
Robust OCTs
Investigating
Classification Tree
Robustness
G. Lek
Bachelor Thesis

June 2022

Robust OCTs
Investigating

Classification Tree

Robustness
by

G. Lek
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Tuesday June 22, 2022 at 15:30 PM.

Student number: 5073529
Project duration: April 19, 2022 – June 22 2022
Thesis committee: Dr. K.S. (Krzysztof) Postek TU Delft, supervisor

Dr. T.W.C. (Tom) Vroegrijk TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
The application of machine learning in daily life requires interpretability and robustness. In this paper
we try to make the process of building robust and interpretable decision trees more accessible. We
do this by making the fitting of these models cheaper and simpler. We build on previous research
and see if changing input data or the fitting formulation can create more robust trees that can be
computed faster. To investigate this, we test whether data perturbations make heuristic algorithms
more robust and whether enforcing constraints on adversarial examples in normal optimal classifica-
tion tree MILP formulations can improve robustness. We also provide an altered formulation for the
robust OCT model in Vos and Verwer (2021b) that yields better results with shorter runtimes. Finally,
we extend the ROCT formulation to be applicable to multi-class classification and regression tasks.

iii

Preface
This bachelor thesis report contains methods and results for fitting robust decision trees. The aim
of this report is to obtain a Bachelor’s degree in Applied Mathematics at Delft University of Tech-
nology. This project was supervised by Krzysztof Postek. I would like to thank Krzystof for weekly
meetings and quick responses with thoughtful insights. Large parts of the code were borrowed from
Daniël Vos’ Github libraries 1. Thanks to these libraries, I was able to quickly assess adversarial ac-
curacy and create adversarial examples. Moreover, Daniël supported this project by accompanying
us to 2 meetings and answering my emails in detail. I worked on this project with a lot of interest and
enthusiasm because I was given the freedom to explore all my ideas without limits. Many of them
turned out to be useless, but they helped me grasp the field of robust optimal decision trees. I hope
the reader enjoys this bachelor thesis.

G. Lek
Delft, June 2020

1https://github.com/tudelft-cda-lab

v

Contents

1 Introduction 1
1.1 Research objectives . 2
1.2 Contributions . 2
1.3 Structure . 2

1.3.1 Summary of notation used . 3

2 Literature study 5
2.1 The setup . 5

2.1.1 The general optimisation problem . 6
2.2 Heuristics . 6
2.3 MILP Formulation. 7

2.3.1 Novel formulations since 2017 . 7
2.4 Robustness . 8

2.4.1 ROCT . 9

3 Data & implementation 11
3.1 Programming ROCT & CART . 11

3.1.1 Data . 11
3.1.2 Optimisation . 12
3.1.3 Tree modelling and assessment . 12

4 Simple robust heuristic methods 13
4.1 Methods. 13

4.1.1 Uniform perturbations . 13
4.1.2 Linear perturbations . 13
4.1.3 Adversarial examples . 13
4.1.4 Reweighing scheme . 14
4.1.5 Restart OCT with adversarial examples . 14

4.2 Results . 14
4.2.1 Linear perturbations . 14
4.2.2 Reweighing scheme . 16
4.2.3 Restart OCT . 16

4.3 Data alterations for heuristic robustness . 17

5 Altering the ROCT formulation 19
5.1 Methods. 19

5.1.1 Altering ROCT formulation . 19
5.1.2 Unused Alterations . 20
5.1.3 multi-class ROCT. 21
5.1.4 Regression ROCT . 21

5.2 Results . 22
5.2.1 Altered ROCT formulation . 22
5.2.2 multi-class ROCT. 22

5.3 Improving applicability and performance of ROCT . 23

6 Discussion and conclusion 25
6.1 Discussion . 25

6.1.1 Recommendations . 26
6.2 Conclusion . 26

Bibliography 27

A Appendix 29

vii

1
Introduction

As research in artificial intelligence and machine learning advances rapidly, these models are in-
creasingly being used in practice. Machine learning models are successful at prediction, but most
lack interpretability and robustness (2.4).

Black box models are machine learning models that are not interpretable. When applying these in
sensitive areas such as healthcare or cyber security, we lack insight into the decisions made. Deci-
sions that impact people’s lives need to be evaluated to ensure that these decisions are not made
randomly or based on undesirable features. Interpretable models such as decision trees partially
solve this problem. Interpretability in the context of a model has to do with being able to comprehend
why certain decisions or predictions have been made.

Like most machine learning models, decision trees are susceptible to adversarial examples. This can
lead to a malicious attacker exploiting these models. For example, if you predict someone’s credit-
worthiness, that person could change a sensitive feature on the basis of which the prediction is made
to borrow more money than is justified. The robustness of decision trees to these attacks brings us
one step closer to the safe application of machine learning methods in our day to day operations.

Example 1.0.1. Several billion-dollar NASDAQ-listed companies are applying artificial intelligence
methods to assess credit risk and extend credit to consumers. Suppose these companies use a black
box model. These models could place a high value on sensitive characteristics such as race. Without
knowing whether this is the case, the American justice system cannot decide whether this model be-
haviour is acceptable.
Now suppose we use a decision tree for credit risk assessment. We are now in a position to assess

whether lenders have been treated fairly. But an adversary can exploit this tree by artificially inflating
sensitive features like cash on hand by temporarily borrowing money from acquaintances.
A robust decision tree would be less susceptible to these attacks and reduce an adversary’s ability to
misuse the model.

1

2 1. Introduction

1.1. Research objectives
In this Bachelor Thesis, we aim to investigate robustness of decision trees. Our main research ques-
tion is:

”Can we obtain cheaper and simpler robustness of decision trees?”

Our report contains 3 main topics: simple perturbations for heuristic robustness, modifying an exist-
ing formulation for optimal robust trees to optimise faster and a simple algorithmic method to achieve
robustness for a non-robust optimal tree formulation. In all of these issues, ways are being sought
to achieve simpler and cheaper robustness. Even if some methods might prove unsuccessful, it is
scientifically relevant to be able to exclude them. We formalize this in two sub-questions:

1. Can heuristic methods be made robust by simply changing the training data?

2. Can the formulation of ROCT (2.4.1) be changed or extended to make it more applicable and
improve performance?

1.2. Contributions
Our first contribution is to evaluate whether we can obtain a robust decision tree by perturbing the
training data of CART in section 4.1. Second, we present an algorithm for any OCT formulation that
aims to make the tree more robust in section 4.1.5. Third, we propose an altered formulation for the
ROCT formulation from Vos and Verwer (2021b) that optimises faster in section 5.1. Last, we pro-
pose novel formulations that extend ROCT: multi-class in section 5.1.3, regression in section 5.1.4.

1.3. Structure
In terms of structure, we first discuss the literature on robust optimal decision trees and then go into
the data used and our implementation methods. Then we discuss the 2 sub-questions, addressing
the methods used and the results obtained for each question. In the respective sections we try to
answer our sub-questions. Finally, we conclude with a discussion and a conclusion where we an-
swer our research question. When this paper talks about ”robust decision trees”, only the robustness
against 𝑙∞ attacks is considered.

1.3. Structure 3

1.3.1. Summary of notation used
OCT = Optimal Classification Tree

N = number of sample points

K = number of classes

p = number of features or reweighing scheme weight (clear from context)

X = arbitrary data set

L = number of subsets in partition

𝑋𝑖 ∈ R𝑝 = sample i
𝑦𝑖 = class label sample i
𝑅𝑥𝑦(𝑇) = Misclassification error tree T
𝛼 = complexity parameter
T = arbitrary tree

𝑁𝑚𝑖𝑛 = minimum number of branch nodes

𝑁𝑥(𝑙) = number of training points in leaf l ∈ 𝒯𝐵
𝒯𝐵 = branch nodes
𝒯𝐿 = leaf nodes
CART = Classification and Regression Trees (heuristic algorithm)

GROOT = heuristic robust classification tree algorithm from Vos and Verwer (2021a)

𝜖 = perturbation distance
Δ𝑙 , Δ𝑟 = left, right perturbation distances (equal to 𝜖 in 𝑙∞ norm)

𝑒𝑖 = classification error sample i
𝑎𝑗𝑚 ∈ {0, 1} = node m splits on feature j ∈ {0, 1}
𝑏𝑚 ∈ R = threshold for node m

