Delft University of Technology
Software Engineering Research Group
Technical Report Series

Integration of Data Validation and User
Interface Concerns in a DSL for Web
Applications

Danny M. Groenewegen, Eelco Visser

Report TUD-SERG-2009-026

%
TUDelft SE

TUD-SERG-2009-026

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

Danny M. Groenewegen, Eelco Visser. Integration of Data Validation and User Interface Concerns in a DSL
for Web Applications. In Mark G. J. van den Brand, Jeff Gray, editors, Software Language Engineering,
Second International Conference, SLE 2009, Denver, USA, October, 2009. Lecture Notes in Computer
Science, Springer, 2009.

@inproceedings{GVO09SLE,
title = {Integration of Data Validation and User Interface Concerns in a
DSL for Web Applications},
author = {Danny M. Groenewegen and Eelco Visser},
year = {2009},
booktitle = {Software Language Engineering, Second International Conference,
SLE 2009, Denver, USA, October, 2009. Revised Selected Short Papers},
editor = {Mark van den Brand and Jeff Gravy},
series = {Lecture Notes in Computer Science},
publisher = {Springer},

(© copyright 2009, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

SE Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

Integration of Data Validation and User Interface
Concerns in a DSL for Web Applications

Danny M. Groenewegen, Eelco Visser

Software Engineering Research Group, Delft University of Technology,
The Netherlands, d.m. groenewegen@tudelft.nl, visser@acm.org

Abstract. Data validation rules constitute the constraints that data input and pro-
cessing must adhere to in addition to the structural constraints imposed by a data
model. Web modeling tools do not address data validation concerns explicitly,
hampering full code generation and model expressivity. Web application frame-
works do not offer a consistent interface for data validation. In this paper, we
present a solution for the integration of declarative data validation rules with
user interface models in the domain of web applications, unifying syntax, mecha-
nisms for error handling, and semantics of validation checks, and covering value
well-formedness, data invariants, input assertions, and action assertions. We have
implemented the approach in WebDSL, a domain-specific language for the defi-
nition of web applications.

1 Introduction

The engineering of web applications requires catering for a number of different con-
cerns including data models, user interfaces, actions, data validation, and access con-
trol. In the mainstream technology for web application development these concerns are
supported by loosely coupled languages that require abundant boilerplate code and lack
static verification. The domain-specific language engineering challenge for the web ap-
plication domain [21] is to realize a concise, high-level, declarative language for the
definition of web applications in which the various concerns are supported by special-
ized sub-languages, yet linguistically integrated, and from which implementations can
be derived automatically. This requires investigation and understanding of, and the de-
sign of appropriate domain-specific languages for each of the sub-domains of the web
application domain. Moreover, it requires the seamless linguistic integration of these
separate languages that ensures the consistency of models in the different domains and
that leverages their combination. This research program is relevant for the discovery of
good abstractions for the web engineering domain. It is also relevant as a case study in
the systematic development of families of domain-specific languages.

In previous work we have studied the domains of data models and user interface
definitions [21], access control [6], and workflow [7], the results of which have been
implemented as sub-languages of the WebDSL language [22]. In this paper, we address
the domain of data validation and its interaction with the user interface.

The core of a data-intensive web application is its data model. The web application
must be organized to preserve the consistency of data with respect to the data model
during updates, deletes, and insertions. The core consistency properties of a data model
are formed by structural constraints, that is, the data members of and relations between

TUD-SERG-2009-026 1

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SE

entities. Some consistency properties cannot be expressed as structural constraints. Fur-
thermore, some data integrity constraints do not pertain directly to persistent data. Data
validation rules constitute the constraints that data input and processing must adhere to
in addition to the structural constraints imposed by the data model.

A high-level web engineering solution should provide a uniform and declarative
validation model that integrates with the other relevant technical models. In addition to
ensuring data consistency by enforcing a validation model, the integration of data vali-
dation in a web application requires a mechanism for reporting constraint violations to
the user, indicating the origin of the violation in the user interface with a sensible error
message and consistent styling. Model-driven methodologies such as OOHDM [18],
WebML [4], UWE [10], OOWS [15], and Hera [20] do not make data validation con-
cerns explicit in their models. When generating code from models, as demonstrated for
UWE [11], WebML [2], and Hera [5], validating data requires an escape from model to
code, hampering full code generation and model expressivity.

