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Abstract

Adipic acid is a product that is produced on a large scale world wide. Its separation and
purification is mostly done by crystallization. As crystallization is usually a part of a wider
processing system; the quality i.e. Crystal Size Distribution (CSD) of the crystals has a
large influence on the downstream processing. Therefore the CSD should be predictable and
as constant as possible. In this thesis a dynamic model was developed for simulating the
crystallization process of adipic acid. This model could act as a basis for a control system
which predicts and controls the CSD.

A literature study was done and yielded a numerical method for solving the Population
Balance Equation (PBE) and expressions for nucleation, crystal growth and agglomeration.
The High Resolution Finite Volume Methods (HR-FVM) were implemented in Matlab. This
implementation was tested for its accuracy and stability by solving several numerical test
cases. By comparison between the numerical and the analytical solutions it was concluded
that the numerical method was able to solve the PBE including different kinetics accurately.

This numerical framework was extended with a mass balance, energy balance and concentra-
tion balance to model an Mixed Suspension Mixed Product Removal (MSMPR) crystallizer.
An MSMPR crystallizer is the crystallization equivalent of a stirred tank reactor. The nu-
merical solution was in agreement with the analytical solution.

Adipic acid is known to agglomerate; therefore an agglomeration model was included in
the framework. The steady state CSD of this model was compared to experimental data.
The CSD is not in agreement with the experimental data. Making the agglomeration rate
super saturation dependent did not yield satisfactory results. Several other size-independent
agglomeration rate expressions were implemented to see if this would yield a more accurate
CSD. The results were more accurate; the least square error decreased by 43.72% but the
tenth and ninetieth percentile were still a bit under predicted while the fiftieth percentile was
over predicted. The time required to reach steady state was three times shorter for the size-
independent models (15 versus 50 hours). It can be concluded that the empirical expression
of Lindenberg (Lindenberg et al., 2007) gives the most accurate CSD. In order to improve
the model and also to be able to simulate the dynamics several recommendations are given
at the end of this thesis.
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ñ Crystal density #/m
P2 Sticking probability −
P3 Non-dissociation probability −
r Flux limiter −
R Universal gas constant 8.314J/molK
Reλ Taylor microscale Reynolds number −
s Crystalline bridge length m
S Supersaturation ratio −
Sm Size of the smallest crystal m
Sn Size of the largest crystal m
T Temperature K
tc Bridge building time s
TL Lagrange time scale s
tr Average interaction time s
tt Small turbulent eddies lifetime s
u′ Fluctuating average component of the local velocity m/s
uk Fluctuating component of turbulent velocity in direction k m/s
v Crystal volume m3

V̇ Volumetric flowrate m3/s
vf Root mean square fluid velocity m/s
V c Crystallizer volume m3

wi One dimensional relative velocity between particles m/s

S. Molenaar CONFIDENTIAL Master of Science Thesis



List of Tables xv

x Part of the crystalline bridge length m
y Distance between crystals m

Greek

β Frequency s−1

ǫ Impeller power input W/kg
ǫ Liquid fraction −
ηAgglo Agglomeration efficiency −
ηkol Kolmogorov length scale m
γ Correction parameter −
γ Local shear rate s−1

Λ Length scale of largest vortices m
λc Contact length m
λe Lagrangian microscale m
λg Taylor microscale m
µ Chemical potential J/mol
µ Dynamic viscosity Pa · s
µ∗ Chemical potential of the saturated solution J/mol
µ0 Chemical potential arbitrary reference state J/mol
νf Kinematic viscosity of the fluid kg/(s ·m)
ρ Density m3/kg
σ Relative supersaturation −
σc Crystalline bridge fracture strength N/m2

τ Residence time s
τkol Kolmogorov time scale s
τL Lagrangian time micro scale s
Θ Dimensionless particle relaxation time −

Subscripts

agglo Agglomeration
c Crystal
coll Collision
f Fluid
feed Feed
liq Liquid
max Maximum
min Minimum
out Output
p Particle
rec Recycle
vap Vapor

Master of Science Thesis CONFIDENTIAL S. Molenaar



xvi List of Tables

S. Molenaar CONFIDENTIAL Master of Science Thesis



Chapter 1

Introduction

1-1 Introduction

Crystallization is the process of the production of a crystalline solid phase from a vapor,
solution or melt (Mersmann, 2001). As a separation process it distinguishes itself from other
separation processes by the ability to reach a high product purity in a single step process
with low level of energy consumption and relatively mild process conditions (Virone, 2006).
The aforementioned merits make it a preferable separation technique. This is also evident
from the tonnage and variety of particulate crystal products produced and sold worldwide as
this amounts for half the output of the modern chemical industry according to Jones (Jones,
2002).