𝑠𝑖𝑚0, 𝑠𝑖𝑚1 ∈ {0, 1} = sample i can travel left,right of node m respectively

𝑐𝑡 ∈ {0, 1} = prediction for leaf t
𝐴𝑙(𝑡), 𝐴𝑟(𝑡) = left,right ancestor set of leaf t
𝑍𝑖,𝑡 ∈ {0, 1} = node t reachable for sample i
d = maximum depth hyper parameter

𝑋𝑡𝑟𝑎𝑖𝑛 = training set
𝑋𝑡𝑒𝑠𝑡 = testing set
𝑝𝑖 = perturbation sample i
𝑁𝑝𝑒𝑟𝑡𝑢𝑟𝑏 = number of perturbations
𝑎_𝑑𝑖𝑠𝑡𝑖 = adversarial distance
𝑆𝑖 = perturbation range sample i
C(x) = arbitrary classifier on arbitrary sample x

p(m) = parent node of node m

𝑙𝑖 ∈ R = absolute maximum loss

ROCT2 = altered ROCT formulation

2
Literature study

Classification tree learning is a modelling approach where the goal is to build a tree structure such
that the branches represent divisions in the data and the leaves are class predictions for each data
point. Machine learning research has developed powerful and fast algorithms for building classifica-
tion trees. These trees are susceptible to adverse examples where tiny perturbations lead to misclas-
sification of sample points. Learning classification trees is a NP-Hard (Hyafil and Rivest, 1976) prob-
lem. State-of-the-art methods generate optimally accurate decision trees for small data sets. Most
of these methods use the framework of mixed-integer linear programs (MILP). Here, the target prob-
lem is formulated as a linear function with linear constraints that can be solved by MIP (Mixed integer
program) solvers such as GUROBI 9.5.

2.1. The setup
Suppose we have N data points (𝑋𝑖 , 𝑦𝑖), 𝑖 = 1,, 𝑁, 𝑋𝑖 ∈ 𝑅𝑛. Where n is the number of features in
the dataset. Our task is two-way classification on 𝑋𝑖, so we can generalize 𝑦𝑖 ∈ {0, 1}. We want to
partition the space R𝑛 into L subsets, each defined as an intersection of half-spaces:

𝑋𝑙 = {𝑥 ∈ R𝑛 ∶ 𝑎𝑙𝑇𝑘 ≤ 𝑏𝑙𝑘 , 𝑘 ∈ 1, .., 𝑁𝑙}

Defined for all 𝑙 ∈ 1, .., 𝐿. We would like these subsets to satisfy two properties:

1. Mutually exclusive: ∀ l,l’ ∈ 1,..,L it holds that 𝑋𝑙 ∩ 𝑋𝑙′ is empty or a subset of a hyperplane

2. Collectively exhaustive: We want 𝑋𝑙 to partition the data set over all l :

⋃
𝑙
𝑋𝑙 = R𝑛

To each subset 𝑋𝑙 we assign a prediction label 𝑦(𝑋𝑙). We try to fit the partition and labels to the train-
ing data as well as possible.

5

6 2. Literature study

Figure 2.1: A binary classification task displayed as a partition and tree from Szücs and Schmidt (2018)

2.1.1. The general optimisation problem
Now assume that for every subset 𝑋𝑙 we minimize a loss function 𝐿(𝑋𝑙 , 𝑐𝑙) where 𝑐𝑙 is a label genera-
tor. We arrive at the following optimisation problem:

min
𝑎𝑙𝑖 ,𝑏𝑙𝑖 ,𝑐𝑙

𝐿

∑
𝑙=1
𝐿(𝑋𝑙 , 𝑐𝑙) (2.1)

𝑠.𝑡. 𝑋𝑙 = {𝑥 ∈ R𝑛 ∶ 𝑎𝑙𝑇𝑘 ≤ 𝑏𝑙𝑘 , 𝑘 ∈ 1, .., 𝑁𝑙} (2.2)
𝑋𝑙 ∩ 𝑋𝑙′ = ∅ 𝑜𝑟 𝑑𝑖𝑚(𝑋𝑙 ∩ 𝑋𝑙′) ≤ 𝑛 − 1 ∀𝑙 ≠ 𝑙′ (2.3)

⋃
𝑙
𝑋𝑙 = R𝑛 (2.4)

Note that the feasible set is not convex. Moreover, it is incredibly difficult to formulate a closed-form
expression for these constraints. Let us simplify this problem so that we can formulate it more easily.
First organize the partitions by assuming that the number of subsets L is a power of 2, so that the
subsets are formed by hierarchical partitions in a binary tree, see (b) in Figure 2.1. The root node
(first node) splits the entire space with a single hyperplane, and the children of the root node split
these halves. Applying this procedure d times, one obtains 2𝑑 subsets of R𝑛.
Second, we restrict each partition to only one feature. This is exactly the way shown in (a) of 2.1.
In this way, we restrict each partition to only one of n features, which drastically reduces the set of
choices.

This interpretable tree is called a classification tree. Using the two aforementioned simplifications,
we can model the problem as a mixed-integer linear optimisation problem (MILP) . This formulation
was first presented in Bertsimas (2017) and is discussed in section 2.3. Solving the MILP problem is
computationally expensive, which means that we cannot yet apply this method to large data sets in a
reasonable amount of time.

2.2. Heuristics
Before Bertsimas & Dunn in Bertsimas (2017) and S. Verwer in Verwer and Zhang (2017), attempts
to fit classification trees did not provide optimality, but used heuristics to solve the problem. Instead
of optimizing the entire tree in one step, these algorithms recursively created locally optimal hyper-
planes.

As a first step we think about a partition with one hyperplane and then create a hyperplane in the
subsets created by this split. For this hyperplane, we use a loss function that tries to partition the

2.3. MILP Formulation 7

subsets ”as purely as possible”. The splitting of the nodes in this algorithm is parallelizable, making
the algorithm fast and scalable.

The algorithm CART (Breiman et al., 1983) uses a loss function with Gini impurity as a metric. This
metric is a measure of how often a sample is mislabeled when selected by the distribution of labels
in the subset. The Gini impurity can be calculated by summing the probability 𝑝𝑖 that a sample with
label i is selected and multiplying by the probability 1 − 𝑝𝑖 that the sample is mislabeled. For classifi-
cation tasks with two classes, the Gini impurity is :

𝐿𝐺(𝑝) = 𝑝0(1 − 𝑝0)𝑝1(1 − 𝑝1) = 1 − (𝑝0 + 𝑝1)

2.3. MILP Formulation
The MILP formulation of Bertsimas (2017) produces an optimal classification tree when the optimi-
sation is complete. This is formalised as a MILP problem and can be solved with any MIP solver. In-
stead of local optimisation at each partition, this method optimises the entire tree at once, allowing
optimality to be achieved. Instead of an impurity measure used in inductive top-down methods, the
formulation uses a more natural misclassification objective. The whole tree is formed in one step, i.e.
the splits are formed with the knowledge of the other splits in the tree. The MILP formulation tries to
solve the problem:

min
𝑥.𝑦

𝑅𝑥𝑦(𝑇) + 𝛼|𝑇| (2.5)

s.t. 𝑁𝑥(𝑙) ≥ 𝑁𝑚𝑖𝑛 (2.6)

Where 𝑅𝑥𝑦(𝑇) is the misclassification error of tree T, |T| is the number of branch nodes. 𝑁𝑥(𝑙) is the
number of training points in leaf l, with a minimum of 𝑁𝑚𝑖𝑛. 𝛼 is a complexity parameter that controls
the depth of the tree. For the full formulation and explanation of each constraint, I refer the reader to
Bertsimas (2017), pages 1039-1082. The main result of this model is that it achieves optimality on
the training set but is inefficient. This means that this model cannot be applied to large data sets.

2.3.1. Novel formulations since 2017
Many efforts have been made to make the OCT (Optimal Classification Tree) formulation more effi-
cient and accurate. In this section we will briefly discuss the contributions of these efforts.

Firat et al. (2020) has created an ILP formulation that applies a column generation heuristic to scale
the problem. Similarly, Verwer and Zhang (2019) has addressed the dependence on the size of the
data set by formulating the variables using binary encoding. Both methods scale to larger data sets
and provide competitive accuracy.

Blanquero et al. (2021) created a randomised continuous optimisation formulation with probabilities
instead of deterministic decisions at the branching nodes. This converges to the result of Bertsimas
(2017) and scales well with the size of the training set.

