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An RMS-DC Converter Based on the Dynamic Translinear Principle
J. Mulder, A. C. van der Woerd, W. A. Serdijn, and A. H. M. van Roermund

Abstract—The dynamic translinear principle can be regarded
as an extension of the conventional, i.e., static, translinear prin-
ciple. The dynamic translinear principle cannot only be used to
realize linear filters, but also constitutes an interesting approach
to the implementation of nonlinear differential equations. In this
brief, as an example, a dynamic translinear realization of the
nonlinear differential equation describing the rms-dc conversion
function is designed, yielding a circuit with a high functional den-
sity. Measurement results of a prototype semicustom realization
of the rms-dc converter show a good accuracy for crest factors
up to ten and a cutoff frequency beyond 5 MHz for all input
signal levels.

Index Terms—Bipolar analog integrated circuits, circuit syn-
thesis, companding, continuous-time filters, nonlinear dynamic
circuits, rms-dc conversion.

I. INTRODUCTION

T RANSLINEAR filters [1] (which are also called -
domain filters [2], companding current-mode filters [3],

or exponential state-space filters [4]) are receiving increasing
interest in literature, mainly due to their suitability for low-
voltage applications. Translinear filters are based explicitly
on the exponential behavior of the bipolar transistor or the
MOS transistor operating in the subthreshold region. This class
of circuits is instantaneously companding. The voltages in a
translinear filter are logarithmically related to the currents, the
principal carriers of information, which is advantageous in a
low-voltage environment.

Translinear filters can be regarded as a generalization of
the conventional, i.e., static, translinear principle [5]. By
judiciously adding capacitances to the translinear loops, all
kinds of frequency-dependent linear transfer functions can
be realized. Since the dynamic translinear principle is an
extension of the static translinear principle, translinear filters
inherit the advantages of conventional translinear circuits. The
main advantages are, first of all, a high functional density,
which explains the extensive application of translinear circuits
in neural networks, e.g., [6], and second, translinear circuits
are theoretically process and temperature independent.

Next to these general characteristics of translinear circuits,
translinear filters have some additional advantages with respect
to other filter implementation techniques. First, only transis-
tors and capacitors are required to realize a filter function.
Especially in ultra low-power applications, where resistance
values become too large for on-chip integration, this is a very
important advantage.

Second, translinear filters can be implemented very ele-
gantly in class AB. Hence, the currents swings can be much
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larger than the quiescent currents. This increases the dynamic
range without increasing the average power consumption.

Last, translinear filters are excellently tunable. Not just the
cutoff frequency and the , but any parameter can be made
(linearly) current controllable [7], which makes these filters
attractive as programmable building blocks.

In literature, the dynamic translinear principle has been used
mainly to implement filters, i.e.,linear differential equations.
However, conventional static translinear circuits are well-
known for the wide variety of nonlinear functions they can
implement. Obviously, the dynamic translinear principle can
be applied just as well to the implementation ofnonlinear
differential equations, thus extending the applicability of the
dynamic translinear principle.

A simple example of a nonlinear frequency-dependent trans-
fer function is rms-dc conversion, which is a basic function
used in many signal processing applications [8]. The rms-dc
function is used in this brief to demonstrate the applicability
of the dynamic translinear principle to the implementation of
nonlinear differential equations.

Some other examples of functions described by nonlin-
ear differential equations are mixer-filter combinations [9],
oscillators [10], phase-locked loops (PLL’s) [11], syllabic
companding filters [12], and possibly even chaos.

In Section II, the dynamic translinear principle is explained
from a current-mode point of view. The design of an rms-
dc converter based on this principle is treated in Section III.
Measurement results of a semicustom IC realization of the
rms-dc converter are presented in Section IV.