In this paper, we present a language design that integrates declarative data valida-
tion rules with user interface models in the domain of web applications, unifying syn-
tax, mechanisms for error handling, and semantics of validation checks, and that covers
value well-formedness, data invariants, input assertions, and action assertions. We have
implemented the approach in WebDSL [21], a domain-specific language for the defi-
nition of web applications. The main contributions of this paper are (1) the design of
abstractions for data validation in web applications for concise and uniform specifica-
tion of value well-formedness, data invariants, input assertions, and action assertions,
(2) the seamless integration of data validation rules and user interface definitions, and
(3) an example of the integration of models for multiple technical domains.

In the next section we give a brief introduction to WebDSL and the running exam-
ple used in the rest of the paper. Section 3 discusses validation features necessary for
web applications, namely value well-formedness, data invariants, input assertions, and
action assertions. Section 4 discusses related and future work, and Section 5 concludes.

2 WebDSL

WebDSL [21] is a domain-specific language for the development of web applications
that integrates data models, user interface models, user interface actions, styling, access
control [6], and workflow [7]. While these different concerns are supported by separate
domain-specific sub-languages, the static semantics of the language enforces the in-
tegrity of the different concerns of an application model. What distinguishes WebDSL
from web application frameworks in general purpose languages [9, 13, 16] is static ver-
ification and abstraction from accidental complexity (boilerplate code). Compared to
web modeling tools [19, 11, 14, 2], WebDSL combines high expressivity with good cov-
erage (customization options). The WebDSL compiler generates a complete implemen-
tation in Java or Python.

In this section we give an overview of the features of WebDSL needed in this pa-
per and introduce the running example used to discuss data validation in this paper.
We illustrate the various categories of data validation with a small user management
application. The example application consists of two data model entities, namely User

2 TUD-SERG-2009-026

SE Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

entity User { entity UserGroup { define page editUser(u:User) {
username :: String name :: String (id) form {
email :: Email members -> Set<User> group ("User") {
} } label("Username") { input(u.username) }
label("Email") { input(u.email) }

User action("Save", save())

Username alice 3} ’

Email alice@.xyz action save() {

. return user(u);
Not a valid email address }
J— }
Save

Fig. 1. Value well-formedness for Email type.

and UserGroup (Fig. 1). Data model definitions describe the persistent data model in a
WebDSL application. Data model entities consist of properties with a name and a type.
Types of properties are either value types (indicated by : :) or associations to other en-
tities defined in the data model. Value types are basic data types such as String and
Int, but also domain-specific types such as Email that carry additional functionality.
Associations are composite (the referer owns the object, indicated by <>) or referential
(the object may be shared, indicated by —>). Associations can be to collections such as
Set or List, demonstrated by the members property of the UserGroup entity.

Page definitions in WebDSL describe the web pages that allow users to view and
modify data model entities. Page definitions consist of the name of the page, the names
and types of the objects passed as parameters, and a presentation of the data contained
in the parameter objects. For example, the editUser (u:User) definition in Fig. 1 cre-
ates a page for editing the properties of User entity u. WebDSL provides basic markup
operators such as group and label for defining the structure of a page. Navigation
is realized using the navigate element, which takes a link text and a page with pa-
rameters as arguments. Furthermore, page definitions can be reused by declaring them
as template. Templates can be included in page definitions by supplying the associated
parameters. In addition to presenting data objects, pages can also modify objects. For
example, the content of a User entity can be modified with the editUser page. The
page element input (u.username) declares an appropriate form input element based
on the type of its argument; in this case a text field. A data modification is finalized by
means of an action, which can apply further modifications to the objects involved. For
example, in the save action the changes to the User are saved. The return statement
of an action is used to realize page flow by specifying the page and its arguments where
the browser should be directed after finishing the action.

3 Validation Abstractions

Data validation is required in multiple contexts in web applications. In this section we
distinguish four variants, show how these are expressed in WebDSL using declarative
data validation rules, and how error messages are integrated in the user interface.

TUD-SERG-2009-026 3

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SE

entity User { wusername :: String (id) password :: Secret email :: Email }

extend entity User {
username (validate(isUnique() ,"Username is taken"))
validate(password.length >= 8, "Password needs to be at least 8 characters")
validate(/[a-z]/.find(password), "Password must contain a lower-case character")
validate(/[A-Z]/.find(password), "Password must contain an upper-case character")
validate(/[0-9]/.find(password), "Password must contain a digit")

}
User define page editUser(u:User) {
form {
Username bob group("User") {
) label("Username"){ input(u.username) }
Username 1s taken label("Email"){ input(u.email) }

label("New Password") {
input (u.password)
}

action("Save", save())

Email bob@bhob.xyz

New Password sees
Password needs to be at least 8 characters }
}

action save() {

b) return user(u);

}

Password must contain a digit

Fig. 2. Data invariants for User entity validation.