Aghaei et al. (2021) has developed an extremely fast max-flow based formulation using Benders de-
composition. This method essentially splits the problem into a main problem and a sub-problem, with
the sub-problem being fast to solve. This formulation has a robust variant presented in Justin et al.
(2022). These formulations scale extremely well and are much faster than the original OCT MILP
formulation. The disadvantage of this formulation is that it can only handle binary features. A data
set with only binary features is rare in practical applications. This can be solved by binning continu-
ous/integer variables, but you lose information or get extremely large and non-interpretable trees.

A robust version of inductive local optimal algorithms like CART was developed in Chen et al. (2019)
and further improved in Vos and Verwer (2021a). This algorithm ”GROOT” is fast and yields competi-
tive robust results.

8 2. Literature study

2.4. Robustness
Artificial Intelligence (AI) robustness deals with the study of defence against adversarial examples,
these are samples created with the goal of misclassifying the model.

Figure 2.2: Example of adversarial attack from Goodfellow (2020)

In Figure 2.2 we see the example of an adversarial example of an image classifier created by some
perturbation 𝜖. After perturbing, the image is misclassified as ”gibbon” but should be classified as
”panda”. The setting of robust learning presents us with a min-max optimisation problem:

min
𝜃

E(𝑥,𝑦)∼𝐷 (max
𝛿∈𝑆

𝐿 (𝜃, 𝑥 + 𝛿, 𝑦)) (2.7)

We want to find parameters 𝜃 that minimizes loss function 𝐿 over feature variable 𝑥 and class vari-
able 𝑦 from distribution 𝐷. The attacker maximizes the loss by changing samples (𝑥, 𝑦) ∼ 𝐷 with
perturbations 𝛿 ∈ 𝑆. 𝑆 is predefined and contains the allowed perturbations. In the work of Vos and
Verwer (2021b) it is proven that equation (2.7) under 𝑙∞-attacks can be reformulated as a single min-
imisation over 𝜃:

min
𝜃

∑
(𝑥,𝑦)∼𝐷

[⋁
𝑡∈𝒯𝑆(𝑥)𝐿

𝑐𝑡 ≠ 𝑦𝑡] (2.8)

Where 𝑐𝑡 is the prediction label of leaf t and 𝒯(𝑆(𝑥)𝐿 is the set of all leaves reachable by perturbations
on x.

2.4. Robustness 9

2.4.1. ROCT
ROCT is a novel robust version of the original OCT formulation, introduced by Vos and Verwer (2021b).
ROCT uses 𝑙∞ (supremum norm) perturbations to find the optimal tree that is robust to the given per-
turbation range [−𝜖, 𝜖].

Figure 2.3: Illustration of robust splitting with 𝑙∞ ball around 10 samples from Chen et al. (2019)

In Figure 2.3 we see how an optimal split is defined for such a data set. The boxes around each
sample is the 𝑙∞ ball of radius 𝜖. The crosses are examples of places where an adversarial exam-
ple can be generated/exists within this ball. If all samples are perturbed adversarially in Figure 2.3,
the accuracy would be 0. The lower illustration in Figure 2.3 splits on 𝑥(1) which yields a robust split,
with worst case accuracy after adversarial perturbations of 0.7.

A more extensive explanation on notation and constraints can be found in Vos and Verwer (2021b).
Our objective is to train a robust tree of depth d, our objective function inspired by equation (2.8) is to
minimize misclassifications over all samples: ∑𝑛𝑖=1 𝑒𝑖. We restrict our tree to selecting on one feature
per branch node: ∑𝑝𝑗=1 𝑎𝑗𝑚 = 1 where 𝑎𝑗𝑚 is a binary variable deciding on what feature j branch node
m splits. Our threshold values are stored in continuous variables 𝑏𝑚 for branch nodes m. Together
with perturbation radii, we can create the condition for 𝑠𝑖𝑚0 and 𝑠𝑖𝑚1. These are binary variables de-
ciding whether sample i can move left and right of node m in the set of branch nodes 𝒯𝐵 respectively:

(𝑋𝑖 − Δ⃗𝑙) ∗ ⃗𝑎𝑚 ≤ 𝑏𝑚 ⟹ 𝑠𝑖𝑚0 ∀𝑚 ∈ 𝒯𝐵 , 𝑖 = 1, ..𝑁 (2.9)

(𝑋𝑖 + Δ⃗𝑟) ∗ ⃗𝑎𝑚 > 𝑏𝑚 ⟹ 𝑠𝑖𝑚1 ∀𝑚 ∈ 𝒯𝐵 , 𝑖 = 1, ..𝑁 (2.10)

Where Δ⃗𝑙 , Δ⃗𝑟 are vectors of the left,right perturbations, 𝑋𝑖 is the row vector of feature values from
sample i and ⃗𝑎𝑚 is a vector of all 0’s except on the index of the splitting feature. The left hand side
of the above inequalities represents the value of the branch feature for the perturbed sample. For
simplicity, we will not consider vector notation.

To determine the misclassifications, we create a constraint which forces 𝑒𝑖 = 1 if for any leaf t, sam-
ple i can reach t and the sample is misclassified:

⋀
𝑚∈𝐴𝑙(𝑡)

𝑠𝑖𝑚0 ⋀
𝑚∈𝐴𝑟(𝑡)

𝑠𝑖𝑚1 ∧ [𝑐𝑡 ≠ 𝑦𝑖] ⟹ 𝑒𝑖 ∀𝑚 ∈ 𝒯𝐿 , 𝑖 = 1, ...𝑁 (2.11)

Where 𝐴𝑙(𝑡), 𝐴𝑟(𝑡) are the left and right ancestors of leaf t respectively.
These constraints form the full ROCT MILP formulation. The first term in the left hand side of the im-
plication forces reach-ability of sample i to leaf t. The formulation is dominated by the s variables with
2𝑑𝑛 variables. There is also a binary formulation with no continuous thresholds, found in Vos and
Verwer (2021b).

3
Data & implementation

In this section we discuss the data used and how it is implemented.

3.1. Programming ROCT & CART
The implementation of ROCT and CART has been done using Python 3.8. The programming con-
sists of three parts:

1. Data import and transformations

2. MILP implementation and solving using optimizer or running fitting algorithm

3. Tree modelling and assessment

3.1.1. Data
We used eight data sets from OpenML (Feurer et al., 2019), which were also used in Vos and Verwer
(2021b), see table 3.1. All training sets are first scaled using Min-Max scaling for each feature. This
is done as follows: 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑥−𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

, this scales the features to a [0, 1] range, which means our 𝑙∞
perturbation 𝜖 can also be restricted to [0, 1]. We split our data sets into training, testing sets with a
split of 80%,20% . Our testing set: 𝑋𝑡𝑒𝑠𝑡 is scaled with the Min-Max transformation parameters of the
training set.

Table 3.1: Overview of samples,features and majority class ratio across all used data sets in our experiments

Name Samples Features Ratio majority class
Haberman 306 3 .735
Blood-transfusion 748 4 .762
Cylinder-bands 277 37 .643
Diabetes 768 8 .651
Ionosphere 351 34 .641
Banknote-authentication 1372 4 .555
Breast-cancer 683 9 .650
Wine-quality 6497 11 .633

For each data set, three epsilons(perturbation radii) and one depth parameter are computed as in
Vos and Verwer (2021b). The depth parameter is computed using 3-Fold Stratified Cross-Validation:
We split the data set into three parts and then use 2/3 as the training set and the other 1/3 as the test
set. We do this for all combinations of epsilon with d’s and choose the parameter with the best perfor-
mance across all sets.

The 𝜖 is chosen by calculated upper bounds of adversarial accuracy. This method is first introduced
in Vos and Verwer (2021b). The upper bound is determined by creating a graph G = (V,E), with V =

11

12 3. Data & implementation

data set X and an edge 𝑒 ∈ 𝐸 when the perturbation regions of samples overlap. Maximum matching
then yields an upper bound on the adversarial accuracy. Epsilons are chosen at 20%, 50%, 75% of
the range of bounds when 𝜖 ranges from 0 to 1.

3.1.2. Optimisation
All optimisations are carried out with MIP solver GUROBI. The running time is limited to 30 minutes.
After implementing the model myself, Daniël Vos’ Github library is used for the implementation. This
is because this implementation conveniently converts the GUROBI output into an evaluable tree data
structure. For implementation, the formulation presented in section 2.4.1 has to be converted to MILP
form.

