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Introduction

Background Information
Ever since the mid 1970’s dynamic driver simulators have been used as a tool in research and vehicle
development in the automotive industry [86]. The main use-cases for dynamic driving simulators are
in the field of research, and software and vehicle development [11, 79]. In case of vehicle, hardware
development and human-centric research, a driver-in-the-loop (DIL) is required to give feedback on ve-
hicle motion. In order to be able to give relevant feedback, it is desired for the motion of the simulator to
be as close to reality as possible. This requires advanced control algorithms that are able to transform
the real-time driver inputs to simulator motion commands, called motion cueing algorithms (MCA).

Today, the benchmark MCA that is used for both flight as well as driving simulators is a filter-based
approach for which the foundation was laid by Schmidt and Conrad [85] in 1970. Although the algorithm
has been further developed and expanded throughout the past decades, the basic working remains the
same [77, 78, 80]. The algorithm utilizes combinations of low- and high-pass filters to transform the ve-
hicle translational accelerations and rotational rates to usable simulator setpoints. Because the motion
workspace of even the largest simulators is orders of magnitude smaller than that of an actual vehicle
[11, 97], an exploit in the human vestibular system is used. Without extra external visual motion cues,
a human is not able to distinguish between a specific force generated by rotation or acceleration given
that the rotational rate stays below a certain threshold [26]. Using this exploit reduces the amount of
required workspace to simulate vehicle motion. Although, the algorithm has been used for the past 50
years, researchers and the industry believe newer algorithms are able to solve some of the problems
present in the filter-based approach.

In 2004, Dagdelen et al. [22] proposed to use a model predictive control MCA (MPC MCA). An
MPC-based MCA tries finding an optimal control sequence over a predefined horizon that reduces the
error between a discrete, future prediction and the modelled vehicle motion states. One major advan-
tage compared to the industry standard filter-based control methods, is the explicit inclusion of system
constraints. Research has shown that an MPC-based MCA has the ability to provide significantly im-
proved motion cueing quality compared to the filter-based approaches, while also explicitly adhering to
physical system limitations [24, 27, 60].

One of the main challenges of using MPC in driving simulation is providing a real-time prediction of
future vehicle states, as these are dependent on driver inputs and therefore, inherently unknown. As
was shown in [14, 26, 60], improving the quality of the reference given to MPC can significantly reduce
motion stimuli mismatches, and therefore increase perceived motion cueing quality. In open-loop driv-
ing simulation, i.e., a scenario where all future vehicle specific forces and rotational rates are available,
a perfect (oracle) reference based on the known future vehicle states can be used for tracking by the
MPC. In experiments it was shown that using an oracle reference increases the perceived motion cue-
ing fidelity significantly [26].

Since future vehicle states are influenced by future driver inputs, and thus inherently unknown, an
oracle prediction is not available in real-time closed-loop simulations. Therefore, the current state-of-
the-art is to use an extrapolated constant prediction, based on the current vehicle states. This prediction
strategy is easy to implement and always possible independent of the driving scenario, but it limits the
predictive potential of the MPC controller [26, 60].
In [24, 27] it was suggested that lengthening and improving the quality of the reference would contribute
positively to MPC motion cueing quality, this resulted in the purpose of the presented research. The
goal of this paper is to compare different data-driven machine learning frameworks, trained on data
gathered during an experiment in a rural scenario [11]. This enables the different networks to predict
the vehicle’s future specific forces and rotational rates. The different frameworks are compared on
a prediction quality level, as well as measured against the always available constant prediction. The
best performing neural network will be used to generate the reference required by MPC, for which the
resulting motion cueing will be thoroughly analyzed.
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Report Outline
The report constitutes of three distinct parts:

Part I: Scientific Paper
Part I includes the scientific paper, as required to obtain the degree of Master of Science. In this paper,
the models developed in the preliminary thesis are extended. The working principles of the 4-DoF
MPC-based framework have been changed and extra features were added to the MPC model. The
final result is a 6-DoFMPC-based MCA that can be used for longer prediction horizons. Next to this, the
neural network models have been extended as well, introducing a different set of input features, using
a different activation function for stability, and the introduction of a postprocessing cosinebell window
function. The resulting predictions are analyzed and used in the MPC-based MCA framework. Instead
of a DIL experiment, open-loop simulation results are used to give an estimation on motion cueing
quality using both objective as well as subjective motion cueing quality metrics. The paper concludes
with a discussion on the results, presenting some recommendations for future work.

Part II: Preliminary Thesis
At the moment of writing the preliminary thesis, i.e., Part II, as attached to this document is already
graded. In this part of the report, a literature study has been performed on different important topics
that relate to the field of motion cueing. This includes an investigation on the human biology of motion
perception, as well as the modelling procedure and subsequent result analysis of a 6-DoF washout
MCA and a 4-DoF MPC-based MCA. It also includes an extensive research towards different neural
network modelling approaches. Four of these models are set-up, trained and preliminary results are
reported. Finally, an initial DIL experiment proposal is given.

Part III: Appendices
The appendix consists of two parts, the first part contains the appendices to the preliminary thesis,
these are referenced to in Part II, accordingly. The second part contains four appendices that mainly
support ideas discussed in the scientific paper. Appendix B.1 gives more information about the relevant
kinematic vehicle states predicted by the neural networks. Appendix B.2 provides information on the
nonlinear relation between the available simulator motion space and its current state. In Appendix B.3,
the three remaining network model structures are illustrated. Finally, in Appendix B.4, a comparison
between an MPC using two set of weights is made.
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Abstract—One of the main challenges in using a closed-loop model predictive control (MPC) based motion cueing algorithm
(MCA) is providing an accurate reference tracking signal consisting of future, driver influenced, vehicle states. In this paper
four different neural network structures, i.e., a three-layer vanilla, a one-layer long short-term memory (LSTM) recurrent, a
three-layer Deep LSTM recurrent, and an encoder-decoder neural network are introduced and trained to predict a discrete
sequence of future vehicle states. The trained neural networks are compared on prediction level with the current benchmark
prediction strategy, where future vehicle states are assumed to remain constant and equal to the current vehicle states.
Through this analysis, a Deep LSTM recurrent neural network prediction was found to yield the strongest prediction error
decrease in all Degree-of-Freedoms (DoF). A 6-DoF, open-loop MPC-based MCA was used to compare the influence of both
the reference strategy, i.e., constant, Deep LSTM and perfect prediction capabilities (oracle), as well as the influence of
imposing more or less neutral push on subjective motion cueing quality and motion cueing error type estimations. Compared
to the constant MPC, it is estimated that the Deep LSTM MPC increases the subjective motion cueing quality by 13-22%,
which is 5% less than an MPC using oracle prediction. It is also estimated, that significantly less missing, false and false
direction cues are present in the resulting lateral cues provided by the Deep LSTM MPC compared to the constant MPC. It
was also found that imposing less neutral push has a stronger positive effect on the MPC using a Deep LSTM and oracle
prediction, showing the increased potential of providing higher accurate references for larger motion range systems. This
paper successfully demonstrates that neural networks are able to accurately predict future, unknown, vehicle states and,
when used as reference in MPC MCA, could result in significant improvements in both subjective motion cueing quality and
a reduction in cueing type errors.

NOMENCLATURE

α = selu weighting factor exponential term
βk = column vector of simulator angles
λ = regularization weight factor or selu weight factor
ωc = cut-off frequency
ωx,y,z = rotational rate around x,y, and z-direction
ϕ = roll angle
ψ = yaw angle
ρh = activation function
σ = sigmoid activation function or standard deviation
θ = pitch angle
A = state matrix
ADAM = adaptive momentum estimation optimization
B = input matrix
blkdiag = block diagonal matrix
BPTT = backpropagation through time
C = output matrix
ct = cell state LSTM cell
D = feedthrough matrix
DIL = driver-in-the-loop
DoF = degree-of-freedom
dt = sample time
E = cost term neural network optimization
fT = forget gate LSTM cell

fx,y,z = specific force in x,y, and z-direction
H = transfer function
it = input gate LSTM cell
ISO = international standardization organisation
J = cost function
j = specific time step in prediction horizon
Ja,b = Jacobian matrix transforming rotational rates

from reference frame b to a
K = move window blocking matrix
k = current time instance
Li = loss term neural network optimization
LSTM = long short-term memory cell
MAE = mean absolute error
MCA = motion cueing algorithm
MIR = motion incongruence rating
MLP = multi-layer perceptron model
MPC = model predictive control
MSE = mean squared error
MWB = move window blocking
N = number of input-output mappings
Nc = control horizon
Np = prediction horizon
NN = neural network
NS = North-to-South direction
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ot = output gate LSTM cell
px,y,z = positional coordinate in x,y, and z-direction
PID = proportional-integral-derivative controller
q = actuator deflection
QN = terminal state weighting
Qu = input weighting matrix
Qx = state weighting matrix
Qy = reference tracking weighting matrix
Qdu = change in input weighting matrix
QP = quadratic problem
R = regularization term
r = reference trajectory
rb = body reference frame
rI = Inertial reference frame
RNN = recurrent neural network
SN = South-to-North direction
Tp = prediction time
Ta,b = Euler transformation matrix from reference frame

b to a
tanh = hyperbolic tangent
u = applied input
W = neural network parameter value matrix
Wfx = relative weight contribution specific force in x
x = state vector
xN = final system state in Np

xs = simulator neutral state deviation
y = predicted system output, true reference or output

vector

I. INTRODUCTION

In driving simulation, the goal is to perform driving exper-
iments in a repeatable, simulated environment. Such experi-
ments often require human participants or expert drivers who
are able to provide high quality feedback. Depending on the
requirements of an experiment, the accurate reproduction of
motion cues can be important [1].

One of the major aspects that affects the perceived motion
cueing quality is the ability of the driving simulator to signif-
icantly reduce vestibular motion stimuli mismatches [2–5]. A
motion cueing control algorithm (MCA) is used to reduce the
error between the actual and the perceived motion cues. An
MCA uses outputs of the vehicle in the simulated environment
to compute the required motion platform inputs. A high
potential method, i.e., a real-time capable model predictive
control (MPC) MCA, has been extensively researched for the
past 20 years [4–6].

An MPC-based MCA tries finding an optimal control
sequence over a predefined horizon that reduces the error
between a discrete, future prediction and the modelled vehicle
motion states. One major advantage compared to the industry
standard filter-based control methods, is the explicit inclusion
of system constraints. Research has shown that an MPC-based
MCA has the ability to provide significantly improved motion
cueing quality compared to the filter-based approaches, while
also explicitly adhering to physical system limitations [7–9].

One of the main challenges of using MPC in driving
simulation is providing a real-time prediction of future vehicle

states, as these are dependent on driver inputs and therefore,
inherently unknown. As was shown in [8, 10, 11], improving
the quality of the reference given to MPC can significantly
reduce motion stimuli mismatches, and therefore increase per-
ceived motion cueing quality. In open-loop driving simulation,
i.e., a scenario where all future vehicle specific forces and
rotational rates are available, a perfect (oracle) reference based
on the known future vehicle states can be used for tracking
by the MPC. In experiments it was shown that using an
oracle reference increases the perceived motion cueing fidelity
significantly [11].

Since future vehicle states are influenced by future driver
inputs, and thus inherently unknown, an oracle prediction is
not available in real-time closed-loop simulations. Therefore,
the current state-of-the-art is to use an extrapolated constant
prediction, based on the current vehicle states. This prediction
strategy is easy to implement and always possible independent
of the driving scenario, but it limits the predictive potential of
the MPC controller [8, 11].

[10] found that using improved references, based on prere-
corded racetrack data, in a closed-loop experiment resulted
in an increased use of motion workspace in longitudinal
direction. In [9] it was found that using a PID regulated
kinematic vehicle model, used to estimate future vehicle
states, resulted in considerable improvements in motion cueing
quality in closed-loop simulations. [12] and [8] propose to
use a simple multi-layer perceptron (MLP) neural network as
prediction method. In both cases, past information is fed to the
network in real-time to provide a prediction on future vehicle
states. The authors in [8] distinguish themselves from [12]
by also including look-ahead information from a fixed driving
direction to make real-time predictions. [8] showed that, when
evaluating the absolute relative error, a reduction of around
60-80% was found when using the neural network predictions
compared to a constant reference.

Although literature shows that using simple models that
predict future vehicle states can provide a significant decrease
in vestibular motion stimuli mismatches, the effect on the
different types of motion cueing errors as well as the effect
on subjective high temporal cueing evaluations is not fully
understood. More advanced methods, able to provide high
temporal estimations on the subjective motion cueing fidelity
based on cueing errors, exist [13, 14].

These models estimate a continuous motion incongruence
rating (MIR) based on longitudinal and lateral cues, i.e.,
how much does the presented motion by the simulator differ
from the expected motion, rated on a scale from 0-10. A ‘0’
implying no perceivable motion mismatches are felt, a ‘10’
implying the most extreme perceived motion mismatches are
experienced [7, 13, 14]. Using the MIR estimation model,
a high-temporal resolution correlation between the prediction
strategy and the subjective cueing quality can be established.

Next to an estimated subjective metric, [14] also proposes
a method which measures several types of motion cueing
errors by analyzing the type of motion cueing mismatch.
This analysis provides an objective metric for motion cueing
quality.

More advanced prediction neural networks, than the vanilla
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multi-layered MLP network reported in [8] and [12], exist.
Some of these are specifically designed to perform temporal
sequence modelling. These models have often shown to out-
perform the vanilla MLP neural network in such tasks [15],
and could improve the prediction quality even further when
applied for vehicle state prediction.

Next to this, using the prediction of the improved neural
network models in an MPC MCA could result in further
improved motion cueing quality. To investigate the effect
on the objective and subjective motion cueing metrics, the
aforementioned motion cueing quality estimation models can
be used in this analysis [13, 14].

The goal of this paper is to compare different data-driven
machine learning frameworks, trained on data gathered during
an experiment in a rural scenario [16]. This enables the
different networks to predict the vehicle’s future specific forces
and rotational rates. The different frameworks are compared
on a prediction quality level, as well as measured against
the always available constant prediction. The best performing
neural network prediction model is selected for open-loop
MPC MCA simulations. MPC motion cueing quality, using
the neural network reference, is compared to

1) An MPC using a constant prediction, and
2) An MPC with perfect prediction capabilities, i.e., oracle.

Two MPC weighting settings, one featuring a stronger neutral
push effect, are used for these simulations in order to under-
stand if and by how much the neutral push affects estimated
cueing performance. These settings are compared using the
MIR rating models and the motion cueing type error analysis
presented earlier [13, 14]. Using both methods provides a full,
complementary estimation on the influences on motion cueing
quality on both an objective and subjective scale.

The structure of the paper is as follows, Section II introduces
the 6-DoF MPC algorithm used for the presented analysis.
Section III presents the full process of training and implement-
ing the different neural network structures. Section IV shows
the apparatus for which the analyses are made, provides the
methods used to train the neural networks, and introduces the
evaluation models used to analyze the MPC simulation results.
Section V presents the simulation analysis results. Section VI
provides the reader with a discussion on the results and a
discussion on possible future work. The conclusions of the
research are explained in Section VII.

II. MODEL PREDICTIVE CONTROL

This section presents the MPC MCA setup used to perform
the motion cueing analysis. The presented form of the MPC
MCA follows the structure as defined in [11]. This paper con-
siders an open-loop analysis only, i.e., real-time computational
complexity is not an explicit consideration. However, [11] has
shown that the presented framework is closed-loop capable.

A. MPC Formulation

A simplified schematic of the MPC control structure is given
in Figure 1. In this figure the general flow of how MPC oper-
ates is shown. MPC solves a linear constrained optimization
problem every discrete time instant to find an optimal sequence

of simulator inputs, i.e., ∆U , of length Nc, called the control
horizon. MPC does so by minimizing a cost function reducing
a reference tracking error of length Np, called the prediction
horizon, for which the following condition holds Nc ≤ Np

[17]. However, in this work, the prediction horizon is assumed
to be equal to the control horizon, i.e., Np = Nc. In order
to perform the numerical optimization, a kinematic simulator
model is required to predict future system states for all time
samples in Np.

...  j

Fig. 1: Schematic of MPC horizonss. Source: [18].

In Figure 1, k denotes the current time step and j the
specific time step in the prediction horizon for which j ∈
[k+1, k+Np]. The full, linear MPC optimal control problem
can be formulated as presented in Equation (1)-(2). J denotes
the cost as a function of several specific cost terms. The
first term in J denotes the reference tracking error. This term
minimizes the error between the reference trajectory, r⃗, and the
predicted system output, y⃗. The second term in J is defined
as the cost on simulator neutral state deviations, x⃗s, which
effectively tries to push the system state to its neutral position.
This term helps for optimization feasibility by keeping the
excursions away from the constraint boundaries by providing
washout. The third term depicts the cost on total applied input,
u⃗, which is effectively an energy efficiency term. The fourth
term is the cost on applied change in input, ∆u⃗, reducing jerky
inputs, which has the benefit of limiting strenuous forces on
the actuators as well as removing chattering behavior in the
perceived motion cues. The final term shows the terminal state
cost term, which ensures asymptotic stability [17].

Each term features their own weight term matrix Q. Com-
putation of the minimum cost is subject to the kinematic
model defined in state-space form, as well as constraints on
actuator position q, total input u⃗ and change in input ∆u⃗, see
Equation (1).

J = min

Np∑
j=1

∥y⃗(k + j)− r⃗(k + j)∥2Qy
+

Np∑
j=1

∥x⃗s(k + j)∥2Qx+

Nc−1∑
j=0

∥u⃗(k + j)∥2Qu +

Nc−1∑
j=0

∥∆u⃗(k + j)∥2Qdu + x⃗2NQN

(1)
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s.t. :



x⃗k+1 = A · x⃗sk +B ·∆u⃗sk
y⃗k = C · x⃗sk +D ·∆u⃗sk

qmin ≤ q ≤ qmax

u⃗min ≤ u⃗ ≤ u⃗max

∆u⃗min ≤ ∆u⃗ ≤ ∆u⃗max

(2)

Constraints on actuator velocity and acceleration can also
be implemented. However, for the considered system these
limits are not reached in driving simulation and can therefore
be omitted.

B. Conversion of Reference Systems

In Figure 1, Reference Trajectory, denotes the reference
signal the output of the simulator should follow as closely as
possible, i.e., r⃗(k+j) in Equation (1). The reference comprises
of a sequence of Np discrete samples of future specific forces
in all translational axes and rotational rates around each axes in
the Inertial reference frame, i.e., r⃗ = [fx, fy, fz, ωx, ωy, ωz]

T .
These values are defined in the driver body reference frame
where a driver is assumed to perceive motion relative to his/her
own. However, the simulator is controlled through Inertial
motion setpoints. See Figure 2, where rI denotes the Inertial
and rb the body reference frame. It should be noted that in
Figure 2 the Inertial reference frame is drawn as if attached to
the bottom frame of the hexapod system. However, I is earth-
fixed and does not move together with the shown XY-table.

Fig. 2: Body-fixed reference frame following conventions from
ISO 8855 [19] and Inertial reference frame. Source: [16].

This requires the inclusion of a sequence of Euler rotations
for both translational as well as rotational motion. To transform
a vector of specific forces defined in the body reference frame
in the Inertial reference frame, the following relation holds
true [5]:

f⃗I,b = TI,b · f⃗b
TI,b = Tz(−ψ) · Ty(−θ) · Tx(−ϕ)

(3)

In Equation (3), f⃗I,b = [fI,bx , fI,by , fI,bz ]
T denotes the

vector of specific forces transformed from the body b, to Iner-
tial reference frame I . TI,b denotes the Euler transformation
matrix following a sequence of transformations around x with
angle −ϕ, around y with angle −θ, and finally a transformation

around z with angle −ψ. The opposite transformation also
holds true.

Tb,I = Tx(ϕ) · Ty(θ) · Tz(ψ) (4)

The rotational Jacobian matrix, which transforms rotational
rates from a body to the Inertial reference frame is defined as:

ω⃗I,b =

c(ψ)c(θ) −s(ψ) 0
s(ψ)c(θ) c(ψ) 0
−s(θ) 0 1


︸ ︷︷ ︸

JI,b

·

ϕ̇bθ̇b
ψ̇b


(5)

Here ‘c’ and ‘s’ denote the cosine and sine, respectively.
Similarly, the following relation also holds:

Jb,I =

1 0 −s(θ)
0 c(ϕ) c(θ)s(ϕ)
0 −s(ϕ) c(θ)c(ϕ)

 (6)

A full derivation of the presented matrices can be found in
[5].
In order to keep the MPC problem definition linear, these
nonlinear transformation matrices cannot be used to provide
future state estimations. Therefore, the transformation matrices
are assumed constant over the prediction horizon Np, as
discussed in [5].

C. Defining Kinematic Simulator Model Elements

By definition a kinematic simulator model, written in state-
space formulation, is required to make predictions about
future simulator states, see Equation (2). Simulator states,
i.e., x⃗s, are represented in the Inertial reference frame and
comprise of the positional and angular coordinates, velocities
and accelerations.

Considering a 6 Degree-of-Freedom (DoF) hexapod plat-
form, the state vector has a dimensionality of 9, i.e.,
three inertially defined positions, velocities, and angles. The
input state vector has a dimensionality of 6, i.e., three
inertially defined accelerations and rotational rates. With
x⃗ =

[
px, ṗx, py, ṗy, pz, ṗz, ϕ, θ, ψ

]T ∈ R9 and u⃗ =[
p̈x, p̈y, p̈z, ϕ̇, θ̇, ψ̇

]T ∈ R6. Here, p denotes the positional
coordinate in [x, y, z] in the Inertial reference frame and
[ϕ, θ, ψ] the roll, pitch and yaw of the simulator. Assuming
the actuator control loops are fast, the kinematic motion of
the simulator can be modelled conform a discrete single and
double integrator model for angular and positional coordinates,
respectively [4]. The integrator models can be written in
discrete state-space format, see Equation (2), with subscript k
denoting the current time instant. For an arbitrary translational
acceleration and a rotational rate the following holds:

[
pxk+1

ṗxk+1

]
=

[
1 ∆t
0 1

]
︸ ︷︷ ︸

A∗
p

·
[
pxk

ṗxk

]
+

[
∆t2

2
∆t

]
︸ ︷︷ ︸

B∗
p

·p̈x

βk+1 =
[
1
]︸︷︷︸

A∗
β

·βk +
[
∆t

]︸︷︷︸
B∗

β

·β̇k
(7)
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Here, βk denotes the column vector of simulator angles
[ϕ, θ, ψ]T . Also, A∗

p and B∗
p are parts of the full state-space

matrices, Ap and Bp, and A∗
β and B∗

β are part of Aβ and Bβ .

Ap = blkdiag(A∗
p, A

∗
p, A

∗
p)

Bp = blkdiag(B∗
p , B

∗
p , B

∗
p)

Aβ = blkdiag(A∗
β , A

∗
β , A

∗
β)

Bβ = blkdiag(B∗
β , B

∗
β , B

∗
β)

(8)

In Equation (8), blkdiag denotes a block-diagonal matrix.
To compute the perceived specific forces and rotational rates,
a vestibular model for the otoliths and semi-circular canals is
incorporated in the kinematic model of the simulator as well.
The transfer functions of both organs were set to the ones
reported by [20], and are defined as:

f⃗sp = Hoth(s) · f⃗s, Hoth(s) =
0.4 · (1 + 10s)

(1 + 5s)(1 + 0.016s)

ω⃗sp = Hscc(s) · ω⃗s, Hscc(s) =
5.73 · (80s)

(1 + 80s)(1 + 5.73s)

(9)

With f⃗sp and ω⃗sp denoting the perceived specific forces and
rotational rates, and Hoth and Hscc denoting the transfer
functions in the Laplace domain of the otholiths and the semi-
circular canals, respectively. Discretizing results in a set of
state-space matrices Ao, Bo, Co, Do for the otolith organs
and Ascc, Bscc, Cscc, Dscc for the semi-circular canals.

In simulators, a specific force can also be generated by using
the gravity vector when a tilting motion of the simulator is
provided, the so called tilt-coordination. Using the small angle
approximation (roll and pitch angles of a car are generally
small) and the right hand rule, one can find the following
relation for the tilt-coordination [7], where Equation (10) is
used in Equation (12):

f⃗tilt =

fxfy
fz

 =

 −g · s(θ)
g · c(θ)s(ϕ)
g · c(θ)c(ϕ)

 =

−θϕ
1

 g (10)

D. Defining Full State-Space Kinematic Simulator Model

Combining the information from the previous two subsec-
tions, the following full state-space system can be defined,
with [5]:

AS =

 Ao BoHo 06×12

06×9 Ascc 06×6

06×9 06×6 As

BS =


BoTb,I 06×3

03×3 I3∆t
06×3 BsccJb,I

Bs



CS =

Co,β 06×6 06×6

03×9 Cscc 03×6

06×6 06×6 I6

 DS =


DoTb,I 03×3

03×6

03×3 DsccJb,I
06,6


(11)

Ho is defined as the matrix including the tilt-coordination,
see Equation (12). In denotes an identity matrix of size n. The
nonlinear terms, Jb,I and Tb,I , are kept constant over Np.

Ho = blkdiag(H ′, Aβ) H ′ =

0 −g 0
g 0 0
0 0 0

 (12)

The resulting state vector x⃗sk , input vector u⃗sk and output
vector y⃗sk are defined as:

x⃗sk =
[
xoth, ϕ, θ, ψ, xscc, px, ṗx, py, ṗy, pz, ṗz

]T ∈ R21

u⃗sk =
[
p̈x, p̈y, p̈z, ϕ̇, θ̇, ψ̇

]T ∈ R6

y⃗sk =

[
f⃗xp

, f⃗yp
, f⃗zp , ϕ, θ, ψ, ω⃗xp

,
ω⃗yp

, ω⃗zp , px, ṗx, py, ṗy, pz, ṗz

]T
∈ R15

(13)
As shown in Equation (2), the discrete state-space represen-

tation needs to be written as a function of ∆u⃗sk = u⃗sk−u⃗sk−1
.

This can be accomplished by augmenting the state vector, x⃗sk
to Xk =

[
x⃗sk , u⃗sk−1

]T
, which results in the new augmented

state-space system with new state vector Xk written in func-
tion of ∆u⃗sk :[

x⃗sk+1

u⃗sk

]
︸ ︷︷ ︸
Xk+1

=

[
AS BS

0 I

]
︸ ︷︷ ︸

A

[
x⃗sk
u⃗sk−1

]
︸ ︷︷ ︸

Xk

+

[
BS

I

]
︸ ︷︷ ︸

B

∆u⃗sk

Yk =
[
CS 0

]︸ ︷︷ ︸
C

[
x⃗sk
u⃗sk−1

]
︸ ︷︷ ︸

Xk

+

[
DS

0

]
︸ ︷︷ ︸

D

∆u⃗sk

(14)

With the augmented state vector equalling:

Xk =

[
xoth, ϕ, θ, ψ, xscc, px, ṗx, py, ṗy, pz, ṗz, p̈x,

p̈y, p̈z, ϕ̇, θ̇, ψ̇

]T
∈ R27

(15)
Using recursive relations, see Equation (16), a state predic-

tion for each tk ∈ [k, k + Np] in J can be established. The
resulting state-space system is presented in Equation (17) [5].
In Equation (17), X̄ =

[
X1 · · ·XNp

]
, Ȳ =

[
Y1 · · ·YNp

]
, and

∆Ū =
[
∆u⃗s0 · · ·∆u⃗sNp−1

]
.

x⃗1 = A · x⃗0 +B ·∆u⃗0
x⃗2 = A · x⃗1 +B ·∆u⃗1

⇔ x⃗2 = A · (A · x⃗0 +B ·∆u⃗0) +B ·∆u⃗1
⇔ x⃗2 = A2 · x⃗0 +AB ·∆u⃗0 +B ·∆u⃗1

(16)

X̄ =


A
A2

...
ANp


︸ ︷︷ ︸

Fx

X0 +


B 0 · · · 0
AB B 0 · · ·

...
. . . . . . 0

ANp−1B ANp−2B · · · B


︸ ︷︷ ︸

Sx

∆Ū

Ȳ =


CA
CA2

...
CANp


︸ ︷︷ ︸

Fy

X0 +


CB 0 · · · 0
CAB CB 0 · · ·

...
. . . . . . 0

CANp−1B CANp−2B · · · CB


︸ ︷︷ ︸

Sy

∆Ū

(17)
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In Equation (17), Fx ∈ R(Np×m)×m, Fy ∈ R(Np×m)×(Np×n),
Sx ∈ R(Np×o)×m and Sy ∈ R(Np×o)×(Np×n), with m equal
to the number of states, n the number of inputs and o the
number of output states. X̄ , Ȳ and ∆Ū denote the state vector,
output vector and input vector, respectively, containing all the
information for the full prediction horizon Np.

E. Move Window Blocking

The complexity of solving the optimal control problem is
predominantly influenced by the number of included DoFs
[21, 22]. The DoFs of the control problem are defined as the
number of inputs n multiplied with the prediction horizon Np.
In order to reduce the number of DoFs, and thus complexity,
a strategy called move window blocking (MWB) is applied to
the system, which guarantees stability and feasibility of the
problem [23]. When applying MWB to an MPC formulation,
a time-dependent blocking matrix, K, is introduced which
formulates that several input values or its derivatives remain
constant over time. In the simulations presented in this paper,
a prediction horizon of Np = 4s with a sampling time of
dt = 0.01s is used. For this problem a MWB strategy equal
to s = [50, 10, 10] with ts = [0.01s, 0.1s, 0.25s] was utilized.
This indicates that the original 400 time samples are lowered
to a total of 70 samples, of which the first 50 are sampled
at 0.01s, the next 10 are sampled at 0.1s, and the last 10 are
sampled at intervals of 0.25s. For the second and third set of
samples the inputs between subsequent time intervals remain
constant. The blocking matrix K is defined as follows:

K =

K1 0 0
0 K2 0
0 0 K3

 K1 =


In 0 · · · 0
0 In · · · 0
...

. . . In 0
0 · · · 0 In



K2/K3 =


K ′ 0 · · · 0
0 K ′ · · · 0
...

. . . K ′ 0
0 · · · 0 K ′

 with K ′ = 1⃗ts/dt,1 ⊗ Iu

(18)

With In ∈ Rn an identity matrix of dimension n, 1⃗ts/dt,1 a
column vector of ones with ts/dt amount of elements, and ⊗
the Kronecker product. Using this strategy, the effective DoFs
are reduced from 400 · 6 = 2, 400 samples to 70 · 6 = 420
samples. The MWB matrix, K, is applied by pre-multiplying
it with the input vector ∆Ū in the cost function J , as well as
with the relative constraint equations.

F. Constraints

As shown in Equation (2), no state constraints in the Inertial
reference frame are present. However, constraints are in place
for the mechanical restrictions of the system by means of im-
plementing actuator constraints. The output vector, described
in Equation (13), explicitly includes the Inertial workspace
domain coordinates. These can be used to compute the actuator
excursions [5]. Considering the following differential equation:

q̇l =
1

2ql

dq2l
dt

= Jl(ws)ẇs (19)

Here, q̇l denotes the velocity of actuator l, ws is the current
workspace attenuation, i.e., ws = [px, py, pz, ϕ, θ, ψ]

T the
absolute position and angular displacement w.r.t. the neutral
point, and Jl(ws) is the inverse Jacobian relating a change
in workspace attenuation with actuator length l. The inverse
Jacobian depends on the current workspace attenuation ws.
Transforming the differential equation to infer a linear rela-
tionship with the current workspace attenuation and actuator
velocity, and subsequently numerically integrating, one finds
the following state-space transformation:

q⃗k+1 = q⃗k +AactXD0
+Bact∆u⃗sk

Q̄ = q⃗0 + FactXD0
+ Sact∆Ū

(20)

Here, Aact and Bact contain the relevant parts of the inverse
Jacobian Jl(ws), Fact and Sact are derived in a similar fashion
using recursion as presented in Equation (17). q⃗0 is the matrix
containing the current actuator lengths, i.e., q⃗0 = (1Np,1 ⊗
Inact

) · q⃗k with nact equal to the amount of actuators. The
nonlinear terms of Jl(ws), present in Fact and Sact, are kept
constant over Np. The full derivation of the equations can be
found in [7].

G. Solver

The MPC problem is defined in Equation (1) and Equa-
tion (2), and can be written as a quadratic problem (QP).
Solving said optimization problem requires a quadratic solver.
In this paper, the open source qpOases software is used to
solve the QP-problem over the prediction horizon, Np, for each
subsequent discrete time step in the simulation [24]. qpOases
uses an online active set strategy to solve a QP formulated
optimization problem. One of the reasons why such active set
strategies can be used for MPC applications is the possibility
to hot-start encode the solution. This means that, following
the assumption that the active set does not change a lot from
one QP solution to the next, the former solution can be used
to make the optimization faster.

III. SUPERVISED NEURAL NETWORKS

The previous Section described the MPC paradigm for
motion cueing. As explained, one of the main challenges
of using an MPC MCA is including an updated reference
trajectory of Np discrete samples at each time step k. This
means providing MPC with not readily available predictions
of future vehicle accelerations and rotational rates. This section
provides four supervised neural network approaches, able to
predict a discrete sequence of vehicle specific forces f⃗s and
rotational rates ω⃗s.

An overview on the general MPC MCA block diagram
is given in Figure 3. Figure 3 shows that a neural network
driver prediction module provides the MPC MCA with a
sequence of Np future samples of specific forces and rotational
rates. The MPC MCA uses this prediction to send an updated
positional, velocity, and acceleration setpoint to the physical
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simulator system. As will be discussed in this section, the
proposed neural networks use information from the kinematic
vehicle simulation as well as environmental context variables
to update the specific force and rotational rate predictions. In
this paper the proposed neural networks predict a sequence of
length Tp = 4s [8], Tp demeaning the prediction time, using
information from the past 5s. It is assumed that information
from more than 5 seconds ago does not influence the future,
short-term driving behavior to a significant extent. Providing
a neural network with non-rich information can lead to a loss
of prediction performance [25].

Neural Network
Driver Prediction

wxfx fzfy wy wz

Driver Dynamics + Road
Context Input Features

PVA Input

SimulatorModel Predictive
Control

Participant

fperc wperc

Kinematic
Vehicle

Simulation

MCA Specific Algorithms
(Simulated) Environment

Specific

Fig. 3: Blockdiagram showcasing the driver prediction and
MPC MCA module [8].

A. Data-set

A supervised machine learning method uses prerecorded
data, fed to a model able to learn high dimensional input-
output relations. In this paper, prerecorded data from an online
experiment on a rural road area were used [11]. The hilly
section features multiple speed limit changes, traversing a
small village, various curves and a round-about. The route
with the different sections is shown in Figure 4. Each colored
section, presented in Figure 4, corresponds with a change in
legal speed limit, see Table I.

TABLE I: Speed limit change segments.

Road Segment Situation
1 → 2 Rural road entering village
2 → 3 Leaving village to rural road
3 → 4 Sharp hilltop, reduced speed limit rural road
4 → 5 Sharp hilltop, increased speed limit rural road
5 → 6 Approaching roundabout, reduced speed limit
6 → 7 Leaving roundabout, increased speed limit rural road
7 → 8 Sharp turn, reduced speed limit
8 → 9 Approaching village, reduced speed limit
9 → 10 Leaving village, increased speed limit
10 → 11 Entering village, reduced speedlimit

The data-set contains 33 independent drives, driven in
North-to-South (NS) and South-to-North (SN) direction. Par-
ticipants, driving a virtual vehicle model of a 2018 BMW
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Fig. 4: Road layout, segmentation based on local speed limit.

530i, were asked to drive as they normally do every day, i.e.,
adhering to speed limits and traffic regulations. The dataset
is near symmetric, i.e., 13 drives from NS, 14 from SN. Six
prematurely abandoned drives were omitted from the data-
set. Each drive, with an average driving time of 7.5mins,
consists of 62 different variables. The variable set consists
of road, vehicle kinematic, simulator dynamics, and driver
input specific variables. The data is recorded at a frequency of
100Hz resulting in the NS data-set containing around 650,000,
and the SN data-set containing around 724,000 datapoints.
Some variables, e.g., longitudinal acceleration, showed high-
frequency noise which was removed by applying a 1Hz, 2nd-
order Butterworth filter [26].

B. Data Preprocessing

The MPC reference vector consists of the vehicle specific
force in each direction as well as the vehicle rotational rates
around each axis. Therefore, the model output vector consists
of the six output features found in Table II. Time traces
of the longitudinal and lateral acceleration, as well as the
yaw rate profiles of all participants, driving the rural route
in NS direction, can be found in Figure 5-7. The profiles in
SN direction can be found in the appendix attached to this
document. From these figures one can see that the spread in
longitudinal acceleration is larger than the spread of the lateral
acceleration and yaw rate, this is caused by the latter two
being less dominantly influenced by the driver, but more by
the road curvature and speed limits [7]. From Figure 5, it can
be deduced that the largest peaks in longitudinal acceleration
occur around speed limit changes. Road section 6, in Figure 4,
features a roundabout. When driving in NS direction a driver
has to take the 3rd exit, i.e., almost full circle, whereas in
SN direction a driver has to take the 1st exit, greatly reducing
the driven radius of curvature. In Figure 6 and Figure 7 this
results in higher peaks in both lateral acceleration as well as
yaw rate.

Selecting the input feature set is not determined by external
requirements, and thus not as straightforward as the set of out-
put features. One option would be to include all 62 measurable
features and let the models learn the required dependencies
themselves. However by doing so, model complexity might
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Fig. 5: Longitudinal acceleration profiles
in NS direction.

0 2 4 6 8
Distance Driven [km]

−6

−4

−2

0

2

4

6

8

La
te

ra
  A

cc
e 

er
at

io
n 

[m
/s

^2
]

(1) (2) (3) (4) (5)(6) (7) (8)(9) (10) (11)

Acceleration Profiles All Participants NS Direction
Individual acceleration profile

Fig. 6: Lateral acceleration profiles
in NS direction.
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Fig. 7: Yaw rate profiles
in NS direction.

TABLE II: Output features determined by MPC MCA refer-
ence trajectory requirement.

Output feature Unit
Longitudinal acceleration m/s2

Lateral acceleration m/s2

Vertical acceleration m/s2

Pitch rate rad/s
Roll rate rad/s
Yaw rate rad/s

unnecessarily increase and the richness of the input feature
set might decrease. This could result in a decrease in model
performance [25].

Based on literature [8, 27, 28], 18 input features were
selected, each expected to influence future driving behavior.
These features can be subdivided into two categories, 14
causal and 4 non-causal features. Both causal as well as
non-causal road specific features, thus driver independent, are
provided to the network. These include the absolute road
curvature, road curvature sign, road elevation and speed limit.
Explicitly defining input features that have a strong correlation
with output features can improve model performance [29].
Therefore, the sign and the absolute value of the road curvature
are presented to the networks separately. Here it is assumed
that the benefit of adding two extra features outweighs the
increase in model complexity. The full list of input features
and their respective type is given in Table III.

TABLE III: Input feature selection: type and unit.

Type Input feature Unit
Non-Causal Road curvature 1/m
Non-Causal Road curvature sign −
Non-Causal Road elevation m
Non-Causal Speed limit m/s
Causal Longitudinal acceleration m/s2

Causal Lateral acceleration m/s2

Causal Vertical acceleration m/s2

Causal Applied throttle −
Causal Applied brake −
Causal Steering wheel angle rad
Causal Speed m/s
Causal Roll rate rad/s
Causal Pitch rate rad/s
Causal Yaw rate rad/s
Causal Road curvature 1/m
Causal Road curvature sign −
Causal Road elevation m
Causal Speed limit m/s

From Table III, two points can be noted. First, not only
future information, but also past information on the road con-
dition is presented to the network. Second, presenting future
information about specific road conditions is only possible
when the driving direction is known a priori, i.e., as is the
case on the road segment presented in Figure 4. If this is not
the case, an external algorithm could provide such information
by making a prediction about the future driving direction. In
this paper the non-causal information is gathered using a look-
ahead distance of dla = 100m. This is roughly equal to the
average speed limit on the road (≊ 80km/h) times the used
prediction time of TP = 4s.

Using information from the past 5s and an output sequence
of length Tp = 4s, sampled at 100Hz would result in an
input space, xin, equal to 17 × 500 = 8, 500 samples and
an output space, yout, equal to 6 × 400 = 2, 400 samples.
Using such a vast input and output dimensionality increases
model complexity, which reduces computational efficiency. To
reduce input and output dimensionality, 30 logarithmic spaced
samples in the in- and output sequence, xin ∈ [k−500, k] and
yout ∈ [k, k+400], are used to build the input-output mapping.
A graphical representation is given in Figure 8.

0 50 100 150 200 250 300 350 400
Index [-]

−0.04

−0.02

0.00

0.02

0.04

[-]

Output Prediction Spacing
Logarithmically spaced points
Linearly spaced points

Fig. 8: Example of output feature spacing, showing 30 loga-
rithmically and 40 linearly spaced samples.

In the output sequence a logarithmic sample spacing, instead
of linearly spaced samples, has the effect of emphasizing short-
term prediction quality while maintaining information about
future trends. It was reasoned that the quality of the first
sequence of samples has a greater effect on MCA quality than
the prediction further in the future [8]. Logarithmic spacing
in the input vector has the benefit of giving more recent,
high detail information to the network which is assumed to
have a larger effect on short-term driving behavior. Since
MPC requires a linearly spaced reference sampled at 100Hz,
the prediction output is linearly interpolated between time
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intervals.
When training the neural networks, it is common practice to

subdivide the input-output pairs into training, validation and
test sets [29]. To serve this purpose, 70% of the drives are
used in the training set (10 SN drives, 10 NS drives), 15% in
the validation set (2 SN and 2 NS drives), and 15% in the test
set (2 SN and 1 NS drive(s)).

In order to increase performance and generalization, the
data is preprocessed [29, 30]. Each input and output feature
is scaled using MinMax scaling to the interval [0 − 1] [29].
Features are scales using minimum and maximum values
obtained from the training data-container, such that no leakage
of information occurs, i.e., implicitly or explicitly introducing
information from the test into the training data-set.

Assuming no large changes in the data occur between
samples, generating input-output mappings at the data-rate
frequency of 100Hz could result in many similar input-
output mappings. This could prove to be detrimental for
network performance. In order to reduce this risk, the input-
output mappings are generated at a lower frequency fi/o, i.e.,
fi/o = fog/sn, with fog equal to the original data sampling
rate, and sn equal to the stride. In this paper a stride, sn = 5
is used, resulting in an input-output mapping sampling rate
fi/o = 20Hz.

C. Network Model Structures

Many different network structures, capable of performing
time sequence predictions, exist. In this paper four different
networks will be presented: a three-layer perceptron model
(MLP), a single-layer long short-term memory (LSTM), a
three-layer deep LSTM, and a single-layer encoder-decoder
network [15, 31, 32]. The reasoning for including each of
these network model structures is addressed later. Building,
training and testing the networks was done using the Keras
API using Tensorflow [33].

1) Three-layer Perceptron Model: Figure 9 shows the struc-
ture of a three-layer MLP network, featuring three input nodes,
three hidden layers, each featuring five hidden neurons and
three output neurons. An MLP, often described as a vanilla
neural network, is a fully connected, feed-forward network.
Although information solely flows from the input to the output
layer without information flowing back through the network
[34], a vanilla MLP has shown to be competitive in temporal
sequence regression tasks [15, 31]. For this reason the trained
MLP will be used as network prediction benchmark, here.

In Figure 9, all the circles denote neurons with the lines
connecting them called synaptic weights [32]. Each neuron is
a processing unit mapping an input to a certain output. The
equation for a single hidden layer can be defined as [32]:

hout = ρh(W⃗lprev,h × l⃗prev + blprev ) (21)

Here hout is the output vector of the hidden layer, and
ρh is defined as the activation function of a neuron in
layer h. The activation output is a function of the synaptic
weight matrix connecting layer h with its previous layer, in
this case W⃗lprev,h, times the previous layer’s output vector
l⃗prev and a bias specific term. A neural network, featuring
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Fig. 9: Structure of a three-layer MLP network.

benchmark rectified linear unit (Relu) activation functions, i.e.,
ρ(x) = x for x ≤ 0 and 0 otherwise, can suffer from a
phenomenon called ‘dead Relu’s’. This results in zero-gradient
flow through the network during training [35]. To omit this
risk, the scaled exponential linear unit (Selu) is used in MLP
layers throughout this research. The definition of the Selu is
given in Equation (22) [36]:

Selu(x) =

{
λx if x > 0

λ(αex − α) if x ⩽ 0
(22)

In Equation (22), λ and α denote slope tuning parameters.
As can be seen in Figure 10, the gradient of a Selu activation
function is non-zero for the input interval x ∈ [−∞,∞],
whereas the gradient of a Relu is only non-zero on the interval
x ∈ ]0,∞].
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Fig. 10: Graph showing the difference between a Relu and
Selu activation function, with λ = 1.05 and α = 1.67.

2) Single- and Multi-layer LSTM Recurrent Neural Net-
work: The second and third type of network structure are
recurrent neural networks (RNN). Unlike a vanilla MLP, an
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RNN is a feedback neural network, which means that infor-
mation can be cycled back into the network. An illustration
is given in Figure 11. Information feedback enables RNNs
to detect patterns in data and perform (discrete) time series
forecasting [32]. For this reason, RNNs are also deemed a
suitable candidate to predict future, discrete, vehicle states f⃗
and ω⃗.