II. DYNAMIC TRANSLINEAR PRINCIPLE

Both the conventional translinear principle and the dynamic
translinear principle are based on the exponential law describ-
ing the large signal behavior of the bipolar transistor or the
MOS transistor operating in the weak inversion region. The
collector current of a bipolar transistor is described by

(1)

where all symbols have their usual meaning.
This simple exponential model is accurate across a wide

range of currents. A measurement of , where is
the small-signal transconductance, of an integrated minimum-
sized NPN transistor is shown in Fig. 1. This dimensionless
quantity represents the slope of , normalized
with respect to , versus the logarithm of , which should
ideally equal one. The figure shows that the exponential model,
(1), is valid across approximately seven decades of current.
Thus, the translinear principle has a very solid foundation.
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Fig. 1. Measurement of the slope ofVBE versusln IC .

Fig. 2. Second-order translinear loop.

The exponential model is less accurate for MOS transis-
tors in weak inversion, which behave exponentially across
approximately four decades of drain current.

In Fig. 2, a basic four-transistor translinear loop is depicted.
The conventional translinear principle states that this circuit
can best be described in terms of the collector currents
through . The translinear loop is thus described by a very
simple equation

(2)

The dynamic extension of the translinear principle will be
explained based on the generic subcircuit shown in Fig. 3.
Just like the conventional translinear principle, the dynamic
translinear principle can be explained best in terms of currents.
By using a current-mode approach, no logarithmic functions,
or other transcendental functions [4], have to be used to
describe the circuits, thus increasing insight.

Another important advantage of a current-mode approach is
the emphasis on the close relation between conventional and
dynamic translinear circuits. As a consequence, existing theory
regarding both analysis and synthesis of static translinear
circuits, see e.g., [13], can be applied directly to analysis and
synthesis of dynamic translinear circuits [1], [7].

Using the current-mode approach, the subcircuit shown in
Fig. 3 is described in terms of the current flowing through
the capacitance . Note that the dc voltage source does
not affect . An expression for can be derived from
the time derivative of (1). This yields an expression for the
derivative , where the dot represents differentiation with
respect to time, of the base-emitter voltage. By applying the
constitutive law of the capacitance, a current-mode expression
for in terms of is obtained

(3)

Fig. 3. Principle of dynamic translinear circuits.

This equation shows that is a nonlinear function of
and its time derivative .

A better insight in (3) is obtained by slightly rewriting it.
Multiplying (3) by the (strictly positive) denominator yields

(4)

This equation directly states the dynamic translinear principle:
A derivative of a current is equivalent to the product of that
current and a capacitance current. At this point, the conven-
tional translinear principle comes into play, for, the product
of currents on the right-hand side of (4) can be realized very
elegantly by means of this principle. Thus, the implementation
of (part of) a differential equation becomes equivalent to the
implementation of a product of currents.

Equation (4) reveals another characteristic of dynamic
translinear circuits. In general, translinear loops can be
described by current-mode polynomials. The relation between
these current-mode polynomials and the differential equations
describing the transfer functions of dynamic translinear
circuits is given by equations like (4). The right-hand
side of (4) is implemented by (part of) a translinear loop.
The left-hand side is part of the differential equation
describing the transfer function to be realized. This mapping
between a time derivative and a product of currents implies
that the transfer function, i.e., the differential equation,
becomes temperature dependent through. Fortunately, this
temperature dependence can be canceled easily by making
(some of) the currents in the dynamic translinear circuit
proportional to absolute temperature (PTAT) [2], [3].

III. D YNAMIC TRANSLINEAR RMS-DC CONVERSION

The translinear principle already plays a key role in con-
ventional implementations of rms-dc converters [8], [14]. A
well-known block schematic of an rms-dc converter is shown
in Fig. 4. The system consists of two separate functions: a
squarer-divider and a low-pass filter. The core of the imple-
mentation of the squarer-divider is a second-order translinear
loop. This loop calculates the current , where and

are the input and output current of the rms-dc converter,
respectively. The output current equals the mean value
of

(5)

where represents the averaging operation, i.e., the low-
pass filter shown in Fig. 4. By dividing by , instead
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Fig. 4. Block schematic of a conventional rms-dc converter.

of applying a square root function to the mean of, the
requirements on the offsets in the system are relaxed [8], [15].