3.1 Value Well-Formedness

Value well-formedness checks verify that a provided input value conforms to the value
type. In other words, the conversion of the input value from request parameter to an
instance of the actual type must succeed. This type of validation is usually provided
by libraries or frameworks. However, it has to be declared explicitly, and possibly at
each input of a value of the type. In WebDSL, value well-formedness rules are checked
automatically. WebDSL supports types specific for the web domain, including Email,
URL, WikiText, and Image. Automatic value well-formedness constraints for all value
types provides decent input validation by default. Moreover, these built-in type valida-
tion checks and messages can be customized in an application.

The editUser page in Fig. 1 consists of a form with labeled inputs for the User
entity properties. The save action persists the changes to the database, provided that
all validation checks succeed. (Changes to existing entities are automatically stored in
WebDSL, new entities need to be saved explicitly using the save () method.) Since
well-formedness validation checks are automatically applied to properties, the email
property is validated against its well-formedness criteria. The result of entering an in-
valid email address is shown in the screenshot: a message is presented to the user and
the action is not executed.

3.2 Data Invariants

Data invariants are constraints on the data model, i.e. restrictions on the properties
of data model entities. These validation rules can check any type of property, such as
a reference, a collection, or a value type. By declaring validation in the data model,
the validation is reused for any input or operation on that data. In Ruby on Rails [16]
data invariants can be defined in a ‘validate’ method of the active record class, which

4 TUD-SERG-2009-026

SE Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

owner -> User memberLimit :: Int
members -> Set<User> }

entity UserGroup { name :: String (id)
moderators -> Set<User>

extend entity UserGroup {
validate(owner in moderators, "Owner must always be a moderator")
validate(owner in members, "Owner must always be a member")
validate (members.length <= memberLimit, "Exceeds member limit")

}
User Group define page editUserGroup(ug:UserGroup) {
) form {
Name o Example Group group("User Group") {
Member Limit 3 label("Name") { input(ug.name) }
label("Member Limit") {
Moderators E“:}e input (ug.memberLimit)
10|
dave
charlie label("Moderators") {
Owner must always be a moderator input (ug.moderators)
- label("Members") { input(ug.members) }
Members ;';: action("Save", save())
dave +
charlie }
Exceeds member limit action save() {
return userGroup (ug) ;
(" save 1
}

Fig. 3. Data invariants for UserGroup entity validation.

then gets called by the framework when validation is required. Multiple checks in a
validation method tangle validation for different properties. The Seam [9] framework
supports the specification of data invariants declaratively through annotations. However,
these annotations consist of a limited number of built-in checks and an escape to specify
a custom class that handles validation for a property. In the worst case each validation
rule needs a separate class, incurring the syntactic overhead of Java class declarations
several times.

Validation rules in WebDSL are of the form validate(e,s) and consist of a
Boolean expression e to be validated, and a String expression s to be displayed as
error message. Any globally visible functions or data can be accessed as well as any of
the properties and functions in scope of the validation rule context.

Validation checks on the data model are performed when a property on which data
validation is specified is changed and when the entity is saved or updated. Valida-
tion is connected to properties either by adding the validation in the property anno-
tation or by referring to a property in the validation check. More specific validation
checks are supported which are only checked when the entity is in a certain state,
these are validatesave, which is checked when an entity is saved for the first time,
validateupdate, checked on any update, and validatedelete, checked before delet-
ing the entity. The validation mechanism takes care of correctly presenting validation
errors originating from the data model. For form inputs causing data invariant violations
the message is placed at the input being processed. When data model validation fails
during the execution of an action, the error is shown at the corresponding button.

Fig. 2 presents an extended User entity with several invariants and a password
property. The username property has the id annotation, which indicates the property

TUD-SERG-2009-026 5

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SE

is unique and can be used to identify this entity type. The isUnique member function
(a generated function that takes into account the existence of an ’id” property) is called
to verify this constraint. The password property is annotated with validation rules that
express requirements for a stronger password. By declaring validation rules in the entity,
explicit checks in the user interface can be avoided. Both the WebDSL page definition
and the resulting web application page are shown below the entity definition.

