

Delft University of Technology

Description grammars
Precedents revisited
Stouffs, Rudi

DOI
10.1177/0265813516667301
Publication date
2016
Document Version
Accepted author manuscript
Published in
Environment and Planning B: Planning & Design

Citation (APA)
Stouffs, R. (2016). Description grammars: Precedents revisited. Environment and Planning B: Planning &
Design, 45 (2018)(1), 124-144. https://doi.org/10.1177/0265813516667301

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1177/0265813516667301
https://doi.org/10.1177/0265813516667301

 1

Description grammars: precedents revisited

Abstract

A description grammar, in conjunction with a shape grammar, serves to generate verbal

descriptions of designs, next to the spatial descriptions. These verbal descriptions can

also assist in guiding the generative process. This paper revisits applications of

description grammars found in literature and demonstrates how they can be recast and

redeveloped to make use of a general notation and implementation for description

grammars. The review of this notation was the topic of a previous paper; this paper is

both meant as an illustration and as a confirmation of those review analysis results.

Introduction

In his seminal “note on the descriptions of design,” Stiny (1981) proposed to augment a

shape grammar with a description function in order to construct verbal descriptions of

designs, next to the spatial descriptions generated by the shape grammar. About thirty-

five years onwards, we can find more than a few applications in literature of a

description function, often denoted a description grammar, in conjunction with a shape

grammar, to qualify designs both spatially and descriptionally.

In this paper we revisit a few applications of description grammars and demonstrate

how these can be recast and redeveloped to make use of a general notation and

implementation for description grammars. This general notation itself was derived

largely from these examples and was previously (forthcoming) reviewed to explicate its

strengths and limitations with respect to these and other examples. It was concluded,

though, that while some differences are readily specifiable and can be attributed to

 2

being cosmetic in nature, due to convention, a present discrepancy in the

implementation, or a present omission, other differences are not, for example the

adopted notation for conditionals may not support all variations in conditionals found in

literature. Without further examination, it is hard to predict how well (or badly) this

notation performs in light of the various description schemes.

For example, (reference withheld) has revisited Stiny’s (1981) example illustrating the

application of a description function with designs made up of blocks from Froebel's

building gifts. One obvious alteration from this example is the explicit use of functions

to retrieve the last coordinate pair of a tuple, determine the number of distinct

coordinate pairs in a tuple, etc. Less obvious is the need to explicate the initial

coordinate pair as a tuple of this coordinate pair and the empty entity e, because,

otherwise, extracting the last element of the tuple would yield a single coordinate rather

than the coordinate pair. Stiny (1981), instead, relegates the extraction of the last

coordinate pair to the explanation provided with the rule. Finally, Stiny offers a

graphical depiction of the adjacency matrix and terms the rooms “W” and “E”, instead

of “R0” and “R1”.

In this paper, we revisit a few exemplar description schemes and demonstrate how these

can be recast and redeveloped to make use of the available notation and

implementation. This is both meant as an illustration and as a confirmation of the

analysis results.

A study example

We start with a simple study example. Brown et al (1996, p. 156) present an example of

a description function for a shape grammar over a domain of squares. The grammar

 3

contains two rules, the first rule adds a square below and to the right at a rectilinear (i.e.,

taxicab) distance equal to the length of the square, and the second rule rotates a square

45° about its center (Figure 1). The description function assigns each square a

description specifying a name for the square, its length, its center position and its

rotation angle. The description function is specified as:

f1: {squarei(l:z, c:(x, y), r:t)} → {squarei(l:z, c:(x, y), r:t), squarej(l:z, c:(x+z/2, y-z/2),

r:t)}

f2: {squarei(l:z, c:(x, y), r:t)} → {squarei(l:z, c:(x, y), r:t+45(mod 90))}

with the initial description specified as {square1(l:10, c:(0,0), r:0)}

Figure 1: The two shape rules of the grammar: adding a square below and to the right,

and rotating a square 45°.

Note that f1 is explained above as adding a square below and to the right (in positive x-

direction and negative y-direction). However, this does not necessarily correspond to

the conjunctive shape rule. Firstly, the shape rule has 4-fold rotational symmetry and,

thus, the square can be added in any of the four diagonal directions. Secondly, if the

square has been rotated by 45° (using rule f2), adding the square below and to the right

f1

f2

 4

would no longer agree with the shape rule. We address these issues by removing any

rotational symmetry and requiring the rotational value r:t in f1 to be zero.

Different from Stiny’s (1981) example, rule f2 and, to some extent, rule f1 can apply to

any square, not just the current square or the last square resulting from rule application.

As such, the difficulty lies in identifying the description corresponding to a selected

square or, vice versa, the square corresponding to a selected description, under

conjunctive rule application. A first solution exists in assigning each description as an

attribute to the corresponding square, in a similar way as Beirão (2012) assigns

descriptions to shape objects. Selecting the square then automatically selects the

description as its attribute.

We present this solution in the Sortal Description Language (SDL), an interpretive

language for describing sortal representational structures, data constructs and rules. We

consider the square, with marker, as an attribute to the description. The resulting sortal

structure, termed ‘solution1’, is composed of a sort of descriptions, a sort of squares

(specified in terms of line segments and marker points, the latter to avoid rotational

symmetry), and an additional description specifying an index:

sort squares : (shapes : [LineSegment]) ^ (markers : [Point]);

sort solution1 : (descriptions : [Description]) ^ squares + (index :

[Description]);

For the sake of readability, we ignore the specification of the squares and only define

the description rules. Each rule is assigned a name, a brief explanation, and a left-hand-

side (lhs) and right-hand-side (rhs) description. The descriptions are enclosed within

backquotes (‘`...`’) to distinguish the descriptions from the remaining SDL code.

 5

rule f1 “add a square below and to the right at a rectilinear distance

equal to the length of the square”

<< solution1:

{ (descriptions ^ squares): { `“square”.i (“l:”, z, “c:”, c, “r:”, 0)`

},

 index: { `j` } }

>> solution1:

{ (descriptions ^ squares): {

 `“square”.i (“l:”, z, “c:”, c, “r:”, 0)`,

 `“square”.(index.value + 1) (“l:”, z, “c:”, c + (z/2,-z/2), “r:”,

0)` },

 index: { `j + 1` } };

rule f2 “rotate a square 45° about its center”

<< solution1:

{ (descriptions ^ squares): { `“square”.i (“l:”, z, “c:”, c, “r:”, t)`

},

 index: { `j` } }

>> solution1:

{ (descriptions ^ squares): { `“square”.i (“l:”, z, “c:”, c, “r:”, (t

+ 45) % 90)` },

 index: { `j` } };

Note that rule f2 should only rotate the square and not the marker. In fact, we can ignore

the marker in the rule specification. Next, we construct a simple derivation as a

sequence of both rule applications. Each intermediate result is captured in an SDL

variable.