Adipic acid is one of these particulate crystal products produced on large scale. The annual
production is 2.5 billion kilograms of which 12.5% is produced by BASF (Musser, 2008). It
is mainly used as a precursor for nylon production. As crystallization is usually a part of a
wider processing system; the quality (or Crystal Size Distribution (CSD)) of the crystals has
a large influence on the downstream processing. Therefore the CSD should be predictable
and as constant as possible.

A number of kinetic phenomena occur in a crystallization process e.g. nucleation, growth,
attrition and agglomeration. These phenomena are highly interrelated and their inner work-
ings are currently not fully understood (Mersmann, 2001). This is what makes predicting the
CSD of a crystallization product a non-trivial task.

Next to the difficulties with the kinetic phenomena there is another challenge when modeling
a crystallization process. This challenge lies within the solution of the Population Balance
Equation (PBE). The PBE is an equation which describes the development of a specific
particle property during time. In control applications, only one internal coordinate system is
used for describing the characteristics of a crystalline material i.e. crystal size (Braatz, 2002).
Analytical solutions to the PBE are only available for some simple cases. When phenomena
as agglomeration are included one must resort to numerical solution methods.
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2 Introduction

The complexities of numerically solving a PBE has sparked the interest of many scientists.
A large variety of different numerical schemes was developed over the last decade, each with
its own merits and drawbacks. An overview of these numerical schemes can be found in this
thesis, for a detailed overview the reader is redirected to Mesbah (Mesbah, 2010).

1-2 Problem statement and approach

Previous work by de Ruiter (Ruiter, 2009) showed that agglomeration is a dominant phe-
nomena in the crystallization process of adipic acid at BASF. If the CSD is to be described
accurately by a mathematical model this phenomena should be included. This raises the
following research question:

"Can the dynamics of the adipic acid crystallization process be described in terms of the

product quality when nucleation, growth and agglomeration are included in a mathematical

model?"

The research approach which was followed in this thesis is depicted in Figure 1-1. A literature
survey was done for the different kind of kinetic phenomena which are present in a crystalliza-
tion process. This survey results in correlations for the nucleation, growth and agglomeration
rate. After the literature survey a mathematical framework was created for the crystallization
process model. This framework includes the PBE together with the mass and energy balances
and additional constitutive equations. In order to solve this system of equations a numer-
ical method was chosen, in this case the finite volume method. This method conveniently
incorporates the agglomeration rate. The created model was validated in three steps, first
the numerical scheme is validated using numerical test cases which have a analytical solution.
The second step is to simulate and validate a continuous Mixed Suspension Mixed Product
Removal (MSMPR) which includes mass and energy balances. The third and final step is to
do a parameter estimation and to replicate the results from experimental data.

Literature survey

Model framework

Numerical validation

Matlab implementation

-Kinetic phenomena

-PBE solution methods

-Kinetic phenomena

-Mass and energy balances 

-PBE

-Constitutive equations

-Numerical test cases

-MSMPR crystallizer

Parameter estimation

Model validation -Experimental data

Figure 1-1: Research approach
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1-3 Outline of this thesis 3

1-3 Outline of this thesis

The remainder of this thesis has another five Chapters. Chapter 2 gives an overview of
the theoretical background of crystallization as a process and also of kinetic phenomena
such as: nucleation, growth and agglomeration. The subsequent Chapter 3 reviews the used
modeling approach for the PBE, the crystallization kinetics and the liquid phase. At the end
of Chapter 3 a model overview is given. Chapter 4 gives background information about the
experimental setup and the sensors used at BASF Ludwigshafen. Also an overview of the
available experimental data is given. Chapter 5 discusses the results of the thesis and Chapter
6 consists of a discussion and recommendations for further research.
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Chapter 2