Output layer
Y

Hidden layer
H

Input layer  
X Wx,h Wh,y

Output layer
Y(t)

Hidden layer
H(t) 

Input layer  
X(t) Wx,h Wh,y

Vanilla MLP

RNN

Wh,h

Fig. 11: Difference of information flow between a vanilla MLP
and a RNN [32].

In Figure 11, the hidden layers are summarized into one
block, which means that an RNN can feature multiple hidden
layer cells. It is possible to unroll an RNN, resulting in
Figure 12. This figure illustrates that the hidden layer actually
consists of multiple RNN cells, denoted by H , each providing
information to the next cell. Next to this, each cell is copied
a set number of times, i.e., each hidden cell features the same
topology and weight matrix.

Wx,h

xt-2 xt-1 xt

Wh,hH

Wh,y

Wh,hH

Wh,y

Wh,hH

xt+1 xt+2 xt+3

yt-2 yt-1 yt yt+1 yt+2 yt+3

Wh,y

Wh,hH

Wh,y

Wh,hH

Wh,y

H

Wx,h Wx,h Wx,h Wx,h Wx,h

Wh,y

Wh,h

xt+2xt+1xtxt-1xt-2

H H H H H H

yt+3yt+2

Fig. 12: Schematic of an unrolled RNN [32].

The RNNs in this paper are built-up with long short-term
memory (LSTM) recurrent cells, because they are able to
process information hundreds of time steps in the past without
loss of stability [37]. The cell equations for an LSTM are given
in Equation (23), with a schematic given in Figure 13.

ft = σ(Wx,f × xt +Wh,f × ht−1 + bf )

it = σ(Wx,i × xt +Wh,i × ht−1 + bi)

ot = σ(Wx,o × xt +Wh,o × ht−1 + bo)

c′t = tanh(Wx,c × xt +Wh,c × ht−1 + bc)

ct = ft · ct−1 + it · c′t
ht = ot · tanh(ct)

(23)

The LSTM cell consists of a cell or memory state Ct, a
hidden state ht and three gates, ft, it, and ot. These gates

+ht-1

xt

ht

LSTM cell

tanh

 

  

 

  

x

x +

 

  

tanh

x

Ct-1 Ct

ft it c't

ot

ht

Fig. 13: Schematic of a long short-term memory cell [37].

enable the network to learn how to manipulate the stream of
information consisting of the input xt, the hidden state ht
and the cell state Ct. An interpretation for each gate is given
below:

• Forget gate ft: manipulates which information from the
previous cell state Ct−1 should be maintained/forgotten.
A Sigmoid maps its input, i.e., addition of hidden state
ht−1 and the input xt, to the interval [0, 1]. A ‘0’ implies
the information should be forgotten, a ‘1’ implies the
information should be remembered. The output of the
forget gate applies to the cell state, Ct−1, through point-
wise multiplication.

• Input gate it: manipulates to which extent new informa-
tion should be added to the cell state. First, a Sigmoid
is used to update specific entries in the cell state Ct. A
‘0’ implies the entry should not be updated, a ‘1’ implies
the entry should be updated. Then, the Sigmoid output
is point-wise multiplied by a matrix of new candidate
values c′t, obtained by mapping its input, ht−1+xt, to the
interval [−1, 1] with a tanh. Finally, the result is added
to the cell state.

• Output gate ot: decides which information from the cell
state is output by the LSTM cell. The cell state values
are mapped to a value range [−1, 1] by applying a tanh.
By point-wise multiplication, a Sigmoid is used to either
send the updated cell state values to the next cell/output,
or to remove them from the hidden state/output ht.

It is also possible to use the outputs of the sequence of
LSTM cells as inputs to a new layer of LSTM cells. In
doing so, one can create stacked LSTM layers, introducing the
concept of a Deep LSTM network. The third network structure
used in this paper is a three-layer Deep LSTM network.

3) Encoder-Decoder Neural Network: The final network
structure is an encoder-decoder network, which is a type of
LSTM RNN. A single-layer encoder-decoder RNN features
two RNNs, one used for encoding the input information
of arbitrary length to a fixed-dimensional vector, i.e., the
encoder RNN, and the decoder RNN which maps this fixed-
dimensional vector to the target sequence [38]. Unlike an
LSTM RNN, the input information is fully processed by the
encoder before the decoder maps it to the target sequence,
this has the benefit that always all information is used before
a prediction is made [38]. Also, both the encoder and decoder
have their own trainable weighting parameters, giving the
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Fig. 14: Schematic of an encoder-decoder RNN [37–39].

network more learning flexibility. A representation of the
encoder-decoder RNN is given in Figure 14.

In Figure 14, H1 denotes the hidden cell of the encoder
RNN, and H2 denotes the hidden cell of the decoder RNN,
both featuring LSTM cells similar to Figure 13. Although
the encoder and decoder can feature more RNN layers, in
this contribution only a single-layer shallow encoder-decoder
network is trained.

D. Generalization

Each of the four networks feature the same final three
layers. As an example, the schematic of the Deep LSTM RNN
network structure is given in Figure 15, the rest of the network
structures are presented in the Appendix to this document. In
this figure the third-to-last layer is a dense layer ‘interpreting’
the network output from, i.e., the three-layer dense, single-
layer LSTM, three-layer Deep LSTM, and encoder-decoder
RNN, to project it to each of the six output features. A
dropout generalization layer, balancing between an under- and
overfitting network [40], is used to connect them together.

input_1: InputLayer

lstm: LSTM

lstm_1: LSTM

lstm_2: LSTM

dense: Dense

dropout: Dropout

long: Dense lat: Dense z: Dense pitch: Dense roll: Dense yaw: Dense

Fig. 15: Schematic of the Deep LSTM network structure.

When dropout is applied to a layer of a network, neurons
are randomly dropped during training with probability p.
Effectively meaning that for each training iteration a different
network structure is trained, i.e., an efficient form of ensemble

optimization [40]. At test time, the fully connected network
is utilized, with the final weights equal to the optimized value
multiplied by p. An example of dropout, applied to a one-
layer MLP, with dropout probability p = 2/5, is shown in
Figure 16. Due to dropout, both hidden neurons h2 and h3
have been deactivated during a specific training iteration.

x1

x2

x3
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h2
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y1

y2

hidden layer

Input layer
Output layer

x1

x2

x3

h1

h4

h5

y1

y2

hidden layer

Input layer
Output layer

Fig. 16: Example of dropout regularization applied to only the
hidden layer of a single-layer MLP, p = 2/5 [40].

IV. METHODS

A. Simulator

The simulator used for open-loop MPC analysis, shown in
Figure 17, is BMW’s largest dynamic driving simulator, the
Sapphire Space. The Sapphire Space is a 9-DoF simulator
consisting of an XY-Drive, on top of which a large 6-
DoF, ±1.4m actuator stroke hexapod is placed, featuring
a top-mounted yawdrive. In the present work only the
6-DoF hexapod of the full motion system is considered. The
workspace and actuator limits are presented in Table IV.

TABLE IV: Sapphire Space specifications.

Hexapod
xH ± 1.2m ẋH ± 1m/s ẍH ± 10m/s2

yH ± 1.2m ẏH ± 1m/s ÿH ± 10m/s2

zH ± 0.8m żH ± 1m/s z̈H ± 8m/s2

ϕH ± 26◦ ϕ̇H ± 20◦/s ϕ̈H ± 150◦/s2

θH ± 25◦ θ̇H ± 20◦/s θ̈H ± 150◦/s2

ψH ± 36◦ ψ̇H ± 20◦/s ψ̈H ± 150◦/s2

Hexapod Actuators
qact ∈ [3.17, 4.58]m q̇act ± 1.01m/s q̈act ± 8.47m/s2

XY-Table
xXY ± 9.55m ẋXY ± 6m/s ẍXY ± 6.5m/s2

yXY ± 7.85m ẏXY ± 6m/s ÿXY ± 6.5m/s2

Yawtable
ψyaw ± 180◦ ψ̇yaw ± 40◦/s ψ̈yaw ± 150◦/s2
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Fig. 17: Sapphire Space. Source: [16].

B. MPC Settings

1) MPC Reference: Three different MPC references will
be used in the open-loop analysis, i.e., a constant, oracle, and
neural network reference:
(a) Constant Reference: in this case it is assumed that the

current, measurable state of vehicle accelerations and
rotational rates remains constant over the prediction time
Tp. A prediction time of Tp = 1.5s is used, as per [11]. In
[11], it is shown that, using short prediction times, a con-
stant reference provides better motion cueing compared
to the industry standard filter-based MCAs [11]. In order
to reduce MPC’s computational complexity, MWB is
applied. This results in a reduced amount of control vari-
ables (60 instead of 150) with ∆Ū defined on the interval
s = [50, 10] with sampling time ts = [0.01s, 0.1s]. The
constant reference MPC results are used as the feasible
benchmark in the MPC MCA performance.

(b) Neural Network Reference: resulting from the neural
network performance comparison, the best performing
network will be used to generate an open-loop reference
trajectory for the MPC MCA. Assuming the chosen
neural network is able to provide better predictions than
a constant reference, a prediction time of Tp = 4s is
used [8]. Applying MWB results in a reduced amount of
control variables (70 instead of 400) with ∆Ū defined
on the interval s = [50, 10, 10] with sampling time
ts = [0.01s, 0.1s, 0.25s].

(c) Oracle Reference: here it is assumed that all future
vehicle states are known a priori. This case is only
possible in open-loop simulation and serves as an upper
limit regarding prediction quality. Since all future motions
are known, no theoretical upper limit in prediction time
exists. However, to enforce a fair comparison, it was
chosen to use the same prediction time used for the neural
network reference, i.e., Tp = 4s, allowing for the same
MWB strategy to be applied. The oracle reference MPC
results are used as the ‘most optimal’ benchmark in MPC
MCA performance.

2) Limiting MPC Optimization Iterations: The MPC for-
mulation, as defined in Section II, does not require to run
real-time. However, for time constraint purposes, the available

optimization time is limited. According to qpOases [24], the
default amount of iterations is specified by Iter = 5(nV +
nC), with nV equal to the amount of optimization variables
and nC the amount of constraints. This amounts to 62, 400
maximum possible iterations. In order to reduce the MPC
optimization runtime, the amount of optimization iterations per
MPC iteration is reduced by a factor of 10 from the default
value, i.e., to 6, 240. If a solution cannot be found within the
amount of iterations, the previous solution is applied to the
system.

3) MPC Weight Settings: MPCs cueing performance is
heavily influenced by the chosen weight settings [7]. Two dif-
ferent weight settings will be used in the open-loop simulations
to show the weight influence on motion cueing fidelity.

The first weight setting is retrieved from [7]. This setting
was used in a real-time MPC used on a 9-DoF, hexapod and
tripod, kinematic configuration called the Ruby Space. Since
the overall translational limits between the hexapod of the
Sapphire and the Ruby Space are similar, this set of weights
are deemed a valid starting point. Still, adjustments to the
weights are made based on the following two considerations.
First, in case of the Ruby, the translational specific forces and
yaw rate are cued by using the independent tripod, whereas
tilt-coordination cues are provided by the hexapod system.
In case of the hexapod of the Sapphire, motions cannot be
independently cued, reducing the realistic available workspace
in each DoF. Second, to keep the optimization process linear,
it was noted in Section II that the transformation matrices,
required to perform state estimation, were kept constant for
future time steps. As argued in [7], this assumption becomes
less valid for large angular displacements within the prediction
horizon Np, e.g., costly large yaw excursions. Due to the non-
linear correlations between the hexapod angular displacement
and the available actuator workspace, this assumption poses
the risk that the optimization process finds solutions that do
not adhere to the actual actuator limits. If, due to excessive
simulator inputs, a breach of constraints occurs, the MPC
MCA optimization process cannot recover.

Based on these two considerations, the state weights Qx,
affecting both yaw (most expensive angular displacement) as
well as translational motion are increased by a factor of 4. The
state weights in Qx, affecting pitch and roll (less expensive
angular motion), are scaled up by a factor 1.25. For stability
purposes it was also decided to increase the weights on the
change in input, Qdu, for translational accelerations, by a
factor of 10. This reduces the possibility of high fluctuations
between subsequent QP solutions, therefore reducing jerky
motion cues. Since yaw motion is an expensive motion for a
hexapod system, only a conservative 60% of the yaw reference
is provided to the MPC. If no large motion space yaw system
is available, e.g., a ±180 deg yaw drive, a scaling factor in the
order of [40-60%] can be found in literature [7, 8]. The other
directions are not scaled down. The first set of weights, W1,
can be found in Table V.

The second setting, W2, used in the analysis, is the same
set as provided in Table V, but with the neutral push 80% of
the original set, i.e., Qx,W2 = 0.8 ·Qx,W1. It should be noted
that, although a cost reduction of 20% is severe, the ratio
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between absolute costs is the driving factor [41]. This means
that, per definition, the simulator is not allowed to use exactly
20% more actuator stroke. Therefore, it is expected that the
simulator will be able to use more of its workspace. However,
due to the other involved costs and natural system limits, the
effect of the more mild neutral push might be marginal.

C. Hyperparameter Tuning

The presented neural network models feature many different
parameters, these can be divided into two categories: trainable,
and manually adjustable parameters. The manually adjustable
parameters, i.e., hyperparameters, are the parameters set by
the designer. These need to be assigned values to ensure good
model performance. The hyperparameters can be divided into
three different categories:

1) Structure hyperparameters: These hyperparameters define
the structure of the network. Parameters included are:
amount of hidden layers, neurons per layer, neuron activa-
tion functions and for which layers regularization applies.

2) Process hyperparameters: These hyperparameters have a
direct influence on the training process and therefore,
implicitly, an influence on the network’s performance.
Parameters included are: learning rate, regularization pa-
rameters (such as the dropout rate), optimization algo-
rithm parameters, the batch size and the chosen metric
for training and validation loss.

3) Data hyperparameters: These hyperparameters have an
influence on the data, how it is structured and how
the input and output sequences are devised. Parameters
included are: resampling frequency, look-ahead distance,
stride, scaling, and length of input and output sequence.

In order to choose the set of parameters that will be used
in the networks, a brute-force technique called grid search
is employed [42]. Grid search comprises of two steps. The
first step is to set-up an initial, wide discrete search space
for the different parameters that need to be optimized. The
search space is divided into five equidistant parts. For all the
possible combinations within that search space, the network is
trained for 10 epochs, the parameter subset that gives the best
validation error is selected. The second step is to set-up a more
narrow, 10% wide search space around the selected parameter

TABLE V: One of two weight matrix values, i.e., W1, used
for the open-loop MPC analysis [7].

Weighting Matrix Qy

fx 0.1 fy 0.1 fz 0.1
ωx 1 ωy 1 ωz 1
Weighting Matrix Qx

px 0.38 py 0.38 pz 0.6
ṗx 0.11 ṗy 0.11 ṗz 0.3
ϕ 7.5 θ 7.5 ψ 7.5
Weighting Matrix Qu

p̈x 0.01 p̈y 0.01 p̈z 0.5
ϕ̇ 40 θ̇ 40 ψ̇ 1
Weighting Matrix Qdu

∆p̈x 5 ∆p̈y 5 ∆p̈z 0.5
∆ϕ̇ 40 ∆θ̇ 40 ∆ψ̇ 1
Weighting Matrix Qt

Wt 250

subset, also using five equidistant values, repeating the same
optimization process as mentioned before. These final set of
values are then used to set-up the final network structures.
Since this method does not scale well with the amount of
hyperparameters that need to be tuned, only learning rate,
amount of neurons/cells per layer, batch size and dropout rate
are tuned, the rest were, as discussed previously, kept at a fixed
value, see Table VI. The initial heuristic values are given in
Table VII.

TABLE VI: Fixed set of hyperparameter values used for
networks.

Network Structure
Hyperparameter MLP LSTM Deep LSTM Enc-Dec LSTM
# Layers 3 1 3 1
Dense Activation Selu Selu Selu Selu
Dropout Layer 1 1 1 1
Data Resampling Log Log Log Log
Stride 5 5 5 5
No. In/out Samples 30 30 30 30
Look-Ahead 100m 100m 100m 100m
Data Scaling MinMax MinMax MinMax MinMax
Input Sequence 5s 5s 5s 5s
Output Sequence 4s 4s 4s 4s

TABLE VII: Heuristic grid search value ranges used for
optimization of selected hyperparameters.

Hyperparameter Initial value range
Learning rate [5e−4 − 1e−2]
Dropout rate [0.3− 0.7]
Batch size [16− 128]
Neurons MLP [128− 1024]
Cells LSTM [64− 512]
Cells Deep-LSTM [64− 512]
Cells Enc-Dec LSTM [64− 512]

The two-step hyperparameter optimization process results
in the crudely optimized parameter values of Table VIII:

TABLE VIII: Optimized set of hyperparameter values used for
the different neural network structures.

Network Structure
Hyperparameter MLP LSTM Deep LSTM Enc-Dec LSTM
Learning Rate 1.44e-3 1.44e-3 1.44e-3 1.44e-3
Neurons/Cell 128/256/128 256/256 128/256 128/256
Dropout Rate 0.5 0.5 0.5 0.5
Batch Size 128 128 128 128

In this table, the neurons/cells depict the amount of neurons
and cells per layer of the proposed network. In case of the
RNN structured networks, the last value, 256, denotes the
amount of neurons in the input-output connecting dense layer.
The total amount of neural network trainable parameters equal
to: 219,956 for the three-layer dense MLP, 289,556 for the
single-layer LSTM RNN, 284,084 for the encoder-decoder
network, and 415,668 for the three-layer Deep LSTM network.

D. Training Neural Networks

Training neural networks effectively means altering the
weights such that the error between the network’s predicted
output and the labelled (true) output is as small as possible.
This optimization task, for a vanilla MLP, can be formulated
as follows [35]:
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Minimize E =
1

N

N∑
i=1

Li(f(xi, W⃗ ), yi) + λ ·R(W⃗ ) (24)

Here, N depicts the amount of training input-output map-
pings that are used, Li is defined as the loss function, which
is a function of both f(xi, W⃗ ), i.e., the output of the network
(function of input xi and weights W⃗ ), and the true output yi.
The added term λ · R(W⃗ ) is a regularization penalty, where
λ is a weighting term that is used to trade-off between model
performance on training data and obtaining a simpler neural
network [43, 44]. Often the simpler model has a better fit on
unseen data than a complex model which tends to overfit [45].
Since the structures of an RNN, Deep LSTM and an encoder-
decoder network are different from a vanilla MLP network,
the optimization task is different as well. The loss function
can be written as a sum of all individual loss terms, i.e., sum
of each loss for each output [32]:

Minimize E =
T∑

t=1

Li(Yt, Ŷt) (25)

Here, T is the total amount of outputs in the output
sequence, Yt the true values at time t and Ŷt the predicted
values at time t. After defining the loss function, the gradient
of the loss, with respect to the output, can be calculated. The
RNN optimization is usually called backpropagation through
time (BPTT) due to the time dependence of each individual
loss function [32].
For all models, the loss function is determined to equal the
mean-squared-error loss: a loss function that weights extreme
errors more than smaller deviations.

All network models are trained using the efficient and
widespread Adapative momentum estimation (ADAM) opti-
mizer. ADAM is an advanced backpropagation algorithm often
used for optimizing machine learning networks due to its
efficient solving capabilities [46]. Backpropagation performs
weight optimization by computing the gradient of the error
with respect to the output. By applying the chain rule it is
then possible to formulate an expression for the change in
error with respect to each input and each individual weight,
δE/δw [47].

ADAM combines two other algorithms, firstly Adagrad
[48] which accelerates optimization in dimensions with small
gradients, holds back optimization in dimensions with large
gradients by introducing an implicit learning rate decay factor
(with bad parameterization this can lead to an optimization
stop). Secondly, RMSprop [47] which is similar to Adagrad
but adds in an explicit decay factor which reduces the implicit
learning rate decay over time. The result is an algorithm which
includes ideas from momentum (building up a velocity term)
as well as ideas from RMSprop (acceleration in dimension
with small gradients and vice versa without strong learning
rate decay). Decaying bias terms are added to minimize
the null initialization effect (a large first update step). The
mathematical background can be found in [46].

Before the training process can start, all the weights in the
network need to be initialized to retrieve an initial gradient

value. The Glorot uniform initialization was used [49], where
for each neuron a value is generated by sampling from a
uniform distribution with limits dependent on the amount of
inputs and outputs of that weight tensor. Each of the four
networks was trained for 100 epochs incorporating an early
stopping strategy, i.e., training is stopped if the validation error
does not decrease significantly in the next 5 epochs.

E. Neural Network Driver Prediction Metrics

A framework is required to understand the performance
of the four different networks. The performance for each of
the neural networks’ most important reference outputs (lon-
gitudinal, lateral acceleration, and yaw rate) will be analyzed
[8, 11, 41]. Three different methods will be used: an analysis
on the mean-squared-error (MSE) over time signal per DoF,
an analysis on the average mean-absolute-error (MAE) over
the prediction horizon Np for all neural network predictions,
and a qualitative analysis on three random time sequence
predictions. The different methods are elaborated upon in the
following segment.

For the three drives in the test-set, the MSE per time
instance per output, for the prediction time of Tp = 4s, will
be computed and evaluated. The MSE is a metric often used
for neural network regression performance analysis, because
it weights large prediction errors more heavily than smaller
ones [35]. The MSE per time instance per DoF for a constant
prediction over the same prediction time, Tp = 4s, will
be computed as well, giving a benchmark prediction quality
metric. This analysis will provide a deep insight on how
the prediction performance alters during the scenario, and
for which maneuvers the neural network prediction shows a
significant improvement over a constant prediction strategy. In
this analysis, it is expected for all neural networks to show
significantly lower MSEs during dynamic maneuvers since
a constant prediction in these cases is per definition a bad
predictor.

Next to this, the best performing neural network, based
on the previously discussed metric, as well as the constant
prediction will be analyzed using the average MAE and MAE
standard deviation (σ) over all samples in the prediction
horizon of Np = 400 samples. The MAE will be computed
for one drive in the test-set, averaging all MAEs of all
predictions. This analysis will provide information on the
average regression quality over Np. It was chosen to use the
MAE because the unit of the error is the same as the unit
of the predicted signal, making the results better interpretable
[35]. It is expected that for the first samples in the prediction
horizon Np, the constant prediction outperforms the neural
network on both the average MAE as well as providing a
lower σ in prediction MAE. However, it is also expected
that the constant prediction and σ MAE continuously increase
over Np. Assuming long-term predictions are less accurate
than short-term predictions, i.e., due to the logarithmic output
spacing and subsequent interpolation, the neural network MAE
is also expected to increase over Np, albeit at a lower rate.

As will be shown in the analysis later, one problem with
neural network predictions is that there may exist a mismatch
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between the initial predicted state and the actual current state.
This behavior will become apparent when the neural network
MAE shows a significantly higher σ for the first samples.
In order to solve this, a half-period cosinebell function, see
Figure 18 [50], is proposed to ‘anchor’ the predictions to the
actual state. This function smoothly ‘fades’ the current state
into the predicted state. Its effectiveness will be revisited later
in Section V.
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Fig. 18: Half-period cosinebell function with periodicity equal
to 41 samples [50].

Finally, to understand how the network behaves on predic-
tion level itself, prediction sequences at three random time
instances will be qualitatively analyzed as well.

F. MPC Motion Cueing Quality Metrics

When the best performing neural network is found, predic-
tion results can be used as reference in an open-loop MPC
simulation. Two methods proposed in literature are used in
order to estimate the resulting MPC cueing quality [13, 14].

1) Subjective Motion Incongruence Estimation: This
method finds its basis on the work done in [13, 14], in which
a model is proposed, able to make a validated estimation
on the continuous motion incongruence ratings (MIR) in an
urban driving scenario. This model was developed to provide
a means of estimating subjective MCA cueing performance
based on open-loop simulations without the requirement of an
expensive driver-in-the-loop (DIL) experiment. The output of
the model is a time signal, i.e., the continuous rating, having
a lower bound of 0 and a set upper bound of 10. Lower
ratings denote less motion cueing incongruence, i.e., better
perceived motion cueing performance. Larger values denote a
worse perceived motion cueing performance. This model only
requires open-loop processed cueing information.

In [14], it was shown that the rating behaviour of par-
ticipants can be modelled conform a time-delayed, low-pass
filtered, and weighted combination of both longitudinal, as
well as the lateral specific force mismatches. First, the total
weighted error contribution is calculated by [14]:

E(t) =Wfx (|fvx − fsx|) +Wfy

(∣∣fvy − fsy
∣∣) (26)

The weights Wfx and Wfy denote the relative weighting
contribution, these are set to 1.17 and 1.63, respectively [14].
The predicted continuous rating is found when applying a low-
pass filter to E(t), defined in:

Hx,y(jω) =
ωcx,y

jω + ωcx,y

e−jωτ (27)

Here, τ = 0.008s it the time-delay constant, ωcx =
0.26rad/s and ωcy = 0.37rad/s denote the cut-off frequen-
cies for the x and y channels [14]. Since no tuned rural
model exists, these tuned settings are assumed to be a valid
approximation since it only considers longitudinal and lateral
specific force perception.

2) Motion Cueing Error Type Analysis: Next to this anal-
ysis, a motion cueing error analysis, as proposed in [14],
is performed. In this analysis four different types of motion
cueing errors are investigated comprising of false direction
cues, false cues, missing cues, and scaling errors. A schematic
showing all four types of errors is given in Figure 19.

1 2 3 4 5

                     Vehicle       
                     Simulator   

Fig. 19: Schematic showing the four types of cueing classifi-
cation errors. 1: No cueing error, 2: scaling error, 3: missing
cue error, 4: false cue error, and 5: false direction cue error.
Source: [14].

First, for each of the specific forces and rotational rates,
an error classification is performed. This results in a time
signal per channel giving the type of error at each time
instance k. It should be noted that only one type of error
can be present at a single time instance. Using the time signal
per channel, the frequency at which a specific error occurs,
expressed by a percentage in function of total simulation
time, can be computed. As explained in [51] and [52], a
perception threshold of fst = 0.05m/s2 and ωst = 3deg/s
is implemented for both the perceived specific forces and
rotational rates. Errors lower than the perception threshold are
assumed to be cued correctly and not reported. Therefore, the
sum of all cueing error percentages does not need to equal
100%.

G. Expectations

Following the presented analysis methods, the following
expectations are made.
Regarding the neural network models, all neural network
models are expected to outperform the constant prediction ap-
proach (i.e., have a lower average MSE). The expected perfor-
mance of the networks is as follows (from worst to best): the
three-layer MLP, the single-layer LSTM RNN, the encoder-
decoder RNN, and finally the Deep LSTM RNN. Where it
is expected that the more complex networks, i.e., encoder-
decoder and Deep LSTM, perform better. Since longitudinal
acceleration is generally more difficult to predict than lateral
acceleration, due to more variability between participants
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[7], it is expected that the neural network prediction quality
improvement will be lower for longitudinal acceleration.

It is also expected that assuming a constant prediction is not
bad for the first few samples in Np because of high vehicle
inertia and a high data refresh rate. However, the MAE will
most likely keep increasing over Np together with the MAE
standard deviation, showcasing that depending on the road
conditions, e.g., long straight with no curves (low dynamic
changes) vs. a roundabout (high dynamic changes), a constant
prediction is not a consistent strategy. The neural network
prediction is assumed to start outperforming the constant
prediction after the first n samples, also showing a lower
σ over Np, proving the neural network strategy to be more
consistent. However, since the neural network prediction is
per definition not anchored to the current state, oscillatory
behavior for the first samples is expected, which is undesirable.
For this reason, the prediction most likely needs to be anchored
to the current state using a half-period cosinebell function.

Because the output mapping is logarithmically spaced, it
is expected that the neural network is able to predict low
frequency trends at the tail of the prediction sequence, not
being able to capture more high dynamic changes. In contrast,
it is expected that the neural networks are able to predict the
more high-frequency short-term dynamic trends.

Assuming improved prediction quality, using the prediction
of the best network in an MPC MCA framework, it is
expected that the estimated motion cueing performances will
be somewhere in between the performance of a constant MPC
and an oracle MPC. This is also assumed to be the case for
motion cueing errors, where it is expected that the amount of
detrimental cues will be lowest for (from best to worst): oracle
MPC, Deep LSTM MPC, and constant MPC. Because of the
limited and costly yaw range of the hexapod system, together
with the scaled down yaw rate reference, it is expected that
the cued yaw rate of all three reference strategies will show
large missing cue errors.

Since W1 features a stronger neutral push than W2, it is
expected that the MPC MCA using W1 will show larger and
more false direction cues than the one tuned with W2. Next
to this, it is also expected that the subjective motion cueing
rating, for the MPC using W2 for all three references compared
to the MPC tuned with W1, will be better.

V. RESULTS

A. Neural Network Performance Analysis

In order to make a decision about which neural network
predictions to use for the MPC, the individual performance
metrics are assessed. As discussed in Section IV the first
metric that will be analyzed is the MSE per time instance
for both test set drives. Figure 20 shows the MSE over
time for all four neural networks, compared to a constant
prediction metric. The MSE per time instance was calculated
on the interpolated prediction data over the prediction horizon,
Tp = 4s for both the neural networks, as well as the constant
prediction. Although the constant reference in MPC has a
prediction time equal to Tp = 1.5s, it was argued that to
fairly compare the neural network prediction quality to the

constant prediction quality, the same prediction time, Tp = 4s
needs to be applied. In Figure 20, it can be seen that in
case of longitudinal acceleration, large constant MSE error
peaks occur between speed limit transitions. In case of lateral
acceleration and yaw rate, two distinct constant MSE peaks
are present, the first one occurring in road segment 8 and
the other in segment 2. These peaks belong to two medium
speed sharp turns. No such large peak is present in segment
6 where a roundabout is located. Also here an MSE peak
is expected due to a large radius of curvature. However, the
reported MSE signal is obtained from a drive in SN direction,
where the first exit is taken, reducing the radius of curvature
significantly. In this comparison it can also be seen that, of
the three predicted DoFs, the Deep LSTM has the lowest
prediction error of all networks. An average MSE for the three
test drives, and an MSE percentage improvement compared to
the constant prediction, is given in Table IX.

From Table IX it can be concluded that, overall, the Deep
LSTM prediction performs the best showing a reduction in
MSE of approximately 65% in longitudinal and 90% in lateral
acceleration and yaw rate prediction. The difference between
the LSTM, Deep LSTM and Encoder-Decoder networks is
small in lateral acceleration and yaw rate prediction, however,
a drop in performance of around 5% can be noticed for the
LSTM and Encoder-Decoder network. The worst performing
network, although still better than the constant prediction,
is the simple three-layer Dense neural network, showcasing
an improvement of 42%, 58% and 67% in longitudinal, and
lateral acceleration and yaw rate prediction, respectively.

Although analyzing the MSE over time through Table IX
and Figure 20 proves to be insightful, it does not show the
full picture. It is possible that individual time point prediction
errors are averaged out on the MSE calculation interval tk ∈
[k, k + Tp]. Figure 21 shows three time trace predictions, for
both a constant, as well as a Deep LSTM, for the accelerations
in x and y direction, as well as the yaw rate. As expected, one
can see that for very short-term predictions, i.e., the first 0.01s
in Tp, the constant assumption holds true, however evidently, it
does not capture any dynamics in the future. The Deep LSTM,
as expected, does follow the short-term trends better as well as
capturing low frequency long-term trends, without capturing
far future more high-frequency trends. It can also be seen that
the Deep LSTM time trace predictions are not anchored to the
current state, which creates an offset in prediction for the first
time sample in Np. To understand the specific quantitative
effect of what can be qualitatively seen in Figure 21, the
average MAE is investigated for all time samples within the
prediction horizon Np = 400 samples.

Figure 22 shows the average MAE for each predicted time
sample for both a constant as well as a Deep LSTM lateral
acceleration prediction for one of the three test drives. From
this figure it can be seen that a constant prediction predicts
lateral acceleration better in the first 15 samples, after which
the average constant MAE keeps increasing while the Deep
LSTM MAE starts to stabilize. This follows the proposed
expectation that due to vehicle inertia and a high refresh
rate in the data, assuming constant vehicle states within the
first 15 samples is generally a valid assumption. Whereas
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Fig. 20: MSE over time plot for a SN test drive for predicted longitudinal and lateral acceleration as well as predicted yaw
rate. Prediction horizon for neural network models Np = 4s, and for the constant prediction Np = 4s.

TABLE IX: Average MSE prediction results comparing average NN MSE with average constant MSE for Np = 4s.

MSE % improvement wrt. Constant
Constant Dense LSTM Deep LSTM EncDec Dense LSTM Deep LSTM EncDec

Acceleration in x 3.90E-01 2.24E-01 1.63E-01 1.41E-01 1.58E-01 -42% -59% -65% -60%
Acceleration in y 6.70E-01 2.79E-01 9.70E-02 7.93E-02 8.70E-02 -58% -85% -88% -87%
Yaw Rate 5.03E-03 1.66E-03 6.03E-04 5.08E-04 5.42E-04 -67% -88% -90% -89%

the Deep LSTM prediction does not explicitly anchor itself
to the current vehicle state, thus featuring altering offsets in
between subsequent predictions for the first samples in Np,
resulting in a worse predictor. When used as reference in
MPC the first 15 samples, especially when these feature high
variance in between samples, affect the tuning of Qdu, i.e.,
the weights on the change in input. When high variance is
present, higher weighting on the change in input, in order
to reduce oscillations in applied input, is required. To limit
this behavior, a half-period cosinebell window function is
implemented on the first 20 samples of the predicted Deep
LSTM sequence, which provides a smooth transition from
the current state to the predicted sequence without loss of
information [50]. Figure 22 shows the result of incorporating
such window function on the first 20 samples, which confirms
that the MAE decreases significantly in the first 20 samples

compared to the original Deep LSTM prediction, while also
retaining long-term prediction quality.

Table X shows the average MAE for six equidistant time
samples within Np = 400 samples. Starting from t1 = 0.01s,
to each 80th sample onwards, i.e., t80 = 0.8s. In this table
the MAE as well as the standard deviation is given. It can
be seen that for all samples, except the first sample, both the
MAE and standard deviation of the Deep LSTM prediction
are lower compared to the constant prediction. After applying
the 20-sample window function, the same MAE and standard
error as the constant prediction is obtained for the first sample.

What can also be seen from both Figure 22 and Table X, is
that the average MAE of the Deep LSTM prediction is already
lower than that of the constant prediction after approximately
the 8th sample in Np. Next to this, considering the general
prediction time of Tp = 1.5s used for the constant prediction
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Fig. 21: Three time traces comparing the Deep LSTM with a constant sequence prediction
for one of the three test drives.

TABLE X: Constant and Deep LSTM prediction MAE and σ results for five time instance predictions 0.8s apart.

MAE σ % improvement wrt. Constant

tk Constant Deep LSTM Deep LSTM
Cosinebell Constant Deep LSTM Deep LSTM

Cosinesbell
MAE

Deep LSTM
σ

Deep LSTM
MAE Deep

LSTM Cosinebell
σ Deep

LSTM Cosinebell
0.01s 0.005 0.053 0.005 0.007 0.065 0.007 960% 829% 0% 0%
0.81s 0.305 0.192 0.192 0.39 0.231 0.231 -37% -41% -37% -41%
1.61s 0.462 0.21 0.21 0.526 0.238 0.238 -55% -55% -55% -55%
2.41s 0.600 0.215 0.215 0.644 0.249 0.249 -64% -61% -64% -61%
3.21s 0.718 0.23 0.23 0.73 0.262 0.262 -68% -64% -68% -64%
4.00s 0.826 0.248 0.248 0.787 0.271 0.271 -70% -66% -70% -66%

[7], the Deep LSTM already provides an improvement in
average MAE of around 55%. This shows, that even for
shorter prediction times, a Deep LSTM, trained for longer
prediction times, provides better prediction quality than the
current constant prediction benchmark.
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Fig. 22: Average mean absolute error constant and Deep
LSTM NN lateral acceleration prediction for each time point
in Np = 4s.

The provided analysis suggests that the average MSE signif-
icantly improves using neural network predictions compared
to a constant prediction over a prediction time, Tp = 4s. It was

also shown that all neural networks outperformed the constant
prediction approach, in following order (from worst to best):
the three-layer MLP, single-layer LSTM, Encoder-Decoder
RNN, and the Deep LSTM. Subsequently, a Deep LSTM,
anchored to the current state using a half-period cosinebell
function, provides more consistent predictions than a constant
prediction over the full prediction window Np. Where the
former already shows a lower average MAE compared to the
latter after the first 8 samples in Np.
When considering the general constant MPC prediction time
of Tp = 1.5, the Tp = 4s trained Deep LSTM shows an
average MAE prediction reduction of approximately 55% at
Tp = 1.5s.

B. Predicted Continuous MIR

The three different test drives were analyzed using the eval-
uation model presented in Section IV, resulting in a predicted
continuous MIR. Figure 23 shows part of the estimated MIR
for one of the three test drives for an MPC using constant,
Deep LSTM, and oracle reference. All three cueing results
were obtained using MPC tuned with W2, i.e., a lower neutral
push. In this picture it can be seen that the estimated MIR
for an MPC MCA using oracle reference is around 20% and
6% lower compared to the MPC using constant, and the Deep
LSTM prediction as reference, respectively. With the estimated
MIR using Deep LSTM MPC being around 16% lower than
the estimated MIR using the constant MPC. This behavior



19

is confirmed when looking at the specific force and rotational
rate graphs in Figure 24, where it can be seen that the majority
of the original signal is cued by the simulator, albeit heavily
scaled down because of the system’s limits and the high cost
on input Qu. From this picture, it can also be seen that due to
the limited yaw capabilities of the hexapod system, yaw cannot
be cued to the same degree as accelerations in both x and y
direction. Since yaw motion cueing quality is not considered
in Equation (26), bad yaw rate tracking has no influence on
the projected MIR values. Specific force and estimated MIR
figures for the MPC MCA tuned with W1, i.e., a stronger
neutral push, are attached as Appendix to this document.

The same MIR prediction can be made for each of the three
drives, using both weight setting W1 as well as W2. When
combining the predicted ratings per reference type and weight
setting, boxplots can be constructed showing the distribution
of ratings per reference per weight. The resulting boxplots can
be found in Figure 25, also showing the median rating value
per scenario.

When investigating the results, one can see that the average
ratings for W2 are marginally lower compared to W1 for each
of the three reference types. This is an expected outcome as
more of the simulator’s actuator workspace can be used in the
optimization process resulting in better motion cueing. Next
to this, it can also be observed that the findings in Figure 23
are also valid when looking at the combined results of the
three drives, i.e., oracle MPC outperforms Deep LSTM MPC
which, in turn, outperforms the constant MPC. A summary of
the provided boxplot information can be found in Table XI.

TABLE XI: Boxplot summary of Figure 25.
Constant Deep LSTM Oracle

Value Value % Difference
wrt Constant Value % Difference

wrt Constant
Median W1 1.15 0.99 -14% 0.94 -18%
Median W2 1.13 0.94 -17% 0.89 -21%
Max MIR W1 3.67 2.96 -19% 2.98 -19%
Max MIR W2 3.65 2.84 -22% 2.86 -22%
IQR W1 [0.78-1.63] [0.68-1.41] -13/-13% [0.62-1.37] -20/-16%
IQR W2 [0.77-1.61] [0.65-1.35] -16/-16% [0.60-1.30] -22/-19%

It should be noted that the percentage differences published
in Table XI are relative to the constant MPC values. For MPC
weight setting W1, the median MIR of the oracle MPC lies
around 18%, and of the Deep LSTM MPC 14% lower than
the median of the constant MPC. For MPC weight setting
W2, the median MIR of the oracle MPC lies around 21%,
and of the Deep LSTM MPC around 17% lower than the
median of the constant MPC. The maximum estimated MIR,
including outliers, corresponding to the worst predicted motion
experience, was found to be around 19% lower for the oracle
and Deep LSTM MPC relative the constant MPC, for both
W1 and W2 respectively. When looking at the boxplots it can
also be seen that all six conditions show a non-symmetric
rating distribution, skewed to the minimum. This means the
dispersion of ratings is more narrow towards the minimum,
which makes sense considering the MIR is closer to the lower
imposed limit than the upper limit.

Table XI, also suggests that the lower 25% limit of the
interquartile range (IQR) for the Deep LSTM and oracle MPC,
lies roughly 13% and 20% lower compared to the constant

MPC, respectively. Another difference can be seen on the
upper limit of the IQR, or 75% limit W1. The upper limit of
the Deep LSTM and oracle MPC lies roughly 13% and 16%
lower compared to the constant MPC for W1. Using the W1

tuning set, it can be concluded that a participant, on average,
would rate the perceived motion cueing by the Deep LSTM
MPC to be between 13-19% better, and the oracle MPC to be
between 16-20% better than the motion cueing provided by
the constant MPC.

Similarly, using the W2 tuning set, it can be concluded that
a participant, on average, would rate the perceived motion
cueing by the Deep LSTM MPC to be between 16-22% better,
and the oracle MPC to be between 19-22% better than the
motion cueing provided by the constant MPC. With the chosen
weight settings, this shows that when a simulator is able to
use more of its available workspace, the difference between
the more accurate references, i.e., Deep LSTM and oracle, and
the constant reference becomes marginally more substantial in
favour to the Deep LSTM and oracle reference.

C. Motion Cueing Error Analysis
Figure 26 to Figure 28 shows the distribution of percentages

for MPC using the three different references for the three
testdrives. For this analysis ωz , i.e., simulated yaw rate, is
also included. In ωz not much difference can be seen between
the three MPC reference types. As expected, due to the limited
and expensive yaw motion, as well as the heavily scaled down
yaw reference, the yaw cueing errors are dominated by missing
cues, occurring 35% of the time. As can also be deduced from
Figure 28, the remaining 65% of the time, the yaw rate error
is smaller than the 3deg/s imposed perception threshold.

When looking at the longitudinal specific force one can see
that the amount of time scaling errors are present is largest
when using the oracle reference. This means that the total
amount of time other errors are perceived is lowest when using
oracle reference. As expected oracle MPC features the lowest
percentage of missing, false and false direction cues.

Comparing the Deep LSTM MPC and constant MPC, one
can see that the Deep LSTM MPC predominantly limits
the percentage of false direction cues. This is confirmed by
looking at the median percentage of occurring false direction
cues, i.e., these occur 3.7% of the time for the Deep LSTM
MPC. For the constant reference this equals to 7.3% of the
time. Oracle provides false direction cues the least amount of
time, i.e., 0.9% of the time.
The median time percentage of false cues equals to 4.3%,
3.5%, and 2.1% for the constant, Deep LSTM and oracle
reference, respectively. The spread of false cueing errors is
largest when using the Deep LSTM reference, showing that
motion cueing is more prone to provide false cues when using
the Deep LSTM prediction for longitudinal acceleration.

The median percentage of missing cues between the Deep
LSTM and constant reference are almost equal, with the error
spread being larger in case of the constant reference. This
shows that the motion cueing, using the constant reference,
features more missing cue errors.

The error percentages in lateral direction show more dif-
ference between the types of MPC references. The median
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Fig. 24: 100 seconds of MPC MCA outputs, comparing the three types of references for one of the SN drives in the test set.
The weight setting equals W2, i.e., less neutral push is enforced during the optimization.

percentage of missing lateral cues equals 13%, 10%, and
9%, the median percentage of false cues equals 4%, 3.2%,
and 1.9% when using the constant, Deep LSTM, and oracle
reference, respectively. The largest difference can be found
when looking at the false direction cues, where, per median,
a false direction cue occurs roughly 7.6%, 1.9%, and 0.9%
of the time when using the constant, Deep LSTM, and oracle
reference, respectively. For the latter two the spread is narrow.
Using the constant lateral acceleration reference provides, in
the worst case, 10.7% of the time false direction lateral cues,
compared to 2% and 0.8% of the time when using Deep LSTM
and oracle MPC, respectively. These findings also lie in line
with the prediction quality improvements showed in Table IX,
where the lateral acceleration prediction showed an average
decrease of 88% in MSE.

To conclude, for both specific force cueing in x and y the
oracle reference provides the shortest time of missing, false,
and false direction cues, resulting in the longest periods of, less

dramatic, scaling cueing errors [14]. Comparing the specific
force cueing in x to a constant MPC reference, the Deep LSTM
provides less false direction cues, i.e., 3.7% vs 7.3%. However,
the difference in missing and false cues does not show a strong
advantage to using the Deep LSTM prediction, for which the
median amount of false cues is only 0.8% lower compared to
a constant reference. Not only that, the spread of presented
false cues over the three test drives is larger than compared to
a constant reference, with the maximum amount of false cues
being around 5% higher. In lateral case, the difference between
using a constant and Deep LSTM MPC reference is found
to be more significant, with the Deep LSTM providing less
missing, false, and false direction cues compared to a constant
MPC reference. These two results follow the findings from the
Deep LSTM performance analysis, where it was found that a
greater reduction in MSE was found in lateral case than in
longitudinal case. Yaw rate tracking was found to be equally
bad regardless of which reference is used.
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Fig. 25: Boxplots, using simulation results all three test
drives, showcasing the distribution and mean of the predicted
continuous MIR for the three types of reference per MPC
weight setting.

