver-
ilog. This code is suitable for simulation, for FPGA emulation and for ASIC
implementation flows.

4.1.1 GALS enhancement: the ×pipes compiler

The ×pipes compiler has been augmented with the possibility to partition the
system in different frequency islands as well as the network-on-chip itself in
different mesochronous partitions as depicted in Figure 3.1.

This new feature required the modification of the specification file format, the
addition of the new GALS interfaces to the ×pipes library (see “NoC blocks”
in Figure 4.1) and obviously the modification of the compiler code itself. An
example of the topology specification file supporting the new GALS features
is reported in the Listing 4.1.



4.1. THE FRONT-END 49

Listing 4.1: Example topology description file.

// In this topology: 1 processor,
// 1 memory and 2 switches

topology(2switch_1link);

// ----------------------------------------------------
// Definition of the clock domain and subdomain
// A subdomain is a domain that have the same frequency
// of its domain but different phase ( mesochronous )
// ----------------------------------------------------

//NEW FEATURE OF THE COMPILER
domain(clk_1, Domain:2);

// ------------------------------------
// define the cores characteristics and
// the clock domain it belongs to
// ------------------------------------

//NEW FEATURE OF THE COMPILER
core(core_0, switch_0, 1_1, 2, 6, userdef, initiator);
core(shm_1, switch_1, 1_2, 2, 6, userdef, target:0x00);

// --------------------------------------------
// define the switch characteristics
// and the clock domain/subdomain it belongs to
// --------------------------------------------

//NEW FEATURE OF THE COMPILER
switch(switch_0, 3, 3, 6, 1_1);
switch(switch_1, 4, 4, 6, 1_2);

// --------------------------------
// define the links here
// link number, source, destination
// --------------------------------

link(link0, switch_0, switch_1);
link(link1, switch_1, switch_0);

// ----------------------------------
// define the routes from source core
// to destination core
// ----------------------------------

route(core_0, shm_1, switches:0,1);
route(shm_1, core_0, switches:1,0);

As pointed out by the above example, the new GALS features of the
×pipesCompiler allow to associate a core and/or a switch (at a block level
selection) to a particular frequency domain (thus calling for the automatic in-
stance of a dual-clock FIFO synchronizer). Furthermore, within the same clock
domain, it is possible to specify a sub-domain of operation thus effectively re-
sembling the mesochronous scenario, i.e., same frequency but different phase
offset. Once the compiler performed all the previously described steps, GALS
interfaces are instantiated if required. The ultimate result is the generation of
a SystemC and Verilog netlist at RTL level which describe a GALS system
leveraging mesochronous and dual-clock FIFOs interfaces that can be fed to
the design automation toolchain of the back-end synthesis flow.



50 CHAPTER 4. A DESIGN FLOW FOR GALS NOCS

4.2 The Back-end

Due to the quick pace of lithographic miniaturization, it is nowadays well
known that a number of physical-level process issues related to deep submi-
cron fabrication (such as wire delays and leakage power) are affecting designs.
Understanding these issues is clearly key to tackling them, for example by
compensating them at the architectural level.

In the case of NoCs, the relationship among back-end flows and architectural
design is even stricter, because of several factors:

• One of the main purposes of NoCs is exactly to help in tackling wire-
related physical-level issues.

• NoCs are intended to be large structures, spread across a whole chip. As
such, several design issues, such as clock tree distribution, wire delays
and variability, play a key role in NoCs.

• NoC are also designed to interconnect a large number of heterogeneous
components and devices, each of which could come as a prebuilt, pre-
characterized IP macro. Therefore, it is key to be able to leverage stan-
dard back-end industrial toolchains for NoC design, otherwise the effort
of developing customized infrastructure would be impossible to afford.

As already cited several times throughout this thesis, we focus on standard
cell-based physical implementations only. While full custom design does cer-
tainly improve final results, it does also greatly decrease flexibility and increase
design time.

4.2.1 A Traditional View of the Back-End Design Flow

A traditional back-end design flow based on standard cells is depicted in Figure
4.2. This kind of flow features a streamlined sequence of steps, which are
ideally as much decoupled as possible. The entry point of the back-end design
flow is the outcome of the front-end part, i.e., an RTL netlist generated by the
GALS ×pipesCompiler.

• Starting from a description of the circuit in some RTL language, such as
VHDL or Verilog, logic synthesis is initially performed; this translates
RTL descriptions into a so-called gate-level netlist, i.e., a connected net-
work of basic gates belonging to a technology library. The technology



4.2. THE BACK-END 51

library is an abstracted view of the underlying foundry process, and de-
scribes the basic gates in terms of function (such as boolean gate, flip-
flop, etc., propagation delay, capacitive load, etc. Based on this informa-
tion and on user constraints, a main task of the logic synthesis is to make
sure that the netlist fulfills speed, area and power consumption goals.

• The gates of the netlist are subsequently placed, i.e., mapped onto a can-
vas representing the geometrical shape of the final device - this is typi-
cally a rectangle. Placement involves both a high-level arrangement of
the main functional blocks of the chip (a step often called floorplanning)
and a low-level arrangement of each single gate (detailed placement).

• Finally, the routing step takes care of laying metal lines to attach the
placed gates to each other, so that the circuit can function. During this
stage, some signals (typically, the power supply and the clock) play a
special role, since they must be distributed to a large number of gates
spread all over the chip. Special attention is paid, for example, to the
minimization of the skew in the clock distribution network.

Figure 4.2: A schematic view of a traditional design flow.

Of course, in this reference flow, any constraint violation - such as the im-
possibility to route the wires to connect the gates of the placed netlist, or an
unexpected violation of the required circuit speed - can only be tackled by
feedback loops where one or more steps are repeated again, under different
assumptions.

However, this basic flow is not sufficient any more to deal with today’s tech-
nology, for reasons that will become more clear in the following. A crucial
point of failure is that it becomes increasingly time-consuming, complex, and
potentially even unfeasible, to maintain the strict separation among the steps of
the traditional flow sequence; routing issues are nowadays setting an increas-
ing amount of constraints on feasible placements, and this applies, in turn, to
all the upstream steps of the flow. Therefore, the number of detected violations
and of required feedback loops in physical implementation would become too
large for the traditional flow paradigm to hold without changes. In response to



52 CHAPTER 4. A DESIGN FLOW FOR GALS NOCS

Figure 4.3: The synthesis flow for ×pipes.

this, new solutions must be found, either by actively tackling issues (and NoCs
at large are in some sense doing this, e.g., by simplifying routing through an
architectural breakthrough), or by simultaneously performing multiple steps at
once, with wider constraint visibility.

In the following, we will present an outline of our backend flow, subsequently
focusing our attention on specific portions of the flow which have particular
relevance.

4.2.2 The ×pipes Back-End Infrastructure

In the proposed GALS NoC design and synthesis framework for ×pipes, we
provide a complete back-end flow based on standard cell (Figure 4.3).

First, we perform logic synthesis by utilizing standard Synopsys tools; depend-
ing on the underlying technology library, this step may need be augmented
with placement awareness, as will be discussed in Section 4.2.5. We sup-
port this procedure on 130nm, 90nm and 65nm technology libraries by part-
ner foundries, tuned for different performance/power tradeoffs, with different
threshold and supply voltages.

During synthesis, we can optionally instruct the tools to save power when
buffers are inactive by applying clock gating to NoC blocks. The gating logic
can be instantiated only for sequential cells that feature an input enable pin,



4.2. THE BACK-END 53

����
����
����
����

��������������������
���
���
���
���
�������������������� ������������

����
����
����
����

����������������������
���
���
���
���
����������������������

���
���
���
���

������������������������
����
����
����
����
������������������������

���
���
���
���

������������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

Figure 4.4: Example of the usage of fences in placement. Yellow area (solid pat-
tern): floorplan; red areas (zigzag pattern): hard macros for IP cores; blue areas (brick
pattern): soft macros for NoC components.

which are a large majority of the datapath flip-flops of ×pipes.

We subsequently perform the detailed placement&routing step within either
Cadence SoC Encounter (SOCE). First, we feed SOCE with a coarse floor-
plan, generated either manually or by SunFloor. This floorplan contains hard
macros and soft macros, separated by fences (Figure 4.4). The hard macros
represent cores and memories, and are modeled as black boxes. Hard macros
are defined with a LIBRARY EXCHANGE FORMAT (LEF) file and a Verilog
Interface Logical Model (ILM), and obstruct an area of choice. These boxes
also obstruct some of the metal layers laying directly above; the exact number
of obstructed levels is configurable, depending on how many metal layers the
cores are supposed to require and on whether over-the-cell routing should be
allowed for the NoC wires vs. between-the-cell. Soft macros are also boxes;
they enclose the modules of ×pipes, and the placement tool is allowed to op-
erate within them as long as the fences are not trespassed. By constraining the
placement tool to operate on a “tile” at a time, the solution space is dramati-
cally pruned, and relatively fast runtimes can be achieved. For proper results,
however, it becomes necessary to specify rough timing constraints at the soft
macro boundaries; we achieve this by pre-characterization of the links.

4.2.3 GALS enhancement: Hierarchical Clock Tree Synthesis

After each network block has been placed in the layout, the clock tree must
be inserted. We adopted a bottom-up clock tree insertion methodology in our
GALS design flow. In this respect, we see mesochronous synchronization as a
mean to relieve the burden of chip-wide clock tree distribution and this hierar-



54 CHAPTER 4. A DESIGN FLOW FOR GALS NOCS

chical clock tree synthesis methodology as an effective way of exploiting the
mesochronous link features. Specifically, in a first phase each network switch
is placed and routed in isolation with a given target frequency. The clock tree
of each switch is then synthesized with a tight skew constraint of 5% of the
target clock period. Once the local clock tree is characterized with its input
delay, skew and input capacitance, a macromodel is built in order to be used in
the next design step. Furthermore, in order to implement a hierarchical clock
tree synthesis (see Figure 4.5), a buffer is inserted to the input clock pin of
each switch block.

Figure 4.5: Hierarchical clock tree synthesis.

Once the switches have been placed and routed, they are imported as macro
blocks in the main network design along with their libraries detailing both
timing and physical characteristics. The next step consists of performing a top-
level clock tree synthesis by leveraging the switch macromodels previously
extracted. In fact, this model can be used to characterized the bottom clock
tree given that these local clock trees will not be modified by the place&route
tool. Therefore, in order to preserve the clock tree local to the switches, a
PreservePin tag must be used in the CTS specification file.

Listing 4.2: Example topology description file.

#REQUIRED FOR HIERARCHICAL CTS
MacroModel port switch_2x2_6_0/clk 414.7ps 357.2ps 423ps 365.2ps 0fF
MacroModel port switch_2x2_6_1/clk 483.4ps 458ps 440.6ps 418.4ps 0fF

# Sample Route Type Command
RouteTypeName CK1
#NonDefaultRule rule1



4.2. THE BACK-END 55

PreferredExtraSpace 1
TopPreferredLayer 4
BottomPreferredLayer 3
# Shielding vdd gnd
End

AutoCTSRootPin clk
Period 2ns
MaxDelay 1ns
MinDelay 0ns
SinkMaxTran 300ps
BufMaxTran 500ps
MaxSkew 100ps
NoGating rising
MaxDepth 1024
RouteType CK1
DetailReport YES
RouteClkNet NO
PostOpt YES
OptAddBuffer YES
Buffer HS65_LL_BFX18 HS65_LL_BFX27 HS65_LL_BFX35

HS65_LL_BFX44 HS65_LL_BFX53 HS65_LL_BFX71
#REQUIRED FOR HIERARCHICAL CTS
PreservePin
+ xpswitch_0/clk
+ xpswitch_1/clk

End

This information is used by the clock tree synthesis (CTS) tool to infer a
top clock tree balancing the leaves with a much looser skew constraint (e.g.,
30/40%). The ultimate result is a global clock tree which consumes less power
with respect to the traditional one generated by enforcing chip-wide skew con-
straints. An example of a clock tree synthesis specification file is reported in
the Listing 4.2.

At this point, the power supply nets are added. Two main schemes are avail-
able. Traditionally, power rings (metal lines carrying the power supply volt-
ages) are laid around the die; as an alternative, a power grid can be laid across
the chip in the topmost metal layers. The latter choice requires more metal
resources, but minimizes IR drops (voltage drops and fluctuations due to re-
sistive effects in the supply networks and to the current draw). Therefore, we
choose power grids, so as to maximize voltage stability.

4.2.4 Routing

Next, the routing tool begins to route the logic wires. An initial heuristic
mapping lays the wires; this initial solution is semi-random and almost cer-
tainly violates essential constraints, such as that of not shorting different wires.
Therefore, SEARCH&REPAIR (SR) loops are executed to fix any violations,
including those regarding excessive propagation delays.

Post-routing optimizations are then performed. This stage includes crosstalk
minimization, antenna effect minimization, and insertion of filler cells. Fi-



56 CHAPTER 4. A DESIGN FLOW FOR GALS NOCS

nally, a sign-off procedure can be run by using Synopsys PrimeTime [86] to
accurately validate the timing properties of the resulting design.

Post-layout verification and power estimation is achieved as follows. First, the
netlist representing the final placed&routed topology, including accurate delay
models, is simulated by injecting functional traffic through the OCP ports of
the NIs. This simulation is aimed both at verifying the functionality of the
placed fabric and at collecting a switching activity report. At this point, ac-
curate wire capacitance and resistance information, as back-annotated from
the placed&routed layout, is combined with the switching activity report using
Synopsys PrimeTime [86]. The output is a layout-aware power/energy estima-
tion of the simulation.

4.2.5 Placement-Aware Logic Synthesis

As mentioned above, the traditional flow for standard cell design features logic
synthesis and placement as two clearly decoupled stages. In [93], authors show
that this standard design flow achieves reasonable results for 130nm and 90nm
NoC designs, but we have found the situation to be substantially different at
the 65nm node.

The origin of the problem lies in the decoupling of the two steps. Synthesis and
placement could be considered as independent when wire delays were negli-
gible; this is unfortunately not the case anymore [89]. Since wire delays can
be comparable to logic delays, if not larger, it is crucial to be able to estimate
wire delays already during synthesis. Since wire delays depend directly on
wire length, it is clear that placement algorithms are also unfortunately affect-
ing the solution space of synthesis algorithms.

To alleviate the problem, wireload models have been introduced. Wireload
models are pre-characterized equations, supplied within technology libraries,
that attempt to predict the capacitive load that a gate will have to drive based
on its fan-out and on the overall design area. Unfortunately, wireload models
remain a statistical representation of the physical reality, and are therefore an
inaccurate tool to predict delays on a single net basis, given that each net could
exhibit a different behavior. In our 65nm tests, we experience unacceptable
performance degradation due to either under- or over-estimations of wire loads.
Even when synthesizing single NoC modules (i.e., even without considering
long links), the logic synthesis tools generate a netlist with the expectation of
some operating frequency; however, after placement, the actually reachable
frequency is often up to 30% worse (and even lower after the routing phase).



4.3. SUMMARY 57

Furthermore, sometimes placement and routing tools simply do not converge
towards any solution at all, trying in vain to match the expectations set by the
logic synthesis step.

To address this issue, NoC synthesis in 65nm requires placement-aware logic
synthesis tools, such as Synopsys Physical Compiler [86]. Therefore, in the
proposed NoC back-end flow, after a very quick initial logic synthesis based on
wireload models, the tool internally attempts a coarse placement of the current
netlist. Next, it iteratively optimizes the netlist and the placement, based on the
actual wire loads implied by the current candidate placement. The outcome is
a placed netlist that is optimized also accounting for wire delays.

We also observe in our study of NoC synthesis that other issues may arise when
placing gates into soft macros. For example, in our test designs, placement
tools perform poorly when modules have to be placed within fences which are
either too small or too wide. While the former case is clearly understandable,
we attribute the unexpected latter effect to the placement heuristics, which
are probably performing worse when the solution space becomes very large.
The problem must be solved by proper tuning of the spacing among the soft
macro fences and, consequently, accurate area models of the NoC modules are
required to avoid very time-consuming iterations.

4.3 Summary

In this chapter, the Network-on-Chip design flow extensions towards the
GALS design style has been illustrated. In particular, this chapter described
the enhancement required by this existing design flow in order to become
suitable for the building process of GALS systems. From an implementa-
tion viewpoint, the ×pipescompiler has been augmented with GALS interfaces
and its specification file format changed according to the new requirements.
Furthermore, a hierarchical clock three synthesis strategy (CTS) has been im-
plemented in order to fully exploit the mesochronous link characteristics. In
fact, this methodology turns out to be key when designing a system in 65nm
and beyond under a relaxed synchronization assumptions. Overall, the new
design flow described in this chapter will be utilized in the next chapter for
the comparison of two GALS systems: one implementing a fully synchronous
NoC and another implementing a mesochronous one.





5
Contrasting Synchronous vs.

Mesochronous Networks-on-Chip

THIS chapter performs a cross-benchmarking between two GALS sys-
tems. The first leverages a fully synchronous NoC while the second im-

plements a mesochronous NoC. Both systems leverage dual-clock FIFO
interfaces to provide frequency decoupling between the NoC and the compu-
tational units. While the former chapters focused on a switch-level analysis
of such GALS systems, in the following, a network-level perspective will be
taken. Furthermore, both systems will be compared from many viewpoints
such as: clock tree power, area/wiring overhead, power consumption and vari-
ability robustness viewpoint.

5.1 Introduction

Networks-on-chip (NoCs) are proving capable of easing the communication
bottleneck arising in multi-core computing platforms [56, 57, 62, 130], thus
overcoming the fundamental performance, power and physical design limita-
tions of shared and multi-layer buses. Furthermore, as we have discussed in the
previous chapters, there is today little doubt on the fact that a high-performance
and cost-effective NoC can only be designed in 45nm and beyond under a re-
laxed synchronization assumption [62, 118]. It has been discussed that one ef-
fective method to address this issue is through the use of globally asynchronous
and locally synchronous (GALS) architectures, where the chip is partitioned
into multiple independent voltage and frequency domains. Each domain is
clocked synchronously while inter-domain communication is achieved through
specific interconnect techniques and circuits [61].

There are several approaches to design GALS architectures, one consists of

59



60
CHAPTER 5. CONTRASTING SYNCHRONOUS VS. MESOCHRONOUS

NETWORKS-ON-CHIP

using purely asynchronous clock-less handshaking for transferring data words
across clock domains [63, 65]. There are a few chip demonstrator proving
the viability of such solution such as [58–60], but they have not achieved
widespread adoption of asynchronous NoCs in the industrial arena yet. In
fact, asynchronous handshaking techniques are complex and use unconven-
tional circuits (e.g., Muller C-elements) usually unavailable in industrial tech-
nology libraries. Moreover, asynchronous logic is not well supported by CAD
tools. In this context, the most effective solution found so far for actual chip
fabrication and industry-relevant designs consists of implementing routers and
GALS interfaces as hard macros using ad-hoc design styles [60]. However, the
hard macro methodology is more a way of working around the lack of proper
design and verification tools and thus guaranteeing performance during physi-
cal implementation rather than a way of optimizing area. In fact, area remains
consistently larger than fully synchronous NoC counterparts (1.8× in [60]).

What is currently missing in the open literature, as well as in the industrial pro-
totyping experience, is a mature GALS NoC architecture making use of source
synchronous communication techniques. This method achieves high efficiency
by obtaining an ideal throughput of one data word per source clock cycle with
a design style which is more easily compatible with common standard cell de-
sign flows. In spite of a few early works taking this approach [55, 72], such
GALS design style has not been consistently brought to maturity over time,
thus reducing source synchronous communication to a nice concept with only
a limited relevance for real-life designs. For instance, the area and latency
overhead associated with the use of synchronizers has never been tackled in
a systematic way, and even advanced industrial research prototypes, such as
the Intel Polaris chip [130], live with such an overhead. As a consequence,
source synchronous communication has never truly evolved from a concept to
a mature technology.

The work presented in chapter 3 bridged this gap and developed communi-
cation interfaces for enabling a synchronizer-based GALS NoC technology.
In particular, design techniques merging synchronizers with network building
blocks (named the tightly coupled design style) have proved area, power and
performance efficient with respect to loosely coupled solutions, where syn-
chronizers are placed as external blocks to NoC switches. All previous work
concerns architecture design space exploration and quality metrics assessment
of synchronizer-based communications at the switch level.

This chapter builds on these milestones and moves a step forward by taking
the network-level perspective. While the migration from fully synchronous



5.1. INTRODUCTION 61

parallel systems to GALS systems with voltage/frequency decoupling between
IP cores is taken as a matter of fact in this chapter, there are significant GALS
NoC architecture variants the designer can still choose from. The first one
consists of placing NoC switches in the clock domains of the IP cores they
are connected with. In contrast, an alternative solution consists of instantiating
the on-chip network as an independent clock domain, disjoint from those of
the IP cores. In this scenario, dual-clock FIFOs need to be instantiated only
at the network boundary, since the network is synchronized by a single and
independent clock signal. The homogeneous performance of NoC switches,
the fewer amount of dual-clock FIFOs required and the possibility to have an
always on system interconnect fabric make this solution more attractive for our
work. However, the feasibility and efficiency of this solution is now mainly on
burden of the physical designer. In fact, he has to deal with a large synchronous
clock domain (the NoC itself) distributed throughout the entire chip.

A workaround for this problem consists of designing the network as a set of
mesochronous domains, instead of a global synchronous domain, yet retaining
a globally synchronous perspective of the network itself. The granularity of
a mesochronous domain can be as fine as a NoC switch, which is the case
considered in this chapter. The communication between neighboring switches
is then mesochronous as the top-level clock tree might not be equilibrated. This
brings the additional advantage that mesochronous synchronizers are typically
more lightweight than dual-clock FIFOs for use in switch-to-switch links.

The main contribution of this chapter is a comprehensive crossbenchmarking
of a mesochronous NoC with a fully synchronous NoC to be used in a GALS
system. Both networks share the same baseline MPSoC-oriented NoC archi-
tecture for the sake of fair comparison. The tightly coupled design principle
is followed for mesochronous links, so that their unique optimization oppor-
tunities in the NoC domain are fully exploited. The chapter relies on actual
implementations on a 65nm industrial technology library and provides the as-
sessment of a wide range of design quality metrics, some of them of special
interest for nanoscale silicon technologies: performance, area, power, robust-
ness to process variations and clock tree synthesis efficiency.

This chapter is structured as follows: the target GALS architecture is described
in Section 5.2 whereas the synthesis strategy of the platforms under analysis is
detailed in Section 5.3. Experimental results are presented in Section 5.4 while
robustness to process variations is assessed in Section 5.5. Finally, Section 5.6
summarizes the contributions of this chapter.



62
CHAPTER 5. CONTRASTING SYNCHRONOUS VS. MESOCHRONOUS

NETWORKS-ON-CHIP

VOLTAGE AND FREQUENCY ISLAND

CORE

NETWORK INTERFACE

SWITCH SWITCH

SWITCHSWITCH

DC_FIFOs

VOLTAGE AND FREQUENCY ISLAND VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

(a) The NoC is split into multiple VFIs.

SYNCHRONOUS NoC

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

CORE

NETWORK INTERFACE

DC_FIFO

DC_FIFO

SWITCH SWITCH

SWITCHSWITCH

(b) The NoC is a global clock domain.

MESOCHRONOUS

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

CORE

NETWORK INTERFACE

DC_FIFO

DC_FIFO

SWITCH SWITCH

SWITCHSWITCH

MESOCHRONOUS NoC

SYNCHRONIZERS

(c) Mesochronous NoC for GALS systems.

Figure 5.1: Paradigms for GALS synchronization.

5.2 Target GALS Architectures

A GALS-based design style fits nicely with the concept of voltage and
frequency islands (VFIs), which has been introduced to achieve fine-grain
system-level power management and is currently driving the transition of most
MPSoCs to GALS systems. In these systems, if network components belong to
the core’s VFIs as in Figure 5.1(a), then performance of communication flows
would be determined by the slowest domain crossed on the way to destination.
Moreover, in case a VFI is shut down, global connectivity is jeopardized.

An alternative solution is illustrated in Figure 5.1(b), where the NoC lies in its
independent VFI. This way, performance of the whole switching fabric would
be homogeneous, with only boundary effects to take care of. Moreover, the
network would be loosely coupled with the cores’ VFIs, and each core/cluster
of cores could be shutdown without any impact on global network connectivity.

The main issue with an independent NoC VFI lies in the feasibility of its clock



5.2. TARGET GALS ARCHITECTURES 63

tree. The reverse scaling of interconnect delays and the growing role of pro-
cess variations are some of the root causes for this. Even though inferring a
global clock tree for the entire network will still be feasible for some time, it
will probably come at a significant power cost. Moreover, it is unclear when
the difficulty of tightly and globally enforcing the skew constraint, will truly
become a roadblock.

However, a workaround for this problem does exist, as illustrated in Figure
5.1(c). The network could be inferred as a collection of mesochronous do-
mains, instead of a global synchronous domain, yet retaining a globally syn-
chronous perspective of the network itself. There are several methods to do
this. One simple way is to go through a hierarchical clock tree synthesis pro-
cess. In practice, a local clock tree is synthesized for each mesochronous do-
main, where the skew constraint is enforced to be as tight as in traditional
synchronous designs. Then, a top-level clock tree is synthesized, connecting
the leaf trees with the centralized clock source, with a very loose clock skew
constraint. This way, many repeaters and buffers, which are used to keep sig-
nals in phase, can be removed, reducing power and thermal dissipation of the
top-level clock tree. The granularity of a mesochronous domain can be as fine
as a NoC switch block.

The communication between neighboring switches is then mesochronous as
the clock tree is not equilibrated, while the communications between switch
and IP cores are fully asynchronous because they belong to different clock
domains. Bi-synchronous FIFOs are therefore used to connect the network
switches to the network interfaces of the cores, as showed in Figure 5.1(c).

This synchronization paradigm comes with additional advantages. First, it
makes a conscious use of area/power-hungry dual-clock FIFOs, which end
up being instantiated only at network boundaries. Instead, more compact
mesochronous synchronizers are used inside the network, thus minimizing the
cost for GALS technology.

5.2.1 The dual-clock FIFO overhead

When comparing the schemes in Figure 5.1(a) and Figure 5.1(c), it should
be observed that mesochronous NoCs are the reference solution for ultra-low
cost synchronizer-based GALS systems. In fact, they make a conscious use
of area/power-hungry dual-clock FIFOs, which end up being instantiated only
at network boundary. Instead, more compact mesochronous synchronizers are
used inside the network, thus minimizing the area and latency overhead.