Crystallization theory

2-1 Introduction

Crystallization is a separation process that yields a solid product. The product can be sepa-
rated either from melt, a solution or a vapor. As with most separation processes it requires
non equilibrium conditions to generate a driving force. This driving force is needed for crys-
tallization to occur. In the case of crystallization the driving force is the solutes chemical
potential difference between the liquid and the solid state. Section 2-2 discusses this driving
force in more detail.

Crystallization is also a process in which simultaneous heat and mass transfer occurs, it has a
strong dependency on both fluid and particle mechanics. When dealing with particle mechan-
ics a very frequently used equation is the Population Balance Equation (PBE) (Ramkrishna,
2000). This is an Partial Differential Equation (PDE) which describes the development of
specific particle properties over time. Detailed information about the PBE can be found in
Section 2-7.

The driving force i.e supersaturation in a crystallizer is dependent on the flows of mass and
energy at one side and the crystallization kinetics on the other. Crystallization kinetics include
nucleation, crystal growth, attrition and agglomeration.

In order for crystals to be created, nuclei should be formed after which they grow out to
crystals. Nucleation i.e. the creation of a new crystalline phase is discussed in Section 2-3.
In this Section a distinction is made between primary and secondary nucleation.

When nuclei are formed they grow out to crystals in the crystallizer, this crystal growth is
discussed in Section 2-4. Attrition is the abrasion of crystals due to mechanical contact of the
crystals with the hardware or other crystals which creates fragments of crystals which can act
as new nuclei and grow out to be crystals. There are many mechanisms of attrition of which
a selection is discussed in Section 3-6-1. From a previous study by de Ruiter (Ruiter, 2009)
it is known that agglomeration is a dominant phenomena in the adipic acid crystallization
process. Agglomeration is a mechanism in which crystals collide with each other and are glued
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6 Crystallization theory

together by a crystal bridge between them. The agglomeration mechanisms are discussed in
Section 2-6.

2-2 Crystallization from solution

Adipic acid is crystallized from a solution, it changes from its dissolved state to the solid
state. The creation of the solid phase enables one to separate it from the liquid phase by
centrifugation or by filtering. As mentioned in the introduction to this Chapter, in order for
crystallization to occur there should be a driving force.

This driving force for crystallization is mathematically expressed as (Jancic and Grootscholten,
1984):

∆µ = µ− µ∗ (2-1)

In which µ is the chemical potential of the crystalline substance in the supersaturated state
and µ∗ is the chemical potential of the same substance in the saturated solution. The chemical
potential of a substance is related to the substance activity by:

µ = µ0 +RT ln(a) (2-2)

in which µ0 is an arbitrary reference state chemical potential and a is the substances activity.

Equation (2-2) can be used to rewrite (2-1) into:

∆µ
RT

= ln
(

a

a∗

)

= ln(S) (2-3)

in which the left hand side of the expression is the dimensionless driving force for crystalliza-
tion and S is the supersaturation ratio.

Fundamentally the driving force for a crystallization process is the difference in chemical
potential between the crystallizing substance in the crystal and in the solution phase as
discussed before. Usually it is expressed as the difference between the supersaturation and
saturation concentration (only valid for relatively small supersaturation values).

∆c = c− c∗ (2-4)

The saturation concentration is the concentration at which the solution is in equilibrium
with the solid state. Figure 2-1 is a solubility diagram it is used to illustrate some of the
terminology within this report.

In Figure 2-1 the continuous line is the curve which describes the saturation concentration at
different temperatures. The slope of this curve varies with compound and partly determines
if a certain crystallization technique is feasible (cooling or evaporative crystallization for
example). The region below this saturation curve is called the under saturated region and
the region above this line is called the supersaturated region. Another curve is plotted in
Figure 2-1, the metastable limit.