VI. DISCUSSION

A. Neural Network Prediction

Compared to a constant prediction, it was shown that
neural networks can provide improved prediction quality over
the horizon typically used for MPC in driving simulation.
The neural network prediction quality improvement can be
ranked (from worst to best) as follows: the three-layer MLP,
the single-layer LSTM RNN, the encoder-decoder RNN and
finally the Deep LSTM RNN. With the middle two being
very comparable in performance. This shows how efficient an
encoder-decoder RNN is compared to a normal LSTM RNN,
with the former featuring 32% less trainable parameters and
only a 6-10% decrease in performance. In future work it is
proposed to further optimize the network structures, where
it is expected that an efficient multi-layered encoder-decoder
neural network will be able to outperform the multi-layered
LSTMs for this sequence-to-sequence modelling task.

In [8] a neural network approach is proposed, used to predict
a discrete sequence of future vehicle states in an urban driving
simulation scenario. In [8] a three-layer dense neural network
is utilized, predicting 10 non-linearly spaced samples over
Tp = 4s. Using a different performance metric, comparing to
a constant prediction, an average improvement of around 30%
in longitudinal, and 50% in lateral direction and yaw rate was
found. This means the three-layer MLP from [8] performs
worse by around a 10% margin compared to the reported
three-layer MLP in Section V. A reason for this apparent
improvement could either result from the fact that in this
report 30 output samples are predicted, resulting in a higher
temporal resolution, or because future vehicle kinematics in
a rural scenario are more predictable compared to an urban
scenario. In order to compare results, it is proposed to also
train the presented networks for other scenarios such as an
urban environment.

Although the overall performance of the proposed neural
network models was significantly better than the constant
counterpart, it was found that the first samples in the prediction

sequence were not anchored to the current state, producing
a mismatch between the current and predicted state. Even
when using a logarithmically spaced input-output mapping,
which implicitly emphasizes a stronger cost on error on
the first samples, this behavior persisted. In order to reduce
fluctuations on the first samples of the prediction sequence, it
was shown that using a half-period cosinebell window omits
this fluctuation and anchors the predictions, while keeping the
transition smooth. This resulted in the ability to keep the cost
on ∆Ū low, omitting the risk of noisy inputs. In future work, it
would be interesting to address this issue when preprocessing
the data instead of postprocessing the prediction data. One idea
would be to let the neural networks make incremental value
predictions, anchored to the previous state, instead of making
absolute predictions. This way the first samples in the output
mapping are close to the value 0 due to the sampling rate
of 100Hz and inertia of the vehicle. Introducing such change
could possibly provide more consistent short-term predictions.

B. MPC Motion Cueing Quality

Implementing the three different prediction strategies, the
MPC cueing results were found to be, from best to worst:
the oracle MPC, Deep LSTM MPC, and constant MPC.
Using the oracle prediction, it was found that the predicted
MIR for both the average as well as the maximum rating
is expected to decrease between 16%-22%. However, this is
lower than what was found in, e.g., [11], where a decrease
of 50% in average ratings was found in a similar rural
experiment setup. This could be a result of [11] using a 9-
DoF platform which provides a larger motion range, allowing
for lower state weighting. In this paper it was found that,
marginally lowering the state weighting, a marginal increase
in performance when using a more accurate prediction, i.e.,
Deep LSTM and oracle reference, can be seen. This insinuates
that a correlation between allowing for lower neutral push has
a positive effect on motion cueing. In future work, it would
be interesting to investigate this insinuated correlation between
the state weighting and the reference types even more. For this
investigation it is proposed to apply the MPC on the full 9-
DoF Sapphire Space workspace, i.e., including the XY-Drive
as well as the yaw drive, allowing for much different state
weightings. In doing so, it is expected that the Deep LSTM and
oracle MPC would provide an even larger increase in motion
cueing quality compared to the constant MPC, highlighting
the potential of improved prediction quality on large motion
systems.

Another factor that could explain the more mild decrease
in MIR of using an oracle MPC reference, compared to what
was found in [11], is explained in the following. [14] assumes
a correlation between cueing mismatches in longitudinal and
lateral direction only without consideration of yaw rate, an
important motion in driving simulation [6]. Adding yaw cue-
ing mismatches to the MIR prediction signal is an area of
improvement proposed in [14] as well. Although such addition
to the MIR estimation model would not alter the results stated
in this paper much, an implicit difference in perceived cueing
quality stated in [11], due to the correlation between reference
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Fig. 26: Cueing error percentages for
each reference type for fx.
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Fig. 27: Cueing error percentages for
each reference type for fy .
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Fig. 28: Cueing error percentages for
each reference type for ωz .

and (yaw) motion capabilities of the system [7, 14], cannot
be excluded. If the assumption is made that improved yaw
cueing does influence perceived motion cueing performance, a
stronger difference in results could be observed when enabling
the yaw drive of the Sapphire Space. This would possibly make
the relative differences between the Deep LSTM MPC and
constant MPC even larger, since the yaw rate prediction error
improved by roughly 90% compared to a constant prediction.
Next to this, if the independent yaw drive is enabled, the 60%
yaw scaling factor can be omitted. It would also allow for
more available workspace to be used for specific force cueing
in x, y, and z by the hexapod system.

From the estimated MIR analysis, it was found that the
average MIR is expected to decrease by 13%-22% when using
the Deep LSTM MPC compared to the constant MPC. With
respect to oracle MPC, the Deep LSTM MPC would perform
around 5% worse. When looking at the maximum MIR peaks,
i.e., worst motion cueing experiences, the peaks are expected
to drop by 19%-22% when using the Deep LSTM MPC
compared to the constant MPC, showing similar performance
to the oracle MPC. This shows that using a Deep LSTM
reference can be expected to significantly increase the average
perceived motion cueing quality compared to the constant
reference. However, the results are based on a simulation
results, and not on validation data obtained through a DIL
experiment. Therefore, it is advised to validate these results by
performing a DIL experiment on a dynamic driving simulator.
In such an experiment it would be advised to follow the set-up
described in [11]. As in [11], 40-50 participants are proposed
to participate in the experiment. This way the sample size is
large enough to obtain accurate statistical significance results.
In this experiment each participant would perceive several
prerecorded, rural drives using an open-loop MPC using all
three types of references. An open-loop experiment enables
the use of the rating method presented in [14], resulting in a
high-temporal resolution MIR. To understand the full benefit
of using a Deep LSTM reference, it is advised to use the full
workspace of a simulator such as the Sapphire Space. Using
the full motion capabilities of the Sapphire Space would also
allow for validating the correlation between different weight
settings and the different reference types. However, to keep the

experiment simple, it is advised to use at most two different
weight settings.

Another improvement was found when looking at the mo-
tion cueing mismatches, where less missing cues and false
direction cues were found when using the Deep LSTM and
oracle reference. In x direction the results were found to be less
conclusive than in y direction, where 80% less false direction
cues occurred when using Deep LSTM MPC compared to
the constant MPC. Through this analysis, the yaw limit of
the system was also highlighted, where only missing cues
were present, regardless of the reference type. This leaves the
discussion open about which effect a better yaw prediction
has on motion perception quality, opening the door for an
investigation on using better yaw references on more capable
motion systems such as the full Sapphire Space. The effect
of these objective cueing errors on motion cueing perception
could be analyzed with data gathered from the advised exper-
iment in the preceding paragraph, relating specific error types
with peaks in the continuous MIR time trace.

Due to time constraints, it was not possible to compare the
performance of the different neural network types when used
as reference for the MPC MCA. Because a high-temporal res-
olution prediction error signal is present, a direct relation with
specific maneuvers and the associated subjectively rated MIR
can be made. This would allow for a direct correlation between
neural network prediction and perceived motion cueing quality,
linking an objective prediction rating with a subjective cueing
metric.

C. Recommendations

Some other, general recommendations for future work are
given in the following. First of all, the resulting neural
networks work well in the proposed scenario, but are not
tested and validated on a different rural road. This should be
investigated further to analyze generalizability of the models.
Furthermore, it would be interesting to extend these models to
other scenarios, e.g., an urban city scenario and see how the
models perform. The proposed models only work in scenarios
where the driving route is known a priori, expanding the
models with, e.g., a driving direction classification model and
a path planning module (resulting in flexible non-causal road
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information), would result in more flexible, adaptable and
real-time usable prediction generators for use in MPC MCA.
One aspect not touched upon in this paper is the real-time
capability of using such neural networks in MPC MCA at
high control frequency. Although [8] has effectively shown that
a three-layer Dense network can be made real-time capable,
extending such analysis to more advanced, complex networks
is important.

Furthermore, in this paper only open-loop simulation results
are evaluated, using only one subpart of a larger kinematic
simulator chain. In future work it would be of high value
to validate the presented results using previously discussed
DIL experiments in a kinematic simulator. It would also be of
interest to further develop the evaluation tool proposed in [14]
to include the other cued DoFs, as these are not considered, yet
might play an important role. Since it was found that reducing
the state weighting resulted in a marginally larger gap in MIR
between a worse, constant prediction and a better, Deep LSTM
or oracle prediction, this effect should be investigated further
and eventually validated using DIL experiments as well.
Performing these evaluations and experiments could result in
more advanced MIR estimation models, allowing to perform
an even better open-loop motion cueing analysis than the ones
presented in this paper.

VII. CONCLUSIONS

The goal of this paper was to compare vehicle state pre-
dictions, performed by different data-driven machine learning
frameworks. These predictions could be used as reference
tracking signal in a model predictive control based motion
cueing algorithm (MPC MCA) framework in closed-loop driv-
ing simulation. In this paper four different data-driven neural
network structures were trained and analyzed. It was found
that, of the four network structures, a three-layer Deep LSTM
showed the lowest prediction error. Using the Deep LSTM
predictions in an open-loop MPC MCA framework, results
showed that the subjective motion cueing quality rating is
estimated to decrease significantly compared to the benchmark
constant MPC, while nearly matching the estimated cueing
quality rating of an MPC with perfect prediction capabilities
(oracle). Next to this, results also show a stronger, albeit
marginally, increase in motion cueing quality when lowering
the state weighting, i.e., neutral push, for both the Deep
LSTM and oracle MPC. This finding highlights the potential
in using more accurate prediction strategies for larger motion
systems where less neutral push is required. Through analyzing
the objective motion cueing error mismatches, a significant
decrease in false direction lateral cues was found for the Deep
LSTM MPC compared to the constant MPC. However, the
difference in longitudinal cue errors was less significant.
From the results it can be concluded that, predicting a discrete
sequence of vehicle states using different neural network
structures improves the prediction quality significantly. Using
the Deep LSTM recurrent neural predictions in an MPC-
based MCA framework network, is expected to enhance the
perceived motion cueing quality, nearly matching the expected
quality of an oracle MPC-based MCA.
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[44] J. Kukačka, V. Golkov, and D. Cremers, “Regularization
for deep learning: A taxonomy,” 2018. [Online].
Available: https://openreview.net/forum?id=SkHkeixAW

[45] C. E. Rasmussen and Z. Ghahramani, “Occam’s razor,”
in Proceedings of the 13th International Conference on
Neural Information Processing Systems, ser. NIPS’00.
Cambridge, MA, USA: MIT Press, 2000, p. 276–282.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learn-
ing Representations (ICLR), Y. Bengio and Y. LeCun,
Eds., San Diego, California, USA, 2015.

[47] A. Graves, “Generating sequences with recurrent neural
networks,” 08 2013.

[48] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,”
Journal of Machine Learning Research, vol. 12, pp.
2121–2159, 07 2011.

[49] X. Glorot and Y. Bengio, “Understanding the difficulty
of training deep feedforward neural networks,” in
Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, Y. W. Teh and
M. Titterington, Eds., vol. 9. Chia Laguna Resort,
Sardinia, Italy: PMLR, 13-15 May 2010, pp. 249–
256. [Online]. Available: https://proceedings.mlr.press/
v9/glorot10a.html

[50] J. Smith, Spectral Audio Signal Processing, 01 2008.
[51] G. Reymond and A. Kemeny, “Motion Cueing in the

Renault Driving Simulator,” Vehicle System Dynamics,
vol. 34, no. 4, pp. 249–259, 2000.

[52] L. D. Reid and M. A. Nahon, “Flight Simulation Motion-
Base Drive Algorithms. Part 1: Developing and Test-
ing the Equations,” University of Toronto, Institute for
Aerospace Studies, Tech. Rep. UTIAS 296, Dec. 1985.





II
Preliminary Thesis

31





1
Driving Simulation

The following chapter presents important general background information on the topic of the thesis.
In Section 1.1, the chapter starts out with a general description of driving simulators, what their pur-
pose is and how different kinematic configurations can be defined. An extension to this section is
Section 1.4, where an example of a dynamic simulator is presented, including an example of its motion
space definitions. Section 1.2 introduces detailed information on the human sensory system, and more
specifically on the vestibular system. How this information translates to the objective of motion cueing
and how control engineers use the information to trick the human brain is discussed in Section 1.3.
Then, Section 1.5 presents derivations of important relative kinematic equations between a body-fixed
and inertial reference frame. To conclude the chapter, Section 1.6 serves as a short summary as well
as a discussion on what is next.

1.1. Simulator History
The idea of immersing humans in a dynamic simulated environment dates back to the late 1920’s when
Edwin Link, by many regarded as the founder of modern flight simulation, developed a dynamic flight
training device which enabled instrument flying training. In the late 60’ and 70’ after the development
of the transistor, major advancements in digital computing were made which lead to faster computer
speeds, the development of programming languages and ever increasing capacity of storage devices.
These advancements would ultimately lead to the micro-electronics revolution, introducing fast comput-
ers that were able to solve aircraft equations of motions at at least 60Hz. In the 90’s these technological
advancements would finally enable smooth operation of hydraulics present in flight simulators since the
late 60’s [3]. In 1974, it was Volkswagen which developed the first dynamic driving simulator featuring a
three degree-of-freedom (DoF) motion system enabling motion in roll, pitch and yaw. However, it was
in 1985 when Daimler-Benz in Berlin took this concept to the next level by introducing a 6-DoF hexapod
driving simulator, at the time, featuring the world’s largest available workspace. Today almost every car
manufacturer has a large dynamic driving simulator in its possession [86]. In the last 20 years we have
seen that large original equipment manufacturers (OEM) in the automotive industry have pursued the
development of costly, large high dynamic driver-in-the-loop (DIL) simulators. In 2007 Toyota finalized
the development stages of its own high acceleration capable driving simulator. The simulator features
a 9 DoF system consisting of a two-dimensional XY-rails system with a workspace of 35𝑚 by 20𝑚, a
large hexapod structure mounted atop the rails which features a 330∘ movable yawtable [97]. In 2011
Daimler reported that, they also, developed a high-dynamic DIL driving simulator capable of reaching
velocities up to 10𝑚/𝑠2 [23]. In 2017 Renault published that they started with a €25 million project to
build a 2000𝑚2 driving simulator facility [79]. In more recent news, BMW has opened its 14 simulator
rich driving simulation center, containing two large dynamic simulators having a movable mass of 83
and 27 tons, respectively. The center also includes a fleet of 12 smaller dynamic systems [11]. Two
examples of large dynamic workspace driver simulators are given in fig. 1.1a and fig. 1.1b.
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(a) Toyota’s large driver-in-the-loop research simulator [97]. (b) BMW’s large driver-in-the-loop research simulator [11].

Figure 1.1: Two examples of large DIL dynamic research driving simulators.

The reasons for OEM’s pursuing such vast and expensive projects is manifolded. They entail con-
trollability, predictability and reproducibility without risking expensive (prototype) hardware while guar-
anteeing safety of the driver. Various use case examples are summarized below.

• Advanced driver assistance systems (ADAS): In the last decade safety requirements have
become more stringent for OEM’s releasing a new vehicle, and from 2022 all new cars must be
equipped with advanced safety systems [66]. Using a DIL driving simulator a driver is able to drive
a car on the edges of its working envelope while ensuring a safe conduct of the experiment. In
these circumstances many benefits arise in the development and testing of safety critical systems
in a reproducible environment [79].

• Autonomous Vehicle Development: The development of autonomous vehicle software, such
as the transition software required between a state of manual driving to a state of autonomous
driving requires validation on a vast amount of testing kilometers in various driving conditions and
environments [79]. Unlike companies, without a driving simulator, that need to drive millions of
kilometers with an actual car [72], a DIL simulator can help developers perform a large part of
autonomous feature validation in a simulated environment before applying it to real vehicles.

• Car Development: As mentioned before, in a virtual environment drivers are able to drive cars
on the edges of its dynamic envelope without compromising safety. With realistic motion simula-
tors, already early in the development process, valuable feedback can be provided about driving
dynamics [11], making the development process more cost efficient.

• Motion Sickness Studies: Especially important for autonomous car development, motion simu-
lators can be used to investigate the influence of motion types on e.g. motion sickness, alertness,
and sleepiness when drivers are not in direct control of the vehicle, e.g. drivers are assigned a
supervisory task [97][11].

In contrast to the main purpose of simulators used in the aerospace industry, i.e. tools used for
training such as the device built by Edwin Link, driving simulators are mainly used for research pur-
poses.
Understanding the principle that enables dynamic simulators to provide realistic cues to a human par-
ticipant is paramount to be able to grasp the challenges engineers face when developing control algo-
rithms. A key point in this discussion lies in human biology, more specifically on how a human is able
to perceive motion. This aspect is elaborated upon in the next section.

1.2. Human Perception
The goal of a dynamic driving simulator is to mimic the motion of an actual vehicle as realistic as
possible. However, even systems as large as presented earlier, having a motion range of up-to 20-
35 meter, have a motion range orders of magnitude smaller than an actual vehicle on the road which
can travel several hundreds of meters in the horizontal plane. Because of this discrepancy in available
motion space, providing realistic cues is a challenging task. However, weaknesses in human perception
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can be exploited to present illusions of motion.
A human is able to perceive motion through various biological mechanisms:

1. The auditory sensory system is an important mechanism in providing cues about ego motion.
Three main cues are responsible: sound intensity, binaural cues and the Doppler effect. By
internally analysing these cues a human is able to deduce information about velocity and distance
of object traveling through the environment [99].

2. The visual sensory system, which comprises of the eye (sensory organ) and parts of the central
nervous system, is able to give a human an idea about the motion of its body within an environ-
ment. However, the visual sensory system should be complemented with other stimuli from other
perception channels to give accurate motion perception [103].

3. The somatosensory/proprioceptive channel is the mechanism that enables a human to perceive
touch, pressure, pain, position and movement through muscles, joints, ligaments and skin. This
is the driving force for a human to perceive ego motion, i.e. the position and motion of body parts
[38].

4. The vestibular system, located in the inner-ear, involves itself with providing stimuli such that
a human is able to keep balance. Through the vestibular system a human is able to perceive
rotational velocities/rates and translational accelerations by perceiving specific force (accounts
for gravity) [38].

The combination of these four channels gives a human the ability to get an accurate perception of
reality, his ego motion and motion of other objects within an environment. Since motion cueing mainly
concerns itself with the vestibular system, this perceptional channel will be the main consideration for
this thesis.
The vestibular organ lies inside the inner-ear and is composed of the semi-circular canals (SCC) and
the otolith membrane (OTH), a schematic diagram is presented in fig. 1.2.

Figure 1.2: Upper figure: Location of the vestibular organs inside the ear, from [28] based on [95]. Lower figure: Schematic of
the labyrinth and cochlea, the former consisting of the semi-circular canals, utricle and saccule, from [28] based on [38].
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The semi-circular canals contain a small mass of gelatinous material called the cupula. The cupula
contains bundles of hair cells, i.e. the sensory receptors. Next to the cupula each of the canals are
filled with an endolymph fluid, when the body is rotating the endolymph fluid lags behind and will remain
stationary, with respect to the wall of the canal the fluid seems to move in the opposite rotational direc-
tion. Because of the rotational differential between the cupula and fluid, a force acts on the cupula by
the fluid. This force causes the cupula and hairs to bend, which leads to nerve impulses that a human
perceives as rotational rate [38].
The utricle and saccule both contain a macula, which are positioned perpendicular to each other. These
provide sensory information about the orientation of as well as dynamic forces that act on the head.
The latter of which enables a human to perceive both acceleration as well as deceleration in all three
dimensions. Both the utricle and the saccule consist of sensory hair cells which are bundled together,
encompassed by a gelatinous material called the otolith membrane. On top of the hair cells sits a dense
crystalline layer called the otolith. When a human is accelerating forward a force acts on the otolith.
Because the otolith lags behind with respect to the base, i.e. where the hairs attach, the hair bundles
bend together with the otolith membrane which leads to nerve impulses: the human perceives an ac-
celerative force [38]. However, as can be seen in fig. 1.3, when the head is tilted forward or backward
gravity acts on the otolith in a similar fashion as when one decelerates or accelerates, respectively.
What is ultimately perceived is a specific force which is the vectorial sum of the linear accelerations
and the gravity vector [21]. Without any additional perceptional cues, a human is not able to distinguish
between acceleration/deceleration and tilt [28]. With this property it is possible to cue specific forces
other than using translational motion which reduces required motion range.

Figure 1.3: Effect of head tilt on the otolith membrane [38].

Many scientists, have performed experiments, considering both subjective sensation as well as
physiological mechanical properties of the organs (e.g. hair cell transduction properties) to mathe-
matically model the vestibular organs [106] [95] [68][105]. For this thesis, the reduced-order models
proposed by [95] are considered. The mathematical models for the otolith and semi-circular canal are
presented in Equation (1.1) and Equation (1.2) respectively.
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𝑇𝑓𝑜𝑡ℎ =
�̂�𝑖(𝑠)
𝑎𝑖(𝑠)

= 𝐾𝑜𝑡ℎ ⋅
1 + 𝜏𝑎1 ⋅ 𝑠

(1 + 𝜏𝑎2 ⋅ 𝑠)(1 + 𝜏𝑎3 ⋅ 𝑠)
(1.1)

𝑇𝑓𝑠𝑐𝑐 =
�̂�𝑖(𝑠)
𝜔𝑖(𝑠)

= 𝐾𝑠𝑐𝑐 ⋅
𝜏𝜔1 ⋅ 𝑠

(1 + 𝜏𝜔2 ⋅ 𝑠)(1 + 𝜏𝜔3 ⋅ 𝑠)
(1.2)

Where:

1. �̂�𝑖(𝑠) and �̂�𝑖(𝑠) depict the perceived translational acceleration and rotational rate, respectively.
2. 𝑎𝑖(𝑠) and 𝜔𝑖(𝑠) depict the vehicle translational acceleration and rotational rate as input to the

model.

3. 𝐾𝑜𝑡ℎ and 𝐾𝑠𝑐𝑐 are the organ specific gains.
4. 𝜏 depicts the filter specific time shifts necessary to model each organ.
The values of the parameters are shown in table 1.1.

Table 1.1: Vestibular system transfer function parameters.

Parameter Value
[𝐾𝑜𝑡ℎ , 𝐾𝑠𝑐𝑐] [0.4, 5.73]
[𝜏𝑎1 , 𝜏𝑎2 , 𝜏𝑎3] [10, 5, 0.016]
[𝜏𝜔1 , 𝜏𝜔2 , 𝜏𝜔3] [80, 80, 5.73]

In fig. 1.4 the Bode plots of both the otolith as well as the semi-circular canal are shown. Analyzing
the Bode plot the following points can be deduced.
For frequencies above 0.1𝐻𝑧 the magnitude response decreases by 20𝑑𝐵/𝑑𝑒𝑐𝑎𝑑𝑒 which depicts inte-
grator dynamics (1/s), effectively meaning for frequencies larger than 0.1𝐻𝑧 the SCC acts as an inte-
grated accelerometer or velocity transducer which lags 90 degrees behind, i.e. phase shift of around
minus 90 degrees. For low frequencies, between [10−2.5𝐻𝑧, 10−1𝐻𝑧], the SCC serves as an accelerom-
eter, depending on the magnitude, featuring leading or lagging behavior [95].
The Bode plot of the otolith organ shows that in the region [10−1𝐻𝑧, 10𝐻𝑧] the gain remains constant
with little leading behavior for lower frequencies and little lagging behavior for larger frequencies in the
region. This means that in this region the otolith organ acts as an accelerometer, i.e. specific force
transducer [95].
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Figure 1.4: Frequency response of the vestibular models presented by [95].



38 1. Driving Simulation

1.3. Tilt Coordination
In the previous section the different perceptional channels of a human were highlighted and the vestibu-
lar system and its models were investigated. With this information the main objective of a motion cueing
algorithm (MCA) can be explained. The goal of a driving simulator is to minimize the error between:

1. The actual, measurable specific forces acting on the driver in a (virtual) vehicle and simulated
specific forces.

2. The actual, measurable rotational rates acting on the driver in a (virtual) vehicle and simulated
rotational rates.

As briefly discussed in the previous section, this is not easy. In order to make the most out of the
available workspace of a simulator motion cueing algorithms utilize tilt-coordination to induce specific
forces, effectively increasing the reproducible translational acceleration range. An example that shows
the foundation of why this is required is given in the following.
Because of the large differences in motion range between a simulator and a real-world vehicle, cueing
translational accelerations is challenging. Low frequency, long lasting accelerations are impossible to
cue by solely performing translational motions. An example: if a driver wants to accelerate to 100𝑘𝑚/ℎ,
i.e. 27.8𝑚/𝑠, from standstill with a small and constant acceleration of 2𝑚/𝑠2, this would take 27.8/2 =
13.9𝑠𝑒𝑐. The distance spanned during this accelerative manoeuvre equals 193𝑚 (𝑥 = 1/2 ⋅ 𝑎 ⋅ 𝑡2).
Even for a large dynamic simulator, it would be impossible to cue the full accelerative manoeuvre
by translational movement only. However, due to the fact that one is able to induce specific forces
by tilting, given that no other perceptional cues are given, it is possible to simulate such long lasting
accelerations by simply tilting the simulator with a certain angle without using the translational channel
at all, see fig. 1.5. In this specific example, the angle required to simulate a constant acceleration of
2𝑚/𝑠2 equals 11.8∘, the mathematical background given in Equation (1.3).

𝑓𝑥,𝑡𝑖𝑙𝑡 = 𝑔 ∗ 𝑠𝑖𝑛(𝜃)

⇔ 𝜃 = 𝑎𝑠𝑖𝑛 (𝑓𝑥,𝑡𝑖𝑙𝑡𝑔 )

⇔ 𝜃 = 𝑎𝑠𝑖𝑛 ( −2
−9.81) = 11.8

∘

(1.3)

z'
x'

g

fx x

z

θ

Figure 1.5: Schematic showing how tilt-coordination induces a longitudinal specific force.

This is what is called tilt-coordination, a technique to simulate long lasting horizontal accelerations
by performing a tilt motion. In the example given above only one direction was considered. In driving
manoeuvres rotations around both the roll- and pitch-axis occur, i.e. 𝜙 and 𝜃 respectively. Therefore
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the general formulas include both rotation angles. From geometry the formulas can be represented as
shown in Equation (1.4) [7], with the specific force 𝑓 = −𝑎𝑖, i.e. specific force is the inverse of the to
be induced acceleration.

𝑓𝑥,𝑡𝑖𝑙𝑡 = −𝑔 ⋅ 𝑠𝑖𝑛(𝜃)
𝑓𝑦,𝑡𝑖𝑙𝑡 = 𝑔 ⋅ 𝑐𝑜𝑠(𝜃) ⋅ 𝑠𝑖𝑛(𝜙)
𝑓𝑧,𝑡𝑖𝑙𝑡 = 𝑔 ⋅ 𝑐𝑜𝑠(𝜃) ⋅ 𝑐𝑜𝑠(𝜙)

(1.4)

1.4. BMW’s High-Fidelity Simulator
In this thesis, the specifications of the high-fidelity simulator (HF) from BMW will be used in exploratory
investigations, it is the largest dynamic simulator currently in BMW’s fleet.
The HF is a large 9-DoF dynamic simulator shown in fig. 1.6. It consists of a XY-rail system, on top of
which a hexapod is mounted. The legs of the hexapod are connected to a lightweight dome structure in
which amock-up is connected to a 360∘movable yawtable. 15 projectors project the virtual environment
on the wall of the dome to give full 360∘ immersion.

Figure 1.6: BMW’s high-fidelity research simulator [11].

The dimensional specifications of the simulator’s workspace are provided in table 1.2.

Table 1.2: HF simulator dimensional specifications.

Hexapod
𝑥𝐻 ± 1.2𝑚 �̇�𝐻 ± 1𝑚/𝑠 �̈�𝐻 ± 10𝑚/𝑠2
𝑦𝐻 ± 1.2𝑚 �̇�𝐻 ± 1𝑚/𝑠 �̈�𝐻 ± 10𝑚/𝑠2
𝑧𝐻 ± 0.8𝑚 �̇�𝐻 ± 1𝑚/𝑠 �̈�𝐻 ± 8𝑚/𝑠2
𝜙𝐻 ± 26∘ �̇�𝐻 ± 20∘/𝑠 �̈�𝐻 ± 150∘/𝑠2
𝜃𝐻 ± 25∘ �̇�𝐻 ± 20∘/𝑠 �̈�𝐻 ± 150∘/𝑠2
𝜓𝐻 ± 36∘ �̇�𝐻 ± 20∘/𝑠 �̈�𝐻 ± 150∘/𝑠2
XY-Table
𝑥𝑋𝑌 ± 9.5𝑚 �̇�𝑋𝑌 ± 6𝑚/𝑠 �̈�𝑋𝑌 ± 6.5𝑚/𝑠2
𝑦𝑋𝑌 ± 7.9𝑚 �̇�𝑋𝑌 ± 6𝑚/𝑠 �̈�𝑋𝑌 ± 6.5𝑚/𝑠2
Yawtable
𝜓𝑦𝑎𝑤 ± 180∘ �̇�𝑦𝑎𝑤 ± 40∘/𝑠 �̈�𝑦𝑎𝑤 ± 150∘/𝑠2
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1.5. Simulator Kinematics
A motion cueing algorithm uses kinematic information from the virtual vehicle, i.e. accelerations and
rotational rates to control the simulator. This means virtual information is used to control a physical
object in the world. How this influences control design will be explained in the following section where
the relevant reference frames as well as the required transformations and mathematical derivations will
be described.

1.5.1. Relevant Reference Frames
Describing the virtual vehicle-simulator relation, two reference frames are important. The body fixed,
denoted by ’b’, and inertial reference frame, denoted by ’I’. The body fixed reference frame is located
at the driver’s head and follows the ISO 8855 convention for vehicle reference frames [1]. A schematic
of the body-fixed reference frame and its definitions is given in fig. 1.7. The x-axis is defined to go
through the nose of the vehicle, the z-axis is defined upwards perpendicular to the floor of the vehicle,
from the right-hand rule the y-axis is defined to go through the left side of the vehicle. Rotation around
the y-axis is defined to as pitch (𝜃), roll (𝜙) is defined as the rotation around the x-axis and yaw (𝜓) is
defined as the rotation around the z-axis. All rotational directions follow the right-hand rule.

Figure 1.7: Body-fixed reference frame following conventions from ISO 8855 [1], picture from [28].

The inertial reference frame is also a right-hand orthogonal axis-system and is fixed in the real
environment with respect to the defined inertial orientation of the HF simulator, which is independent
of simulator movement. A schematic representation is given in fig. 1.8.

Figure 1.8: Body-fixed reference frame following conventions from ISO 8855 [1] and inertial reference frame, picture retrieved
from [11].

1.5.2. Reference Frame Transformations
In order to describe the orientation of a rigid body defined by its angles (𝜙, 𝜃, 𝜓), i.e. defined in body-fixed
reference frame, in the inertial coordinate system one can use the cardan angles description [98]. The
angles are defined as a sequence of three elementary rotations: x-y-z. When doing so one has to take
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care of the angle direction definitions. A schematic is given in fig. 1.9. When doing the transformation
two subsidiary axis systems are required, in the figure denoted by a prime and double prime for the
first and second subsidiary system respectively. The sequence can be explained as follows:

1. Rotate the body around the 𝑏𝑥 axis with −𝜙 (right-hand rule applies) to the first subsidiary axis
system 𝑏′, for which 𝑏𝑥 = 𝑏′𝑥.

2. Rotate the body around the 𝑏′𝑦 axis with −𝜃 (right-hand rule applies) to the second subsidiary axis
system 𝑏″, for which 𝑏′𝑦 = 𝑏″𝑦.

3. Rotate the body around the 𝑏″𝑧 axis with −𝜓 (right-hand rule applies) to the inertial reference
system 𝐼, for which 𝑏𝑥 = 𝑏′𝑥.

Mathematically, this can be written as:

Τ𝐼,𝑏 = Τ𝑧(−𝜓) ⋅ Τ𝑦(−𝜃) ⋅ Τ𝑥(−𝜙) (1.5)

With the transformation matrix around x, y and z defined in Equation (1.6).

Τ𝑥(𝜙) = (
1 0 0
0 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜙)
0 −𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)

) , Τ𝑦(𝜃) = (
𝑐𝑜𝑠(𝜃) 0 −𝑠𝑖𝑛(𝜃)
0 1 0

𝑠𝑖𝑛(𝜃) 0 𝑐𝑜𝑠(𝜃)
) ,

Τ𝑧(𝜓) = (
𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(𝜓) 0
−𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜙) 0

0 0 1
)

(1.6)

A rotational transformation from inertial to the body reference frame can be described by the inverted
sequence:

Τ𝑏,𝐼 = Τ𝑥(𝜙) ⋅ Τ𝑦(𝜃) ⋅ Τ𝑧(𝜓) (1.7)

Ix

Iy

by 

bz

bx = bx' 

ψ
sequence: x-y-z

ϕ

by'=by'' 

ϕ
bz'

Θ

bz'' = Iz

Θ

bx''

ψ

Figure 1.9: Cardan rotation sequence from body to inertial reference frame [98].

Naming conventions and relative kinematic definitions are given in table 1.3 [64].
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Table 1.3: Naming conventions and definitions of relative kinematics.

Translational

𝐼𝑟𝑃,𝑄
Vector 𝑟 defined in reference frame ’I’
starting at point P and ending at point Q.

Rotational

Τ𝐼,𝑏
Rotation matrix defined to transform a vector from
reference frame ’b’ to ’I’.

𝐼�⃗�𝐼,𝑏
Relative angular velocity between reference frame
’I’ and ’b’ as seen from reference frame ’I’.

Relevant Points

Control reference point (CRP)
Point located at the driver’s head in the body reference
frame of both the virtual vehicle as well as the physical
simulator.

Motion reference point (MRP)

Point located at the center of the yawtable, for the high
fidelity simulator this is located on the floor. Motion
commands are computed wrt MRP defined in
inertial reference frame.

Given the objective of motion cueing, presented in Section 1.3, one is able to understand why these
reference frames and vector transformation descriptions are important. The error between perceived
specific forces and rotational rates that motion cueing tries to minimize is the error in the body refer-
ence frame. However, motion commands to the simulator, often consisting of positional, velocity and
acceleration commands in all DoF’s, need to be given in the inertial reference frame. The following
sequence of actions can be deduced:

1. Measure vehicle kinematic information defined in its own body reference frame.

2. Use these measurements as inputs to the motion cueing algorithm.

3. The MCA transforms these inputs to desirable simulator motion commands in body reference
frame.

4. Transform simulator motion commands from body reference frame to defined inertial reference
frame to obtain actual motion commands.

In the following example the HF simulator is considered. Derivations to define the position, velocity
and acceleration of a point, defined in an inertial reference frame, in the body-fixed reference frame will
be presented in the following. Transforming a positional vector from a body to inertial reference frame
follows the same analogy. For illustration purposes, relevant vectors and reference frames are defined
in fig. 1.10.
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I

CRP

IrI,CRP

IrMRP,CRP
MRP

IrI,MRP

Hexapod floor,
with yawtable

b

Figure 1.10: Vector definition of a point, i.e. CRP, relative to the inertial frame and body reference frame for a system with three
different kinematic elements.

The position of the CRP in inertial space is represented by the vector 𝐼𝑟𝐼,𝐶𝑅𝑃, which can be written
as a superposition of two other vectors:

𝐼𝑟𝐼,𝐶𝑅𝑃 = 𝐼𝑟𝐼,𝑀𝑅𝑃 + 𝐼𝑟𝑀𝑅𝑃,𝐶𝑅𝑃
⇔ 𝐼𝑟𝐼,𝐶𝑅𝑃 = 𝐼𝑟𝐼,𝑀𝑅𝑃 + Τ𝐼,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃

(1.8)

Where ’𝐼’ demeans the inertial reference frame, and ’𝑌’ depicts the reference frame that is connected
to the yawtable on top of the hexapod. When the simulator is in neutral position, both these reference
frames align.
One needs to note that one reference frame is omitted in this schematic which is ’𝐻’, i.e. the reference
frame that is connected to the hexapod. ’𝐻’ is represented by ’𝑌’ through a rotational transformation
around their common z-axis with 𝜓𝑦𝑎𝑤:

Τ𝐼,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃 = Τ𝐼,𝐻Τ𝐻,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃 (1.9)

Which effectively means that:

𝐼𝑟𝐼,𝐶𝑅𝑃 = 𝐼𝑟𝐼,𝑀𝑅𝑃 + Τ𝐼,𝐻Τ𝐻,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃 (1.10)

The change in position of CRP over time can be written as, with 𝑌 ̇⃗𝑟𝑀𝑅𝑃,𝐶𝑅𝑃 = 0:

𝐼�⃗�𝐼,𝐶𝑅𝑃 =
𝑑𝐼𝑟𝐼,𝐶𝑅𝑃
𝑑𝑡

= 𝐼 ̇⃗𝑟𝐼,𝑀𝑅𝑃 + Τ̇𝐼,𝐻Τ𝐻,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃 + Τ𝐼,𝐻Τ̇𝐻,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃
(1.11)

Taking the derivative of the velocity vector and adding the gravitational force vector results in:

𝐼�⃗�𝐼,𝐶𝑅𝑃 =
𝑑𝐼�⃗�𝐼,𝐶𝑅𝑃
𝑑𝑡

= 𝐼 ̈⃗𝑟𝐼,𝑀𝑅𝑃 + Τ̈𝐼,𝐻Τ𝐻,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃 + 2Τ̇𝐼,𝐻Τ̇𝐻,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃 + Τ𝐼,𝐻Τ̈𝐻,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃 + 𝐼�⃗�
(1.12)

Defining the acceleration in the body reference frame gives:
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𝑏�⃗�𝐼,𝐶𝑅𝑃 = Τ𝑏,𝐼
𝑑𝐼�⃗�𝐼,𝐶𝑅𝑃
𝑑𝑡

= Τ𝑏,𝐼 ⋅ 𝐼 ̈⃗𝑟𝐼,𝑀𝑅𝑃 + Τ𝑏,𝐼Τ̈𝐼,𝐻Τ𝐻,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃 + 2Τ𝑏,𝐼Τ̇𝐼,𝐻Τ̇𝐻,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃
+ Τ𝑏,𝐼Τ𝐼,𝐻Τ̈𝐻,𝑌 ⋅ 𝑌𝑟𝑀𝑅𝑃,𝐶𝑅𝑃 + Τ𝑏,𝐼 ⋅ 𝐼�⃗�

(1.13)

Given the cardan angles, one is able to derive the Jacobian matrix, which is a transformation matrix
describing rotational rate in function of a change in cardan angles over time. Using the fact that the
rotational rate vector equals the sum of each individual relative angular velocity vectors [64], where
𝑒𝑟𝑒𝑓,𝑠𝑢𝑏 is the unit vector defined in reference frame ’ref’ for axis ’sub’. Using fig. 1.8:

�⃗� = �̇� ⋅ 𝑒𝐼,𝑧 + �̇� ⋅ 𝑒′ ,𝑦 + �̇� ⋅ 𝑒″ ,𝑥 (1.14)

Writing in body-fixed reference frame gives:

𝑏�⃗�𝐼,𝑏 = �̇� ⋅ 𝑏𝑒𝐼,𝑧 + �̇� ⋅ 𝑏𝑒′ ,𝑦 + �̇� ⋅ 𝑏𝑒″ ,𝑥 (1.15)
⇔ 𝑏�⃗�𝐼,𝑏 = �̇�Τ𝑏,𝐼 ⋅ 𝑏𝑒𝐼,𝑧 + �̇�Τ𝑏,′ ⋅ 𝑏𝑒′ ,𝑦 + �̇�Τ𝑏,″ ⋅ 𝑏𝑒″ ,𝑥 (1.16)
⇔ 𝑏�⃗�𝐼,𝑏 = �̇�Τ𝑥Τ𝑦Τ𝑧 ⋅ 𝑏𝑒𝐼,𝑧 + �̇�Τ𝑥Τ𝑦 ⋅ 𝑏𝑒′ ,𝑦 + �̇�Τ𝑥 ⋅ 𝑏𝑒″ ,𝑥 (1.17)

⇔ 𝑏�⃗�𝐼,𝑏 = Τ𝑥Τ𝑦Τ𝑧 ⋅ (
0
0
1
) ⋅ �̇� + Τ𝑥Τ𝑦 ⋅ (

0
1
0
) ⋅ �̇� + Τ𝑥 ⋅ (

1
0
0
) ⋅ �̇� (1.18)

⇔ 𝑏�⃗�𝐼,𝑏 = (
1 0 −𝑠𝑖𝑛(𝜃)
0 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜙)
0 −𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙)

) ⋅ (
�̇�
�̇�
�̇�
) (1.19)

⇔ 𝑏�⃗�𝐼,𝑏 = J𝑏,𝐼 ⋅ (
�̇�
�̇�
�̇�
) (1.20)

With J𝑏,𝐼 defined as the Jacobian matrix that correlates the rotational velocity with the change in
cardan angles in the body-fixed reference frame. Similarly, the Jacobian for the inertial reference frame
can be found to be:

J𝐼,𝑏 = (
𝑐𝑜𝑠(𝜓)𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜓) 0
𝑠𝑖𝑛(𝜓)𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜓) 0
−𝑠𝑖𝑛(𝜃) 0 1

) (1.21)

1.6. Conclusion and Discussion
This chapter started off with a discussion on the background of automotive dynamic driving simulation.
Automotive driving simulation is a direct spin-off from technology used in the aerospace industry. Con-
trary to dynamic flight simulators, that were initially developed to serve training purposes, simulators in
the automotive industry mainly serve research purposes. Today, almost every large car manufacturer
utilizes a dynamic driving simulator. Since the mid 80’s, when development of large dynamic driving
simulators started, technological advancements have seen continuous growth. It was argued that to
understand why these advancements are still being pursued, a better understanding of human biology,
more specifically human motion perception, was required.
A human can perceive motion through different channels, and organs. Mainly four different channels
are utilized. They can be summarized into the auditory, visual, somatosensory and vestibular sen-
sory system. When combining these four channels a human is able to get an accurate estimate of
ego-motion, as well as motion of other objects in the environment. Motion cueing, i.e. the act of dy-
namically controlling the motion of a simulator, mainly concerns itself with the latter vestibular system.
The vestibular system consists of three important organs, the semi-circular canals, utricle and saccule
organ. The semi-circular canals provide information about ego-rotational rate, whereas the latter two
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organs provide information about ego-acceleration in all directions by sensing specific force. Although
some large dynamic driving simulators feature a translational workspace that can span several meters,
the translational workspace of a car is orders of magnitude larger. To make sure sufficient cues are
presented to the driver, a trick can be utilized. This trick is called tilt-coordination. Without any percep-
tional cues, a human is not able to distinguish between acceleration or deceleration and tilting motion.
This means that by tilting a simulator, a sense of acceleration or deceleration can be simulated. This
effectively reduces the required motion workspace of a simulator.
Finally, the chapter concerns itself with an investigation into simulator kinematics. When controlling a
simulator, the motion commands are given in the inertial frame of reference, however, the motion that
a driver perceives is described in the body frame of reference. It was investigated how translational
as well as rotational motion in one of the frames of reference can be described in the other frame of
reference. Several expressions for transformation as well as Jacobian matrices were derived. These
expressions were found to be required when deriving mathematical expressions that can transform
motion from one frame to another.
To conclude, this chapter served to investigate the mathematical fundamentals required to support an
in-depth investigation in motion cueing control techniques. The first control technique that will be inves-
tigated is called the Classical Washout Algorithm and is presented in Chapter 2. Chapter 2 will utilize
mathematical expressions derived in the preceding chapter.





2
Filter-Based Motion Cueing Algorithm

In the following chapter the filter-based classical washout algorithm (CWA) will be presented. In Sec-
tion 2.1 the block diagram of the CWA will be discussed, with each individual block carefully explained.
In Section 2.1 the correlation between a change in filter parameters and system response will also be
investigated. Based on these findings, the performance of the CWA is analyzed in Section 2.2 using
real vehicle data as input to the algorithm. This chapter will be concluded in Section 2.3 where the
advantages and shortcomings of the presented CWA will be discussed.

2.1. Classical Washout Algorithm
As explained in Chapter 1 the goal of a driving simulator is to mimic the motion of a vehicle. This proves
to be quite a difficult task because the dynamic workspace of an actual vehicle is orders of magnitude
larger than that of a motion simulator. In order to make the most out of the available workspace, motion
cueing control algorithms (MCA) are required. These algorithms transform the virtually driven vehicle
output to a control input to the simulator. The goal of the MCA is to mimic the cues of the vehicle to the
best of its capabilities.