(2.10) is translated to MILP by using big M constraints for the implications and the strict inequality is
adjusted using a sufficiently small number 𝜓:

(𝑋𝑖 − Δ⃗𝑙) ∗ ⃗𝑎𝑚 ≥ 𝑏𝑚 + 𝜓 −𝑀𝑠𝑖𝑚0 (3.1)

(𝑋𝑖 + Δ⃗𝑟) ∗ ⃗𝑎𝑚 ≤ 𝑏𝑚 +𝑀𝑠𝑖𝑚1 (3.2)

Also equation (2.11) is turned into MILP form by first creating an if statement for 𝑦𝑖 to be 0 or 1. If
𝑦𝑖 = 0 then we force 𝑒𝑖 to be 1 correctly by:

𝑒𝑖 ≥ ∑
𝑚∈𝐴𝑙(𝑡)

𝑠𝑖𝑚0 ∑
𝑚∈𝐴𝑟(𝑡)

𝑠𝑖𝑚1 + 𝑐𝑡 − 1 (3.3)

similarly for 𝑦𝑖 = 1 we use the same formula but with (1 − 𝑐𝑡) instead of 𝑐𝑡.

CART implementation
We used the CART implementation of Scikit-Learn (Pedregosa et al., 2011) and applied 3-Fold Strat-
ified Cross-Validation for the depth hyper parameter in the perturbation schemes. We then translated
the fitted tree into GROOTs’ tree data structure for evaluation.

3.1.3. Tree modelling and assessment
We use the tree structure from Daniël Vos’ GROOT package and test this tree for accuracy on the
test set. Our measure for evaluating adversarial robustness to 𝑙∞ attacks is the adversarial accuracy
score. This score is calculated by determining for each pair of samples whether their regions inter-
sect. The formula is:

(1 − #{𝑖 ∈ 𝑋𝑡𝑒𝑠𝑡|i s.t. a feasible attack is possible})
#𝑋𝑡𝑒𝑠𝑡

(3.4)

4
Simple robust heuristic methods

In this section we try to answer the question:

”Can heuristic methods be made robust by simply changing the training data?”

We do this by proposing several schemes to try to make CART and OCT formulations more robust.
This is done through changing the training data, and also by trying an algorithm to make any OCT
formulation more robust. Afterwards, we compare our results with GROOT and ROCT in terms of
the accuracy and adversarial accuracy (see formula (3.4)) metrics on our test data. We also vary the
number of perturbations from 0 to 𝑁𝑝𝑒𝑟𝑡𝑢𝑟𝑏 to see the effect of additional perturbations.

4.1. Methods
Formulations like ROCT in Vos and Verwer (2021b) and GROOT in Vos and Verwer (2021a) improve
robustness by implementing it in the model itself. Our main area of research in this section is whether
this robustness can also be achieved with a simpler idea: perturbing data and fitting the fast CART
algorithm to that data, and enforcing misclassification constraints on adversarial examples in an OCT
formulation. We propose four different CART perturbation schemes and analyse the best performing
one of them. We also present an algorithm to attain robustness of OCT formulations.

4.1.1. Uniform perturbations
The most straightforward method would be to sample from a uniform distribution on [−𝜖, 𝜖] and per-
turbing our data with this. In our method we sample 𝑝𝑖 ∼ 𝑈[−𝜖,𝜖] and for each sample 𝑋𝑖 we perturb
it with 𝑋𝑖 + 𝑝𝑖 to get a perturbed sample which we add to our training data set 𝑋𝑡𝑟𝑎𝑖𝑛. We do this
𝑁𝑝𝑒𝑟𝑡𝑢𝑟𝑏 times to get a training data set of size (𝑁𝑝𝑒𝑟𝑡𝑢𝑟𝑏 + 1) ∗ #{𝑋𝑡𝑟𝑎𝑖𝑛}.

4.1.2. Linear perturbations
To remove the uncertainty in the results, we use a second method that generates perturbations in
a range of [𝑋𝑖 − 𝜖, 𝑋𝑖 + 𝜖]. For the first perturbation, these are simply the points 𝑋𝑖 − 𝜖, 𝑋𝑖 , 𝑋𝑖 + 𝜖.
The jth perturbation divides the range into 𝑗 ∈ 1, ..., 𝑁𝑝𝑒𝑟𝑡𝑢𝑟𝑏 points to which 𝑋𝑖 is added. For the jth
perturbation, we obtain the perturbed samples: 𝑋𝑖 − 𝜖, 𝑋𝑖 − 𝜖 +

2𝜖
𝑘 , 𝑋𝑖 + 𝜖 for 𝑘 ∈ 1, ..., 𝑗 − 2. This

is simply an equally distributed set of perturbed samples with perturbations in [−𝜖, 𝜖]. Again, we add
the perturbed samples to 𝑋𝑡𝑟𝑎𝑖𝑛 and do this for 𝑗 ∈ 1, ..., 𝑁𝑝𝑒𝑟𝑡𝑢𝑟𝑏.

4.1.3. Adversarial examples
For our next scheme, we generate an adversarial example for each perturbation and create a new
training set 𝑋𝑎𝑑𝑣 to which we fit CART. 𝑋𝑎𝑑𝑣 is a concatenation of 𝑋𝑡𝑟𝑎𝑖𝑛 and its adversarial exam-
ples. We repeat this 𝑁𝑝𝑒𝑟𝑡𝑢𝑟𝑏 times. In this way, we ”walk” through the successive adversarial exam-
ples in each iteration. This method however, leads to unstable results, as the path of each sample
point can move away from the ideal robust split of the original 𝑋𝑡𝑟𝑎𝑖𝑛.

13

14 4. Simple robust heuristic methods

4.1.4. Reweighing scheme
For our next data alteration, we apply a reweighing scheme to 𝑋𝑡𝑟𝑎𝑖𝑛 in an attempt to make the sam-
ples that can generate adversarial examples more important in fitting. We calculate the minimum
perturbation distance for each point to become an adversarial example: 𝑎_𝑑𝑖𝑠𝑡𝑖. We multiply each
sample 𝑋𝑖 by (1 − 𝑎_𝑑𝑖𝑠𝑡𝑖)𝑝, experimenting with increasing powers of p. If the sample 𝑋𝑖 is an ad-
versarial example, it remains unchanged since 𝑎_𝑑𝑖𝑠𝑡𝑖 = 0 and its weight is therefore 1𝑝. For other
samples, points with smaller adversarial distance are weighted than points with larger distance. For
each p, we perform 𝑁𝑝𝑒𝑟𝑡𝑢𝑟𝑏 iterations in which we multiply and refit 𝑋𝑡𝑟𝑎𝑖𝑛 by its reweighing scheme
(1−𝑎_𝑑𝑖𝑠𝑡𝑖)𝑝. We let ROCT run for 30 minutes after which we compute the accuracy and adversarial
accuracy scores.

4.1.5. Restart OCT with adversarial examples
Instead of forcing robustness within the formulation, as is the case with ROCT, we can try to enforce
robustness in a more indirect way. Note that it is quite difficult to compute adversarial examples, and
our method does this heuristically. Optimal adversarial examples have been computed in Kantchelian
et al. (2015), but this can take quite a long time. We fit an OCT and try to implement robustness in a
clever way. The algorithm looks as follows when applied to an OCT MILP:

1. While critical point not reached w times

2. Start optimisation of OCT MILP

3. Stop if incumbent solution is found

(a) Generate adversarial examples on X if feasible within perturbation range
(b) Add adversarial examples to 𝑋𝑡𝑟𝑎𝑖𝑛
(c) Force adversarial example (𝑋𝑖∗) of sample (𝑋𝑖 ∈ 𝑋) to have equal misclassification with

constraint: 𝑒𝑖∗ = 𝑒𝑖
4. Repeat from step 1 with new constraints and sample points from 3c

In this algorithm, we initialise with the number of critical points to be reached under the variable w.
We define a critical point for the restart OCT as the iteration where the objective function and the ac-
curacy score have not increased. Currently, we have no means to obtain an proof of optimality. We
can evaluate the trade-off between accuracy and adversarial accuracy in a graph where the scores
for each iteration are plotted.

4.2. Results
In this section we discuss and compare the results of our best performing scheme and inspect our
reweighing scheme. The results for the other mentioned schemes applied to CART can be found in
the Appendix. We also analyse the results of the restart OCT at each iteration.