Metastability can best be explained by an illustration. In Figure 2-2(a) a stable solution
is depicted, it appears as a minimum. In order to change the state of this solution a large
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Figure 2-1: Solubility diagram (solid line is the saturation concentration)

disturbance is needed. In Figure 2-2(b) an unstable solution is depicted. An unstable is the
direct opposite of a stable solution, a infinitely small disturbance can cause the state of the
solution to change. A metastable solution is depicted in Figure 2-2(c). Here the solution is
in a local stable state (valley) but a small disturbance can change the state towards the left
side (a deeper valley). A detailed description of this metastability is given in Section 2-3.

(a) Stable (b) Unstable (c) Metastable

Figure 2-2: Different stability states (Myerson, 2002)

In Figure 2-1 the line from point A to point D depicts the process of evaporative crystallization.
Where supersaturation is created by evaporating the solvent at constant temperature. Point
A lies in the under saturated area, in other words, the bulk concentration is lower than the
saturated concentration. This means that there is no driving force or supersaturation thus
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8 Crystallization theory

no crystallization occurs. Point B lies on the saturation curve thus the solution is saturated
and there is no crystallization occurring. If one would increase the concentration to point C
it would be in the metastable region. In this case there would be no spontaneous nucleation.
One could increase the concentration up to a certain concentration at which spontaneous
nucleation would occur this concentration is the metastable limit depicted by point D. The
energy barrier which should be overcome to initiate spontaneous nucleation is described in
detail in Section 2-3.

The line F-D in Figure 2-1 represents a process which is called cooling crystallization in which
the supersaturation is created by cooling the solution.

2-3 Nucleation

When a solution is supersaturated the system tries to restore its equilibrium by different
competing mechanisms (Mersmann, 2001). Nucleation is one of these mechanisms. While
supersaturation is a prerequisite for crystallization it alone is not enough for crystallization
to start. A large number of minute solid bodies, embryos, nuclei or seeds should be available to
act as centers for crystallization. Nucleation is the subject of this Section, growth is explained
in Section 2-4.

There are two main classes of nucleation which should be distinguished:

1. Primary nucleation, which is the formation of new nuclei in the absence of crystal matter
in the solution. Consisting of heterogeneous and homogeneous primary nucleation.

2. Secondary nucleation, which is the formation of new nuclei in the vicinity of crystals
present in the solution.

In the following Subsections homogeneous primary nucleation, heterogeneous primary nucle-
ation and secondary nucleation will be discussed in more detail. All these mechanisms need
to overcome a certain energy barrier before a cluster of critical size is formed. The amount
of energy required i.e. the penetration into the metastable zone is different for each of the
processes.

2-3-1 Primary nucleation

Primary nucleation is the formation of new nuclei from a clear liquid. Within primary nucle-
ation there are two subclasses namely homogeneous and heterogeneous primary nucleation.
Homogeneous primary nucleation only occurs when there are no foreign particles within the
solution. Heterogeneous nucleation occurs when foreign particles are available.

Homogeneous primary nucleation

Homogeneous primary nucleation is the formation of nuclei from a clear liquid. Molecules
in the solution associate to form a cluster. This cluster formation is a stochastic process.
Different sizes of clusters can be formed spontaneously. The size of the clusters and the
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Nucleation

Primary Secondary

Homogeneous

Heterogeneous

Contact

Fluid shear

Initial breeding

Dendric breeding

Figure 2-3: Nucleation mechanisms

rate of cluster formation is dependent on supersaturation. There exists a critical cluster size
above which the cluster grows out and below which it will dissolve again. The existence of this
critical size can be explained as follows: the work needed to form a cluster can be expressed
by a balance between the free excess surface energy GS and the volume excess free energy
GV .

∆G = ∆GS + ∆GV (2-5)

The two terms on the right hand side of Equation (2-5) have different signs and dependency
on nucleus size (∆GV ∝ L3 and ∆GS ∝ L2 ). This is the reason for the maximum in the
free excess formation energy ∆Gcrit depicted in Figure 2-4. Independent of nucleus size the
system always tries to minimize the free excess energy of the nucleus so depending if the
nucleus size is above or below the critical free excess energy of formation ∆Gcrit it will grow
out or dissolve.

