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Ballistic conductance of composite fermions
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We consider ballistic transport of composite fermions in a realistic microconstriction. An unambiguous
signature of such transport is revealed: the linear conductance increases with increasing magnetic field near
filling factor % and then drops abruptly in a narrow magnetic-field interval.

In recent days many theoretical and experimental papers
have considered the properties of two-dimensional (2D) elec-
tron gas in strong magnetic fields near filling factor v=1/2
(v=2m\2%n, A=+/fic/eB is the magnetic length and n the
electron density). It was shown theoretically’? that these
properties can be well described in terms of composite fer-
mions, which is equivalent to attaching a magnetic flux tube
to each electron. Within the mean field approach the average
effective (external plus internal) magnetic field acting on the
composite fermions is

AB=B—2®n, (1)

@, being the flux quantum. For filling factor v=1/2 the
average effective magnetic field vanishes and the ground
state of the system is a filled Fermi sea of composite fermi-
ons. The existence of a composite-fermion Fermi surface
was recently confirmed by several convincing experiments.?

Ballistic transport of normal electrons has been widely
investigated using quantum point contacts (QPC). This is a
tunable microconstriction created in 2D electron gas by ap-
plication of a negative voltage to a split gate (see Fig. 1). The
conductance of these point contacts varies in a steplike man-
ner as function of applied gate voltage if electrons transit the
constriction region ballistically.* Applying a magnetic field,
one can approach a filling factor 1/2 where the transport
through the constriction is expected to be due to composite

a)

FIG. 1. The geometry of the structure considered. Black and
gray solid curves with arrows show, respectively, sinusoidal and
drift trajectories of composite fermions for different values of ex-
ternal magnetic field (a)—(d) near filling factor 1/2. The rest of the
curves in (b)—(d) can be obtained by inversion with respect to the
saddle point. Dashed lines denote the y(0,0) curves where the den-
sity has the saddle point value.
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fermions. In this work we reveal the characteristic properties
of ballistic transport of these quasiparticles.

We calculate the linear two-terminal conductance of a mi-
croconstriction of 2D electron gas near v=1/2. It should be
noted that calculations of the ballistic conductance of a mi-
croconstriction in terms of uncorrelated electrons (we refer to
these as normal electrons) were given in Ref. 5. The result is
that the ballistic conductance in strong magnetic fields is
determined by the filling factor at the saddle point of the
electron-density distribution and is independent of the width
of the constriction being always of the order of the conduc-
tance quantum for the magnetic fields under consideration.
For ballistic transport of composite fermions we find com-
pletely different results. In contrast to the results of Ref. 5,
the magnetoconductance has a striking nonmonotonic and
abrupt behavior near filling factor 1/2 (see Fig. 2). For a
constriction much wider than the magnetic length the maxi-
mum conductance is much larger than the conductance quan-
tum. Comparison of our results with experimental data
should unambiguously identify the nature of transport
through a constriction near v=1/2, thus distinguishing be-
tween ballistic transport of electrons and composite
fermions.®

We concentrate on the case of small depletion, assuming
that the depletion length /4,, being much larger than A, is
much smaller than the width 2d(0) of the constriction:
l4ep%d(0). In this limit, the electrostatically induced deple-
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FIG. 2. Dependence of the conductance of microconstriction vs
magnetic field described by Eq. (7) (smooth curve). Steplike curve
describes the conductance quantization. The parameters are A =80
A, d(0)=1 pm, l4,=1000 A. The abrupt drop corresponds to the
condition n4,=n(0,0).
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FIG. 3. Sinusoidal and drift trajectories of composite fermions.
Adopted from Ref. 9.

tion of the electron density is small. Surprisingly, the effec-
tive magnetic field produced by this density deviation is
strong enough to localize the propagating modes of compos-
ite fermions (CF’s) near the lines y,, of zero effective mag-
netic field. Indeed, the fermion propagates only if its cyclo-
tron radius r.~®,/B(Ay)\ exceeds the distance Ay from
the line y;, (Ref. 7). Equating this we obtain
Ay=~+kg/n', n' being the density gradient at y,,,. Electro-
statics gives us a typical value of n’%ldep/)\zd(O)z, thus
Ay=~d(0)VN/l4ep. Since N<lge,, Ay<<d(0) and all propa-
gating modes are concentrated in a narrow channel at yq,,.
There are two such channels in the constriction. Each chan-
nel is similar to a common constriction for normal electrons
without magnetic field containing the equal number of
modes propagating from the left to the right and vice versa.
The conductance is simply given by the number of modes.
By changing the external magnetic field, we can move the
line y,/, in the constriction and change the number of propa-
gating modes. We will see below that this increases the con-
ductance with increasing magnetic field. When the filling
factor in the center of the constriction becomes smaller than
1/2 [n1,>n(0,0), ny,=1/47\?, n(0,0) being the electron
density at the saddle point], the lines y;,, do not pass through
the constriction but turn back to the same lead. The number
of the propagating modes drops abruptly, and the conduc-
tance vanishes. This is reminiscent of the phenomenon pre-
dicted in Ref. 8.