4.2.1. Linear perturbations
We let ROCT run for 30 minutes after which we compute the accuracy and adversarial accuracy
scores. Full tables with scores for every data set and epsilon are attached in the Appendix. Our lin-
early perturbed CART scheme is referred to here as ”P-CART” for convenience.

Table 4.1: Linearly perturbed CART mean score comparison with 𝑁𝑝𝑒𝑟𝑡𝑢𝑟𝑏 = 10 for P-CART

Score ROCT (1800s) GROOT P-CART
Mean adv. accuracy 0.724 0.717 0.596
Mean accuracy 0.754 0,767 0.658

In Table 4.1 we see the mean scores across all data sets and perturbation radii 𝜖. When we run P-
CART for 10 iterations, we have a mean adversarial accuracy increase against CART of 0.149. Against
ROCT, we have 3/24 wins and one tie regarding adversarial accuracy. Against GROOT we have

4.2. Results 15

3/24 wins and three ties. Computation time for ROCT is 1800s whereas GROOT and P-CART com-
pute within seconds. We notice that for data sets with larger depth hyper parameters, our method
performs better.

Considering only data sets and epsilon combinations with depth ≥ 3, we receive an mean adver-
sarial accuracy increase of 0.225 on these data sets. The mean difference between ROCT adver-
sarial scores and ours is 0.035, with 3/6 wins and one tie. Then, regarding accuracy we notice three
wins and two ties, where we have 0.079 higher mean accuracy . The results suggest that our method
does not work well with nearly trivial trees, since there are a lot of depth 0 and 1 trees where P-CART
scores poor. ROCT can quickly reach optimality at these depths, as the formulation grows exponen-
tially with depth. For visualization purposes: considering only trees of depth ≥ 3, we plot the adver-
sarial accuracy score against the amount of perturbations.

Figure 4.1: Data set, epsilon combinations with depth ≥ 3 for the linear perturbation scheme with CART. Linear regression line
with 95 % confidence interval added in plot.

In Figure 4.1 we can see the increase in adversarial accuracy with increasing perturbations. Further
perturbations have diminishing effects: the mean increase in adversarial accuracy from perturbation
10 to 100 is 0.00075.

16 4. Simple robust heuristic methods

4.2.2. Reweighing scheme
Following our intuition, the reweighing scheme from section 4.1.4 should positively influence our ad-
versarial accuracy score. Reweighing for 20 iterations for 𝑝 ∈ 0, 1, ..., 50 and plot the power p against
the mean increase in adversarial accuracy score.

Figure 4.2: Regression plot with 95 % confidence interval of power p in (1 − 𝑎_𝑑𝑖𝑠𝑡𝑖)𝑝 against the mean increase in
adversarial accuracy across 20 iterations

In Figure 4.2 we see a clear positive relationship, but we also find unstable results, which can be
seen in the large confidence interval and spread of points. The randomness of CART in combination
with ”walking” over successive adversarial distances may cause this instability.

4.2.3. Restart OCT
For the restart OCT algorithm, we record the adversarial accuracy and the objective function at each
iteration. We choose 𝑤 = 2 so that the algorithm stops after 2 critical points. This means that we
do not find an improvement in the objective function or the adversarial accuracy two times. The OCT
MILP model itself optimises accuracy only via the objective function, and the adversarial accuracy
is only captured by the additional constraints in each iteration. For this reason, we find that the al-
gorithm constantly trades accuracy for adversarial accuracy and vice versa, as seen in Figure 4.3
below:

0 10 20 30 40

0.50

0.75

1.00

blood-transfusion
 objective
blood-transfusion
 adv acc

0 5 10 15

0.6

0.8
blood-transfusion
 objective
blood-transfusion
 adv acc

0 20 40 60
0.0

0.5

1.0

banknote-authentication
 objective
banknote-authentication
 adv acc

0 10 20 30

0.25
0.50
0.75

banknote-authentication
 objective
banknote-authentication
 adv acc

0 10 20 30

0.25
0.50
0.75

banknote-authentication
 objective
banknote-authentication
 adv acc

0 2 4 6 8
0.0

0.5

1.0

breast-cancer
 objective
breast-cancer
 adv acc

Figure 4.3: Data set, epsilon combinations with depth ≥ 3 with adversarial accuracy and the objective function value plotted at
each iteration. The blue, orange dashed line represents the ROCT score for training accuracy, adversarial accuracy

respectively. In the breast- cancer graph, both dashed lines are at the same level.

In Figure 4.3 we see that the algorithm often sacrifices adversarial accuracy for accuracy (objective

4.3. Data alterations for heuristic robustness 17

value) score. In practical applications, we can stop the algorithm at a desirable point where the ac-
curacy and the adversarial accuracy are sufficiently high. We find that the accuracy for each graph
in the termination iteration is close to 100%. In most cases, higher adversarial accuracy is desirable
instead of optimal training accuracy.

If we compare the ROCT (dashed line) scores with the plot of the restart OCT, we find that stopping
the algorithm at certain points can yield better results. Applied to practice, we stop the algorithm be-
fore it over-optimises for accuracy and loses adversarial accuracy.

4.3. Data alterations for heuristic robustness
In this section we try to answer our research sub-question:

”Can heuristic methods be made robust by simply changing the training data?”

We find that heuristic methods without robustness in their formulations or loss functions can be made
more robust by changing their training data. However, models with robustness in their formulation
achieve better results and robust heuristics (GROOT) outperform our heuristic perturbation schemes.
We can balance the adversarial accuracy with our proposed restart OCT to obtain a more robust
model with any OCT formulation. This algorithm is simple to apply to any OCT model.

5
Altering the ROCT formulation

In this section we attempt to answer the question:

”Can the formulation of ROCT be changed or expanded to make it more applicable and improve
performance?”

We do this by first altering the ROCT formula so that it computes faster. Second, we extend ROCT
so that it is applicable for regression and multi-class classification.

5.1. Methods
5.1.1. Altering ROCT formulation
Consider the ROCT formulation from section 2.4.1. We will try to strengthen this formulation by adding
valid inequalities that exploit symmetry and valid bounds.
Given a classifier 𝐶(𝑥) ⟶ {0, 1} note that a sample i can only be correctly predicted against an adver-
sary if its entire perturbation range 𝑆𝑖 is correctly predicted.

∀𝑥 ∈ 𝑆𝑖 ∶ 𝐶(𝑥) = 𝑦𝑖 (5.1)

In Vos and Verwer (2021b) a valid inequality is introduced, derived from the notion that two samples
from different classes with intersecting perturbation ranges cant both be correctly classified. Thus for
sample i,j ∈ 1, .., 𝑁 s.t. 𝑖 ≠ 𝑗:

𝑦𝑖 ≠ 𝑦𝑗 and 𝑆𝑖 ∩ 𝑆𝑗 ≠ 0 ⟹ 𝑒𝑖 + 𝑒𝑗 ≥ 1 (5.2)

As our second alteration, we will leverage the binary tree structure. We observe that if a sample is
unable to move left from the root node, the sample cant move to any leaf nodes in the left sub tree.
Thus we can force the leaf 𝑡 to be unreachable:

𝑠𝑖,1,0 = 0 ⟹ ∑
𝑡∈𝑡1 ,...,𝑡 |𝒯𝐿|

2

𝑍𝑖,𝑡 = 0 ∀𝑖 ∈ 1, ..., 𝑁 (5.3)

𝑠𝑖,1,1 = 0 ⟹ ∑
𝑡∈𝑡 |𝒯𝐿|

2
,...,𝑡|𝒯𝐿|

𝑍𝑖,𝑡 = 0 ∀𝑖 ∈ 1, ..., 𝑁 (5.4)

Where 𝑍𝑖,𝑡 = 1 if leaf t is reachable for sample i. Instead of including these conditions in our formu-
lation, we implement them by changing the definition of 𝑍𝑖,𝑡 ∈ {0, 1}. In the below constraint, 𝑍𝑖,𝑡 for
leaf t in the left sub-tree is 1 if it is reachable and 𝑠𝑖,1,0 is 1. This way we don’t increase the number
of constraints. We use 𝑍𝑖,𝑡 instead of the ”and” wedges on the left-hand side of equation (2.11). The

19

20 5. Altering the ROCT formulation

constraint is formalised as:

∑
𝑚∈𝐴𝑙(𝑡)

𝑠𝑖,𝑚,0 ∑
𝑚∈𝐴𝑟(𝑡)

𝑠𝑖,𝑚,1 − #{𝐴𝑙(𝑡) ∪ 𝐴𝑟(𝑡)} + 𝑠𝑖,1,0 ≤ 𝑍𝑖,𝑡 ∀𝑖 ∈ 1, ..., 𝑁 ∀𝑡1, ..., 𝑡 |𝒯𝐿|
2

(5.5)

∑
𝑚∈𝐴𝑙(𝑡)

𝑠𝑖,𝑚,0 ∑
𝑚∈𝐴𝑟(𝑡)

𝑠𝑖,𝑚,1 − #{𝐴𝑙(𝑡) ∪ 𝐴𝑟(𝑡)} + 𝑠𝑖,1,1 ≤ 𝑍𝑖,𝑡 ∀𝑖 ∈ 1, ..., 𝑁 ∀𝑡 |𝒯𝐿|
2
, ..., 𝑡|𝒯𝐿| (5.6)

When the 𝑠-variables for the root node are 0, then (5.5) and (5.6) are rendered useless, since 𝑍𝑖,𝑡 ∈
{0, 1} is always ≥ 0.