64
CHAPTER 5. CONTRASTING SYNCHRONOUS VS. MESOCHRONOUS

NETWORKS-ON-CHIP

In order to give a more quantitative estimation of this, let us compare four
NoC switch variants engineered to support different synchronization schemes.
The baseline switch is from the ×pipesLite architecture [92]. Its input stages
have been augmented at first with a mesochronous 3-slot buffer interface and
able to tolerate 100% positive and negative skew, and then with a dual-clock
FIFO from [2]. This latter needs a 5-slot buffer in order to support frequency
decoupling between a transmitter and a receiver while retaining the capability
of full throughput operation.

 0

 0.5

 1

 1.5

 2

 2.5

vanilla 3slot-meso 4slot-fifo 5slot-fifo

N
o

rm
a

li
z
e

d
 A

re
a

Figure 5.2: Switch area occupancy with different synchronization interfaces.

However, [2] also proves that a specialized 4-slot dual-clock FIFO architecture
suffices for operation in a mesochronous environment. Both the baseline dual-
clock FIFO architecture and the specialized one have been considered in the
area comparison illustrated in Figure 5.2, reflecting synthesis results on 65nm
STMicroelectronics technology. Even the specialized dual-clock FIFO is al-
most 40% more area expensive than the mesochronous solution. Obviously,
the reason stems from the fact that the dual-clock FIFO has been natively con-
ceived for a multi-frequency application domain whereas the mesochronous
interface is designed ad-hoc for the scenario under investigation (same clock
frequency, unknown phase offset) and requires less control logic.

It should also be observed that in future technology nodes the complexity of
dual-clock FIFOs is expected to further increase. In fact, based on [64] the res-
olution time constant of synchronizers does not scale proportionally to the gate
delay FO4. In contrast, experimental measurements have proven its degrada-
tion. The ultimate implication is that brute-force synchronizers, that are often



5.3. SYNTHESIS OF GALS PLATFORMS 65

employed as a building block of dual-clock FIFOs, will require more cascaded
flip flops to resolve metastability in future technology nodes, hence degrading
area and synchronization latency. In order to preserve full throughput oper-
ation, also the number of buffer slots will need to be increased, thus further
increasing the area overhead of the dual-clock FIFO.

Finally, the comparison between the synchronization latency of mesochronous
vs dual-clock FIFO synchronizers is cleary in favour of mesochronous ones
(see [2] for details), thus making the point for a conscious use of dual-clock
FIFOs in GALS NoCs.

The above area and latency considerations suggest that the solutions to be con-
sidered for ultra-low cost GALS NoCs are those in Figure 5.1(b) and Figure
5.1(c). In the remainder of this chapter, those architectures will be compared
with layout accuracy on the same 65nm STMicroelectronics technology.

5.3 Synthesis of GALS Platforms

Both the synchronous and the mesochronous platforms have been designed to
be seamlessly integrated in an industrial design flow using commercial tools
for physical synthesis without requiring full custom components.

The reference topology of our experiment is a 4x4 mesh network where each
switch is connected to either a core or a memory (of size 1.5mm). As far as the
physical synthesis is concerned, the same bottom-up methodology has been
utilized for both platforms. Specifically, each network switch has been placed
and routed in isolation with a target frequency of 500MHz. The clock tree of
each switch has been synthesized with a tight skew constraint of 5% of the
target clock period. Once the local clock tree is characterized with its input
delay, skew and input capacitance, a macromodel is built in order to be used in
the next design step. Furthermore, in order to implement a hierarchical clock
tree synthesis, a buffer has been inserted to the input clock pin of each switch
block. Once the switches have been placed and routed, they are imported as
macro blocks in the main network design along with their libraries detailing
both timing and physical characteristics. The next step consists of performing a
top-level clock tree synthesis by leveraging the switch macromodels previously
extracted. In fact, this model can be used to characterized the bottom clock
tree given that these local clock trees will not be modified by the place&route
tool. Therefore, in order to preserve the clock tree local to the switches, a
PreservePin tag must be used in the CTS specification file.



66
CHAPTER 5. CONTRASTING SYNCHRONOUS VS. MESOCHRONOUS

NETWORKS-ON-CHIP

Of note, the hierarchical CTS has been used both for the synchronous and
the mesochronous platforms, since this is a standard methodology for parallel
hardware platforms. The only difference is the skew constraint in the top level
clock tree, which can be loosened for the mesochronous design while should
be tightly enforced for the synchronous one.

Final step of our hierarchical methodology consists of routing the switch-to-
switch links and performing parasitics extraction for accurate static-timing
analysis and power estimation. Timing closure for both the synchronous and
mesochronous NoC has been achieved at 500 MHz by performing exactly the
same physical synthesis steps.

5.4 Experimental results

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

4x4 Synch. Mesh 4x4 Mesoch. Mesh

Total Area of Standard Cells
Total Wire Length

Figure 5.3: Area and wiring overhead for the mesochronous NoC.

5.4.1 Area and Wiring Overhead

Figure 5.3 reports post-place&route area and wiring statistics for the architec-
tures under analysis. From an area viewpoint, both systems exhibit the same
footprint. More in detail, the baseline architecture (i.e., the fully synchronous
mesh) features a 2-slots input and 6-slots output buffers. On the other hand,
its mesochronous counterpart has 3-slots input buffer and exactly the same
amount of output buffering. Nonetheless, the area overhead is identical. This



5.4. EXPERIMENTAL RESULTS 67

is due to the fact that synchronization mechanisms, tightly coupled in the in-
put buffer, are implemented using latch banks, which require a smaller area
footprint compared to the flip-flops adopted in the input buffer of the baseline
architecture. The ultimate result is an equal area occupation in both platforms.

From the wiring point of view, a 23% net saving is achieved by the fully syn-
chronous platform. The reason lies in the fact that the mesochronous platform
features an additional clock wire per output port utilized as strobe signal for
data synchronization and a further external single bit synchronizer for back-
ward flow control synchronization instantiated in each of the 48 switch–to–
switch channels of the network. Last but not least, the slightly more complex
network topology contributes to a more complex structure of the clock tree.

5.4.2 Power analysis

By leveraging post-layout netlists and back-annotated switching activity, we
were able to achieve very accurate power figures with Synopsys Prime-
TimePX. Figure 5.4 reports power consumption of both fully synchronous and
mesochronous networks. Idle power plays in favor of the fully synchronous
network. This is mainly due to the additional switch–to–switch clock wire
used as strobe signal for data synchronization. This result calls for further evo-
lution of mesochronous NoC technology, to implement a form of clock gating
on these lines.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

idle locality
bit rotation

uniform
hot spot

n-compl

N
o

rm
a

liz
e

d
 P

o
w

e
r 

C
o

n
s
u

m
p

ti
o

n

4x4 synchronous
4x4 mesochronous

-19%     

-3%    
1%

2%

6%
8%

Figure 5.4: Power consumption in idleness and under various traffic patterns..

On the other hand, when stimulating the networks with several traffic patterns,



68
CHAPTER 5. CONTRASTING SYNCHRONOUS VS. MESOCHRONOUS

NETWORKS-ON-CHIP

the mesochronous Network-on-Chip generally exhibits a smaller power con-
sumption with respect to the fully synchronous one. The reason lies in the
inherent architectural difference between the input buffer of the mesochronous
switch and of the synchronous one. In this latter, both flip-flop banks are trig-
gered at each clock cycle. Conversely, latch banks of the mesochronous input
buffer are selectively triggered by an enable signal driven by a counter. The
power gap may be bridged by clock gating also the synchronous NoC, however
the key take-away is that the mesochronous NoC does not imply any significant
dynamic power overhead.

A further demonstration of this comes from Figure 5.5, where power of the
NoC architectures under test is presented when carrying the traffic of a full-
HD video playback application for mobile devices. Extrapolating the usage
scenarios of existing smart phones, one can imagine that in some years from
now, larger resolutions and even full HDTV resolution may be expected. In
this experiment, communication requirements of an Infineon video playback
application have been scaled up to the high-end HDTV resolution (1920x1080
pixel) with 60 frames/second in true colour. The application is partitioned into
16 cores and mapped onto a 4x4 2D mesh.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

4x4 synchronous 4x4 mesochronous

P
o

w
e
r 

C
o

n
s
u
m

p
ti
o
n
 [
W

]

clock network
register

combinational
sequential

Figure 5.5: Power consumption of an industrial Full-HD Video playback application.

Results in Figure 5.5 show that even the gating-unoptimized mesochronous
NoC is slightly more power efficient, proving that under realistic traffic pat-
terns the stand-by power overhead is mitigated and there is no overhead with
respect to a synchronous NoC. In the breakdown, the largest contribution of
the clock network in the mesochronous NoC accounts for the strobe signals



5.4. EXPERIMENTAL RESULTS 69

of source-synchronous links. Overall, this does not increase total power be-
cause the lower power of latches and the lower contribution of combinational
logic offset this effect. Interestingly, crossbar area (and power) is more relaxed
in the mesochronous NoC since latches in the input buffer can perform slack
borrowing from the link.

With a mesochronous NoC, an interesting opportunity pointed by [50, 53, 73]
is to exploit hierarchical clock tree synthesis to reduce power of the top level
clock tree. The tuning knob to materialize power savings is the relaxation
of the skew constraint, so that less buffers are instantiated in the top-level
tree. However, the effectiveness of this technique has never been validated
nor quantified on an actual NoC setting with a parametric sweep of the skew
constraint. first time, we experimented this on the 4x4 mesochronous mesh.
We experimented this on the 4x4 mesochronous mesh by incrementally relax-
ing the skew constraint. Given the relatively small system size, we constrained
the top level tree to be placed and routed outside IP core area, which captures
the challenging requirements of many real-life MPSoC designs

 0

 5

 10

 15

 20

 25

 30

0ps 10ps 50ps 100ps 200ps 500ps 1000ps 2000ps10000ps

T
o
p

-l
e
v
e
l 
C

lo
c
k
 T

re
e

 P
o

w
e
r

19.21% 19.21%

16.05%
16.83%

16.47%
16.8%

12.86%12.86% 12.86%

NetSwitchPower
InstInternalPower

LeafPinInternalPower

Figure 5.6: Power of the top level clock tree as a function of required skew.

Power of the top-level clock tree is reported in Figure 5.6 as a function of the
required clock skew, ranging from 0 to 10000 ps. Transition time constraints
are set to be very tight for the CTS tool (Cadence SoCEncounter). The per-
centage on top of the bars indicates the impact of the top level tree on the total
clock tree power. We can see that power of the top level tree can be decreased
by up to 40%, from roughly 25mW to 15mW. Also, the impact of the top level
tree on total clock tree power can be as large as 20%.



70
CHAPTER 5. CONTRASTING SYNCHRONOUS VS. MESOCHRONOUS

NETWORKS-ON-CHIP

Figure 5.6 may be misleading. In fact, the required skew does not keep up
with the actually enforced skew by the CTS tool. When 2000 ps or more were
required, the achieved clock skew saturates at about 600ps. Power savings
could be even more than those reported if only the CTS tool was able to infer
larger skews while saving clock tree area. Unfortunately, the CTS has not been
natively conceived for this, but rather for the opposite: minimizing the skew.

Required Skew Actual Skew Top tree Power % of Total clock tree
10ps 320ps 64.817mW 13.93%

1000ps 973ps 61.307mW 13.17%

Table 5.1: Top Clock Tree Power for a 64 cores system.

There is another effect that becomes apparent when the same experiment is
performed on an 8x8 2D mesochronous mesh with 64 cores. Results are re-
ported in Table 5.1. The CTS tool was not able to meet the required upper
bound on the skew of the top level clock tree. When 10 ps were required, the
actual skew resulted 320 ps. The clear message here is that as the system size
becomes large and (not showed here) feature sizes shrink, it will become im-
possible to meet the desired skew constraint in the top level clock tree. This
calls for a skew absorbing mechanism in the NoC architecture.

5.5 Variability robustness

 0

 20

 40

 60

 80

 100

Synchronous Mesochronous

s
k
e

w
 (

\%
 o

f 
th

e
 c

lo
c
k
 p

e
ri
o

d
)

max negative skew
max positive skew

Figure 5.7: Skew tolerance with slack (enforced by the physical synthesis tool).



5.5. VARIABILITY ROBUSTNESS 71

 0

 20

 40

 60

 80

 100

Synchronous Mesochronous

s
k
e

w
 (

\%
 o

f 
th

e
 c

lo
c
k
 p

e
ri
o

d
)

max negative skew
max positive skew

Figure 5.8: Skew tolerance with no slack.

In order to prove robustness to timing uncertainties of the platforms under test,
we performed the following experiment. We synthesized, placed and routed
two synchronous vs two mesochronous 5x5 switches placed 1.5mm far apart,
like in the global platforms. Each switch has its own input pin for the bot-
tom level local clock tree. We manually injected positive vs. negative skew
between these two clock pins, thus analyzing the skew tolerance of the two
designs to uncertainties in the top-level clock tree. The motivation lies in the
fact that the two architectures differ only in the switch interfaces, therefore
variability effects affecting internal switch gates and/or nets are likely to have
the same impact on the designs under test. Validation of this is left for future
work. So, let us focus on uncertainties affecting the top-level tree.

The skew tolerance of the two designs is reported in Figure 5.7. The syn-
chronous design has some margins both for positive and negative skews, before
violating the hold time and the setup time constraints respectively. However,
the margins of the mesochronous design are much larger and approach 90% of
the clock period. The positive skew tolerance is larger since the interconnect
delay consumes part of the negative skew margins of the mesochronous link.

The above experiment suggests that the designs have some slack with respect
to the target speed of 500 MHz they were synthesized for. Therefore, we re-
peated the experiment running the synthesized designs at their maximum oper-
ating speed, and evaluating skew tolerance in that operating point. In practice,
slack was nullified and the actual skew tolerance of the designs was calculated.

The new results are reported in Figure 5.8. Now, the synchronous design has



72
CHAPTER 5. CONTRASTING SYNCHRONOUS VS. MESOCHRONOUS

NETWORKS-ON-CHIP

clearly null negative skew, since the negative skew directly impacts the critical
path. This latter goes from the output buffer of the upstream switch to the in-
put buffer of the downstream switch going through the switch-to-switch link.
A certain tolerance to the positive skew is however always there. In contrast,
the mesochronous design features an excellent robustness to both positive and
negative skew, meaning that such robustness is intrinsic of the architecture.
The reason is that as the skew becomes increasingly relevant, a different crit-
ical path with respect to the one constraining the operating speed shows up
and causes failure. The skew does not directly affect the frequency-limiting
path delay, but makes a non-critical path become critical. The zero-skew dif-
ference between the delay of the two paths is the inherent skew tolerance of
the mesochronous design.

The indications of these experiments have a number of implications:
- for a given target frequency of the NoC (dictated by system considerations),
a mesochronous NoC can guarantee timing closure at that speed even though
the CTS tool is not able to constrain the skew of the top-level clock tree (like
in the 64-core system). In contrast, the synchronous NoC is directly exposed
to such top level clock tree skew.
- for a given target frequency, the mesochronous NoC will certainly prove
more robust to process variations affecting the top-level clock tree. In fact,
the ultimate effect of variability will be an unexpected skew deviation with
respect to the CTS tool statistics, a deviation that the mesochronous NoC can
better absorb compared to the synchronous counterpart.

The above findings on process variation tolerance are now validated by means
of a real injection experiment of process variations in the top level clock tree of
a 4x4 2D mesh. Recently, a methodology for characterizing variability in NoC
links was proposed [6]. The detailed variability model used in that work was
later extended to NoC routers in order to analyze how process variation simul-
taneously affects both components of the network [33]. This new model takes
into account, at the same time, systematic and random front-end variations due
to, respectively, defects in the photolithographic process and deviations in the
threshold voltage due to Random Dopant Fluctuations (RDF). The main use
of this model is to generate many instances of a given chip and statistically
analyze how process variation affects that particular design.

In our work, this model has been enhanced to consider back-end variability due
to resistance variations introduced by the chemical metal planarization process
(CMP) in wire dimensions. Concretely, the effect of metal thickness variations



5.5. VARIABILITY ROBUSTNESS 73

in wire resistance has been introduced. According to the predictions of the
ITRS, expected variations of the metal thickness will be lower than 10% (3σ).
Note that in agreement with other studies, the effect of capacitance variations
in NoC links is not considered [6] [34]. For those wires of a link routed in the
same layer the same variation to the metal thickness has been applied. This
behavior has been considered to satisfy the strong spatial correlation present
in the variations introduced by the CMP process.

Figure 5.9 shows the probability density function (pdf) of the maximum
achievable frequency of both synchronous and mesochronous designs when
variations are injected to the nominal design. The variations injected are
both systematic and random. Concretely, the variability sources considered
are: transistors channel length (3σLeff = 12%), threshold voltage 3σVth =
33%, 58%, and the metal thickness 3σt = 10%. These values reflect expected
variations for a 45nm technology node [89].

Results confirm that for the synchronous design the variability injected in the
clock tree has a considerable impact on the maximum achievable frequency.
Concretely, we have measured a standard deviation of the maximum frequency

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14
Probability density function of Design frequency

Normalized frequency

P
e

rc
e

n
ta

g
e

 

 

synchronous high random

synchronous low random

mesocrhonous

Figure 5.9: Variability-induced percentage deviations of maximum speeds of the de-
signs under test with respect to nominal ones.



74
CHAPTER 5. CONTRASTING SYNCHRONOUS VS. MESOCHRONOUS

NETWORKS-ON-CHIP

equal to 6.8% and 6.2% for the cases of low and high random variations, re-
spectively. Note that differences in the pdf for high and low random variation
are minimum. This can be explained by the fact that random variations do
not have a significant impact in the top level clock tree, thanks in part to the
large size of the clock buffers. On the contrary, the mesochronous design is
clearly able to absorb the variations introduced in the clock tree, since it is
able to preserve the nominal frequency in all cases. Obviously, since the clock
skew directly impacts the critical path of the synchronous design, it is some-
times possible that this latter works at a higher speed of the mesochronous
one (depending on the sign of the skew), however this argument is not able to
counter the conclusion: the mesochronous NoC proves more robust to process
variations in the top-level clock tree.

5.5.1 Performance considerations

As we have seen in Chapter 3, the implemented hybrid coupling mesochronous
synchronizer is perfectly integrated with the existing switch architecture. The
ultimate purpose of such new input buffer is threefold: buffering, flow control
and data synchronization. Therefore, comparing the fully synchronous and
the new mesochronous switch, the only notable difference resides in the input
buffer architecture. From a latency viewpoint, let us first analyze what happens
in a typical synchronous scenario. In the xpipesLite architecture, the fully syn-
chronous switch is single cycle. Therefore, a switch–to–switch data transmis-
sion requires 1 clock cycle to cross the link channel and a further clock cycle
for the switch traversal. In order to cover the same path, the GALS switch re-
quires from 1 to 3 clock cycles depending on the skew condition (that could be
either negative or positive). As we already proved in Section 5.5, both systems
are able to tolerate a certain amount of skew. Nonetheless, when the amount
of skew is such that the mesochronous switch spends an additional clock cy-
cle for data synchronization, the fully synchronous switch has already failed.
The ultimate conclusion is that when both systems are able to work with the
same amount of skew, the average cycle latency is exactly the same. When
the skew is such that a further cycle has to be devoted to data synchronization,
only the mesochronous architecture can keep working without any failure in
that operating condition.



5.6. SUMMARY 75

5.6 Summary

By capitalizing on mature mesochronous technology, this chapter compares a
mesochronous NoC and a fully synchronous NoC for use in a synchronizer-
based GALS system. Both NoCs have dual-clock FIFOs at the boundary for
frequency decoupling with IP cores. The lesson learned from this experi-
mental work can be summarized as follows: 1) A fully synchronous NoC
can be evolved to a mesochronous NoC with no area, latency and dynamic
power penalties because of the hybrid coupling design style. In contrast,
a 20% higher standby power is incurred because of the transmitted and
continuously switching clock signals in source synchronous links. This calls
for future work on clock gating techniques for such links. 2) Power savings
in mesochronous NoCs can be actually achieved by means of hierarchical
clock tree synthesis, although they are not significant yet, for a number of
concurrent reasons. First, there is a gap between required maximum skew
and the obtained one, since the CTS tool has been conceived for minimizing
skew, and not for increasing it. Therefore, to take full advantage of this
effect, CTS tools should be customized accordingly. On the other hand, when
tight skew constraints are required under challenging physical and timing
constraints, the CTS tool is not able to meet the target and therefore clock
tree power does not increase a lot. In practice, this means that with current
CAD tools it will become rapidly impossible to enforce tight skew constraints
in the top level clock tree. Under these operating conditions, it is important
to have an underlying architecture with inherent skew robustness. In our
experiments, mesochronous NoCs prove capable of meeting this requirement.
3) As technology keeps scaling to the nanoscale era, process variations
become increasingly important. In this chapter, we assess their effects when
affecting the top level clock tree, thus experimenting the variability robustness
of switch interfaces. The mesochronous NoC exhibits an inherent robust-
ness to such delay uncertainties, since the critical path that constraints the
operating speed is not directly impacted by the skew of the top level clock tree.





6
Layout-Aware Exploration

of 16-tile systems

THIS chapter explores the performance and physical feasibility of 16-
tile Networks-on-Chip within several topology configurations. It is the

first chapter where our “system- to layout-level” approach for assess-
ing NoC topologies is presented. In fact, our analysis framework encom-
passes different levels of abstraction as physical key parameters from syn-
thesis and place&route process are first calculated and then exposed to our
system level simulation infrastructure thus materializing in a system-level per-
formance analysis with realistic layout-awareness.

The first part of this chapter presents our topology exploration framework
along with the general backend synthesis methodology that has been adopted
to carry out post-layout analysis of all the investigated topologies. Next, two
important topology families (i.e., multi-dimensional and multi-stage topolo-
gies) have been analyzed in detail with the aforementioned design flow show-
ing their sensitivity to physical effects and layout constraints.

6.1 Introduction

The execution of many multimedia and signal processing kernels has been his-
torically accelerated by means of specialized processing engines [122]. With
the advent of multi-processor system-on-chip (MPSoC) technology, perfor-
mance of hardware accelerators is becoming accessible by combining multiple
programmable processor tiles within a multicore system [123]. In addition, the
performance of latest application specific integrated processors (ASIPs) [126]
together with the high availability of transistors is making the design of cus-
tom hard-wired logic always less convenient. In fact, several time-consuming

77



78
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

design iterations are typically required before converging to a final layout thus
increasing the overall time-to-market of the ultimate product. In general, the
underlying principle is that efficient computation can be achieved while only
marginally impacting programmability and/or configurability, and architec-
tures can be devised that address the computation requirements of an entire
application domain [125]. In this context, tile-based architectures provide par-
allelism through the replication of many identical blocks placed each in a tile
of a regular array fabric [75, 76, 125]. This allows to speed-up the design pro-
cess thus enabling a faster output of the final product thus bridging what is
also known as the productivity gap. This approach makes performance scal-
ability more a matter of instantiation and connectivity capability rather than
architectural complexity.

Perhaps the most daunting challenge to make MPSoC technology mainstream
is to realize the enormous bandwidth capacities and stringent latency require-
ments when interconnecting a large number of processing cores. The global
intrachip communication infrastructure is responsible for tackling such prob-
lem. Moreover, Networks-on-chip (NoCs) are generally believed to be the long
term solution to the communication scalability issue [1].

Topology selection is a NoC design issue which needs to be addressed in the
early design stages and which has deep implications both on final system per-
formance and on physical network feasibility. Therefore, drawing the network
connectivity pattern is not just a pencil-and-paper exercise, but needs proper
insights into nanoscale physics and into the synthesis backend. NoC architec-
tures can be designed with both regular and custom topologies. The primary
advantages of a regular NoC architecture are topology reuse, reduced design
time, ease of routing, better control of electrical parameters and hence less
design respins and a higher degree of performance predictability which facili-
tates the early design stages. The 2D mesh is by far the most popular regular
topology used for on-chip networks in tile-based architectures, because it per-
fectly matches the 2D silicon surface. Unfortunately, 2D meshes show very
poor scalability properties in terms of diameter, average minimal hop count
and bisection bandwidth.

In contrast, topologies with more than 2 dimensions are attractive for a num-
ber of reasons. First, increasing the number of dimensions in a mesh results
in higher bandwidth and reduced latency. Second, the number of dimensions
can be traded-off with the number of cores per switch, thus giving rise to con-
centrated topologies saving network components and trading bandwidth for
latency. Third, wiring on a chip comes at a lower cost with respect to off-



6.1. INTRODUCTION 79

chip interconnections. However, wiring is also the challenging aspect of these
topologies, since their mapping on a bidimensional plane involves the exis-
tence of wires with different lengths. From a layout viewpoint, this translates
into links with different latencies and into the use of more metal layers.

The objective of the first part of this chapter is to explore the performance and
physical feasibility of multi-dimensional topologies as an optimized alternative
to traditional 2D meshes in the context of a 65 nm CMOS technology node.
Pursuing our goals involves an analysis framework encompassing different lev-
els of abstraction. On one hand, we developed and leverage a backend synthe-
sis flow based on commercial tools to shed light on physical implementation
trade-offs of multi-dimensional topologies. Moreover, we expose key physical
parameters (link latency, maximum operating frequency) to system level sim-
ulation, thus providing silicon-aware performance figures. Our system-level
simulation tool capitalizes on the concept of transaction level modeling, thus
combining accuracy with simulation speed.

This tool also allows us to assess network performance with far more accurate
traffic patterns than traditional synthetic ones. In particular, we model injected
network traffic with “Open Core Protocol” (OCP) transaction accuracy, and as-
sess how recently proposed communication middleware for MPSoCs impacts
network traffic and the actual requirements it poses on network topologies.

As technology moves to the nanometer era, topology analysis and exploration
needs to be performed with novel methodologies and tools that account for the
effects of nanoscale physics, largely impacting final performance and even fea-
sibility of many NoC topologies. A general guideline driving network-on-chip
(NoC) design under severe technology constraints consists of silicon-aware
decision-making at each hierarchical level [149]. This is likely to result in
less design re-spins and in faster timing closure. In this direction, new tools
are emerging that guide designers towards a subset of most suitable candidates
for on-chip network designs while considering the complex tradeoffs between
applications, architectures and technologies [153, 154].