Let us consider first an auxiliary problem of a straight
channel where the electron density depends only on the
transverse (y) coordinate. As mentioned above, the conduc-
tance is mainly determined by. the region near line y;j,,
where the effective magnetic field is zero and v=1/2. The
width of this region is much smaller than the channel width,
and we approximate the effective magnetic field near the line
y1,2 as follows:

dn

AB=2®,n'(y—y1p), n’:dy

2

Y=Y
The Schrodinger equation for CF’s reads

w2 d’x(y) 2
— — —(l— 1,22 —
> Tdy? +|E > (k—=2mn'y”*) }x(y) 0, 3)

k being the wave vector along the x axis. Equation (3) has
been discussed in Ref. 9 (see also Ref. 7). It was revealed
that there are two different types of states which cross the
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Fermi energy and have opposite velocities JE/% dk in the x
direction (see Fig. 3). The states of the first type are localized
near the line y;, and have negative velocities. The others
having positive velocities are spatially separated from the
line y,,, and drift due to the gradient of the magnetic field.
They come in pairs corresponding to the possibilities of be-
ing on the left and on the right of y=y,. In order to cal-
culate the conductance of the system, we need to know the
total number N, of subbands below the Fermi energy. We
have solved Eq. (3) semiclassically, obtaining this number
with the help of the Bohr-Sommerfeld quantization rule. It
reads

n 3/4 1

0
Nt=[1.85W+'2— . (4)

where n is the value of background density and the square
brackets denote the integer part of the number. Since we are
interested in the case of small depletion, we have not distin-
guished between ng and 74/, in Eq. (4) and used the follow-
ing relation between the Fermi wave vector and density:
k§= 4rng, which holds for the spin-polarized system. Since
N,>1, in the following we will ignore the term 1/2 in Eq. (4)
compared to the first one, except for the cases when we
discuss the conductance quantization.

For a symmetric contact we have two identical lines of
zero effective magnetic field that doubles the conductance

2
e
G=2N,5—. (5)

Straight channel geometry is not realistic. In reality, ex-
periments on ballistic transport are carried out with point
contacts similar to the one shown in Fig. 1. We show now
that the results obtained above can be immediately applied to
a realistic constriction where the electron density depends on
both coordinates. Indeed, as it follows from Eq. (4), the con-
ductance is determined by the local value of the density de-
rivative at the line of zero effective magnetic field. The value
of the latter quantity far from the constriction (at infinity) is
always larger than its value in the central section (x=0).
This means that the number of transverse modes of CF’s far
from the saddle point is smaller than in the central section
and the ballistic conductance of the system is determined by
the number of modes at infinity. As a result, the conductance
of a sufficiently smooth constriction does not depend on its
shape. This situation is in sharp contrast to the common one.*
We calculate now the density derivative entering Eq. (4) far
from the saddle point (at infinity) where line y,, lies much
closer to one of the boundaries than to the other. The
electron-density deficit (due to an applied negative voltage at
the split gate) at large (compared to the depletion length)
distance s from the boundary is'°

S — - Idﬂ
n(x,y)=no=n(x,y) =ng 22 . ©

At the curve y,, where ény,=no—nq, we find for the de-
rivative of the density én'(y= y1/2)=25nf/2/noldep, which
is independent of the constriction shape. It determines the
conductance of the system:
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e
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Equation (7) is valid under the condition: ny—n,p<ng

which guarantees that the line y,, lies at distances from the

boundaries which are much larger than the depletion length.

The conductance can be calculated in the more general

case when ng—ny,==ng and the separation of the line y,,,

from the boundary is of the order of the depletion length. It
reads

2 5/4 [,1/2
) z ny ldep
zZ

e
G(ﬂo"‘nl/z):(zﬂﬁ 5.24
®)

When deriving Eq. (8), we substituted ny/, for ny in Eq. (4)
and in the calculation of the density derivative we used the
formula for the density profile obtained in Ref. 10.

The conductance increases when the filling factor in the
bulk approaches 1/2 [see Eq. (7)] since the line y,,, lies in
the region of an increasingly flat density profile. This is
only valid if n,, is smaller than the density value at the
saddle point n(0,0). When the filling factor at the saddle
point becomes smaller than 1/2, the line y;, cannot pass
the bottleneck of the constriction and the conductance
should decrease. The magnetic-field dependence of the con-
ductance given by Eq. (7) is shown in Fig. 2. The maximum
value of the conductance is equal to G,=(e?/h)
X[d(0)/laepl NNy *laep> €*/h.