form $initial = solution1:

{ (descriptions ^ squares): { `“square1” (“l:”, 10, “c:”, (0, 0),

“r:”, 0)` },

 6

 index: { `1` } };

form $two = solution1: $initial|f1;

form $final = solution1: $two|f2;

Finally, we show the results of both rule applications, in an assignment to the same SDL

variables.

form $two = solution1:

{ (descriptions ^ squares): {

 `“square1” (“l:”, 10, “c:”, (0, 0), “r:”, 0)`,

 `“square2” (“l:”, 1-, “c:”, (5, -5), “r:”, 0)` },

 index: { `2` } };

form $final = solution1:

{ (descriptions ^ squares): {

 `“square1” (“l:”, 10, “c:”, (0, 0), “r:”, 45)`,

 `“square2” (“l:”, 1-, “c:”, (5, -5), “r:”, 0)` },

 index: { `2` } };

An alternative, second, solution exists in assigning the index number of a square as an

attribute (in the form of a numeric label) to this square, then to refer in the lhs of the

description rule to this index, in order to restrict rule application to the appropriate

description.

sort solution2 : squares ^ (indices : [Numeric]) + descriptions +

index;

rule f1_s2 “add a square below and to the right at a rectilinear

distance equal to the length of the square”

<< solution2:

{ descriptions: { `“square”.i?=indices.value (“l:”, z, “c:”, c, “r:”,

0)` },

 index: { `j` } }

 7

>> solution2:

{ descriptions: {

 `“square”.i (“l:”, z, “c:”, c, “r:”, 0)`,

 `“square”.(index.value + 1) (“l:”, z, “c:”, c + (z/2,-z/2), “r:”,

0)` },

 index: { `j + 1` } };

rule f2 “rotate a square 45° about its center”

<< solution2:

{ descriptions: { `“square”.i?=indices.value (“l:”, z, “c:”, c, “r:”,

t)` },

 index: { `j` } }

>> solution2:

{ descriptions: { `“square”.i (“l:”, z, “c:”, c, “r:”, (t + 45) % 90)`

},

 index: { `j` } };

We leave the specification of the derivation and the results as an exercise to the reader.

A third solution could exist in retrieving the length value, center position and rotation

angle directly from the shape. However, with the possible exception of the center

position (center of gravity of the polygon), this would require particular functions to be

specified as part of the grammar. We consider the second solution as preferable over

this third solution and will not further explore this.

We can conclude that the differences with the original description function are both of a

logical and of a cosmetic nature. The need to keep track of the number of squares is of a

logical nature and can be avoided if we omit the numbering of the squares. The need for

(double) quotes to delimit strings is of a cosmetic nature, and can be addressed with a

more informal notation, albeit only for presentation.

 8

Descriptions as expressions

Brown (1997, p. 30) considers description rules (denoted description functions) for

volume calculation of stepped grooved shafts. These description rules require the shape

rule to provide values for the diameter and length of the section when adding a new

section to the shaft (Figure 2), and values for the diameter of the section and the width

of the groove, when adding a circumferential groove to a section of the shaft. They are

specified as:

f1: vol → vol + S2.l*π*(0.5*S2.d)2

f2: vol → vol + S2.l*π*(0.5*S2.d)2

f3: vol → vol

f4: vol → vol – π2*(0.5*g.d)*(0.5*g.w)2 + 4/3π*(0.5*g.w)3

f5: vol → vol

with the initial description specified as the value of S.l*π*(0.5*S.d)2

Figure 2: Two shape rules of the grammar: adding a new section with a larger diameter,

and adding a new section with a smaller diameter (after Brown, 1997, p. 28).

f1

f2
d

d

l

l

 9

Each rule specifies exactly one parameter in the lhs, matching the numeric value of the

current volume, and either specifies a numeric expression over this parameter to update

the current value or leaves this value unchanged.

We assume sortal structures termed ‘sections’ and ‘grooves’ to respectively represent

the sections and grooves of the shaft as geometric cylinders, and define a sortal

structure termed ‘volume’ to represent the volume descriptions (Table 1). Rather than

presenting the full SDL notation, we ignore any formatting that is not absolutely

necessary to capture the notation of the descriptions and description rules. We also omit

rules f3 and f5 from Table 1; since these rules do not alter the description, they do not

require a description rule part. Note that the label “S” is only assigned to the current

section under rule application or, upon rule application, to the new section. We omit a

derivation.

Table 1: Description rules for volume calculation of stepped grooved shafts.

 (grooves : [Cylinder]) + (sections : [Cylinder]) ^ (labels :

[Label]) + volume

f1 Add a new section with a larger diameter

volume: { `vol` } → { `vol +

rhs.sections.length:labels.label=“S” * pi *

rhs.sections.radius:labels.label=“S”^2` }

f2 Add a new section with a smaller diameter

volume: { `vol` } → { `vol +

rhs.sections.length:labels.label=“S” * pi *

rhs.sections.radius:labels.label=“S”^2` }

f4 Add a circumferential groove

 10

volume: { `vol` } → { `vol –

pi^2 * lhs.sections.radius * (rhs.grooves.length / 2)^2 +

4 / 3 * pi * (rhs.grooves.length / 2)^3` }

Aside from cosmetic differences, this example also shows a structural dissimilarity: the

original description rules identify geometric elements by their label, while the adopted

notation also requires the sort (or type) of the element and of the label to be identified.

Brown et al (1996, p. 162) consider a description function that generates process plans

for the manufacturing of objects manufacturable by a given process. Specifically, the

shape vocabulary consists of a single parametric shape (akin to a right trapezoid). The

parameters are α, β, µ and ν, with α ≤ β and µ < ν (Figure 3). Additionally, the turning

tool has parameters l, its remaining length, h, its height, and m, its minimum movement

height or, alternatively, its gradient for turning.

Figure 3: Selected shape vocabulary for the generation of process plans for the

manufacturing of objects with a turning tool (after Brown et al, 1996).