The remainder of this chapter is organized as follows. Section 6.2 presents
our topology exploration framework whereas Section 6.3 details the backend
synthesis flow that will be utilized throughout this chapter. Next, Section 6.4
presents the analysis of the first topology family (k -ary n -mesh) leveraging
our evaluation framework along with the achieved results. Last contribution
of this chapter is described in Section 6.5 where k -ary n -tree topologies have
been analyzed and ad-hoc floorplanning for their layout has been proposed.
Section 6.6 concludes and summarizes the main contributions of this chapter.



80
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

6.2 Topology exploration framework

Our realistic topology exploration framework utilizes the the ×pipesLite NoC
architecture [92]. The switching fabric implements a 2-cycle-latency (one
for switch operation and one for traversing the output link), output-queued
wormhole-switched router supporting round-robin arbitration on each output
port. The implemented flow-control scheme is stall/go. The switch is parame-
terizable in the number of its inputs and outputs, its link width as well as in the
size of the output buffering. For this work, 6-flit buffers are assumed and the
link (and flit) width is set to 32 bits (see Chapter 3.4 for a complete discussion
on the switch architecture). The network interface (NI) is designed as a bridge
between an OCP [97] interface and the NoC switching fabric. Its purposes
are the synchronization between OCP and network timing, (de-) packetization,
the computation of routing information (stored in a Look-Up Table - LUT) and
flit buffering to improve performance. The NI performs clock domain crossing
and in order to keep its architecture simple, the ratio between network and core
clock frequencies has to be an integer divider.

Both switches and network interfaces were originally modeled in SystemC
as synthesizable RTL-equivalent models. However, conducting system level
performance analysis with RTL simulation would imply unaffordable simu-
lation times and resources. For this reason, leveraging the transaction-level
(TL) models presented in [143], which abstract all the relevant mechanisms
of the ×pipesLite architecture (retiming, buffering, arbitration, flow control,
switching, synchronization), including injection and ejection interfaces. We
demonstrated an accuracy of TLM simulation within 0.03% of RTL simula-
tion while achieving one order of magnitude faster simulation speeds. A 256
core system with 16 millions of OCP read burst transactions can be simulated
in a couple of hours. The simulator is event driven, therefore every time some-
thing changes in the network an event is scheduled. Each event contains data
relevant to itself and executes the logical functions needed to handle the new
network status. Furthermore, events are processed in time order and they can
generate as much secondary events as needed (i.e, the reception of a head flit
at an input port of the switch generates the event to route it).

Interestingly, the TLM simulator can back-annotate silicon-dependent param-
eters from the physical synthesis such as link latency and maximum operating
frequency of NoC building blocks, thus making silicon-aware decision making
viable even at the highest layers of the design hierarchy. Such parameters were
extracted from post-layout analysis for 16 node topologies targeting STMicro-
electronics 65 nm CMOS technology.



6.3. BACKEND SYNTHESIS FLOW 81

6.3 Backend synthesis flow

The practical feasibility of topologies under test was explored by means of
a semi-automated design flow spanning from RTL description to layout-level
verification. This enables us to explore and validate topologies down to the
placement and routing steps, thus accounting for the effects of nanoscale tech-
nologies. The flow has been conceived for the physical synthesis of 2D-meshes
and multi-dimension regular topologies. We use industrial tools for placement-
aware logic synthesis and for place-&-route on an STMicroelectronics 65nm
SVT technology optimized for low-power.

The first step of our backend synthesis flow is placement-aware logic synthesis
through Synopsys Physical Compiler, applied to switch and network interface
modules in isolation. This tool keeps optimizing the gate level netlist based on
the expected placement and the wire loads it implies. The final resulting netlist
considers placement-related effects and makes performance estimated at this
level more trustworthy. Post-synthesis maximum frequency however repre-
sents a theoretical upper bound, since the critical path is computed inside the
modules and actual routing of switch-to-switch links will then cause a further
unpredictable performance drop.

Floorplanning and place&route are performed with the Cadence SoC En-
counter tool. Computation tiles are replaced by non-routable hard obstructions
of variable size depending on the underlying core/tile assumption. At first,
hard black boxes are manually placed on the floorplan. Fences are then de-
fined to limit the area where the cells of each network-on-chip module can be
placed. Subsequently, the tool automatically places cells without trespassing
the fences. Fence size is devised based on the report of the Physical Compiler
on floorplan cell area of each module, while fence position depends on the
switch placement strategy. Our choice was to aim at uniform latency across
wiring dimensions. As an example, the placement strategy for a 2-ary 4-mesh
topology with 1 tile per switch is illustrated in Figure 6.1.

Subsequent steps include clock tree synthesis and power supply network in-
sertion. Each IP core is assumed to be an independent clock domain with its
own clock tree. In this work, we assume all IP cores to work at the same fre-
quency, which depends on the network speed and on the divider applied to the
frequency-ratioed clock domain crossing mechanism at the network interface.
After the power nets have been routed, the tool begins to route the logic wires.
After an initial mapping, search and repair loops are executed to fix any vi-
olations. As a final step, post-routing optimizations are performed, including



82
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

Tile

Switch

Figure 6.1: Floorplan of a 2-ary 4-mesh with 1 tile per switch.

crosstalk and antenna effect minimization. Finally, a signoff procedure can be
run by using Synopsys PrimeTime to accurately validate the timing properties
of the design.

6.4 Multi-dimensional Topologies

The target of our analysis is a tile based architecture where each tile is assumed
to include at least one processor and one local memory core. Therefore, the
asymmetric tile size needs to be accounted for when laying out the topology:
this puts traditional assumptions on mesh and hypercube wiring in discussion.

Meshes can be referred to as k -ary n -meshes. The topology has k n routers
in a regular n -dimensional grid with k switches in each dimension and links
between nearest neighbors. Moreover, the n -hypercube topology is a particular
case of a mesh where k is always 2. Also, each switch can have one or more
tiles attached.

In this chapter, topologies have been analyzed for a single system scale: 16-
tile. Therefore, we analyze a 4-ary 2-mesh (referred to as 2D-mesh from now
on) with one tile per switch, a 2-ary 4-mesh (4-hypercube) with one tile per
switch, and a 2-ary 2-mesh with 4 tiles per switch. The 4-hypercube is a rep-
resentative topology for those ones featuring a number of dimensions higher
than 2, while the 2-ary 2-mesh illustrates the properties of concentrated
topologies, connecting more nodes to the same switch.

Table 6.1 shows some representative data for the studied topologies. Please
note that even with 1 tile per switch, 2 switch input and 2 switch output ports
are required to connect the tile, since it includes an initiator and a target NI,



6.4. MULTI-DIMENSIONAL TOPOLOGIES 83

16 tiles
Topology 4-ary 2-ary 2-ary

2-mesh 4-mesh 2-mesh
Max Arity 6 6 10

Total Switches 16 16 8
Tiles x Switch 1 1 4

Total Ports 80 96 40
Bisection Cut 4 8 2
Ideal Diameter 6 4 3

Table 6.1: Topologies under test.

each with one input and one output port to the switch for receiving/sending
data. The initiator NI uses the output port to send out packets and the input
port to receive packets carrying read response data. The target NI uses the input
port to receive packets carrying write data or read requests for the connected
target. Read responses are packetized and sent out through the output port.

6.4.1 Communication semantics

As previously anticipated, a transaction-level simulator of the ×pipesLite NoC
architecture is used for system-level performance analysis. The clock cycle
accuracy with respect to RTL simulation is demonstrated in [143], which also
demonstrates its superior simulation speed. This section recalls only the details
of network traffic generation.

Our approach is to project network traffic based on the latest advances in com-
munication middleware for MPSoCs and to assess its performance with an
on-chip network as the communication backbone. We derive from the queue-
based library in [128] the guidelines for producer-consumer interaction. That
library is suitable for a number of MPSoC architectures, including the tile-
based MPSoC scenario addressed in this chapter. Therefore, we built an ab-
straction layer on top of our TLM simulator, which models the behavior of a
processor tile and of its HW/SW communication support.

In essence, the tile architecture consists of a processor core and a local memory
core, as illustrated in Figure 6.2(a). Both cores are connected to the network
through a network interface initiator and target respectively. We assume that
the two network interfaces can be used in parallel. While the processor is read-



84
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

(b)

Processor

Core

Memory

Core

Initiator
Network IF

Target

Network IF

Initiator
Network IF

Target

Network IF

1N
E
T
W
O
R
K

4

3
2

Local polling

1

2

Write message
Read operation

Reset semaph.

3

4

Consumer tile

local

polling

local

polling

Consumer tile

Processor Memory

CoreCore

Producer tile

Local polling notify message
availability

Request for

data

data transfer

notify transfer

completion

Producer tile

(a)

Figure 6.2: Tile abstraction and mapping of producer-consumer communication
handshake on network transactions.

ing/writing from/to other tiles, the processor core of other tiles can read/write
from/to the tile local memory. We assume producer-consumer communication
between tiles based on the handshake shown in Figure 6.2(b). The producer
checks local semaphores indicating whether there are previous pending mes-
sages for the target destination. If not, it writes communication data to the
local tile memory and notifies data availability to the consumer by unblocking
a remote semaphore. The consumer was meanwhile performing local polling
on that semaphore. The producer is then free to carry out other computa-
tion or communication activities to other consumer tiles. Next, the consumer
reads computation data from the producer tile, and sends a notification upon
completion. This allows the producer to send another message to this specific
consumer. The implementation of this communication protocol involves 4 net-
work transactions: notification of data availability, read request, actual data
transfer and notification of transfer completion. The producer local polling
is performed in order to avoid congesting the network in case the consumer
is slow in absorbing its input messages. The consumer local polling for in-
coming messages allows the consumer to synchronize data transfer operations
from multiple producers. This avoids the collision of multiple packets in the
network from the producers to the same consumer, since this latter operates all



6.4. MULTI-DIMENSIONAL TOPOLOGIES 85

transfers once at a time. Under these working conditions, concentrated archi-
tectures trading bandwidth for latency become attractive. However, physical
implementation effects might put this picture in discussion.

6.4.2 Post-layout analysis

Network building blocks have been synthesized in isolation for maximum per-
formance. Post-synthesis achievable frequencies are reported in Table 6.2 -
3rd row. They only account for timing paths in network logic and ignore those
going through switch-to-switch links. We always found the critical paths to be
in the switches and never in the network interfaces, and this explains why the
network speed closely reflects the maximum switch radix of each topology.

16 tile
4-ary 2-ary 2-ary

Topology 2-mesh 4-mesh 2-mesh
Max. switch arity 6 6 10

Post-synthesis freq. 1 Ghz 1 Ghz 850 Mhz
Post-layout. 786 MHz 640 Mhz 600 Mhz

Core speed (max. 500) 393 MHz 320 Mhz 300 Mhz
Cell Area 949k µm2 1108k µm2 733k µm2

Table 6.2: Physical parameters of topologies under test.

When post-layout speed is considered, we observe that inter-switch wiring has
caused a significant performance drop for all topologies, depending on the
wiring intricacy of each of them. As reported in Table 6.2 - 4th row, the more
complex connectivity pattern of 2-ary 4-mesh results into a larger frequency
drop than the 2D mesh. The 2-ary 2-mesh pays its lower number of switching
resources with a larger switch-to-switch separation, and hence with a severe
degradation of network performance due to link delay.

Since frequency-ratioed clock domain crossing is implemented in ×pipesLite
network interface, network speed affects IP core speed. For this latter, a max-
imum value of 500 MHz is assumed in the context of multi-core embedded
microprocessors. In spite of the post-synthesis speed drop, IP cores cannot
sustain the network speed just at the same and therefore a divider of 2 is ap-
plied (Table 6.2 - 5th row).

The total larger number of switch I/O ports used by the 4-hypercube well mo-



86
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

tivates its larger area footprint than the 2D mesh. Cell (floorplan) area is con-
sidered in Table 6.2 - 6th row, while chip floorplan area is not reported since
no specific optimizations were applied to it. Although the 2-ary 2-mesh has
half the number of switches, its area is not halved as well, due to the fact that
those fewer switches have a larger radix.

6.4.3 System Level Analysis

In order to simplify topology analysis, we assumed a workload distribution
between the tiles which de-emphasizes the role of the topology mapping al-
gorithm. In fact, we consider a parallel benchmark consisting of one or more
producer tasks, a scalable number of worker tasks and 1 or more consumer
tasks. Every task is assumed to be mapped on a different hardware tile. The
producer task(s) reads in data units from the I/O interface of the chip and dis-
tributes it to the worker tasks. There are no constraints on which worker tile
has to process a given data unit. Output data from each worker tile is then
collected by one or more consumer tiles, which write them back to the I/O
interface. All communications follow the queue based semantics illustrated
in Subsection 6.4.1. The following assumptions were made on the I/O inter-
face. A maximum of 8 I/O ports is assumed for 64 tile systems, each one used
for input or for output. This number was reduced to 2 I/O ports for 16 tile
systems. Such ports are accessed through sidewall tiles. The mapping of pro-
ducer(s) and consumer(s) tasks is therefore constrained to these tiles. This I/O
architecture is compliant with that of commercial embedded microprocessors,
such as [125]. We set off-chip I/O devices access latency as a function of their
frequency. We considered 20 cycles at 500 MHz and 15 cycles at 350 MHz.

While insensitive to worker tile mapping on the topology, our benchmark is
still sensitive to I/O tile mapping on the chip periphery. For this reason, two
scenarios are considered:
OneSided : all the I/O tiles are placed on the same side of the chip. This
mapping has a high probability of I/O streams collision.
FourSided : I/O tiles are spread across the four chip sides. For 64 tile systems,
at least one input and one output is placed at each side. For 16 tile systems, I/O
tiles are decoupled and each input is placed at the opposite side of its output.

Figure 6.3 shows performance of 16 tile topologies in clock cycles and elapsed
time. The left side shows results for OneSided mapping, while the right side
shows results for FourSided mapping. In OneSided , the hypercube (2-ary
4-mesh) reduces total number of cycles by 27.4%. In this mapping, inputs and
outputs are placed at the top of the chip. Therefore, path length is very irreg-



6.4. MULTI-DIMENSIONAL TOPOLOGIES 87

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Time (Cycles) Time (ns) Energy (J)

OneSided

2D MESH
2-ary 4-mesh
2-ary 2-mesh

    

    

    

    

    

    

    

    

    

    

Time (Cycles) Time (ns) Energy (J)

FourSided

Figure 6.3: Normalized execution time for 16 tile topologies.

ular, as tiles located at the top of the chip can reach input and output through
a shorter path than the tiles located at the bottom. This makes topologies with
higher network diameter more sensitive to this effect. Moreover, the probabil-
ity of collision between I/O streams is quite high, thus penalizing topologies
with fewer dimensions. The concentrated hypercube (2-ary 2-mesh) reduces
cycles only by 1.6% over the hypercube, despite its lower diameter. The main
reason for this lies in the chip I/O: as the bottleneck introduced by the topology
is alleviated, the external I/O bottleneck arises. So, the maximum improve-
ment that can be achieved in the 16 tile system is bounded by I/O speed. On
the other hand, FourSided mapping (see Figure 6.3) reduces I/O streams col-
lision probability while providing homogeneous path length, thus decreasing
performance differences among topologies.

Unfortunately, these results become irrelevant when considering real operating
frequency. While in OneSided mapping the reduction of cycles of the 4-
hypercube barely compensates for its lower frequency, in Foursided mapping
it is not enough, and the 2D mesh turns out to be the best topology overall.

Figure 6.3 shows the energy consumed by each topology. Numbers are mea-
sured from the post-layout netlists obtained as described in Section 6.3. While
the 4-hypercube consumes almost the same or even more energy than the 2D
mesh depending on the I/O tile mapping, the concentrated hypercube shows
superior energy saving properties (from 40 to 50% less than the 2D mesh).
Of note, the reason why the energy trend between the 4-hypercube and the



88
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

2D mesh is inverted when moving to a different I/O tile mapping, lies in the
trade-off between the energy consumed by the number of available links for a
specific topology and the amount of traffic congestion they are able to absorb
depending on the chosen mapping.

6.4.4 Discussion

This first part of this chapter presented our analysis framework for the as-
sessment of k -ary n -mesh topologies for regular tile-based architectures. Our
work considered a number or real-life issues: physical constraints of nanoscale
technologies (post-layout performance, area and power results are given), dif-
ferent physical design techniques, the role of the chip I/O, the communication
semantics of middleware for MPSoCs and the role of I/O tile mapping.

We found that the intricate wiring of multi-dimension topologies or the long
wires required by concentrated k -ary n -meshes can be changed into 2 different
kinds of performance overhead by means of proper design techniques:

• operating frequency reduction. This is likely to be the technique of
choice for small scale systems. In this case, in spite of a lower number
of execution cycles, multi-dimension topologies loose in terms of real
execution time due to lower working frequency. Nonetheless, reducing
the number of dimensions and connecting more cores to the same switch
represent a way to trade performance for power and area;

• increased latency. An aggressive utilization of retiming stages allows
to sustain operating frequency while increasing network latency. The
switch delay associated with its radix poses an upper bound to the effec-
tiveness of this technique. Finally, a significant area and power overhead
is expected, since retiming stages need to be also flow control stages.

Overall, we found the 2D mesh to still outperform the hypercubes. This is
counterintuitive, since hypercubes should scale better in principle. The motiva-
tion lies in the mismatch between multi-dimension topologies and the 2D sili-
con surface (whatever the kind of performance overhead it is changed into) and
in the chip I/O bottleneck, which prevents an aggressive performance speed-
up at least in clock cycles. Removal of this bottleneck is mandatory to achieve
significant performance differentiation between topologies.

Next section will utilize our analysis framework for the performance evalu-
ation of another important topology family, i.e., multi-stage interconnection



6.5. MULTI-STAGE INTERCONNECTION NETWORKS 89

networks. In this section, the practical feasibility of such topologies will be
analyzed and ad-hoc solutions will be proposed for their floorplan. The main
goal here was to assess whether or not the theoretical superiority [141, 142] of
such multi-stage network still holds when layout considerations are taken into
account. Furthermore, as such topologies typically exhibit a large cost in terms
of resources (high number of switches with high radix), we considered also a
low-area cost implementation named RUFT and we evaluated if such topology
can be exploited to implement very fast networks regardless of their supposed
wire intricacy. For this reason, each switch of the lowest layer has been consid-
ered connected to a separate core and memory thus keeping the switch radix of
every switch as low as possible. Furthermore, projections for 64-core system
have been extrapolated giving useful insights for both the practical feasibility
of such topology and their possible final performance.

6.5 Multi-stage Interconnection Networks

Most of the past evaluations of fat-trees for on-chip interconnection networks
rely on oversimplifying or even unrealistic architecture and traffic pattern as-
sumptions, and very few layout analyzes are available to relieve practical fea-
sibility concerns in nanoscale technologies. Our work aims at providing an
in-depth assessment of physical synthesis efficiency of fat-trees and at extrap-
olating silicon-aware performance figures to back-annotate in the system-level
performance analysis. We utilized a 2D-mesh as reference architecture for
comparison. Finally, in order to mitigate the implementation cost of k -ary
n -tree topologies, we review an alternative unidirectional multi-stage inter-
connection network able to simplify the fat-tree architecture and to minimally
impact performance, resulting in a more power-aware fat-tree implementation.

Networks-on-chip (NoCs) closely resemble the interconnect architecture of
high-performance parallel computing systems [1]. For this reason, the inter-
connection topologies used in the early NoC prototypes can be traced back
to the field of parallel computing. In particular, NoC architectures aiming at
low latency communication, performance scalability and flexible routing se-
lected fat-trees as their reference topology. The switch for the butterfly fat-tree
network of [150] or the SPIN micronetwork [13] are examples thereof.

However, other topologies have found wider application in common NoC de-
sign practice so far, namely 2D-meshes and even folded tori [139,140]. In fact,
technology scaling to the nanoscale era brings physical design issues to the
forefront, such as the reverse scaling of interconnects. In this context, 2D-mesh



90
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

and torus topologies exhibit a grid-based regular structure which is intuitively
considered to be matched to the 2D chip layout. In contrast, the higher wiring
irregularity and the larger switch radix of most fat-tree configurations raise
some skepticism about their practical feasibility. Moreover, instead of aiming
strictly for speed, designers increasingly need to consider energy consumption
constraints, and fat-trees are expected to pay the increased connectivity they
provide with a significant area and power cost.

In spite of these concerns, constant attention has been devoted to tree-based
topologies in the NoC community, proving their superior performance with re-
spect to 2D meshes under different kinds of synthetic traffic patterns [141,142].
However, these analysis frameworks are not able to be fully convincing and to
impact NoC design practice in many senses. First, they often rely on abstract
network simulators which cannot model the behavior of any real architecture
and sometimes make unrealistic assumptions, such as packet drop or TCP-
compliant network transport protocols for on-chip communication. Second,
most works really miss an in-depth physical analysis of layout feasibility and
efficiency. Even when area synthesis results are provided, the impact of wiring
congestion and interconnect delay on network performance is only assessed
by means of analytical models. Also, the effectiveness of advanced design
techniques such as clock or power gating or link pipelining is ignored.

This second part of the chapter aims at overcoming some limitations of previ-
ous fat-tree topology evaluations for NoCs, by primarily investigating the lay-
out feasibility and the implications of physical mapping efficiency on system-
level performance figures. As we have previously seen applied to multi-
dimensional topologies, our system- to layout-level analysis framework has
been utilized to evaluate k -ary n -tree topologies with layout awareness. The
objective to perform a comprehensive layout-to-system level assessment of a
fat-tree and its comparison with a 2D mesh forced us to necessarily restrict our
exploration to a reasonable 16 core system. However, scalability insights into
the connectivity of 64 core systems are provided as well.

The fat-tree we considered is the commonly used k -ary n -tree, as it is de-
fined in [127]. It allows to infer the topology by structuring multiple switches
of constant size in a regular pattern and in a more compact layout. In spite
of these properties, k -ary n -trees cannot avoid the trade-off between the in-
creased connectivity they provide and the higher resource cost for it.

As a consequence, we also review an architecture optimization of fat-trees
that aims at simplifying the switch architecture and saving network resources,
while minimally impacting the high performance of these topologies. In prac-



6.5. MULTI-STAGE INTERCONNECTION NETWORKS 91

tice, the proposed unidirectional multi-stage interconnection network (MIN)
reduces the complexity of the downward phase, resulting in faster and more
compact switches and possibly in power savings with respect to k -ary n -trees.

6.5.1 Topology analysis

Network size 16 Cores
Unidir Unidir

Topology 4-ary 2-ary 2-ary 4-ary
2-mesh 4-tree 4-tree 2-tree

Switch radix 5 4 2 4
Total switches 16 32 32 8

Total Ports 64 112 64 32
Diameter 6 6 3 1

Bisect. Cut 8 16 8 8

Table 6.3: Network topologies under test.

This section provides a brief description of the topologies under investigation.
Deterministic routing is always used with the aim of having in-order delivery
of packets. Half of the cores are processor cores, while the remaining half
consists of the private memory cores of the processors. Table 6.3 shows some
representative data for the studied networks.

Meshes can also be referred as k -ary n -meshes. This topology has k n routers
placed in a regular n -dimensional grid with k switches in each dimension and
links between nearest neighbors. The routing algorithm we use for meshes is
Dimension-Order Routing (DOR).

Fat-trees (FT) are a particular sub-set of a family of topologies known as mul-
tistage interconnection networks (MINs). In MINs, switches are structured in
multiple stages. Each switch can only be connected to switches belonging to
their previous or to their next stage. Cores are connected to the switches of
the lowest stage. For instance, Figure 6.4(a) depicts a MIN with three stages
and eight interconnected cores. Fat-trees are based on complete trees, but dif-
fer from them for preserving bandwidth near the root. For this purpose, the
switch radix grows as we move up to the root, which makes the physical im-
plementation impractical. Therefore, some alternative implementations have
been proposed to use switches of fixed arity [127].

In particular, we focus on a specific implementation: the k -ary n -trees (see



92
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

0 0 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3

5

6

7

0,2,6

1,3,5

5

2

3

0

1

2

4

2,4,6

1,5,7

3,5,7

0,4,6

1,3,7

0,2,4

6

7

0

1

4 0

4

1

5

2

6

3

7

0

2

1

3

4

6

5

7

(a)

0 0 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

2

3

4

5

6

7

0,2,4,6

1,5

0

1

2

4

0,2,4,6

1,3,5,7

0,4

7

1,3,5,7

0,4

2,6

1,5

3,7

3,7

2,6

0

4

2

1

6

5

3
0,2,4,6

1,3,5,7

0,2,4,6

1,3,5,7

(b)

Figure 6.4: (a)A 2-ary 3-tree topology. (b)A RUFT derived from a 2-ary 3-tree. Each
switch port shows its reachable destinations.

Figure 6.4(a)), a parametric family of regular multistage topologies. The num-
ber of switch stages is n and k is the arity or the number of links of a switch
that connect to the previous or to the next stage (i.e., the switch radix is 2k ).
Links of a switch can be classified as ascending or descending, depending on
whether they connect to switches located in the higher or lower stage, respec-
tively. All the switches have the same number of ascending and descending
links. A k -ary n -tree is able to connect N = k n processing nodes using nk n−1

switches and 2nk n − k unidirectional links.

Routing in Fat-trees is performed in two phases: ascending and descending.
In the ascending phase, several minimal paths for each source-destination pair
are possible. Packets are forwarded upwards in the tree until one of the near-
est common ancestors between source core and destination core is reached.
At this point, the descending phase is started. This latter is deterministic by
construction and the path used in this phase depends on the nearest common
ancestor that has been reached in the ascending phase. To provide a determin-
istic routing algorithm for the ascending path, a unique path must be selected
for each origin-destination pair among all the possible ones. The deterministic
routing algorithm for fat-trees that we utilized has been presented in [120].

In this routing algorithm, during the ascending phase consecutive destinations
are shuffled among the different ascending links of the switches. Figure 6.4(a)
shows how destinations are distributed in each switch among the different as-
cending links: each ascending port is labeled in italics with the destination



6.5. MULTI-STAGE INTERCONNECTION NETWORKS 93

cores that are reachable through it. Also, Figure 6.4(a) shows how destinations
are distributed in the descending phase; in this case, descending ports show in
bold their sets of reachable destinations. As can be seen, each descending link
is only used by a single destination.

Reduced Unidirectional Fat-Tree (RUFT) is a topology resulting from the
simplification of the above mentioned k -ary n -tree when using the determin-
istic routing algorithm proposed in [120]. RUFT was first presented in [119]
as a conceptual topology scheme, without any implementation analysis. When
using this deterministic routing algorithm, the whole descending phase can be
reduced to a single long link that connects the output ports of the switches of
the last stage with the input port of the corresponding destinations. In this way,
switches become unidirectional and all packets must reach the last stage of the
network (Figure 6.4(b)).