The third modification takes advantage of the structure of 𝑠-variables. We note that for branch nodes
with branch nodes as children, a sample that cannot reach the parent branch node certainly cannot
reach the children branch nodes. This gives us the idea for inequalities: 𝑠𝑖,𝑚,0 ≥ 𝑠𝑖,𝑐𝑙(𝑚),0 , 𝑠𝑖,𝑚,0 ≥
𝑠𝑖,𝑐𝑙(𝑚),1. This also holds for 𝑠𝑖,𝑚,0 and its right child. To incorporate this relation, we replace equa-
tions (2.9),(2.10) for all branch nodes except the root with the following implication, modelled with big
M constraints:

{𝑠𝑖,𝑝(𝑚),0 = 1 ⟹ (2.9), (2.10) if m left child of p(m)
𝑠𝑖,𝑝(𝑚),1 = 1 ⟹ (2.9), (2.10) if m right child of p(m)

(5.7)

Where p(m) is the parent node of branch node m. Again, we do not add constraints but just alter ex-
isting constraints. Adding the proposed constraints made our model slower due to a larger formula-
tion.

5.1.2. Unused Alterations
We thought of several valid inequalities that did not improve the empirical optimisation time. These
are listed here with a brief explanation.

First, we considered an inequality that should always hold for leaves. Both leaves should not pre-
dict the same class if they have the same parent branch node. If both leaves predict the same class,
their parent branch node is superfluous, as there should always be a split that improves fit. If this is
not the case, the split can, in extreme cases, send all samples to one leaf and leave the other empty.
This is formalised as follows:

𝑐𝑡0 + 𝑐𝑡1 = 1 ∀𝑡0, 𝑡1 ∈ 𝒯𝐿 s.t. 𝑝(𝑡0) = 𝑝(𝑡1) (5.8)

Second, we attempt to force the inequality on which equation (5.7) is based, to directly bound all s
variables:

𝑠𝑖,𝐶𝑙𝑚,0 ≤ 𝑠𝑖,𝑚,0 , 𝑠𝑖,𝐶𝑙𝑚,1 ≤ 𝑠𝑖,𝑚,0 ∀𝑚 ∈ 𝒯𝐵 s.t. 𝐶𝑙(𝑚), 𝐶𝑟(𝑚) ∈ 𝒯𝐵 (5.9)
𝑠𝑖,𝐶𝑟𝑚,1 ≤ 𝑠𝑖,𝑚,1 , 𝑠𝑖,𝐶𝑟𝑚,1 ≤ 𝑠𝑖,𝑚,1 ∀𝑚 ∈ 𝒯𝐵 s.t. 𝐶𝑙(𝑚), 𝐶𝑟(𝑚) ∈ 𝒯𝐵 (5.10)

These constraints did not improve performance, possibly due to the increasing size of the formula-
tion.

Third, we have implemented the constraints in equation (5.3) directly by including them in the for-
mulation, and we have extended them for branch nodes other than the root. We give an example of
these constraints for the left branch node of the second depth:

𝑠𝑖,2,0 = 0 ⟹ ∑
𝑡∈𝑡1 ,...,𝑡 |𝒯𝐿|

4

𝑍𝑖,𝑡 = 0 ∀𝑖 ∈ 1, ..., 𝑁 (5.11)

𝑠𝑖,2,1 = 0 ⟹ ∑
𝑡∈𝑡 |𝒯𝐿|

4
,...,𝑡 |𝒯𝐿|

2

𝑍𝑖,𝑡 = 0 ∀𝑖 ∈ 1, ..., 𝑁 (5.12)

This is repeated for each branch node with children branch nodes.

5.1. Methods 21

5.1.3. multi-class ROCT
In this subsection we briefly introduce a novel multi-class version of ROCT (Vos and Verwer, 2021b).
We obtain a multi-class ROCT formulation by changing constraint (2.10). The original constraint in
MILP form is:

𝑒𝑖 ≥ {
∑𝑚∈𝐴𝑙(𝑡) 𝑠𝑖𝑚0 ∑𝑚∈𝐴𝑟(𝑡) 𝑠𝑖𝑚1 + 𝑐𝑡 − 1 , if 𝑦𝑖 = 0
∑𝑚∈𝐴𝑙(𝑡) 𝑠𝑖𝑚0 ∑𝑚∈𝐴𝑟(𝑡) 𝑠𝑖𝑚1 + (1 − 𝑐𝑡) − 1 , if 𝑦𝑖 = 1

∀𝑡 ∈ 𝒯𝐿 , 𝑖 ∈ 1, ...𝑁 (5.13)

Instead of a binary leaf predictor variable 𝑐𝑘,𝑡 we use a K-dimensional binary vector, with K the num-
ber of classes: 𝑐𝑘,𝑡 ∈ {0, 1}𝐾 for each leaf t Where 𝑐𝑘,𝑡 = 1 if leaf t predicts class k. Next we formulate
the constraints:

𝑒𝑖 ≥ 𝑍𝑖,𝑡 + (1 − 𝑐𝑘,𝑡) − 1 , if 𝑦𝑖 = 𝑘 ∀𝑡 ∈ 𝒯𝐿 , 𝑖 ∈ 1, ...𝑁, 𝑘 ∈ 1, .., 𝐾 (5.14)

∑
𝑘∈1,...,𝐾

𝑐𝑘,𝑡 = 1 ∀𝑡 ∈ 𝒯𝐿 (5.15)

If 𝑐𝑘,𝑡 predicts 𝑘 ∈ 1, ..., 𝐾, this binary variable 𝑐𝑘,𝑡 and only this one equals 1 for the respective leaf. In
the case that leaf 𝑡 is reachable (𝑍𝑖,𝑡 = 1), but 𝑐𝑘,𝑡 = 0 for the class of sample i, then 𝑒𝑖 ≥ 1 + 0. This
constitutes a misclassification. In all other cases 𝑒𝑖 ≥ 0, so 𝑒𝑖 is minimised in the objective to 0. We
relax 𝑒𝑖 to be a continuous variable.

5.1.4. Regression ROCT
In this section we create a robust optimal regression tree algorithm from ROCT. The goal is to predict
continuous values in each leaf, since the class labels in the regression setting are continuous. To do
this, we use maximum absolute loss, i.e. we minimise the maximum absolute loss across leaves. We
create variables:
1. 𝑙𝑖 =max

𝑡∈𝒯𝐿
{|𝑒𝑖,𝑡 − 𝑐𝑖,𝑡|} 𝑠.𝑡. 𝑖 ∈ 1, ..., 𝑁,

2. 𝑒𝑖,𝑡 = 𝑐𝑡 ∗ 𝑍𝑖,𝑡 𝑠.𝑡. 𝑖 ∈ 1, ..., 𝑁 𝑡 ∈ 𝒯𝐿,
3. 𝑐𝑡 ∈ R 𝑠.𝑡. 𝑡 ∈ 𝒯𝐿 (continuous prediction in leaf 𝑡)

We linearise with auxiliary variables and inequalities instead of the absolute value.

𝐿𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑖,𝑡 = |𝑒𝑖,𝑡 − 𝑐𝑖,𝑡| ⟺ 𝐿𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑖,𝑡 ≥ 𝑒𝑖,𝑡 − 𝑐𝑖,𝑡 and 𝐿𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑖,𝑡 ≥ −𝑒𝑖,𝑡 + 𝑐𝑖,𝑡 ∀𝑖 ∈ 1, ..., 𝑁 (5.16)

𝐿𝑖 =max
𝑡∈𝒯𝐿

{𝐿𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑖,𝑡 } ∀𝑖 ∈ 1, ..., 𝑁 (5.17)

The maximum is linearised with big M constraints. Our objective function is the minimisation of ∑𝑁𝑖=1 𝐿𝑖.
In this way we minimise the sum of the maximum absolute losses.