Brown et al (1996) define ten (parametric attributed labelled) shape rules; rules 1

through 5 and rule 10 have a conjunctive description rule. A description specifies a

tuple of five parts: the length, a tuple of locations, a tuple of movement heights, a tuple

of letters ‘r’ or ‘f’ specifying a rough or fine surface finish, respectively, and a tuple of

β
α

(µ, 0) (ν, 0)

 11

removal blocks. Note that Brown et al (1996, p. 162) omit the specification of the length

in rules f2, f4 and f5, suggesting that the length remains unchanged. However, an

examination of the shape derivation example shows that both rules f2 and f4 may result

in an update of the length value (the corresponding description derivation omits the

specification of l altogether). For this reason, we use a value l’ in the rhs of rules f2, f4,

and f5 without further specification.

f1: (l, L, H, S, R) → (l, [0 | L], [0 | H], [s | S], [[] | R])

f2: (l, L, [h | H], S, R) → (l’, L, [max(h, α, β) | H], S, R)

f3: (l, [l1 l2 | L], [h1 h2 | H], [r r | S], [[] X | R]) → (l, [l2 | L], [h2 | H], [r | S], [[((λ,λ),

(λ,λ), (l−ν,α), (l−ν,T.h)) | X] | R]) if X = [((l−ν,y1), (l−ν,T.h), (x3,y3), (x3,T.h)) | X1]

and T.m > 0

 (l, [l1 l2 | L], [h1 h2 | H], [f f | S], [[] X | R]) → (l, [l2 | L], [h2 | H], [f | S], [[((λ,λ),

(λ,λ), (l−ν,α), (l−ν,T.h)) | X] | R]) if X = [((l−ν,y1), (l−ν,T.h), (x3,y3), (x3, y4)) | X1]

 (l, [0 | L], [h | H], [s | S], [[] | R]) → (l, [l−ν | L], [h | H], [s | S], [[((λ,λ), (λ,λ),

(l−ν,α), (l−ν,T.h))] | R]) otherwise

f4: (l, L, H, S, [[((x1,y1), (x2,y2), (x3,y3), (x3,y4)) | X] | R]) → (l’, L, H, S, [[((l−µ,β),

(l−µ,T2.h), (x3,y3), (x3,y4)) | X] | R]) if y1 = α and (α−β)/(µ−ν) = (y3−y1)/(x3−x1) or if x1

= y1 = y2 = λ

 (l, L, H, S, [X | R]) → (l’, L, H, S, [[((l−µ,β), (l−µ,T2.h), (l−ν,α), (l−ν,T1.h)) | X] |

R]) otherwise

f5: (l, L, H, S, [[((x1,y1), (x2,y2), (x3,y3), (x3,y4)) | X] | R]) → (l’, L, H, S, [[((l−µ,β),

(l−µ,T.h+δ*T.m), (x3,y3), (x3,y4)) | X] | R]) if y1 = α and (α−β)/(µ−ν) = (y3−y1)/(x3−x1)

or if x1 = y1 = y2 = λ

 (l, L, H, S, [X | R]) → (l’, L, H, S, [[((l−µ,β), (l−µ,T.h+δ*T.m), (l−ν,α), (l−ν,T.h)) |

 12

X] | R]) otherwise

f10: (l, L, H, S, R) → π(l, ρ(L), ρ(H), ρ(S), ρ(R))

In these rules, T refers to the tool, T1 and T2 distinguish the configuration of the tool

with respect to the lhs, respectively, rhs of the shape rule. The function max returns the

maximum of its arguments; the function ρ reverses a list; the function π is a grammar-

specific function. The initial description is of the form (ν−µ, [], [], [], []).

For the sake of simplicity, we will assume a sort of shapes with elements having the

properties alpha, beta, mu and nu, corresponding to the shape parameters α, β, µ and ν,

and a sort of labels, indicating the current shape and distinguishing between the tool

activities of retraction (“S”), forward movement (“N”) and turning (“T”). We also

assume a sort of tool element with the properties height and movement, corresponding

to the parameters h and m. We omit rule f10, because of the grammar-specific function,

and rule f5, because it does not appear in the derivation example presented by Brown et

al (1996, p. 164) and it is very similar to rule f4. Corresponding to f1 through f4 and

their variations, we define nine rules in total. We disregard any changes to the length l

by the rules f2 and f4 (Table 2).

Table 2: Description rules for generating process plans for the manufacturing of objects

with a turning tool.

 description + (shapes : [XShape]) + (tool : [XTool])

f1a Start a rough cutting operation

description: { `(l, L, H, S, R)` } →

{ `(l, [0 L], [0 H], [“r” S], [[] R])` }

f1b Start a fine cutting operation

 13

description: { `(l, L, H, S, R)` } →

{ `(l, [0 L], [0 H], [“f” S], [[] R])` }

f2 Move the tool along the workpiece

description: { `(l, L, [h H*], S, R)` } →

{ `(l, L, [max([h, shapes.alpha:labels.label=“N”,

shapes.beta:labels.label=“N”]) H], S, R)` }

f3a Select option A to begin cutting

description: { `(l, [l1 l2 L*], [h1 h2 H*], [“r” “r” S*], [[]

[((nuprime?=(l−shapes.nu), y1), (nuprime, Th?=tool.height),

(x3, y3), (x3, Th)) X*] R*])` } →

{ `(l, [l2 L], [h2 H], [“r” S], [[((“λ”, “λ”), (“λ”, “λ”),

(nuprime, shapes.alpha), (nuprime, Th)) ((nuprime, y1),

(nuprime, Th), (x3, y3), (x3, Th)) X] R])` }

f3b Select option B to begin cutting

description: { `(l, [l1 l2 L*], [h1 h2 H*], [“f” “f” S*], [[]

[((nuprime?=(l−shapes.nu), y1), (nuprime, Th?=tool.height),

(x3, y3), (x3, y4)) X*] R*])` } →

{ `(l, [l2 L], [h2 H], [“f” S], [[((“λ”, “λ”), (“λ”, “λ”),

(nuprime, shapes.alpha), (nuprime, Th)) ((nuprime, y1),

(nuprime, Th), (x3, y3), (x3, y4)) X] R])` }

f3c Select option C to begin cutting

description: { `(l, [0 L*], H, S, [[] R*])` } →

{ `(l, [l−shapes.nu L], H, S, [[((“λ”, “λ”), (“λ”, “λ”),

(l−shapes.nu, shapes.alpha), (l−shapes.nu, tool.height))] R])`

}

f4a Cut a section

description: { `(l, L, H, S, [[((x1,

 14

y1?=shapes.alpha:labels.label=“T”), (x2, y2), (x3, y3?=(y1+

(shapes.alpha:labels.label=“T”−shapes.beta:labels.label=“T”)/

(shapes.mu:labels.label=“T”−shapes.nu:labels.label=“T”)*

(x3−x1))), (x3, y4)) X*] R*])` } →

{ `(l, L, H, S, [[((l−shapes.mu:labels.label=“T”,

shapes.beta:labels.label=“T”), (l−shapes.mu:labels.label=“T”,

rsh.tool.height), (x3, y3), (x3, y4)) X] R])` }

f4b Cut a section

description: { `(l, L, H, S, [[((“λ”, “λ”), (x2, “λ”), (x3, y3),

(x3, y4)) X*] R*])` } →

{ `(l, L, H, S, [[((l−shapes.mu:labels.label=“T”,

shapes.beta:labels.label=“T”), (l−shapes.mu:labels.label=“T”,

rsh.tool.height), (x3, y3), (x3, y4)) X] R])` }

f4c Cut a section

description: { `(l, L, H, S, [X R*])` } →

{ `(l, L, H, S, [[((l−shapes.mu:labels.label=“T”,

shapes.beta:labels.label=“T”), (l−shapes.mu:labels.label=“T”,

rsh.tool.height), (l−shapes.nu:labels.label=“T”,

shapes.alpha:labels.label=“T”), (l−shapes.nu:labels.label=“T”,

lsh.tool.height)) X] R])` }

The first variant of rule f3 also specifies a condition on T.m, however as it does not

appear in the lhs of the rule, this condition could not be included in rule f3a (Table 2).