Although the use of long links may compromise the feasibility of this topol-
ogy, all the hardware resources related to the descending phase are reduced
to these long links, simplifying the switch architecture. The resulting topol-
ogy resembles an unidirectional butterfly, with a permutation of the reachable
destinations from the last stage.

An unidirectional reduced k -ary n -tree is able to connect N = k n processing
nodes using nk n−1 unidirectional switches and nk n unidirectional links.

When evaluating RUFT, we consider two different topologies for each network
size. The first ones are the unidirectional networks resulting from the simplifi-
cation of standard k -ary n -tree fat-trees, that is, we analyze an unidirectional
2-ary 4-tree in the 16 cores category, while we analyze an unidirectional 2-ary
6-tree in the 64 cores category. These unidirectional networks have the same
number of switches of the original fat-trees but, as can be seen in Table 6.3,
the switch radix is reduced to one half.

This leads us to explore an alternative RUFT implementation, denoted as
S(implified)-RUFT hereafter, trading switch radix for the switch count. In
this direction, we define an unidirectional 4-ary 2-tree for the 16-core system
and a 4-ary 3-tree for 64 cores. This way, the total number of switches is
lower than that in the original fat-tree, as reported in Table 6.3. Please observe
that we were not able to perform the same switch count reduction in the orig-
inal bidirectional fat-tree since this would have led to switches with an overly
high radix (i.e., 8x8), resulting in a significantly lower maximum operating
frequency [108]. Concisely, the topologies explored in our experiments have a
switch radix which is always lower than 5.



94
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

(a) (b)

Figure 6.5: Floorplans of topologies under test. a) 4-ary 2-mesh b) 2-ary 4-tree
RUFT. Only the main wiring patterns are reported.

(a) (b)

Figure 6.6: Floorplans of topologies under test. c) 4-ary 2-tree S-RUFT d) 2-ary
4-tree FT. Only the main wiring patterns are reported.

6.5.2 Floorplan design

The physical synthesis methodology adopted here is the same as we have seen
in previous Section 6.3 with the only exception that the tile size is set to 1mm ×
1mm . In particular, this section discusses the criteria for floorplan design of
the topologies under test. Synthesis time constraints forced us to limit the
physical design to 16 core systems. However, projections of 64 core system
designs will be extrapolated as well, thus getting useful scalability indications.
A more adequate methodology to extrapolate accurately area/performance of
64 core systems will be presented in Chapter 8.

The 2D mesh floorplan is straightforward (see Figure 6.5(a)) due to its regular



6.5. MULTI-STAGE INTERCONNECTION NETWORKS 95

grid structure matching the 2D silicon surface. Things are more complex for 2-
ary 4-tree FT (Figure 6.6(b)). The topology consists of 4 switch stages with 8
switches each. Our floorplanning strategy was to minimize wirelength between
consecutive switch stages. For this reason, cores are clustered in groups of
four and the connected switches (of the first and second stage) are placed in
the middle of each cluster. The third switch stage is split into 2 subgroups and
placed between the upper and lower clusters. Each subgroup serves its relative
counterpart from the first and second stage. The last switch stage is located
in the center of the chip. The presented layout exhibits equalized wirelengths
between the second, the third and the last stage of switches. Another appealing
characteristic is the straightforward scalability of this floorplanning strategy to
64-core systems.

The 2-ary 4-tree RUFT (Figure 6.5(b)) is a novel unidirectional fat-tree which
has never been laid out before. This time, a switch belonging to the last stage
is directly connected to the network interface of a core. This link is viewed
in [119] as the intuitive weakpoint of the layout of this topology. To go around
this problem, our floorplanning directive in this case is to minimize the wire-
length of this critical set of links. Thus, switches from the last stage are posi-
tioned in the middle of each 4-core cluster. Obviously, also the first stage has
to be close to the appropriate cores. Therefore, it is placed above and below the
middle of the chip between two neighboring clusters, so to equalize the link
length and keep the delay as homogeneous as possible on the wires of the first
stage. As the third stage has to be connected to the last one and to the second
one, two groups of switches belonging to the third barrier are placed at the left
and at the right of the chip center. This also achieves an easy connection with
the second stage, which is positioned in the center of the chip. An interesting
property of the presented floorplan is that the link length is kept almost con-
stant on a stage-by-stage basis. Unfortunately, although the aforementioned
layout elegantly solves the placement problem for this 16-core RUFT, its scal-
ability to 64 cores is not straightforward and as efficient. In this sense, it can
be considered an ad-hoc floorplan for 16 connected nodes.

Finally, the floorplan for a 4-ary 2-tree S-RUFT is illustrated in Figure 6.6(a).
Although the number of switch stages is small (just 2), this is a challenging
topology from a physical layout viewpoint. The problem stems from the fact
that each switch of the first stage is directly connected to all the switches of
the second stage. Moreover, a second stage switch is connected to network
interfaces of cores, since this is again a unidirectional topology. Following the
same floorplanning strategy of the 2-ary 4-tree RUFT, a switch from the last
stage has to be placed in the middle of a 4-core cluster.



96
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

Unfortunately, in this case the switch has to be interconnected also to all the
switches of the first stage, which should be necessarily placed in the center
of the chip to equalize link length. This results in very long links going from
each cluster to the switches at the center of the layout. As shown later on, this
dramatically impacts the achievable post-routing performance of this topology.

6.5.3 Floorplan scalability to 64 cores

The 2D mesh is easily scalable to 64 cores, resulting in an 8-ary 2-mesh. Also
the floorplan of the fat-tree (which becomes a 2-ary 6-tree FT) can be easily
scaled with our strategy. In fact, a 64 node topology can be viewed as built
up by four clusters of 16 cores with two additional switch stages connecting
them to each other. The four clusters can be internally placed as previously
described. This approach features a high level of modularity along with an
adequate link length scalability. Moreover, all the link lengths from the fourth
stage (the last stage in the 16-core system) to the two additional ones in the
64-core system can be tuned to be the same in the final layout.

For the 2-ary 6-tree RUFT, again 4 clusters of 16 cores are formed. However,
the main issue is that unlike the usual fat-tree, the center of each cluster is
now occupied by the second stage of switches and not the fourth one (i.e.,
the last in the 16-core system). Therefore, the fourth stage being scattered
on the edges of the chip, the connection with the additional switch stages is
not equalized, leading to links of uneven lengths. The problem stems from
the fact that the layout was customized for a 16-core system and afterwards
a modular approach was applied in order to re-use previous effort. A better
floorplan could be obtained by customizing it for a 64-core system, which is
not as intuitive as for a 16-core system and falls outside the scope of this thesis.

Finally, the S-RUFT topology now becomes a 4-ary 3-tree (3 switch stages).
Without going into further details, this floorplan turns out be as inefficient as
that of the RUFT topology, and results in very long links between the last stage
of switches and the network interface of connected cores.

6.5.4 Post-Layout analysis

Timing
In all topologies, the network building blocks have been synthesized for max-
imum performance. The post-synthesis critical paths (ignoring place&route
effects) are reported in Table 6.4, 3rd column. We found the critical path to



6.5. MULTI-STAGE INTERCONNECTION NETWORKS 97

Max Post-. Post- Area Tot. Wire
Topology Arity Synthesis. place&route footprint Length

4-ary 2-mesh 5x5 0.9 ns 1.19 ns 802k µm 2 8081 mm

2-ary 4-tree RUFT 2x2 0.6 ns 1.15 ns 795k µm 2 8370 mm

2-ary 4-tree FT 4x4 0.8 ns 1.29 ns 1280k µm 2 12389 mm

4-ary 2-tree S-RUFT 4x4 0.8 ns 2.1 ns 400k µm 2 7346 mm

Table 6.4: Physical synthesis reports.

be always in the switch and to reflect the maximum switch radix of the topol-
ogy. Obviously, the lower switch radix of the 2-ary 4-tree RUFT results in
a much shorter critical delay. We then iterated place&route starting from the
post-synthesis target frequencies.

For a 16 core system, we assessed the integration of a link pipelining technique
in the backend synthesis flow overly expensive. For this system size, we aim at
analysing whether the delay of switch-to-switch links already impacts overall
NoC performance or not. For what follows, the mismatch between wiring of
a topology and the 2D silicon layout will result in increased clock cycle time
after place&route.

Timing closure was achieved at the post-layout speed reported in the 4th col-
umn of Table 6.4. Performance degradation turns out to be very significant,
thus pointing out the critical role of interconnects. In fact, for all topologies
(and even for the 2D mesh) the critical path goes through the switch-to-switch
links. While data/flit wires are sampled at the input and output port of the
switch, flow control wires go through the FSM of the flow control stages at
switch I/O. As a consequence, these control wires go through logic gates whose
delay adds up to the link delay, determining the critical path. The impact of
the link delay is evident, in that the critical delays of the topologies are differ-
entiated by the longest link in that topology.

The 2-ary 4-tree RUFT wastes part of its speed with respect to the 2D mesh due
to the use of longer links. In practice, the theoretical performance enhancement
associated with a lower switch radix does not materialize after place&route,
but has served as timing margin against physical degradation effects.

The 2-ary 4-tree FT has incurred a lower degradation than the 2-ary 4-tree
RUFT, but its post-synthesis performance was lower, therefore it ends up run-
ning even slower than the 2D mesh.

Finally, for the 4-ary 2-tree S-RUFT the above effects are even more apparent
due to longer wires that are needed to connect a low number of switching re-



98
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

sources sparse all around with each other. The lower area footprint is achieved
at the cost of a remarkable 162% speed degradation after place&route.

Overall, in spite of a good post-synthesis frequency, thanks to the lower radix
MINs typically suffer from a more significant performance degradation after
place&route due to their more intricate wiring compared to a 2D mesh. Hence,
final performance cannot be predicted from early post-synthesis results in a
straightforward way without accounting for interconnect-related effects.

Area
Since we only performed a coarse grain shrinking of placement blocks on the
floorplan without a finer-grain layout area optimization, we only report here
total floorplan cell area. See Table 6.4, 5th column. The 2D mesh and the
2-ary 4-tree RUFT exhibit almost the same area, in that they have exactly the
same number of I/O ports for a 16-core system, which are the ones that mainly
determine switch area. The 2-ary 4-tree FT has a significant 60% area over-
head with respect to the 2D mesh, which can be correlated with a 75% increase
in the number of switch ports. Interestingly, although featuring the same num-
ber of switches, the 2-ary 4-tree RUFT achieves a significant area savings with
respect to the FT since it employs lower-radix switches. Obviously, the 4-ary
2-tree S-RUFT exhibits the lowest area footprint with just 8 4x4 switches.

Wirelength
A side effect of using lower switch radix in 2-ary 4-tree RUFT is the large
saving in total wire length with respect to the 2-ary 4-tree FT, although they
are using the same number of switches. 2-ary 4-tree RUFT and 2D mesh
consume almost the same amount of wiring resources in spite of the higher
routing complexity of RUFT. This further confirms the high efficiency of the
customized layout for this topology. Finally, the 4-ary 2-tree S-RUFT has
obviously a lower total wiring length, mitigated by the need to interconnect
few switch components that are far apart from each other.

Power
Power was computed with the same producer-worker-consumer benchmark of
[71], which emulates the average communication bandwidth requirements of a
partitioned MPEG-4 application. This traffic pattern models bursty accesses to
2 memories serving as I/O interfaces, and all-to-all accesses associated with a
cooperative computation process. Processor and memory cores were mapped
on each topology. For the 2D mesh, mapping was done in such a way that
each processor core is always 1-hop away from its private memory core. In
all fat-trees, a processor core and its memory core were connected to the same
switch at the lowest stage of the topology. This mapping may turn out to



6.5. MULTI-STAGE INTERCONNECTION NETWORKS 99

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Without Clock Gating With Clock Gating

2D Mesh
Fat Tree

RUFT
S-RUFT

Figure 6.7: Normalized total power.

be highly performance sub-optimal for fat-trees (indeed it is a worst-case for
RUFT [119]), however we opted for it since it is very intuitive and avoids the
use of high-level mapping tools (which is outside the scope of this work).

Power results are illustrated in Figure 6.7. Power of 2D mesh and 2-ary 4-tree
RUFT turns out to be the same due to the equivalent number of I/O ports in both
networks. The correlation of power with the number of buffering resources is
further emphasized by power reports of the 2-ary 4-tree FT, which is the most
power consuming topology: 34% more than the 2D mesh. It is worth noting
that all aforementioned topologies work at a comparable frequency (the post-
place&route one), whereas the 4-ary 2-tree S-RUFT works at approximately
half of the speed. If we combine this feature with its much lower number of
I/O ports, we can explain the significantly lower power consumption.

We also went through the physical synthesis process again and enabled the
clock gating feature. Results are provided in Figure 6.7 for the most power-
consuming topologies. On average, an impressive 75% power saving is mate-
rialized by clock gating. This brings power of the most power-hungry topolo-
gies close to that of the 4-ary 2-tree S-RUFT. From a timing viewpoint, we
observed no major modifications with respect to previous results.



100
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

6.5.5 System Level Analysis

Based on the physical insights reported above, we annotated maximum clock
speed of each topology into our transaction-level modeling simulator, which
was demonstrated in [155] to accurately reproduce performance results of RTL
simulation (within 1%) with orders of magnitude lower simulation times. Our
TLM simulator abstracts the behaviour of the ×pipesLite NoC architecture and
enabled system-level performance analysis of topologies.

Although our tests make use of traditional synthetic traffic patterns such as
uniform traffic and hot-spot, we also model a relevant feature of real-life traffic
which makes the analyis more accurate.

In particular, we model actual OCP transactions at the network boundary, thus
accounting for a more realistic traffic injection/ejection process. In turn, this
allows us to capture network behaviour in response to OCP read or write trans-
actions, which give rise to a different traffic pattern on the network. For in-
stance, write transactions are changed into relatively longer network packets,
while read transactions generate short request packets to the memory core and
long response packets coming back. Moreover, read transactions are blocking
for the ×pipesLite network interface, while write transactions are not.

In uniform traffic, OCP transaction destination is randomly chosen among all
the available memories in the system. Transaction size is randomly chosen,
with a minimum of 4 and a maximum of 16 data burst beats. The idle time
between consecutive transactions is adjusted to ensure that all networks are
working close to their saturation point.

Figure 6.8 shows performance results for a 16-core system under uniform traf-
fic. Results are normalized to the 2D mesh. The left side of the figure shows
total simulation time in clock cycles, while the right one shows the elapsed
time in nanoseconds (accounting for the actual post-layout clock period from
Table 6.3). Small differences in performance can be seen when execution cy-
cles are evaluated. When only write transactions are considered, the best result
is achieved by the fat-tree, that is the topology that provides the larger bisec-
tion bandwidth (see Table 6.3). On the contrary, topologies ensuring lower
latency (like S-RUFT) can better handle read transactions. RUFT has no local-
ity, therefore its average communication latency equals that of the 2D mesh,
thus achieving same performance. Moreover, for this small scale system, fat-
tree and 2D mesh have the same diameter and, because of the chosen mapping,
the same average distance between every source-destination pair. This explains
their performance balancing as well.



6.5. MULTI-STAGE INTERCONNECTION NETWORKS 101

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Writes Reads

Uniform (Cycles)

2D MESH
FAT-TREE

RUFT
S-RUFT

    

    

    

    

    

    

Writes Reads

Uniform (ns)

Figure 6.8: 16-core system. Normalized performance.

Unfortunately, when the real achievable speed is considered for each topol-
ogy, S-RUFT becomes unusable. The fat-tree suffers from around 10% per-
formance penalty with respect to the 2D mesh, in spite of its higher number
of network resources, while RUFT proves an equivalent solution to 2D mesh
(also power-wise). Given the lower wiring complexity of 2D mesh, this latter
might be the reference solution for small scale systems.

6.5.6 Discussion

The final part of this chapter demonstrates that fat-trees are feasible for on-chip
networks from a physical design viewpoint. Unfortunately, for small scale sys-
tems, they are not able to capitalize on their better performance figure scala-
bility yet. 2D mesh is in contrast a very efficient solution from all viewpoints.
Using MINs with less resources (namely S-RUFT) incurs serious physical de-
sign issues, mainly associated with long link delay. Moreover, circuit-level
power control techniques such as clock gating can significantly cut down on
power of the more complex topologies.

As the system size scales up, 2D meshes however suffer from poor perfor-
mance scalability. Hence, the need for alternative topologies becomes more
stringent. k -ary n -trees can provide that performance scalability, but at an
impractical power and area cost. In this scenario, unidirectional MINs (like



102
CHAPTER 6. LAYOUT-AWARE EXPLORATION

OF 16-TILE SYSTEMS

RUFT and S-RUFT) become attractive for their reduced power and area over-
head. Performance-wise, they are effective for latency-sensitive traffic, while
they cannot handle bandwidth-intensive traffic as effectively. Unfortunately,
their advantages cannot be easily materialized due to a more intricate physi-
cal design. No clearly scalable floorplanning strategy is known, and a lot of
link retiming and flow control stages would be needed to sustain clock speed.
The area and power overhead associated with these stages might turn out to be
unacceptable. Due to link pipelining, area and power cost of k -ary n -trees be-
comes further prohibitive. From a performance viewpoint, the increased link
latency of unidirectional MINs causes a lower performance but still better than
2D mesh and also than k -ary n -trees under latency-sensitive traffic.

6.6 Summary

In this chapter, we presented “our system- to layout-level” framework for eval-
uating network topologies with physical awareness in Section 6.2. Section 6.3
described the physical synthesis methodology adopted throughout this chapter.
Such methodology has been utilized to characterize the investigated topolo-
gies from the viewpoint of physical design. In Section 6.4, multi-dimensional
topologies have been analyzed whereas multi-stage interconnection networks
have been studied in Section 6.5. The work presented in this chapter will be
further extended in Chapter 8 where an accurate characterization methodology
to for analyzing 64-tile networks will be presented. The next chapter explores
the design space of the NoC interswitch channel where different optimizations
can be utilized to improve the performance of the link itself.



7
Link Design Techniques Evaluation

EACH link implementation solution is not just a specific synthesis op-
timization technique with local performance and power implications,

but gives rise to a well-differentiated point in the architecture design
space. This is in an effect of close dependency existing between architecture
and physical design layers in nanoscale technologies.

This chapter assesses the impact of NoC link inference techniques (e.g., re-
peater insertion, link pipelining) by means of commercial backend synthesis
tools, taking the system-level perspective. In fact, performance speed-ups and
power overhead are not only evaluated for the links in isolation but for the net-
work topology as a whole, thus showing their sensitivity to the link inference
strategy. Various k -ary n -mesh topologies are considered during our analysis
as they provide a representative range of complex interconnection networks
with increasing total wirelength.

7.1 Introduction

Previous studies of wire scaling effects based on ITRS roadmaps return a grim
view. [116] extends performance projections of wires out to the 13nm technol-
ogy node and sees both local and global wires degrading relative to gates over
nine generations, by one and three orders of magnitude respectively.

This trend is not just impacting circuit design, but is having heavy architecture-
level implications as well. In this direction, network-on-chip (NoC) architec-
tures rely on aggressive path segmentation and regular connectivity patterns,
at least for general-purpose tile-based NoCs. The ultimate objective is to come
up with a modular architecture removing global wire delays from the critical
path. This technique has been successful since the NoC design early days as

103



104 CHAPTER 7. LINK DESIGN TECHNIQUES EVALUATION

the critical path is often confined into the NoC switch arbitration logic [115].

However, the unrelenting pace of technology scaling in the nanoscale era is
bringing interconnect-related issues to the forefront even for NoC design. For
a 65nm technology, [108] points out the significant gap between post-synthesis
and post-place&route performance reports affecting NoC modules when logic
synthesis and placement are carried out as two clearly separated stages. Inac-
curate wire load models are at the root of this gap, therefore placement-aware
logic synthesis tools are envisioned as very important.

Moreover, although global wires are intrinsically segmented, the maximum in-
terswitch link length still plays a key role in topology design. [155] proved
that a bufferless implementation of interswitch links already suffices to move
critical path back to them. The additional delay contributed to these links
by some flow control or buffer control gates along them further stresses their
key role for system performance. This trend has to be taken into account es-
pecially when evaluating topologies with complex connectivity patterns, e.g.
high-dimensional ones or fat-trees. In fact, the delay of wires in the higher di-
mensions or the intricacy of the routing process may directly and significantly
degrade overall network speed. Moreover, such delay is hardly predictable due
to layout constraint effects, which makes the indications of abstract pencil-and-
paper floorplanning considerations inaccurate if not misleading.

Fortunately, designers can today rely on a number of well-known techniques
to engineer delay-optimized wires, thus making system performance less sen-
sitive to the raw numbers of wire performance. As an example, a traditional
design technique for long links consists of inserting equally spaced CMOS
repeaters to deal with resistive loss along the wire. This makes the delay of re-
peated wires almost linear with respect to their length rather than quadratic.
However, with the increase of the number and the density of the wires at
each new technology node, interconnect area and power might be severely im-
pacted. Power overheads in the order of tens of Watts might be expected [101].
Moreover, the use of repeaters in NoC interswitch links is subject to layout
constraints, since they have to be inferred in the inter-tile routing channels,
thus impacting total floorplan area.

Another way of tackling timing violations on long links is by pipelining it. By
providing one or more extra clock periods to traverse long distances, pipeline
stages along links solve the link infeasibility issue at a much lower cost than
deploying whole NoC switches in place of them. However, the major drawback
is that flow control must be extended to account for the fact that feedback
signals now return after multiple clock cycles instead of in the same clock



7.2. TOPOLOGIES ANALYSIS 105

period. This can be handled by deeper buffers at link endpoints or by pipelining
the link with flow control-aware elements. In all cases, a significant power
overhead might be incurred.

The effectiveness of a link performance boosting technique cannot be assessed
on the link in isolation, but has to be captured at system (topology) level. In
fact, link performance and power have a number of high-level implications,
especially overall network speed. Unfortunately, most previous work on phys-
ical link design investigates cost-benefit trade-offs only for the link in isolation,
while ignoring the sensitivity of topology metrics to a specific link design tech-
nique. This chapter aims at going a step further and at demonstrating topology
level implications of high-impact interconnect optimization techniques such as
link buffering and pipelining. Baseline topologies with bufferless links will be
used for the sake of comparison. This chapter pursues a twofold objective. On
one hand, it assesses whether for a given topology an investment on a faster
link pays off in terms of total energy. On the other hand, it investigates whether
different link synthesis techniques put well-known performance-power trade-
offs between various kinds of topologies under investigation in discussion.

The remainder of this chapter is organized as follows. Section 7.2 describes
the topologies under analyzing at first a common mismatch in the estimation of
the theoretical link length when contrasted with its silicon figure. Furthermore,
Section 7.3 illustrates the three fundamental link inference techniques studied
in this thesis. Experimental results of the presented analysis are reported in
Section 7.4. Section 7.5 discusses and wraps-up the achieved results whereas,
Section 7.6 summarizes the main contributions of the chapter.

7.2 Topologies analysis

Link design techniques impact topology quality metrics in two ways. On one
hand, it is the longest link in the topology that determines its maximum achiev-
able speed. Therefore, cutting down the delay of that link is beneficial for the
whole topology. On the other hand, the cost for boosting the performance of
the critical link becomes relevant for the topology only when there are more
of such critical links and they account for a significant fraction of the total
topology wirelength.

We found representative design points for our link sensitivity analysis to be
available in the k -ary n -mesh family of regular NoC topologies. In the stan-
dard nomenclature, the topology has k n routers in a regular n -dimensional grid
with k switches in each dimension and links between nearest neighbors. k -ary



106 CHAPTER 7. LINK DESIGN TECHNIQUES EVALUATION

Topology 4-ary 2-ary 2-ary
2-mesh 4-mesh 2-mesh

Max. Arity 6 6 10
Link Length 1 1,2 1

Switches 16 16 4
Max. Hops 6 4 2

Bisection bandwidth 4 8 2
Tiles per Switch 1 1 4

Table 7.1: Topologies under test.

2-mesh topologies have been traditionally viewed as the candidate topologies
for general-purpose tile-based MPSoC architectures [112], although raising
scalability concerns. An optimization of this topology consists of connecting
more tiles per switch while keeping the overall number of tiles the same. This
way, the total number of switches is reduced, hence resulting in a lower num-
ber of hops, but the bisection bandwidth is reduced as well. In this chapter we
focus on 16 tile systems, hence consider a 4-ary 2-mesh (referred to as 2D-
mesh from now on) with one tile per switch and a 2-ary 2-mesh with 4 tiles
per switch. The latter solution is denoted as the concentrated topology. Table
7.1 shows some representative data of the studied topologies.

Both the 2D mesh and its concentrated counterpart feature 2 dimensions and
homogeneous interswitch wire lengths. However, such wire length will not
be the same in the two topologies due to floorplan constraints reflecting a
well-known trade-off for these topologies: spread-around topologies on one
hand (large number of low-radix switches) as opposed to more concentrated
ones with a small number of high-radix switches placed further apart to opti-
mize connectivity with a large number of tiles. In fact, these latter have to
be placed around the switches they have to be connected to, thus separat-
ing the switches in space. In these two topologies, all the links have to be
performance-optimized in order to speed-up the entire topology, hence the as-
sociated cost will be more relevant in relative terms with respect to the baseline
unoptimized topologies.

A different design point is represented by hypercubes. The n -hypercube topol-
ogy is a particular case of a mesh where k is always 2. For 16 tile systems,
a 2-ary 4-mesh (4-hypercube) can be obtained from the 2D mesh by increas-
ing the number of dimensions and by reducing the number of switches in each
dimension. Interestingly, the maximum switch radix stays the same, only the



7.2. TOPOLOGIES ANALYSIS 107

Tile

Switch

(a)

Tile

Switch

(b)

Tile

Switch

(c)

Figure 7.1: Floorplan directives for (a) the 2D mesh, (b) the 4-hypercube and (c) the
2-ary 2-mesh.

4-hypercube has all the switches with the same radix while the 2D mesh has
the central switches with a higher radix than the peripheral ones. Of course,
the 4-hypercube has larger bisection bandwidth and lower network latency.
Unfortunately, this comes at the cost of links with uneven length. In fact, in a
mesh with more than two dimensions the links used to connect the dimensions
greater than two (often denoted as express links) are longer, and this holds for
50% of the 4-hypercube interswitch links.

In theory, the length of a link of the dimension t is generally assumed to be
k(d−2)/2, where d is equal to t if t is an even number and d is equal to
t + 1 when t is odd. Unfortunately, placement and layout constraints put this
picture in discussion, thus making it very difficult to predict the impact that the
cost of a specific link performance boosting technique might have on the cost
metrics of the entire topology.