Heterogeneous primary nucleation

In case of heterogeneous nucleation there are foreign particles in the solution. These impurities
lower the overall excess free energy required for nucleation and thus at lower supersaturation
heterogeneous primary nucleation is more likely to occur than homogeneous primary nucle-
ation. This lowering of the excess free energy is mathematically expressed as:

∆Gcrit,hetero = φ∆Gcrit,homo (2-6)

in which φ is a factor which is less than unity. It is the ratio of the volume of the truncated
nucleus to that of a sphere of the same volume. It is a function of the contact angle between
the crystalline deposit and foreign deposit (Volmer, 1939). Expressions for ∆G can be found
in Mersmann (Mersmann, 2001).
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Figure 2-4: Critical free excess energy ∆Gcrit (surface free energy ∆GS , volume free energy
∆GV and the total free energy ∆G = ∆GS + ∆GV )

2-3-2 Secondary nucleation

When nuclei are formed in the presence of crystals the process is called secondary nucleation.
The crystals have a catalytic effect on nucleation similar to foreign particles in heterogeneous
primary nucleation. This is the reason why secondary nucleation occurs at much lower super-
saturation levels. As depicted in Figure 2-3 there are several kinds of secondary nucleation:

Contact nucleation or attrition breeding Small pieces of crystals are removed from their
parent crystals by collisions between crystals or crystals with another surface such as
the crystallizer wall or impeller blades. According to Neumann (Neumann, 2001) this
kind of secondary nucleation is the most dominant in industrial crystallizers.

Fluid shear breeding A process similar to attrition breeding but instead of mechanic forces,
hydrodynamic forces break off small pieces of crystal.

Initial breeding or dust breeding When handling dry crystal material small fragments
are created. These fragments adhere to the crystals and are washed from the surface to
become suspended in the solution as new nuclei.

Dendrite or polycrystalline breeding Only with very high supersaturation needle shaped
dendrites or polycrystalline aggregates are formed at the corners and edges of the parent
crystal. Due to their shape they are prone to break off by mechanic or hydrodynamic
forces.
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2-4 Crystal growth 11

2-4 Crystal growth

When stable nuclei are formed by the nucleation mechanisms described in Section 2-3 and
the solution is supersaturated these nuclei start to grow. Crystal growth is a complex process
and many different theories have been formulated during the last century. The cause of the
complexity is mainly because the growth process consists of several steps (Mullin, 1993):

• Bulk diffusion of hydrated ions through the diffusion boundary layer

• Bulk diffusion of solvated ions through the adsorption

• Surface diffusion of solvated or unsolvated ions

• Partial or total desolvation of ions

• Integration of ions into the lattice

• Counter diffusion through the adsorption layer of the water released

• Counter diffusion of water through the boundary layer

Although the growth process has many steps, a frequently used (simplified) model is the two
step model. This model is an analogy of the classical diffusion-reaction theory (Mersmann,
2001). It is depicted in Figure 2-5. The two steps which are visible are the diffusion step in
which solute is transported through the solution and a surface integration step. The overall
growth rate being determined by these "resistances" in series.

Although literature mentions a diversity of growth equations the following very simple equa-
tion for the overall growth rate is frequently used (Mersmann, 2001):

G = kg(∆C)g (2-7)

in which g is the overall "order" of the growth process and kg is the growth rate constant.
The growth rate constant in general is a function of temperature, relative crystal/solution
velocity and impurities within the system (Garside et al., 2002).

Crystal
Stagnant film

Bulk solution

c0

c1

c∗

c0 − c1 = Driving force for diffusion

c1 − c∗ = Driving force for integration

Figure 2-5: Two-step growth model (bulk concentration c0, interface concentration c1 and
equilibrium concentration c∗)
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12 Crystallization theory

2-5 Attrition

Attrition is a specific case of secondary nucleation. According to Neumann (Neumann, 2001)
attrition is the most dominant source of secondary nuclei in a crystallizer. The breakage
of small crystal fragments from their parent crystals is caused by mechanic forces such as
crystal-crystal, crystal-stirrer and crystal-vessel collisions.