This is a limitation of the notation adopted.

We omit the derivation, as references to shapes and shape rules are currently not

supported. However, note that when replacing the references with fixed numbers,

considering additional rules where numbers may differ, the derivation of the

 15

intermediate plan descriptions presented by Brown et al (1996, p. 164) can be

demonstrated. Aside from minor cosmetic differences (quoted strings) and the structural

dissimilarity of shape references, there is only one other distinction with respect to the

original description rules, that is, the notation adopted from regular expressions to

collect subtuples, rather than a notation borrowed from logic programming.

Verbal descriptions as reflections

Li (2001) applies a description function to the specification of a shape grammar for

(teaching) the architectural style of the Yingzao fashi (Chinese building manual from

1103). Li considers nine descriptions and seven drawings, in parallel. The nine

descriptions are u, the number of bays, v, the number of rafters, w, the number of

storeys, b, the disposition of the beams, c, the number of columns in depth, x, the widths

of bays, y, the length of rafters, z, the width of columns, and l, the elevations of purlins.

The descriptions u, v, w and c are expressed as integers, the descriptions y and z as well;

the latter describe lengths in fen, a unit of length. The descriptions x and l are expressed

as tuples of integers; the lengths of the tuples are related to the values of u and v,

respectively. Finally, the description b is expressed as a tuple of strings, these constitute

the actual descriptions, as found in Liang (1983). In fact, Li (2001) considers not one

but two descriptions, denoted bc and be, bc presents the Chinese version (using the Latin

alphabet) and be the English version.

The seven drawings are the plan diagram, the section diagram, the plan (a scale

drawing), the partial elevation, the roof section, the section, and the (complete)

elevation. Corresponding to the seven drawings, Li’s grammar is specified in seven

stages, denoted as A through G. Each stage is thus concerned with a single drawing.

 16

Also each stage uses only a subset of the nine descriptions. Stage A uses the

descriptions u and v and has eight rules. Only rules A1 through A3, A5 and A6 affect

descriptions u and v. The latter two rules simply assign the values to variables u and v,

corresponding to the descriptions. The initial values are i = 0 (for u) and j = 0 (for v).

A1(u): i → i + 1

A1(v): j → j + 2

A2(u): i → i + 2

A3(v): j → j + 2

A5(u): u = i

A6(v): v = j

Stage B uses the descriptions v, w, b (bc and be) and c, and has 48 rules (rule B10 is

illustrated in Figure 4). We only present the rules that affect any of the descriptions.

Description v is not affected, only the variable v is referenced. Only rule B1 affects

description w. Description c is actually not explicated, its value is contained within

description b. Rules affecting bc and be are formulated as sub-rules affecting individual

tuple entities. The initial values are w = 0, bc = ∅ ∅ ∅ and be = ∅ ∅ ∅.

B1(w): w → w + 1

B10: bc1 → v-jia chuan wu

 bc3 → yong 2 zhu

 be1 → v-rafter building

 be3 → with 2 columns

B11: bc2 → tong yan

 be2 → clear span

 17

B12: bc2 → fen xin

 bc3 → yong c + 1 zhu

 be2 → centrally divided

 be3 → with c + 1 columns

B16: bc2 → bc2, qian zhaqian

 bc3 → yong c + 1 zhu

 be2 → be2, 1-rafter beam in front

 be3 → with c + 1 columns

B17: bc2 → bc2, qian rufu

 bc3 → yong c + 1 zhu

 be2 → be2, 2-rafter beam in front

 be3 → with c + 1 columns

B18: bc2 → bc2, qian 3-chuan fu

 bc3 → yong c + 1 zhu

 be2 → be2, 3-rafter beam in front

 be3 → with c + 1 columns

B19: bc2 → bc2, qian 4-chuan fu

 bc3 → yong c + 1 zhu

 be2 → be2, 4-rafter beam in front

 be3 → with c + 1 columns

B20: bc2 → bc2, hou zhaqian

 bc3 → yong c + 1 zhu

 be2 → be2, 1-rafter beam in back

 be3 → with c + 1 columns

 18

B21: bc2 → bc2, hou rufu

 bc3 → yong c + 1 zhu

 be2 → be2, 2-rafter beam in back

 be3 → with c + 1 columns

B22: bc2 → bc2, hou 3-chuan fu

 bc3 → yong c + 1 zhu

 be2 → be2, 3-rafter beam in back

 be3 → with c + 1 columns

B23: bc2 → bc2, hou 4-chuan fu

 bc3 → yong c + 1 zhu

 be2 → be2, 4-rafter beam in back

 be3 → with c + 1 columns

B44: qian a1, hou a2, qian a3, hou a4 → qian a1 a3, hou a2 a4

 a1 in front, a2 in back, a3 in front, a4 in back → a1 a3 in front, a2 a4 in back

B45: qian a1, hou a1 → qian hou a1

 a1 in front, a1 in back → a1 in front and back

B46: For a1 + a2 = c

 qian a1, hou a2 → a1 dui a2

 bc3 → yong c – 1 zhu

 a1 in front, a2 in back → a1 abutting a2

 b3 → with c – 1 columns

B47: qian hou a1 a1 → qian hou bing a1

 a1 a1 in front and back → double a1 in front and back

 19

B48: qian hou a1 a2 → qian hou ge a1 a2

 a1 a2 in front and back → a1 a2 in both front and back

Figure 4: Rule B10 instantiates the ridge purlin and prepares the section diagram

(markers) for the next sub-stage (after Li, 2001).

Stage C uses the descriptions x and y and, indirectly, references the descriptions u, v, b

and c. Description x specifies the widths of bays; these are user-defined given the

constraint that 300 fen ≥ x1 ≥ … ≥ xm ≥ 200 fen, where m = (u + 1)/2. Description y

specifies the length of rafters; this is also user-defined given the constraint y ≤ 150 fen.