In most implementations of the system shown in Fig. 4,
a squarer-divider facilitating one-quadrant operation is used.
In that case, the translinear loop is preceded by a full-wave
rectifier.

The low-pass filter function is often just first-order. In most
cases it is implemented by means of a simple RC section.

The key role of the translinear technique could be enlarged
by realizing the low-pass filter by a translinear filter. However,
as in that case both system functions are implemented in the
translinear domain, there is actually no reason why these two
functions have to be treated as separate system blocks. By
merging the two functions in one system block, a higher
functional density can be obtained. To this end, we start at
a higher hierarchical level, describing the rms-dc function by
means of a differential equation.

The current-mode description of a translinear first-order
low-pass filter is given by [1], [2]

(6)

where is a dc bias current and the current is the low-
pass filtered version of . For low frequencies, the transfer
of this filter equals one. The cutoff frequency of the filter
is given by

(7)

This equation demonstrates the linear tunability of translinear
filters by means of one bias current. Note that is inversely
proportional to absolute temperature through, unless is
PTAT.

In the rms-dc conversion given by (5), the filtering operation
is not performed on the input signal , but on the current

. That is, the variable in (6) equals . The
output current of the filter equals the output current
of the rms-dc converter. Applying these two substitutions to
(6), the differential equation describing a first-order rms-dc
conversion is found

(8)

Obviously, this is anonlineardifferential equation.
In Section II, we saw that the derivative of a current can

be replaced by a product of currents. In other words, by
introducing a capacitance current, the derivative can be
eliminated from (8). The capacitance current is introduced
through the circuit shown in Fig. 5, which is a slightly
modified version of the circuit shown in Fig. 3. In Fig. 5, the
capacitance is connected in a loop with two base-emitter

Fig. 5. Subcircuit of the dynamic translinear rms-dc converter introducing
Icap.

Fig. 6. A nonlinear-dynamical translinear rms-dc converter.

junctions. The two transistors have a collector current equal to
. The capacitance current shown in Fig. 5 is also described

by (3), which can be used to eliminate from (8). The
result is a current-mode polynomial

(9)

In fact, the derivative is hidden in the capacitance current.
Current-mode polynomials, like (9), can be implemented by

means of the conventional translinear principle [13]. Since all
factors in (9) are positive, if the input current is full-wave
rectified, which is common practice [8], they can be mapped
directly on the collector currents of a third-order translinear
loop, comprising six transistors.

A possible implementation is shown in Fig. 6. The translin-
ear loop is formed by transistors through . The quadratic
factor is implemented by . The structure

is identical to the subcircuit shown in Fig. 5,
except for . Since is biased by a dc current, it acts as
a dc voltage source. Consequently, does not change the
capacitance current introduced in Fig. 5.

Dynamic translinear circuits not only inherit the advantages
of conventional circuits, but also the disadvantages and error
sources. An important error source is the finite current gain
of the bipolar transistor. With respect to this problem, the
most sensitive point of the circuit shown in Fig. 6 is the node
connecting the bases of and . The collector current

of can be much larger than . Using a diode
connection to force through would result in significant
errors, as the base current of is not always negligible with
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Fig. 7. Chip photograph.

Fig. 8. Measurement setup.

respect to . The problem can be solved by using a buffer
amplifier. In Fig. 6, is a simple implementation of this
buffer. The other CC stage, transistor , buffers the bases
of and .

RMS-DC converters of second-order or higher can be
designed by choosing a higher-order low-pass filter, instead
of (6). Then, two or more capacitance currents will have to
be introduced to eliminate the derivatives from the differential
equation.

IV. M EASUREMENT RESULTS

The rms-dc converter was implemented on a semicustom IC
in DIMES02, a 7-GHz bipolar process. A photograph of the
circuit is shown in Fig. 7. The bias current sources, shown
in Fig. 6, are implemented by simple current mirrors.