Fig. 3 shows more advanced validation rules, which express dependencies between
the properties of an entity. The UserGroup entity is extended with an owner refer-
ence, a moderators set, and a memberLimit value. The editUserGroup page al-
lows the owner to edit some of the UserGroup properties. The validation rule on the
moderators set expresses that the owner should always be in this set of moderators
(similarly, the owner should always be a member). The member set is constrained in
size based on the memberLimit value. Validation rules that cover multiple properties,
such as the ’owner in moderators’ check, are performed for all input components of
properties the validation is specified on. However, the checks can be added to a single
property as well, in order to specialize the error message.

3.3 Input Assertions

Input assertions are necessary when the validation rule targets an input that is not di-
rectly connected to the persisted data model. These types of constraints are easy to
address in the form environment itself. For example, a validation check in XForms [1]
verifies properties of the entered form data. The model in XForms, on which validation
is specified, is a model of the input data produced by the form. Unfortunately, such form
validation solutions are not integrated with validation on the application data model.
For example, an input for an entity produces the identifier as form data, in the XForms
model it is just a String, but in the application data model it is an entity reference.

Validation checks in WebDSL pages have access to all variables in scope, including
page variables and page arguments. The placement and order of validation rules does
not influence the results of the checks. Visualization of errors resulting from validation
in forms are placed at the location of the validation declaration. Usually such a valida-
tion rule is connected to an input, which can be expressed by placing the validation rule
as a child element of input.

The example in Fig. 4 demonstrates the final addition to the user edit form, an extra
password input field in which the user must repeat the entered password. This valida-
tion cannot be expressed as a data invariant, since the extra password field is not part
of the User entity. Therefore, the rule is expressed in the form directly, where it has
access to the page variable p. This variable contains the repeated password whereas the
first password entry is saved in the password field of User entity u. When entering a
different value in the second field the validation error is presented, as can be seen in the
screenshot.

3.4 Action Assertions

Action assertions are predicate checks at any point in the execution of actions and func-
tions for verification during the processing of inputs. The action processing needs to be

6 TUD-SERG-2009-026

SE Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

define page editUser(u:User) {

User
var p: Secret;
Username charlie form {
Email charlie@charlie.xyz group("User") {
New Password tvvereenen label("Username") { input(u.username) }
label("Email") { input(u.email) }
Re-enter Password [vaeeee label("New Password") {

input (u.password) }

label("Re-enter Password") { input(p) {
validate (u.password == p,
"Password does not match") }

Password does not match

I 1
Save

}

action("Save", action{ }) } } }

Fig. 4. Form validation with input assertions.

User Group define page createGroup() {
var ug := UserGroup {}

Name Example Group form {
Owner | alice [T group("User Group") {

label("Name") { input(ug.name) }
Owner could not be notified by email label("Owner") { input(ug.owner) }

action("Save", save()) } }

(save) action save() {

validate (email (newGroupNotify (ug))
,"Owner could not be notified by email");
return userGroup(ug); } }

Fig. 5. Action assertions for UserGroup creation.

- ; - define page editUser(u:User) {
User information successfully changec ... form ...

action save() {
User message ("User information success...");
return user(u);
Username charlie)
Email charlie@charlie.xyz define page user(u:User) {

edit group("User") {
= label("Username") { output(u.username) }
label("Email") { output(u.email) }
navigate(editUser(u)) {"edit"} } }

Fig. 6. Success message.

aborted, reverting any changes made, and the validation message has to be presented in
the user interface. This type of validation is not directly supported in existing solutions,
requiring an investment in finding appropriate hooks in the implementation. For exam-
ple, Ruby on Rails [16] assumes validation is specified in data model classes, errors are
passed through those model classes and the form mechanism is built around that. There
is no mechanism for a validation check as part of a controller action, this requires a low-
level encoding that passes the check result and error message, or wrapping validation
in a data model class.

WebDSL supports this type of validation transparently using the same validation
rules. The errors resulting from action assertion failures are displayed at the place the
execution originated, e.g. above the submit button which triggered the erroneous action.

Fig. 5 provides an example of action assertion. On the right is a page definition for
a createGroup page which allows creating new UserGroup entities. The constraint

TUD-SERG-2009-026 7

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications SE

expressed in the save action is that creating a new group requires email notification
to the specified owner (which might not be the user executing this operation). The
newGroupNotify email definition retrieves an email address from its UserGroup argu-
ment (through ug. owner.email) and tries to send a notification email to the owner of
the new group. When this fails, for instance because there is no mail server responding
to the email address, the call returns false and the validation check produces the error.
This result is shown on the left in the screenshot.