Additionally, Li (2001, pp. 78-82) considers a counter i as part of description x to

indicate the index of the current value within the tuple. Thus, practically speaking there

may be five descriptions. The description ξ may be a tuple of length (u + 1)/2 containing

the user-defined widths of bays. The description x is then a sub-tuple of ξ; rules may

add a value from ξ to x in the order specified by ξ. The description i may be an integer

expressing an index into the tuple x; rules may increase its value. The description y3

may contain a single user-defined length of rafters. The description y is then initialized

to 0 and subsequently assigned the value of y3. The description rules themselves are

straightforward; we omit them. We also omit the remaining stages, as they do not add

anything new.

B10

B B
bc1 ← v jia chuan wu
bc3 ← yong 2 zhu

be1 ← v-rafter building
be3 ← with 2 columns

 20

Thus, we consider rules from stage A and B that alter any of the descriptions (Table 3).

We define a sort composed of five description sorts, corresponding to the descriptions

u, v, w, bc and be. As the compositional relationship is a disjunctive one, it suffices for

each rule to specify only those component sorts that are affected or referenced. The

latter is important, descriptions that are not explicated in the rule cannot be referenced.

We omit any rules that are not used in the exemplar derivation below, mainly because

they are quite similar to other rules included. We make an exception for rule B46 and its

conditional specification. Note that in rule B1 (Table 3) we denote the parameter k

instead of w (see above), as w refers to the description sort.

Table 3: Description rules for the architectural style of the Yingzao fashi.

 bc + be + u + v + w

A1 Instantiate the front centre bay

u: { `i` } → { `i + 1` }

v: { `j` } → { `j + 2` }

A2 Increase the width of the plan diagram

u: { `i` } → { `i + 2` }

A3 Increase the depth of the plan diagram

v: { `j` } → { `j + 2` }

B1 Initiate the base

w: { `k` } → { `k + 1` }

B10 Initiate the ridge purlins

bc: { `bc1 bc2 bc3` } →

{ `v.value.“-jia chuan wu” bc2 “yong 2 zhu”` }

be: { `be1 be2 be3` } →

 21

{ `v.value.“-rafter building” be2 “with 2 columns”` }

v: { `j` } → { `j` }

B12 Centrally divided

bc: { `bc1 bc2 “yong ”.c.“ zhu”` } →

{ `bc1 “fen xin” “yong ”.(c + 1).“ zhu”` }

be: { `be1 be2 “with ”.c.“ columns”` } →

{ `be1 “centrally divided” “with ”.(c + 1).“ columns”` }

B16 1-rafter beam in front

bc: { `bc1 bc2 “yong ”.c.“ zhu”` } →

{ `bc1 bc2.“, qian zhaqian” “yong ”.(c + 1).“ zhu”` }

be: { `be1 be2 “with ”.c.“ columns”` } → { `be1 be2.“, 1-rafter

beam in front” “with ”.(c + 1).“ columns”` }

B20 1-rafter beam in front

bc: { `bc1 bc2 “yong ”.c.“ zhu”` } →

{ `bc1 bc2.“, hou zhaqian” “yong ”.(c + 1).“ zhu”` }

be: { `be1 be2 “with ”.c.“ columns”` } → { `be1 be2.“, 1-rafter

beam in back” “with ”.(c + 1).“ columns”` }

B44 Combine the front beams and back beams into an intermediate description

bc: { `bc1 bc20.“, qian ”.bc21.“, hou ”.bc22.“, qian ”.bc23.“,

hou ”.bc24 bc3` } → { `bc1 bc20.“, qian ”.bc21.“ ”.bc23.“,

hou ”.bc22.“ ”.bc24 bc3` }

be: { `be1 be21.“ in front, ”.be22.“ in back, ”.be23.“ in front,

”.be24.“ in back” be3` } → { `be1 be21.“ ”.be23.“ in front,

”.be22.“ ”.be24.“ in back” be3` }

B45 Apply if number of front beams equals number of back beams

bc: { `bc1 bc20.“, qian ”.bc21.“, hou ”.bc22?=bc21 bc3` } →

 22

{ `bc1 bc20.“, qian hou ”.bc21 bc3` }

be: { `be1 be20.“, ”.be21.“ in front, ”.be22?=be21.“ in back”

be3` } → { `be1 be20.“, ”.be21.“ in front and back” be3` }

B46 Apply if number of front and back beams equals number of columns

bc: { `bc1 bc20.“, qian ”.bc21.“, hou ”.bc22 “yong ”.c.“ zhu”` }

→ { `bc1 bc20.“, ”.bc21.“ dui ”.bc22 “yong ”.(c - 1).“ zhu”`

}

be: { `be1 be20.“, ”.be21.“-rafter beam in front, ”.be22.“-rafter

beam in back” “with ”.c?=(be21 + be22).“ columns”` } → { `be1

be20.“, ”.be21.“-rafter beam abutting ”.be22 “with ”.(c - 1).“

columns”` }

B47 Apply (optional) to remove repetition

bc: { `bc1 bc20.“, qian hou ”.bc21?{“zhaqian”, “rufu”, “3-chuan

fu”, “4-chuan fu”}.“ ".bc22?=bc21 bc3` } →

{ `bc1 bc20.“, qian hou bing ”.bc21 bc3` }

be: { `be1 be20.“, ”.be21.“ beam ”.be22?=be21.“ beam in front and

back” be3` } →

{ `be1 be20.“, double ”.be21.“ beam in front and back” be3` }

We present a derivation exemplified by Li (2001, pp. 60 (figure 5), 69-71 (figures 10

and 11)) (Table 4). As previously mentioned, we omit any steps that do not affect the

descriptions. Additionally, we add the application of rule B47 as the last step of the

derivation (erroneously omitted by Li (2001, p. 71)).

Table 4: Derivation of a 6-rafter building, centrally divided, double 1-rafter beam in

front and back, with 7 columns.