Although motion perception is very subjective, 50 years ago Schmidt and Conrad [85] presented
an objective framework that allows one to investigate motion cueing algorithms by looking at the error
between the specific forces and rotational rates a pilot would perceive in the actual vehicle, and the
ones perceived in the simulator. A smaller error is assumed to provide better motion cueing. They also
proposed a filter-based washout algorithm that is able to simulate aircraft motions, named the ”classical
washout algorithm”. The block diagram of the algorithm is presented in fig. 2.1.

Figure 2.1: Control structure of the classical washout algorithm as defined by Conrad et al. [20].

On the left of the block diagram two sets of inputs are present (either synthetic signals or in-vehicle
acceleration/rotational rate measurements). The first set comprises of the specific forces to be sim-
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ulated and are expressed as the vehicle reference translational accelerations in longitudinal, lateral
and vertical direction. The second set of inputs comprises of the three dimensional angular acceler-
ations: the vehicle roll, pitch and yaw rate. Outputs are the translational acceleration and rotational
rate setpoints in all DoF to the motion system. To get a better understanding of how the input signals
are manipulated, the main blocks are subdivided into five categories, each of which will be individually
explained:

1. Scaling: A scaling vector will be introduced that applies before filtering, this keeps functionality
local. Variable filter gains are omitted and set to a value of ’1’.

2. Splitting the frequency: Low- and high-pass filter that splits the incoming signal into low and
high frequency signals.

3. Transformation body-to-inertial reference frame: Transformation from vehicle body reference
frame to the inertial reference frame and transformation from vehicle rates to Euler rates.

4. Washout: Filter that makes sure the simulator returns to its neutral position after performing a
manoeuvre.

5. Transformation inertial-to-body reference frame: Simulator movements are defined in the
inertial reference frame, however the pilot feels the movement in his/her own body reference
frame. Therefore the motions have to be transformed back to a body-fixed reference frame in
order to compare results.

2.1.1. Scaling
The vehicle acceleration envelope is broad, ranging from around 1g (≈ 10𝑚/𝑠2) in pure forward (ac-
celeration) to around -2g in pure backward longitudinal direction (braking). Depending on the driver
behind the wheel, only parts of the vehicle’s full capabilities are utilized [10]. Because of the unknown
nature of the driver’s acceleration envelope and in order to restrict the simulator displacement [77] a
scaling factor on the inputs to the CWA is used. This means the inputs need to be scaled based on the
worst case scenario.
Next to this, given the framework by Schmidt and Conrad [85], one-to-one cueing of the vehicle’s accel-
eration and rotational rate would be desirable. However, it was found that in flight and driving simulation
one-to-one cueing does not necessarily provide the best perception of self-motion [44]. To this extent
an appropriate scaling factor is beneficial.
The effect of gain selection can be defined as follows. Higher gains will provide higher amplitude sys-
tem setpoints, therefore they need to be carefully tuned in order to not reach the limits of simulator
workspace. Next to larger system excitations, higher gains will also enlarge the effect of false cues but
will also make the driving task more challenging as found by [44]. However, selecting a gain that is too
low will result in numbed down simulator excitation, reducing the motion cueing quality as well as the
driver performance.

2.1.2. Splitting the frequency
As explained in Section 1.2 longitudinal and lateral motions can be replicated by translational acceler-
ations and tilt motions. Due to simulator workspace limitations, low frequency accelerations need to be
replicated by tilt-coordination whereas high frequency accelerations, which require lower simulator dis-
placement, can be emulated by the translational channel of the motion system. It should be noted that
mathematically the high-frequency content can also be simulated by performing tilt-coordination. How-
ever, this will induce large false rotational cues when the rotational rate lies above the human perception
threshold [95][77][45]. To split the input signal into the respective low and high frequency content, a
first order low- and high-pass filter are present, their transfer functions are given in Equation (2.1) and
Equation (2.2) respectively.
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𝐿𝑃(𝑠) =
𝐾𝑙𝑝
𝑠
𝜔𝑙𝑝

+ 1
(2.1)

𝐻𝑃(𝑠) =
𝐾ℎ𝑝 ⋅ 𝑠
𝑠 + 𝜔ℎ𝑝

(2.2)

Two distinctive parameters are present in the transfer function: the gain ”K” and the cut-off frequency
𝜔. The gain determines the scaling, shifting Bode plot up and down, while the cut-off frequency deter-
mines the pass and stop-band of the filter. The Bode plot of the low-pass and high-pass filter can be
found in fig. 2.2.
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Figure 2.2: Frequency response of 1st-order low- and high-pass filters used to split the CWA input frequencies.

Filter parameters are: 𝐾𝑙𝑝 = 𝐾ℎ𝑝 = 1 and 𝜔𝑙𝑝 = 𝜔ℎ𝑝 = 1𝑟𝑎𝑑/𝑠. When using complementary
cut-off frequencies, e.g. 𝜔𝑙𝑝 = 𝜔ℎ𝑝, all input frequencies are utilized. If non-complementary filters
are used, the transition in specific forces due to translation and tilt-coordination creates a non-smooth
function, which could lead to undesirable motion perception. An example of this behaviour (where
𝜔𝑙𝑝 = 0.35𝑟𝑎𝑑/𝑠 &𝜔ℎ𝑝 = 4.30𝑟𝑎𝑑/𝑠) is shown, for a step input on the longitudinal acceleration channel,
in fig. 2.3. Remember that this figure shows the output specific force generated by the simulator, this
means the transformation, washout and conversion to specific forces are also incorporated.
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Figure 2.3: Simulated specific force due to a longitudinal acceleration step input to the CWA, featuring non-complementary first
order split filters.

2.1.3. Transformation from body-to-inertial reference frame
When using a MCA it is important to keep track of the relevant reference frames. As discussed in
Section 1.5, two reference frames are of importance, the vehicle body reference frame and the inertial
reference frame, the specific mathematical transformations concerning both frames are also elabo-
rated upon in Section 1.5. Two transformations are present in the algorithm presented in fig. 2.1. One
transformation featured in the translational channel and one in the rotational channel.

Translational channel
The input to the translational channel is defined in the body coordinates of the vehicle, in this frame

the driver perceives the motion, it thus makes sense to apply the first order low- and high-pass filter
in this frame, which also prevents cross-coupling of the perceived motion stimuli. To show the effect
of cross-coupling, the high-pass translational channel will be singled out, as shown in fig. 2.4 [77].
Whereas, washing out the motion, e.g. making sure the simulator returns to its neutral position after
a manoeuvre, should occur in the inertial reference frame to avoid drift on the simulator position. This
drift can occur due to numerical integration/derivation errors.

Figure 2.4: High-pass translational channel of the CWA algorithm presented by Reid and Nahon [77].

The mathematical substantiation that highlights how cross-coupling can occur is given in Equa-
tion (2.3)-(2.7).
When the 𝑎𝑏 is high-pass filtered in the inertial frame (e.g. ”Highpass” filter block is located aft the
transformation) we get for 𝑎𝑏,𝐼 (the simulator acceleration defined in inertial ref frame). One should
note that the washout term is omitted for simplification (it has no effect on the outcome):
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⃗𝑎𝑏,𝐼 = 𝑡𝑓ℎ𝑝(𝑎𝐼) ⋅ 𝑎𝐼 𝑎𝑛𝑑 𝑤𝑒 𝑘𝑛𝑜𝑤 ∶ 𝑓 = �⃗� − �⃗� (2.3)

𝑓𝑠 = Τ𝑏,𝐼 ⋅ ⃗𝑎𝑏,𝐼 − 𝑔𝑏 (2.4)

Where 𝑓𝑠 denotes the specific force in simulator body reference frame, and Τ𝑏,𝐼 denotes the trans-
formation matrix from inertial to simulator body reference frame. Substituting Equation (2.3) in Equa-
tion (2.4) gives:

𝑓𝑠 = Τ𝑏,𝐼 ⋅ 𝑡𝑓ℎ𝑝(𝑎𝐼) ⋅ 𝑎𝐼 − 𝑔𝑏 (2.5)

From the figure we also know:

𝑎𝐼 = Τ𝐼,𝑏 ⋅ [𝑎𝑏 + 𝑔𝑏] (2.6)

⇔ 𝑓𝑠 = Τ𝑏,𝐼 ⋅ 𝑡𝑓ℎ𝑝(𝑎𝐼) ⋅ Τ𝐼,𝑏 ⋅ [𝑎𝑏 + 𝑔𝑏] − 𝑔𝑏 (2.7)

From Equation (2.3) it can be deduced that if no cross-coupling is to occur, e.g. the x-component
of 𝑓𝑠 consists of only the x-component of 𝑎𝐼, the term 𝑓𝑠 = Τ𝑏,𝐼 ⋅ 𝑡𝑓ℎ𝑝(𝑎𝐼) ⋅ Τ𝐼,𝑏 should be diagonal. In
Section 1.5, the transformation matrices were computed, Τ𝑏,𝐼 and Τ𝐼,𝑏 are defined in Equation (2.8) and
Equation (2.9):

Τ𝑏,𝐼 = (
𝑐(𝜃)𝑐(𝜓) 𝑐(𝜃)𝑠(𝜓) −𝑠(𝜃)

𝑠(𝜙)𝑠(𝜃)𝑐(𝜓) − 𝑐(𝜙)𝑠(𝜓) 𝑐(𝜙)𝑐(𝜓) + 𝑠(𝜙)𝑠(𝜃)𝑠(𝜓) 𝑠(𝜙)𝑐(𝜃)
𝑐(𝜙)𝑠(𝜃)𝑐(𝜓) + 𝑠(𝜙)𝑠(𝜓) 𝑐(𝜙)𝑠(𝜃)𝑠(𝜓) − 𝑠(𝜙)𝑐(𝜓) 𝑐(𝜙)𝑐(𝜃)

) (2.8)

Τ𝐼,𝑏 = (
𝑐(𝜃)𝑐(𝜓) 𝑐(𝜓)𝑠(𝜃)𝑠(𝜙) − 𝑠(𝜓)𝑐(𝜙) 𝑐(𝜓)𝑠(𝜃)𝑐(𝜙) + 𝑠(𝜓)𝑠(𝜙)
𝑐(𝜃)𝑠(𝜓) 𝑠(𝜙)𝑠(𝜃)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓) 𝑐(𝜙)𝑠(𝜃)𝑠(𝜓) + 𝑠(𝜙)𝑐(𝜓)
𝑠(−𝜃) 𝑠(𝜙)𝑐(𝜃) 𝑐(𝜙)𝑐(𝜃)

) (2.9)

In which ”𝑐” and ”𝑠” denote the cosine and sine respectively. Looking at thematrices in Equation (2.8)
and Equation (2.9) it can be deduced that for 𝑓𝑠 = Τ𝑏,𝐼 ⋅ 𝑡𝑓ℎ𝑝(𝑎𝐼) ⋅ Τ𝐼,𝑏 to be diagonal, either the filter
is applied before transforming to the inertial frame (e.g. transformation not present in the equation),
or Τ𝑏,𝐼 ≈ 𝐼 and Τ𝐼,𝑏 ≈ 𝐼 which is the case when the simulator angles are small, e.g. 𝜙 ≈ 𝜃 ≈ 𝜓 ≈ 0
such that 𝑠(𝜙, 𝜃, 𝜓) ≈ 0 & 𝑐(𝜙, 𝜃, 𝜓) ≈ 1. The same philosophy holds regarding the filter present in the
rotational channel.

Rotational channel
The vehicle rotational rates also need to be transformed to its respective Euler rates. The transfor-

mation is given in Equation (2.10).

�̇�𝐼 = 𝐽𝐼𝑠 ⋅ ̇𝛽𝑣 (2.10)

With the Jacobian 𝐽𝐼,𝑏 equal to Equation (2.11). For which the mathematical derivation is given in
Section 1.5.

𝐽𝐼,𝑏 = (
𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜓) −𝑠𝑖𝑛(𝜓) 0
𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓) 0
−𝑠𝑖𝑛(𝜃) 0 1

) (2.11)

2.1.4. Washout

Translational channel
As explained earlier, the translational motion bandwidth of a simulator is very limited w.r.t. the actual
vehicle range of motion. Therefore it is necessary that the simulator moves back to its neutral position
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after performing a manoeuvre. To establish this behaviour, the single high-pass filter used in the fre-
quency divider is not sufficient. An extra washout filter is necessary that induces an acceleration back
to neutral. In order to examine what order is required, the final value theorem can be used [67]. The
response to an input in the time domain can be defined as the convolution shown in Equation (2.12).

𝑦(𝑡) = ∫
𝑡

0
ℎ(𝑡 − 𝜏)𝑢(𝜏)𝑑𝜏 (2.12)

Where 𝑦(𝑡) is the output due to an input 𝑢 at time 𝜏. In order to know the steady state response
characteristics, e.g. 𝑡 → ∞, the limit operator is applied to Equation (2.12). However, dealing with
convolutions in a limit is unnecessarily difficult, transforming the convolution integral to the Laplace
domain produces a multiplication, see Equation (2.13).

lim
𝑡→∞

𝑦(𝑡) = lim
𝑡→∞

∫
𝑡

0
ℎ(𝑡 − 𝜏)𝑢(𝜏)𝑑𝜏 ⇔ lim

𝑠→0
𝑠 ⋅ 𝑈(𝑠) ⋅ 𝑌(𝑠) (2.13)

To check what order the extra washout filter should have, 3 scenarios will be investigated. It should
be noted that for this specific final value analysis, standard order filters are used instead of the CWA
filters presented by [20]. In [20] the third-order filter is represented by a multiplication of a first-order
high-pass filter with low cut-off frequency (𝜔ℎ𝑝 = 0.2 − 0.3𝑟𝑎𝑑/𝑠) with a second-order high-pass filter.

1. Only the 1st-order high-pass filter, no washout.

2. Extra 1st-order washout, behaving like a 2nd-order filter.

3. Extra 2nd-order washout, behaving like a 3rd-order filter.

The equations used are given in Equation (2.14) - (2.16).

𝐻𝑃1𝑠𝑡(𝑠) =
𝐾ℎ𝑝 ⋅ 𝑠
𝑠 + 𝜔ℎ𝑝

(2.14)

𝐻𝑃2𝑛𝑑(𝑠) =
𝑠2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2𝑛
(2.15)

𝐻𝑃3𝑟𝑑(𝑠) =
𝑠3

𝑠3 + 3𝜔𝑛𝑠2 + 3𝜔2𝑛𝑠 + 𝜔3𝑛
(2.16)

Since the input to the translational channel is on acceleration level, it has to be integrated twice to
give insight in the behaviour at position level, e.g. 𝑈(𝑠) = 1

𝑠 ⋅
1
𝑠2 =

1
𝑠3 . Applying the final value theorem

to each of these equations, results in the steady state values found in Equation (2.17) - (2.19).

lim
𝑡→∞

𝑦1𝑠𝑡(𝑡) = lim
𝑠→0

𝑠 1𝑠3
𝐾ℎ𝑝𝑠
𝑠 + 𝜔ℎ𝑝

= ∞ (2.17)

lim
𝑡→∞

𝑦2𝑛𝑑(𝑡) = lim
𝑠→0

𝑠 1𝑠3
𝑠2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2𝑛
= 1
𝑤2𝑛

(2.18)

lim
𝑡→∞

𝑦3𝑟𝑑(𝑡) = lim
𝑠→0

𝑠 1𝑠3
𝑠3

𝑠3 + 3𝜔𝑛𝑠2 + 3𝜔2𝑛𝑠 + 𝜔3𝑛
= 0 (2.19)

From this calculation it can be clearly seen that only a 3rd-order filter returns the simulator to its
neutral position, next to the 1st-order high-pass filter, a 2nd-order washout filter should be applied.
This is highlighted in fig. 2.5 where the simulator position, velocity and acceleration response to a step
input on acceleration level is plotted.
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Figure 2.5: Influence of washout strategy on simulator response due to a step input on acceleration level.

Rotational channel
Rotational car motions, e.g. roll, pitch and yaw-rate, can be emulated by the equivalent simulator

rotational motion. Two key differences between aircraft and car movement are present. First of all,
the rolling and pitching motion range of a car is limited compared to the motion range of an aircraft.
Next to this, in absence of a long-lasting banked turn, a car cannot perform a coordinated roll motion,
this means that the specific force vector does not align with the driver cell (as is the case in an aircraft
coordinated turn). This makes it possible to feed the input pitch and roll rate directly to the algorithm
without applying a filter. According to [80], this significantly enhances motion cueing performance.
Mind that an analogous reasoning cannot be followed when considering the yaw rate. Due to a car’s
extensive yawmotion range, the rate has to be filtered, unless an unlimited range of motion yaw table is
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present. Therefore a 2nd-order washout filter is present in the yaw-rate channel, the generic 2nd-order
filter is shown in Equation (2.20).

𝐻𝑃2𝑛𝑑 =
𝑠2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2𝑛
(2.20)

Analogous to Equation (2.19) it can be proven that a step input on the yaw rate (𝑈(𝑠) = 1/𝑠) is washed
out by a 2nd-order filter on the yaw angle level (𝑈(𝑠) has to be integrated once 𝑈(𝑠) = 1/𝑠2). The
mathematical proof is given in Equation (2.21).

lim
𝑡→∞

𝑦(𝑡) = lim
𝑠→0

𝑠 ⋅ 𝐻𝑃2𝑛𝑑 ⋅ 𝑈(𝑠) = lim
𝑠→0

𝑠 1𝑠2
𝑠2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2𝑛
= lim

𝑠→0
𝑠

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2𝑛
= 0 (2.21)

2.1.5. Transformation from inertial-to-body reference frame
The outputs of the CWA are the simulator accelerations and rotational rates for all simulator DoF’s
(𝜙/𝜃/𝜓) in the inertial reference frame, integrating the accelerations twice gives the full 6 DoF simulator
displacement. However, in order to perform a quantifiable investigation on motion cueing performance,
a comparison needs to be made between the reference perceived specific forces and the simulated
specific forces. Therefore, the simulator accelerations need to be transformed to the equivalent accel-
erations in the body reference frame. The accelerations, e.g. specific forces, in simulator reference
frame are given by the equation in Equation (2.22):

𝑓𝑠 = Τ𝑏,𝐼 ⋅ ⃗𝑎𝑏,𝐼 − 𝑔𝑏 (2.22)

With Τ𝑏,𝐼 equal to Equation (2.8). From Equation (1.4), and using the small angle approximation,
𝑐𝑜𝑠(𝜙) ≈ 1 and 𝑓𝑧,𝑡𝑖𝑙𝑡 ≈ 𝑔, the equations in Equation (2.23) and Equation (2.24) hold.

𝑓𝑥,𝑡𝑖𝑙𝑡 = 𝑔 ⋅ 𝑠𝑖𝑛(𝜃) (2.23)
𝑓𝑦,𝑡𝑖𝑙𝑡 = −𝑔 ⋅ 𝑠𝑖𝑛(𝜙) (2.24)

For the rotational rates the transformation, found in Equation (2.25), applies.

̇𝛽𝑠 = 𝐽𝑏,𝐼 ⋅ ̇𝛽𝑏,𝐼 (2.25)

The Jacobian 𝐽𝑏,𝐼 is equal to the one found in Equation (1.19).

2.2. Classical Washout Algorithm Performance
Section 2.1 explained the complete working of the CWA. However, one critical point is not yet explained.
A lot of variables can be tweaked to significantly alter the behaviour and performance of the algorithm,
an example was already given in fig. 2.3 which showed the result of choosing non-complementary cut-
off frequencies for the low- and high-pass filter. This section aims to give a clear overview of how a
change in a certain parameter changes the overall performance. First the individual parameters for
each specific filter will be investigated using simple synthetic input signals. After these results are
presented, the output to real vehicle data will be examined.

2.2.1. Filter analysis
Two different kind of filters are present in this algorithm, 1st- (low-pass and high-pass) and 2nd-order
high-pass filters (translational and rotational washout). It is assumed that investigating the two types
of filters, present in the translational channel, will give a complete overview on how the filter param-
eters relate to the system response. In order to compare the responses, the following unity baseline
parameters are used throughout this investigation, they can be found in table 2.1.
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Table 2.1: Unity filter parameters for the translational channel of the CWA in x-direction.

Parameter Base Value Unit
𝐾ℎ𝑝 1 [-]
𝜔ℎ𝑝 1 [𝑟𝑎𝑑/𝑠]
𝐾ℎ𝑝𝑤𝑎𝑠ℎ 1 [-]
𝜔ℎ𝑝𝑤𝑎𝑠ℎ 1 [𝑟𝑎𝑑/𝑠]
𝜁ℎ𝑝𝑤𝑎𝑠ℎ 1 [-]

The influence of changing the gain of the 1st-order filter will be examined first. The expectation
is that the initial acceleration of the simulator will be scaled with respect to the step input, however
due to the 2nd-order washout filter this initial response will be damped out quickly. Due to the larger
amplitude response, effective for larger gains, the (negative) accelerations due to washout are expected
to be more significant, this effect could ultimately result in false cues: a motion direction in which no
motion is expected. It is also expected that larger gains result in larger simulator displacement. This
could lead to disruptive false cues when the simulator reaches its limits and as such is not desirable.
The simulator acceleration response and the simulator displacement due to a unit step input on the
x-acceleration channel are shown in fig. 2.6.

Figure 2.6: Specific force and simulator displacement response for a high-pass filter gain equal to 𝐾ℎ𝑝 = [0.5, 1, 2].

From the figure it can clearly be seen that there is a strong correlation between the gain and the
washout effect, higher gains results in larger changes in acceleration due to the washout. As expected
larger gains also increase the simulator displacement significantly. A gain of 2 was also tested, when
thinking about the real life implication of having a gain larger than ”1”, the use of such a gain is ques-
tionable. The simulator response would be an overreaction to the actual input signal, this can and, as
experimentally proved, will result in unrealistically strong motion perception [46].

The other parameter that can be altered in the 1st-order filter is the cut-off frequency. Changing
this variable will shift the magnitude and phase plots shown in fig. 2.2 to the right for larger 𝜔ℎ𝑝 and to
the left for decreasing values of 𝜔ℎ𝑝. Practically this means that the pass-band of the filter decreases
with increasing 𝜔ℎ𝑝, meaning less of the low frequency signal content will be simulated by simulator
translational acceleration and vice versa. It is expected that increasing 𝜔ℎ𝑝 will result in a faster de-
cline of motion simulation after the initial response, e.g. faster transients resulting in smaller simulator
displacements. Smaller values of 𝜔ℎ𝑝 are expected to spread out the motion simulation, e.g. slower
transients resulting in larger simulator displacements. These expectations are confirmed when looking
at fig. 2.7.
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Figure 2.7: Specific force and simulator displacement response for cut-off frequencies
𝜔ℎ𝑝 = [0.1, 1, 10] 𝑟𝑎𝑑/𝑠.

The same analogy can be followed when investigating the performance of the 2nd-order washout
filter. Three parameters can be altered in this filter: the gain, the cut-off frequency and the damping
coefficient. Since the washout filter is of 2nd-order, frequencies not included in the pass-band are being
attenuated twice as fast than that of a unity first order high-pass filter. This is highlighted in the Bode
plot of a unity 2nd-order (e.g. all parameters equal 1) filter shown in fig. 2.8.

Figure 2.8: Frequency response plots of unity first and second order high-pass filter.

This means that the choice of cut-off frequency will have a stronger effect on the signal when com-
pared to the first order filter, this is visible when comparing the response in fig. 2.7 with fig. 2.9. Because
the two filters are placed in series, altering the gain of the 2nd-order filter will produce the same results
as discussed previously in the 1st-order case. Changing the frequency and damping coefficient do
have different effects though, a higher cut-off frequency results in stronger washout effects resulting
in faster and thus stronger perceived transient motion, this could lead to a degradation of motion cue-
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ing as false cues are more vividly present. As explained earlier, faster transients correlate with lower
simulator displacement, the opposite occurs for lower values of 𝑤𝑛2𝑛𝑑

If the system is underdamped, 𝜁 < 1, a low frequency sinusoidal washout effect will occur which
leads to larger simulator displacement. Overdamping the systemwill lead to a softer washout response,
e.g. a softer transient response which ultimately leads to a smaller displacement than is the case for
the critically damped, 𝜁 = 1 or underdamped system. For both parameters the respective responses
can be found in fig. 2.9 and fig. 2.10.

Figure 2.9: Specific force and simulator displacement response for cut-off frequencies 𝜔ℎ𝑝 = [0.1, 1, 10] 𝑟𝑎𝑑/𝑠 in the
2nd-order washout filter.

Figure 2.10: Specific force and simulator displacement response for damping coefficients 𝜁ℎ𝑝 = [0.5, 1, 1.5] in the 2nd-order
washout filter.

2.2.2. Key points filter investigation
The goal of an MCA is to, as closely as possible, match the specific force cues one would perceive
in the vehicle by simulator motion without reaching the simulator limits. While keeping the amount of
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false cues to a minimum. Strong false cues have the ability to destroy the performance of the MCA
completely, even if the average specific force error is small. In the previous examples a step input
on the acceleration equal to 1𝑚/𝑠2 was considered, when trying to simulate an actual vehicle much
higher accelerations and decelerations can occur. In order to remain within simulator limits, the filter
parameters need to be properly tuned. When one starts to alter the values of these parameters, it is
helpful if a guess can be made on how the change will affect the cueing behaviour. Therefore a small
summary of the results found in the previous subsection is presented [41].

1. Reducing surge and sway displacement

1.1. Decrease 𝐾𝑥/𝐾𝑦
1.2. Increase 𝜔ℎ𝑝𝑥 /𝜔ℎ𝑝𝑦 , this also applies to the 2nd-order washout, however keep in mind that

the washout characteristics also change correspondingly.
1.3. Decrease 𝜔𝑙𝑝𝑥 /𝜔𝑙𝑝𝑦 , larger tilt coordination increases surge, sway displacement
1.4. Increase 𝜁

2. Reduce angular displacement

2.1. Increase 𝐾 for roll, pitch and yaw
2.2. Decrease 𝜔ℎ𝑝 for roll, pitch and yaw
2.3. Decrease 𝜁 for roll, pitch and yaw

2.2.3. CWA performance real vehicle data
Up until now, analysis of how the CWA works was done by singling out a certain channel, apply an input
to it and see how it behaves on the output. However, when simulating an actual vehicle, all channels
get used at the same time. Because the channels influence each other the results might not turn out
as expected. And since this the following analysis is performed offline without an actual simulator, the
assessment of performance can only be done by comparing the specific forces and the angular rates
present in vehicle and simulator. This is deemed to be sufficient, a lot can already be said without having
a real simulator present. Tuning the filter parameters will be difficult however, usually the parameters
are tuned by trial and error based on motion cueing performance scores given by the pilot. Since this
is not possible, cut-off frequencies and damping ratios are based on the parameters used by BMW,
these are shown in table 2.2.

Table 2.2: Filter parameters used in the classical washout algorithm, values obtained through BMW.

Parameter Base Value Unit
𝐾𝑥,𝑦,𝑧 [0.11, 0.11, 0.11] [-]
𝐾𝑟𝑜𝑙𝑙,𝑝𝑖𝑡𝑐ℎ,𝑦𝑎𝑤 [1.0, 1.0, 0.2] [-]
𝐾𝑡𝑖𝑙𝑡−𝑐𝑜𝑜𝑟𝑑 [0.35, 0.35, 0.35] [-]
𝜔ℎ𝑝 [1.50, 2.00, 1.50] [𝑟𝑎𝑑/𝑠]
𝜔𝑙𝑝 [1.50, 2.00, 1.50] [𝑟𝑎𝑑/𝑠]
𝜔ℎ𝑝𝑤𝑎𝑠ℎ [0.30, 0.30, 0.30] [𝑟𝑎𝑑/𝑠]
𝜁ℎ𝑝𝑤𝑎𝑠ℎ [1.50, 1.50, 1.50] [-]
𝜔𝑦𝑎𝑤𝑤𝑎𝑠ℎ 0.1 [𝑟𝑎𝑑/𝑠]
𝜁𝑦𝑎𝑤𝑤𝑎𝑠ℎ 1.50 [-]

The values in this table represent the parameter value in x,y,z-direction and value for roll, pitch and
yaw respectively. It can also be noted that complementary filters will be used for which 𝜔ℎ𝑝 = 𝜔𝑙𝑝 and
only a 2nd-order washout filter for the yaw rate is used with a very low cut-off frequency, it is reasoned
that scaled down reference tracking is more important than high frequency yaw tracking. Because the
roll and pitch rate are generally small in cars they do not have to be filtered.
The tuned parameters were utilized for a simulator with dimensions found in table 2.3.
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Table 2.3: Simulator specifications used for CWA tuning [28].

Hexapod
𝑥𝐻 ± 0.28𝑚 �̇�𝐻 ± 2𝑚/𝑠 �̈�𝐻 ± 25𝑚/𝑠2
𝑦𝐻 ± 0.25𝑚 �̇�𝐻 ± 1.7𝑚/𝑠 �̈�𝐻 ± 25𝑚/𝑠2
𝑧𝐻 ± 0.22𝑚 �̇�𝐻 ± 1.6𝑚/𝑠 �̈�𝐻 ± 25𝑚/𝑠2
𝜙𝐻 ± 20∘ �̇�𝐻 ± 135∘/𝑠 �̈�𝐻 ± 2500∘/𝑠2
𝜃𝐻 ± 20∘ �̇�𝐻 ± 130∘/𝑠 �̈�𝐻 ± 2000∘/𝑠2
𝜓𝐻 ± 20∘ �̇�𝐻 ± 135∘/𝑠 �̈�𝐻 ± 3000∘/𝑠2

A vehicle input data set, provided by BMW [70], is used. A snapshot of the translational and ro-
tational input signals are given in fig. 2.11 and fig. 2.12, the complete signal is given in fig. A.1 and
fig. A.2.
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Figure 2.11: Translational vehicle data from BMW test run.
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Unfiltered input data set on rotational channel
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Figure 2.12: Rotational vehicle data from BMW test run.
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Because these measurements are noisy (thick lines in the curve), around 50𝐻𝑧, they are 1Hz low-
pass filtered before they are used as input. One thing that can be noted as well is the lack of acceleration
data in z-direction, this occurred due to a logging mistake. A snapshot of the resulting simulator specific
forces and rotational rates to this set of inputs is given in fig. 2.13 and fig. 2.14, the full response can
be found in fig. A.3 and fig. A.4.

100 150 200 250

Time [s]

-4

-2

0

2

4

S
p
e
c
if
ic

 F
o
rc

e
 [
m

/s
2
]

Specific force in x-direction

Reference specific force

Simulated specific force

100 150 200 250

Time [s]

-4

-2

0

2

4

S
p
e
c
if
ic

 F
o
rc

e
 [
m

/s
2
]

Specific force in y-direction

Reference specific force

Simulated specific force

100 150 200 250

Time [s]

-8

-6

-4

-2

0

2

S
p
e
c
if
ic

 F
o
rc

e
 [
m

/s
2
] 10-3 Specific force in z-direction

Reference specific force

Simulated specific force

Figure 2.13: Reference vs simulated specific forces in body coordinate reference frame in x, y, and z-direction.
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Figure 2.14: Reference vs simulated rotational rates in body coordinate reference frame for roll, pitch, and yaw.

A snapshot of the resulting simulator displacements and rotational simulator angles is given in
fig. 2.15 and fig. 2.16, the full translational and rotational displacement is presented in fig. A.5 and
fig. A.6.
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Figure 2.15: Simulator displacement in x, y, and z-direction tracking real vehicle data using CWA.

Figure 2.16: Roll, pitch and yaw simulator angles tracking real vehicle data using CWA.

From the displacement figures it can be seen that with the set of parameters presented in table 2.2
the bandwidth of the motion platform is almost maximally utilized. However, these graphs do not say
much about the performance of the tuning. Figure 2.13 and fig. 2.14 is what should be investigated.
Two things that one can notice right away, at first glance it looks like the simulated specific forces in
x- and y- direction are actually quite good and follow the reference quite well, the one in z-direction
not so much. However, the scale of the latter one is 10−3, specific forces on this scale are negligible.
One should not forget that the acceleration in x- and y-direction is being simulated by the translational
acceleration and tilt of the simulator. Due to the limited bandwidth in translational direction, most of the
motion is simulated by tilting. This behaviour is shown in fig. 2.17.
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Figure 2.17: Specific force tracking in x-direction using CWA.

This figure gives a little bit more insight into how ”good” the performance of the CWA, in translational
direction, actually is. The first thing one can notice is that the majority of the cueing is done by tilting
the simulator. This is highlighted when looking at the rotational simulator excitations in fig. 2.16, where
rotation angles larger than 10 degrees are common. One can also see that, due to the tilt rate limiter,
tracking of the reference specific force is not possible. This results for t = [183𝑠-185𝑠], when the driver
start accelerating, in a missing cue. For t = [202𝑠-206𝑠], a lot of false cues are present. This will
deteriorate the experienced performance of the motion cueing significantly. It could be argued that in
this case removing the tilt-rate limiter, but limiting the amount of tilt the simulator can attain would result
in better cueing quality.

Secondly, it seems that the performance of the rotational rate channel is very poor. This has a very
good reason. The simulated rotational rates that are presented are a summation from the rotational
channel output rates and the rates due to tilt-coordination. Even though in this simulation a rate limiter
on the tilt-coordination is present which limits the rate to be below the threshold of perception, the
tilt-coordination rate is included completeness. In order to deduce the performance of the rotational
channel the motion is split in both counterparts. A snapshot of the roll rate is plotted in fig. 2.18, which
confirms that the CWA does what it is supposed to do (the same holds for the pitch rate).
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Figure 2.18: Simulator roll rate split-up in its roll motion due to tilt-coordination and the CWA rotational channel component.

The simulated yaw motion is a scaled down version of the reference. This is due to the limited
yaw motion a hexapod simulator can provide in comparison to the reference yaw. As explained earlier
a solution to this problem would be to install the hexapod on a yaw table. Because this comes at
increased cost the added value should be carefully examined.

2.3. Advantages & shortcomings
To conclude this chapter, the main advantages and shortcomings of the CWA are presented. As one
could read in the previous sections, the general working of the CWA is easy to understand. When
applied on a real simulator, changes in between simulations are easily made with the performance
losses/gains easily guessed. The algorithm is also computationally efficient and shows no problem to
run real-time at 100Hz [28], making the CWA perfect for running quick simulations. Due to the lack
of real-time alternatives and more than 50 years of development[85], CWA became the benchmark
algorithm for motion cueing. Quite some disadvantages are present as well. First of all tuning of
the algorithm can be quite cumbersome, and since the algorithm is linear it needs to be tuned for
the worst case scenario as reaching a simulator limit can be very destructive for motion perception.
This has as effect that all other motions are scaled down heavily and can be perceived as numb.
Secondly, a constant trade-off has to be made when altering the values of the filters, e.g. when altering
the gain one has to make the trade-off between less scaling of input signal, which also increases
the proportion of false cues as well as increasing simulator displacement. This effect is even more
noticeable when considering very high motion range, redundant DoF simulators utilizing a tripod or x-y
table. Next to this, very high transient input signals, e.g. acceleration into abrupt coasting, are simulated
by a quick negative translational motion which introduces false cues. Lastly, an untouched extension
of the algorithm is called pre-positioning, which increases the effective useable motion motion range
significantly. However, even when using pre-positioning the algorithm still needs to be tuned for the
worst case scenario.

Even though quite some negative points exist, the fact remains that the CWA is a flexible, simple to
build control algorithm that works in all scenarios and has proven to do so for the past 50 years. How-
ever, in recent years the car industry has put a lot of effort and research in more advanced, optimization-
based algorithms. A real-time version of an approach called ”model predictive control” will be examined
in Chapter 3.
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Model Predictive Control

3.1. MPC Paradigm
In Chapter 2 the CWAwas described. It was discussed that the CWA is a robust algorithm that provides
predictable motion cueing quality. It was also shown that although the algorithm is fast and easily un-
derstood, it can be cumbersome to tune. Phase lead and lag, a phenomenon inherently coupled with
filtering, induces missing and false cues. Because no explicit constraints can be included, the inputs
need to be scaled down which reduces motion of the simulator, thus motion sensation, and reduces
the amount of available workspace that is utilized.
For these reasons, more sophisticated and promising techniques have been researched in the last two
decades that try to eliminate these issues. One of these techniques, called model predictive control
(MPC) or receding horizon control (RHC), explicitly eliminates some of the problems that occur with the
CWA and is therefore seeing a lot of attention by researchers in the industry [5][7][28][51]. Dagdelen
et al. [22] were the first to research the use of MPC MCA applications. MPC tries to solve an optimiza-
tion problem each step. Using a model of the system to predict future outputs over a fixed time horizon,
e.g. the prediction horizon 𝑁𝑝, it enables the computation of an optimal input sequence over a fixed
time horizon, called the control horizon 𝑁𝑐. The optimal control sequence is calculated by minimizing
a cost function that incorporates costs on reference tracking, inputs, changes in inputs and final state.
Due to simplification and possible disturbances no guarantee can be given that the predicted system
state equals the true system state. Therefore, only the first input of the control sequence is used as
the input to the system. The optimization is repeated for the next step, with the time horizon shifted
one step, hence the name ”receding horizon control” [59] [63]. A schematic of this principle is shown
in fig. 3.1.

...

Figure 3.1: Schematic of MPC receding horizon control [8].

65
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A step-by-step plan of the MPC algorithm is given below [76]. The steps and the respective deriva-
tions of mathematical equations will be elaborated upon in section 3.2.

MPC Algorithm

1. Establish a kinematic simulator model that links system states, control inputs and system
outputs, e.g. 6-DoF kinematic simulator model.

2. Calculate constant evolution and prediction matrices 𝐹 and 𝑆

3. Initialize model parameters: input vector 𝑢0 and initial state 𝑥0
4. Start of iterative algorithm:

(a) Update the reference trajectory for the next prediction horizon, i.e. 𝑁𝑝 steps
(b) Calculate Hessian matrix 𝐻 and matrix ℎ of the cost function: argmin 1

2𝑥
′𝐻𝑥 + ℎ′𝑥

(c) Calculate constraint matrix 𝐴 and inequality matrix 𝑏 conform: 𝐴 ⋅ 𝑥 ≤ 𝑏
(d) Add slack variables to make output/state constraints soft
(e) Calculate optimal control sequence 𝑢 for control horizon 𝑁𝑐
(f) Only apply 𝑢𝑘+1, i.e. input for next time step, as input to the system
(g) Calculate or measure Δ𝑥𝑘+1 and 𝑦𝑘+1, i.e. the change in state and the total output of

the system
(h) Update initialization parameters 𝑢0 and 𝑥0, total current input and state with applied

input and measured/calculated change in state
(i) Repeat from step (a) until end of simulation

The reason why MPC as MCA has seen much research in the past years is because it can explicitly
incorporate constraints on input and state level and use state feedback to improve the prediction on
future states in the optimization problem [71]. Also much research is performed to establish faster, more
accurate and efficient solvers that can be used in real-time control optimization[? ][34] [61][88][104].
One of MPC’s big advantages, being able to optimize based on the error between predicted output and
the reference trajectory over the prediction horizon 𝑁𝑝, is also the main disadvantage of using MPC as
MCA. First of all it means that at each step a global optimization problem has to be solved at a frequency
of at least 100𝐻𝑧 (general running frequency of a driving simulator). Secondly, this means at each step
a causal reference of 𝑁𝑝 steps for future vehicle motion is required. Vehicle motion is dependent on
multiple parameters influenced by the environment and the driver [94]. When an accurate estimate of
the reference is required, a driver referencemodel is required [24]. This dependency is not deterministic
but of stochastic nature and is the reason it is hard to predict. Even though this is the case, several
studies towards using MPC as MCA have been conducted [26][71][14]. From these studies the effect
on cueing quality has been established. Two noteworthy mentions:

1. It has been shown that motion cueing fidelity in a passive drive using oracle logic, i.e. data
from a prerecorded drive is available that can be used as perfect reference trajectory, increases
significantly when compared to CWA [28]

2. Using oracle logic in real-time simulation is not possible because future driver inputs are not
known at each time step. Therefore, a prediction for future motion states as reference is required.
Ellensohn et al. heavily simplified this prediction to find out how it affects motion cueing fidelity.
In this study it was assumed that the current state of the vehicle is constant over the prediction
horizon and is used as constant reference for the next 𝑁𝑝 steps. This is a basic strategy, which
can be improved significantly. However, even with such a bad prediction, it is experimentally
proven that the MPC MCA still outperforms the CWA [26].

From these two points it is assumed that if better prediction for future vehicle motion states exists,
cueing fidelity will improve, in the limit converging asymptotically to the oracle fidelity scores. Because
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there is a large, yet unexplored region of performance, it is decided that it is important to thoroughly
investigate and understand the use of MPC in motion cueing by programming a MPC controller from
the ground up using the same reference drive as described in Section 2.2. When successful, this
research is anticipated to fundamentally increase the understanding on how MPC works, e.g. show
its advantages and limitations. This can be accomplished by comparing the simulation results with the
results presented in Chapter 2. Ultimately a working controller that is able to control a simplified model
of the system presented in Chapter 2 in table 2.3 in multiple DoF can be used to give an indication on
how different prediction models influence motion cueing performance. In other words, it would become
a valuable tool that can be used in the future to hypothesize on expected results before conducting
real-life experiments.

3.2. MPC-based MCA
In the previous section the working of a general MPC was given. However, in the specific mathematical
substantiation several details and proofs are important to gain the knowledge required to understand
the implementation of the algorithm. First, two models from two different perspectives are introduced
in Subsection 3.2.1. With the models available, the cost function will be presented and the derivation of
the general quadratic cost function and its parameters is presented in Subsection 3.2.2. Constraints on
inputs, states and changes in inputs need to be defined in function of the decision variable in the cost
function, e.g. change in input Δ𝑈, necessary derivations are provided in section 3.2.3. To guarantee
stability near the inequality constraint border, soft state/output constraints are compulsory, explana-
tions and derivations regarding the implementation of using slack variables that ensure stability, are
presented in Subsection 3.2.4. Combining all these areas defines the complete quadratic optimization
problem, in section 3.2.5 the quadratic solver method will be shortly elaborated upon.

3.2.1. Kinematic Simulator Model
As explained before, a sufficiently good kinematic model of the system at hand is paramount to the
proper working of the MPC. This kinematic simulator model relates simulator states, applied control
inputs and system outputs. In this sense it is important to understand when this kinematic model is
described as sufficient. This brings up a trade-off: an accurate kinematic model is required to make
accurate causal predictions on future states. However, when considering highly dynamical and high fre-
quency transient systems, one also wants to have a kinematic model that can deliver quick predictions
in order to satisfy controller performance and ensure stability. When considering complex systems,
higher order complex models are not fast. Therefore a trade-off needs to be made between compu-
tational complexity and desired accuracy. Two different kinematic simulator models are mentioned in
literature. A simple double integrator model, that describes the motion of the simulator in function of
the input on acceleration and rotational acceleration [30][31][32]. As well as a model that combines
the double integrator model with the vestibular model presented in section 1.2 [7][22][26][51]. For this
research the focus lies on a controller that works in longitudinal and lateral direction, yaw and motion
in z-direction are not yet considered at this stage.

Double integrator model
The double integrator model follows directly from the discrete equations of motion of the simulator
platform described in Equation (3.1). The equations are given in x-direction, the same logic applies in
lateral direction.

𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑡 ⋅ �̇�𝑘 +
1
2𝑑𝑡

2 ⋅ �̈�𝑘
�̇�𝑘+1 = �̇�𝑘 + 𝑑𝑡 ⋅ �̈�𝑘
�̈�𝑘+1 = �̈�𝑘
𝜃𝑘+1 = 𝜃𝑘 + 𝑑𝑡 ⋅ �̇�𝑘
�̇�𝑘+1 = �̇�𝑘

(3.1)

As with the CWA, the reference trajectory is given in terms of acceleration/specific force in longi-
tudinal direction and pitch rate. This means the output of the system should also be defined in these
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terms. As explained earlier, rotation around the y-axis will produce the sensation of acceleration in
x-direction, this has to be incorporated in the model as well. The set of output equations are given in
Equation (3.2), incorporating Equation (2.23) using the small angle approximation.

𝑓𝑠𝑘 = �̈�𝑘 + 𝑔 ⋅ 𝜃
𝜔𝑠𝑘 = �̇�𝑘

(3.2)

The system has to be written in state-space, according to Equation (3.3).

�⃗�𝑘+1 = 𝐴 ⋅ �⃗�𝑘 + 𝐵 ⋅ �⃗�𝑘
�⃗�𝑘 = 𝐶 ⋅ �⃗�𝑘 + 𝐷 ⋅ �⃗�𝑘

(3.3)

Writing the EOM for acceleration in x-direction and pitch rate in state-space gives Equation (3.4). It
should be noted that MPC uses causal information about the system for prediction and control, mean-
ing it is implicitly stated that the output cannot be influenced by the input �⃗�𝑘 directly, therefore the
feedforward matrix 𝐷 is equal to zero [101].