Generic error handling, such as problems with a database commit, can also be ex-
pressed using action assertions. The web application can then display an error message
in the form instead of redirecting to a default error page.

3.5 Messages

This section has described assertions that report erroneous behavior in actions. Related
to such action assertions, is a generic messaging mechanism for giving feedback about
the correct execution of an action. This requires a place to show messages, for instance
by adding a default message template at the top of each page. Furthermore, the mes-
sage should be declared in the action code. An example of such messaging is shown in
Fig. 6. The save action of the editUser page gives a message to the page redirected
to, namely user. The result of the executed action is shown on the left.

3.6 Validation Mechanics

A page request in WebDSL is processed in the following five phases: Convert request
parameters: check value well-formedness validation rules for page arguments and in-
put parameters, then convert these to the correct types. Update model values: check data
invariants for input data, and then insert in data model entities. Validate forms: check
input assertions in page definitions. Handle actions: perform action, abort if an action
assertion fails (in that case no changes are made to the data model). Render or redi-
rect: show page, including produced validation errors. Redirect if an action executed
successfully.

4 Discussion

Web Modeling Tools Several model-driven methodologies for creating web applications
have been proposed in recent years, including OOHDM [18], SHDM [12], WebML [4],
UWE [10], OOWS [15], and Hera [20]. WebDSL goes beyond being a methodology
for designing web applications and providing a path to actual implementation by lever-
aging full code generation. The transformation from problem space to solution space is
completely automated. In this paragraph we discuss how these methodologies and their
tools relate to WebDSL in general, and data validation integration in particular.

The Hera Presentation Generator [5] allows modeling forms to support editing
data in the session. The persisted domain data of the application cannot be changed.
Hera-S [19] also incorporates persisting form input data through update queries. The
only example in the paper of such an update shows incrementing a view counter, a

8 TUD-SERG-2009-026

SE Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

simple operation that does not process form input data. Kraus et al. [11] present the
generation of partial web applications from UWE models. An application skeleton is
generated including JSP pages and navigation between them. Forms and input data are
not discussed, which probably means it is part of the custom code. HyperDe [14] is a
tool that allows online creation of web applications designed with the SHDM method.
The paper shows an example of an input field for a person’s email address. This involves
manual construction of data binding (showing the email and reading it from the submit
data) and does not indicate how validation of that input can be performed. WebRatio [2]
is a tool for generating web applications based on the WebML method. The conceptual
WebML models do not model data validation concerns, while WebRatio does have form
validation features. These can be directly mapped to validation features in the under-
lying Struts [3] framework. Validation which goes beyond the form, such as querying
the database, has to be implemented in a Struts validator class. This implementation
requires intricate knowledge of the translation process and implementation platform.
From our study of the literature we conclude that declarative modeling of data valida-
tion is ignored in model driven web engineering. As a result, validation concerns require
an escape from model to code, hampering full code generation and model expressivity.

Future Work The current validation model focuses on verifying that the data satisfies
a set of constraints. Actions that break these constraints are forbidden and result in an
error message. An alternative approach would be to solve constraints automatically [8]
and repair data so that it complies with the constraints or to suggest such repairs to the
user.

Since most inputs in web application forms are strings, expressivity of validation
rules could be increased by incorporating a domain-specific language for string con-
straints. Scaffidi et al. [17] demonstrate that parsing technology can provide rich string
input validation and feedback.

5 Conclusion

The domain-specific language engineering challenge for the web application domain [21]
is to realize a concise, high-level, declarative language for the definition of web appli-
cations in which the various concerns are supported by specialized sub-languages, yet
linguistically integrated, and from which implementations can be derived automatically.
This paper presents a solution for the integration of data validation, a vital component of
web applications, into a web application DSL that includes data models, user interfaces,
and actions. This solution unifies syntax, mechanisms for error handling, and semantics
for data validation checks covering value well-formedness, data invariants, input asser-
tions, and action assertions. Our approach improves over current web modeling tools
by providing declarative data validation rules from which a complete implementation
is generated. Unlike web application frameworks, our solution supports different kinds
of data validation uniformly. The integration of data validation rules into WebDSL, a
web application DSL that supports data models, user interfaces, and actions, allows
web application developers to take a truely model-driven approach to the design of
web applications, concentrating on the logical design of an application rather than the
accidental complexity of low-level implementation techniques.