 bc: { `e e e` }

 23

be: { `e e e` }

u: { `0` }

v: { `0` }

w: { `0` }

A1 bc: { `e e e` }

be: { `e e e` }

u: { `1` }

v: { `2` }

w: { `0` }

A2, A2 bc: { `e e e` }

be: { `e e e` }

u: { `5` }

v: { `2` }

w: { `0` }

A3, A3 bc: { `e e e` }

be: { `e e e` }

u: { `5` }

v: { `6` }

w: { `0` }

B1, B10 bc: { `“6-jia chuan wu” e “yong 2 zhu”` }

be: { `“6-rafter building” e “with 2 columns”` }

u: { `5` }

v: { `6` }

w: { `1` }

B12 bc: { `“6-jia chuan wu” “fen xin” “yong 3 zhu”` }

be: { `“6-rafter building” “centrally divided” “with 3

columns”` }

u: { `5` }

v: { `6` }

 24

w: { `1` }

B16 bc: { `“6-jia chuan wu” “fen xin, qian zhaqian” “yong 4

zhu”` }

be: { `“6-rafter building” “centrally divided, 1-rafter

beam in front” “with 4 columns”` }

u: { `5` }

v: { `6` }

w: { `1` }

B20, B16, B20 bc: { `“6-jia chuan wu” “fen xin, qian zhaqian, hou

zhaqian, qian zhaqian, hou zhaqian” “yong 7 zhu”` }

be: { `“6-rafter building” “centrally divided, 1-rafter

beam in front, 1-rafter beam in back, 1-rafter beam

in front, 1-rafter beam in back” “with 7 columns”` }

u: { `5` }

v: { `6` }

w: { `1` }

B44 bc: { `“6-jia chuan wu” “fen xin, qian zhaqian zhaqian,

hou zhaqian zhaqian” “yong 7 zhu”` }

be: { `“6-rafter building” “centrally divided, 1-rafter

beam 1-rafter beam in front, 1-rafter beam 1-rafter

beam in back” “with 7 columns”` }

u: { `5` }

v: { `6` }

w: { `1` }

B45 bc: { `“6-jia chuan wu” “fen xin, qian hou zhaqian

zhaqian” “yong 7 zhu”` }

be: { `“6-rafter building” “centrally divided, 1-rafter

beam 1-rafter beam in front and back” “with 7

columns”` }

 25

u: { `5` }

v: { `6` }

w: { `1` }

B47 bc: { `“6-jia chuan wu” “fen xin, qian hou bing

zhaqian” “yong 7 zhu”` }

be: { `“6-rafter building” “centrally divided, double

1-rafter beam in front and back” “with 7 columns”` }

u: { `5` }

v: { `6` }

w: { `1` }

The dissimilarities between Li’s more informal notation and the formal, sortal notation

are largely cosmetic, though they are not minor. The omission of quotes, the structuring

of the descriptions, alternatively, as a series of sub-descriptions and as a single

description with commas where appropriate, and the informal simplification of

conditionals, make Li’s descriptions and description rules far superior from a human

readability point of view, but prone to ambiguities and interpretations that a computer

cannot handle. As an example, rule B16 adds a comma separating the existing

description part and the added text “1-rafter beam in front”. Often, this rule is preceded

in the generation by rule B12, resulting in the existing description part “centrally

divided”. However, Li (2001, p. 72 (figure 12)) also presents the derivation of a “6-

rafter building, 1-rafter beam in front, 2-rafter beam in back, with 4 columns”. In this

case, the existing description part is empty and the comma is superfluous; it is ignored

in the derivation by Li. Other differences include the use of ‘e’ versus ∅ to denote an

empty string in the sortal notation, the need to include rule parts for descriptions being

referenced, and the inability to consider different rule parts for different elements in the

tuple of strings.

 26

Descriptions as design brief

Duarte (2001; also, 2005a) conceives a discursive grammar, which, from a technical

point of view, is a combination of a shape grammar, a description grammar, and a set of

heuristics. The latter is intended to constrain the rules that are applicable at each step of

the design generation. From an operational viewpoint, a discursive grammar is

composed of two grammars that operate in sequence. The first one, denoted a

programming grammar, generates design briefs based on user and site data and omits

the shape grammar part. The second one, denoted a designing grammar, uses the

previously generated design brief(s) to generate designs in a particular style, and

incorporates both the shape grammar part and the description grammar part. Duarte

(2001) applies discursive grammars to the Portuguese housing program guidelines and

evaluation system (PAHP) and the houses designed by the architect Alvaro Siza at

Malagueira. Among others, Beirão (2012) extends the application of discursive

grammars to urban design.

Descriptions, in these applications, take a large variety of forms, too large to address in

the context of this paper. Instead, we consider the Malagueira designing grammar only,

in a simplified form (Duarte, 2005b). Here, a single description represents functional

zones and their adjacency relations. Duarte (2005b) explicates one example, rule 9:

dissecting the outside zone into yard and sleeping zones (Figure 5). Other rules are

shown, but the descriptions are only presented as conditions, not as rules.

R9: <F1; fb, fr, ff, li; o; Z> → <F1; fb, fr, ff, fl; ya, sl; Z–{ya, sl}>, ya, sl ∈ Z = {required

zones}

 27

Figure 5: Rule R9 dissects the outside zone into yard and sleeping zones (after Duarte,

2005b).

Rule 9 only applies to the first floor (label ‘F1’). The parameters fb, fr, ff, and fl identify

the functions associated with adjacent spaces at, respectively, the back, right, front, and

left side of the space currently considered for dissection. In the left-hand-side of rule 9,

the parameter fl is replaced by the label ‘li’ (living room), which restricts rule

application to a space adjacent to the right of the living room. The next element in the

tuple identifies the function currently associated with the space being dissected,

specifically, the outside zone (‘o’). In the right-hand-side of rule 9, two functions are

specified as the space has been dissected into two; these functions are yard zone (‘ya’)

and sleeping zone (‘sl’). The final tuple element is the set of required zones (Z). Rule

application can only occur if both the yard zone and sleeping zone are part of the set of

R9(W)

R9(D): <F1; fb, fr, ff, li; o; Z> → <F1; fb, fr, ff, fl; ya, sl; Z–{ya, sl}>, ya, sl ∈ Z = {required zones}

Conditions: lm < l1
 lm < l2
 wm > w > wx
 t = 0.2m
 f1 = o ⇒ f’1 = o
 f2 = o ⇒ f’2 = o
 f = o ∧ f1 ≠ o ⇒ f’1 = i’
 f = o ∧ f2 ≠ o ⇒ f’2 = i’
 f = i ⇒ f’1 = i ∧ f’2 = i

R9(R)

R9(F1)

R9(F2)

f

fb

fl
fr

s

fl
fr

fl
fr

fb

s

f2

f1

fb

fl
fr

s

fl
fr

fl
fr

fb

s

f’2

f’1

l1

l2

t

w

 28

required zones; this is expressed as a conditional. Additional conditionals (Figure 5)

control the dimensioning and the relationships between first and second floor. If a zone

on the first floor resulting from the dissection is denoted outside (e.g., yard), the same

area on the second floor must be outside as well. Similarly, if a zone on the first floor

resulting from the dissection is denoted inside (e.g., sleeping zone), the same area on the

second floor must be inside as well.