�⃗�𝑘+1 =

⎡
⎢
⎢
⎢
⎢
⎣

1 𝑑𝑡 0 0 0
0 1 0 0 0
0 0 0 0 0

0 0 0 1 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

⋅ �⃗�𝑘 +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑑𝑡2
2 0
𝑑𝑡 0
1 0

0 𝑑𝑡
0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⋅ �⃗�𝑘

�⃗�𝑘 = [
0 0 1 𝑔 0
0 0 0 0 1] ⋅ �⃗�𝑘

(3.4)
𝐴𝐼𝑑𝑖𝑟

𝐴𝐼𝑟𝑜𝑡

𝐵𝐼𝑑𝑖𝑟

𝐵𝐼𝑟𝑜𝑡

Where �⃗� and �⃗� denote the vector of states and inputs. The matrix dimensions are: 𝐴 ∈ ℛ𝑛×𝑛,
𝐵 ∈ ℛ𝑛×𝑚 and 𝐶 ∈ ℛ𝑝×𝑛, ”𝑛” equals the number of states, ”𝑚” the number of inputs and ”𝑝” the number
of outputs. Including the lateral DoF is done conform Equation (3.5).

𝐴𝑥,𝑦 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝐴𝐼𝑑𝑖𝑟 , 𝐴𝐼𝑑𝑖𝑟 , 𝐴𝐼𝑟𝑜𝑡 , 𝐴𝐼𝑟𝑜𝑡)
𝐵𝑥,𝑦 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝐵𝐼𝑑𝑖𝑟 , 𝐵𝐼𝑑𝑖𝑟 , 𝐵𝐼𝑟𝑜𝑡 , 𝐵𝐼𝑟𝑜𝑡)

(3.5)

Equivalently, the C-matrix needs to be rewritten to include the influence of roll angle on lateral
specific force and roll angular rate, the new C-matrix is shown in Equation (3.6).

𝐶𝑥,𝑦 =
⎡
⎢
⎢
⎣

0 0 1 0 0 0 𝑔 0 0 0
0 0 0 0 0 1 0 0 −𝑔 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎦

(3.6)

The state, input and output vector for longitudinal and lateral DoF are equal to Equation (3.7), (3.8)
and (3.9) respectively.

�⃗� = [𝑝𝑥 𝑣𝑥 𝑎𝑥 𝑝𝑦 𝑣𝑦 𝑎𝑦 𝜃 �̇� 𝜙 �̇�]𝑇 (3.7)

�⃗� = [𝑎𝑥 𝑎𝑦 �̇� �̇�]𝑇 (3.8)

�⃗� = [𝑓𝑠𝑥 𝑓𝑠𝑦 𝜔𝑠𝑦 𝜔𝑠𝑥]
𝑇

(3.9)

As will be explained in Subsection 3.2.2, the decision variable in the optimization problem is Δ𝑈.
Therefore, the state-space representation has to be written in function of Δ𝑈 as well. To accomplish
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this, the matrices need to be augmented as presented in [101] and [37]. The augmentation process is
given in Equations (3.10)-(3.14).

tjeSubtracting �⃗�𝑘 from �⃗�𝑘+1 gives:

�⃗�𝑘+1 − �⃗�𝑘 = 𝐴 ⋅ (�⃗�𝑘 − �⃗�𝑘−1) + 𝐵 ⋅ (�⃗�𝑘 − �⃗�𝑘−1)
⇔ Δ�⃗�𝑘+1 = 𝐴 ⋅ Δ�⃗�𝑘 + 𝐵 ⋅ Δ�⃗�𝑘

(3.10)

The output equation needs to be altered to accommodate for the new state equation. To do this a
new, augmented state variable [Δ�⃗�𝑇𝑘 �⃗�𝑇𝑘 ] is created such that the output �⃗�𝑘 is also represented in the
state equation. The difference vector is given by:

�⃗�𝑘+1 − �⃗�𝑘 = 𝐶 ⋅ (�⃗�𝑘+1 − �⃗�𝑘) = 𝐶 ⋅ Δ�⃗�𝑘+1
⇔ �⃗�𝑘+1 = 𝐶 ⋅ Δ�⃗�𝑘+1 + �⃗�𝑘

(3.11)

Using Equation (3.10):
⇔ �⃗�𝑘+1 = 𝐶 ⋅ 𝐴 ⋅ Δ�⃗�𝑘 + 𝐶 ⋅ 𝐵 ⋅ Δ�⃗�𝑘 + �⃗�𝑘 (3.12)

Combining results in a state-space in function of Δ𝑈:

[Δ�⃗�𝑘+1�⃗�𝑘+1 ] = [
𝐴 0𝑛×𝑝
𝐶 ⋅ 𝐴 𝐼𝑝 ] ⋅ [Δ�⃗�𝑘�⃗�𝑘 ] + [

𝐵
𝐶 ⋅ 𝐵] ⋅ Δ�⃗�𝑘 (3.13)

�⃗�𝑘 = [0𝑝×𝑛 𝐼𝑝] ⋅ [
Δ�⃗�𝑘
�⃗�𝑘 ] (3.14)

Where 0𝑛×𝑝 is a zero matrix of dimensions equal to 𝑛×𝑝 and 𝐼𝑝 is the identity matrix of dimension p.
The augmented state and input matrix are equal to Equation (3.15) and Equation (3.16) respectively.

Δ�⃗� = [Δ𝑝𝑥 Δ𝑣𝑥 Δ𝑎𝑥 Δ𝑝𝑦 Δ𝑣𝑦 Δ𝑎𝑦 Δ𝜃 Δ�̇� Δ𝜙 Δ�̇� 𝑓𝑠𝑥 𝑓𝑠𝑦 𝜔𝑠𝑦 𝜔𝑠𝑥]
𝑇

(3.15)

Δ�⃗� = [Δ𝑎𝑥 Δ𝑎𝑦 Δ�̇� Δ�̇�]𝑇 (3.16)

�⃗� = [𝑓𝑠𝑥 𝑓𝑠𝑦 𝜔𝑠𝑦 𝜔𝑠𝑥]
𝑇

(3.17)

The complete double integrator model is defined by Equations (3.13)-(3.17).

Vestibular model
As explained in Section 1.2, models exist that are able to transform inputs on acceleration and rotational
rate to perceived specific force and perceived rotational rate. Incorporating these models explicitly in
the MPC has the advantage that only those vestibular motions a human perceives are simulated. In
Section 1.2 the transfer functions are described that model both the otolith as well as the semi-circular
canal organ. However, these models are continuous time models, to incorporate them into MPC they
need to be discretized. Using the MATLAB command ”c2d” and ”tf2ss”, it is possible to discretize
both transfer functions using a zero-order hold with a sampling time equal to 100𝐻𝑧 (sampling time of
simulation). The resulting state-space model for the otolith and semi-circular canal in one DoF is given
in Equations (3.18)-(3.19) and Equations (3.20)-(3.21) respectively.

�⃗�𝑜𝑡ℎ𝑘+1 = [
1.533 −0.5342
1 0 ] ⋅ �⃗�𝑜𝑡ℎ𝑘 + [

1
0] ⋅ �⃗�𝑘 (3.18)

�⃗�𝑜𝑡ℎ𝑘 = [0.3716 −0.3712] ⋅ �⃗�𝑜𝑡ℎ𝑘 (3.19)
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�⃗�𝑠𝑐𝑐𝑘+1 = [
1.9981 −0.9981
1.0000 0 ] ⋅ �⃗�𝑠𝑐𝑐𝑘 + [

1
0] ⋅ �⃗�𝑘 (3.20)

�⃗�𝑠𝑐𝑐𝑘 = [−0.0018685 0.0018683] ⋅ �⃗�𝑠𝑐𝑐𝑘 (3.21)

Similarly to Equation (3.5), the model can be expanded to include the lateral DoF. The complete
otolith model that distinguishes between longitudinal and lateral motion is given by:

𝐴𝑂 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝐴𝑜𝑡ℎ , 𝐴𝑜𝑡ℎ)
𝐵𝑂 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝐵𝑜𝑡ℎ , 𝐵𝑜𝑡ℎ)
𝐶𝑂 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝐶𝑜𝑡ℎ , 𝐶𝑜𝑡ℎ)

(3.22)

With matrix dimensions: 𝐴𝑂 ∈ ℛ𝑛×𝑛, 𝐵𝑂 ∈ ℛ𝑛×𝑚 and 𝐶𝑂 ∈ ℛ𝑝×𝑛. With ”𝑛” equal to the number of
states, ”𝑚” the number of inputs and ”𝑝” the number of outputs of the otolith model. The input to the
system is 𝑢𝑜𝑡ℎ = [𝑎𝑥 , 𝑎𝑦]𝑇, e.g. the chassis acceleration in x- and y-direction, and the perceived longitu-
dinal forces as output 𝑦𝑜𝑡ℎ = [�⃗�𝑥 , �⃗�𝑦]𝑇. In similar fashion the complete state-space for the semi-circular
canal can be found, resulting in 𝐴𝑆, 𝐵𝑆 and 𝐶𝑆, with input �⃗�𝑠𝑐𝑐 = [𝜔𝑦 , 𝜔𝑥]𝑇, denoting the rotational rate
around 𝑦 (pitch rate) and around 𝑥 (roll rate). The output is described as �⃗�𝑠𝑐𝑐 = [�⃗�𝑠𝑦 �⃗�𝑠𝑥]𝑇, i.e. the
perceived rotational rate around 𝑦 and 𝑥.
One thing to note is that the transfer function given in Equation (1.1) does not incorporate the effect of
tilt-coordination. Incorporating tilt-coordination can be done in the following way [6].

Consider a new, augmented state �⃗� ̄𝑜𝑡ℎ = [�⃗�𝑜𝑡ℎ 𝛽]𝑇, with 𝛽 = [𝜃 𝜙]𝑇. Then a new matrix named
𝐵𝑡𝑖𝑙𝑡 can be created according to Equation (3.23).

𝐵𝑡𝑖𝑙𝑡 = 𝐵𝑂 ⋅ [
𝑔 0
0 −𝑔] (3.23)

Updating the existing state, input and output matrices results in their new, respective expressions shown
in Equations (3.24)-(3.26).

𝐴𝑜𝑡ℎ𝑎𝑢𝑔 = [
𝐴𝑂 𝐵𝑡𝑖𝑙𝑡
0𝑞×𝑛 𝐼𝑞 ] (3.24)

𝐵𝑜𝑡ℎ𝑎𝑢𝑔 = [
𝐵𝑂 0𝑛×𝑞
0𝑞×𝑞 𝑑𝑡 ⋅ 𝐼𝑞] (3.25)

𝐶𝑜𝑡ℎ𝑎𝑢𝑔 = [𝐶𝑂 0𝑞×𝑞] (3.26)

With ”q” equal to the number of elements of 𝛽. As will be evaluated in Subsection 3.2.3, imposing
constraints on system states becomes easier if they are explicitly defined in the output. To do this, the
double integrator model from Equation (3.4), with the exception of the 𝐶 − 𝑚𝑎𝑡𝑟𝑖𝑥, can be added to
the vestibular model. Explicitly defining states in the output can be done by feeding them to output
level by utilizing a identity matrix for 𝐶, i.e. 𝐼. Using Equation (3.5), the complete system matrices,
∑𝑉 = 𝐴𝑉 , 𝐵𝑉 , 𝐶𝑉 , 𝐷𝑉, are shown in Equations (3.27)-(3.29).
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𝐴𝑉 = [
𝐴𝑜𝑡ℎ𝑎𝑢𝑔 0 0
0 𝐴𝑆 0
0 0 𝐴𝑥,𝑦

] (3.27)

𝐵𝑉 = [
𝐵𝑜𝑡ℎ𝑎𝑢𝑔
0 𝐵𝑆
𝐵𝑥,𝑦

] (3.28)

𝐶𝑉 = [
𝐶𝑜𝑡ℎ𝑎𝑢𝑔 0 0
0 𝐶𝑆 0
0 0 𝐼

] (3.29)

Similarly to the integrator model, the vestibular system has to be defined in terms of Δ𝑈. Analogous
to Equation (3.13) and Equation (3.14) the system matrices can be augmented. The state, input and
output vector for longitudinal and lateral DoF are equal to Equation (3.30), (3.31) and (3.32), respec-
tively.

Δ�⃗� = [Δ𝑥𝑜𝑡ℎ𝑥,𝑦 Δ𝑥𝑠𝑐𝑐𝑦,𝑥 Δ�⃗�𝐼 �⃗�]
𝑇

(3.30)

Δ�⃗� = [Δ𝑎𝑥 Δ𝑎𝑦 Δ�̇� Δ�̇�]𝑇 (3.31)

�⃗� = [𝑓𝑠𝑥 𝑓𝑠𝑦 𝜔𝑠𝑦 𝜔𝑠𝑥 �⃗�𝐼]
𝑇

(3.32)

With �⃗�𝐼 equal to Equation (3.7). Equations (3.27)-(3.32) define the complete vestibular system in-
tegrated with the double integrator simulator model.

As mentioned earlier both these models are used to make predictions about future system states.
It is possible to build a prediction model using recursion for which the derivation is given in Equations
(3.33)-(3.37) [101][76].

Write:

Δ�⃗�1 = 𝐴 ⋅ Δ�⃗�0 + 𝐵 ⋅ Δ�⃗�0
Δ�⃗�2 = 𝐴 ⋅ Δ�⃗�1 + 𝐵 ⋅ Δ�⃗�1

⇔ Δ�⃗�2 = 𝐴 ⋅ (𝐴 ⋅ Δ�⃗�0 + 𝐵 ⋅ Δ�⃗�0) + 𝐵 ⋅ Δ�⃗�1
⇔ Δ�⃗�2 = 𝐴2 ⋅ Δ�⃗�0 + 𝐴𝐵 ⋅ Δ�⃗�0 + 𝐵 ⋅ Δ�⃗�1

(3.33)

Working out for each �̄� = [�⃗�1, �⃗�2, ⋯ , �⃗�𝑁𝑝] for control horizon 𝑁𝑐, and writing the result in matrix formu-
lation gives the causal prediction model for ”�̄�”.

Δ�̄� =
⎡
⎢
⎢
⎣

𝐴
𝐴2
⋮
𝐴𝑁𝑝

⎤
⎥
⎥
⎦

𝐹𝑥

⋅ Δ�⃗�0 +
⎡
⎢
⎢
⎣

𝐵 0 ⋯ 0 0
𝐴𝐵 𝐵 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ 0

𝐴𝑁𝑝−1𝐵 𝐴𝑁𝑝−2𝐵 ⋯ ⋯ 𝐴𝑁𝑝−𝑁𝑐𝐵

⎤
⎥
⎥
⎦

𝑆𝑥

⋅ Δ�⃗� (3.34)

Δ�̄� = 𝐹𝑥 ⋅ Δ�⃗�0 + 𝑆𝑥 ⋅ Δ�⃗� (3.35)

Matrices 𝐹𝑥 and 𝑆𝑥 have dimension 𝐹𝑥 ∈ ℛ(𝑁𝑝⋅𝑛)×𝑛 and 𝑆𝑢 ∈ ℛ(𝑁𝑝⋅𝑛)×(𝑁𝑐⋅𝑚). �⃗�0 is the current state of
the system and Δ�⃗� represents the vector of decision variables: Δ�⃗� = [Δ�⃗�0, Δ�⃗�1, ⋯ , Δ�⃗�𝑁𝑐]𝑇. 𝐹𝑥 denotes
the evolution and 𝑆𝑥 the prediction matrix. From 𝑦𝑘 = 𝐶 ⋅ �⃗�𝑘, a prediction model for the output simply
follows by multiplying �̄� with ”C”.
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�̄� =
⎡
⎢
⎢
⎣

𝐶𝐴
𝐶𝐴2
⋮

𝐶𝐴𝑁𝑝

⎤
⎥
⎥
⎦

𝐹𝑦

⋅ �⃗�0 +
⎡
⎢
⎢
⎣

𝐶𝐵 0 ⋯ 0 0
𝐶𝐴𝐵 𝐶𝐵 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ 0

𝐶𝐴𝑁𝑝−1𝐵 𝐴𝑁𝑝−2𝐵 ⋯ ⋯ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵

⎤
⎥
⎥
⎦

𝑆𝑦

⋅ Δ�⃗� (3.36)

�̄� = 𝐹𝑦 ⋅ �⃗�0 + 𝑆𝑦 ⋅ Δ�⃗� (3.37)

Matrices 𝐹𝑦 and 𝑆𝑦 have dimension 𝐹𝑦 ∈ ℛ(𝑁𝑝⋅𝑝)×𝑛 and 𝑆𝑦 ∈ ℛ(𝑁𝑝⋅𝑝)×(𝑁𝑐⋅𝑚)

3.2.2. Cost Function
The general cost function of the MPC involves two terms, the stage cost and the terminal cost. The
latter one is required to ensure asymptotic stability [76]. The complete cost function is presented in
Equation (3.38).

𝐽(𝑡) =min
𝑁𝑝

∑
𝑗=1
‖𝑦(𝑡 + 𝑗) − 𝑟(𝑡 + 𝑗)‖ 2𝑄𝑦 +

𝑁𝑐−1

∑
𝑗=0

(𝑢(𝑡 + 𝑗))2𝑄𝑢 +
𝑁𝑐−1

∑
𝑗=0

(Δ𝑢(𝑡 + 𝑗))2𝑄𝑑𝑢 + 𝑋2𝑁𝑄𝑁 (3.38)

𝑠.𝑡. ∶

⎧
⎪

⎨
⎪
⎩

�⃗�𝑘+1 = 𝐴 ⋅ Δ�⃗�𝑘 + 𝐵 ⋅ Δ�⃗�𝑘
�⃗�𝑘 = 𝐶 ⋅ Δ�⃗�𝑘

−�⃗�𝑙𝑖𝑚 ≤ �⃗� ≤ �⃗�𝑙𝑖𝑚
−�⃗�𝑙𝑖𝑚 ≤ �⃗� ≤ �⃗�𝑙𝑖𝑚
−Δ�⃗�𝑙𝑖𝑚 ≤ Δ�⃗� ≤ Δ�⃗�𝑙𝑖𝑚

(3.39)

With 𝑄𝑦, 𝑄𝑢, 𝑄𝑑𝑢, and 𝑄𝑁 being weighting matrices.

• 𝑄𝑦 represents the weight of cost of the reference tracking error between the computed state output
and the reference signal.

• 𝑄𝑢 denotes weight on the cost which tries to keep the total input as small as possible, larger inputs
can stress the system and can be expensive, reference tracking while keeping them as small as
possible is desirable.

• 𝑄𝑑𝑢 is the weight on cost of the incremental variation of the inputs. High deviations/oscillations
in input result in large input derivatives which can lead to higher stresses in the system, keeping
them as low as possible is desirable.

• 𝑄𝑁 is the weight on the terminal cost, which is a cost based on the state of the system. This cost
is introduced to effectively impose stability on the MPC by making sure the state cannot runaway
to very large values.

The first three terms represent the stage cost, the latter term the terminal cost. 𝑁𝑝 and 𝑁𝑐 denote
the prediction and control horizon, with 𝑁𝑐 ≤ 𝑁𝑝. The values that correspond to the parameters in
Equation (3.39) are mentioned in section 1.4, the simulator workspace limits. In order to use this cost
function in the MPC framework, it needs to be rewritten to a generic Quadratic Programming (QP)
problem that minimizes Δ𝑈, Equation (3.40) shows the QP formulation, Equation (3.41) represents the
constraint formulation [35].

𝐽𝑐𝑜𝑠𝑡 =argmin
1
2Δ𝑈

𝑇 ⋅ 𝐻 ⋅ Δ𝑈 + ℎ𝑇 ⋅ Δ𝑈 (3.40)

𝑠.𝑡. 𝐴𝑐 ⋅ Δ𝑈 ≤ 𝑏 (3.41)
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The full derivation of the Hessian matrix 𝐻 and matrix ℎ is given in Equations (3.42)-(3.53).

Reference tracking error
Starting with the reference tracking error, using Equation (3.36) and Equation (3.37) the term

∑𝑁𝑝𝑗=1 ‖𝑦(𝑡 + 𝑗) − 𝑟(𝑡 + 𝑗)‖
2
𝑄𝑦 in matrix notation can be written, with 𝑅 = [𝑟1, 𝑟2, ⋯ , 𝑟𝑁𝑝] being the refer-

ence trajectory vector for 𝑁𝑝 future steps, as follows:

𝑁𝑝

∑
𝑗=1
‖𝑦(𝑡 + 𝑗) − 𝑟(𝑡 + 𝑗)‖ 2𝑄𝑦 = (�̄� − 𝑅)

𝑇𝑄𝑦(�̄� − 𝑅)

= (𝐹𝑦�⃗�0 + 𝑆𝑦Δ�⃗� − 𝑅)𝑇𝑄𝑦(𝐹𝑦�⃗�0 + 𝑆𝑦Δ�⃗� − 𝑅)
= �⃗�𝑇0𝐹𝑇𝑦 𝑄𝑦𝐹𝑦�⃗�0 + �⃗�𝑇0𝐹𝑇𝑦 𝑄𝑦𝑆𝑦Δ�⃗� − �⃗�𝑇0𝐹𝑇𝑦 𝑄𝑦𝑅

+ Δ�⃗�𝑇𝑆𝑇𝑦𝑄𝑦𝐹𝑦�⃗�0 + Δ�⃗�𝑇𝑆𝑇𝑦𝑄𝑦𝑆𝑦Δ�⃗� − Δ�⃗�𝑇𝑆𝑇𝑦𝑄𝑦𝑅
− 𝑅𝑇𝑄𝑦𝐹𝑦�⃗�0 − 𝑅𝑇𝑄𝑦𝑆𝑦Δ�⃗� + 𝑅𝑇𝑄𝑦𝑅

= Δ�⃗�𝑇𝑆𝑇𝑦𝑄𝑦𝑆𝑦Δ�⃗� + 2�⃗�𝑇0𝐹𝑇𝑦 𝑄𝑦𝑆𝑦Δ�⃗� − 2𝑅𝑇𝑄𝑦𝑆𝑦Δ�⃗�
= Δ�⃗�𝑇 ⋅ 𝐻𝑦 ⋅ Δ�⃗� + ℎ𝑇𝑦 ⋅ Δ�⃗�

(3.42)

Which indeed resembles Equation (3.40) with:

{𝐻𝑦 = 𝑆𝑇𝑦 ⋅ 𝑄𝑦 ⋅ 𝑆𝑦
ℎ𝑦 = 2 ⋅ (�⃗�𝑇0 ⋅ 𝐹𝑇𝑦 − 𝑅𝑇) ⋅ 𝑄𝑦 ⋅ 𝑆𝑦

(3.43)

Input & change in input
First the total input 𝑢 needs to be written in function of Δ�⃗� before ∑𝑁𝑐−1𝑗=0 (𝑢(𝑡 + 𝑗))2𝑄𝑢 can be written
in terms of 𝐻 and ℎ. Similarly to Equations (3.33)-(3.37), using the recursion formula the following
expression can be found.

�⃗�1 = �⃗�0 + Δ�⃗�1
�⃗�2 = �⃗�1 + Δ�⃗�2

⇔ �⃗�2 = �⃗�0 + Δ�⃗�1 + Δ�⃗�2
(3.44)

Where �⃗�0 denotes the total previous input. Writing in matrix formulation gives:

�̄� =
⎡
⎢
⎢
⎣

𝐼𝑚
𝐼𝑚
⋮
𝐼𝑚

⎤
⎥
⎥
⎦

𝐹𝑢

⋅ �⃗�0 +
⎡
⎢
⎢
⎣

𝐼𝑚 0 ⋯ 0 0
𝐼𝑚 𝐼𝑚 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ 0
𝐼𝑚 𝐼𝑚 ⋯ ⋯ 𝐼𝑚

⎤
⎥
⎥
⎦

𝑆𝑢

⋅ Δ�⃗� (3.45)

�̄� = 𝐹𝑢 ⋅ �⃗�0 + 𝑆𝑢 ⋅ Δ�⃗� (3.46)

Matrices 𝐹𝑢 and 𝑆𝑢 have dimension 𝐹𝑢 ∈ ℛ(𝑁𝑐⋅𝑚)×𝑚 and 𝑆𝑢 ∈ ℛ(𝑁𝑐⋅𝑚)×(𝑁𝑐⋅𝑚). Δ�⃗� = [Δ�⃗�0, Δ�⃗�1, ⋯ , Δ�⃗�𝑁𝑐−1]𝑇,
and 𝐼𝑚 is an identity matrix of dimension𝑚, equal to the number of inputs to the system. Knowing Equa-
tion (3.45), analogous to Equations (3.42)-(3.43), ∑𝑁𝑐−1𝑗=0 (𝑢(𝑡 + 𝑗))2𝑄𝑢 can be written in terms of 𝐻 and
ℎ, resulting in:
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{𝐻𝑢 = 𝑆𝑇𝑢 ⋅ 𝑄𝑦 ⋅ 𝑆𝑢
ℎ𝑢 = 2 ⋅ �⃗�𝑇0 ⋅ 𝐹𝑇𝑢 ⋅ 𝑄𝑢 ⋅ 𝑆𝑢

(3.47)

Writing the change in input term, ∑𝑁𝑐−1𝑗=0 (Δ𝑢(𝑡 + 𝑗))2𝑄𝑑𝑢, straightforwardly follows from:

𝑁𝑐−1

∑
𝑗=0

(Δ𝑢(𝑡 + 𝑗))2𝑄𝑑𝑢 = Δ�⃗�𝑇 ⋅ 𝑄𝑑𝑢 ⋅ Δ�⃗� (3.48)

⇔ 𝐻𝑑𝑢 = 𝑄𝑑𝑢 (3.49)

Terminal cost
The last term that needs to be written in function of 𝐻 and ℎ is the cost on the terminal state. To be
able to do this, the final state of the system at step 𝑁𝑝 should be written in terms of Δ�⃗�. Realising that
the terminal state is already represented in Equation (3.61) gives the following equality:

�⃗�𝑁𝑝 = 𝐴𝑁𝑝 ⋅ �⃗�0 + 𝑆𝑥(𝑙𝑟) ⋅ Δ�⃗� (3.50)

Where 𝑆𝑥(𝑙𝑟) denotes the last row of the 𝑆𝑥 matrix. Rewriting 𝑋2𝑁𝑄𝑁 gives:

𝑋2𝑁𝑄𝑁 = 𝑋
𝑇
𝑁𝑄𝑁𝑋𝑇𝑁

= (𝐴𝑁𝑝 �⃗�0 + 𝑆𝑥(𝑙𝑟)Δ�⃗�)𝑇𝑄𝑁𝐴𝑁𝑝 �⃗�0 + 𝑆𝑥(𝑙𝑟)Δ�⃗�
= Δ�⃗�𝑇𝑆𝑥(𝑙𝑟)𝑇𝑄𝑁𝑆𝑥(𝑙𝑟)Δ�⃗� + �⃗�𝑇0𝐴𝑇𝑁𝑝𝑄𝑁𝑆𝑥(𝑙𝑟)Δ�⃗�

(3.51)

Where:

{𝐻𝑡 = 𝑆𝑥(𝑙𝑟)𝑇 ⋅ 𝑄𝑁 ⋅ 𝑆𝑥(𝑙𝑟)
ℎ𝑡 = �⃗�𝑇0 ⋅ 𝐴𝑇𝑁𝑝 ⋅ 𝑄𝑁 ⋅ 𝑆𝑥(𝑙𝑟)

(3.52)

Combining Equation (3.43), (3.47), (3.49), and (3.52) defines the full Hessian matrix 𝐻 and ℎ matrix
as found in Equation (3.40).

{𝐻 = 𝑆𝑇𝑦 ⋅ 𝑄𝑦 ⋅ 𝑆𝑦 + 𝑆𝑇𝑢 ⋅ 𝑄𝑦 ⋅ 𝑆𝑢 + 𝑄𝑑𝑢 + 𝑆𝑥(𝑙𝑟)𝑇 ⋅ 𝑄𝑁 ⋅ 𝑆𝑥(𝑙𝑟)
ℎ = 2 ⋅ (�⃗�𝑇0 ⋅ 𝐹𝑇𝑦 − 𝑅𝑇) ⋅ 𝑄𝑦 ⋅ 𝑆𝑦 + 2 ⋅ �⃗�𝑇0 ⋅ 𝐹𝑇𝑢 ⋅ 𝑄𝑢 ⋅ 𝑆𝑢 + �⃗�𝑇0 ⋅ 𝐴𝑇𝑁𝑝 ⋅ 𝑄𝑁 ⋅ 𝑆𝑥(𝑙𝑟)

(3.53)

3.2.3. Constraints
The constraint equation that needs to be incorporated by the optimization is shown in Equation (3.41).
From Equation (3.39) three different constraints can be recognized: constraints on the change in input,
on the total input and on the state of the system. As can be seen in Equation (3.39) a lower as well as an
upper limit needs to be enforced by the optimization process. However the notation, Equation (3.40),
requires only a less or equal sign, e.g. an upper limit, to avoid possible issues the constraints can be
written in the form described in [101].

{−Δ�⃗� ≤ −Δ�⃗�𝑚𝑖𝑛
Δ�⃗� ≤ Δ�⃗�𝑚𝑎𝑥

(3.54)

Constraints on total input
The constraint on total input means that for the next 𝑁𝑐 steps, the total applied input cannot exceed
the limit value. The 𝐹𝑢 and 𝑆𝑢 matrices, defined in Equation (3.45), can be used to this extent. These
matrices describe the future 𝑁𝑐 inputs in function of the decision variable Δ�⃗�. Taking into account
Equation (3.54), the constraint equation for the total input is described by:
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[−𝑆𝑢𝑆𝑢 ] ⋅ Δ�⃗� ≤ [
−�⃗�𝑚𝑖𝑛 + 𝐹𝑢 ⋅ �⃗�0
�⃗�𝑚𝑎𝑥 − 𝐹𝑢 ⋅ �⃗�0

] (3.55)

Where �⃗�0 denotes the previous total applied input.

Constraints on change in input
The input vector equals Δ�⃗� = [Δ𝑎𝑥 , Δ𝑎𝑦 , Δ�̇�, Δ�̇�]𝑇. Having constraints on their derivative implies that
jerk in x- and y-direction and the rotational acceleration around x and y should be limited. Since the
constraints are defined for platform motion and not for the actuators driving the platform, no values are
defined that constrain platform jerk. Therefore only the constraints on the rotational acceleration are
considered. Therefore two selectors are required, one for the pitch rate and one for the roll rate. Both
selectors are given in Equation (3.56).

{
𝑆�̇� = [0 0 1 0]
𝑆�̇� = [0 0 0 1]

(3.56)

Using the selectors, matrix 𝑀 can be defined as follows.

𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑆�̇� 0 ⋯ ⋯ 0
0 𝑆�̇� 0 ⋯ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ 𝑆�̇�
𝑆�̇� 0 ⋯ ⋯ 0
0 𝑆�̇� 0 ⋯ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ 𝑆�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.57)

With𝑀 having dimension𝑀 ∈ ℛ(𝑁𝑐⋅
𝑚
2 )×𝑁𝑐⋅𝑚. Knowing𝑀 the constraint equation for the incremental

variation can be computed and is given in Equation (3.58).

[−𝑀𝑀 ] ⋅ Δ�⃗� ≤ [−Δ�⃗�𝑚𝑖𝑛Δ�⃗�𝑚𝑎𝑥
] (3.58)

Constraint on state
Contrary to the vestibular model, platform states are not explicitly defined in the output of the integrator
model. The difference in constraint equation computation will be evaluated.
In case of the integrator model the future states need to be solely defined in terms of Δ�⃗�. This can be
done by using the recursion formulation on equation Equation (3.59).

�̄�𝑘+1 = �̄�𝑘 + �⃗�𝑘+1 (3.59)

Where �̄�𝑘 denotes the state at step 𝑘 of the system and �⃗�𝑘+1 denotes the augmented state variable
[Δ�⃗�𝑘+1, 𝑦𝑘+1]𝑇. For which it is known that: Δ�⃗�𝑘+1 = 𝐴 ⋅ Δ�⃗�𝑘 + 𝐵 ⋅ Δ�⃗�𝑘. Substituting gives:

�̄�𝑘+1 = �̄�𝑘 + 𝐴 ⋅ Δ�⃗�𝑘 + 𝐵 ⋅ Δ�⃗�𝑘
⇔ �̄�1 = �̄�0 + 𝐴 ⋅ Δ�⃗�0 + 𝐵 ⋅ Δ�⃗�0 for k=0
�̄�2 = �̄�1 + Δ�⃗�2

⇔ �̄�2 = �̄�0 + 𝐴 ⋅ Δ�⃗�0 + 𝐵 ⋅ Δ�⃗�0 + 𝐴 ⋅ Δ�⃗�1 + 𝐵 ⋅ Δ�⃗�1
⇔ �̄�2 = �̄�0 + 𝐴 ⋅ Δ�⃗�0 + 𝐵 ⋅ Δ�⃗�0 + 𝐴 ⋅ (𝐴 ⋅ Δ�⃗�0 + 𝐵 ⋅ Δ�⃗�0) + 𝐵 ⋅ Δ�⃗�1
⇔ �̄�2 = �̄�0 + (𝐴 + 𝐴2) ⋅ Δ�⃗�0 + 𝐵 ⋅ Δ�⃗�0 + 𝐴 ⋅ 𝐵 ⋅ Δ�⃗�0 + 𝐵 ⋅ Δ�⃗�1
⇔ �̄�2 = �̄�0 + (𝐴 + 𝐴2) ⋅ Δ�⃗�0 + (𝐴 ⋅ 𝐵 + 𝐵) ⋅ Δ�⃗�0 + 𝐵 ⋅ Δ�⃗�1

(3.60)



76 3. Model Predictive Control

Working out until 𝑁𝑝 gives the following matrix:

�̄�𝑡𝑜𝑡 =
⎡
⎢
⎢
⎣

𝐼𝑛
𝐼𝑛
⋮
𝐼𝑛

⎤
⎥
⎥
⎦

𝐼𝑐

�̄�0 +
⎡
⎢
⎢
⎣

𝐴
𝐴 + 𝐴2
⋮

𝐴 + ⋯ + 𝐴𝑁𝑝

⎤
⎥
⎥
⎦

𝐹𝑐

Δ�⃗�0 +
⎡
⎢
⎢
⎣

𝐵 0 ⋯ 0
𝐴𝐵 + 𝐵 𝐵 ⋯ 0
⋮ ⋱ ⋱ 0

𝐴𝑁𝑝−1𝐵 +⋯+ 𝐵 ⋯ ⋯ 𝐴𝑁𝑝−𝑁𝑐𝐵 +⋯+ 𝐵

⎤
⎥
⎥
⎦

𝑆𝑐

Δ�⃗� (3.61)

�̄�𝑡𝑜𝑡 = 𝐼𝑐 ⋅ �̄�0 + 𝐹𝑐 ⋅ Δ�⃗�0 + 𝑆𝑐 ⋅ Δ�⃗� (3.62)

It should be noted that in this equation only the states are considered on which constraints are
imposed, those states are [𝑥, 𝑣𝑥 , 𝑦, 𝑣𝑦 , 𝜃, 𝜙]. A selector matrix 𝐾𝑐 is required that satisfies this condition.

𝐾𝑐 = 𝐼𝑁𝑝 ⊗

⎡
⎢
⎢
⎢
⎢
⎣

1 0 01×11
0 1 01×12
01×3 1 01×10
01×4 1 01×9
01×6 1 01×7
01×8 1 01×5

⎤
⎥
⎥
⎥
⎥
⎦

(3.63)

Where ”⊗” is the Kronecker product and 01×𝑡 a row matrix with ”𝑡” elements of zero. This results
in the following constraint equation for implicit state definition.

[−(𝐾𝑐 ⋅ 𝑆𝑐)𝐾𝑐 ⋅ 𝑆𝑐 ] Δ�⃗� ≤ [−�̄�𝑚𝑖𝑛 + 𝐾𝑐 ⋅ 𝐼𝑐 ⋅ �̄�0 + 𝐾𝑐 ⋅ 𝐹𝑐 ⋅ Δ�⃗�0�̄�𝑚𝑎𝑥 − 𝐾𝑐 ⋅ 𝐼𝑐 ⋅ �̄�0 − 𝐾𝑐 ⋅ 𝐹𝑐 ⋅ Δ�⃗�0 ] (3.64)

The total constraint matrix for the optimization problem for the MPC using the double integrator
model equals:

⎡
⎢
⎢
⎢
⎢
⎣

−𝑆𝑢
𝑆𝑢
−𝑀
𝑀

−(𝐾𝑐 ⋅ 𝑆𝑐)
𝐾𝑐 ⋅ 𝑆𝑐

⎤
⎥
⎥
⎥
⎥
⎦

𝐴𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

Δ�⃗� ≤

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−�⃗�𝑚𝑖𝑛 + 𝐹𝑢 ⋅ �⃗�0
�⃗�𝑚𝑎𝑥 − 𝐹𝑢 ⋅ �⃗�0
−Δ�⃗�𝑚𝑖𝑛
Δ�⃗�𝑚𝑎𝑥

−�̄�𝑚𝑖𝑛 + 𝐾𝑐 ⋅ 𝐼𝑐 ⋅ �̄�0 + 𝐾𝑐 ⋅ 𝐹𝑐 ⋅ Δ�⃗�0
�̄�𝑚𝑎𝑥 − 𝐾𝑐 ⋅ 𝐼𝑐 ⋅ �̄�0 − 𝐾𝑐 ⋅ 𝐹𝑐 ⋅ Δ�⃗�0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

(3.65)

As one can see, implicitly defining state constraints can become convoluted. The difference in
imposing constraints on an explicit system is significant. For the vestibular model a selector matrix 𝐾𝑐
is also required. Given the imposed constraints on output [𝑥, 𝑣𝑥 , 𝑦, 𝑣𝑦 , 𝜃, 𝜙], 𝐾𝑐 looks like:

𝐾𝑐 = 𝐼𝑁𝑝 ⊗

⎡
⎢
⎢
⎢
⎢
⎣

01×4 1 01×9
01×5 1 01×8
01×7 1 01×6
01×8 1 01×5
01×10 1 01×3
01×12 1 01×1

⎤
⎥
⎥
⎥
⎥
⎦

(3.66)

Using Equation (3.37):
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𝑌𝑚𝑖𝑛 ≤ 𝐾𝑐 ⋅ �̄� ≤ 𝑌𝑚𝑎𝑥 (3.67)

⇔𝑌𝑚𝑖𝑛 ≤ 𝐾𝑐 ⋅ (𝐹𝑦 ⋅ �⃗�0 + 𝑆𝑦 ⋅ Δ�⃗�) ≤ 𝑌𝑚𝑎𝑥 (3.68)

⇔{−𝐾𝑐 ⋅ 𝑆𝑦 ⋅ Δ�⃗� ≤ −𝑌𝑚𝑖𝑛 + 𝐾𝑐 ⋅ 𝐹𝑦 ⋅ �⃗�0𝐾𝑐 ⋅ 𝑆𝑦 ⋅ Δ�⃗� ≤ 𝑌𝑚𝑎𝑥 − 𝐾𝑐 ⋅ 𝐹𝑦 ⋅ �⃗�0
(3.69)

Which leads to the constraint matrix for explicit defined states:

[−(𝐾𝑐 ⋅ 𝑆𝑦)𝐾𝑐 ⋅ 𝑆𝑦 ] Δ�⃗� ≤ [−𝑌𝑚𝑖𝑛 + 𝐾𝑐 ⋅ 𝐹𝑦 ⋅ �⃗�0𝑌𝑚𝑎𝑥 − 𝐾𝑐 ⋅ 𝐹𝑦 ⋅ �⃗�0 ] (3.70)

The total constraint matrix for the optimization problem for the MPC using the vestibular model
equals:

⎡
⎢
⎢
⎢
⎢
⎣

−𝑆𝑢
𝑆𝑢
−𝑀
𝑀

−(𝐾𝑐 ⋅ 𝑆𝑦)
𝐾𝑐 ⋅ 𝑆𝑦

⎤
⎥
⎥
⎥
⎥
⎦

𝐴𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

Δ�⃗� ≤

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−�⃗�𝑚𝑖𝑛 + 𝐹𝑢 ⋅ �⃗�0
�⃗�𝑚𝑎𝑥 − 𝐹𝑢 ⋅ �⃗�0
−Δ�⃗�𝑚𝑖𝑛
Δ�⃗�𝑚𝑎𝑥

−𝑌𝑚𝑖𝑛 + 𝐾𝑐 ⋅ 𝐹𝑦 ⋅ �⃗�0
𝑌𝑚𝑎𝑥 − 𝐾𝑐 ⋅ 𝐹𝑦 ⋅ �⃗�0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

(3.71)

3.2.4. Slack variables
Slack variables are introduced for output/state constraints to make them ”soft”. The reason why this is
necessary is because if the output/state constraints are enforced, this can lead to high amplitude and
high frequency changes in both control and incremental variation in control input. This could lead to the
violation of input constraints which can lead to constraint conflicts [101]. Appending the slack variable
vector �⃗�𝑠 with the decision variable vector, Δ�⃗�, alters the constraint equation such that:

𝐴 ⋅ Δ�⃗� − 𝑦𝑠 ≤ 𝑏 (3.72)

Where �⃗�𝑠 should only affect the output/state constraints. The specific matrix that only affects con-
straints on the maximum values of [𝑥, 𝑣𝑥 , 𝑦, 𝑣𝑦 , 𝜃, 𝜙] looks as follows:

𝐴𝑆𝑣 =

⎡
⎢
⎢
⎢
⎢
⎣

−1 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎦

(3.73)

The matrix that affects the minimum values is simply −𝐴𝑆𝑣. The full appendable matrix 𝐴𝑠 is defined
by:

𝐴𝑠 =
⎡
⎢
⎢
⎣

0𝑠𝑖𝑧𝑒(−𝑆𝑢;𝑆𝑢)
0𝑠𝑖𝑧𝑒(−𝑀;𝑀)
−𝐴𝑆𝑣
𝐴𝑆𝑣

⎤
⎥
⎥
⎦

(3.74)

𝐴𝑛𝑒𝑤 = [𝐴𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝐴𝑠] (3.75)

Where 𝑆𝑈 and𝑀 denote the matrices from Equation (3.65), and 𝐴𝑛𝑒𝑤 is the new complete constraint
matrix. The input vector equals Δ�⃗�𝑎𝑢𝑔 = [Δ�⃗� �⃗�𝑠]𝑇.
Applying no cost to using slack variables would not make sense as this would make the constraints
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completely redundant. Therefore a cost should be added to using slack variables to satisfy the out-
put/state constraints. This can be easily done by adding a cost matrix to the quadratic cost function
from Equation (3.40).

𝐽𝑐𝑜𝑠𝑡 = argmin
1
2Δ�⃗�

𝑇
𝑎𝑢𝑔 ⋅ 𝐻𝑁 ⋅ Δ�⃗�𝑎𝑢𝑔 + ℎ𝑇 ⋅ Δ�⃗�𝑎𝑢𝑔 (3.76)

𝐻𝑁 = 𝐻 + 𝑅𝑠𝑙𝑎𝑐𝑘 (3.77)

Where 𝑅𝑠𝑙𝑎𝑐𝑘 denotes the weight on the cost of using the slack variables in 𝑦𝑠. Costs on using slack
variables for the displacement or angle do not necessarily have to be equal to each other and should
be tuned accordingly. The new Hessian, 𝐻 and ℎ matrix can simply be constructed as follows:

{
𝐻𝑁 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝐻, 𝑅𝑠𝑙𝑎𝑐𝑘)
ℎ = [ℎ 01×(𝑁𝑝⋅𝑑𝑖𝑚(𝑆𝑣))]

(3.78)

Where 𝑑𝑖𝑚(𝑆𝑣) equals the amount of slack variables.

3.2.5. Quadratic Solver
The last step of the MPC is to find the set of inputs that minimize the cost function presented in Equa-
tion (3.40) while also satisfying the constraints imposed on the system. Many different solvers exist
that are able to solve a constrained quadratic programming (QP) problem. These can be categorized
in two main domains: explicit or off-line methods and online/real-time methods. In the former method
the solution to the QP problem is explicitly computed in function of the initial state, the control action
can be applied in real-time by use of a resulting look-up table [? ] [30]. The problem with this method is
that the look-up table can grow exponentially with increasing prediction/control horizon and state and
input dimensions [69][102]. Due to the inherent time constraints imposed on the MPC MCA problem
[22], in the scope of this research only the latter, online algorithms are considered. The online methods
can be subdivided into

• Interior point (IP): A technique that utilizes the convex nature of the quadratic problem. IP has
polynomial complexity [74]. Although IP is efficient in solving large optimization problems, due
to the lack of hot-start strategies [104], e.g. using the solution of the previous calculated optimal
control action to reduce computational load of the new optimal control action, its application is
limited to processes with lower real-time requirements. Some studies were performed to try and
come-up with hot start strategies which were successful, however no generic solution has yet
been found [102][88].

• Active Set (AS): The active set method is inspired by the explicit method where it expects that the
active set does not change much from one QP to the next. In this critical region, the QP solution
depends affinely on the current state of the system [34]. This means that the active set method
does utilize a form of hot-start strategy. Unlike the IP method, the AS method cannot guarantee
polynomial complexity, in the worst case exponential in the size of the problem.

Several solvers exist that utilize one of the two described methods. In MATLAB the ready to use
function ”quadprog” uses the interior point method [96]. Another solver that is used often for MPC in
driving simulation [7], is named QPOases which uses the active set method [33]. For simplicity sake,
quadprog is used to solve the QP problem. If performance becomes more stringent, more time will be
invested into this matter.