There have been many reports discussing this specific variant of secondary nucleation (Imran,
2007). The so-called power law is an empirical expression which expresses the secondary
nucleation rate as a function of four parameters. This expression is based on the experimental
work of Ottens and de Jong (Ottens and de Jong, 1973),

B = knGaN bM c
T (2-8)

in which kn is the empirical nucleation rate constant, G is the crystal growth rate, N is the
impeller speed and MT is a moment of the distribution. Equation (2-8) can be rewritten by
noting the fact that the growth rate G is directly related to the supersaturation σ as is the
agitation rate to power input ǫ.

B = knσaǫbM c
T (2-9)

The values for a, b and c are usually deducted from experimental data. Although the power
law can describe the steady-state median crystal size (PAON, 2003) it cannot capture the
dynamics of a crystallizer (Ó Meadhra, 1995). Over the years some improvements were made
to the power law.

The first improvement was made by Eek (Eek, 1995) he implemented the phenomena that only
crystals above a certain critical size are prone to attrition. More detailed information about
this phenomena can be found in Section 3-6-1. He achieved this implementation by using
a so-called target efficiency. Although the model was more accurate it was not a complete
solution.

The work of Ó Meadhra (Ó Meadhra, 1995) included an attrition function for the crystals.
The total abraded crystal volume was distributed over the small crystal sizes. A disadvantage
according to Wolf (Wolf, 2007) is that similar to the power-law this alteration has no predictive
value.

A more mechanistic model is the model of Gahn and Mersmann (Gahn and Mersmann, 1997).
For a detailed description the reader is referred to the original paper, here only a brief overview
is given.

The model considers only crystal-impeller collisions as Gahn and Mersmann (Gahn and Mers-
mann, 1997) stated these were the most dominant. The model can be described in three steps:

1. Collision frequency and impact energy

The number of collision of a crystal with the impeller (both faces and edges of the
blades) are calculated. For each of these collisions the impact energy is also calculated.

2. Attrition volume and fragment distribution

The impact energy is related to the abraded crystal volume by some material properties.
These properties include hardness, shear modulus and effective fracture surface energy.
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The distribution of the crystal fragments is limited in minimum size by the material
properties and in maximum size by the magnitude of the impact energy.

3. Growth of attrition and parent crystals

The growth rate of the crystals is calculated by an expression similar to the one described
in Section 3-6-2. It also accounts for crystals with high internal stress dissolving.

An important assumption in model of Gahn and Mersmann (Gahn and Mersmann, 1997) is
the fact that attrition occurs at the crystal corners, this is due to the higher local stresses. It is
also assumed that the crystals have sufficient time to grow between two subsequent collisions,
their corners will therefore redevelop.

The model of Gahn and Mersmann (Gahn and Mersmann, 1997) is mainly based on first-
principles (Neumann, 2001) and thus the number of fitting parameters is greatly reduced.
Unfortunately there are quite a number of physical properties of which obtaining the values
can prove to be a difficult task.

2-6 Agglomeration

Adipic acid is known to agglomerate (David et al., 1991b), this agglomeration behavior can
be explained by looking at Figure 2-6(a). In this picture adipic acid crystals are depicted
which are created in an industrial crystallizer. The clear difference when compared with
the lab scale crystal (Figure 2-6(b)) is the surfboard shape of the crystals. This surfboard
shape is hydrophilic and will attract other hydrophilic surfaces. This property increases the
agglomeration tendency of adipic acid. The more compact crystals in the lab scale crystallizer
are therefore preferred (Ruiter, 2009).

(a) Industrial scale (b) Lab scale

Figure 2-6: The different kinds of adipic acid crystals

Agglomeration kinetics are difficult to describe because of the dependence on many different
conditions such as, hydrodynamic condition, the properties of the particles and interactions
between particles. For clarity the agglomeration discussed in this report is as depicted in
Figure 2-7.

There are two sequential steps which are necessary (Mersmann, 2001):
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14 Crystallization theory

Collision Cohesion

Figure 2-7: Collision and cohesion of two crystals forming an agglomerate

1. First, the particles should collide with each other, this depends on the fluid dynamics,
particle size and inter particle forces.