We propose the use of two parallel descriptions, one for the specification of the zones

and their adjacencies, and another for the required zones. Furthermore, we assume these

descriptions only to apply to the first floor and for similar descriptions to apply to the

second (and third) floor. All descriptions are considered as sets. The specification of the

zones and their adjacencies considers a set of quintuples, each specifying the functions

associated with adjacent spaces at the back, right, front, and left side of the space under

consideration, and the function associated with the space itself. The specification of the

required zones considers a set of zone labels. Rather than a (textual) description per se,

this could also be considered as a set of labels; the enclosing backquotes would then be

removed. Table 5 explicates description rule 9 as adapted to the general notation. As a

single space is dissected into two spaces, description F1 requires a single tuple on the

left-hand-side of the rule and presents two tuples on the right-hand-side of the rule. As

the two resulting spaces are adjacent, their adjacency relations reflect on this. Although

Duarte (2005b) does not explicate this in the description rule, in the shape rule of the

second floor plan and in the control conditions specified, he identifies the effect the

dissection has on the second floor plan. As such, in Table 5, we have also explicated the

description rule for the second floor: one outside zone is dissected into one outside zone

(above the yard zone) and one inside zone (‘i’) (above the sleeping zone). Additionally,

 29

in the shape rules, it is assumed that the original space is adjacent at the front to the

street (‘s’). This information has been added to the description rules.

Table 5: Description rule 9: dissecting the outside zone into yard and sleeping zones.

 F1 + F2 + Z1

R9 Dissect the outside zone into yard and sleeping zones

F1: { `<fb, fr, “s”, “li”, “o”>` } → { `<“sl”, fr, “s”, “li”,

“ya”>`, `<fb, fr, “ya”, “li”, “sl”>` }

F2: { `<fb, fr, “s”, fl, “o”>` } → { `<“i”, fr, “s”, fl, “o”>`,

`<fb, fr, “o”, fl, “i”>` }

Z1: { `“ya”`, `“sl”` } → {}

Descriptions as generative guide

Stiny revisits descriptions in “Shape: Talking about Seeing and Doing” (2006) and

presents description rules for Palladian villa plans that count the number of rooms and

assign plans to equivalence classes. The description rules have the form (Figure 6):

step → step + 1

(m, n) → (m, n + 1)

(m, n) → (m + 2, n)

N → mn

N → N – 1

N → N – 2

 30

Figure 5: Exemplar rules to generate Palladian villa plans and their description

components (after Stiny, 2006).

The first rule counts the number of steps in the generation. As such, it should be

assigned to all the shape rules. The next two description rules count the width and the

height of the grid being generated, with m the number of rectangles in a row and n the

number of rectangles in a column. The former description rule accompanies shape rule

7, while the latter accompanies shape rules 3 and 4 in the Palladian grammar (Stiny and

(m, n) → (m, n + 1)

(m, n) → (m + 2, n)

(m, n) → (m + 2, n)

N → N − 1

N → N − 2

 31

Mitchell, 1978). The fourth description rule is invoked after the grid is completed and

computes the number of rectangles, i.e., rooms. It can be assigned to shape rule 11,

which generates the exterior walls and initiates the room layout rules. The last two

description rules count the number of rooms as rooms are being combined into larger

rooms. The second to last description rule applies to shape rules 14 and 17, whereas the

last description rule applies to shape rules 12, 13, 15, 16, and 18 in the Palladian

grammar. Table 6 illustrates these descriptions rules adapted to the general notation. We

leave the derivation as an exercise to the reader.

Table 6: Description rules for counting the number of rules in Palladian villa plans.

 grid + rooms + steps

r3

r4

Add grid cells horizontally

grid : { `(m, n)` } → { `(m + 2, n)` }

steps : { `step` } → { `step + 1` }

r7 Add a grid cell vertically

grid : { `(m, n)` } → { `(m, n + 1)` }

steps : { `step` } → { `step + 1` }

r11 Generate the exterior walls

grid : { `(m, n)` } → { `(m, n)` }

rooms : { `N` } → { `grid.n * grid.m` }

steps : { `step` } → { `step + 1` }

r12

r13

r15

r16

Concatenate three space into one, or four spaces into two

rooms : { `N` } → { `N - 2` }

steps : { `step` } → { `step + 1` }

 32

r18

r14

r17

Concatenate two spaces into one

rooms : { `N` } → { `N - 1` }

steps : { `step` } → { `step + 1` }

Stiny (2006, pp. 362-367) explores the use of these descriptions to set goals to guide

and control the design process. The number of rooms defines a partitioning within the

catalogue of room layouts with a given grid. Specifying the number of rooms limits the

rules that are applicable in generating room layouts. We leave the derivation as an

exercise to the reader.

Ahmad (2009) proposes a description scheme to map the style characteristics of shape

rules, based on the concept of semantic differential. The style characteristics are

specified as numeric values quantifying opposing adjectival pairs for each shape rule.

The values are collected through rule application and analyzed to characterize the style

or styles of the design and of the language of designs as generated by the grammar. The

mapping of the style range of the grammar may serve as a guide for grammar

transformation. Ahmad presents two exemplar grammars, one for Greek temple façades

and one for mobile phone designs. In the case of the Greek temple façade grammar, five

rule sets are specified. Composition rule sets B and C consider style descriptor ranks

reflecting on spatial relations between primitive shape elements: Symmetric—

Asymmetric, Monolithic—Fragmentary, and Stable—Directional. Specification rule sets

D, E and F consider style descriptor ranks reflecting on the primitive shape elements

themselves: Rectilinear—Curvilinear, Symmetric—Asymmetric, and Simple—Detailed.

Each rule in these sets specifies a shape transformation, a rank for each relevant style

descriptor, and a weight. The style descriptor rank is specified both as a numeric, either

 33

1 or −1, and an alphanumeric value. For example, in the case of style descriptor

Symmetric—Asymmetric, the rank is either 1, “Symmetric”, or −1, “Asymmetric”.

Derived designs collect style descriptor ranks for each rule applied, also considering the

weight of the rule. Based on this collection of style descriptor ranks, the final design is

ranked according to the style descriptors Unity—Diversity, Balanced— Unbalanced,

Simple—Complex, and Dominance.

Ahmad (2009) presents a number of style analysis examples of student designs. The

descriptions are only conceptually developed and the description rules are not

formalized at all. (reference withheld) considers one of the presented designs as a case

study to explore and develop an explication of the description rules. The explication is

relatively straightforward; the style descriptor values are collected, for each rank, as

positive and negative values separately. On the basis of this information, the style

descriptor ranks for the final design are determined. (reference withheld) considers a

single description for the style descriptor ranks reflecting on the primitive shape

elements, and similar for the style descriptor ranks reflecting on spatial relations

between primitive shape elements, and includes only the numeric values for these style

descriptor ranks. Alternatively, a separate description could be maintained for each style

descriptor rank, and the alphanumeric value could be included alongside the numeric

value.