The dependence of the conductance in the narrow interval
near n(0,0) actually has a rich additional structure due to the
fact that CF’s trajectories of different types behave differ-
ently in the bottleneck region. Let us investigate this behav-
ior near »=1/2 in more detail. We notice that not all the
modes of CF’s existing far from the saddle point can propa-
gate through the constriction. Some of them will be reflected
when ny, approaches #7(0,0). This will first occur for drift
trajectories which at infinity lie at the higher density side of
the line y;,. When the drift trajectories move towards the
bottleneck region their separation from the line y,,, increases
since the density derivative n’ decreases. As a result, these
trajectories have a small radius and drift along the lines of
constant density in the bottleneck region. Those which lie on
the higher density side of the line y(0,0) will be reflected
[see Fig. 1(b)]. [At the line y(0,0) the density has the saddle
point value 7(0,0).] The number N, of reflected drift tra-
jectories for a given value of ny, can be found from

eh ﬁzklzv
72‘130[” (0,0) = 11N eg=—5—

> ©)

The number of transmitted modes equals 2N,— N and the
conductance is described by the formula

2 [ 12
e 6 RoVnhg ldep ng

G= : -
2’7Tﬁ no—-nm 2[’1(0,0)*}11/2]

. (10)

The dependence given by Eq. (10) holds if the number of
reflected modes is smaller than N,/2 which is just the total
number of the drift trajectories lying at infinity at the higher
density side of the line y,,,. This number is equal to a fourth
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FIG. 4. The number of transmitted modes through the con-
striction divided by the total number of incoming CF modes as a
function of magnetic field near filling factor 1/2. Different parts
of this dependence (a)—(d) correspond to the situations shown in
Fig. 1.

of the total number 2N, of CF’s, trajectories at infinity (see
Fig. 3). The last drift trajectory coming from infinity is re-
flected at the magnetic-field value determined by

no—n(0,0
7(0,0)—n{=0.76— 00 (11)

172 172 *
(n() ldep) !

Since a fourth of the total number of modes coming from
infinity has been already reflected [the corresponding situa-
tion is shown in Fig. 1(a)], starting from this magnetic field,
the ratio of the number of transmitted modes to the total
number of incoming modes remains equal to 3/4 in the finite
interval of magnetic fields. This interval corresponds to the
first plateau in Fig. 4. The width of the plateau is given by
Eq. (11).

With further increase of the external magnetic field we
reach a situation when n,=n(0,0). For larger values of
magnetic field the snake trajectories coming from infinity
cannot propagate through the constriction and give no con-
tribution to the conductance. The number of snake states at
infinity is a half of the total number of CF’s states. As a
result, the conductance drops by the value G ,,/2 in a nar-
row interval near n,,=n(0,0) (see Fig. 4). The width of this
interval can be estimated as

nO_‘n(0,0)

n(0,0)— P~ -
172 (né/zldep)“/s

(12)

and therefore is much smaller than the plateau width Eq.(11).
With further increase of the magnetic field [n,,>n(0,0)]
only the drift trajectories, which at infinity lie at the low
density side of the y;, curve, will propagate through the
constriction [see Fig. 1(c)]. Again, in the finite interval of the
magnetic fields the ratio of transmitted to incoming modes is
constant (1/4) which corresponds to the second plateau in
Fig. 4. The width of this second plateau coincides with the
width of the first given by Eq. (11). For larger values of the
magnetic field these propagating drift trajectories will also be
reflected [Fig. 1(d)]. It is easy to understand that the number
N rans of the modes which can transit through the constriction
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is given by Eq. (9) with the substitution N, for N.;. As a
result, we obtain for the conductance in this magnetic-field
regime

~ 2] 2
G= 2mh ) 2[n—n(0,0)] (13)

Our results are formally valid in the limit of large values
n(l)/zldep. In this case, the decrease of conductance is abrupt,
as it is shown in Fig. 2. In reality, this parameter takes only
moderately large values, né’zldep=3 —5. The conductance is
still given by Egs. (10,13) but the decreasing part of the
curve is smooth and the maximum value is decreased. An-
other restriction on the validity of the results arises from the
fact that the probability of transitions (due to finite curvature
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radius) between different adiabatic modes of composite fer-
mions having opposite velocities (see Fig. 3) must be small.
This requires kpl4,>1. This holds independently of the
constriction shape.

In conclusion, we have predicted the characteristic ballis-
tic transport properties of composite fermions. The depen-
dence of the conductance of microconstriction versus mag-
netic field is strongly nonmonotonous around filling factor
1/2. This dependence is specific for composite fermions and
can be used to identify these quasiparticles.
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FIG. 1. The geometry of the structure considered. Black and
gray solid curves with arrows show, respectively, sinusoidal and
drift trajectories of composite fermions for different values of ex-
ternal magnetic field (a)—(d) near filling factor 1/2. The rest of the
curves in (b)—(d) can be obtained by inversion with respect to the
saddle point. Dashed lines denote the y(0,0) curves where the den-
sity has the saddle point value.