As an example, let us consider the floorplanning directives given for topology



108 CHAPTER 7. LINK DESIGN TECHNIQUES EVALUATION

synthesis of the networks reported in Figure 7.1(a), Figure 7.1(b) and Figure
7.1(c). The asymmetric tile size plays in favor of the 4-hypercube wiring,
since the length of the horizontal and of the vertical express links turns out
to be comparable to that of horizontal wires in the 2D mesh. This latter also
features horizontal and vertical links of unequal length, indicating that the lay-
out regularity often assumed in high-level considerations does not materialize
in practice. Our guiding principle for floorplan definition consists of short-
ening the longest links in each topology and defining a scalable floorplanning
style. For the 2-ary 2-mesh, we placed the computation tiles around the switch
they are attached to, which is ideal scenario for pipelining interswitch links.
In all cases, network interfaces were placed close to their tile but also to the
connected switch, so to move the critical path away from these critical links.

 0

 2

 4

 6

 8

 10

 12

 14

2-ary 2-mesh 4-ary 2-mesh 2-ary 4-mesh

Ideal
with buffer

with pipeline stage

Figure 7.2: Total wire length.

As a result of topology synthesis and place-and-route, Figure 7.2 shows the
total wiring length for the three topologies (Post-Layout curve), normalized
to the least wire-hungry topology. It is compared with the results of tradi-
tional pencil-and-paper floorplanning considerations. Curve Ideal computes
wire length based on the ideal formula given above, which only considers the
number of hops crossed by a wire. Curve Floorplan-aware updates the pre-
vious formula with the knowledge of the asymmetric tile size and of switch
placement. The ideal analysis largely overestimates the amount of wiring
needed for the 4-hypercube. Floorplan awareness allows to account for spe-
cific floorplanning techniques that optimize wiring of a given topology, and
therefore leads to more conservative estimations of the wiring overhead. How-
ever, this is still far away from real-life, where the post-layout report of total



7.3. LINK DESIGN TECHNIQUES 109

Topology 4-ary 2-ary 2-ary
2-mesh 4-mesh 2-mesh

Post-Synthesis (WC Switch)) 1 ns 1 ns 1.15 ns
Post-P&R (WC Switch) 1.12 ns 1.12 ns 1.4 ns

Post-P&R repeater-less (Topology) 1.27 ns 1.56 ns 1.67 ns
Post-P&R with buffers (Topology) 1.19 ns 1.56 ns 1.5 ns

Post-P&R with – 1.19 1.42
pipeline stages (Topology)

Table 7.2: Timing results.

wire length gives only a 10% overhead of the 4-hypercube wiring with respect
to 2D mesh one and a 43% with respect to the 2-ary 2-mesh. This is because
switch-to-switch and switch-to-network interface wiring only accounts for a
relatively small percentage of total wiring, ranging from 7% for the 2-ary 2-
mesh to 26% for the 4-hypercube. This explains the relatively small total wire
length difference between the different topologies. This scenario plays in favor
of engineering performance-optimized interswitch links with a possibly minor
impact on topology cost metrics.

7.3 Link Design Techniques

Three fundamental link inference techniques were studied in this work and an
associated topology was laid out for each of them. When moving from one
technique to another, the objective was to speed up a topology by speeding up
its links. Therefore, our primary design objective was high-performance.

In our first round of topology implementations we forced the inference of unre-
peated links. In essence, we prevented the backend tools to instantiate buffers
or inverters along the link. Therefore, the only degree of freedom for such tools
was to prevent timing violations on the links by inferring a driver of suitable
driving strength in the switch output ports.

The first performance boosting strategy was to allow repeater insertion along
the link. While an increase of instantiated buffers can be expected, the lower
driving strength of switch output gates partially offset the added cost. In any
case, a significant cut down on link delay is expected.

Finally, we applied link pipelining to break long timing paths across intercon-
nects. Synthesis tools do not provide a native support for this, thus calling for
additional design effort. Given the small scale of the topologies under test,



110 CHAPTER 7. LINK DESIGN TECHNIQUES EVALUATION

our approach was not to manually place pipeline stages in the floorplan, but
to let the tool handle this based on design constraints and optimization direc-
tives. We expect this to be a better approach than blindly placing these stages
in the middle of long links, since the tool has better visibility of the floorplan
constraints and design rules. When implementing link pipelining, flow control
issues need to be considered. In our architecture, a backward propagating stall
signal has to be retimed as well for each link. As a result, our pipeline stages
are not simple registers but true retiming and flow control stages, consisting of
2 slot buffers and a control logic. This prevents from oversizing input buffers
of downstream switches to avoid data loss.

7.4 Experimental Results

7.4.1 Timing Closure

For all cases, we had to impose a target performance. Since we are heading for
high-performance, our goal was to materialize, after topology place-and-route,
the maximum speed achievable by the slowest NoC module (characterized in
isolation with post-layout timing analysis). In our architecture, the critical
module turns out to be always the switch with the highest radix in the topol-
ogy. The resulting speed upper bound, which ignores the effect of interswitch
links, is reported in the first two rows in Table 7.2. For the slowest switch of
each topology in isolation, the gap between post-synthesis and post-P&R speed
ranges between 12 to 21%. The 2-ary 2-mesh exhibits a higher post-synthesis
value due to the larger max. switch radix and a more severe post-P&R degrada-
tion due to the larger switch area compared with non-concentrated topologies.

When we consider timing closure for the entire topologies, then the degra-
dation associated with interswitch link routing and with their synthesis tech-
niques becomes apparent. Let us consider repeater-less links first (Table 7.2,
third row). While 2D mesh and 4-hypercube had the same performance upper-
bound (since they have switches with the same maximum radix), the more
challenging routing of the 4-hypercube gave rise to a 39% degradation of the
critical path, while routing of the 2D mesh turn out to be less critical. The 2-
ary 2-mesh has some links longer than 4mm, therefore interswitch routing has
an even more relevant impact. This also hides the effect of the higher switch
radix, which is not the ultimate responsible for the slower operating frequency.
For all topologies, the critical path goes through the network links.

Although post-layout effects of interswitch wires paint a dismal picture of



7.4. EXPERIMENTAL RESULTS 111

topologies using long wires (because of the use of more dimensions or of the
switch separation in the layout), designers can optimize wires to overcome
these large delays. Activating repeater-insertion during topology synthesis en-
ables the speedups illustrated by the fourth row of Table 7.2, denoting the best
critical delay at which timing closure was achieved. Results are quite het-
erogeneous. The 2D mesh further benefits from repeaters and achieves a 6%
speedup of its critical path, which results 1.19ns. This value is quite close to
the performance upper-bound (1.12ns), thus indicating that while links are still
critical in this topology, their length is such that their degradation of topology
performance can be made irrelevant.

The opposite holds for the 4-hypercube, where repeater insertion did not sur-
prisingly provide any performance improvement. The reason for this lies in
the fact that horizontal routing channels (see Figure 7.1(b)) were sized con-
servatively small, approximately 2.5x the switch side. For this reason, switch-
to-switch links sometimes end up finding another switch on their way. This
is a placement constraint for the buffers which prevents their insertion with
ideal spacing. The result is that link performance does not improve, indicat-
ing that buffer insertion should not be taken for granted in NoC design, but
should be carefully engineered to materialize its expected advantages. In prac-
tice, widening the routing channel ideally to 4x the switch side would solve
the problem but would also lead to a large floorplan area overhead. Finally, no
such constraints exist for the 2-ary 2-mesh (its connectivity pattern is trivial),
which improves its baseline performance by 10%.

Further critical path improvements were expected from link pipelining. When
applying this technique, our objective was to materialize the same critical de-
lay of the 2D mesh (with buffers) even for the 4-hypercube and the 2-ary 2-
mesh. Interestingly, we noticed that link pipelining was effective even for the
4-hypercube, regardless of its under-sized routing channels. In fact, the target
critical delay of 1.19ns was achieved. This result clearly indicates the lower
sensitivity of link performance to non-ideal pipeline stage placement compared
with non-ideal repeater spacing. Hence, link pipelining proves more robust for
area-optimized floorplans with more challenging placements.

Pipelining was effective also for the 2-ary 2-mesh, however the upper bound
for its performance is the post-layout critical delay of its high-radix switches
(1.4ns), far worse than the 2D mesh delay of 1.19ns.



112 CHAPTER 7. LINK DESIGN TECHNIQUES EVALUATION

7.4.2 Implementation Cost

In order to assess the implementation cost for link performance boosting tech-
niques, we illustrate the area reports in Figure 7.3. Results are grouped by
topology and normalized to the baseline implementation of each topology.

Buffer insertion is quite cheap for the 2D mesh and the 4-hypercube, while
generates a significant area overhead for the 2-ary 2-mesh. This is due to the
backend tools, that have dealt with the performance maximization of long links
by dramatically increasing the number of buffering gates. As will be explained
later on, this implies also a relevant power cost. However, when pipeline stages
are inferred, the additional area overhead of the 2-ary 2-mesh is marginal. This
due to the fact that by inserting pipeline stages the tool was able to remove an
equal amount of buffering area, so that the two contributions offset each other.

This does not hold for the 4-hypercube, which raises its area by 14% when
pipelining is used. Not only the area overhead of the pipeline stages is incurred,
but many buffers are kept in the links since the frequency boost is significant
when moving from buffering to pipelining. The trend of leakage power fully
reflects that of area overhead and is therefore omitted for lack of space.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

4-ary 2-mesh 2-ary 4-mesh 2-ary 2-mesh

N
o
rm

a
liz

e
d
 A

re
a

baseline
with buffer

with pipeline stage

Figure 7.3: Normalized area.



7.4. EXPERIMENTAL RESULTS 113

7.4.3 Energy Efficiency

Although there is a price to pay to boost link performance in terms of area and
power, the speedup in job completion can be exploited to cut down on total
energy of the on-chip network. However, this energy saving materializes only
if the gain in execution time outweighs the power overhead. This section sheds
light on this aspect. Moreover, it is also investigated whether the different link
synthesis techniques can change the relative energy ratios between topologies.

Experiments were carried out with a parallel synthetic benchmark consisting of
one producer task, 14 worker tasks and 1 consumer task. Every task is assumed
to be mapped on a different computation tile. The producer task reads in data
units from the I/O interface of the chip and distributes it to the worker tasks.
Output data from each worker tile is then collected by a consumer tile, which
writes them back to the I/O interface. During computation, all-to-all accesses
are generated to account for a cooperative computation process. Transactions
are generated in compliance with the OCP protocol (burst accesses) by pro-
grammable OCP traffic generators [114]. We assume loose synchronization
between the cores. In fact, we assume that whenever a producer has data avail-
able for a consumer, it sends them across the network without any previous
check for consumer availability to accept the message. Similarly, we allow
different producers to send messages to the same consumer at the same time,
thus generating more conflicts in the network. Traffic generation rates were set
to have a balanced system operation, i.e. to avoid I/O bottlenecks which would
stress other design issues other than network bandwidth and link performance.

Real elapsed time results for the baseline repeater-less topologies along with
their respective buffered and pipelined variants are reported in Figure 7.4. For
each variant, the maximum achievable post-P&R speed is applied (see Table
7.2). Since our network interfaces use a lightweight frequency-ratioed syn-
chronization mechanism, a clock divider of 2 is applied at all network inter-
faces, instructing the tiles to run at half the speed of the network and slowing
down the tiles as well when the network speed is low. Exploration of this
parameter is outside the scope of this thesis.

The following indications come from Figure 7.4. Although the 4-hypercube
reports a lower clock cycle count to complete the benchmark, its execution
time is always higher in the baseline topologies and in the repeated ones since
its running speed is much lower than the 2D mesh. A 16-tile system is too
small for an hypercube to take full advantage of its better properties (bisection
bandwidth, diameter) and thus to offset the speed degradation associated with
its relatively longer links. The situation is even worse for the 2-ary 2-mesh,



114 CHAPTER 7. LINK DESIGN TECHNIQUES EVALUATION

 0.8

 1

 1.2

 1.4

 1.6

 1.8

baseline with buffer with pipeline stage

N
o

rm
a

liz
e

d
 R

e
a

l 
E

la
p

s
e

d
 T

im
e

4-ary 2-mesh
2-ary 4-mesh
2-ary 2-mesh

Figure 7.4: Normalized real elapsed time.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

baseline with buffer with pipeline stage

N
o

rm
a

liz
e

d
 T

o
ta

l 
E

n
e

rg
y

4-ary 2-mesh
2-ary 4-mesh
2-ary 2-mesh

Figure 7.5: Normalized total energy.

which is worse than the other two topologies in the baseline and buffered vari-
ants both in execution cycles (because of poor bisection bandwidth) and in
running speed (overly long links).

However, when the 4-hypercube can operate at the same speed of the 2D mesh
thanks to link pipelining, than it becomes the most performance-efficient solu-



7.4. EXPERIMENTAL RESULTS 115

tion. The interesting thing is that link pipelining not necessarily adverses total
performance. In this experiment, it enables a significant topology speedup and
provides additional buffering to the topology itself, which is effective to han-
dle a bandwidth-sensitive traffic pattern. The high switch radix of the 2-ary
2-mesh causes a saturation effect to the performance gain that this topology
can achieve by means of link pipelining.

The power cost incurred to boost link and hence topology performance is il-
lustrated in Figure 7.6. Power is affected by the operating frequency of each
topology. If we compare topologies with boosted links with their baseline vari-
ants we observe that buffers do not cost a lot in terms of power. This holds for
the 2D mesh and for the 4-hypercube, which is in line with the hardly relevant
share of interswitch links over total wire length (as explained in Section 7.2).
Power overhead of the 2-ary 2-mesh is an exception to this, due to the large
power cost of driving a long link effectively.

 0

 0.5

 1

 1.5

 2

 2.5

baseline with buffer with pipeline stage

N
o

rm
a

liz
e

d
 T

o
ta

l 
P

o
w

e
r

4-ary 2-mesh
2-ary 4-mesh
2-ary 2-mesh

Figure 7.6: Normalized total power consumption.

When it comes to link pipelining, the power cost abruptly increases, especially
for the 4-hypercube, while the overhead for the 2-ary 2-mesh increases more
smoothly. Fortunately, this is also the scenario where the 4-hypercube gains
more in terms of performance.

When we compare topologies with each other, we observe that the topology of
choice when low-power is the primary design goal is the 2-ary 2-mesh. The
lower power of the 4-hypercube with respect to the 2D mesh mostly derives
from its lower speed, although this is not the only explanation. This is con-



116 CHAPTER 7. LINK DESIGN TECHNIQUES EVALUATION

firmed also by the marginal power overhead of the 4-hypercube when it can
run at the same speed of the 2D mesh (see buffered 2D mesh vs pipelined
4-hypercube in Figure 7.6). This is counterintuitive, since the hypercube has
many more buffering resources than the 2D mesh.

The answer has be sought in the power breakdown. This is reported in Figure
7.7 for the baseline version of the two topologies along with the low frequency
variant of the 2D mesh. In fact, the 2D mesh was re-synthesized and analyzed
both at full speed (rightmost column) and at the same speed of the 4-hypercube
for a fair comparison. In all cases, it is evident that the clock tree has a rel-
atively lower impact than register power in the 4-hypercube, while in the 2D
mesh it weighs more. As a consequence, when the same speed is inferred, the
two topologies have surprisingly the same power. While register power obvi-
ously increases for the 4-hypercube, the clock tree is cheaper, and this explains
the result. The reason lies in the fact that while the 2D mesh has heterogeneous
switches, the 4-hypercube has all switches with exactly the same radix. Hence,
the clock tree is inherently more balanced and thus easier to synthesize while
meeting skew constraints.

By combining the performance results of Figure 7.4 with the power reports
of Figure 7.6, we get the energy results of Figure 7.5. Overall, buffering the
links of a 2D mesh is always an energy-efficient strategy. On the contrary, 4-
hypercube and 2-ary 2-mesh show minor energy variations when moving from
one scenario to the other. This indicates that performance improvements have
been achieved at the cost of a proportional power overhead.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

2-ary 4-mesh 4-ary 2-mesh low-freq 4-ary 2-mesh

C
lo

c
k
 t
re

e
 p

o
w

e
r 

c
o
n
s
u
m

p
ti
o
n
 b

re
a
k
d
o
w

n
 [
W

]

clock network
register

combinational

Figure 7.7: Clock tree power impact.



7.5. DISCUSSION 117

7.5 Discussion

The critical path of NoC architectures is moving once again to the interswitch
links, thus making the synthesis technique of these links highly critical for
overall topology speed. This chapter explored how repeater-less, repeated and
pipelined links affect the critical path and the cost of a family of k -ary n -mesh
topologies. As regards the achievable speedup, repeater insertion is very sensi-
tive to floorplanning constraints. Therefore, a non-ideal repeater spacing might
result in no performance boost. Widening routing channels is the obvious but
costly workaround to overcome such limitation. In contrast, pipeline stage
positioning is more flexible and the expected performance gain is always ma-
terialized in practice. Moreover, buffers do not cost much when applied to rela-
tively short links (around 2.5mm in 65nm technology), while on longer links the
backend tool attempts a performance optimization at a dramatic power (buffer-
ing) cost. In all other cases, the steep increase in area arises only when pipeline
stages are inferred.

Considering such analysis, we found it always convenient to infer repeated
interswitch wires in a 2D mesh, since the performance speedup effect is pre-
vailing. As regards the 4-hypercube, it really needs large scale systems to take
advantage of its bisection bandwidth and low diameter. However, already for
16 tile systems, when it can be operated at the same speed of the 2D mesh (by
means of link pipelining) it provides much better performance with equal if
not lower energy. For the 2-ary 2-mesh, the high switch radix poses a satura-
tion limit to the speedups that link optimization techniques can provide. It is
anyway the technique of choice when low-power is the primary design goal. In
any case, whenever the topology has already been selected, in general boosting
link performance pays off in terms of total topology performance while only
minor or even no energy overhead is incurred. In cases when the connectivity
pattern becomes intricate, the validity of these considerations becomes very
sensitive to layout constraints.

7.6 Summary

In this chapter several NoC link design techniques have been assessed taking
the system-level perspective. In this context, classical metrics such as perfor-
mance, power and area overhead have been evaluated not only for a single link
in isolation but considering the entire network topology thus showing their
sensitivity to the adopted link design strategy.





8
A Methodology for Assessing Large

Scale Systems with Layout-Awareness

THIS chapter extends the work presented in the previous chapters by
proposing an evaluation framework for assessing topology implemen-

tation cost when scaling to 64-tile systems. Furthermore, we capture the
impact of link pipelining on topology area and performance assessing whether
and to which extent theoretical benefits are preserved.

The first part of the chapter carries out a high-level analysis that describes
high-level properties of the investigated topologies. Therefore, we quantify to
which extent such properties are impacted by the degradation effects of the
physical synthesis on nanoscale silicon. Next, we propose a NoC physical
characterization methodology enabling layout aware analysis of large scale
systems pruning time and memory requirements. Moreover, we capture the
impact of link pipelining on topology area and performance.

8.1 Introduction

Nowadays, system designers have adopted Networks-on-Chip as communica-
tion infrastructure of general-purpose tile-based Multi-Processor System-on-
Chip (MPSoC). Such decision implies that a certain topology has to be selected
to efficiently interconnect many cores on the chip. To ease such a choice, the
networking literature offers a plethora of works about topology analysis and
characterization for the off-chip domain. However, theoretical parameters and
many intuitive assumptions of such off-chip networks do not necessarily hold
when a topology is laid out on a 2D silicon surface. This is due to the distinc-
tive features of silicon technology design pitfalls. The open literature features
frameworks able to evaluate network topologies only from a pure theoretical

119



120
CHAPTER 8. A METHODOLOGY FOR ASSESSING LARGE SCALE

SYSTEMS WITH LAYOUT-AWARENESS

viewpoint thus neglecting all the physical effects of nanoscale technologies.
On the other hand, other works focused on the physical modeling of inter-
connection networks but only limited to small scale systems mainly due to the
unaffordable time and memory requirements for the synthesis of such systems.
This is the motivation that pushed our work presented in the previous chapters.

Unfortunately, considering a system scale larger than 16 tiles, the feasibility
of such analysis is jeopardized. In fact, due to the increasing memory require-
ments as well as the to the very long synthesis runs, the assessment of a large
scale network topology with layout accuracy becomes an overwhelmingly dif-
ficult if not impossible task.

Therefore, we extend our work framework by proposing a methodology for
analyzing large scale systems. With this methodology, only a few selected
synthesis runs for each topology are required to characterize its delay and area.

Summarizing, the first contribution of this chapter consists of:

• an area and network critical path modeling framework able to accurately
analyze performance of k -ary n -mesh and C -mesh topologies with lay-
out awareness. Our proposed methodology scales easily to large size
systems as only a few sub-systems of the whole network need to be an-
alyze to draw comprehensive area and performance figures.

When accounting for layout effects, conclusions drawn from high-level the-
oretical analysis can be highly misleading. Moreover, k -ary n -mesh and C -
mesh topologies suffer of a considerable slow down when laid out on silicon.
This is mainly due to their long links which represent the speed bottleneck of
the whole network. To tackle this problem, pipeline stages are typically imple-
mented in links of the top dimensions. To the best of our knowledge, all the
previously published analysis frameworks do not account for the implications
of using such techniques from an area/timing viewpoint with layout awareness.
Therefore, the second contribution is:

• the enhancement of our modeling framework with the capability of accu-
rately capture the impact of using link pipelining from both the area and
timing viewpoint accounting for physical effects. Interestingly, when
considering such layout implications of using link pipelining, some
topologies previously considered low speed turn out to be competitive.

The chapter is organized as follows. Section 8.2 presents the topologies under
analysis from a high-level viewpoint discussing their abstract properties. Sec-



8.2. HIGH-LEVEL TOPOLOGY EXPLORATION 121

tion 8.3 describes the modeling methodology utilized to characterize the inves-
tigated topologies and reports performance and area results with and without
pipeline stages.

8.2 High-level Topology Exploration

Topology Switches Cores/ Max. Unidir. Bisection Hop Connect.
switch degree links bandwidth count

8-ary 2-mesh 64 1 5 224 16 14 2
4-ary 3-mesh 64 1 7 288 32 9 3
4-ary 2-mesh 16 4 8 48 8 6 2
2-ary 6-mesh 64 1 7 384 64 6 6
2-ary 5-mesh 32 2 7 160 32 5 5
2-ary 4-mesh 16 4 8 64 16 4 4
8-cmesh 64 1 5 256 32 8 4
4-cmesh 16 4 8 64 16 4 4

Table 8.1: High level parameters of topologies with 64-tile.

In this section a high-level comparison of topology performance is provided.
However, this analysis will only give the high-level perspective and is agnostic
of physical implementation effects. Nonetheless, it may be used in early sys-
tem design stages to select the most promising subset of topology candidates.

We restrict our focus to large 64-tile systems. The number of cores attached
to each switch has been limited to four as a higher number of connected cores
would introduce serious performance and feasibility issues. In fact, the topol-
ogy would have a very low bisection bandwidth. Moreover, the placement of
cores around the switches would not be a trivial task since the length of the
injection/ejection links would increase. This would significantly limit overall
NoC performance [155].

Table 8.1 summarizes the values of the properties of all 64 cores configurations
considered for each topology. The analysis includes two different configura-
tions of the CMesh network. From a pure topology viewpoint, a CMesh can
be seen as a classical 2-D mesh with express links, regardless of the number
of cores attached to each switch. As the investigated systems sizes are quite
large, several topology configurations are possible and need to be taken into
account. The best solution for high traffic loads is represented by the 2-ary
6-mesh. Moreover, this topology has one of the lowest hop counts (6), thus
making it well suited for latency sensitive systems and applications. However,
it requires the highest amount of resources: 64 switches of degree 7 and 384



122
CHAPTER 8. A METHODOLOGY FOR ASSESSING LARGE SCALE

SYSTEMS WITH LAYOUT-AWARENESS

unidirectional links. On the other hand, from a low-latency viewpoint, the best
solution is either the 2-ary 4-mesh or the 4-cmesh, which again are completely
equivalent from a high-level view-point.

Overall, the best topology would be the 2-ary 6-mesh, as it provides four time
more bisection bandwidth than the low-latency solutions, while requiring only
two hops more (6 hops in the 2-ary 6-mesh versus 4 hops in both low-latency
solutions). The only drawback of such topology lies in the high number of
required resources. Finally, when system specifications do not require such a
high bisection bandwidth, the 2-ary 5-mesh solution becomes a good trade-off
that provides twice the bisection bandwidth of the low-latency solutions (while
increasing the number of hops by one). Clearly, by blindly relying on this table
and upon the underlying theoretical analysis, a designer would easily discard
the 2D mesh (8-ary 2-mesh) as candidate topology.

The remainder of this chapter will demonstrate that theoretical properties of
such topologies are put in discussions when layout considerations are taken
into account and may even lead to counterintuitive final results.

Next section will present the characterization methodology that is at the core of
our modeling framework. Such methodology will be used to extrapolate key
physical parameters to be back-annotated in the transaction-level simulator,
thus enabling a layout-aware system-level exploration.

8.3 Physical Modeling Framework

The ×pipesLite [92] switch was used as the basic building block to construct
the 64-tile topologies under test. However, exploring the design space of
topologies with such a large number of cores with full physical synthesis
proved impractical due to synthesis time and memory capacity requirements.
Therefore, next section will present a way to prune the number of physical
synthesis tests while still characterizing the full topology with high accuracy.

All the analyzed topologies of this work have been laid out by means of a
backend synthesis flow leveraging industrial tools. The topology specifica-
tion is fed to the xpipescompiler tool [152], resulting in the generation of
self-contained SystemC code for RTL-equivalent simulation and for synthe-
sis. Synopsys Physical Compiler is used for placement-aware logic synthesis.
The technology library is a low-power low-Vth 65nm STMicroelectronics li-
brary available through the CMP project [146]. Placement and routing have
been performed with Cadence SoC Encounter.