3.3. Performance analysis
In the previous section the complete algorithm and the defining mathematics have been fully explained.
In this section simulation results for bothmodels will be presented and analysed. First it will be explained
how the parametric weight values were tuned and their final values will be presented. Secondly, the
effect of introducing slack variables will be explored. An analysis on the effect of changing the prediction
and control horizon will be elaborated thereafter. After these investigations, the simulation parameters
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are all set and simulation results with real vehicle data can be analysed and compared to the results
found in section 2.2.

3.3.1. Weight values
Four weight matrices are present in the cost function of Equation (3.40). The reference error tracking
weight, the weight on total input and its incremental variation, the weight on the terminal state and
the weight on using the slack variables. If tuned independently for the 4DoF simulation this implies
tuning 30 variables. The weighting values can be tuned by trial-and-error with a more simple, 2DoF,
double integrator model. It is assumed that the dynamics of each DoF are independent [22], as such
the weights can be tuned by only considering motion in that specific DoF. In order to tune the weights
on the acceleration input a step reference trajectory on specific force is considered, the weights for
the other DoF are set to zero. The weights belonging to the rotational motion where tuned in similar
manner, but following a sinusoidal reference trajectory, in both cases the constraints are disabled.
Plotting values of the Hessian matrix 𝐻 and ℎ gives more insight on the weighting parameter influence
on MPC performance and what gets priority. Based on this information, more objective decisions about
changing certain values can be made while it also can be used to understand why the MPC behaves in
certain ways. One thing to note is that a decision needs to be made on what part of the matrices need
to be shown. The Hessian matrix is a symmetric matrix, of size [𝑁𝑐 ⋅ nodeg inputs], when working out
the multiplication in Equation (3.79) the entries on the diagonal represent the auto-correlated weights:
[𝑊1,1,𝑊2,2, ⋯], the off-diagonal represent the inter-correlated input weights: [𝑊1,2,𝑊2,1, ⋯].

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Δ𝑢𝑎,1
Δ𝑢𝜔,1
Δ𝑢𝑎,2
Δ𝑢𝜔,2
⋮

Δ𝑢𝑎,𝑁𝑐
Δ𝑢𝜔,𝑁𝑐

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝑇

⋅
⎡
⎢
⎢
⎢
⎣

𝑊𝑎1,1 𝑊𝜔1,2 𝑊𝑎1,3 𝑊𝜔1,4 ⋯ 𝑊𝑎1,𝑁𝑐−1 𝑊𝜔1,𝑁𝑐
𝑊𝑎2,1 𝑊𝜔2,2 𝑊𝑎2,3 𝑊𝜔2,4 ⋯ 𝑊𝑎2,𝑁𝑐−1 𝑊𝜔2,𝑁𝑐
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

𝑊𝑎𝑁𝑐,1 𝑊𝜔𝑁𝑐,2 𝑊𝑎1,3 𝑊𝜔𝑁𝑐,4 ⋯ 𝑊𝑎𝑁𝑐,𝑁𝑐−1 𝑊𝜔𝑁𝑐,𝑁𝑐

⎤
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Δ𝑢𝑎,1
Δ𝑢𝜔,1
Δ𝑢𝑎,2
Δ𝑢𝜔,2
⋮

Δ𝑢𝑎,𝑁𝑐
Δ𝑢𝜔,𝑁𝑐

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.79)

= 𝑊𝑎1,1 ⋅ Δ𝑢2𝑎,1 +𝑊𝜔1,2 ⋅ Δ𝑢𝑎,1Δ𝑢𝜔,1 +𝑊𝑎1,3 ⋅ Δ𝑢𝑎,1Δ𝑢𝑎,2 +⋯+𝑊𝜔𝑁𝑐,𝑁𝑐 ⋅ Δ𝑢
2
𝜔,𝑁𝑐 (3.80)

Since the interest is in the ratio in weight, the parameter which defines importance/priority, the
assumption is made that only the weights on the input at the next instance are investigated, e.g. 𝑊𝑎1,1
and𝑊𝜔2,2 .
An example can be given for the tuning of the weighting matrix 𝑄𝑑𝑢. If the value of 𝑄𝑑𝑢 is set to a value
of 1, the behaviour from fig. 3.2 is found.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
is

p
la

c
e
m

e
n
t 
[m

],
 A

c
c
. 
[m

/s
2
]

Displacement in x

Acceleration in x

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Time [s]

0

5

10

15

20

25

30

35

40

45

50

P
it
c
h
 (

ra
te

) 
[d

e
g
/s

]

Pitch angle [deg]

Pitch rate [deg/s]

Figure 3.2: Left: displacement & acceleration in x-direction for unity step acceleration input with 𝑄𝑑𝑢 = 1. Right: pitch angle &
pitch rate for unity step acceleration input with 𝑄𝑑𝑢 = 1.

Only the first second of the simulation is shown, as one can clearly see, oscillatory inputs are
present. These are not desirable as they have a direct impact on the perceived specific force. Figure 3.3
shows the weight values corrected for the applied input Δ�⃗�. From this figure it can be deducted that
indeed the weight 𝑄𝑑𝑢 on 𝑎𝑥 and 𝜔𝑦 is low compared to the other values, reducing other parameters
is therefore more efficient for the optimizer in order to find a minimum.
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Figure 3.3: MPC cost parameter values over time for longitudinal acceleration unity step input, 𝑄𝑑𝑢 = 1.

Increasing𝑄𝑑𝑢 by a factor of 20 should significantly improve the performance and smooth everything
out. The result is shown in fig. 3.4 with the total specific force shown in fig. 3.5.
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Figure 3.4: Left: displacement & acceleration in x-direction for unity step acceleration input with 𝑄𝑑𝑢 = 20. Right: pitch angle
& pitch rate for unity step acceleration input with 𝑄𝑑𝑢 = 20.
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Figure 3.5: Reference vs simulated specific forces in x-direction for unity step acceleration input.

With the new cost values in the simulation equal to fig. 3.6. It can be noted that by increasing the
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weight of 𝑄𝑑𝑢 the cost of total input 𝑈 also decreases. The reason is simple: lower high amplitude
variations in input lead to lower total inputs, and therefore decreases cost.
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Figure 3.6: MPC cost parameter values over time for longitudinal acceleration unity step input, 𝑄𝑑𝑢 = 20.

In similar fashion the rest of the weighting parameter values was found. The full set of parameters for
the 4DoF system is given in Table 3.1. It should be noted that in further research more effort into tuning
of these parameters needs to happen. For example Katliar established the error weighting values, 𝑄𝑦,
by an approximation of the variance of the specific force and rotational rates [50].

Table 3.1: MPC MCA weighting parameter values.

Parameter Value
𝑄𝑦(𝑎𝑥 , 𝑎𝑦 , 𝜔𝑦 , 𝜔𝑥) [1, 1, 1, 1]
𝑄𝑑𝑢(𝑎𝑥 , 𝑎𝑦 , 𝜔𝑦 , 𝜔𝑥) [20, 20, 20, 20]
𝑄𝑢(𝑎𝑥 , 𝑎𝑦 , 𝜔𝑦 , 𝜔𝑥) [1, 1, 1, 1]

𝑄𝑡 [10]
𝑄𝑠𝑙𝑎𝑐𝑘(𝑥, 𝑦, 𝜃, 𝜙) [104, 104, 102, 102]

3.3.2. Slack variables
As explained earlier, the slack variables have the function of realising low frequency input signals near
the constraint boundary. At a cost a slack variable can be used to exceed an otherwise ”hard” constraint.
Since constraints are not enforced, it is important to implement a margin on the constraint. After some
simulations, it was found that with the cost values in table 3.1 a margin of ≈10% is sufficient, e.g.
set max x-displacement to 0.25𝑚 instead of 0.28𝑚. In order to investigate the effect of including a
slack variable, the original situation is elaborated upon: a step input on specific force with a hard
output constraint on x-displacement of 0.28𝑚. The resulting specific force can be seen in fig. 3.7, the
displacement in fig. 3.8.
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Figure 3.7: Left: Specific force in x-direction for unity step input on acceleration with 𝑁𝑝 = 10 without slack variables. Right:
Specific force in x-direction for unity step input on acceleration with 𝑁𝑝 = 50 without slack variables.
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Figure 3.8: Left: Displacement in x-direction for unity step input on acceleration with 𝑁𝑝 = 10 without slack variables. Right:
Displacement in x-direction for unity step input on acceleration with 𝑁𝑝 = 50 without slack variables.

The high amplitude/frequency input change near the displacement constraint can clearly be seen.
With a larger prediction horizon the effect is still present, albeit less pronounced. This makes sense
since the optimization program can anticipate further into the future, even though it is less bad this
behaviour is still not desired. When adding the slack variables the resulting specific force is shown in
fig. 3.9 and the displacement shown in fig. 3.10
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Figure 3.9: Left: Specific force in x-direction for unity step input on acceleration with 𝑁𝑝 = 10 with slack variables. Right:
Specific force in x-direction for unity step input on acceleration with 𝑁𝑝 = 50 with slack variables.
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Figure 3.10: Left: Displacement in x-direction for unity step input on acceleration with 𝑁𝑝 = 10 with slack variables. Right:
Displacement in x-direction for unity step input on acceleration with 𝑁𝑝 = 50 with slack variables.

The first thing that should be noted is the input signal which becomes smooth, no high frequent signal
are present near the boundary of the constraint. Another thing that becomes apparent is the effect of
a small prediction horizon in combination with adding slack variables. When the prediction horizon
is too small, the simulated specific force shows high frequent transient behavior due to reaching the
workspace limits. This can be seen in the left part of fig. 3.9 and fig. 3.10, between 1.5s and 2s. This
characteristic disappears when increasing the prediction horizon 𝑁𝑝 from 10 to 50.

3.3.3. Prediction and control horizon
Altering the prediction and control horizon has a great effect on the performance of the MPC. Increasing
both horizons, makes the MPC more accurate and due to the extended prediction the constraints can
be met without applying large inputs near the constraint boundary. On a more practical note looking
at motion cueing, a large enough prediction horizon reduces the need to add washout to the algo-
rithm. The algorithm can anticipate motion and use its motion workspace optimally. However, due to
computational limits the prediction/control horizon cannot increase indefinitely. This means in real-time
applications a trade-off is necessary between accuracy and the maximum frequency at which the sim-
ulation can be run. For this research, this trade-off is not necessary since the MPC runs off-line.
In this study the prediction and control horizon are equal to each other, based on the results in fig. 3.10,
it was decided to perform simulations with a prediction horizon equal to 50 steps, for full test drive MPC
calculations this prediction horizon safeguards reasonable computational time while also giving solid
results.

3.3.4. Simulation results real vehicle data
Using a prediction horizon and control horizon of 50 steps and simulation parameters found in table 3.1,
simulations using the reference drive found in fig. A.1 and fig. A.2 can be performed. The performance
of both models will be investigated. For both models two different prediction methods will be used for
comparison, both are found in [22] and [26]. One will be a constant prediction where the current vehicle
state is used to create a 𝑁𝑝 long constant reference trajectory for all 4 DoF. The other will be an oracle
prediction, where the next 𝑁𝑝 prerecorded samples in all 4 DoF will be used as reference trajectory.
Next to an MPC side-by-side comparison using different prediction strategies, the oracle MPC will be
compared to the CWA for the situation presented in fig. 2.17.

Double integrator model
The simulated specific force in x- and y-direction with respect to the vehicle specific force for a 50s
simulation using oracle logic is shown in fig. 3.11. The perceived rotational rate with respect to the
vehicle rotational rate is shown in fig. 3.12. Figure 3.13 shows that all workspace limits are satisfied.
The results for a 500s simulation can be found in fig. A.7, fig. A.8 and fig. A.9.
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Figure 3.11: Left: 50 second snapshot of simulated and reference specific force in x-direction using MPC with double integrator
model. Right: 50 second snapshot of simulated and reference specific force in y-direction using MPC with double integrator

model.
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Figure 3.12: Left: 50 second snapshot of simulated and reference pitch rate using MPC with double integrator model. Right:
50 second snapshot of simulated and reference roll rate using MPC with double integrator model.

From these figures the benefit of using the MPC paradigm with a perfect reference trajectory be-
comes clear. Looking at the specific force graphs less false cues or missing cues than CWA are
present, resulting in higher motion cueing fidelity in longitudinal and lateral direction. However, just as
with the CWA, due to a limited workspace in longitudinal/lateral direction, the majority of specific force
is simulated by tilt coordination. This results in a lot of missing and false cues, especially since the
perceptional threshold for rotation is not considered. From simulation it is difficult to say how severe
this rotational incongruency affects the overall motion cueing fidelity. From experiments done by [71],
it is clear that the best motion cueing ratings are given if a compromise is made between accurate
longitudinal/lateral simulation of specific forces and limiting false rotational rates. This can be done
by pre-tuning the weights using a motion cueing predictor [71], and then fine tuning them in simulator
experiments.
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(a)Displacement in X-direction.
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(b)Displacement in Y-direction.
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Figure 3.13: 50 second snapshot of simulator workspace displacement in both x- and y-direction as well as pitch
and roll using MPC with double integrator model.

It is expected that the performance deteriorates when the prediction quality for the reference de-
clines. When using a constant reference trajectory the simulated specific force, both in longitudinal
and lateral direction shows more missing and false cues due to lag, this can be seen in fig. 3.14. The
difference is, however, less pronounced than presented by [26]. This could have several reasons, to
make the real-time implementation possible, usually the control horizon is limited (50) and not equal to
the prediction horizon (100− 150). Larger control horizons limit the applied input in future steps as the
control energy is distributed over more control steps [101], this could result in improved performance
when featuring a bad reference. Because strict real-time deadlines are required and cannot be guar-
anteed, in case the algorithm did not solve the optimization process, the previous input is applied to the
system. One thing to also note is that in this situation the control is ”perfect”, e.g. it controls the same
model that it also uses to predict evolution of future states. In a real-life simulation large incongruencies
may exist between the model and the actual system.
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Figure 3.14: Left: 10 second snapshot of specific force in x-direction using MPC with double integrator model. Right: 10
second snapshot of specific force in y-direction using MPC with double integrator model.
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Vestibular model
The results for the MPC for a 50s simulation using oracle logic can be found in fig. 3.15 and fig. 3.16
regarding the specific force and rotational rate respectively. The same logic as with the double integrator
model can be followed. Because a perfect reference is available, utilizing the advantages of MPC:
a prediction model and explicit constraints, the simulation of longitudinal and lateral specific forces
presents less false and missing cues while remaining within workspace limits, see fig. 3.17. Due to
the inclusion of the vestibular model, the simulated specific force are a scaled version of the reference
signal. Comparing the simulated rotational rates with the vehicle rotational rates, false and missing
cues are abundant. As well as with the double integrator model, the weights can be tuned to increase
the priority of following rotational rates. The results for a 500s simulation can be found in fig. A.10,
fig. A.11 and fig. A.12.
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Figure 3.15: Left: 50 second snapshot of specific force in x-direction using MPC with vestibular model. Right: 50 second
snapshot of specific force in y-direction using MPC with vestibular model.
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Figure 3.16: Left: 50 second snapshot of perceived pitch rate using MPC with vestibular model. Right: 50 second snapshot of
perceived roll rate using MPC with vestibular model.
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Figure 3.17: 50 second snapshot of simulator workspace displacement in both x- and y-direction as well as pitch
and roll using MPC with vestibular model.

It is expected that the performance deteriorates when the prediction quality for the reference de-
clines. When using a constant reference trajectory the simulated specific force, both in longitudinal and
lateral direction shows more missing and false cues due to lag, this can be seen in fig. 3.18. The reason
for this to happen is because the algorithm is not able to anticipate on the future reference trajectories
as well compared to oracle logic. However, the difference is not as distinct as expected. Next to the
possible theories given for fig. 3.14, two other reasons might exist. Because the prediction horizon is
limited to 𝑁𝑝 = 50, in both cases anticipating on the reference is limited as well. In this case, being
able to elongate the prediction horizon would result in different motion. Another aspect that adds to this
behavior is the missing of an explicit state term in the cost function in Equation (3.38) as can be found
in [50], as well as equal error weighting for specific force and rotational rate. The added cost term en-
ables an explicit trade-off between using tilt-coordination and translational acceleration of the platform.
In the presented case the majority of the accelerations are performed by tilt. Adding this together with
penalizing the error on rotational rate more heavily, as done by [50], would reduce the amount of tilt.
It is expected when the overall simulated specific force decreases, the difference between constant
and oracle prediction becomes more apparent. The second theory is that because MPC only uses the
first computed control input that even when using a perfect prediction the overall difference is not that
much. Both of these theories need more investigation to give a conclusive statement.
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Figure 3.18: Left: 10 second snapshot of specific force in x-direction using MPC with vestibular model. Right: 10 second
snapshot of specific force in y-direction using MPC with vestibular model.

3.3.5. Comparison CWA and MPCMCA
Performance of the CWA has been thoroughly analysed in section 2.2, the performance of the MPC in
previous sections. Since the vestibular model was omitted from the CWA, only the double integrator
MPC will be compared. In fig. 3.19 and fig. 3.20 the difference between simulated specific force in x-
and y-direction is shown.
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Figure 3.19: Comparison of simulated specific forces in x-direction between oracle MPC using double integrator model and
CWA.
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Figure 3.20: Comparison of simulated specific forces in y-direction between oracle MPC using double integrator model and
CWA.

The figures above show the differences between the two methods. The MPC based strategy is able
to simulate the high frequent specific forces whereas CWA is not able to do this. Also CWA shows signs
of providing lagged cues to the driver whereas MPC does not. In further investigation more concrete
metrics should be used for comparison, for example using objective motion cueing RMSE scores as
presented in [28].

3.4. Discussion and conclusions
Using model predictive control in motion cueing in driving simulation is quite new. The main reason
can be found in more efficient solvers that are able to solve complex optimization problems fast enough
to guarantee real-time simulation. It was determined that in order to fully understand the use of MPC
in motion cueing, a MPC algorithm should be built from the ground up, tested and analysed. All these
aspects are elaborated upon in previous sections. The full mathematical substantiation was given, after
which several tests were run and its performance analysed and compared to that of the CWA.
As expected the MPC is mathematically more complex than the equivalent CWA. However, its ad-
vantages are clearly present. Because simulator limitations can be explicitly incorporated in the opti-
mization process, tuning is only required to change the actual performance of the algorithm instead of
limiting outputs. When comparing the CWA and MPC output, it was found that differences in simulator
motion exist and based on the perception traces MPC showed to perform better. These findings were
close to what was found in literature [28][50]. However, this could differ from the control performance
of an actual simulator. Many assumptions are made that can be different for a real-life simulation. First
of all perfect simulation is assumed, meaning the model to predict and control are one and the same.
Secondly, the decision was made to impose constraints on platform motion, whereas in literature it
can be found that usually constraints are imposed on actuator level [26]. Also real-time performance is
neglected for the offline simulations, this can have large implications on the performance as the solver
is able to use many iterations. Finally, in literature an input scaling factor is often present [31][22][28],
in the study presented above this scaling factor was omitted.
Contrary to expectation, the main difference between the oracle reference and constant reference tra-
jectory was the introduction of lagging simulator motion when using the constant reference. It was
argued that several factors may have an influence: a larger control horizon could result in a different
picture, also obtaining real-time performance was not important which meant that in both scenarios the
algorithm is given enough time to find the optimal solution.
To conclude this chapter several recommendations are given for future investigations.

1. The MPC algorithm should be extended to 6 DoF.
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2. The cost function should be extended to include an explicit cost on the states, this can be found
in literature as well [50][19]. Adding this term would enable making an explicitly defined trade-off
between simulation by tilt and by translation. It would also add a neutral push to the simulator.

3. One of the findings of [26] is that elongated prediction horizons and an improvement in predic-
tion quality would improve motion cueing quality. To this extent, the MPC algorithm should be
adapted such that it can deal with longer prediction horizons without adding too much computa-
tional complexity. One technique that was often used in literature [71][14] is a technique called
move blocking, this technique ensures mathematical stability for large prediction horizons while
ensuring real-time capabilities [16].

4. One point that has not yet been discussed is the lack of coordinate reference transformations.
The MPC algorithm presented in this chapter does not feature these transformations. This should
be investigated further, and literature should be consulted on how to include these non-linear
transformations into a linear optimization framework.

5. MPC should be validated by comparing the output of this MPC with the MPC algorithm provided
by BMW.

6. Quantitative comparison frameworks should be set-up based on metrics used in literature. One
possibility for using an objective motion cueing metric could be the RMSE as used by Ellensohn
[28].



4
Supervised Data-Driven Modelling

Approach
In Chapter 3, the model predictive control paradigm was presented. One of the main advantages of
using model predictive control as motion cueing algorithm over the standard CWA is the explicit in-
clusion of future motion reference while also enabling the use of explicit workspace constraints. This
advantage is also one of the main challenges for an MPC MCA, realising an accurate reference tra-
jectory for each time step for the 𝑁𝑝 next prediction steps. This chapter commits itself to explaining a
supervised data-driven modelling approach to tackle this challenge. The chapter is constructed in the
following way. Section 4.1 presents alternatives, found in literature, to the constant reference trajectory
elaborated upon in Chapter 3. In Section 4.2 the problem statement as well as different modelling ap-
proaches are described. Section 4.3 presents the data sets and possible features that are available to
use in training, testing and validating. This section will also present the feature selection. Section 4.3
will be superseded with Section 4.4 where the options regarding data preprocessing are elaborated
upon, these include data scaling and prefiltering of data. Because this thesis concerns itself with a
supervised data-driven approach, model training requires input-output mappings, the process of gen-
erating these mappings will be discussed in Section 4.7. Several different network structures consisting
of a multi-layer perceptron model, a recurrent neural network, a deep recurrent neural networks and an
encoder-decoder recurrent neural network will be set-up in Section 4.5. Neural network models feature
many hyperparameters that influence model performance, such as parameters that define the network
structure and affect the learning process. The process of tuning these parameters will be examined in
Section 4.8. Section 4.9 elaborates on model performance analysis on an independent test set, both
on temporal as well as metric level. Section 4.10 finalizes the chapter with a discussion on the results
as well as some recommendations for future work.

4.1. Driver Behavior Modelling Preliminaries
Several other studies suggest different techniques in order to incorporate driver models in real-time
MPC to generate a future reference signal. Two studies will be examined.

4.1.1. Switching prediction from non-look-ahead to look-ahead reference
Bruschetta et al. [15] suggest a strategy that is able to switch between a non-look-ahead (NLA) to a
look-ahead (LA) prediction in real-time [15]. In order to do so a data-set is built-up by letting a virtual
driver drive around a track following a reference trajectory minimizing laptime. This is done for differ-
ent reference trajectories and different track grip levels ranging from 100% (realistic grip) to 40% grip
(heavily reduced grip due to e.g. rain or ice). Several combinations are simulated and data is gathered
from all scenarios. Four driver skill level (DSL) categories are devised and the previously recorded
data is categorized according to one of the four DSL’s. For each data-set the most challenging lap is
recognised. This is the lap with the highest peak accelerations in longitudinal and lateral acceleration,
i.e. the most difficult to simulate. This data-set is then used as reference. The reference trajectory is
built-up in the following way:

91
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1. The first 𝑇𝑐 seconds of the future reference is held constant, i.e. the current system outputs.

2. For 𝑡 > 𝑇𝑐 the prediction equals a scaled version of the data from the most challenging lap, i.e.
𝐾𝐿𝐴 ∗ 𝑟𝑀𝐶𝐿.

When relevant unexpected behaviour is detected which would significantly impact the MPC ap-
plied input (dependent on DSL), the gain 𝐾𝐿𝐴 is smoothly reduced to 0, effectively reducing the future
reference trajectory to a NLA prediction strategy using constant reference. The strategy is shown in
fig. 4.1.

Figure 4.1: Future reference trajectory strategy using a switching NLA and LA prediction [15].

Validation with human-in-the loop experiments show that the driver can be accurately placed within
one of four categories. It is shown that utilizing the LA prediction strategy enables an improvement in
longitudinal/pitch DoF ranging from 60% to 215% in the value of the gain K.

4.1.2. Driver model based on yaw, lateral error, velocity and gear changing
In the paper written by Drop et al. [24] an online MPC algorithm used as MCA is researched. Another
strategy than the one developed by [15] is utilized. The online prediction method simulates a car, by
means of a simplified kinematic bicycle model, on a 2-dimensional representation of the actual road.
It is argued that the simulation time of the car cannot exceed 1ms due to constraints on the MPCMCA
calculation, therefore simplified models are required [24].
As mentioned, the environmental model is a simple 2D representation of the centre line of the actual
road. Curvatures are modelled by a clothoid at the start, a section with constant curvature in the middle
and a clothoid at the end. Velocities on this 2D path were assumed to be 100𝑘𝑚/ℎ on rural sections,
during the lane change 70𝑘𝑚/ℎ and 55𝑘𝑚/ℎ elsewhere. In corners a desired lateral acceleration
of 3𝑚/𝑠2 is assumed. It should be noted that the driver-in-the-loop may exceed all of above stated
values.
The car is modelled according to a simplified kinematic bicycle model incorporating yaw dynamics
based on the equations of motion and longitudinal acceleration which is a function of engine force,
brake force, drag and rolling resistance. As input it requires a front axle steering angle and longitudinal
acceleration in body frame.
The driver model outputs are used as input to the car model. The driver model encompasses a yaw
and lateral error controller, a PID velocity controller and a gear shifting controller. The yaw controller
is a combination of a first-order feedforward and feedback controller whose output is required for the
determination of steering wheel angle. The velocity PID controller acts on the error between the target
velocity, based on road position and current car velocity, trying to mimic an average acceleration profile.
The gear controller changes gear based on two parameters: current engine RPM and target speed of
the car.
Performing experiments with driver-in-the-loop both in an online as well as offline manner resulted
in an overall positive experience regarding motion cueing. It was shown that small improvements
to the prediction method could result in considerable improvements in motion cueing. It was also
found that a non-zero state-error weight in the cost function is regarded as a reasonable method for
preventing motion incongruencies due to prediction errors. This state term is defined as the second
term in Equation (4.1) [24].

𝐽(𝑡) = 1
𝑁
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4.2. Problem and Method Description
Up to this point, three different models for reference trajectory generation were investigated.

1. Constant reference trajectory.

2. NLA-LA reference strategy: a hybrid method including a short-term constant reference as well as
a long-term component based on reference drives performed by other drivers.

3. An artificial driver model consisting of a simple kinematic bicycle model, using different controllers
following the centre line of the road and adhering to the set speed limits.

These three options present their own advantages and disadvantages. Utilizing a constant reference
trajectory is feasible in each scenario as it is only dependent on the current state. However, only in rare
cases does the state remain constant over the horizon 𝑁𝑝, so more often than not this prediction does
not provide high accuracy. Although the second option proved to give good motion cueing results, it
requires a prerecorded reference drive which largely compromises its usability. Any deviation/stochas-
ticity in the driving scenario would make this option unusable. The last option has the advantage of
both previous options, it is very flexible and can be used in almost every scenario. However, when the
general driving direction is unknown, for example in an urban scenario where the intent of the driver is
unknown, e.g. which exit on the roundabout will the driver take, the inclusion of some heuristic/rule-
based logic (e.g. based on turn signal indicator) which predicts future driving behavior is required.
However, even in the cases where it can be used it should be noted that this controller is tuned to
match an average acceleration profile and is therefore not able to catch driver specific behavior [24].
The upcoming sections propose the pursuit of another way of generating a reference trajectory: namely
a supervised data-driven neural network model. The term ”supervised” denotes the act of training the
model in offline fashion. Effectively this means that training data is fed to the model offline, after which
the trained model can be used to make online predictions given certain (sequences of) input features.
The reason to investigate such models is because modelling driver behavior is a stochastic matter.
Therefore, it is difficult/impossible to give an analytical description of the governing equations that model
driver behavior. Given enough data and training time a neural network serves as a ”black box” model
that is able to learn dependencies in data to make predictions about future states. In Chapter 3 a 4 DoF
MPC algorithm was presented, this MPC algorithm requires a reference trajectory for both longitudinal
and lateral acceleration and pitch and roll rate. However, as will be explained in Chapter 5, validation
will be done on a multi-DoF simulator requiring a reference trajectory in all 6 driving DoFs. This means
the model needs to be able to predict the trajectory in all 6 DoFs independently. Because MPC requires
a discretized temporal, i.e. time and state dependent, reference trajectory it is required that for each
DoF a prediction needs to be made for each sample in the ”𝑁𝑝” long prediction horizon. These two
requirements lead to the following problem statement:

For accelerations in all translational directions as well as for rotational rates around
each axis a supervised data-driven model must give a prediction for each sample within

the prediction horizon of length ”𝑁𝑝”.

In order to comply with the problem statement a methodology was set-up to understand what actions
need to be undertaken. This methodology follows the ”engineering design process” [29], normally
subdivided into 6 steps: Idea→ Concept→ Planning→ Design→ Development→ Launch. However, to
tailor the process to the problem at hand, three changes are implemented. Firstly, the ”concept” phase is
replaced by data review. Based on the data review and the problem statement, design concepts can be
realised. Next to this, the ”planning” phase is omitted all together. Thirdly, ”Design” and ”Development”
are combined into one phase ”Design and Optimization”. And lastly, the final step ”launch” is replaced
by ”Integration and Validation”, since the thesis concerns itself with software integration and not product
development.

1. Idea: The first thing to do is to come-up with an idea, a problem that needs to be solved. This
problem is defined in the statement given above. The substantiation for pursuing a solution to
this problem is given in all preceding chapters.

2. Data review: It is already stated that a data-driven model will be used, therefore the concept
phase entails a review of the data. This includes an investigation on the available dataset, e.g.
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what were scenario specific elements and in which environment was the data recorded. It also
includes an investigation on which signals are present in the dataset. Normally part of the concept
development is also the conceptualization of models and their structure, however this will be part
of step 3: model design and optimization.

3. Design and Optimization: Based on the data review in the previous step and the problem state-
ment, several different model structures are set-up. Part of this process includes the data prepa-
ration which entails data preprocessing as well as input-output mapping creation.

4. Integration and Validation: In this phase the results of the prediction models will be integrated with
the MPC algorithm and preliminary results will be analysed. Based on the preliminary simulation
results, research hypotheses and an experiment design tailored to the research question will be
established. The experiment serves as validation.

4.3. Data Review
The data-set contains 43 independent drives obtained during a dynamic driving experiment in a rural
environment [70]. The road consisted of two opposing single lanes, one going in North-to-South (NS)
and one in South-to-North (SN) direction. Participants were asked to drive in one of two direction, and
drive as they normally drive every day, without any time pressure, adhering to the traffic regulations
that are in place. A figure depicting the road lay-out is given in fig. 4.2 . The participants conducted the
experiment driving a model of a 2018 BMW 530i. The total of 43 drives can be split-up in 13 drives from
NS, 24 drives from SN and 6 drives that were abandoned prematurely, e.g. due to motion sickness. The
latter 6 drives are omitted from the data-set. For each experiment 62 different variables were logged,
ranging from simulator specific variables to kinematic vehicle model states.
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Figure 4.2: Road layout segmented based on local speed limit.

A description of the rural road segmentation is given in table 4.1.
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Table 4.1: Explanation on segmentation rural road on which experimental data was gathered.

Road Segment Situation
1 → 2 Rural road entering village
2 → 3 Leaving village to rural road
3 → 4 Sharp hilltop, reduced speed limit rural road
4 → 5 Sharp hilltop, increased speed limit rural road
5 → 6 Approaching roundabout, reduced speed limit
6 → 7 Leaving roundabout, increased speed limit rural road
7 → 8 Sharp turn, reduced speed limit
8 → 9 Approaching village, reduced speed limit
9 → 10 Leaving village, increased speed limit
10 → 11 Entering village, reduced speedlimit

The reason why data is reviewed has multiple reasons, the first one is to make sure logged data
has no offset errors or different/low signal-to-noise ratio when comparing different participants to each
other. Finding such behavior and correcting them before using them to train models can have a large
impact on the quality of the model. The other is to find out how signals differ between participants, i.e.
if large variations between drivers can be found and where exactly these deviations occur.

4.3.1. Speed profile
The first signal that is analyzed is the velocity profile of different drivers to check whether participants
adhere to imposed speed limits. A figure of the velocity profiles for both NS and SN direction can be
found in fig. 4.3. One can see that there is a noticeable difference between the two drives, in case
of the NS drive more people seem to underestimate or overestimate their own speed causing them to
drive quicker or slower than the imposed speed limit. Whereas in SN direction less people seem to
underestimate their speed, causing the majority of participants to adhere to the speed limit. However,
there is one participant in the SN direction who severely underestimates his own speed at sections 2,3,
7 and 8 which causes him to drive too fast at each of these sections. Although, significantly different
this drive is not omitted from the data set to keep variation in the data set during training. Another thing
to be noted is that in section 10 participants seem to drive significantly slower than the imposed speed
limit of 100𝑘𝑚/ℎ, this could have two reasons. The first option is that participants felt enforced to drive
slower than the imposed 100𝑘𝑚/ℎ because the road is quite swirly at segment 10. The other option
is that a there is a mismatch between the road sign a participant sees and the speed limit definition
found in the software. Whatever the reason, it does not matter for this application because of the
following. Since these signals will be used as input feature to the neural networks to predict driver
behavior, in case of option 1 the model will learn that accelerative behavior is not only dependent on
the difference with the speed limit but also on the road layout (this is also part of the feature set as
discussed in a later section). In case of option 2, one should note that this thesis research serves as an
exploratory study to understand the effectiveness of using neural networks to do driver prediction in a
certain environment. If the results are positive, further research should be performed to understand to
which capacity such a network can be used in a real-time scenario, dealing with definition mismatches
is part of that investigation.



96 4. Supervised Data-Driven Modelling Approach

0 1 2 3 4 5 6 7 8 9
Distance Driven [km]

0

20

40

60

80

100

120

Sp
ee

d 
[k

m
/h

]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Speed profile NS direction

Average speed profile
Speedlimit [km/h]
Individual speed profile

0 1 2 3 4 5 6 7 8 9
Distance Driven [km]

0

20

40

60

80

100

120

Sp
ee

d 
[k

m
/h

]

(11) (10) (9) (8) (7) (6) (5) (4) (3) (2) (1)

Speedprofile SN direction

Average speed profile
Speedlimit [km/h]
Individual speed profile

Figure 4.3: Velocity profiles featuring all participants in both North-to-South as well as South-to-North direction.

4.3.2. Road curvature and steering wheel angle
When investigating the road curvature it was found that because the road curvature is created based off
splines, it is wrongly defined at certain locations and high peaks exist between samples. To counteract
this effect, the road curvature is low-pass filtered with a 0.2𝐻𝑧 2nd-order butterworth filter [87] using
Python’s Scipy butter and filtfilt functionality [100]. As for the steering wheel angle it was found that an
offset was included in the data, this offset is removed by subtracting the original signal with the mean
steering wheel angle for each participant independently. Both results can be found in fig. 4.4.
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Figure 4.4: Top: Effect of 0.1𝐻𝑧 2nd-order low-pass butterworth filter on road curvature.
Bottom: Steering wheel angle profile without offset error.

4.3.3. Acceleration profile
The last signals that are analyzed are the longitudinal and lateral acceleration profile of both drives
from NS and SN. A figure for both the longitudinal and lateral acceleration in NS and SN direction can
be found in fig. 4.5 and fig. 4.6, respectively.
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Figure 4.5: Longitudinal acceleration profiles featuring all participants in both North-to-South as well as South-to-North
direction.
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Figure 4.6: Lateral acceleration profiles featuring all participants in both North-to-South as well as South-to-North direction.

It should be noted that the acceleration signal suffered from high frequency spikes due to gear
shifting. Since it is not desired for the model to predict high frequency accelerations due to gear shifts,
the acceleration signals are low-pass filtered with a 1𝐻𝑧 5th-order butterworth filter, the resulting signal
can be found in fig. A.13.
From the figures it seems as if the spread of data around the mean is larger for longitudinal acceleration
than for lateral acceleration. This observation agrees with what can be found in literature as well [28].
The hypothesis is that the model will find it more difficult to predict longitudinal than lateral acceleration.

4.4. Feature Analysis and Data Preprocessing
This section provides a discussion on the input and output feature selection as well as data prepro-
cessing.

4.4.1. Input and output features
Selecting the output features that the model needs to predict is in this case straightforward, they are
defined by the reference the MPC MCA tries to optimize towards. The output features are defined in
table 4.2.
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Table 4.2: Output features determined by MPC MCA reference trajectory requirement.

Output feature Unit
Longitudinal acceleration 𝑚/𝑠2
Lateral acceleration 𝑚/𝑠2
Vertical acceleration 𝑚/𝑠2
Pitch rate 𝑟𝑎𝑑/𝑠
Roll rate 𝑟𝑎𝑑/𝑠
Yaw rate 𝑟𝑎𝑑/𝑠

The selection of input features is not as straightforward, because in this case it is not fixed by an
external requirement. The easiest option is to use all available signals as input features to the model
and let the model learn the dependencies by itself. However, this does come at the cost that model
complexity increases with the amount of input features being used [58]. Also performance of the model
might decrease by adding too many input features. This can occur because the average feature quality,
i.e. feature richness, will go down and the model might overfit on features that have no correlation to
the predicted output feature [58]. This makes training more difficult. Selecting only very rich features
is the goal, but a difficult task, the process of selecting features is called ”feature selection”. Several
feature selection techniques exist, three of them are highlighted below.

1. Filter method: Several filter approaches exist for selecting relevant input features. One of the
more simple methods is calculating the correlation between input and output features. The output
of the algorithm is the subset of input features that show the highest correlation between individual
input and output features and that show low input feature cross-correlations. This way redundant
features, e.g. two input features having large correlations, are omitted from the input feature
space [92][47].

2. Wrapper method: This is a model specific approach, where wrapper methods select the subset
of features that give the model the best performance. Wrapper algorithms are computationally
expensive because the performance of the model needs to be evaluated multiple times, each time
with a different combination of selected features. An example is the ”exhaustive search heuristic”,
which evaluates all possible combinations of input features and selects the combination with the
best model performance. Another method often used is forward selection, where the algorithm
starts with zero features and adds one at each iteration and stops when a certain threshold in
performance and number of features is obtained [57][12].

3. Embedded methods: Feature selection is embedded within the machine learning algorithm.
One of the methods commonly used to reduce the input feature space is ”L1-regularization”. L1-
regularization adds a penalty term to the network’s cost function equal to the sum of the absolute
values of the parameters in the model. Applying L1-regularization to an algorithm often results
in a sparse feature set, causing some features to equal zero. This effectively reduces the input
feature space [65].

Based on the specific data-set, the amount of possible input features that are present within the
data-set, and method specific advantages and disadvantages, one of the three specified methods can
be selected. The goal of this study is to provide a framework with which one can predict the output
features presented in table 4.2. Therefore, advanced feature selection techniques are not considered
at this stage.
However, feature selection is based on intuition and examples of driver behavior modelling found in
literature [2][49], that present some features used for prediction. In order to select the features, they
are categorized in two classes: causal (past-time) features and non-causal (look-ahead/future) envi-
ronment features. The reason why this division is made will be apparent in section 4.7. These classes
can be sub-categorized into environmental, driver specific and vehicle features. The full input feature
list and their class and sub-class categories are given in table 4.3.
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Table 4.3: Input features used for driver prediction, categorized into causal and non-causal (<X [𝑚]>look-ahead) features.

Input feature Class Subclass Link to output feature

Absolute road curvature Causal Environmental - Longitudinal/Lateral acceleration
- Roll, pitch, yaw rate

Sign road curvature [-1; 1] Causal Environmental - sign longitudinal/lateral acceleration
- sign roll-, yaw rate

Road width Causal Environmental - Longitudinal/Lateral acceleration
- Roll, yaw rate

Speed limit Causal Environmental - Longitudinal acceleration
- Pitch rate

Road elevation Causal Environmental - Vertical acceleration
- Pitch rate

Absolute road curvature Non-Causal <X [𝑚]>
look-ahead Environmental - Longitudinal/Lateral acceleration

- Roll, pitch, yaw rate

Sign road curvature [-1; 1] Non-Causal <X [𝑚]>
look-ahead Environmental - sign longitudinal/lateral acceleration

- sign roll, yaw rate

Road width Non-Causal <X [𝑚]>
look-ahead Environmental - Longitudinal/Lateral acceleration

- Roll, yaw rate

Speed limit Non-Causal <X [𝑚]>
look-ahead Environmental - Longitudinal acceleration

- Pitch rate

Road elevation Non-Causal <X [𝑚]>
look-ahead Environmental - Vertical acceleration

- Pitch rate

Steering wheel angle Causal Driver specific
- Lateral acceleration
- Roll, yaw rate
- Vehicle dynamics

Throttle [0-1] Causal Driver specific
- Longitudinal acceleration
- Pitch rate
- Vehicle dynamics

Brake [0-1] Causal Driver specific
- Longitudinal acceleration
- Pitch rate
- Vehicle dynamics

Longitudinal acceleration Causal Driver specific
- Longitudinal acceleration
- Pitch rate
- Vehicle dynamics

Lateral acceleration Causal Driver specific
- Lateral acceleration
- Roll rate
- Vehicle dynamics

Speed Causal Driver specific - Longitudinal acceleration
- Pitch rate

Yaw rate Causal Driver specific
- Lateral acceleration
- Roll, yaw rate
- Vehicle dynamics

Roll rate Causal Vehicle
- Lateral acceleration
- Roll rate
- Vehicle dynamics

Pitch rate Causal Vehicle
- Longitudinal acceleration
- Pitch rate
- Vehicle dynamics

Not all of the features listed above were part of the attributes in the data-set. The absolute road cur-
vature, the sign of the road curvature (left corner is positive, right corner negative), the road elevation
and acceleration in Z both causal and non-causal had to be calculated and added to the data-set. It is
worth noting that the reason why the non-causal signals are distance and not time-based is to make
sure the amount of information the model sees at each time step is independent of other attributes such
as speed and input sample length (e.g. 𝑥 = 𝑣 ⋅ 𝑡). It also makes more sense as a person, regardless of
the amount of input samples and speed they are driving, is able to anticipate road conditions a certain
fixed distance in the future, assuming the road is not visually obstructed. The reasoning behind the
majority of the presented signals is the direct link with the to-be-predicted output. For example, it is
argued that the magnitude of the road curvature influences the braking behavior, as such longitudinal
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acceleration, before the turn but also influences the lateral acceleration of the vehicle in the turn. It is
of course hard to say if the network will learn these exact dependencies between features or if it also
learns more high dimensional dependencies between features. The reason why the attributes that are
linked to vehicle dynamics are included is that the network can learn a representation of the dynam-
ics/inertia of the simulated vehicle as well, e.g. given a certain speed and throttle input, what kind of
acceleration is to be expected?

4.4.2. Data preprocessing
Data preprocessing is a very important step before setting up and training the model. Data preprocess-
ing constitutes several techniques, of which a couple are given below [55].

• Removing Null/Nan values: It often occurs that certain samples within the dataset are missing,
for these samples the Null value is written. A NN model cannot cope with Null values within
features, therefore these have to be replaced by a different value. Depending on the data type
and structure, different techniques exist to replace Null values [40][55].

• Outlier detection: Sometimesmeasurements could bewrong, and large outliers could be present
in the data. These are often removed/replaced [40][55].

• Categorical data: Machine learning models consist of many mathematical equations, as such
categorical data (e.g. city names) cannot be used in their raw form but need to be encoded/trans-
formed to a numerical data type [55].

• Noise reduction: When signals feature too much noise, signals are often low-pass filtered.

• Scaling: Using the raw attribute values in the dataset is considered bad practice and will de-
crease the performance/generalization of the model [55][89]. The reason is because the value
ranges (often because of the unit) between input features can be vastly different within or between
scenarios (city vs highway driving). For example, the value range of throttle input is [0-1], of speed
is [0-130] 𝑘𝑚/ℎ, while longitudinal acceleration is within the range [-9, 9]𝑚/𝑠2. This could result
in the model putting more weight and thus more importance on those features with higher values,
which is not desirable. Next to this, when using for example sigmoid activation functions in the
model, where an input is mapped to a value between 0 and 1, large discrepancies between value
ranges could lead to values being squashed or saturated which makes training difficult/impossi-
ble. To solve this, all features are scaled to have the same value range. Scaling is often done
with either min-max scaling or z-score normalization [55][89].

• Train-Test-Validate: The performance on the training data is not important as good results do
not automatically cross-over to good performance on unseen data. Therefore the data-set needs
to be split-up into a training, validation and test set. The validation set is required to keep track of
under or overfitting during training. Ultimately, it is the performance on the unseen test-set that is
important [55].

• Re-sampling: Depending on the desired sampling rate of the output, and the amount of time
steps the data is often re-sampled (in most cases down-sampled) [55].

In this case Nan values are checked and if necessary, removed. Outliers are checked for, data is
scaled, and separated in the equivalent training, validation and test set and the data is down-sampled.
Since the data was gathered in a virtual environment, the overall data quality is high: it was found that
no Nan values were present in the dataset. When determining if there were faulty outliers in the dataset,
it was also found that no faulty outliers were present. As for splitting up the data into the equivalent
sets, it was decided to take roughly (rounded to integer amount of drives) 80% of SN and NS drives as
training set (20 SN drives and 9 NS drives), and 10% (equals two SN and two NS drives) for both test
and validation set. The frequency at which all attributes are recorded is 100𝐻𝑧, this means that for a
prediction horizon of 10s the model should predict 1000 samples. This leads to model with increased
complexity, reducing computational efficiency. To artificially reduce model complexity, the signals are
down-sampled to obtain 50 prediction samples, which results in a down-sampling frequency of 5𝐻𝑧.
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Scaling
Many different scaling techniques exist, but only two of them are considered in this case, min-max
scaling and z-score normalization. The formula for both are given in eq. (4.2) [55].