22 5. Altering the ROCT formulation

5.2. Results
5.2.1. Altered ROCT formulation
We altered the formulation with the goal of achieving better performance with shorter runtime. To as-
sess this we run both the original model together with the altered one (”ROCT2”) on different time
limits and assess their scores. In Figure 5.1 we see both models run on 1000 seconds with a loga-
rithmic x axis and the mean training error on the y axis.

Figure 5.1: Mean percentage misclassified training samples of ROCT and the altered ROCT (ROCT2) formulation with all data
set, epsilon combinations s.t depth ≥ 2. Where colored ranges represent one standard error.

Note in Figure 5.1 that ROCT2 optimises faster on average, but after about 100 seconds both models
follow roughly the same path. This plot only takes into account the ≥ 2 depths, otherwise most of the
data sets quickly fall towards a very small training error since the tree has ≤ 1 splits.

Table 5.1: mean (adv. accuracy, accuracy) scores for four different runtimes of the altered ROCT formulation. Wins are in
bold.

Runtime ROCT ROCT2
60s (0.612,0.619) (0.671,0.682)
180s (0.700,0.726) (0.702,0.731)
300s (0.700,0.728) (0.724,0.761)
1800s (0.724,0.754) (0.726,0.763)

In Table 5.1 we see that the altered formulation wins over the normal formulation in all cases, but at
1800s both means are almost equal.

5.2.2. multi-class ROCT
For the multi-class ROCT, we plot the splits fitted to the wine data set, a data set where there are
three wine types as classes. We will visually compare the normal multi-class class OCT and the
multi-class ROCT to see the robustness of the splits.

5.3. Improving applicability and performance of ROCT 23

(a) multi-class OCT, accuracy = 0.837 (b) multi-class ROCT,𝜖 = 0.05, accuracy
= 0.747

Figure 5.2: Both models run on 300s runtime with the wine data set (van Rijn, 2014)

In Figure 5.2 we see that our robust formulation produces more robust splits: in 5.2 (a) notice that
there are some splits that provide many opportunities for adversarial attacks, as portrayed in Figure
2.3. The multi-class OCT wins in accuracy over ROCT, but we see in the plot that this can be inter-
preted as over-fitting for accuracy.

5.3. Improving applicability and performance of ROCT
In this section we try to answer our research sub-question:

”Can the formulation of ROCT be changed or extended to make it more applicable and improve
performance?”

Our results show that we can improve ROCT performance with shorter runtime by making changes
to the formulation. This does not mean that ROCT is now suitable for large data sets, in this respect
our out-performance is marginal. The formulation of ROCT is extended to apply to regression and
multi-class classification tasks, which are common in practice.

6
Discussion and conclusion

6.1. Discussion
When we analyse our results in their entirety, we find that there is no simple solution to the trade-off
between optimality and computational intensity. Current research and our work do not provide an al-
gorithm with the runtime on the scale of CART and the optimality of OCT or ROCT. As far as robust-
ness is concerned, the problem of a robust optimal classification tree is more complex than that of a
normal optimal classification tree. Since there are no shortcuts for robust optimality yet, we quickly
return to the use of heuristics.

Our results show different ways to achieve robustness, either optimal through the altered formulation
or heuristically through data adaptations. We hope that these methods, and the insights gained from
trying them out, will help the reader understand the difficulties related to the robustness of classifi-
cation trees. And that our altered ROCT formulation enables simple faster optimisation in practical
applications. As OCT research progresses and efficient Branch & Bound algorithms or MILP formu-
lations are developed, our proposed restart algorithm can be used to balance robustness and accu-
racy.

We note that our definition of robustness has some limitations. In our report and most of the research,
only 𝑙∞ attacks are used. In reality, other norms or more abstract attacks can also be used. For ex-
ample, an attacker could change the labels of certain samples (Rhuggenaath et al., 2018). This type
of attack is difficult to implement in the OCT formulation without hyper parameters. We also did not
evaluate the multi-class, regression OCT and restart OCT in detail. This was due to the time con-
straints that are unavoidable in a bachelor thesis. Another limitation of our research is that we forced
the problem in MILP form. ILPs and MILPs are not made for fitting trees. Specialised methods can
provide computational advantages. We note that regarding CART perturbations and the restart OCT,
the non-robust nature of OCT and CART purely optimises accuracy, which is why it is hard to im-
prove robustness without changing the formulation.

25

26 6. Discussion and conclusion

6.1.1. Recommendations
We hope that these limitations inspire new research, as it would be insightful to try different adversar-
ial attacks and formulate MILPs for these attacks. We did not have time for trying other implementa-
tions such as constraint programming or creating our own Branch & Bound algorithm.

Current research only provides custom Branch & Bound algorithms for binary data sets. If the reader
were to attempt to create such an algorithm, the difficulty would be to build optimal thresholds into the
algorithm without exploding the number of branches in branch & bound.

There is still a need for research in the formulation of ROCT. We have not yet found a way to break
the dominating symmetry, as is the case in Verwer and Zhang (2019) for OCT. This problem is more
complex with ROCT because there is less symmetry in the 𝑠-variables, since multiple leaves can
be reached by one sample. Finding a formulation that changes the exploding number of 𝑠 variables
would scale better.

Next, it would be interesting to examine different functions of the adversarial distance in a reweighing
scheme applied to various models. Our method of increasing the powers shows the existing relation-
ship but does not fully exploit it.

6.2. Conclusion
To answer our research question from section 1.1, this report tries to find simple and cheap robust-
ness for classification trees. Several methods were investigated to make CART robust without chang-
ing the algorithm. We trained robust trees in multiple ways and made runtime improvements to an
existing formulation for an optimal robust classification tree. We have also developed an algorithm
that can be applied to any OCT formulation and extended an existing robust optimal classification
tree MILP. To summarise our contributions:

• Investigated cheap robustness by adapting training data for CART with:

1. Linear perturbations
2. Uniform perturbations
3. Adversarial examples
4. Reweighing of training data

• Creation of an algorithm based on adversarial example generation to improve the robustness of
any OCT formulation.

• Altered the ROCT formulation to make it faster to compute.

• Extended the ROCT formulation for regression and multi-class classification tasks.

The results of these contributions verify that non-robust cheap and simple heuristics are difficult to
make robust without changing their formulation. Optimally robust decision trees are generated by
ROCT, but they lack computational efficiency. We partially solve this problem by making ROCT com-
pute faster.

Bibliography
Aghaei, S., Gómez, A., & Vayanos, P. (2021). Strong optimal classification trees. https://doi.org/10.

48550/ARXIV.2103.15965
Bertsimas, J., D.Dunn. (2017). Optimal classification trees. Springer. https://doi.org/10.1007/s10994-

017-5633-9
Blanquero, R., Carrizosa, E., Molero-Rı́o, C., & Morales, D. R. (2021). Optimal randomized classifica-

tion trees. Computers & Operations Research, 132, 105281. https://doi.org/10.1016/j.
cor.2021.105281

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1983). Classification and regression trees.
Chen, H., Zhang, H., Boning, D., & Hsieh, C.-J. (2019). Robust decision trees against adversarial

examples. In K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of the 36th international
conference on machine learning (pp. 1122–1131). PMLR. https://proceedings.mlr.press/v97/
19m.html

Feurer, M., van Rijn, J. N., Kadra, A., Gijsbers, P., Mallik, N., Ravi, S., Müller, A., Vanschoren, J., &
Hutter, F. (2019). Openml-python: An extensible python api for openml. https:/ /doi.org/10.
48550/ARXIV.1911.02490

Firat, M., Crognier, G., Gabor, A. F., Hurkens, C., & Zhang, Y. (2020). Column generation based
heuristic for learning classification trees. Computers Operations Research, 116, 104866.
https://doi.org/https://doi.org/10.1016/j.cor.2019.104866

Goodfellow, I. (2020). Attacking machine learning with adversarial examples. https://openai.com/blog/
adversarial-example-research/

Hyafil, L., & Rivest, R. L. (1976). Constructing optimal binary decision trees is np-complete. Infor-
mation Processing Letters, 5(1), 15–17. https : / /doi .org /https : / /doi .org /10 .1016 /0020-
0190(76)90095-8

Justin, N., Aghaei, S., Gomez, A., & Vayanos, P. (2022). Optimal robust classification trees. The
AAAI-22 Workshop on Adversarial Machine Learning and Beyond. https://openreview.net/
forum?id=HbasA9ysA3

Kantchelian, A., Tygar, J. D., & Joseph, A. D. (2015). Evasion and hardening of tree ensemble classi-
fiers. CoRR, abs/1509.07892. http://arxiv.org/abs/1509.07892

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. Jour-
nal of machine learning research, 12(Oct), 2825–2830.