8.3. PHYSICAL MODELING FRAMEWORK 123

8.3.1 Characterization Methodology

In order to accurately characterize the switch and link buffering cell area of
the topology under analysis, we propose to utilize the methodology depicted
in Figure 8.1. In fact, as already reported in Chapter 6, the performance bottle-
neck of a topology lies in its longest switch–to–switch communication chan-
nel. Aware of this, from a high-level topology specification we build a sub-
system composed of two communicating switches at the maximum possible
distance in the topology. This way, the critical link delay can be extracted.
Such delay (which is the critical path delay of the network) is then used as the
target delay to re-synthesize, place and route all the possible switch–to–switch
sub-systems for each different inter-switch link length. The reason for this is
that our goal is to accurately capture the switch cell area at a certain distance
and at a certain target speed. It is well known from logic synthesis theory that
as the target speed is decreased, large area can be saved. In this direction, it
would make no sense to synthesize switches for maximum performance when
a long link limits overall network speed (unless decoupling techniques like link
pipelining are used, as we will see later on). Please note that each switch of the
built sub-system has been pre-characterized standalone with the input/output
delay that is able to tolerate from its neighbor communicating block. These pa-
rameters were set in order to optimize the link delay as much as possible thus
shortening the critical path of the switch–to–switch modeling architecture.

With this methodology, only a few selected synthesis runs for each topology
need to be performed to characterize its delay and area as a whole. The approx-
imation lies in the availability of enough routing channels for regular routing
of NoC links and in the balance preservation of relative wire delays in links
that undergo bending in the actual layout.

Moreover, with this method we are also able to capture the link buffering cost,
in fact, by leveraging the report of the utilized physical synthesis tool, we are
able to trace the inferred buffers of the switch–to–switch channel. In order to
be as accurate as possible when characterizing a topology, two communicating
ports of both switches in our subsystem were left unconnected. They are the
ports connecting to the processing cores, which are typically placed close to
their switch and therefore feature minimum capacitive load. Should we fail
to model this (even by simply leaving an output port unconnected), the input
and output buffer of the switch would be incorrectly sized by the synthesis
tools by using a larger driving strength instead of that actually needed for the
switch–to–core links.

A further step of our work is the estimation of the number of required pipeline



124
CHAPTER 8. A METHODOLOGY FOR ASSESSING LARGE SCALE

SYSTEMS WITH LAYOUT-AWARENESS

critical link delay

accurate switch cell area

topology specification

switch−to−switch sub−system

 at maximum link distance

extract

accurate switch and link
buffering cell area

all possible switch−to−switch

inter−switch link length

sub−system for each different

topology specification

critical link delay

extract

build

re−synthesis

Figure 8.1: Characterization methodology flow.

stages for each link to speed up a topology. For this purpose, such retiming
stages are instantiated along the communication link thus breaking the switch–
to–switch critical path. By incrementing the number of pipeline stages, we
were able to achieve timing closure bringing back the critical path to the second
link dimension. In fact, as mentioned later, in order to limit area overhead, our
pipeline stage insertion criteria consisted of adding such stages only from the
third link dimension onwards.

The next section starts by commenting physical synthesis results achieved for
64-tile topologies without link pipelining. Consequently, the analysis is shifted
to pipelined systems. Chapter 9 will utilize the obtained physical results to
carry out a system-level exploration with layout-awareness.

8.3.2 64-tile topologies

As reported in Table 8.2, the range of possible switch radix per topology spans
from a reasonable 6 to a large 12 that is even more difficult to place and route as
a stand-alone block without DRC (design rules check) violations [108]. Post-
synthesis frequency results reflect the increasing trend with the switch radix,
in agreement with the analysis of [108]. After placement and routing, the ef-



8.3. PHYSICAL MODELING FRAMEWORK 125

fect of the long links comes noticeably into play. Most of the topologies suffer
from long switch–to–switch channels that need to be routed along the chip.
For the sake of the analysis, only the longest link per topology is reported in
the 5th column. By comparing such column with the 4th one, it is possible
to recognize a clear correlation between the increasing link length and the de-
creasing operating speed of the topology under analysis. In fact, the critical
role of the interconnect is a major factor limiting the performance of a topol-
ogy. It should also be observed that also some logic gates end up in series
to the critical links close to the far-ends. They are associated with flow con-
trol management and further contribute to the critical path delay. The trend
above is even more apparent when we consider larger topologies. In fact, only
topologies with short links (e.g., 8-ary 2-mesh and 4-ary 2-mesh) can work at
a reasonable frequency for realistic application scenarios.

TOPOLOGY Radix post-synthesis post-P&R longest link
frequency frequency

8-ary 2-mesh 6 1.08GHz 890MHz 1.5mm
8-cmesh 6 1.08GHz 250MHz 6.75mm

4-ary 3-mesh 8 950Mhz 220MHz 6.9mm
2-ary 6-mesh 8 950Mhz 220MHz 6.9mm
2-ary 5-mesh 9 810MHz 230MHz 6.96mm
4-ary 2-mesh 12 720MHz 530MHz 3.0mm
2-ary 4-mesh 12 720MHz 260MHz 6.4mm

4-cmesh 12 720MHz 260MHz 6.4mm

Table 8.2: Post-place&route results of the 64-tile topologies under test.

From the area viewpoint (see Figure 8.2), it is interesting to note that this re-
sult is influenced by the combination of many parameters such as: number of
switches in the topology, their radix and consequently their final working fre-
quency. In fact, as explained above, in order to be accurate, all representative
switches in every topology have been re-synthesized at the final working speed
of the whole network.

As an example, let us consider a very slow topology like 2-ary 6-mesh that
features a larger area footprint with respect to the 8-ary 2-mesh. Such a net-
work is operating at a frequency much slower than the 8-ary 2-mesh, but since
it has an equal number of switches (64) with a higher radix (8 vs. 4, 5 or 6),
the overall area figures plays in favor of the 8-ary 2-mesh with a 10% saving.

Another interesting result concerns the 4-ary 2-mesh. This topology has a rel-
atively short link (3mm), thus it does not suffer from a large speed degradation



126
CHAPTER 8. A METHODOLOGY FOR ASSESSING LARGE SCALE

SYSTEMS WITH LAYOUT-AWARENESS

after place-and-route. As reported in Table 8.2, this topology is the only one
(along with 8-ary 2-mesh) to have a final working speed above 500MHz. Inter-
estingly, the area footprint of such topology has a 20% saving with respect to
the 8-ary 2-mesh as it only has 16 switches. Although their radix is 10, 11 and
12, their final working speed along with the number of their instances results
to be more area effective than the 8-ary 2-mesh counterpart.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

8-ary 2-m
esh

8-cm
esh

4-ary 3-m
esh

2-ary 6-m
esh

2-ary 5-m
esh

4-ary 2-m
esh

2-ary 4-m
esh

4-cm
esh

N
o
rm

a
liz

e
d
 A

re
a

Area

Figure 8.2: Normalized area for 64-tile topologies.

The overall conclusion is that most of the topologies are not competitive with
the 8-ary 2-mesh because of their long links that influence the final working
speed. A natural way to tackle this problem is to implement link pipelining
on such long links but the policy of insertion has to be carefully engineered.
In fact, the studied 64-tile topologies feature a high number of long links that
could rapidly bring the area cost to an unaffordable budget for a SoC.

8.3.3 Pipeline stage insertion for 64-tile systems

In order to cope with the high speed degradation of most topologies analyzed
in the previous section, pipeline stages need to be inserted especially in the
top dimensions. By adding pipeline stages, it is possible to partially (if not
completely) recover the initial operating frequency of the basic switch block.
The criteria that has been adopted for the insertion of pipeline stages is to use
them only from the third link dimension onwards. Therefore, topologies such
has 8-ary 2-mesh and 4-ary 2-mesh have not been modified. Table 8.3 collects
the results of this experiment. As clearly reported in the 3rd and 4th column,



8.3. PHYSICAL MODELING FRAMEWORK 127

the insertion of pipeline stages is a very effective way to reduce post-place and
route frequency degradation. Column 5 reports the number of pipeline stages
inferred in each link dimension whereas the 6th column points out the num-
ber of links of each topology. The area weight comes from the combination
of these two factors and it is reported in the 7th column. Total cell area of
the topologies along with the contribution of such retiming stages insertion is
reported in Figure 8.3.

 0

 0.5

 1

 1.5

 2

 2.5

8-ary 2-m
esh

8-cm
esh

4-ary 3-m
esh

2-ary 6-m
esh

2-ary 5-m
esh

4-ary 2-m
esh

2-ary 4-m
esh

4-cm
esh

N
o

rm
a

liz
e

d
 A

re
a

switch
pipeline stage

Figure 8.3: Normalized area for 64-tile topologies with pipeline stages.

Please note that the number of pipeline stages per link depends on the maxi-
mum achievable frequency (dictated by the maximum switch radix) along with
the link length which is an intrinsic characteristic of each topology. As reported
in Figure 8.3, the 2-ary 6-mesh is the most area greedy topology because it has
the highest number of switches (64) and they were placed and routed at the
high frequency of 855MHz. Moreover, this topology features 192 links with
up to 5 pipeline stages on the longest interconnection channel. The key take
away is that, for each topology, there is a different price to pay to restore the
possible working frequency allowed by the elementary switch block. For this
reason, Chapter 9 will introduce the throughput/area metric (or area efficiency)
that provides a fair assessment of the cost of the achievable bandwidth in each
topology (see Figure 9.5).

To conclude the physical implementation part, it is interesting to observe the
result depicted in Figure 8.4. For each topology, this graph reports area re-
sults before and after inserting pipeline stages. Interestingly, the substantial
cell area increment in all cases (except topologies where pipeline stages were



128
CHAPTER 8. A METHODOLOGY FOR ASSESSING LARGE SCALE

SYSTEMS WITH LAYOUT-AWARENESS

topology
radix

post-synthesis
post-P&

R
#

ofpipe-stage
num

.links
tot.pipe-stage

area
to.tsw

itch
im

pactofpipe-stage
frequency

frequency
perdim

ension
area

(um
2)

area
(um

2)
insertion

on
tot.sw

itch
area

8-ary
2-m

esh
6

1.08G
H

z
893M

H
z

0
112

0
2327712.8

0%
8-cm

esh
6

1.08G
H

z
893M

H
z

express
link⇒

4
128

193425.9
2752108.8

7.03%
4-ary

3-m
esh

8
950M

H
z

855M
H

z
dim

.3⇒
4

144
660216.3

3182953.2
20.74%

2-ary
6-m

esh
8

950M
H

z
855M

H
z

dim
.3,4⇒

1,dim
.5,6⇒

5
192

1087918.1
4362092.8

24.94%
2-ary

5-m
esh

9
810M

H
z

562M
H

z
dim

.3⇒
1,dim

.4.5⇒
3

80
293081.6

2758480.4
10.62%

4-ary
2-m

esh
12

720M
H

z
532M

H
z

0
24

0
1860718.3

0%
2-ary

4-m
esh

12
720M

H
z

532M
H

z
dim

.3,4⇒
3

32
125574.7

2328426.4
5.39%

4-cm
esh

12
720M

H
z

532M
H

z
express

link⇒
3

32
62787.4

2328426.4
2.69%

Table
8.3:

Post-place&
route

results
of64-tile

topologies
w

ith
pipeline

stage
insertion.



8.4. SUMMARY 129

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

8-ary 2-m
esh

8-cm
esh

4-ary 3-m
esh

2-ary 6-m
esh

2-ary 5-m
esh

4-ary 2-m
esh

2-ary 4-m
esh

4-cm
esh

A
re

a
 (

u
m

2
)

baseline
with pipelining

Figure 8.4: 64-tile topologies area overhead for pipeline stage insertion.

not inserted) comes from a twofold contribution: pipeline stages insertion (as
discussed so far) and the restored higher frequency allowed by such insertion.
In fact, the largest contribution in terms of area comes from the switch cell
area devoted to achieve the new working frequency of the switch block. This
relevant effect is typically overlooked by vast majority of topology exploration
frameworks in the open literature.

8.4 Summary

In this chapter we presented a comprehensive analysis framework to assess
k -ary n -mesh and C -mesh topologies at different levels of abstraction, from
system to layout level. Our framework leverages an accurate physical charac-
terization methodology that allows to characterize various topologies from the
area and timing viewpoint while pruning the implementation time as well as
memory requirements. All the topologies have been evaluated at physical level
and their key parameters have been back-annotated for use in a transaction-
level simulator that performs layout-aware system-level exploration. The latter
has been enhanced with dual-clock FIFO interfaces to allow fully decoupled
working frequencies between cores and the NoC.

This chapter demonstrated that is possible to evaluate large scale topologies
with physical level accuracy while cutting down the analysis time by utilizing
only a few selected synthesis and place&route runs. Furthermore, we demon-



130
CHAPTER 8. A METHODOLOGY FOR ASSESSING LARGE SCALE

SYSTEMS WITH LAYOUT-AWARENESS

strated that conclusions drawn by a pure high-level analysis of topology per-
formance can be highly misleading if not enriched by the information provided
by the physical synthesis. As an example, let us consider k -ary n -mesh, these
are very difficult topologies to be realized without link pipelining and the im-
plementation cost of using such technique is typically overlooked. To tackle
this problem, our modeling framework has been devised in such a way that
is able to capture the utilization of pipeline insertion from an area and timing
viewpoint. Leveraging this capability, analyzed topologies, typically consid-
ered too slow, turn out to be cost-effective and may represent a valid alternative
for a given implementation budget.



9
Large Scale GALS Systems Analysis

THIS chapter leverages the effort of the previous chapters and extends
our topology analysis framework to consider GALS systems where the

core and the network speed is fully decoupled. This last brick finally
bridges the gap between the physical and the system level thus enabling a truly
technology-aware system-level assessment. The chapter starts by detailing the
experimental setup. Next, a first set of system-level experiments is carried out
differentiating the analysis with pure high-level estimations only, layout-aware
with and without pipelining. Last, in order to assess the real effectiveness of
link pipelining techniques, an area efficiency metric is also considered.

9.1 Introduction

As described in the previous chapters of this thesis, GALS systems are gaining
momentum for several reasons. One of them is the necessity of providing
voltage and frequency decoupling between different islands of the same chip.
Such capability is key in an application domain, such as the MPSoC one, where
power dissipation plays a critical role. On the other hand, GALS systems are
also very important as they represent an appealing solution to tackle and soften
all the problems due to the upcoming synchronization challenge.

In the previous work presented in this thesis, we started by detailing all the
architectural modifications required to build up a cost-effective GALS system
along with the developed design flow to instantiate a GALS platform. Further-
more, we performed a cross benchmarking between two GALS systems. In the
second part of this thesis, we took a system level perspective and we started
looking at an accurate way of modeling and characterizing small scale and
large scale network topologies where cores and network speed was constrained
by an integer divider thus limiting the overall performance of the system.

131



132 CHAPTER 9. LARGE SCALE GALS SYSTEMS ANALYSIS

In this chapter, we put everything together extending our analysis to systems
implemented with the globally asynchronous locally synchronous (GALS) de-
sign style where cores and network speed ratio can be any. Interestingly, the
adoption of such GALS approach has a considerable consequence on the per-
formance and area figures of various topologies that were not competitive at all
in the previously investigated scenarios. In order to achieve this objective, our
transaction level simulator has been enhanced with dual-clock FIFO interfaces
for cores and network frequency decoupling.

The chapter is a direct extension of the previous one, in fact, by leveraging the
physical layout results of Section 8.3, we carry out a system-level exploration
with layout awareness for 64-tile systems in Section 9.2.

9.2 System-level Exploration

This section will discuss the gap between high-level and realistic performance
predictions, by comparing the former with layout-aware ones.

9.2.1 Experimental setup

In order to obtain accurate performance estimations, our TLM simulator,
which is cycle accurate with the assumed RTL architecture, has been utilized.
The clock domain crossing mechanism implemented in the original simula-
tor was ratio based. In particular, tile frequency was forced to be an inte-
ger divider of NoC frequency. However, as discussed in the Chapter 8, when
link pipelining is not considered, some topologies present severe critical path
degradations. These low frequency topologies cannot remain competitive with
ratio-based clock domain crossing mechanism, as it will have a direct impact
over the speed of the processing cores (as discussed in Chapter 6). In order
to allow a fair performance comparison between topologies with extremely
different operating frequencies, the simulator was augmented with the imple-
mentation of a dual-clock FIFO interface thus enhancing the whole modeling
framework. Last but not least, a dual-clock FIFO allows frequency decoupling
between a core and the network node it is connected to. In all the cases, tiles
are assumed to work at a frequency of 750 MHz.



9.2. SYSTEM-LEVEL EXPLORATION 133

9.2.2 Experimental results

Figure 9.1 depicts accepted traffic vs. average message latency for a uniform
distribution of message destination for different topologies when considering
high-level estimations. Obtained results reflect the conclusions drawn in
Section 8.2 where the 2-ary 6-mesh proved to be the best solution when
neglecting layout implications. Figure 9.2 shows the same analysis where
each topology works at the operating frequency reported in the Table 8.2,
without pipeline stages. By comparing Figure 9.1 against Figure 9.2, when
link pipelining is not considered, there is a misleading gap between the
performance predictions of the high-level analysis and the layout-aware one.
In fact, while the theoretical results reported in Figure 9.1 claim that several
topologies outperform the 8-ary 2-mesh, this latter topology is proved to
be the best solution in the layout-aware results of Figure 9.2. In fact, there
is a direct correlation between the operating frequency and the achieved
system-level performance: the lower the operating frequency, the higher the
average latency and the lower the maximum achievable throughput, regardless
of the results obtained in the high level analysis. In practice, poor matching
with silicon technology completely offsets the better theoretical properties
of the topologies. However, when the impact of wiring complexity over
the critical path is alleviated by using link pipelining techniques, different
conclusions can be drawn.

 0

 100

 200

 300

 400

 500

 20  40  60  80  100  120  140

A
v

er
ag

e 
M

es
sa

g
e 

L
at

en
cy

 (
n

s)

Traffic (flits/ns/node)

8-ary 2-mesh
4-ary 3-mesh
2-ary 6-mesh
2-ary 5-mesh
2-ary 4-mesh
4-ary 2-mesh

8-cmesh
4-cmesh

Figure 9.1: High-level estimation.



134 CHAPTER 9. LARGE SCALE GALS SYSTEMS ANALYSIS

 0

 100

 200

 300

 400

 500

 20  40  60  80  100  120  140

A
v

er
ag

e 
M

es
sa

g
e 

L
at

en
cy

 (
n

s)

Traffic (flits/ns/node)

8-ary 2-mesh
4-ary 3-mesh
2-ary 6-mesh
2-ary 5-mesh
2-ary 4-mesh
4-ary 2-mesh

8-cmesh
4-cmesh

Figure 9.2: Layout-aware, no pipelining.

Figure 9.3 reports the same analysis results when each topology works at the
operating frequency (see Table 8.3) enabled by the usage of link pipelining. In
this case, there are three network topologies that clearly outperform the 8-ary
2-mesh: 2-ary 6-mesh, 2-ary 5-mesh and 4-ary 3-mesh.

 0

 100

 200

 300

 400

 500

 20  40  60  80  100  120  140

A
v

er
ag

e 
M

es
sa

g
e 

L
at

en
cy

 (
n

s)

Traffic (flits/ns/node)

8-ary 2-mesh
4-ary 3-mesh
2-ary 6-mesh
2-ary 5-mesh
2-ary 4-mesh
4-ary 2-mesh

8-cmesh
4-cmesh

Figure 9.3: Layout-aware, with pipelining.

Similar curves have been drawn for several traffic patterns for each topology.



9.2. SYSTEM-LEVEL EXPLORATION 135

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

P
er

fe
ct

 S
h

u
ff

le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

P
er

fe
ct

 S
h

u
ff

le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

P
er

fe
ct

 S
h

u
ff

le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

P
er

fe
ct

 S
h

u
ff

le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

P
er

fe
ct

 S
h

u
ff

le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

P
er

fe
ct

 S
h

u
ff

le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

P
er

fe
ct

 S
h

u
ff

le

U
n

if
o

rm

4-ary 3-mesh 2-ary 6-mesh 2-ary 5-mesh 2-ary 4-mesh 4-ary 2-mesh 8-cmesh 4-cmesh

Pipelining No Pipelining

Figure 9.4: Normalized performance of 64-tile systems.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

Pe
rf

ec
t 

Sh
u

ff
le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

Pe
rf

ec
t 

Sh
u

ff
le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

Pe
rf

ec
t 

Sh
u

ff
le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

Pe
rf

ec
t 

Sh
u

ff
le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

Pe
rf

ec
t 

Sh
u

ff
le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

Pe
rf

ec
t 

Sh
u

ff
le

U
n

if
o

rm

B
it

re
ve

rs
al

B
u

tt
er

fl
y

H
o

ts
p

o
t

Pe
rf

ec
t 

Sh
u

ff
le

U
n

if
o

rm

4-ary 3-mesh 2-ary 6-mesh 2-ary 5-mesh 2-ary 4-mesh 4-ary 2-mesh 8-cmesh 4-cmesh

Pipelining No Pipelining

Figure 9.5: Normalized area efficiency of 64-tile systems.

Those results are summarized in Figure 9.4. This figure shows the normalized
maximum throughput of each topology with respect to the 8-ary 2-mesh solu-
tion. In this plot, a bar higher than 1 implies an improvement of the maximum
throughput over the 8-ary 2-mesh solution. Interestingly, those results follow
the same trend as discussed for the uniform traffic pattern. All non-pipelined
solutions are clearly worse than the 8-ary 2-mesh, while pipelined solutions
follow the same trend reported in the high level analysis: most of the solutions
outperforms the 8-ary 2-mesh, with the 2-ary 6-mesh being the best solutions
for all the traffic patterns. Although in this case the obtained performance
is closer to the high-level estimations, link pipelining techniques may have a



136 CHAPTER 9. LARGE SCALE GALS SYSTEMS ANALYSIS

great impact over the implementation cost, thus requiring a new metric to asses
the real effectiveness of link pipelining techniques.

In particular, we have considered the area efficiency metric, defined as through-
put/area, which correlates the throughput improvement with the area cost that
has been paid to achieve that. Results are shown in Figure 9.5, which de-
picts the area efficiency of each topology normalized with respect to that of
the 8-ary 2-mesh. Results are reported with and without pipelining for several
traffic patterns. In most of the cases, the area efficiency of both pipelined and
non-pipelined solutions is clearly lower than the 8-ary 2-mesh solution.

The key take away is that the performance improvements achieved by complex
topologies with pipelined links are not cost-effective but they are possible. In
fact, it is up to the system designer, based on the target system requirements
and on the available silicon budget, to opt for a more costly and high perfor-
mance solution or to go for a slower but cost-effective alternative.

9.3 Summary

In this chapter, we extended our analysis framework for assessing large k -ary
n -mesh and C -mesh topologies to consider also GALS features. In fact, key
parameters from the topology exploration results have been back-annotated for
use in a transaction-level simulator that performs layout-aware system-level
exploration. The simulator has been enhanced with dual-clock FIFO inter-
faces to allow fully decoupled working frequencies between cores and the NoC
which are typical of GALS systems. Utilizing such systems brings back mo-
mentum to topologies that were strongly limited by the constraint of using an
integer clock divider between cores and network. This last brick of our simu-
lation infrastructure bridges the gap between the physical and the system level
thus enabling a truly technology-aware system-level assessment.



10
Conclusions

DIFFERENTLY from the first position papers, today NoC designers are
facing the severe constraints imposed by the aggressive scaling of

CMOS technology in the nanoscale era. On one hand, power con-
sumption and synchronization issues are reaching hard limits. On the other
hand, the complexity of large MPSoC along with an increasing time–to–market
pressure demands for a communication infrastructure that is able to provide the
required bandwidth, to solve the scalability issue and to furnish the necessary
connectivity. NoC is generally believed to be the answer to such challenges.
However, the low maturity of the NoC technology makes the designer’s task
still a daunting challenge. In fact, on one hand, the selection of the best con-
nectivity pattern to interconnect all the system components is not obvious in
spite of a plethora of work in the open literature. On the other hand, synchro-
nization is still an open issue and will certainly worsen in the coming technol-
ogy nodes thus calling for adequate architectural developments to counter its
consequences. Overall, the common factor is the strong dependency of both
issues from the implications of the aggressive technology scaling that must be
accounted at each layer of the design hierarchy.

This thesis contributes to the evolution of the NoC concept into a mature tech-
nology by proposing a system-level analysis framework with layout awareness
where technology insights, gained through different design layers, have been
collected and exploited to conceive and customize all the design methodologies
and architectural developments required to tackle the presented challenges.

This chapter is structured in three sections. Section 10.1 summarizes the work
presented in this thesis. In Section 10.2, we present the major contributions of
the thesis. Finally, Section 10.3 lists some future directions and open issues
worth of further research and investigation in the context of NoCs.

137



138 CHAPTER 10. CONCLUSIONS

10.1 Summary

This dissertation began by providing the necessary background of the work in
Chapter 2. It surveyed topology evaluation frameworks as well as the design
of globally-asynchronous locally synchronous interfaces for the building of
GALS systems. Finally, it summarized the shortcoming of the presented work
to be addressed in subsequent chapters.
Chapter 3 introduced the synchronization design issue. In a first step, the
motivation for the adoption of synchronization mechanisms in the Network-
on-Chip environment was discussed. Next, it was presented the target GALS
platform of this thesis along with the architecture of the basic switch block
required to build it. Last, the focus was on the baseline mesochronous
synchronizer and all its improvements that led to a new fully integrated and
flexible GALS switch architecture.
Chapter 4 moved a step forward towards the system-level. In fact, the design
flow described in this chapter enabled the building of an entire GALS system
from the system specification, through synthesis and CTS thus reaching the
layout level by performing place&route. In particular, a complete Network-
on-Chip design flow was presented in its front- and back-end parts. For both
parts, our contribution to make the design flow suitable for building GALS
systems was discussed.
Chapter 5 performed a cross-benchmarking between two GALS systems. The
first leveraged a fully synchronous NoC while the second was implemented
through a mesochronous NoC. While the former chapters focused on a
switch-level analysis of such GALS systems, in this chapter, a network-level
perspective was taken. Furthermore, both systems were compared from many
viewpoints such as, clock tree power analysis, area and wiring overhead and
above all from a skew tolerance and variability robustness viewpoint.
Chapter 6 explored the performance and physical feasibility of 16-tile
Networks-on-Chip within several topology configurations. It was the first
chapter where our “system- to layout-level” approach for assessing NoC
topologies was presented. Our analysis framework encompassed different lev-
els of abstraction as physical key parameters from synthesis and place&route
process were calculated and then exposed to our system-level simulation
infrastructure thus materializing in a system-level performance analysis with
layout-awareness.
Chapter 7 assessed several NoC link inference techniques (e.g., repeater inser-
tion, link pipelining) by means of commercial backend synthesis tools, taking
the system-level perspective. Performance speed-ups and power overhead



10.2. MAJOR CONTRIBUTIONS 139

were not only evaluated for the links in isolation but for the network topology
as a whole, thus showing their sensitivity to the link inference strategy.
Various k -ary n -mesh topologies were considered during our analysis as they
provide a representative range of complex interconnection networks with
increasing total wirelength.
Chapter 8 extended the work presented in the previous chapters by proposing
an accurate characterization methodology for the evaluation of the topology
implementation cost when scaling the system size to 64 tiles . The first
part of the chapter carried out a high-level analysis describing the high-level
properties of the investigated topologies. Therefore, we quantified to which
extent such properties are impacted by the degradation effects of the physical
synthesis on nanoscale silicon. Next, we proposed a NoC physical character-
ization methodology enabling layout-aware analysis of large scale systems
pruning time and memory requirements. Moreover, we captured the impact of
link pipelining on topology area and performance.
Chapter 9, leveraging the effort of previous chapters, considered IP core-
network speed decoupling typical of GALS systems in the topology evaluation
framework. We carried out a system-level exploration with layout awareness
pointing out that there are several non-intuitive design opportunities depending
on the available area and power budget.