𝑚𝑖𝑛 −𝑚𝑎𝑥 ∶ 𝑋′ = 𝑋 − 𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

⋅ (𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛) + 𝐹𝑚𝑖𝑛

𝑧 − 𝑠𝑐𝑜𝑟𝑒 ∶ 𝑧 = 𝑋 − 𝜇
𝜎

(4.2)

Where 𝑋′ and 𝑧 denote the scaled value of the attribute, 𝑋 denotes the current value, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥
denote the minimum and maximum value present in the data. 𝐹𝑚𝑖𝑛 and 𝐹𝑚𝑎𝑥 denote the feature range
to which the signal should be transformed, where 𝐹𝑚𝑖𝑛 = 0 and 𝐹𝑚𝑎𝑥 = 1, 𝜇 and 𝜎 denote the mean
and standard deviation of the signal respectively. It is very important that the attribute specific values,
𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥, 𝜇 and 𝜎, are independent from the test and validation set, i.e. the test and validation set
should be excluded when determining these values. This is to make sure no information leaks from
the unseen data to the training set, this could lead to the model implicitly developing a bias/overfit on
unseen data which is not desirable. A plot showing the resulting distribution of the input features scaled
with both min-max and z-score normalization scaling can be found in fig. 4.7.
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Figure 4.7: Violin distribution plots of input features scaled with a min-max (top) and z-score normalization scaling (bottom).
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When looking at the individual distributions, one can distinguish a couple of noteworthy features.
First of all one can see that features that possess a near symmetric distribution with a mean of zero
after z-score normalization are symmetric around 0.5 after min-max scaling, which makes sense since
the feature range is between 0 and 1. Next to this, looking at the speed distribution three blobs can be
distinguished, corresponding to the three different speedlimits. Something else that catches the eye is
the distribution of both the road curvature as well as the brake distribution, in both cases one can see
that the majority of density lies around 0. This makes sense as the amount of high radius corners is
limited, as well as the amount of heavy braking points.
When comparing both distributions with each other one can see that the distribution in case of the
min-max scaling is enforced to lie between 0 and 1 whereas in the case of z-score normalization the
value range is defined by the signal distribution parameters giving rise to inter-attribute value range
differences. As discussed before, large variations in value ranges between features could lead to bad
model performance. For this reason min-max scaling is chosen. To get the most performance out of
the models, the effect of using different scaling should be investigated at a later stage.

4.5. Network Model Structures
This section presents three different model types that are utilized to perform temporal driver dynamics
regression. The first model discussed is a vanilla feed-forward neural network, the second one a deep-
learning recurrent neural network and the last one a deep-learning encoder-decoder network. In order
to build, train and test the network, the Keras API which uses Tensorflow as backend was used [17].

4.5.1. Multi-layer Perceptron Model
A multi-layer perceptron model, in short MLP, is often described as the classic/vanilla form of a neural
network. It is a fully connected, feed-forward neural network featuring at least three layers, an input, a
hidden and an output layer. The term ”fully connected” indicates that all nodes between two adjacent
layers are connected with each other. The term, feed-forward indicates that information flows from the
input to the output without information flowing back through the network [83]. Although different neural
network structures explicitly exist to perform temporal sequence prediction (such as recurrent neural
networks), a vanilla MLP is also able to perform the same task, in some cases showing competitive
results [93][13]. Therefore it is chosen to use the simpler MLP as a prediction quality benchmark. A
schematic overview of a three layer MLP featuring three input nodes, five nodes in the hidden layer
and two output nodes is given in fig. 4.8.
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Figure 4.8: Schematic of one hidden-layer vanilla multi-layer perceptron network.

In this figure all the circles depict ”neurons” and the lines that connect them are called ”(synaptic)
weights”. Each neuron is a processing unit that transforms a certain input to a certain output, e.g. a
hidden layer neuron can be described as ℎ𝑜𝑢𝑡 = 𝜌(ℎ𝑖𝑛+𝑏), where the function 𝜌 is called the ”activation
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function” for hidden layer neuron h and b a bias term that is added that enables shifting the activation
function to the left or right, see fig. 4.9. A negative bias shifts the activation function to the right, a
positive bias shifts it to the left. Many different activation functions exist, but currently for MLP’s, the
nonlinear rectified linear unit (its function is given in Equation (4.3), a plot in fig. 4.9), or Relu, is the
benchmark activation function [40].

𝜌𝑅𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (4.3)
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Figure 4.9: Influence of a varying bias term on the output of a Relu neuron.

The reason for the Relu’s popularity is because, contrary to a squashing sigmoid (sig) or hyperbolic
tangent (tanh) activation function which transforms an input to a value range of [0, -1], and [-1,1],
respectively, it eliminates the risk of vanishing gradients [40]. This risk occurs in deep networks with
many hidden layers, where the input to the activation function is the weighted sum of outputs from
previous neurons. These neuron outputs are a function of the previous weight value times the value of
the neuron itself. When working out the mathematics, it can be found that recursively writing the output
of a neural network gives a function of many weight multiplications with the input neurons flowing
through layers of activation functions. The equations for the hidden layer, and output layer neurons
are given in eq. (4.4) [84]. In a model, featuring many hidden layers, it can occur that the outputs
of the neurons quickly diminish, i.e. converge to zero. This occurs due to recursive multiplication of
many values that lie between -1 and 1. As an effect information flow stops at a certain point making
it impossible for a network to train [9]. The problem of vanishing gradients becomes more clear when
discussing how a network is trained using gradient descent approaches.

ℎ𝑜𝑢𝑡 = 𝜌(�⃗�𝑥,ℎ × �⃗� + 𝑏𝑥)
𝑦𝑜𝑢𝑡 = 𝜌(�⃗�ℎ,𝑦 × ℎ⃗𝑜𝑢𝑡 + 𝑏ℎ)

= 𝜌(�⃗�ℎ,𝑦 × 𝜌(�⃗�𝑥,ℎ × �⃗� + 𝑏𝑥) + 𝑏ℎ)
(4.4)

Although Relu is stated to be the benchmark, it does have one big disadvantage. Relu activa-
tion functions do suffer from a phenomenon called ”dead Relu’s” which occurs when the total input
is negative, effectively mapping the input to zero [40]. Looking at Equation (4.4), this occurs when
�⃗�𝑥,ℎ×�⃗�+𝑏𝑥 < 0, which happens when both terms are negative or when one is more negative than the
other. Dead Relu’s negatively impact training performance, when many dead Relu’s are present in the
network the gradients will saturate to zero which stops gradient flow through the network which means
the network stops learning. When a network features many neurons, and it stops learning, it could
mean that the gradient updates are too large pushing all biases to large negative values eliminating
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the possibility for the Relu to recover. This can be resolved by lowering the learning rate or by utilizing
a variation on Relu called ”Scaled Exponential Linear Unit” or Selu for which the adapted equation is
given in Equation (4.5) [53].

selu(𝑥) = 𝜆 {𝑥 if 𝑥 > 0
𝛼𝑒𝑥 − 𝛼 if 𝛼 ⩽ 0 (4.5)

Training
Training neural networks effectively means altering the weights such that the error between the net-
work’s predicted output and the labelled (true) output is as small as possible. This means dealing with
an optimization task which, for a vanilla MLP, can be formulated as follows.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸 = 1
𝑁

𝑁

∑
𝑖=1
𝐿𝑖(𝑓(𝑥𝑖 , �⃗�), 𝑦𝑖) + 𝜆 ⋅ 𝑅(�⃗�) (4.6)

Where ”𝑁” depicts the amount of training input-output mappings that are used, 𝐿𝑖 is defined as
the loss function (will be further elaborated upon in ”metrics”) which is a function of both 𝑓(𝑥𝑖 , �⃗�), i.e.
the output of the network (function of input 𝑥𝑖 and weights �⃗�), and the true output 𝑦𝑖. The added term
𝜆⋅𝑅(�⃗�) is a regularization penalty, where 𝜆 is a weighting term that is used to make a trade-off between
model performance on training data and obtaining a simpler neural network [82][56]. Regularization
if discussed further in Section 4.6. Often the simpler model has a better fit on unseen data than a
complex model which tends to overfit [75].
In this thesis only backpropagation optimization algorithms are considered, where the weight optimiza-
tion relies on taking the gradient of the error with respect to the output, by applying the chain rule it
is then possible to derive a formulation for the change in error with respect to each input and each
individual weight [81]. The most basic version of a backpropagation algorithm using gradients is called
”gradient descent” and works in the following way [81]. First, one needs to calculate the gradient 𝛿𝐸/𝛿𝑦,
i.e. the partial derivative of the error with respect to each output. By applying the chain rule one can de-
fine 𝛿𝐸/𝛿𝑤, i.e. the partial derivative of the error with respect to each individual weight in the network.
When all the gradients are defined, a weight update occurs in negative direction w.r.t. the calculated
gradient, for gradient descent the update rule is defined as found in Equation (4.7).

Δ�⃗� = −𝜖 ⋅ 𝛿𝐸𝛿𝑤 (4.7)

Where 𝜖 is called the learning rate, it defines by how much the gradients change each training
iteration. More elaborate algorithms that take more parameters, to make a weight update, into account
exist. Two common ones are:

1. Gradient descent with momentum: Similar to the vanilla gradient descent update rule, however
a term is added in the update rule: Δ�⃗� = −𝜖 ⋅ 𝑣𝑡+1, where 𝑣𝑡+1 =

𝛿𝐸
𝛿𝑤 + 𝛼𝑣𝑡. Momentum does

not update weights based on the gradient but based on the velocity which has the gradients
incorporated, with 𝛼 being an exponential decay factor, often called ”friction coefficient”. Adding
this term increases rate of convergence by pushing the weights towards the optimum as well as
averaging out oscillations that occur in normal gradient descent when near or at saddle points
[81][73].

2. Adaptive momentum estimation (or Adam): This is an algorithm often used for optimizing ma-
chine learning networks due to its efficient solving capabilities [52]. Adam combines two algo-
rithms, namely Adagrad [25] which accelerates optimization in dimensions with small gradients,
holds back optimization in dimensions with large gradients by introducing an implicit learning rate
decay factor (with bad parameterization this can lead to an optimization stop). The other one
being RMSprop [43] which is similar to Adagrad but adds in an explicit decay factor which re-
duces the implicit learning rate decay over time. The result is an algorithm which includes ideas
from momentum (building up a velocity term) as well as ideas from RMSprop (acceleration in di-
mension with small gradients and vice versa without strong learning rate decay). Because Adam
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requires null initialization which leads to a large first update step, decaying bias terms are added
to minimize this effect, the full mathematical background can be found in [? ].

Due to the efficient nature and widespread use of the Adam optimizer, Adam is used to train the
networks proposed in this thesis.
Before the training process can start, all the weights in the network need to be initialized to retrieve
an initial gradient value. For all models, the Glorot uniform initialization was used [39]. Where for
each neuron a value is generated by sampling from a uniform distribution with limits dependent on the
amount of inputs and outputs of that weight tensor.

Metrics
Deciding on how to calculate the error is not a trivial task and many different metrics exist, depending
on the task at hand some might make more sense to use than other. For regression, equations for
three well known metrics are given below.

• Mean absolute error:

𝑀𝐴𝐸 =
𝑛

∑
𝑖=1

|𝑓(𝑥𝑖 , �⃗�) − 𝑦𝑖|
𝑛 (4.8)

• Mean squared error:

𝑀𝑆𝐸 =
𝑛

∑
𝑖=1

(𝑓(𝑥𝑖 , �⃗�) − 𝑦𝑖)2
𝑛 (4.9)

• Root mean squared error:

𝑅𝑀𝑆𝐸 =
𝑛

∑
𝑖=1

√(𝑓(𝑥𝑖 , �⃗�) − 𝑦𝑖)2

𝑛 (4.10)

Where each metric can be interpreted in a certain way. The mean absolute error imposes an equal
weight on the spread of data, i.e. error between true and predicted output. The mean squared error
puts more emphasis on extremities in the errors, they are weighted more. However, the unit of the
error is also squared, for example when the unit of the actual values is 𝑚 the unit of error becomes𝑚2,
which can lead to loss of interpretability. MSE could be interpreted as a metric of variance of the error.
Taking the square root of the MSE results in the RMSE, which enforces the error unit to be equal to the
unit of the true and predicted values. RMSE can be interpreted as the standard deviation of the error.

4.5.2. Recurrent Neural Network
Unlike the vanilla neural network described before, a recurrent neural network (RNN) cycles information
back into itself, i.e. it is possible for the network to include previous states at different times. For a high
level representation of the structure see fig. 4.10. This makes RNNs suitable to detect patterns in data
and perform time series forecasting [84]. For this reason RNNs are deemed a suitable candidate to do
driver prediction.
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Figure 4.10: Difference of information flow between a vanilla MLP and RNN [84].

In this schematic, the hidden states are summarized into one block, as is the case for a vanilla MLP
this means that a RNN can feature multiple hidden layer cells. The hidden layer equation is similar to
the one presented in Equation (4.4) but with an added recurrent term [84].

ℎ𝑡 = 𝜌ℎ(�⃗�𝑥,ℎ × �⃗�𝑡 + �⃗�ℎ,ℎ × ℎ𝑡−1 + 𝑏𝑥)
𝑦𝑡 = 𝜌𝑦(�⃗�ℎ,𝑦 × ℎ𝑡 + 𝑏𝑦)

(4.11)

With 𝜌 denoting the activation function, often a tanh, sigmoid or Relu. The schematic of a single
vanilla RNN hidden state cell is given in fig. 4.11.
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Figure 4.11: Schematic of a vanilla RNN hidden cell [84].

Since ℎ𝑡 is a function of ℎ𝑡−1 which in turn is a function of its preceding hidden state, one can see that
each hidden state is a function of all preceding hidden states. In this way a RNN is able to ”remember”
information from the past and incorporate it for making predictions in the future, a feat that a vanilla
MLP does not possess. For visualizing purposes it is possible to ”unroll” the RNN presented in fig. 4.10
to get fig. 4.12.
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Figure 4.12: Schematic of an ”unrolled” recurrent neural network [42].

When unrolling the RNN it becomes visible that the hidden layer actually consists of multiple RNN
cells, in this case denoted with ”H”, that provide information to the next cell. Essentially, unrolling a
RNN means copying the cells for each time step in the input sequence, i.e. each hidden cell features
the same topology and weighting matrix.
Many different structures of vanilla RNNs exist, each one being very application specific. A short sum-
mary of the different structures are given below [4].

1. One-to-One: A traditional neural network where only one set of inputs at time t is used to predict
a set of outputs y at time t.

2. One-to-Many: A RNN where one input is used to generate a sequence of output. An example
for which such structure could be used is image captioning, where the input is a single image and
the output is a sentence description of what is going on in the picture, i.e. a list of multiple words.

3. Many-to-One: A RNN where a sequence of inputs is used to predict one single output. An
example is sentiment classification where the input might be a sentence, i.e. list of words, and
the algorithm should classify which sentiment belongs to the sentence, e.g. happy/mad/sad...

4. Many-to-Many: A RNN where a sequence of inputs is used to predict a sequence of outputs.
Two variants of this structure exist, one where the timescale of both input and output sequence is
the same (as shown in fig. 4.12), i.e. predicted output 𝑦𝑡−2 is only dependent on hidden state with
input 𝑥𝑡−2 and previous hidden states. The other one where the sequence of outputs is shifted in
time, e.g. predicted output 𝑦𝑡−2 is dependent on hidden state with input 𝑥𝑡+3 and previous hidden
states. An example for which the first structure can be used is to do text recognition, where the
network needs to classify the type of each word in a sentence, e.g. ”a beautiful mind” as input
leads to ”article-adjective-noun” as output. The second structure is often used for text translation,
where a full sentence is required before it can be translated.

Training
It is clear that the structure of a RNN is different than the structure of a vanilla MLP network, where
the predicted output for each time step, in the prediction sequence, is a function of a sequence of its
hidden state which incorporates information from sequences of past hidden states (and thus inputs).
Although the structure is different, the idea of training a RNN follows the same logic as presented for
a vanilla MLP. First a loss function needs to be determined, in the case of a RNN the loss function can
be written as a sum of all individual loss terms, i.e. sum of each loss for each output.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸 =
𝑇

∑
𝑡=1
𝐿𝑖(𝑌𝑡 , �̂�𝑡) (4.12)

Where ”𝑇” is the total amount of outputs in the output sequence, 𝑌𝑡 the true values at time ”𝑡” and �̂�𝑡
the predicted values at time ”𝑡”. Having the loss function defined, it is possible to calculate the gradient
of the loss with respect to the output. Then by applying the chain rule one and recursively calculating
all the gradients that affect the error can be determined, in the example given in fig. 4.12 gradients
with respect to three weight matrices, 𝑊𝑥,ℎ, 𝑊ℎ,ℎ and 𝑊ℎ,𝑦, need to be calculated. After which the
weights can be updated with any of the gradient-based update rules previously discussed. Because
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each of the individual loss functions is a function dependent on time, RNN optimization is usually called
”backpropagation through time (BPTT)” [84].

Long Short-Term Memory Cells
One of the main issues present with vanilla RNNs is the problem of vanishing or exploding gradients.
When formulating the gradient matrix equations for each weight matrix, many weight matrix multiplica-
tions occur. If small or large values are present in the weight matrices (< 1 or > 1) the gradients can
either vanish or explode when calculating the gradients backwards through the network. Either one of
the results will have the effect of hampering/stopping backpropagated gradient flow through the net-
work, making it difficult for the network to use information from multiple time steps in the past [84][48].
This topology artefact limits vanilla RNNs to be used for long time sequences.
To counteract this topology problem, the RNN cell as described in eq. (4.11) has been extended. One
of these extensions is called ”long short-term memory cells”, or LSTM in short [48]. An LSTM cell has
the goal of being able to learn time dependencies that go back hundreds of time steps. To achieve this
goal an LSTM cell consists of a cell/memory state, a hidden state and three ”gates” that manipulate
which information is passed on to the cell state. The cell state flows through all the LSTM cells present
in the network. It is updated by addition and subtraction, which reduces the effect of vanishing or ex-
ploding gradients by limiting the amount of multiplications in BPTT, resulting in a structure which can
memorize information from 1000 previous time steps [48]. The relevant LSTM equations are given in
Equations 4.13.

𝑓𝑡 = 𝜎(𝑊𝑥,𝑓 × 𝑥𝑡 +𝑊ℎ,𝑓 × ℎ𝑡−1 + 𝑏𝑓)
𝑖𝑡 = 𝜎(𝑊𝑥,𝑖 × 𝑥𝑡 +𝑊ℎ,𝑖 × ℎ𝑡−1 + 𝑏𝑖)
𝑜𝑡 = 𝜎(𝑊𝑥,𝑜 × 𝑥𝑡 +𝑊ℎ,𝑜 × ℎ𝑡−1 + 𝑏𝑜)
𝑐′𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥,𝑐 × 𝑥𝑡 +𝑊ℎ,𝑐 × ℎ𝑡−1 + 𝑏𝑐)
𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑐′𝑡
ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝑐𝑡)

(4.13)

A schematic of an LSTM cell is given in fig. 4.13.
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Figure 4.13: Schematic of a long short-term memory RNN cell [48].

Where 𝜎 and 𝑡𝑎𝑛ℎ denote the sigmoid and hyperbolic tangent activation functions, and the addition
and multiplication operations denote pointwise operations. In this schematic the three aforementioned
gates are represented: a forget gate denoted by 𝑓𝑡, an input gate denoted by 𝑖𝑡 and an output gate
denoted by 𝑜𝑡. Each of the gates can be interpreted in the following manner.

• Forget gate: This gate manipulates which information from the previous cell state 𝑐𝑡−1 should
be maintained/forgotten. It does so by looking at the previous hidden state ℎ𝑡−1 and the input 𝑥𝑡,
and transforming the input to a [0-1] value range with a sigmoid activation function. A ”0” implying
the information should be forgotten, and a ”1” implying the information should be remembered.
The output of the forget gate applies to the cell state through pointwise multiplication.
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• Input gate: The input gate manipulates to which extent new information should be added to
the cell state. It does so in a similar fashion as the forget gate, except that it consists out of
two different steps. The first step is to understand which information should be added, to this
extent a sigmoid is utilized which transforms the input to a [0-1] value range. A ”0” implying
the information should not be added, a ”1” implying information should be added. The output is
pointwise multiplied by a matrix of new candidate values 𝑐′𝑡, which can be added to the cell state,
represented by a 𝑡𝑎𝑛ℎ transformation of the previous hidden and input state.

• Output gate: The output gate decides which information from the cell state is outputted by the
LSTM cell. It does so by, firstly, transforming the cell state values to a value range [-1, 1] by
applying a tanh activation function. Then the output gate 𝑜𝑡, sigmoid of ℎ𝑡−1 and 𝑥𝑡, decide which
parts are outputted by pointwise multiplication.

Different alterations on the LSTM cell exist, such as the gated recurrent unit, which is similar in
performance but computationally more efficient [18]. However, for this thesis the standard LSTM cells
are utilized.

4.5.3. Encoder-Decoder Network
Encoder-decoder networks follow the same logic as the sequence-to-sequence (many-to-many) RNN
model described earlier. With encoder-decoder networks, two different RNNs are required. The first
RNN transforms the input sequence of possibly arbitrary length, to a fixed-dimensional vector. This
network is called the encoder network. The second RNN is then used to map the fixed-dimensional
vector description to the target sequence [91]. As described in [91], using vanilla RNN cells in the
encoder and/or decoder works in theory, however due to temporal learning limitations (vanishing/ex-
ploding) gradients, an LSTM RNN works better for capturing long time dependencies. A representation
of the encoder-decoder RNN is given in fig. 4.14.
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Figure 4.14: Schematic of an encoder-decoder RNN [48][91][4].

Where𝐻1 denotes the hidden cell of the encoder RNN, and𝐻2 denotes the hidden cell of the decoder
RNN, both featuring LSTM cells. As with normal LSTM RNNs, the encoder and decoder network are
not limited to shallow RNN networks, also deep networks can be utilized and in some cases these deep
encoder-decoder networks outperform their shallow counterparts [91].

4.6. Generalization
As discussed previously, the dataset is split-up in a training, validation and test set. When a model
shows very good performance on the training data, but bad performance on the test-set, it is said that
the model has bad generalization. One of the reasons why this can happen is because the network
tries to capture and model higher dimensional relations in the data that are due to for example noise.
This is what is called overfitting. The opposite can also be true, when the model oversimplifies data
dimensionality, this is what is called an underfit. Overfitting is a result of utilizing a model too complex
for the problem at hand, whereas underfitting generally occurs when a too simple model is utilized.
To this extent several generalization techniques exist, these techniques make it possible to construct
a complex model while reducing the risk of overfitting. One method was briefly described when dis-
cussing feature selection, namely L1-regularization, which adds a penalty to the absolute sum of weight
values in the model, meaning a simpler model with less parameters/lower weights is prioritized. L2-
regularization, another type of regularization, adds a penalty equal to the square of the weights [65].
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A more novel approach, used in this thesis, is the regularization technique called ”dropout” [90]. When
dropout is applied to layers of a network (designers choice) neurons are randomly dropped during
training. This means the neurons are deactivated, i.e. weights of these neurons are set to zero, at
that training iteration. Effectively this means that for each iteration a network with different structure
is being trained, i.e. dropout is an efficient form of ensemble optimization. At test time the fully con-
nected network is utilized (no dropout) with its neuron weights equal to factored-down trained weights,
the factor equals the probability of dropping neurons during training. An example of dropout applied to
a single layer MLP with dropout probability equal to ”𝑝” is pictured in fig. 4.15. Due to dropout, both
hidden neurons ℎ2 and ℎ3 have been deactivated during a specific training iteration.
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Figure 4.15: Example of dropout regularization applied to only the hidden layer of a single layer MLP [90].

4.7. Temporal Sequence Input-Output Mapping
As discussed previously the goal of the network is to predict a time sequence of all 6 vehicle DoFs
for a 𝑁𝑝 prediction horizon. To make such prediction the model requires a causal time sequence of a
to-be-determined length featuring a set of input attributes. These inputs need to be fed to the three
different models discussed in the previous section. It is important to understand how the data should be
arranged to make sure the models work as intended. For all three models the same data structure can
be used, but the implementation for the MLP network differs slightly, this difference will be explained in
section 4.8 when discussing the precise network structures.
To create the input and output data structure, input and output batches need to be created. A figure of
the data creation structure is presented in fig. 4.16.
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The left-side of the picture shows the structure of the data, a 2D-column featuring all the attributes
recorded at a frequency of 100𝐻𝑧. The network requires a 3D-tensor input-output mapping, with di-
mensions: [𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠]. As presented in the figure, depending on the stride, i.e.
how many time samples are skipped when creating the input-output mappings, one has the ability to
decide how many total samples are generated. The associated formula is given in eq. (4.14).

𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑓𝑙𝑜𝑜𝑟 (𝑇 −𝑊𝑖𝑛𝑑𝑜𝑤𝑆 ) + 1 (4.14)

Where ”𝑇” equals the total amount of time samples present in the dataset, ”Window” equals the
sliding window length, i.e. input samples plus output samples, and ”𝑆” equals the stride. The resulting
number has to be rounded down to the nearest integer number. To give an example, imagine 5 time
samples and a window length of 2 with a stride of 2, the amount of input-output pairings one could
make equals 2 without going out of the value range. Implementing the formula shows that indeed 2
input-output samples are created: 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑓𝑙𝑜𝑜𝑟((5 − 2)/2) + 1 = 𝑓𝑙𝑜𝑜𝑟(1.5) + 1 = 2.
Applying this logic, constructing the 3D-tensor with only causal data using a sliding window is straight-
forward. However, as discussed in Section 4.4 also non-causal, distance-based environmental data
should be represented in the input tensor. In order to cope with the causal features being time depen-
dent and the non-causal features being distance dependent, the latter ones are digitized into ”𝑁” equal
sized bins, with ”𝑁” equal to the amount of input samples. To convert the values inside each bin to a
single value, the average value is calculated, except for the road curvature where the maximum road
curvature in a bin is expected to be a higher quality feature than the average road curvature of that
bin. An example of this process is given in fig. 4.17 where a look-ahead distance of 6 is converted to
3 equally spaced, single-value bins.
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Figure 4.17: Schematic on how the look-ahead features are binned depending on the required input samples and features itself.

The resulting sequence of non-causal data points is then concatenated with the causal 3D-tensor
to obtain the full 3D-tensor.

4.8. Hyperparameter Tuning
In the previous sections the global structure of the different networks were described. Also many
manually adjustable parameters that affect the training performance of the model were introduced.
This section serves to highlight these variables called ”hyperparameters”, and describe the process of
finding the set of variables which ensures good model performance.
Hyperparameters can be split-up in three different categories:

1. Structure hyperparameters: These hyperparameters define the structure of the network. Pa-
rameters included are: amount of hidden layers, neurons per layer, neuron activation functions
and for which layers regularization applies.

2. Process hyperparameters: These hyperparameters have a direct influence on the training pro-
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cess and therefore, implicitly, an influence on the networks performance. Parameters included
are: Learning rate, regularization parameters such as the dropout rate and 𝜆 in case of L1, L2-
regularization, the batch size and the chosen metric for training and validation loss.

3. Data hyperparameters: These hyperparameters have an influence on the data, how it is struc-
tured and how the input and output sequences are devised. Parameters included are: resampling
frequency, look-ahead distance, stride, scaling, way of mapping multiple values onto one single
value and length of input and output sequence.

Choosing the right set of parameters is a difficult problem on its own for which many methods exist.
One of the most common methods is called ”grid search”, where a search space is set-up for the dif-
ferent hyperparameters. Then over all the possible combinations within that search space the model
is trained for a certain number of epochs, the subset of hyperparameters that gives the best model
performance is selected [62]. Although this method does not scale well with the size of the search
space, which is largely dependent on the amount of hyperparameters as well as the user’s boundary
definitions, this method was the chosen method to perform a crude hyperparameter optimization.

Only four hyperparameters were chosen for optimization, namely: the learning rate, dropout rate,
batch size and amount of neurons per layer. The other hyperparameters that were not tuned, but were
given a fixed value are given in table 4.4.

Table 4.4: Hyperparameters which are given a fixed value.

Hyperparameter Value Note
Structure Specific
Number of layers
MLP 2 Two hidden layers, both layers feature dropout

regularization
Number of layers
LSTM 1 One hidden layer of LSTM cells, the last dense output

layer is required to receive an interpretable output
Number of layers
Deep LSTM 3 Three hidden layer of LSTM cells, the amount of cells

is independent of each other
Number of layers
Enc-Dec LSTM 1 Encoder as well as decoder feature one layer of

LSTM cells

MLP activation function Relu MLP neurons feature non-linear relu activation
functions

Data Specific
Resampling frequency 5 [Hz] Data downsampled from 100Hz to 5Hz
Look ahead distance 100 [m] -
Stride 4 -
Scaling MinMax scaling -
Road curvature
mapping Max value -

Mapping rest of
LA-features Average -

Length input
sequence 5 [s] 5 seconds input sequence, sampled at 0.2s, means

25 input samples per feature

Length output
sequence 10 [s]

10 seconds output sequence, sampled at 0.2s means
50 output samples per feature, value chosen based
on 𝑁𝑝

Each model features an input layer and an output layer which consists of a small dense MLP for
each separate output channel with the amount of neurons equal to 𝑁𝑝. The dense output layers feature
a linear activation function without bias and weights, i.e. 𝑓(𝑥) = 𝑥. A figure of the network structures
can be found in fig. 4.18. The two hidden layer MLP, found in fig. 4.18a, features a ”flatten layer” which
maps the 3D-input tensor into a 2D-tensor with dimensions [𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 𝑖𝑛𝑝𝑢𝑡𝑠𝑒𝑞 × #𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠].
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input_1: InputLayer

flatten: Flatten

dense: Dense

dropout: Dropout

dense_1: Dense

dropout_1: Dropout

long: Dense lat: Dense z: Dense pitch: Dense roll: Dense yaw: Dense

(a) Two hidden layer dense MLP network with dropout.

input_1: InputLayer

lstm: LSTM

dense: Dense

dropout: Dropout

long: Dense lat: Dense z: Dense pitch: Dense roll: Dense yaw: Dense

(b) Single layer LSTM RNN.

input_1: InputLayer

lstm: LSTM

lstm_1: LSTM

lstm_2: LSTM

dense: Dense

dropout: Dropout

long: Dense lat: Dense z: Dense pitch: Dense roll: Dense yaw: Dense

(c) Three layer deep LSTM RNN.

input_1: InputLayer

lstm: LSTM

repeat_vector: RepeatVector

lstm_1: LSTM

dense: Dense

dropout: Dropout

long: Dense lat: Dense z: Dense pitch: Dense roll: Dense yaw: Dense

(d) Single LSTM encoder-decoder RNN.

Figure 4.18: Four different supervised neural network structures used for driver behavior regression.

Grid search was performed for the value ranges given in table 4.5. The process is as follows, first a
crude search is performed for both the learning rate and the dropout rate, i.e. the value range is spanned
five evenly spaced values with relatively large intervals. After which a more detailed value range is
specified around the best performing value. This more detailed value range is then also spanned by
five equal spaced values. For both the batch size as well as the amount of neurons, it is common to use
integers equal to a power of 2, e.g. value range of [16-64] is spanned by the values [16, 32, 64]. It was
assumed that the optimization of the hyperparameters is independent [62], therefore the optimization
process is performed for each parameter independently. First the learning rate is optimized, then the
dropout rate and the batch size are optimized, lastly the amount of neurons per layer are optimized. For
all three steps, the network is trained for 15 epochs (after this point the training slows down significantly).
Step 1 and 2 are only performed for the two-layer MLP and are assumed to give good cross-over
performance for the other three models, only the amount of neurons/cells are assumed to be model
dependent. Since the weight initialization is random (Glorot uniform distributed), the performance after
15 epochs is not static, i.e. training a neural network with the same hyperparameters multiple times will
give different results. Normal conduct would be to train the network a couple of times and average out
the performance, however, due to time constraints this step is not performed. As such no guarantees
exist that the selected hyperparameters are truly optimal.
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Table 4.5: Grid search value ranges used for optimization of selected hyperparameters.

Hyperparameter Initial value range
Learning rate [5𝑒−4 − 1𝑒−2]
Dropout rate [0.3 − 0.7]
Batch size [16 − 128]
Neurons MLP [128 − 1024]
Cells LSTM [64 − 512]
Cells Deep-LSTM [64 − 512]
Cells Enc-Dec LSTM [64 − 512]

The results of the grid search based learning rate optimization process can be found in table 4.6.
The light orange highlighted rows are the rows that showed the best average performance based on
the MAE metric, around which a more accurate value range was based in the following runs. In this
case the MAE metric was calculated on the unscaled test data, as such it features the units 𝑚/𝑠2 and
𝑟𝑎𝑑/𝑠 for both the translational and rotational directions respectively.
Run 1 is the run with the settings as described in table 4.5. Run 2, is described as themore accurate grid
search for a 𝑙𝑟 ∈ [0.005 − 0.015], run 3 depicts the grid search run for a 𝑙𝑟 ∈ [0.0003 − 0.0015]. When
comparing the error performance between run 2 and 3, the performance of run 2 was found to be slightly
better, therefore it was decided to perform a last, slightly more narrow, run for a 𝑙𝑟 ∈ [0.0095 − 0.015].
In this final run, the learning rate, 𝑙𝑟 = 0.0136, was found to be best performing over all runs.

Table 4.6: Results of a grid search based learning rate optimization for a two hidden layer MLP network.

Run Learning
rate Batchsize Neurons

layer 1
Neurons
layer 2

Dropout
rate

MAE
Long acc

MAE
Lat acc

MAE
Z-acc

MAE
Pitch rate

MAE
Roll rate

MAE
Yaw rate

Avg loss
translational
[𝑚/𝑠2]

Avg loss
rotational
[𝑟𝑎𝑑/𝑠]

1 0.0005 64 512 256 0.5 0.3818 0.6917 0.0670 0.0154 0.0080 0.0343 0.3802 0.0192
1 0.002875 64 512 256 0.5 0.3853 0.6976 0.0671 0.0154 0.0080 0.0349 0.3833 0.0194
1 0.00525 64 512 256 0.5 0.4026 0.7111 0.0666 0.0153 0.0080 0.0368 0.3934 0.0200
1 0.007625 64 512 256 0.5 0.3924 0.7009 0.0665 0.0155 0.0079 0.0346 0.3866 0.0193
1 0.01 64 512 256 0.5 0.3905 0.6752 0.0653 0.0155 0.0080 0.0326 0.3770 0.0187
2 0.0050 64 512 256 0.5 0.3974 0.6953 0.0663 0.0152 0.0079 0.0341 0.3863 0.0191
2 0.0075 64 512 256 0.5 0.3927 0.7084 0.0663 0.0154 0.0079 0.0351 0.3891 0.0195
2 0.0100 64 512 256 0.5 0.3905 0.6673 0.0650 0.0153 0.0081 0.0311 0.3743 0.0182
2 0.0125 64 512 256 0.5 0.4111 0.7023 0.0666 0.0154 0.0080 0.0354 0.3933 0.0196
2 0.0150 64 512 256 0.5 0.4065 0.7049 0.0665 0.0154 0.0080 0.0365 0.3926 0.0200
3 0.0003 64 512 256 0.5 0.3803 0.6918 0.0669 0.0154 0.0079 0.0338 0.3796 0.0190
3 0.0006 64 512 256 0.5 0.3932 0.6968 0.0665 0.0154 0.0079 0.0344 0.3855 0.0192
3 0.0009 64 512 256 0.5 0.3844 0.7186 0.0670 0.0155 0.0080 0.0357 0.3900 0.0198
3 0.0012 64 512 256 0.5 0.3961 0.7054 0.0665 0.0153 0.0079 0.0350 0.3893 0.0194
3 0.0015 64 512 256 0.5 0.3911 0.6920 0.0670 0.0154 0.0079 0.0345 0.3834 0.0193
4 0.0095 64 512 256 0.5 0.4048 0.6574 0.0672 0.0154 0.0080 0.0320 0.3765 0.0185
4 0.010875 64 512 256 0.5 0.3913 0.7010 0.0662 0.0153 0.0080 0.0349 0.3862 0.0194
4 0.01225 64 512 256 0.5 0.3965 0.7021 0.0664 0.0154 0.0079 0.0354 0.3883 0.0196
4 0.013625 64 512 256 0.5 0.3848 0.6567 0.0674 0.0153 0.0080 0.0332 0.3696 0.0188
4 0.015 64 512 256 0.5 0.4015 0.6983 0.0666 0.0153 0.0080 0.0343 0.3888 0.0192

The next step is to perform the grid search for both the batchsize as well as the dropout rate.
These two are combined into a single optimization step. Looking at table 4.7 it can be seen that the
best performance is always found when using a batchsize equal to 128. Concurrently, the table would
suggest a dropout rate of 0.3 to be best performing, but from the previous result found in table 4.6,
one can conclude that a dropout rate equal to 0.5 is also effective. Therefore, a second iteration is
required, setting the batchsize at 128 and having a more elaborate search for the dropout rate in the
range [0.3 − 0.7] using five evenly spaced values.
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Table 4.7: Results of a grid search based batchsize and dropout rate optimization for a two hidden layer MLP network.

Run Learning
rate Batchsize Neurons

layer 1
Neurons
layer 2

Dropout
rate

MAE
Long acc

MAE
Lat acc

MAE
Z-acc

MAE
Pitch rate

MAE
Roll rate

MAE
Yaw rate

Avg loss
translational

𝑚/𝑠2

Avg loss
rotational
𝑟𝑎𝑑/𝑠

0 0.0136 16 512 256 0.3 0.3917 0.7274 0.0668 0.0156 0.0081 0.0350 0.3953 0.0196
1 0.0136 32 512 256 0.3 0.4026 0.6934 0.0681 0.0153 0.0080 0.0357 0.3881 0.0197
2 0.0136 64 512 256 0.3 0.3790 0.6899 0.0635 0.0154 0.0080 0.0362 0.3775 0.0198
3 0.0136 128 512 256 0.3 0.3925 0.6501 0.0639 0.0152 0.0080 0.0322 0.3689 0.0184
4 0.0136 16 512 256 0.5 0.4335 0.7339 0.0671 0.0157 0.0081 0.0355 0.4115 0.0198
5 0.0136 32 512 256 0.5 0.4052 0.7226 0.0680 0.0154 0.0080 0.0370 0.3986 0.0201
6 0.0136 64 512 256 0.5 0.4033 0.6970 0.0663 0.0153 0.0080 0.0344 0.3888 0.0192
7 0.0136 128 512 256 0.5 0.3921 0.6630 0.0662 0.0154 0.0080 0.0324 0.3738 0.0186
8 0.0136 16 512 256 0.7 0.4156 0.7385 0.0667 0.0160 0.0080 0.0404 0.4069 0.0215
9 0.0136 32 512 256 0.7 0.4017 0.6982 0.0694 0.0158 0.0082 0.0345 0.3898 0.0195
10 0.0136 64 512 256 0.7 0.4034 0.6925 0.0662 0.0154 0.0079 0.0339 0.3874 0.0191
11 0.0136 128 512 256 0.7 0.3984 0.6923 0.0665 0.0153 0.0079 0.0339 0.3857 0.0190

Table 4.8 shows the re-iteration on the dropout grid search, as one can see not very notable differ-
ences can be found between dropout rates in the range of [0.3−0.5]. The original paper [90] suggests
that a dropout rate of 0.5 generally gives good performance, therefore this value is chosen for future
use.

Table 4.8: Results of a grid search based dropout optimization for a two hidden layer MLP network.

Run Learning
rate Batchsize Neurons

layer 1
Neurons
layer 2

Dropout
rate

MAE
Long acc

MAE
Lat acc

MAE
Z-acc

MAE
Pitch rate

MAE
Roll rate

MAE
Yaw rate

Avg loss
translational

𝑚/𝑠2

Avg loss
rotational
𝑟𝑎𝑑/𝑠

0 0.0136 128 512 256 0.3 0.3976 0.6678 0.0673 0.0152 0.0080 0.0324 0.3775 0.0185
1 0.0136 128 512 256 0.4 0.3906 0.6604 0.0649 0.0152 0.0080 0.0321 0.3720 0.0184
2 0.0136 128 512 256 0.5 0.3843 0.6719 0.0665 0.0153 0.0079 0.0325 0.3742 0.0186
3 0.0136 128 512 256 0.6 0.3943 0.7000 0.0667 0.0153 0.0080 0.0351 0.3870 0.0194
4 0.0136 128 512 256 0.7 0.3956 0.6949 0.0666 0.0152 0.0079 0.0341 0.3857 0.0191

Table 4.9 shows the grid search results for the neuron and cell density optimization. The highlighted
rows present themodels with the best performance. TheMLP featuring 512 neurons in the first, and 256
neurons in the second layer shows the best performance as can be seen by the average losses. From
this result it was decided to keep the neuron density for the second dense layer constant throughout all
the other networks. The one layer LSTM with 128 and 256 LSTM cells do not show much difference in
performance, at a further stage both of them will be trained for more epochs, the one showing the best
results will be used. For the deeo LSTM network, a notable difference can be seen between 64 LSTM
cell layers and higher cell density layers for the deep LSTM network. The encoder-decoder network
seems to perform best when 128 LSTM cells are used for both the encoder and decoder model.

Table 4.9: Results of a grid search based neuron/cell density optimization for a two hidden layer MLP, an LSTM RNN, a deep
LSTM RNN and a single layer encoder-decoder LSTM network.

Run Learning
rate Batchsize Neurons

layer 1
Neurons
layer 2

Dropout
rate

MAE
Long acc

MAE
Lat acc

MAE
Z-acc

MAE
Pitch rate

MAE
Roll rate

MAE
Yaw rate

Avg loss
translational

𝑚/𝑠2

Avg loss
rotational
𝑟𝑎𝑑/𝑠

0.0136 128 256 128 0.5 0.391 0.696 0.067 0.015 0.008 0.035 0.385 0.019
0.0136 128 256 256 0.5 0.396 0.681 0.066 0.015 0.008 0.033 0.381 0.019
0.0136 128 256 512 0.5 0.392 0.708 0.067 0.015 0.008 0.036 0.389 0.020
0.0136 128 512 128 0.5 0.395 0.690 0.066 0.015 0.008 0.034 0.384 0.019
0.0136 128 512 256 0.5 0.386 0.686 0.066 0.015 0.008 0.033 0.379 0.019
0.0136 128 512 512 0.5 0.384 0.812 0.067 0.015 0.008 0.042 0.421 0.022
0.0136 128 1024 128 0.5 0.396 0.708 0.067 0.015 0.008 0.036 0.390 0.020
0.0136 128 1024 256 0.5 0.391 0.699 0.066 0.015 0.008 0.035 0.385 0.019

D
en
se

N
et
w
or
k

0.0136 128 1024 512 0.5 0.405 0.811 0.067 0.016 0.008 0.043 0.428 0.022
0.0136 128 64 256 0.5 0.364 0.575 0.050 0.015 0.008 0.030 0.330 0.018
0.0136 128 128 256 0.5 0.359 0.576 0.047 0.015 0.007 0.029 0.327 0.017
0.0136 128 256 256 0.5 0.365 0.555 0.054 0.015 0.008 0.028 0.325 0.017LS

TM
N
et
w
or
k

0.0136 128 512 256 0.5 0.393 0.694 0.066 0.015 0.008 0.034 0.384 0.019
0.0136 128 64 256 0.5 0.386 0.571 0.068 0.015 0.008 0.026 0.341 0.016
0.0136 128 128 256 0.5 0.396 0.703 0.066 0.015 0.008 0.036 0.388 0.020
0.0136 128 256 256 0.5 0.392 0.696 0.066 0.015 0.008 0.034 0.385 0.019D

ee
p

LS
TM

N
et
w
or
k

0.0136 128 512 256 0.5 0.395 0.698 0.067 0.015 0.008 0.035 0.387 0.019
0.0136 128 64 256 0.5 0.410 0.684 0.064 0.015 0.008 0.035 0.386 0.020
0.0136 128 128 256 0.5 0.418 0.632 0.066 0.015 0.008 0.033 0.372 0.019
0.0136 128 256 256 0.5 0.392 0.696 0.066 0.015 0.008 0.035 0.385 0.019

En
c-
D
ec

LS
TM

N
et
w
or
k

0.0136 128 512 256 0.5 0.399 0.698 0.066 0.015 0.008 0.035 0.388 0.019

A final note should be made to the results presented in this section. When looking at the amount
of parameters that need to be optimized, e.g. for the three layer deep LSTM network see table 4.10,
one can see that the amount of optimization parameters does not scale linearly with cell density. Since



118 4. Supervised Data-Driven Modelling Approach

networks with more parameters take longer to train, it is possible that a bias exists towards less complex
models using only 15 training epochs. These models tend to train faster, but are also more limited in
their performance. In other words, these results do not necessarily indicate the true potential of each
of the networks. This could be resolved by training for more epochs.