Full-wave rectification and voltage-to-current conversion
are accomplished by means of the setup shown in Fig. 8. An
HP33120A Arbitrary Waveform Generator is programmed to
supply a full-wave rectified output voltage, thus excluding the
nonidealities of the alternative, an on-chip full-wave rectifier.
The output voltage of the generator is converted to a current
using a 47-k resistor. The combination of a discrete op amp
and a discrete PNP transistor is used as a current buffer. The
output current of this buffer is the input current of the
rms-dc converter. The output current of the rms-dc converter
is measured across a 47-kresistor. To facilitate a sufficient
voltage range across the output resistor, a supply voltage of
4 V is used for the rms-dc converter, though its minimum
supply voltage is only 2 V. The bias current has a value
of 85 A.

In Fig. 9, the relevant currents flowing in the rms-dc con-
verter are shown. In this figure, is 47 nF, which yields a
cutoff frequency of 5.5 kHz. The input frequency is 12 kHz.

Fig. 9. CurrentsjIinj; Icap, and Iout.

Fig. 10. Measured error versus input voltage.

The capacitance current is measured across a 4.7-kresistor.
The output voltage of the generator is 2 V. The figure illus-
trates the nonlinear relation between the capacitance current

and the output current . Further, it shows that can
have much larger values than around the cutoff frequency.

For the next two measurements, a capacitance of 4.7F is
used, which yields a cutoff frequency of 55 Hz.

Fig. 10 shows the measured relative error for a rectified
sine wave, at a frequency of 100 kHz, as a function of the
amplitude. In this figure, is the voltage supplied by the
generator. For low values of , the error curve is dominated
by offsets in the measurement setup and the rms-dc converter,
and by the limited bandwidth of the transistors at low current
levels. For intermediate input levels, the curve shows a scaling
error due to mismatches of the source and load resistors and
of the transistors in the translinear loop. For values of
above 4 V, the output transistor of the rms-dc converter starts
to saturate.

The error of the output of the rms-dc converter as a function
of the frequency is shown in Fig. 11 for various values of the
input voltage . The 3 dB cutoff frequency could not be
measured due to the limited frequency range (5 MHz) of the
signal generator.

The worst-case waveform for an rms measurement is a
rectangular pulse train, where all energy is contained in the
peaks. The collector current of takes its maximum value

during the peaks of the input signal. The value of
can be derived from (9) and is given by

CF (10)
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Fig. 11. Measured frequency response.

Fig. 12. Additional error versus crest factor.

where CF is the crest factor, the ratio between the peak value
and the rms value of the input signal.

For high crest factors, becomes quite large, and
as a consequence, transistor, which is minimum sized, no
longer behaves exponentially during the peaks, due to parasitic
resistances and high-current roll-off. Therefore, to perform
a measurement of the error as a function of the crest factor, the
current is scaled down to 850 nA. The input resistor, shown
in Fig. 8, and the output resistor are scaled up by a factor 100.
The input voltage switches between a bias level of 0.15 V
and a certain peak voltage . The duty cycle and the peak
voltage are varied to obtain different crest factors at
a constant rms value of 0.4 V. The pulse width of the peak
is constant and equals 200s. Fig. 12 shows the measured
additional error as a function of the crest factor. The error
remains below 1% for crest factors up to ten.

V. CONCLUSION

Translinear filters exploit the exponential V-I characteristic
of the bipolar transistor both to implement multiplications of

currents by means of the conventional translinear principle and
to perform instantaneous companding. The dynamic translin-
ear principle, a generalization of the conventional translinear
principle, cannot only be used to realizelinear filters, but
can also be applied to implementnonlineardifferential equa-
tions.

RMS-DC conversion is one example of an operation de-
scribed by a nonlinear differential equation. The dynamic
translinear principle was used to synthesize a completely
translinear implementation.

To verify this new approach, the developed dynamic
translinear rms-dc converter was realized on a semicustom
IC. Measurements show a relative inaccuracy of several
percent, mainly due to mismatch. The rms-dc converter has
a bandwidth beyond 5 MHz and operates properly for crest
factors up to ten.
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