10.2 Major Contributions

This section discusses the major contributions of our study.

• A layout-aware topology exploration framework: Neglecting lay-
out implications and the distinctive features of silicon technologies
would certainly lead to misleading conclusions when analyzing a net-
work topology. Therefore, we proposed an analysis framework to as-
sess topologies with layout awareness thus capturing the implications of
physical effects at system-level. Moreover, we extended our framework
with an analysis of the implications of utilizing link boosting techniques
such as repeater insertion and link pipelining. Furthermore, we pro-
posed a characterization methodology that enables the analysis of large
scale systems pruning time and memory requirements. Our methodol-
ogy captures also the impact of link pipelining on topology area and
performance.



140 CHAPTER 10. CONCLUSIONS

• GALS design methods: Among several implementation variants, we
selected a source synchronous design style as the choice for implement-
ing our target GALS platform. Moreover, in order to migrate from a
synchronous to a GALS design style at a negligible area and power cost,
we opted for mesochronous synchronization within the network domain.
In light with this, we designed a novel mesochronous synchronizer that
is fully merged with the switch input buffer. We explored the design
space of the mesochronous link by characterizing the skew tolerance
of such architecture as a function of several NoC parameters such as
switch radix, interswitch link length, switch operating frequency. We in-
tegrated our developed GALS components into an industrial design flow
thus easing the generation of GALS systems. We developed a clock tree
synthesis methodology able to exploit power optimization opportunities
in the clock distribution network. A final cross-benchmarking between
two GALS systems: the first implementing a fully synchronous and the
second implementing a mesochronous NoC has been carried out. Both
systems leverage dual-clock FIFO interfaces to provide frequency de-
coupling between the NoC and the computational units. Such compari-
son characterized several important metrics such as skew tolerance, area
and wiring overhead, system and clock tree power as well as robustness
to process variation.

• Technology-Aware System-level Assessment: By combining the pre-
vious two major contributions, we extended our topology analysis
framework to consider GALS systems where the core and the network
speed is fully decoupled. This last brick finally bridges the gap between
the physical and the system level thus enabling a truly technology-aware
system-level assessment. In fact, technology information have been not
only accounted across all the design layers for carrying out an accurate
design space exploration, but, such cross-layer considerations of phys-
ical phenomena have been also utilized to conceive and customize all
the design methodologies, circuits and the architectural developments
presented in this thesis.

10.3 Open Issues and Future Directions

• Architectural power optimizations: we are aware that the adoption of
a source synchronous design style has the drawback of sending an ever
switching clock signal between two domains. This calls for an archi-



10.3. OPEN ISSUES AND FUTURE DIRECTIONS 141

tectural optimization in the mesochronous interface where clock gating
techniques could be implemented. Unfortunately, with the current syn-
chronizer architecture, the number of latch banks does not suffice to sup-
port such clock gating techniques. Therefore, the interface architecture
should be changed by increasing the number of slot buffers and a design
space exploration to assess whether or not such modification pays off in
terms of the overall system power saving should be also carried out.

• Fault tolerant GALS NoC: In our recent work on fault tolerant sys-
tems [156], we developed a self-testing infrastructure for Networks-on-
Chip. The underlying assumption is that the system has a unique clock
signal, thus, no GALS systems are supported. Since this testing strategy
fully exploits a cooperative approach of all the network components,
translating such methodology to GALS environment is not a trivial task
but it is certainly worth investigating.

• A power aware CTS methodology: We have shown in our work that
current EDA tools are able to relax the skew constraint only up to a cer-
tain point. The rationale is that such parameter is typically required to
be as small as possible and thus the objective function of any design
automation tool is to minimize it. Nonetheless, we are aware that a bet-
ter controllability of the skew constraint might increase the power opti-
mization in the clock tree while retaining the overall system functional-
ity since mesochronous interfaces in the switch blocks would absorb an
even larger skew offset. Implementing such CTS tool and investigating
the consequent clock tree power saving opportunities would be of great
interest for future multi-core chips where the clock distribution network
is expected to be more and more power greedy and the overall synchro-
nization assumption will have to be relaxed anyway in order to have a
reasonable system feasibility range.





Bibliography

[1] L. Benini, G. De Micheli, “Networks on Chips: a New SoC Paradigm”,
IEEE Computer 35(1), pp. 70–78, 2002.

[2] A. Strano, D. Ludovici, D. Bertozzi, “A Library of Dual-Clock FIFOs
for Cost-Effective and Flexible MPSoCs Design”, Proceedings of the
International Conference on Embedded Computer Systems: Architec-
tures, MOdeling and Simulation (SAMOS), 2010.

[3] A. Pullini, F. Angiolini, D. Bertozzi, L. Benini, “Fault Tolerance Over-
head in Network-on-Chip Flow Control Schemes”. Proceedings of 18th
Annual Symposium on Integrated Circuits and System Design (SBCCI),
pp. 224–229, 2005.

[4] C. Leiserson, “Fat-trees: Universal Networks for Hardware Efficient
supercomputing”, IEEE Transactions on Computer, vol. 34, no. 10,
1985.

[5] S.R. Ohring, M. Ibel, S.K. Das, and M.J. Kumar, “On Generalized Fat
Trees”, Proceedings of the International Parallel Processing Sympo-
sium, pp. 37–44, 1995.

[6] C. Hernandez, F. Silla, J. Duato, “A Methodology for the Character-
ization of Process Variation in NoC Links”, Proceedings of Design,
Automation and Test in Europe (DATE), 2010.

[7] F. Gurkaynak, S. Oetiker, H. Kaeslin, N. Felber, W. Fichtner, “GALS
at ETH Zurich: Success or Failure?”, Proceedings of Asynch’06, pp.
150–159, 2006.

[8] C. Grecu, P. P. Panda, A. Ivanov, R. Saleh, “Structured Interconnect
Architecture: A Solution for the non-scalability of bus-based SoCs”,
Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI), pp.
102–195, 2004.

[9] M. Kreutz, C. Marcon, L. Carro, N. Calazans, A. A. Susin, “Energy
and Latency Evaluation of NoC Topologies”, Proceedings of the IEEE
International Symposium on Circuits and Systems, pp. 5866–5869, Vol.
6, 2005

[10] P.Guerrier, A.Greiner, “A Generic Architecture for On-Chip Packet-
Switched Interconnections”, Proceedings of Design, Automation and
Test in Europe (DATE), pp. 250–156, 2000.

143



144 BIBLIOGRAPHY

[11] H. Matsutani, M. Koibuchi, H. Amano, “Performance, Cost and En-
ergy Evaluation of Fat H-Tree: a Cost-Efficient Tree-Based On-Chip
Network”, Proceedings of IPDPS, pp. 1–10, 2007.

[12] H. Matsutani, M. Koibuchi, D. F. Hsu, H. Amano, “Three-Dimensional
Layout of On-Chip Tree-Based Networks”, Proceedings of the Interna-
tional Symposium on Parallel Architectures, Algorithms and Networks,
pp. 281–288, 2008.

[13] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, C. A. Ze-
ferino, “SPIN: a Scalable, Packet Switched, On-chip Micro-Network”,
Proceedings of Design, Automation and Test in Europe (DATE), pp.
1128–1129, 2003.

[14] S. Suboh, M. Bakhouya, S. L. Buedo, T. E. Ghazawi; “Simulation-
Based Approach for Evaluating On-Chip Interconnect Architectures”,
Proceedings of the Southern Conference on Programmable Logic, pp.
75–80, 2008.

[15] A. Nalamalpu, W. Burleson, “Repeater Insertion in deep sub-micron
CMOS: Ramp-based Analytical Model and Placement Sensitivity Anal-
ysis”. Proceedings of the International Symposium on Circuits and Sys-
tems, pp. 766–769, 2000.

[16] S. Srinivasaraghavan, W. Burleson, “Interconnect Effort - A Unification
of Repeater Insertion and Logical Effort”. Proceedings of the IEEE
Computer Society Annual Symposium on VLSI (ISVLSI’03), pp. 55,
2003.

[17] A. Youssef, T. Myklebust, M. Anis, M. Elmasry, “A Low-Power Multi-
Pin Maze Routing Methodology”. Proceedings of the 8th International
Symposium on Quality Electronic Design (ISQED’07), pp. 153–158,
2007.

[18] M.R. Casu, L. Macchiarulo, “A new system design methodology for
wire pipelined SoC”. Proceedings of Design, Automation and Test in
Europe (DATE), pp. 944–945, 2005.

[19] M.R. Casu, L. Macchiarulo, “Floorplanning With Wire Pipelining in
Adaptive Communication Channels”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 25(12):2996–3004,
2006.



BIBLIOGRAPHY 145

[20] A. Jingye Xu Roy, M.H. Chowdhury, “Optimization technique for flip-
flop inserted global interconnect”. Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pp. 3386–3389,
2008.

[21] H. Zhou, C. Lin, “Retiming for wire pipelining in system-on-chip”.
IEEE Transaction on Computer-Aided Design of Integrated Circuits and
Systems, 23(9):1338–1345, 2004.

[22] J. Cong, Y. Fan, Z. Zhang, “Architecture-Level Synthesis for Automatic
Interconnect Pipelining”. Proceedings of 41st Conference on Design
Automation (DAC’04),

[23] U. Y. Ogras, R. Marculescu, H. G. Lee, C. Puru, D. Marculescu, M.
Kaufman, N. Peter, “Challenges and Promising Results in NoC Proto-
typing Using FPGAs”. IEEE Micro Special Issue on Interconnects for
Multi-Core Chips, 27(5):86–95, 2007.

[24] L. P. Carloni, K. L. Mcmillan, A. L. Sangiovanni-Vincentelli, “Latency
insensitive protocols”. Proceedings of the 11th International Conference
on Computer-Aided Verification, pp.123–133, 1999.

[25] L. Zhong, N.K. Jha, “Interconnect-aware low-power high-level syn-
thesis”. IEEE Transaction on Computer-Aided Design of Integrated
Circuits and Systems, 24(3):336–351, 2005. pp.602–607, 2004.

[26] Y. Ma, Z. Li, J. Cong, X. Hong, G. Reinman, S. Dong, Q. Zhou,
“Micro-architecture Pipelining Optimization with Throughput-Aware
Floorplanning”. Proceedings of the Asia and South Pacific Design Au-
tomation Conference (ASP-DAC), pp. 920–925, 2007.

[27] A. Jingye Xu Roy, M.H. Chowdhury, “Analysis of Power Consumption
and BER of Flip-flop Based Interconnect Pipelining”. Proceedings of
Design, Automation and Test in Europe (DATE), pp. 1–6, 2007

[28] P. Cocchini, “Concurrent flip-flop and repeater insertion for high perfor-
mance integrated circuits”. Proceedings of the International Conference
on Computer Aided Design, pp. 268–273, 2002.

[29] L.P. Carloni, A.L. Sangiovanni-Vincentelli, “On-chip communication
design: roadblocks and avenues”. Proceedings of the IEEE International
Conference on Hardware-software Codesign and System Synthesis, pp.
75–76, 2003.



146 BIBLIOGRAPHY

[30] S. Heo, K. Asanovic, “Replacing global wires with an on-chip network:
A power analysis”. Proceedings of the International Symposium on
Low Power Electonic and Design (ISLPED), pp. 369–374, 2005.

[31] N. Wu, Ge Fen, Wang Qi, “Simulation and Performance Analysis of
Network on Chip Architectures using OPNET”, Proceedings of the In-
ternational Conference on ASIC, pp. 1285–1288, 2007.

[32] A. Adriahantenaina, A. Greiner; “Micro-Network for SoC: Implemen-
tation of a 32-port SPIN Network”, Proceedings of Design, Automation
and Test in Europe (DATE), pp. 1128–1129, 2003.

[33] C. Hernandez, A. Roca, F. Silla, J. Flich, J. Duato, “Improving the
Performance of GALS-based NoCs in the Presence of Process Varia-
tion”, Proceedings of the International Conference on Networks-on-
Chip (NOCS), 2010.

[34] M. Mosin, R. Tamer, W. Xiang, A. Adnanm, M. Yehia, “Provisioning
On-Chip Networks under Buffered RC Interconnect Delay Variations”,
Proceedings of International Symposium on Quality Electronic Design,
2007.

[35] M. R. Guthaus, D. Sylvester, R. B. Brown, “Clock Tree Synthesis with
Data-Path Sensitivity Matching”, Proceedings of the 2008 Asia and
South Pacific Design Automation Conference (ASP-DAC), 2008.

[36] S. Borkar, “Thousand Core Chips: a Technology Perspective”, Pro-
ceedings of the Design Automation Conference (DAC), pp. 746–749.
2007.

[37] C. Grecu, P. P. Pande, A. Ivanov, R. Saleh, “Structured interconnect ar-
chitecture: A solution for the non-scalability of bus-based SoCs”, Pro-
ceedings of the Great Lakes Symposium on VLSI, pp. 192–195, 2004.

[38] C. J. Myers et al., “Asynchronous Circuit Design”, Wiley, 2001.

[39] S. Murali et al., “Designing Message-Dependent Deadlock Free Net-
works on Chips for Application-Specific Systems on Chips”, Proceed-
ings of the International Conference on Very Large Scale Integration,
pp. 158–163, 2006.

[40] J. Sparso, S. Furber, “Principles of Asynchronous Circuit Design: A
System Perspective”, Kluwer, 2001.



BIBLIOGRAPHY 147

[41] J. M. Rabaey, “Digital Integrated Circuits: a Design Perspective”,
Prentice-Hall, 2003.

[42] S. Herbert, D. Marculescu, “Analysis of Dynarmic Voltage/Frequency
Scaling in Chip Multiprocessors”, Proceedings of the International
Symposium on Low Power Electronics and Design, pp. 38–43. 2007.

[43] A. P. Chandrakasan et al, “Low Power CMOS Digital Design”, IEEE
Journal of Solid State Circuits, Vol. 27, pp. 437–484, 2007.

[44] V. Khandelwal, A. Srivastava “Variability-driven formulation for simul-
taneous gate sizing and post-silicon tunability allocation”, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 27, Issue 4, April 2008.

[45] K. Nagaraj, S. Kundu, “A Study on Placement of Post Silicon Clock
Tuning Buffers for Mitigating Impact of Process Variation”, Procedings
of Design, Automation and Test in Europe (DATE), 2009.

[46] ARM Ltd., “AMBA AHB Overview”, http://www.arm.com/
products/solutions/AMBA_Spec.html, 2005.

[47] ARM Ltd., “AMBA 3 AXI Overview”, http://www.arm.com/
products/solutions/AMBA3AXI.html, 2005.

[48] J. Tsai, L. Zhang, and C. Chen, “Statistical Timing Analysis Driven
Post-Silicon-Tunable Clock-Tree Synthesis”, Proceedings of ICCAD,
2005.

[49] A. J. Martin, M. Nystrom, “Asynchronous Techniques for System-on-
Chip Design”, Proceedings of the IEEE, vol.94, no.6, pp. 1089–1120,
2006.

[50] T. N. K. Jain, “Asynchronous Bypass Channels: Improving Perfor-
mance for Multi-Synchronous NoCs”, Proceedings of the International
Symposium on Networks-on-Chip (NOCS), pp. 51–58, 2010.

[51] S. Saponara, F. Vitullo, R. Locatelli, P. Teninge, M. Coppola, L.
Fanucci, “LIME: a Low-Latency and Low-Complexity On-Chip
Mesochronous Link with Integrated Flow Control”, Proceedings of Eu-
romicro Conference on Digital System Design (DSD), pp. 32–35, 2008.

http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.arm.com/products/solutions/AMBA3AXI.html
http://www.arm.com/products/solutions/AMBA3AXI.html


148 BIBLIOGRAPHY

[52] D. Mangano, G. Falconeri, C. Pistritto, A. Scandurra, “Effective Full-
Duplex Mesochronous Link Architecture for Network-on-Chip Data-
Link Layer”, Proceedings of Euromicro Conference on Digital System
Design (DSD), pp. 519–526, 2007.

[53] F. Vitullo et al. “Low-Complexity Link Microarchitecture for
Mesochronous Communication in Networks-on-Chip”, IEEE Trans. on
Computers, Vol.57, issue 9, pp. 1196–1201, 2008.

[54] D. Wiklund, “Mesochronous Clocking and Communication in On-Chip
Networks”, Proceedings of the Swedish System-on-Chip Conference,
2003.

[55] A.T.Tran, D.N.Truong, B.Baas, “A Reconfigurable Source-
Synchronous On-Chip Network for GALS Many-Core Platforms”,
IEEE Transaction on Computer-Aided Design of Integrated Circuits and
Systems, Vol.29, no.6, 2010.

[56] D.Wentzlaff et al., “On-Chip Interconnection Architecture of the Tile
Processor”, IEEE Micro, vol.27, no.5, pp. 15–31, 2007.

[57] D. A. IIitzky, J. D. Hoffman, A. Chun, B. P. Esparza, Architecture of
the Scalable Communications Core’s Network on Chip”, IEEE Micro,
vol.27, Issue 5, pp. 62 - 74,2007.

[58] F. Clermidy, R. Lemaire, X. Popon, D. Ktenas, Y. Thonnart, “An Open
and Reconfigurable Platform for 4G Telecommunication: Concepts and
Application”, Proceedings of Euromicro Conference on Digital System
Design (DSD), pp. 62–74, 2009.

[59] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades, Y.
Thonnart, P. Vivet, N. Wehn, “A 477mW NoC-based Digital Baseband
for MIMO 4G SDR”, ISSCC’2010, pp. 278–279, 2010.

[60] Y. Thonnart, P. Vivet, F. Clermidy, “A Fully-Asynchronous Low-Power
Framework for GALS NoC Integration”, Proceedings of Design, Au-
tomation and Test in Europe (DATE’10), pp. 33–38, 2010.

[61] M. Krstic et al., “Globally Asynchronous, Locally Synchronous Cir-
cuits: Overview and Outlook”, IEEE Design and Test of Computers,
vol. 24, no. 5, pp. 430–441, Sept. 2007.



BIBLIOGRAPHY 149

[62] E. Flamand, “Strategic Directions Towards Multicore Application Spe-
cific Computing”, Proceedings of Design, Automation and Test in Eu-
rope (DATE’09), pp. 1266, 2009.

[63] R. Dobkin, V. Vishnyakov, E. Friedman, R. Ginosar, “An Asynchronous
Router for Multiple Service Levels Networks on Chip”, Proceedings of
ASYNC’05, pp. 44–53, 2005.

[64] S. Beer, R. Ginosar, M. Priel, R. R. Dobkin, A. Kolodny, “The Devolu-
tion of Synchronizers”, Proceedings of ASYNC, pp. 94–103, 2010.

[65] T. Bjerregaard, J. Sparso, “A Router Architecture for Connection-
Oriented Service Guarantees in the MANGO Clockless Network-on-
Chip”, Proceedings of Design, Automation and Test in Europe (DATE),
pp. 1226–1231, 2005.

[66] B. R. Quinton, M. R. Greenstreet, S. J.E. Wilton, “Asynchronous IC
Interconnect Network Design and Implementation Using a Standard
ASIC”, Proceedings of the International Conference of Computer De-
sign (ICCD), pp. 267–274, 2005.

[67] K. Y. Yun, R. P. Donohue, “Pausible Clocking: a First Step Toward
Heterogeneous Systems”, Proceedings of the International Conference
of Computer Design (ICCD), pp. 118–123, 1996.

[68] R. Mullins, S. Moore, “Demystifying Data-Driven and Pausible Clock-
ing Schemes”, Proceedings of the International Symposium on Asyn-
chronous Circuits and Systems, pp. 175–185, 2007.

[69] Z. Yu, B. M. Baas, “Implementing Tile-Based Chip Multiprocessors
with GALS Clocking Styles”, Proceedings of the International Confer-
ence on Computer Design, pp. 174–179, 2006.

[70] B. Mesgarzadeh, C. Svensson, A. Alvandpour, “A New Mesochronous
Clocking Scheme for Synchronization in SoC”, ISCAS, pp.605–609,
2002.

[71] A. Ferrante, S. Medardoni, D. Bertozzi, “Network Interface Sharing
Techniques for Area Optimized NoC Architectures”, Proceedings of
the 11th EUROMICRO Conference on Digital System Design Archi-
tectures, Methods and Tools (DSD), 2008, Italy.



150 BIBLIOGRAPHY

[72] I. M. Panades, F. Clermidy, P. Vivet, A. Greiner, “Physical Implementa-
tion of the DSPIN Network-on-Chip in the FAUST Architecture”, Pro-
ceedings of International Symposium on Networks-on-Chip (NOCS),
pp. 139–148, 2008.

[73] F. Vitullo, N. E. L’Insalata, E. Petri, L. Fanucci, M. Casula, R. Lo-
catelli, M. Coppola, “Low-Complexity Link Microarchitecture for
Mesochronous Communication in Networks-on-Chip”, IEEE Trans. on
Computers, Vol.57, no.9, pp. 1196–1201, 2008.

[74] S. Vangal et al.; “An 80-Tile Sub-100-W TeraFLOPS Processor in 65-
nm CMOS”, IEEE Journal of Solid-State Circuits, Vol.43, Issue 1, pp.
29–41, 2008.

[75] S. W. Keckler et al., “A wire-delay scalable microprocessor architecture
for high performance systems”, ISSCC’03, Feb. 2003, pp. 168–169.

[76] Z. Yu et al., “An asynchronous array of simple processors for DSP
applications”, in ISSCC’06, Feb. 2006, pp. 428–429.

[77] A. M. Scott, M. E. Schuelein, M. Roncken, J. Hwan, J. Bainbridge, J. R.
Mawer, D. L. Jackson, A. Bardsley, “Asynchronous on-Chip Commu-
nication: Explorations on the Intel PXA27x Processor Peripheral Bus”,
Proceedings of the 13th International Symposium on Asynchronous Cir-
cuits and Systems, pp. 60–72, 2007.

[78] M. B. Stensgaard, T. Bjerregaard, J. Sparso, J. H. Pedersen, “A Sim-
ple Clockless Network-on-Chip for a Commercial Audio DSP Chip”,
Proceedings of the 9th EUROMICRO Conference on Digital System
Design, pp. 641–648, 2006.

[79] E. Beigne, F. Clermidy, S. Miermont, P. Vivet, “Dynamic Voltage and
Frequency Scaling Architecture for Units Integration within a GALS
NoC”, Proceedings of the International Symposium on Networks-on-
Chip (NOCS), pp. 129–138, 2008.

[80] E. Beigne, F. Clermidy, S. Miermont, Y. Thonnart, A. Valentian, P.
Vivet, “A Localized Power Control mixing hopping and Super Cut-
Off techniques within a GALS NoC”, Int. Conf. on Integrated Circuit
Design and Technology and Tutorial, pp. 37–42, 2008.

[81] U. Y. Ogras, R. Marculescu, P. Choudhary, D. Marculescu, “Voltage-
Frequency Island Partitioning for GALS-based Networks-on-Chip”,



BIBLIOGRAPHY 151

Proceedings of the Design Automation Conference (DAC), pp. 110–
115, 2007.

[82] T. Ono, M. Greenstreet, “A Modular Synchronizing FIFO for
NOCs”, Proceedings of International Symposium on Networks-on-Chip
(NOCS), 2009

[83] F. Mu, C. Svensson; “Self-Tested Self-Synchronization Circuit for
Mesochronous Clocking”, IEEE Trans. on Circuits and Systems II:
Analog and Digital Signal Processing, Vol.48, no.2, pp.129–141, 2001.

[84] A. Edmanand, C. Svensson, “Timing Closure through Globally Syn-
chronous, Timing Portioned Design Methodology”, Proceedings of De-
sign Automation Conference (DAC), pp. 71–74, 2004.

[85] Federico Angiolini, “Interconnection Systems For Highly Integrated
Computation Devices”, Phd Thesis, University of Bologna, 2008.

[86] “Synopsis Physical Compiler”, http://www.synopsys.com

[87] “Cadence SoC Encounter”, http://www.cadence.com

[88] P. Caputa, C. Svensson, “An On-Chip Delay- and Skew-Insensitive
Multicycle Communication Scheme”, IEEE Solid-State Circuits Con-
ference (ISSCC), pp. 1765–1774, 2006.

[89] SIA Semiconductor Industry Association “The International Technol-
ogy Roadmap for Semiconductors”, http://public.itrs.net/

[90] I. M. Panades, A. Greiner, “Bi-Synchronous FIFO for Synchronous
Circuit Communication Well Suited for Network-on-Chip in GALS Ar-
chitectures”, Proceedings of International Symposium on Networks-on-
Chip (NOCS), pp. 83–94, 2007.

[91] I. Loi, F. Angiolini, L. Benini, “Developing Mesochronous Synchroniz-
ers to Enable 3D NoCs”, Proceedings of International Conference on
VLSI Design, 2007.

[92] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, G. De Micheli,
“xpipesLite: a Synthesis Oriented Design Library for Networks on
Chips”, Proceedings of the Design Automation and Test in Europe Con-
ference (DATE), pp. 1188–1193, 2005.

http://www.synopsys.com
http://www.cadence.com
http://public.itrs.net/


152 BIBLIOGRAPHY

[93] F. Angiolini, L. Benini, P. Meloni, L. Raffo, S. Carta, “Contrasting
a NoC and a Traditional Interconnect Fabric with Layout Awareness”,
Proceedings of Design, Automation and Test in Europe (DATE), 2006.

[94] Y. Semiat, R. Ginosar, “Timing Measurements of Synchronization Cir-
cuits”, Proceedings of the International Symposium on Advanced Re-
search in Asynch. Circuits and Systems, pp. 68–77, 2003.