Table 4.10: Variation of optimization parameters as a function of the cell density for a three layer deep LSTM network.

Deep LSTM Network
Cell density Optimization parameters

64 111 468
128 394 668
256 1 477 164
512 5 706 540

Table 4.11 shows the results of the same grid search done for 50 epochs instead of 15 for both
the deep LSTM network and encoder-decoder network. One interesting result is that the performance
of the deep LSTM sees a sharp decline in performance when increasing the cell density from 128
to 256. One of the reasons for this to occur could be found in the fact that no regularization in the
LSTM layer takes place, as such the model overfits on the training data and shows bad performance
on the independent test data. On another interesting note, increasing the number of epochs from
15 to 50 increases the performance of both the 64 and 128 cell LSTM network significantly, with the
larger network outperforming the smaller one. The difference between the two can be explained by the
increased performance on the lateral acceleration prediction, 0.41𝑟𝑎𝑑/𝑠 vs 0.46𝑟𝑎𝑑/𝑠 MAE.
As with the deep LSTM, the encoder-decoder network seems to suffer from increasing cell density.
However, in this case it occurs gradually with every density increase, and not after a certain threshold
is reached. Two reasons could lay at the foundation of this effect. The first one being that this model
structure seems to overfit more easily. However, this type of network structure, inherently, features
less parameters than for example the deep LSTM network, 78.444 for a 64 cell and 3.607.340 for a
512 cell enc-dec structure. So overfitting due to complexity does not necessarily seem to support this
idea. Another idea might be the following, researchers [91] have found that, when using an encoder-
decoder structure for phrase translation, reversing the order of the input phrase positively contributed to
the prediction quality. It was argued that when the beginning of the input sentence, i.e. when reversed
these are the last inputs to the encoder, lies closer to the beginning of the target sentence, i.e. in normal
order these are predicted by the first outputs of the decoder, a stronger correlation between parts of the
sentence is created. The reason why this occurs, is because the backwards gradient flow diminishes
over the amount of cells present in the network. This phenomenon could very well be seen here as
well. When one assumes that a strong correlation exists between the upcoming road conditions and
one’s future driving behavior, having them further apart could cause lower model performance. This
theory could be tested out by reversing the order of the look-ahead features and checking whether the
performance of the encoder-decoder network increases.

Table 4.11: Results of extended grid search for neuron/cell density optimization for deep and encoder-decoder LSTM with 50
training epochs.

Run Learning
Rate Batchsize Neurons

layer 1
Neurons
layer 2

Dropout
rate

MAE
Long acc

MAE
Lat acc

MAE
Z-acc

MAE
Pitch rate

MAE
Roll rate

MAE
Yaw rate

Avg loss
translational

𝑚/𝑠2

Avg loss
rotational
𝑟𝑎𝑑/𝑠

0.0136 128 64 256 0.5 0.3685 0.4607 0.0381 0.0155 0.0071 0.0215 0.2891 0.0147
0.0136 128 128 256 0.5 0.3274 0.4117 0.0315 0.0152 0.0068 0.0196 0.2569 0.0139
0.0136 128 256 256 0.5 0.3940 0.7133 0.0668 0.0153 0.0080 0.0361 0.3913 0.0198D

ee
p

LS
TM

N
et
w
or
k

0.0136 128 512 256 0.5 0.3917 0.6941 0.0663 0.0154 0.0079 0.0346 0.3840 0.0193
0.0136 128 64 256 0.5 0.3723 0.4282 0.0349 0.0152 0.0068 0.0215 0.2785 0.0145
0.0136 128 128 256 0.5 0.3795 0.5043 0.0449 0.0150 0.0076 0.0235 0.3096 0.0153
0.0136 128 256 256 0.5 0.3927 0.6656 0.0605 0.0152 0.0079 0.0321 0.3729 0.0184

En
c-
D
ec

LS
TM

N
et
w
or
k

0.0136 128 512 256 0.5 0.3980 0.6920 0.0666 0.0153 0.0079 0.0340 0.3855 0.0191

Based on the results presented above, the hyperparameter values for the different network struc-
tures presented in table 4.12 are used for training.
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Table 4.12: Table containing final hyperparameter values for a dense MLP, single layer LSTM, deep LSTM and
encoder-decoder LSTM network.

Learning rate Batchsize Dropout rate Neurons layer 1 Neurons layer 2
Two hidden layer MLP network 0.0136 128 0.5 512 256
Single layer LSTM network 0.0136 128 0.5 256 256
Three layer LSTM network 0.0136 128 0.5 128 256
Single layer enc-dec network 0.0136 128 0.5 64 256

4.9. Tuned Model: Performance Analysis
This section serves to analyze the performance of the different models. First the models are trained
for a certain amount of epochs. After which the performance of the models is analyzed in the following
three ways:

1. MSE and MAE computed for the unscaled data for all 6 DoFs and compared to the MSE and
MAE when using a constant prediction. The result is an average error value over all predictions.

2. MSE and MAE computed for each time trace prediction in the sequence, and compared to the
MSE and MAE when using a constant prediction. The result is an error over time curve.

3. Samples of the time trace predictions are plotted and analyzed to investigate model behavior.

The reason why the model performance is compared to the constant prediction is because this was
used in a previous study [7][26][28][31].Therefore, it is used as performance benchmark.

Learning curve
First it needs to be checked how many epochs are required, to do so each of the models is trained for
50 epochs. Depending on how quick the models are trained, 50 epochs are deemed to be sufficient.
The learning curve for all four models with parameters equal to table 4.12 are given in fig. 4.19.
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Figure 4.19: Loss curves for a single layer MLP, single layer LSTM, three layer deep LSTM, and single layer
enc-dec LSTM trained for 50 epochs.

One aspect immediately stands out in these plots, namely that the loss drops significantly after only
one iteration, after which it gradually decreases or asymptotes very quickly. This effect is most visible
for the MLP model, one reason could be that this occurs because the outputs of the MLP are assumed
to be independent of one-another, as such it is able to learn several high-level relations, but cannot
learn deep-rooted time dependencies. Therefore, the rate at which the loss decreases stagnates after
the first three epochs. This could explain why this effect is less pronounced for the other three models
that are able to capture time dependencies. It could also be due to the fact that the MLP uses Relu
activation functions with a too high learning rate, causing dead Relu’s in the network. This also explains
why the RNN-based networks stop learning after several epochs as they also feature a dense layer
with Relu activation. Another theory could be that this is a data issue. Because only one rural road
section is used (both directions), it is possible that the model learns the majority of the input-output
relation on this specific route quickly (within a few epochs). This theory could be verified by introducing
a more widespread dataset containing multiple rural road segments. However, this artefact could also
be a result from multiple, different aspects and not limited to the three options given above. Therefore,
this effect should be investigated further at a later stage.
What can be concluded from these four loss plots is that training the models for 50 epochs is sufficient.

Model performance vs constant prediction
In table 4.13 the average MSE and MAE results of the constant prediction as well as the trained net-
works are presented. The loss on the unscaled prediction data is calculated for each prediction se-
quence of 50 samples, after which the average of the individual losses is calculated. For each of
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the models, and their predicted DoFs, a percentage performance increase (percentage drop in error)
compared to the constant prediction is given as well.

Table 4.13: Trained network average MSE and MAE scores per predicted DoF, as well as the percentage decrease compared
to the average MSE and MAE scores of a constant prediction.

MSE SN MAE SN % MSE SN % MAE SN MSE NS MAE NS % MSE NS % MAE NS
Long Acc 5.73E-01 4.94E-01 - - 6.23E-01 4.72E-01 - -
Lat Acc 1.92E+00 9.53E-01 - - 1.37E+00 7.81E-01 - -
Z Acc 1.10E-02 6.54E-02 - - 8.39E-03 5.58E-02 - -
Pitch 1.48E-04 7.83E-03 - - 2.62E-04 1.05E-02 - -
Roll 6.79E-04 1.78E-02 - - 7.49E-04 1.89E-02 - -C

on
st
an
t

Pr
ed
ic
tio
n

Yaw 1.12E-02 6.56E-02 - - 9.22E-03 5.65E-02 - -
Long Acc 4.38E-01 4.30E-01 -23.6% -13.0% 4.75E-01 4.16E-01 -23.8% -11.9%
Lat Acc 1.24E+00 7.87E-01 -35.4% -17.4% 8.84E-01 6.56E-01 -35.5% -16.0%
Z Acc 6.89E-03 5.65E-02 -37.4% -13.6% 5.81E-03 5.11E-02 -30.8% -8.4%
Pitch 8.09E-05 5.91E-03 -45.3% -24.5% 1.39E-04 7.78E-03 -46.9% -25.9%
Roll 3.44E-04 1.24E-02 -49.3% -30.3% 3.78E-04 1.33E-02 -49.5% -29.6%D

en
se

N
et
w
or
k

Yaw 7.55E-03 5.29E-02 -32.6% -19.4% 5.96E-03 4.71E-02 -35.4% -16.6%
Long Acc 2.74E-01 3.49E-01 -52.2% -29.4% 3.08E-01 3.68E-01 -50.6% -22.0%
Lat Acc 4.13E-01 4.50E-01 -78.5% -52.8% 2.79E-01 3.74E-01 -79.6% -52.1%
Z Acc 1.70E-03 2.86E-02 -84.5% -56.3% 1.44E-03 2.59E-02 -82.8% -53.6%
Pitch 6.70E-05 4.89E-03 -54.7% -37.5% 1.22E-04 6.95E-03 -53.4% -33.8%
Roll 3.39E-04 1.24E-02 -50.1% -30.3% 3.72E-04 1.33E-02 -50.3% -29.6%

LS
TM

N
et
w
or
k

Yaw 2.59E-03 2.95E-02 -76.9% -55.0% 1.92E-03 2.64E-02 -79.2% -53.3%
Long Acc 2.28E-01 3.21E-01 -60.2% -35.0% 3.08E-01 3.70E-01 -50.6% -21.6%
Lat Acc 2.94E-01 3.78E-01 -84.7% -60.3% 2.11E-01 3.21E-01 -84.6% -58.9%
Z Acc 1.20E-03 2.41E-02 -89.1% -63.1% 1.16E-03 2.33E-02 -86.2% -58.2%
Pitch 6.51E-05 4.75E-03 -56.0% -39.3% 1.21E-04 6.86E-03 -53.8% -34.7%
Roll 3.31E-04 1.22E-02 -51.3% -31.5% 3.64E-04 1.31E-02 -51.4% -30.7%

D
ee
p

LS
TM

N
et
w
or
k

Yaw 2.01E-03 2.49E-02 -82.1% -62.0% 1.52E-03 2.20E-02 -83.5% -61.1%
Long Acc 2.44E-01 3.35E-01 -57.4% -32.2% 2.95E-01 3.67E-01 -52.6% -22.2%
Lat Acc 3.20E-01 3.97E-01 -83.3% -58.3% 2.24E-01 3.32E-01 -83.6% -57.5%
Z Acc 1.30E-03 2.49E-02 -88.2% -61.9% 1.51E-03 2.52E-02 -82.0% -54.8%
Pitch 6.58E-05 4.81E-03 -55.5% -38.6% 1.23E-04 6.96E-03 -53.1% -33.7%
Roll 3.35E-04 1.23E-02 -50.7% -30.9% 3.68E-04 1.32E-02 -50.9% -30.2%En

c-
D
ec

LS
TM

N
et
w
or
k

Yaw 2.30E-03 2.75E-02 -79.5% -58.1% 1.66E-03 2.39E-02 -82.0% -57.7%

One important note is that, the absolute error values that are presented are the unscaled, non-
normalized errors. This means that they are relative to their respective unit, meaning acceleration
MAE and MSE are presented in [𝑚/𝑠2] and [𝑚2/𝑠4] whereas the rotational rate errors are presented
in [𝑟𝑎𝑑/𝑠] and [𝑟𝑎𝑑2/𝑠2] for MAE and MSE respectively.
When analyzing the results some interesting points can be deduced. First of all it can be observed that
all trained networks provide an improvement on both the MSE as well as the MAE metric when com-
pared to the constant prediction. The simplest network, the double layer dense network, has a drop in
MSE for the test drive in SN-direction of roughly [20%−40%] and in MAE of roughly [13%−17%] for its
acceleration predictions. In contrast, the RNN-based networks show a drop of roughly [50%−90%] for
MSE and roughly [30%−63%] for MAE for its acceleration predictions. The best performing network is
the deep LSTM network, which shows drops in error marginally better than the encoder-decoder net-
work. It can be observed that, for each of the networks, it applies that the error drop is most significant
for the acceleration in Z, then the lateral and lastly the longitudinal acceleration. When looking at the
acceleration traces given in fig. 4.5 and fig. 4.6, it can be observed that the lateral acceleration features
more and larger amplitude peaks ([−7.5𝑚/𝑠2 − 7.5𝑚/𝑠2]) with respect to the longitudinal acceleration
([−7𝑚/𝑠2 − 4𝑚/𝑠2]). This would mean that a constant reference would be a worse prediction in case
of lateral acceleration. This observation is confirmed when comparing the MSE and MAE scores of the
constant prediction for both acceleration directions. The average MSE for lateral acceleration in NS-
and SN-direction (= 1.65𝑚2/𝑠4) is roughly 2.8 times as large as the average MSE for longitudinal ac-
celeration (= 0.6𝑚2/𝑠4). The average MAE for the lateral acceleration (= 0.87𝑚/𝑠2) is 1.8 times larger
than the average MAE for longitudinal acceleration (= 0.48𝑚/𝑠2). This difference in metric score also
shows that the larger errors present in the prediction are indeed more prevalent as large predictions
errors are scaled quadratically. With this in mind it is also interesting to see that all the models feature
a larger decrease in MSE compared to MAE, which effectively means the model predictions feature
less extremities in error compared to the constant prediction.
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When looking at the performance on rotational rate, it can be seen that the drop in MSE and MAE
is most significant for the yaw rate, which is expected because a car has more freedom in yaw-
direction than in pitch- or roll-direction. This is confirmed when looking at the average yaw rate MSE
(= 1.02𝑒−2𝑟𝑎𝑑2/𝑠2) error of the constant prediction, which is roughly 15 times larger than the average
roll rate MSE (= 7.14𝑒 − 4𝑟𝑎𝑑2/𝑠2). The performance on pitch and roll rate prediction sees a drop in
MSE of ≈ [45%−50%] and a drop in MAE of ≈ [25%−30%] for the simplest model and a larger drop
of ≈ [50% − 55%] in MSE and of ≈ [30% − 40%] in MAE for the RNN structures in SN-direction. The
performance on the yaw rate prediction sees a ≈ 32% decrease in MSE and ≈ 20% in MAE for the
simplest model and a larger decrease of ≈ [77% − 82%] in MSE and ≈ [55% − 62%] in MAE for the
RNN structures in SN-direction. As is the case for the accelerations, the deep LSTM also seems to
perform best for rotational rate prediction.
As presented in section 4.3, the data consisted of 24 drives in SN- and 13 drives in NS-direction. Due
to the bias towards the SN-direction it would have been expected for the models to perform better in
SN-direction. When looking at the longitudinal acceleration prediction this is indeed the case for each
of the RNN structured networks, where the absolute MSE and MAE scores are roughly [12% − 35%]
and [5% − 15%] lower for the LSTM and Deep LSTM networks in SN-direction. However, the models
in NS-direction outperform the ones in SN-direction in both lateral acceleration as well as yaw rate pre-
diction. This can be explained by the looking at the error scores of the constant prediction. The MSE is
≈ 40% lower in NS-direction than in SN-direction. One explanation for this could be that, when driving
in NS-direction, in the majority of corners the car is located on the outer lane with smaller radius of
curvature, therefore decreasing lateral acceleration. Another explanation could be that the participants
simply drove slower through corners reducing lateral acceleration. This artefact should be investigated
further to completely understand the reasons why this is exactly happening.

In order to give more insight into the values presented in the table above, error trace figures for
both longitudinal and lateral acceleration prediction are given in fig. 4.20 and fig. 4.21. For the error
plots of the other DoF, consult fig. A.14, fig. A.15, fig. A.16 and fig. A.17. In these figures the MSE
and MAE scores for each prediction method are plotted for each sample in the SN and NS test drive
dataset. Consulting these plots gives more insight into the explanations tailored to table 4.13. For
example, when looking at the MAE scores for the SN drive in fig. 4.20, it can be seen that the RNN-
based networks generally perform better than the constant prediction or the simpler dense network
prediction. However, when looking at the MSE scores for the SN drive, one can clearly deduce that
relatively high error peaks are more prevalent in case of the constant prediction. This does follow the
argument that high prediction errors are less present for model predictions. This effect is even more
clear when looking at the lateral acceleration error plots given in fig. 4.21. However, in the case of
lateral acceleration prediction the RNN-based networks also decreased the MAE more significantly
when compared to the dense network and constant prediction. This effect can clearly be seen in
fig. 4.21.
In the next section temporal prediction traces will be given to understand how this looks like in terms of
prediction.
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Figure 4.20: MSE and MAE trace for vehicle longitudinal acceleration prediction for both NS- and SN-direction using a trained
Dense MLP, single layer LSTM, Deep LSTM and Enc-Dec LSTM network as well as the MSE and MAE trace of a constant

prediction.
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Figure 4.21: MSE and MAE trace for vehicle lateral acceleration prediction for both NS- and SN-direction using a trained Dense
MLP, single layer LSTM, Deep LSTM and Enc-Dec LSTM network as well as the MSE and MAE trace of a constant prediction.
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Time trace prediction analysis
In fig. 4.22 and fig. 4.23 time trace predictions are shown for the Dense MLP, LSTM, Deep LSTM and
Enc-Dec LSTM networks. In these plots also the benchmark constant as well as the oracle (target)
prediction is given. What can be observed is that the Dense network seem to have converged to a
constant longitudinal acceleration prediction that lies around the value of ”0”. When analyzing further
it was found that the network output is nearly constant for all DoF, i.e., model prediction is largely input
independent. After investigating the weight and bias values of the dense layers it was found that almost
all of the weights were negative. Combining this with the fact that the input to the Relu activation func-
tion is always positive or zero, i.e. input features are mapped to [0-1] and Relu outputs are also positive
per definition, it means that most output neurons feature dead Relus. Thus, the network prediction is
almost completely a bias-based prediction. As discussed earlier, this can occur when the learning rate
is too large which causes too big weight and bias updates. This also explains the behavior that was
observed in the loss plots in fig. 4.19.
It seems that the RNN-based networks, LSTM, Deep LSTM and Enc-Dec LSTM do not suffer from this
behavior as much and do not feature a full dead Relu output layer. However, as seen in fig. 4.19 the
learning does stagnate quickly, which denotes that dead Relu’s are present and do affect performance.
Although the RNN-based networks somewhat follow the target, it can be seen that many of them are
discontinuous and feature large jumps between the input and predicted sequence. It is worth investi-
gating if the performance of the models does increase when lowering the learning rate or changing the
Relu to the previously discussed Selu activation function, which should eliminate the risk of non-active
neurons. Similar plots for the other predicted DoFs can be found in fig. A.18, fig. A.19, fig. A.20 and
fig. A.21.
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Figure 4.22: Longitudinal acceleration prediction traces using a trained MLP, LSTM, Deep LSTM, Enc-Dec network as well as a
constant prediction trace.



126 4. Supervised Data-Driven Modelling Approach

2.5

2.0

1.5

1.0

0.5

0.0

Ac
ce

le
ra

tio
n 

la
t[m

/s
^2

]
Inputs
Constant prediction
Dense Prediction
LSTM Prediction
Deep LSTM Prediction
Enc-Dec Prediction
Oracle prediction

0 10 20 30 40
Time [s]

3

2

1

0

1

2

Ac
ce

le
ra

tio
n 

la
t[m

/s
^2

]

Figure 4.23: Lateral acceleration prediction traces using a trained MLP, LSTM, Deep LSTM, Enc-Dec network as well as a
constant prediction trace.

4.10. Discussion and Conclusions
In the previous chapter the use of supervised data-driven approaches to perform driver reference gen-
eration for use in MPC MCA was investigated. First of all the data was reviewed and it was found
that several signals, present in the data-set, had to be preprocessed by applying an offet or a lowpass
filter. Included signals were the steering wheel angle, road curvature, and acceleration in longitudinal,
lateral and vertical direction. Based on the MPC prerequisites it was argued that the network should
output a predicted sequence including the translational accelerations and rotational rates in all DoFs.
The set of input features was determined based on features found in literature and from the direct link
with the to-be-predicted outputs. It was argued that a driver also uses upcoming environmental fea-
tures to adapt his/her driving style accordingly. The upcoming speedlimit, road curvature, road width
and road elevation were added to the input sequence by introducing a look-ahead distance. Since
the input sequence is time and not distance dependent, the look-ahead features were digitized to the
amount of input samples and mapped to a single value using either the bin-average or bin-maximum.
Before setting-up the models, the data was down-sampled to reduce the number of output samples
and decrease model complexity. The data was scaled using min-max scaling, where it was argued
that differences in value ranges of input features is not desirable, an effect prevalent when using z-
score normalization. Four separate models were investigated, a two hidden layer MLP, a single layer
LSTMRNN, a three layer Deep LSTMRNN and an Encoder-Decoder LSTMRNN. Each model features
dropout regularization on their dense layers. They also feature an output layer for each DoF consisting
of a dense network with the amount of neurons equal to the output samples. These dense output layers
exist pure out of functionality to split-up the output features and are the only layers that feature a linear
activation function, i.e. 𝑓(𝑥) = 𝑥 without any trainable parameters. The rest of the dense layers feature
Relu activation functions with trainable weights and biases. Machine learning models feature many
hyperparameters that can be categorized into structure, process or data hyperparameters. Only the
learning rate, batch size, dropout rate and the amount of neurons/cells in each layer were optimized.
The best performing hyperparameter values are presented in table 4.12. Fully trained networks were
compared to the benchmark constant prediction and MSE and MAE metric improvements were com-
puted for each model. Networks were trained for 50 epochs, after 50 training iterations it was found
that the Deep LSTM network marginally outperformed the Encoder-Decoder LSTM network on both the
MSE and MAE metrics for the test drive in both NS- as well as SN-direction. With the latter marginally
outperforming the single layer LSTM RNN. The performance gains between the RNN models were
found to be more prevalent for longitudinal and lateral acceleration as well as yaw rate prediction. The
two hidden layer dense network was found to be the worst performing model. When investigating the
temporal prediction traces it was found that the dense network output was largely independent of the
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inputs caused by dead Relu’s in the output layer of the network, an effect common when using too
large learning rates [40]. It was argued that this can also negatively affect the other RNN-based net-
work structures as they also feature a dense layer with Relu activation functions.
In this chapter many aspects of data-driven models were investigated. However, some aspects require
more attention. A list of future recommendations is given below.

1. First of all, feature selection is completely absent for the networks presented in this chapter.
Applying L1-regularization to the models could reduce the input feature dimension as it applies a
penalty to the sum of weights, effectively reducing input feature dimensionality [65]. It should be
investigated if this is even necessary because the input dimensionality is not extremely large, i.e.
20 input features. Also L1-regularization does not give more insight into which features are more
important than others when certain predictions are made.

2. Another point of attention could be changing the outputs, now the assumption was made that the
output of the network should be equal to the MPC reference DoFs. However, it could also be
possible to make vehicle input predictions. These predicted inputs could then be used to drive
the same virtual vehicle used in the simulator.

3. Another point of interest is reversing the order of the look-ahead features for the Encoder-Decoder
LSTM network. In another study [91] it was found that this creates stronger connections between
the tails of the input and predicted output of the model. In this case it can be argued that the first
few meters of look-ahead features have a stronger correlation with short-term driver dynamics
prediction.

4. More time can be spent on performing the grid search. Instead of training one model for each
hyperparameter setting, multiple models need to be trained for more epochs with their perfor-
mance averaged. This gives a better insight into which set of parameters actually work best.
Next to this, also other parameters could be included into the hyperparameter optimization, such
as the data down-sampling frequency, the stride, the length of the input sequence as well as the
network structure itself. Also different regularization techniques could be investigated such as
L1-, L2-regularization. At this moment no regularization is applied to the LSTM cells at all. LSTM
regularization is left untouched at this moment in time but could very well result in better model
performance.

5. For each of the models the Selu activation function should be applied. This eliminates the risk
of introducing non-active neurons in the models, elongating the learning process, which effec-
tively increases model performance. Altering this parameter also means that hyperparameter
optimization should be performed again for each of the parameters.

6. Lastly, the effect of the prediction on motion cueing quality should be investigated. Four different
models are presented that are able to predict the next 10 seconds of vehicle dynamics. However,
the effect of the prediction quality on motion cueing quality is not known.





5
Project Planning

In Chapter 2 the advantages and disadvantages of the industry benchmark CWA were presented [85].
It was found that one of its main disadvantages is the inclusion of false cues due to parameter tun-
ing as well as the exclusion of explicit simulator limits. In recent years a new and promising real-time
motion cueing algorithm was devised, called ”model predictive control motion cueing algorithm” [22].
Experiments have shown that subjective as well as objective motion cueing quality increases when
compared to the CWA [26]. Also, a strong correlation with a longer and more precise reference trajec-
tory, and subjective motion cueing quality was found. Therefore, finding ways to provide such accurate
reference was the subject of Chapter 4. In Chapter 4 data-driven, supervised prediction methods were
discussed. Four different models were investigated, a two hidden layer MLP, a single LSTM RNN, a
three layer Deep LSTM and an Encoder-Decoder LSTM RNN. It was found that these methods are
capable of performing 10s future prediction for all 6 DoF’s.
This chapter will serve as a proposal for future projects, based on the discussion provided at the end
of each of the previous chapters. Keeping the goal of the thesis in mind, Section 5.1 discusses the
specific projects on MPC as well as the data-driven methods. In Section 5.2 three different hypothe-
ses on motion cueing quality will be stated, in order to validate the hypotheses an experiment will be
performed. The experiment will briefly be discussed in Section 5.3.

5.1. Further Investigation
Although many concepts have been investigated in the previous chapters, certain aspects need to be
investigated further or algorithms need to be expanded in the following way. Since the goal of the the-
sis is to understand how the prediction quality influences motion cueing quality, an experiment needs
to be performed on at least a 6DoF simulator. To this extent it is paramount that the MPC algorithm
in Chapter 3 is expanded to 6 DoF’s. Translation in Z-direction as well as rotation around the Z-axis,
i.e. yaw, need to be added. Another aspect that needs to be included is the possibility to reduce the
order of the Hessian matrix 𝐻. This will reduce computational complexity and will make it possible to
run fast simulations with a longer prediction horizon. For this, a move blocking strategy needs to be
implemented [16]. Lastly, state weighting in the cost function needs to be implemented. This gives the
possibility of making a trade-off between translational and rotational motion.
As discussed in Chapter 4, several methods for improving the models were presented. First and fore-
most the problem of dead Relu’s needs to be taken care off. When fixed, the hyperparameters need to
be tuned again. With this also the effect of using a different data scaling method will be investigated.
Lastly, the effect of reversing the order of the look-ahead features used in the Encoder-Decoder net-
work will be investigated. Then the performance needs to be rechecked, after which it shall be decided
whether any other steps is required.
When the models have been analyzed further, the MPC algorithm and the different prediction methods
will be combined. Offline simulations will be done with a constant 1.5s future prediction as found in
[26], the 10s future network predictions as well as an oracle 10s future prediction. The best performing
prediction model - MPC combination will be used in the experiment. This will be decided by performing
an analysis on RMSE on cueing errors as well as an analysis on the amount of false cues as performed
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in [28].

5.2. Research Questions and Hypotheses
Based on the topics discussed previously the following research question is presented.

”How does subjective and objective motion cueing quality, using model predictive
control, alter when the output of more accurate data-driven supervised models, that

predict driver behavior, are used as reference trajectory.”

It should be noted that this research question is preceded by two other research questions that need
to be answered first.

”How does prediction quality improve when using data-driven supervised machine
learning methods compared to the benchmark constant prediction.”

and

”What is the effect of using MPC with constant, a more accurate model, and perfect
oracle prediction on simulator motion.”

The first of the two sub-questions has partially been answered in Section 4.9, however, this analysis
needs to be expanded in the future with the reworked networks. The latter sub-question needs to be
answered in follow-up investigations. The main research question shall be validated, only when the
two sub-questions are answered, by performing experiments where participants will experience four
different conditions:

1. Condition 1: Data from prerecorded drive used to compute offline simulator commands using
CWA MCA industry benchmark.

2. Condition 2: Offline motion simulator commands generated by MPC MCA using a constant 1.5s
prediction as used in [26].

3. Condition 3: Offline motion simulator commands generated by MPC MCA using a 10s trained,
NN model prediction.

4. Condition 4: Offline motion simulator commands generated by MPC MCA using a 10s oracle
prediction.

All four conditions will be set-up using the dataset that was utilized throughout the investigations pro-
vided in this thesis report. The hypotheses concerning the four conditions are defined as follows.

• Perceived motion cueing quality of MPC with constant prediction is marginally better than the
quality of CWA cueing, also found by Ellensohn [28]. This will be the anchor measurement.

• Perception of motion cueing quality of MPC with an accurate prediction model is better than MPC
with constant prediction.

• Perception of motion cueing quality of MPC with oracle prediction model is better than MPC with
an accurate prediction model.

5.3. Experiment Design
5.3.1. Rating Method
Cleij et al. [19] proposes a continuous rating (CR) method where participants rate the perceived motion
incongruence, or so called PMI which results in a motion incongruence rating or MIR. Participants drive
passively in a dynamic driving simulator, i.e. not operating the steering wheel or gas/brake pedals. This
way, participants are able to fully concentrate on rating the PMI. The MIR scale ranges from 0 to 10, 0
meaning no perceivedmotionmismatch, whereas a 10 indicates the largest perceivedmotionmismatch
in the experiment. Participants will be trained on some prerecorded test drives prior to the experiment to
understand what these scores entail. As discussed in [19], the training set will include regions of low as
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well as regions of large cueing error with a specific set of cueing errors the participant may experience
(e.g. scaling error or sign error). Performing this step is found to improve the overall rating quality
and consistency [19][54][28]. The biggest advantage in using this rating approach is the high temporal
resolution it produces. The acquired results can be used in the validation to find correlation between
physical (measurable mismatches) and perceived mismatches. However, some disadvantages to this
method also exist as discussed by Kolff et al.[54].

• One made assumption is that any non-zero ratings occur due to perceived motion mismatches.
This means that performing such a rating task in a real-vehicle should result in perfect (zero)
rating at all times. Since participants are asked to specifically rate these mismatches, they are
more likely to actively focus on the rating when compared to driving a real car. This will most
likely result in more non-zero ratings even if no mismatch exists.

• Another assumption is that the CR by the participants is an accurate representation of actual
perceived motion. However, humans exhibit an inherent time delay, which is corrected for in
the models by Cleij et al. [19]. Humans also can exhibit the tendency to anticipate on previous
experienced mismatches in previous drives, meaning the perception of a past maneuver might
affect the rating at the current time.

Even though these flaws exist, their influence can be somewhat limited (not completely omitted) by
careful instruction to the participants. Contrary to [19], where each trial is subdivided into segments, but
similar to [26] each participant will give a post-hoc rating (PR) at the end of each trial (not segmented).
The PR is used to validate the results of the CR [19]. The rating scale of the PR and CR are the same.
The CR results from a passive drive provides high resolution and high quality motion cueing quality
scores. Therefore, this method will be used for the experiment.

5.3.2. General Experiment Set-up
The set-up of the experiments closely follows the set-up used by Cleij et al. [19] and Kolff et al. [54].
Experiments will take place at the simulation headquarters of BMW in Munich on an, at this time undis-
closed, available motion simulator. Participants will passively experience a drive on the route found in
fig. 4.2. To create the offline drives that participants will experience, part of the dataset mentioned in
Section 5.2 will be used. This means one of the drives present in the test-set, discussed in Section 4.4,
will be used as reference drive. For the drive in the test-set, the prediction performance of all four
different NN networks will be analyzed. The model that shows the best performance will be used as
reference generation model for the MPC MCA used in condition 3. To anchor the measurement and
validate the results, offline generated simulator setpoints are calculated. For condition 1, a BMW tuned
CWA is used. For condition 2, 3 and 4, the prediction sequences (i.e. constant, NN model and oracle)
will be integrated with a BMW in-house developed MPC controller into BMW simulator control software.

5.3.3. Participant Group
BMW will give full access to the simulator hardware and software during a six week time period. The
first three to four weeks are used to test and verify the experiment set-up. Then, in the remaining two
to three weeks, the experiment will take place occupying around 40-60 participants, which averages
around 4 participants per day. Participants are gathered through an online BMW portal which usually
fills up within the hour. The participants will experience 4 drives randomly ordered: motion cueing by
CWA, offline MPC with constant prediction, offline MPC with the prediction model and offline MPC with
oracle prediction. The experiment features the driving scenario as independent variable: CWA, MPC
MCA with constant, model, and oracle prediction. The dependent variables are the MRI and PR.

5.3.4. Scientific Purpose
To finalize this thesis report, this short paragraph is committed to the discussion on the scientific rele-
vance of this research.
In this report many questions were asked that ultimately lead to the presentation of the hypotheses
made in section 5.2. This thesis committed itself to provide answers to some of these questions.
Further research, by performing the proposed experiments, tries to provide supporting evidence to
conclude the hypotheses. Multiple goals, some of which already attained, were the foundation of this
research.
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The first goal was to understand if it is possible to model driver dynamic behavior, based on a simple set
of measurable environmental as well as personal features, using complex Neural Network model types.
If possible, to which degree these models can provide accurate predictions. These two questions have
already been partly answered, however, as discussed more time should be invested to remove some
small bugs present in the models. The results of this investigation can be used by scientists in other
fields that research specific dynamic driver behavior using Neural Network models as well.
The goal of performing the experiments is to gather information that can lead to answers in different
areas. The main goal being to understand the impact on motion cueing quality of using a complex
reference prediction model compared to a constant reference. To give a better insight to the experi-
ment results, a perfect prediction reference is also used. This is a situation which is unattainable, yet
desired. The resulting conclusion from these experiments can provide future scientists a lead to follow
up on: is it worth it to invest a lot of time into the matter of developing time consuming and complex
prediction models if it yields no significant benefit? The other goal is to investigate to which degree
an increase in prediction quality has an effect on the control sequence, mainly the first control input,
calculated by the MPC algorithm. More specifically, does this increase in prediction quality effectively
change the discrete time sequence of computed first control inputs applied to the system and enhance
the objective/subjective motion cueing quality? Answering these questions are expected to increase
scientific understanding on the subject of MPC MCA further.
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Figure A.1: Full translational vehicle data from BMW test run.
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Figure A.2: Full rotational vehicle data from BMW test run.
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Figure A.3: CWA reference vs simulated specific forces in body coordinate reference frame using BMW test drive as reference.
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Figure A.4: CWA reference vs simulated rotational rates in body coordinate reference frame using BMW test drive as reference.

Figure A.5: CWA translational simulator displacement using BMW test drive as reference.
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Figure A.6: CWA rotational simulator angles using BMW test drive as reference.



A.2. Chapter 3 147

A.2. Chapter 3

0 50 100 150 200 250 300 350 400 450 500

Time [s]

-4

-3

-2

-1

0

1

2

3

4

S
p
e
c
if
ic

 f
o
rc

e
 i
n
 x

-d
ir
e
c
ti
o
n
 [
m

/s
2
] Simulated specific force

Vehicle specific force

Figure A.7: Specific force in x-direction for 500s simulation using MPC with double integrator model.
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Figure A.8: Specific force in y-direction for 500s simulation using MPC with double integrator model.
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Figure A.9: Displacement in x- and y-direction, pitch and roll angle for 500s simulation using MPC with double integrator model.
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Figure A.10: Specific force in x-direction for 500s simulation using MPC with integrated vestibular model.
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Figure A.11: Specific force in y-direction for 500s simulation using MPC with integrated vestibular model.
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Figure A.12: Displacement in x- and y-direction, pitch and roll angle for 500s simulation using MPC with integrated vestibular
model.
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Figure A.13: Effect of 1Hz 5th-order lowpass butterworth filter on longitudinal acceleration.
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Figure A.14: MSE and MAE trace for vehicle vertical acceleration prediction for both NS- and SN-direction using a trained
Dense MLP, single layer LSTM, Deep LSTM and Enc-Dec LSTM network as well as the MSE and MAE trace of a constant

prediction.
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Figure A.15: MSE and MAE trace for vehicle pitch rate prediction for both NS- and SN-direction using a trained Dense MLP,
single layer LSTM, Deep LSTM and Enc-Dec LSTM network as well as the MSE and MAE trace of a constant prediction.
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Figure A.16: MSE and MAE trace for vehicle roll rate prediction for both NS- and SN-direction using a trained Dense MLP,
single layer LSTM, Deep LSTM and Enc-Dec LSTM network as well as the MSE and MAE trace of a constant prediction.
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Figure A.17: MSE and MAE trace for vehicle yaw rate prediction for both NS- and SN-direction using a trained Dense MLP,
single layer LSTM, Deep LSTM and Enc-Dec LSTM network as well as the MSE and MAE trace of a constant prediction.
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Figure A.18: Vertical acceleration prediction traces using a trained MLP, LSTM, Deep LSTM, Enc-Dec network as well as a
constant prediction trace.
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Figure A.19: Pitch rate prediction traces using a trained MLP, LSTM, Deep LSTM, Enc-Dec network as well as a constant
prediction trace.
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Figure A.20: Roll rate prediction traces using a trained MLP, LSTM, Deep LSTM, Enc-Dec network as well as a constant
prediction trace.

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Ya
wR

at
e[

ra
d/

s]

Inputs
Constant prediction
Dense Prediction
LSTM Prediction
Deep LSTM Prediction
Enc-Dec Prediction
Oracle prediction

0 10 20 30 40
Time [s]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Ya
wR

at
e[

ra
d/

s]

Figure A.21: Yaw rate prediction traces using a trained MLP, LSTM, Deep LSTM, Enc-Dec network as well as a constant
prediction trace.
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B.1. NS vs. SN Direction Additional Kinematic Vehicle Analysis
Figure B.1 and Figure B.2 show the kinematic profiles averaged over all drives in both NS and SN
direction, respectively. In these figures, the effect of different sections on the average driver behavior
can be investigated.

The highest acceleration peaks occur near regions where a change in speedlimit happens, i.e.,
when going from road segment a to b. However, two road segments stand-out to this ‘rule’. Road
segment 6 features a round-about which has to be taken at moderated speed. As can be seen in both
NS and SN direction, first, a strong deceleration is applied when approaching the round-about, shortly
followed by an acceleration peak when exiting the round-about.

Road segment 8 is a transition segment. In NS direction, the speedlimit changes from 100𝑘𝑚/ℎ,
to 70𝑘𝑚𝑔/ℎ, to 50𝑘𝑚/ℎ over a short distance, followed by two sharp turns. Therefore, in Figure B.1,
a relatively long lasting deceleration maneuver can be seen, after which a higher acceleration peak
occurs when past the last turn. Vice versa, in SN direction the speedlimit increases over the same
short distance. Therefore, in Figure B.2 the opposite behavior can be seen, first a strong deceleration
to account for the succession of sharp turns, followed by a strong acceleration to reach the speedlimit
again.

Slow but sharp corners result in the requirement of a high yaw rate, and a peak in lateral acceleration
when a small radius of curvature is driven at moderate speed. This behavior can be seen for both NS
and SN direction in road segment 6 and 8, where a round-about and two sharp turns are present,
respectively. This results in distinct yaw rate peaks in both segments. Still, a difference between NS
and SN direction can be found when looking at Figure B.1 and Figure B.2, where the maximum average
yaw peak in NS direction on road segment 6, is significantly higher during round-about entry (first two
peaks), and similar to each other on exit (3rd peak). This is only logical as a participant driving in NS
direction has to take the 3rd exit (in SN direction the 1st exit), which results in a yaw rate peak at entry,
followed by a longer lasting and opposite yaw rate when driving around the round-about, and finally
again an opposite yaw rate towards the exit. In SN direction, traversing the round-about is as if one
short corner, with continuous road curvature has to be followed, resulting in only one peak in yaw rate.
At high speed, but moderate radius of curve turns, lateral acceleration is more dominant, and only a
more mild vehicle yaw rate is demanded. As can be seen, these type of corners dominate the driven
route.
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Figure B.1: The average kinematic profiles for all NS Drives
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Figure B.2: The average kinematic profiles for all SN Drives
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B.2. Nonlinear Workspace Domain
The presented illustrations in this section are retrieved from the PhD dissertation by Ellensohn[27]. Fig-
ure B.3 shows the available workspace in translational and rotational direction of the simulator when
situated at the neutral position in Figure B.3a, and when diverted from the neutral position in Fig-
ure B.3b. The figures show how the polyhedron volume of reachable workspace changes nonlinearly
when the simulator changes its relative position. Since the simulator is moved by its actuators, this
behavior relates directly with the available actuator stroke length.

From these figures it becomes clear how the constant angle assumption over the prediction hori-
zon 𝑁𝑝 can affect the MPC computed output. When the simulator is positioned in its neutral state and
excursions are required from the simulator, the MPC algorithm calculates the control input while ad-
hering to the constraints imposed by the assumed-constant polyhedron in Figure B.3a. However, as
can be seen in Figure B.3b, by tilting the simulator 10∘ around x-, y-, or z-direction, this polyhedron
has already changed significantly, i.e., the actual physical constraints have been adjusted. In the MPC
implementation defined in this report, this effect is ignored.

An MPC that incorporates these nonlinear constraints, has the ability to always adhere to the chang-
ing polyhedron constraints by updating the transformation matrices over the prediction horizon 𝑁𝑝 for
each time step. However, this would require a different nonlinear solver that is able to run real-time,
which is a challenging problem.
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(a) Available workspace when the simulator is in its neutral position,i.e., Left: 𝑥, 𝑦, 𝑧 = 0 and Right: 𝜙, 𝜃, 𝜓 = 0∘.

(b) Available workspace when the simulator is not in its neutral position,i.e., Left: 𝑥, 𝑦 = 0.5𝑚 and 𝑧 = 0 and
Right: 𝜙, 𝜃, 𝜓 = 10∘.

Figure B.3: Translational and rotational available workspace of a simulator in x,y,z and 𝜙, 𝜃, and 𝜓. Retrieved
from [27].
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B.3. Neural Network Model Structures
Figure B.4 shows the three other network structures mentioned in the paper. As discussed, the final
three layers are equal for each of the networks.

input_1: InputLayer

flatten: Flatten

dense: Dense

dense_1: Dense

dense_2: Dense

dropout: Dropout

long: Dense lat: Dense z: Dense pitch: Dense roll: Dense yaw: Dense

(a) Three-layer Dense MLP.

input_1: InputLayer

lstm: LSTM

dense: Dense

dropout: Dropout

long: Dense lat: Dense z: Dense pitch: Dense roll: Dense yaw: Dense

(b) Single-layer LSTM RNN.

input_1: InputLayer

lstm: LSTM

repeat_vector: RepeatVector

lstm_1: LSTM

dense: Dense

dropout: Dropout

long: Dense lat: Dense z: Dense pitch: Dense roll: Dense yaw: Dense

(c) Single-layer Encoder-Decoder LSTM RNN.

Figure B.4: The three other data-driven neural network structures, used to perform future vehicle state prediction.
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B.4. MIR:𝑊1 and𝑊2 Analysis
As explained in the paper found in Part I, two different weight settings were used in the presented MPC
MCA simulations. Figure B.5 shows the estimated MIR signals for a test drive in SN direction, highlight-
ing one of the peaks occurring at 460𝑠. In this figure ratings for six different simulations are presented.
For both 𝑊1 and 𝑊2: constant, Deep LSTM (denoted by ‘LSTM’), and oracle MPC. Although, the cost
on state deviations decreased by 20%, only a marginal decrease could be found in the estimated MIR
signal. An explanation is given in the following.

Figure B.6 illustrates the difference in perceived specific force in both x- and y-direction for the same
peak that was highlighted in Figure B.5. From these figures one can see that the difference between
the two MPC outputs is indeed very small. Because the cost function features five different cost terms,
adjusting one might not result in the expected change in output. An example of the cost value over
time is given in the preliminary thesis in Figure 3.3. From these figures, and based on findings in [71],
it was argued that not only the individual weight cost value, but also the ratio between weight term val-
ues and the absolute cost are important when an optimal control input is computed. If for example the
assumption is made that the terminal cost is limiting, i.e., the simulator needs to be at the neutral point
at the end of the prediction horizon 𝑁𝑝, reducing the state weighting by 20%, i.e., an absolute value
decrease of 0.08 in 𝑝𝑥 (see Table V in part I), is only a relative decrease of 0.032% with the terminal
cost term. This means that the effect of the absolute neutral push of the state weighting decreases only
by 0.032%, instead of the expected 20%. In this case the exact cost value distribution is not known, in
future work it would be an interesting metric to keep track of by means of, e.g., a stacked area chart.

This discussion highlights, that even though it is claimed that the tuning of weight terms is more
understandable than the tuning process of the washout MCA [22, 60], tuning of MPC parameters can
still be very challenging in practice and is not as intuitive as one might think. Next to this, to understand
the significance of results, it is advised to validate the results on more test drives which enables the
use of statistical significance tests.
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Figure B.6: Perceived specific force vs. true reference in x- and y-direction for three different MPC reference
settings, each simulated using𝑊1 and𝑊2.
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