TUD-SERG-2009-026 9

Integration of Data Validation and User Interface Concerns in a DSL for Web Applications

10

References

1
2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22

. J. M. Boyer, editor. XForms 1.0 (Third Edition). W3C Recommendation, 2007.

. M. Brambilla, S. Comai, P. Fraternali, and M. Matera. Designing web applications with
WebML and WebRatio. Web Engineering: Modelling and Implementing Web Applications,
pages 221-260, 2007.

D. Brown, C. Davis, and S. Stanlick, editors. Struts 2 in Action. Manning Publ. Co., 2008.
S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language (WebML): a modeling lan-
guage for designing Web sites. Computer Networks, 33(1-6):137-157, 2000.

F. Frasincar, G. Houben, and P. Barna. HPG: the Hera Presentation Generator. Journal of
Web Engineering, 5(2):175, 2006.

D. M. Groenewegen and E. Visser. Declarative access control for WebDSL: Combining
language integration and separation of concerns. In D. Schwabe and F. Curbera, editors,
International Conference on Web Engineering (ICWE’08), pages 175-188, July 2008.

Z. Hemel, R. Verhaaf, and E. Visser. WebWorkFlow: An object-oriented workflow model-
ing language for web applications. In K. Czarnecki et al., editors, Proceedings of the 11th
International Conference on Model Driven Engineering Languages and Systems (MODELS
2008), volume 5301 of LNCS, pages 113—127. Springer, September 2008.

J. Jarvi, M. Marcus, S. Parent, J. Freeman, and J. N. Smith. Property models: from incidental
algorithms to reusable components. In GPCE, pages 8§9-98, 2008.

S. Kittoli, editor. Seam - Contextual Components. A Framework for Enterprise Java. Red
Hat Middleware, LLC, 2008.

N. Koch, A. Kraus, and R. Hennicker. The authoring process of the UML-based web engi-
neering approach. In Web-Oriented Software Technology, 2001.

A. Kraus, A. Knapp, and N. Koch. Model-driven generation of web applications in UWE.
Model-Driven Web Engineering (MDWE 2007), Como, Italy, July 2007.

F. Lima and D. Schwabe. Application modeling for the semantic web. In Latin American Web
Congress (LA-WEB’03), page 93, Washington, DC, USA, 2003. IEEE Computer Society.
M. MacDonald and M. Szpuszta. Pro ASP. NET 3.5 in C# 2008. Apress, 2007.

D. Nunes and D. Schwabe. Rapid prototyping of web applications combining domain spe-
cific languages and model driven design. In International Conference on Web Engineering
(ICWE’06), pages 153-160, 2006.

O. Pastor, J. Fons, and V. Pelechano. OOWS: A method to develop web applications from
web-oriented conceptual models. In Web Oriented Software Technology (IWWOST’03),
pages 65-70, 2003.

S. Ruby, D. Thomas, and D. Heinemeier Hansson. Agile Web Development with Rails, Third
Edition. Pragmatic Programmers, 2009.

C. Scaffidi, B. A. Myers, and M. Shaw. Topes: reusable abstractions for validating data. In
ICSE’08, pages 1-10, 2008.

D. Schwabe, G. Rossi, and S. Barbosa. Systematic hypermedia application design with
OOHDM. In Proceedings of the the seventh ACM conference on Hypertext, pages 116—128.
ACM New York, NY, USA, 1996.

K. van der Sluijs, G. Houben, J. Broekstra, and S. Casteleyn. Hera-S: web design using
sesame. In International Conference on Web Engineering (ICWE’06), pages 337-344, 2006.
R. Vdovjak, F. Frasincar, G. Houben, and P. Barna. Engineering semantic web information
systems in Hera. Journal of Web Engineering, 2:3-26, 2003.

E. Visser. WebDSL: A case study in domain-specific language engineering. In R. Ldmmel,
J. Visser, and J. Saraiva, editors, Generative and Transformational Techniques in Software
Engineering (GTTSE’07), volume 5235 of LNCS, pages 291-373. Springer, October 2008.

. E. Visser et al. WebDSL. http://webdsl.org, 2007-2009.

TUD-SERG-2009-026

SE

TUD-SERG-2009-026 S E(I
ISSN 1872-5392