Al-kazzaz (2011; also, Al-kazzaz et al, 2010) considers descriptions in shape grammars

for hybrid design, where the descriptions provide feedback on rule application based on

comparisons between the generated design and the antecedents in the corpus. One

description scheme acts as a user guide for hybrid design and is specified as a set of

antecedent labels. In order to ensure that subsequent shape rule applications are taken

from different antecedents, each shape rule requires one of the labels of its antecedents

 34

to be part of the user guide and subsequently removes all the labels of its antecedents

from the user guide. Al-kazzaz considers two more description schemes specifying

evaluation metrics for rules and derivations, respectively. These provide feedback on

the degree of innovation in hybrid design, specifically, whether the resulting design

combines features from different antecedents and whether the design is sufficiently

different from the antecedents in the corpus (Al-kazzaz, 2011, p. 73). The evaluation

metrics provide feedback both on the rule under application, such as rule prevalence

value and rule geometrical difference value, and on the design currently being derived,

e.g., design diversity, design abundance, and matching degree.

Al-kazzaz (2011) demonstrates these metrics and user guide for a minaret design

grammar considering a heterogeneous corpus of 12 traditional minaret designs. Each

rule in the minaret design grammar identifies the antecedents this rule is derived from,

as well as values for the rule metrics. Note that Al-kazzaz (2011) does not offer any

explication of description rules, describing them only conceptually. (reference withheld)

explores an explication of these description rules for an example presented by Al-

kazzaz (2011, pp. 131–137) for a hybrid design derived using seven (original) rules.

The difficulty in explicating the metrics rules is to define the various accounts that have

to be collected, which are not all straightforward. For example, design diversity relates

to the number of antecedents that the generated design is derived, which implies

maintaining a list of (unique) antecedents from which rules have been applied. As

another example, the matching degree relates to the highest number of applied rules

derived from a same antecedent, which implies maintaining the number of applied rules

for each antecedent. The explication of the user guide description rules is also far from

straightforward. Al-kazzaz (2011) suggests maintaining a set of antecedent labels, and

removing all antecedent labels of the rule being applied from this set. However,

 35

checking for membership of at least one of a given set of antecedent labels is a

complicated matter. Instead, (reference withheld) considers a description containing a

list of numbers of applied rules, one for each antecedent. Thus, a rule applies if the

number of applied rules is zero for at least one antecedent, and the number of applied

rules is increased by one for each antecedent of the rule. Expressing this condition

requires a rule variant for each antecedent of the rule. A function returning the

maximum value within this description can then be used to compute the matching

degree.

Discussion and conclusion

We have revisited a number of applications of description grammars found in literature

and demonstrated how they can be recast and redeveloped to make use of a general

notation (and implementation) for description grammars. Though we have identified

some limitations of the general notation, we have achieved an explication for each of

the case studies we have addressed. Certainly, whether these explications can be

considered as adequate cannot only be answered objectively, it necessarily involves

some subjective evaluation as well. A final verdict would likely be made for each case

study separately by the original author of the case study. Nevertheless, we can draw a

few general conclusions.

An obvious conclusion would be that without a general notation (and implementation),

authors embrace too much expressive freedom, resulting in description rules and

grammars that are impracticable and require significant additional work in order to

make them workable. Certainly, Stiny (1981) did not have the intention to explicate

every aspect of his description function, for this was not necessary in order to

 36

understand the concepts and processes presented, and the same can be said of other case

studies referred to in this paper. Nevertheless, there are clear examples of where the

lack of explication introduces logical inconsistencies and ambiguities that hinder a

proper understanding. The study example from Brown et al (1996) is still borderline in

this respect, but the case study from Al-kazzaz (2011) presents a clear example where a

significant effort is required to bridge the gap from the conceptual description to a

possible implementation.

The downside of this need for explication and unambiguity are the numerous cosmetic

dissimilarities identified above that often reduce human readability for the sake of

machine readability. Another example is structural dissimilarities, such as the choice for

a notation adopted from regular expressions versus a notation borrowed from logic

programming to collect subtuples. Cosmetic dissimilarities can be (partially) addressed

by envisioning a presentation-only format that increases readability at the cost of

unambiguousness, with a process of parsing the more explicit notation into the latter

format. Structural dissimilarities may be tackled by considering variations in the

notation for different uses (or authors). For example, considering that the case study of

Brown et al (1996) only involves prepend operations on lists, the notation borrowed

from logic programming might be perfectly preferable.

Future work may include notational variations targeting different fields of application,

description patterns to address recurring issues, the investigation of a complete case

study application with its original author, and weaving together formal requirements of

the notation with a user’s informal approach.

 37

Acknowledgments

I would like to express my gratitude to the reviewers for their constructive comments,

suggestions and insights.

References

Ahmad S, 2009, A framework for strategic style change using goal driven grammar

transformations PhD thesis, Department of Architecture, University of Strathclyde,

Glasgow, UK

Al-kazzaz D A A, 2011, Shape grammars for hybrid component-based design PhD

thesis, Department of Architecture, University of Strathclyde, Glasgow, UK

Al-kazzaz D, Bridges A, Chase S, 2010, “Shape grammars for innovative hybrid

typological design”, in Future Cities Eds G Schmitt, L Hovestadt, L Van Gool, F

Bosché, R Burkhard, S Coleman, J Halatsch, M Hansmeyer, S Konsorski-Lang, A

Kunze, M Sehmi-Luck (eCAADe, Brussels) pp 187–195

Beirão J N, 2012, CItyMaker: Designing Grammars for Urban Design PhD thesis,

Faculty of Architecture, Delft University of Technology

Brown K, 1997, “Grammatical design” IEEE Expert 12(2) 27–33

Brown K N, McMahon C A, Sims Williams J H, 1996, “Describing process plans as the

formal semantics of a language of shape” Artificial Intelligence in Engineering 10(2)

153–169

 38

Duarte J P, 2001, Customizing Mass Housing: A Discursive Grammar for Siza's

Malagueira Houses PhD thesis, Department of Architecture, MIT

Duarte J P, 2005a, “A discursive grammar for customizing mass housing: the case of

Siza’s houses at Malagueira” Automation in Construction 14(2) 265–275

Duarte J P, 2005b, “Towards the mass customization of housing: the grammar of Siza's

houses at Malagueira” Environment and Planning B: Planning and Design 32(3) 347–

380

Li A I, 2001, A shape grammar for teaching the architectural style of the Yingzao fashi

PhD thesis, Department of Architecture, MIT

Liang S, 1983, Yingzaofashi zhushi, (Zhongguo jianzhu gongye, Beijing)

Stiny G, 1981, “A note on the description of designs” Environment and Planning B:

Planning and Design 8(3) 257–267

Stiny G, 2006, Shape: Talking about Seeing and Doing (MIT, Cambridge, MA)

Stiny G, Mitchell W J, 1978, “The Palladian grammar” Environment and Planning B:

Planning and Design 5(1) 5–18

forthcoming, “Description grammars: a general notation” submitted to Environment and

Planning B: Planning and Design