Rhuggenaath, J., Zhang, Y., Akcay, A., Kaymak, U., & Verwer, S. (2018). Learning fuzzy decision
trees using integer programming. 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), 1–8. https://doi.org/10.1109/FUZZ-IEEE.2018.8491636

Szücs, D., & Schmidt, F. (2018). Decision tree visualization for high-dimensional numerical data.
van Rijn, J. (2014). Openml wine data set.
Verwer, S., & Zhang, Y. (2017). Learning decision trees with flexible constraints and objectives using

integer optimization. https://doi.org/10.1007/978-3-319-59776-8_8
Verwer, S., & Zhang, Y. (2019). Learning optimal classification trees using a binary linear program

formulation. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 1625–
1632. https://doi.org/10.1609/aaai.v33i01.33011624

Vos, D., & Verwer, S. (2021a). Efficient training of robust decision trees against adversarial examples.
In M. Meila & T. Zhang (Eds.), Proceedings of the 38th international conference on machine
learning (pp. 10586–10595). PMLR. https://proceedings.mlr.press/v139/vos21a.html

Vos, D., & Verwer, S. (2021b). Robust optimal classification trees against adversarial examples. https:
//arxiv.org/abs/2109.03857

27

https://doi.org/10.48550/ARXIV.2103.15965
https://doi.org/10.48550/ARXIV.2103.15965
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1016/j.cor.2021.105281
https://doi.org/10.1016/j.cor.2021.105281
https://proceedings.mlr.press/v97/19m.html
https://proceedings.mlr.press/v97/19m.html
https://doi.org/10.48550/ARXIV.1911.02490
https://doi.org/10.48550/ARXIV.1911.02490
https://doi.org/https://doi.org/10.1016/j.cor.2019.104866
https://openai.com/blog/adversarial-example-research/
https://openai.com/blog/adversarial-example-research/
https://doi.org/https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/https://doi.org/10.1016/0020-0190(76)90095-8
https://openreview.net/forum?id=HbasA9ysA3
https://openreview.net/forum?id=HbasA9ysA3
http://arxiv.org/abs/1509.07892
https://doi.org/10.1109/FUZZ-IEEE.2018.8491636
https://doi.org/10.1007/978-3-319-59776-8_8
https://doi.org/10.1609/aaai.v33i01.33011624
https://proceedings.mlr.press/v139/vos21a.html
https://arxiv.org/abs/2109.03857
https://arxiv.org/abs/2109.03857

A
Appendix

CART perturbation results
Adversarial accuracy
All results or different 𝑁𝑝𝑒𝑟𝑡𝑢𝑟𝑏 and p can be recreated with code in Github 1 under the ”Bachelor
Thesis” repository.

Table A.1: Adversarial accuracy scores for all our perturbation schemes with 𝑁𝑝𝑒𝑟𝑡𝑢𝑟𝑏 = 20,50,20,20 respectively and p = 50
for the reweighing scheme.

name,𝜖,d Linear perturb Adv. examples Reweighing scheme Uniform perturb.
haberman,0.02,0 0.73 0.74 0.74 0.74
haberman,0.03,0 0.78 0.69 0.64 0.73
haberman,0.05,0 0.64 0.41 0.43 0.59

blood-transfusion,0.01,4 0.90 0.64 0.31 0.89
blood-transfusion,0.02,3 0.63 0.00 0.00 0.56
blood-transfusion,0.03,2 0.94 0.19 0.00 0.94

cylinder-bands,0.23,3 0.38 0.00 0.01 0.20
cylinder-bands,0.28,2 0.47 0.69 0.31 0.44

Use cylinder-bands,0.45,0 0.39 0.74 0.74 0.17
diabetes,0.05,0 0.54 0.69 0.51 0.69
diabetes,0.07,0 0.48 0.04 0.38 0.77
diabetes,0.09,0 0.63 0.64 0.30 0.57

ionosphere,0.2,2 0.66 0.00 0.00 0.82
ionosphere,0.28,2 0.27 0.62 0.00 0.46
ionosphere,0.36,1 0.40 0.00 0.10 0.51

banknote-authentication,0.07,4 0.70 0.69 0.31 0.62
banknote-authentication,0.09,3 0.25 0.74 0.74 0.30
banknote-authentication,0.11,3 0.89 0.68 0.85 0.88

breast-cancer,0.28,3 0.82 0.00 0.46 0.80
breast-cancer,0.39,2 0.50 0.64 0.29 0.82
breast-cancer,0.45,1 0.67 0.13 0.00 0.68

wine,0.02,1 0.68 0.03 0.98 0.71
wine,0.03,0 0.41 0.00 0.01 0.47
wine,0.04,2 0.00 0.63 0.69 0.00

1https://github.com/Gertlek

29

30 A. Appendix

ROCT and Altered ROCT results
Table A.2: ROCT and altered ROCT run for 1800s

(a) Adversarial accuracy

name,𝜖,d ROCT ROCT2
haberman,0.02,0 0.741935 0.741935
haberman,0.03,0 0.741935 0.741935
haberman,0.05,0 0.741935 0.741935
blood-transfusion,0.01,4 0.9 0.906667
blood-transfusion,0.02,3 0.9 0.906667
blood-transfusion,0.03,2 0.906667 0.906667
cylinder-bands,0.23,3 0.571429 0.5
cylinder-bands,0.28,2 0.607143 0.535714
cylinder-bands,.36,1 0.517857 0.517857
diabetes,0.05,0 0.642857 0.642857
diabetes,0.07,0 0.642857 0.642857
diabetes,0.09,0 0.642857 0.642857
ionosphere,0.2,2 0.971831 0.971831
ionosphere,0.28,2 0.971831 0.971831
ionosphere,0.36,1 1 1
banknote-authentication, 0.07, 4 0.621818 0.589091
banknote-authentication, 0.09, 3 0.276364 0.494545
banknote-authentication, 0.11, 3 0.247273 0.247273
breast-cancer,0.28,3 0.934307 0.934307
breast-cancer,0.39,2 0.875912 0.875912
breast-cancer,0.45,1 0.817518 0.817518
wine,0.02,1 0.702308 0.702308
wine,0.03,0 0.693077 0.693077
wine,0.04,2 0.693077 0.693077

(b) Accuracy

ROCT ROCT2
0.741935 0.741935
0.741935 0.741935
0.741935 0.741935

0.9 0.906667
0.9 0.906667

0.906667 0.906667
0.571429 0.535714
0.607143 0.553571
0.517857 0.517857
0.642857 0.642857
0.642857 0.642857
0.642857 0.642857

1 1
1 1
1 1

0.84 0.767273
0.378182 0.738182
0.374545 0.374545

1 1
0.948905 0.948905
0.890511 0.890511
0.730769 0.730769
0.693077 0.693077
0.693077 0.693077

	Introduction
	Research objectives
	Contributions
	Structure
	Summary of notation used

	Literature study
	The setup
	The general optimisation problem

	Heuristics
	MILP Formulation
	Novel formulations since 2017

	Robustness
	ROCT

	Data & implementation
	Programming ROCT & CART
	Data
	Optimisation
	Tree modelling and assessment

	Simple robust heuristic methods
	Methods
	Uniform perturbations
	Linear perturbations
	Adversarial examples
	Reweighing scheme
	Restart OCT with adversarial examples

	Results
	Linear perturbations
	Reweighing scheme
	Restart OCT

	Data alterations for heuristic robustness

	Altering the ROCT formulation
	Methods
	Altering ROCT formulation
	Unused Alterations
	multi-class ROCT
	Regression ROCT

	Results
	Altered ROCT formulation
	multi-class ROCT

	Improving applicability and performance of ROCT

	Discussion and conclusion
	Discussion
	Recommendations

	Conclusion

	Bibliography
	Appendix