[95] W. Ning, G. Fen, W. Fei, “Design of a GALS Wrapper for Network
on Chip”, World Congress on Computer Science and Information En-
gineering, pp. 592–595, 2009.

[96] D. Mangano, G. Falconeri, C. Pistritto, A. Scandurra, “Effective full-
duplex Mesochronous Link Architecture for Network-on-Chip Data-
Link layer”, Proceedings of the 10th Euromicro Conference on Digital
System Design Architectures, Methods and Tools, pp. 519–526, 2007.

[97] OCP International Partnership, “OCP Specification 2.2”, 2007.

[98] D. Kim, K. Kim, J. Y. Kim, S. Lee, H. J. Yoo, “Solutions for
Real Chip Implementation Issues of NoC and Their Application to
Memory-Centric NoC”, Proceedings of the International Symposium
on Networks-on-Chips (NOCS), 2007.

[99] Y. Thonnart, E. Beigne, P. Vivet, “Design and Implementation of a
GALS Adapter for ANoC Based Architectures”, Proceedings of the
2009 15th IEEE Symposium on Asynchronous Circuits and Systems,
pp. 13–22, 2009.

[100] J. Jaros, M. Ohlidal, V. Dvorak, “Complexity of Collective Commu-
nications on NoCs”, Proceedings of the International Symposium on
Parallel Computing in Electrical Engineering, pp. 127–133, 2006.

[101] D. Sylvester and K. Keutzer, “Getting to the bottom of deep sub-micron
II: A global paradigm”, Proceedings of the IEEE International Sympo-
sium on Physical Design, pp. 193–200, 1999.

[102] M. Ghoneima, Y. Ismail, M. Khellah, V. De, “Variation-Tolerant and
Low-Power Source-Synchronous Multi-Cycle On-Chip Interconnection
Scheme”, VLSI Design, 2007.

[103] Zhiyi Yu, Bevan M. Baas, “High Performance, Energy Efficiency, and
Scalability with GALS Chip Multiprocessors”, IEEE Trans. VLSI,
vol.17, no.1, pp. 66–79, 2009.



BIBLIOGRAPHY 153

[104] G. Campobello, M. Castano, C. Ciofi, D. Mangano, “GALS Networks
on Chip: a new solution for asynchronous delay-insensitive links”, Pro-
ceedings of Design, Automation and Test in Europe (DATE), pp. 160–
165, 2006.

[105] S. Kim, R. Sridhar, “Self-Timed Mesochronous Interconnections for
High-Speed VLSI Systems”, Proceedings of GLSVLSI, pp. 122–128,
1996.

[106] M. R. Greenstreet, “Implementing a STARI chip”, Proceedings of
ICCD, pp.3, 1995.

[107] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, M. Renaudin, “An Asyn-
chronous NOC Architecture Providing Low Latency Service and Its
Multi-Level Design Framework”, Proceedings of the 11th IEEE Inter-
national Symposium on Asynchronous Circuits and Systems, pp. 54–63,
2005.

[108] A. Pullini et al., “Bringing NoCs to 65 nm”, IEEE Micro 27(5): pp.
75–85, 2007.

[109] E. Beigne, P. Vivet, “Design of on-chip and off-chip interfaces for a
GALS NoC architecture”, Proceedings of the 12th IEEE International
Symposium on Asynchronous Circuits and Systems, pp. 172, 2006.

[110] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, S. Borkar, “A 5-GHz Mesh
Interconnect for a Teraflops Processor”, IEEE Micro, Volume 27:5,
2007.

[111] B. Stackhous et al., “A 65nm 2-Billion Transistor Quad-Core Itanium
Processor”, IEEE Journal of Solid State Circuits, Volume 44, pp. 18–31,
2009.

[112] M. Millberg, E. Nilsson, R. Thid, S. Kumar, A. Jantsch, “The Nostrum
backbone - a Communication Protocol Stack for Networks on Chip”,
Proceedings of the VLSI Design Conference, 2004.

[113] W. J. Dally, J. W. Poulton, “Digital Systems Engineering”, Cambridge
University Press, 1998

[114] S. Mahadevan, F. Angiolini, M. Storoaard, R.G. Olsen, J. Sparso, J.
Madsen, “Network traffic generator model for fast network-on-chip
simulation”. Proceedings of Design, Automation and Test in Europe
(DATE), pp.780–785, 2005.



154 BIBLIOGRAPHY

[115] S. Medardoni, D. Bertozzi, L. Benini, E. Macii, “Control and datapath
decoupling in the design of a NoC switch: area, power and performance
implications”. Proceedings of the International Symposium on System-
on-Chip, pp.1–4, 2007.

[116] R. Ho, K.W. Mai, M.A Horowitz, “Managing wire scaling: a circuit
perspective”. Proceedings of the IEEE 2003 International Interconnect
Technology Conference, pp.177–179, 2003.

[117] M. Krstic, E. Grass, C. Stahl, “Request-driven GALS technique for
wireless communication system”, Proceedings of the 11th IEEE Inter-
national Symposium on Asynchronous Circuits and Systems, pp. 76–85,
2005.

[118] S. Borkar, “Design Perspectives on 22nm CMOS and Beyond”, Pro-
ceedings of the Design Automation Conference (DAC), 2009.

[119] C. Gomez et al.; “Beyond Fat-Tree: Unidirectional Load-Balanced
Multistage Interconnection Network”, Computer Architecture Letters,
June 2008.

[120] C. Gomez et al., “Deterministic versus Adaptive Routing in Fat-Trees”,
Proceedings of CAC’07, as part of IPDPS’07, 2007.

[121] A. Tran, D. Truong, B. Baas, “A GALS Many-Core Heterogeneous
DSP Platform with source-Synchronous On-Chip Interconnection Net-
work”, Proceedings of the International Symposium on Networks-on-
Chip, 2009.

[122] STn8811A12 Mobile Multimedia Application Processor, available on-
line: http://www.st.com

[123] SPEAr Plus600 dual processor cores, available online:
http://www.st.com

[124] J. Bainbridge, “CHAINWorks”, Silistix, http://www.silistix.com

[125] TILE64 PROCESSOR FAMILY, available online:
http://www.tilera.com/pdf/ProBrief Tile64 Web.pdf

[126] Tensilica LX configurable processor, Tensilica Inc.,
http://www.tensilica.com



BIBLIOGRAPHY 155

[127] F. Petrini, M. Vanneschi, “k-ary n-trees: High Performance Networks
for Massively Parallel Architectures”, International Parallel Processing
Symposium, pp. 87–93, 1997.

[128] A. Dalla Torre, M. Ruggiero, A. Acquaviva, L. Benini, “MP-Queue: an
Efficient Communication Library for Embedded Streaming Multimedia
Platform”, IEEE Workshop on Embedded Systems for Real-Time Mul-
timedia, 2007.

[129] J. Balfour, W. J. Dally, “Design Tradeoffs for Tiled CMP On-Chip
Networks”, Proceedings of the ACM International Conference on Su-
percomputing, 2006.

[130] S. Vangal et al., “An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm
CMOS”, Proceedings of ISSCC, pp. 98–589, 2007.

[131] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, A. Scandurra, “Spi-
dergon: a novel on-chip communication network”, Proceedings of the
International Symposium on System-on-Chip, 2004, pp. 16–18, 2004.

[132] S. Bourduas, Z. Zilic, “Latency Reduction of Global Traffic in
Wormhole-Routed Meshes Using Hierarchical Rings for Global Rout-
ing”, Proceedings of the IEEE International Conference on Application-
Specific Systems, Architectures and Processors, pp. 302–307, 2007.

[133] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous Sys-
tems”. PhD Dissertation, Stanford University, October 1984.

[134] R. Ginosar, “Fourteen Ways to Fool Your Synchronizer”, Proceedings
of International Symposium on Asynchronous Circuits and Systems, pp.
89–97, 2003.

[135] Xuan-Tu Tran, J. Durupt, F. Bertrand, V. Beroulle, C. Robach, “A DFT
Architecture for Asynchronous Networks-on-Chip”, Proceedings of the
IEEE European Test Symposium, pp. 219–224, 2006.

[136] Xuan-Tu Tran, Y.Thonnart, J.Durupt, V.Beroulle, C.Robach, “A
Design-for-Test Implementation of an Asynchronous Network-on-Chip
Architecture and its Associated Test Pattern Generation and Applica-
tion”, Proceedings of the International Symposium on Networks-on-
Chip, pp. 149–158, 2008.



156 BIBLIOGRAPHY

[137] F. Martinez Vallina, N. Jachimiec, J. Saniie, “NOVA interconnect for
dynamically reconfigurable NoC systems”, Proceedings of the IEEE
International Conference on Electro/Information Technology, 2007, pp.
546–550, 2007.

[138] F. Gilabert, M. E. Gomez, P. J. Lopez, “Performance Analysis of Multi-
dimensional Topologies for NoC”, ACACES 2007, poster session with
proceedings at the HiPEAC Summer School.

[139] E. Rijpkema, K. Goossens, A. Radulescu, “Trade Offs in the Design of a
Router with both Guaranteed and Best-Effort Services for Networks on
Chip”, Design, Automation and Test in Europe (DATE), pp. 350–355,
2003.

[140] S. Kumar et al., “A Network on Chip Architecture and Design Method-
ology”, IEEE Computer Society Annual Symposium on VLSI, pp. 105–
112, 2002.

[141] V.D. Ngo, H.N. Nguyen, H.W. Choi, “Analyzing the Performance of
Mesh and Fat-Tree Topologies for Network on Chip Design”, L.T.Yang
et al. (Eds): EUC 2005, LNCS 3824, pp. 300–310, 2005.

[142] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh, “Performance
Evaluation and Design Trade-Offs for Network-on-Chip Interconnect
Architectures”, IEEE Transaction on Computers, Vol.54, no. 8, 2005.

[143] S. Medardoni, F. Gilabert, D. Bertozzi, D., M. E. Gomez, P. J. Lopez,
“Towards an Implementation-Aware Transaction-Level Modeling of
On-Chip Networks for Fast and Accurate Topology Exploration”, INA-
OCMC Workshop, co-located with the HiPEAC Conference, 2008.

[144] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, M. Pedram, “An Empiri-
cal Investigation of Mesh and Torus NoC Topologies Under Different
Routing Algorithms and Traffic Models”, Proceedings of the Euromi-
cro Conference on Digital System Design Architectures, Methods and
Tools (DSD), pp. 19–26, 2007.

[145] L. Bononi, N. Concer, M. Grammatikakis, M. Coppola, R. Locatelli,
“NoC Topologies Exploration based on Mapping and Simulation Mod-
els”, Proceedings of the Euromicro Conference on Digital System De-
sign Architectures (DSD), pp. 543–546, 2007.

[146] Circuits Multi-Projects, Multi-Project Circuits; http://cmp.imag.fr



BIBLIOGRAPHY 157

[147] H. Wang, L. S. Peh, S. Malik, “A Technology-Aware and Energy Ori-
ented Topology Exploration for On-Chip Networks”, Proceedings of
the Design, Automation and Test in Europe (DATE), pp. 1238–1243,
2005.

[148] V. F. Pavlidis, E. G. Friedman, “3-D Topologies for Networks-on-Chip”,
Proceedings of the International System-on-Chip Conference (SOC),
pp. 285–288, 2006.

[149] I. Hatirnaz, S. Badel, N. Pazos, Y. Leblebici, S. Murali, D. Atienza, G.
De Micheli, “Early Wire Characterization for Predictable Network-on-
Chip Global Interconnects”, Proceedings of SLIP’07, pp. 57–64, 2007.

[150] P. P. Pande, C. Grecu, A. Ivanov, R. Saleh “Design of a Switch for
Network on Chip Applications”, ISCAS’03, pp. 217–220, Vol.5, 2003.

[151] S. Murali, G. De Micheli, “SUNMAP: a Tool for Automatic Topol-
ogy Selection and Generation for NoCs”, Proceedings of the Design
Automation Conference, 2004, pp. 914–914.

[152] A. Jalabert et al., “xpipesCompiler: a Tool for Instantiating Application
Specific Networks on Chip”, Proceedings of the Design, Automation
and Test in Europe (DATE), pp. 884–889, 2004.

[153] V. Soteriou, N. Eisley, H. Wang, B. Li, L. S. Peh, “Polaris: a System-
Level Roadmapping Toolchain for On-Chip Interconnection Networks”,
IEEE Trans. on VLSI 15(8), pp. 855–868, 2007.

[154] S. Murali, G. De Micheli, “SUNMAP: a Tool for Automatic Topol-
ogy Selection and Generation for NoCs”, Proceedings of the Design
Automation Conference, pp. 914–914, 2004.

[155] F. Gilabert, S. Medardoni, D. Bertozzi, L. Benini, M. E. Gomez, P. J.
Lopez, J. Duato, “Exploring High-Dimensional Topologies for NoC
Design Through an Integrated Analysis and Synthesis Framework”,
Proceedings of the International Symposium on Networks-on-Chip,
2008.

[156] A. Strano, C. G. Requena, D. Ludovici, M. E. Gomez, M. Favalli, D.
Bertozzi, “Exploiting Network-on-Chip Structural Redundancy for A
Cooperative and Scalable Built-In Self-Test Architecture”, Proceed-
ings of Design, Automation and Test in Europe 2011 (DATE), Grenoble,
Franch, March 2011.





List of Publications

Book Chapters

1. F. Gilabert, D. Ludovici, M. E. Gómez, D. Bertozzi, Topology Explo-
ration, Chapter 4 in “Designing Network-on-Chip Architectures in the
Nanoscale Era”, pp. 89-134, December 2010, CRC Book, ISBN: 978-
1-4398-3710-8.

2. D. Bertozzi, A. Strano, D. Ludovici, V. Pavlidis, F. Angiolini, M. Krstic,
The Synchronization Challenge, Chapter 6 in “Designing Network-
on-Chip Architectures in the Nanoscale Era”, pp. 177-235, December
2010, CRC Book, ISBN: 978-1-4398-3710-8.

3. D. Bertozzi, A. Strano, F. Gilabert, D. Ludovici, Technology-Aware
Communication Architecture Design for Parallel Hardware Plat-
forms, Chapter in “Advanced Circuits for Emerging Technology”, CRC
Book, 2011, in press.

International Journals

1. A. Strano, D. Ludovici, D. Bertozzi, A Library of GALS Inter-
faces for Cost-Effective and Flexible MPSoC Design, Transaction on
HiPEAC, accepted for publication.

International Conferences (with proceedings)

1. A. Ghiribaldi, D. Ludovici, M. Favalli, D. Bertozzi, System-Level In-
frastructure for Boot-time Testing and Configuration of Networks-
on-Chip with Programmable Routing Logic, Proceedings of the
IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), accepted for publication, Hong Kong, China, 2011.

2. A. Strano, C. G. Requena, D. Ludovici, M. E. Gómez, M. Favalli, D.
Bertozzi, Exploiting Network-on-Chip Structural Redundancy for A
Cooperative and Scalable Built-In Self-Test Architecture, Proceed-
ings of Design, Automation and Test in Europe 2011 (DATE), pp. 661–
666, Grenoble, France, 2011.

159



160 LIST OF PUBLICATIONS

3. D. Ludovici, A. Strano, G. Gaydadjiev, D. Bertozzi, Mesochronous
NoC Technology for Power-Efficient GALS MPSoC, Proceedings of
the Fifth ACM Interconnection Network Architecture, On-Chip Multi-
Chip Workshop (INA-OCMC), pp. 27–30, Heraklion, Greece, 2011.

4. D. Ludovici, F. Gilabert, M. E. Gómez, G. N. Gaydadjiev, D. Bertozzi,
Contrasting Topologies for Regular Interconnection Networks un-
der the Constraints of Nanoscale Silicon Technology, Proceedings of
the 3rd ACM/IEEE International Workshop on Network-on-Chip Archi-
tectures (NoCArc), pp. 37–42, Atlanta, USA, 2010.

5. A. Strano, D. Ludovici, D. Bertozzi, A Library of Dual-Clock FIFOs
for Cost-Effective and Flexible MPSoCs Design, Proceedings of the
International Conference on Embedded Computer Systems: Architec-
tures, MOdeling and Simulation (SAMOS), pp. 20–27, Samos, Greece,
2010.

6. D. Ludovici, A. Strano, G. N. Gaydadjiev, L. Benini, D. Bertozzi, De-
sign Space Exploration of a Mesochronous Link for Cost-Effective
and Flexible GALS NOCs, Proceedings of Design, Automation and
Test in Europe 2010 (DATE), pp. 679–684, Dresden, Germany, 2010.

7. D. Ludovici, A. Strano, D. Bertozzi, Architecture Design Principles
for the Integration of Synchronization Interfaces into Network-on-
Chip Switches, Proceedings of the 2nd ACM/IEEE International Work-
shop on Network-on-Chip Architectures (NoCArc), pp. 31–36, New
York, USA, 2009.

8. D. Ludovici, A. Strano, D. Bertozzi, L. Benini, G. N. Gaydadjiev, Com-
paring Tightly and Loosely Coupled Mesochronous Synchronizers
in a NoC Switch Architecture, Proceedings of the 3rd ACM/IEEE In-
ternational Symposium on Networks-on-Chip (NOCS), pp. 244–249,
San Diego, USA, 2009.

9. D. Ludovici, D. Bertozzi, L. Benini, G. N. Gaydadjiev, Captur-
ing Topology-Level Implications of Link Synthesis Techniques for
Nanoscale Networks-on-Chip, Proceedings of the 19th ACM/IEEE
Great Lakes Symposium on VLSI (GLSVLSI), pp. 125–128, Boston,
USA, 2009.



LIST OF PUBLICATIONS 161

10. D. Ludovici, F. Gilabert, S. Medardoni, C. G. Requena, M. E. Gómez, P.
López, D. Bertozzi, G. N. Gaydadjiev, Assessing Fat-Tree Topologies
for Regular Network-on-Chip Design under Nanoscale Technology
Constraints, Proceedings of Design, Automation and Test in Europe
2009 (DATE), pp. 562–565, Nice, France, 2009.

11. F. Gilabert, D. Ludovici, S. Medardoni, D. Bertozzi, L. Benini, G. N.
Gaydadjiev, Designing Regular Network-on-Chip Topologies under
Technology, Architecture and Software Constraints, Proceedings of
IEEE International Workshop on Multi-Core Computing Systems (Mu-
CoCoS), pp. 681–687, Fukuoka, Japan, 2009.

International and Local Conferences (without proceedings)

1. D. Ludovici, G. Keramidas, G. N. Gaydadjiev, S Kaxiras, Integra-
tion of Power Saving Techniques in the UNISIM Simulation Frame-
work through the Shadow Module design paradigm, 1st Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools
(RAPIDO), in conjunction with HiPEAC Conference, Paphos, Cyprus,
2009.

2. D. Ludovici, F. Gilabert, C. G. Requena, M. E. Gómez, P. López,
G. N. Gaydadjiev, J. Duato, Butterfly vs. Unidirectional Fat-Trees
for Networks-on-Chip: not a Mere Permutation of Outputs, 3rd
Workshop on Interconnection Network Architectures: On-Chip, Multi-
Chip (INA-OCMC), in conjunction with HiPEAC Conference, Paphos,
Cyprus, 2009.

3. D. Ludovici, G. N. Gaydadjiev, SARC Power Estimation Methodol-
ogy, Proceedings of the 18th Annual Workshop on Circuits, Systems and
Signal Processing (ProRisc), Veldhoven, The Netherlands, 2007.

4. D. Ludovici, S. Wong, Performance Analysis of RR and FQ Algo-
rithms in Reconfigurable Routers, Proceedings of the 17th Annual
Workshop on Circuits, Systems and Signal Processing (ProRisc), Veld-
hoven, The Netherlands, 2006.





Samenvatting

On-chip netwerken (NoCs) worden de laatste tien jaar gezien als de nieuwe
ontwerpmethode voor grote multiprocessor systemen (MPSoC). In het be-
gin vershilden NoCs sterk van de huidige oplossingen, met name door de
vele onverwachte ontwerpuitdagingen van de evoluerende CMOS technolo-
gie. Echter, verschillende verborgen problemen op laag niveau kunnen lei-
den tot verslechterde systeemprestaties, niet acceptabel vermogensverbruik
en zelfs tot een onmogelijk ontwerp. De connectiviteit tussen de verschil-
lende multiprocessor elementen is zo’n probleem dat aangepakt moet wor-
den tijdens het ontwerp van de communicatie infrastructuur. Twee impli-
caties verbonden aan de agressieve CMOS technologie downscaling, als re-
sultaat van groeiende procesvariaties, verminderde vermogensbudgetten en
verslechterende signaalkwaliteit, moeten worden beschouwd. Aan de ene
kant wordt een goede topologie vereist voor een efficiënte subsysteem con-
nectiviteit, terwijl ook aan de bandbreedte en de prestatievereisten wordt
voldaan. Aan de andere kant maken synchronisatiekwesties het systeemon-
twerp moeilijk en in sommige gevallen zelfs onmogelijk onder een strak syn-
chronisatiemodel. Zo hangt de topologie bijvoorbeeld sterk af van de laag-
niveau effecten als gevolg van de verslechterende vertragingstijden, terwijl
de synchronisatiekwesties nauw aan procesvariaties verbonden zijn. Daarom
moeten in de huidige en de toekomstige CMOS technologieën, tegenstrijdige
ad-hoc maatregelen genomen worden om de bovenstaande problemen aan te
kunnen. In dit proefschrift stellen wij een systeemniveau analyse methode
en ontwerpmethodologie voor, beiden rekening houdend met echte layout ef-
fecten. Onze analyse is niet alleen beperkt tot klassieke layout effecten zoals
de niet-regelmatigheid van de rechthoekige modules; de werkelijke vertrag-
ingstijden binnen inter-schakelaar connecties; het aantal van pipeline niveaus
dat vereist is om de gewenste prestaties te krijgen; de maximum toelaatbare
signaalskew van de synchronisatie methode; en meer. Wij beschouwen ook
de implicaties van de bovengenoemde laag-niveau effecten tijdens herontwerp
van onze architectuur blokken. Het ultieme resultaat is een ontwerpmethode
welke werkelijk rekening houdt met de technologie, en klaar is om de uitdagin-
gen van het toekomstige CMOS technologielandschap aan te kunnen.

163





Curriculum Vitae

Daniele Ludovici was born on the 12th of August 1981
in Alatri (FR), Italy. He received the Bachelor of Science
(BSc.) degree in Computer Systems Engineering from
University of Pisa, Italy, in 2003. In the same year, he
was enrolled as postgraduate student, within the same uni-
versity, in a MSc. program. In December 2006, he ob-
tained the Master of Science (MSc.) degree in Computer
Systems Engineering from University of Pisa. Daniele de-

veloped his MSc. thesis at the Computer Engineering (CE) laboratory of Delft
University of Technology (TU Delft), The Netherlands. In 2007, he joined
the same laboratory as PhD. candidate under the guidance of dr. Georgi N.
Gaydadjiev. Part of his PhD. work has been developed in a tight cooperation
with the MPSoC research group of the University of Ferrara, Italy, under the
supervision of dr. Davide Bertozzi. Daniele’s work spans the area of on-chip
networks including technology aware topology exploration; physical link de-
sign, characterization and modeling; design and integration of synchronizers
for the Network-on-Chip domain. He served as reviewer in various confer-
ences and journals including the ACM Transactions on Embedded Comput-
ing Systems (TECS), the Design Automation Conference (DAC), the Design
Automation and Test in Europe (DATE) conference and the ACM/IEEE In-
ternational Symposium on Networks on Chip (NOCs). He served as program
chair of the ACM Interconnection Network Architecture On-Chip Multi-Chip
(INA-OCMC) workshop colocated with the HiPEAC conference in 2011.

165


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Acronyms and Symbols
	Introduction
	Problem Formulation
	Connectivity design with layout-awareness
	The synchronization design issue

	Approach
	Organization

	Background
	Topology Exploration
	2D and Multi-Dimensional Meshes
	Fat-trees

	Link Design Techniques
	The GALS Design Style
	Synchronization Interfaces


	Relaxing the Synchronization Assumption in Networks-on-Chip
	Limitations of the Fully Synchronous Approach
	A Possible Solution: the GALS Design Style
	Target GALS Architecture
	×pipesLite switch architecture
	Baseline Synchronization Architecture
	Optimizations of the baseline architecture: the loosely coupled synchronizer

	Tightly Integrated Synchronizer Architecture
	Operating principle

	Theoretical Analysis
	Architecture flexibility: the Hybrid solution

	Experimental Results
	Comparative latency Analysis

	Mesochronous Link Design Characterization
	Design tradeoffs
	Skew Tolerance
	Target frequency
	Switch radix

	Summary

	A Design Flow for GALS NoCs
	The Front-end
	GALS enhancement: the ×pipes compiler

	The Back-end
	A Traditional View of the Back-End Design Flow
	The ×pipes Back-End Infrastructure
	GALS enhancement: Hierarchical Clock Tree Synthesis
	Routing
	Placement-Aware Logic Synthesis

	Summary

	Contrasting Synchronous vs. Mesochronous Networks-on-Chip
	Introduction
	Target GALS Architectures
	The dual-clock FIFO overhead

	Synthesis of GALS Platforms
	Experimental results
	Area and Wiring Overhead
	Power analysis

	Variability robustness
	Performance considerations

	Summary

	Layout-Aware Exploration of 16-tile systems
	Introduction
	Topology exploration framework
	Backend synthesis flow
	Multi-dimensional Topologies
	Communication semantics
	Post-layout analysis
	System Level Analysis
	Discussion

	Multi-stage Interconnection Networks
	Topology analysis
	Floorplan design
	Floorplan scalability to 64 cores
	Post-Layout analysis
	System Level Analysis
	Discussion

	Summary

	Link Design Techniques Evaluation
	Introduction
	Topologies analysis
	Link Design Techniques
	Experimental Results
	Timing Closure
	Implementation Cost
	Energy Efficiency

	Discussion
	Summary

	A Methodology for Assessing Large Scale Systems with Layout-Awareness
	Introduction
	High-level Topology Exploration
	Physical Modeling Framework
	Characterization Methodology
	64-tile topologies
	Pipeline stage insertion for 64-tile systems

	Summary

	Large Scale GALS Systems Analysis
	Introduction
	System-level Exploration
	Experimental setup
	Experimental results

	Summary

	Conclusions
	Summary
	Major Contributions
	Open Issues and Future Directions

	Bibliography
	List of Publications
	Samenvatting
	Curriculum Vitae