2. Secondly, the particles should cohere, this depends on the tensile strength of the crys-
talline bridge and the collision and/or shear forces coming from a rotor and/or fluid
dynamics.

In order to model the agglomeration of adipic acid crystals expressions describing the rate of
agglomeration are needed. Most of the research done on agglomeration is based on the theory
of Smoluchowski (Smoluchowski, 1917). The agglomeration rate is usually expressed as:

βAgglo = βColl ∗ ηAgglo (2-10)

in which βColl is the collision rate and ηAgglo is the agglomeration efficiency. This efficiency
can be expressed as:

ηAgglo =
Number of agglomeration events

Number of collisions
. (2-11)

2-6-1 Crystal sizes

There are several models describing the collision rate of spheres in an agitated fluid phase.
It is important to distinguish between different crystal sizes since different sizes of crystals
have different mechanisms by which they collide and thus agglomerate. One can distinguish
different types of particle size regimes when comparing the characteristic length and time
scales of the particle with the ones of the turbulent motion. Before these models can be
described the following parameters are introduced:

Kolmogorov length scale ηkol The length scale of the smallest vortices in a turbulent fluid.
It is a function of kinematic viscosity ν and energy dissipation rate ǫ.

ηkol =
ν

3/4
f

ε1/4
(2-12)
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Kolmogorov time scale τkol It is an indicator of the vortex lifetime. Just as the Kol-
mogorov length scale it is a function of both ν and ǫ.

τkol =
ν

1/2
f

ε1/2
(2-13)

Length scale of largest vortices Λ Usually in the same order of magnitude as the object
which provides the energy input, i.e. the stirrer.

Λ =
1
3
dstirrer (2-14)

More on the characteristic time and length scales of both the particles and the turbulence
can be found in Section 3-6-3.

Very small crystals

These particles have a length scale much smaller than the length scale of the smallest turbu-
lence or Kolmogorov scale. The particles are also much smaller than their diffusion distance.
This is the path they travel due to their Brownian motion. A relative velocity between two
crystals can therefore only result from the Brownian motion being in the correct orienta-
tion by coincidence this is depicted in Figure 2-8. Brownian motion is the only collision
mechanism, as Brownian motion is independent of turbulence so is the collision and thus the
agglomeration rate.

Figure 2-8: Brownian motion as a collision mechanism

Small particles

These particles have a length scale smaller than the Kolmogorov scale. The largest part of
collisions in this size range is due to the viscous deformation of the smallest vortices. Due
to the viscous forces there will be radial shear gradients in the vortices. Because the crystals
are smaller than the length scale of these vortices they move within these profiles. Due to
difference in radius of these profiles crystals can overtake each other and thus collide. This
mechanism is called the shear mechanism and is depicted in Figure 2-9(a).

Another mechanism which is active in this size range is the inertia mechanism as depicted
in Figure 2-9(b). With increasing size of the crystals their inertia also becomes larger. A
measure for a particle’s inertia is the particle relaxation time τp. The particle relaxation
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(a) Shear mechanism (b) Inertia mechanism

Figure 2-9: The different kinds of collision mechanisms

time is a measure of how fast a particle reacts to a change in its environment. Due to their
inertia particles do not follow the vortices streamlines and can collide which each other. When
two crystals have the same size their velocities are correlated and a collision is not possible
thus only crystals with different sizes have a relative velocity and can collide by the inertia
mechanism. The influence of the inertia mechanism for particles smaller than the Kolmogorov
scale is usually small. The influence becomes larger with increasing crystal size and decreasing
particle- and fluid velocity correlation.

Large particles

These crystals are larger than the Kolmogorov scale but still smaller than the largest vortices.
These particles collide due the the aforementioned inertia mechanism. The main difference is
the correlation between the particle- and fluid velocity; this decreases strongly with increasing
crystal size.

2-6-2 Collision model

The different size ranges have implications on which model should be used for describing the
collision rate. Different models for particle-particle collision exist in literature e.g. (Abra-
hamson, 1975), (Saffman and Turner, 1956) and (Yuu, 1984). These models are only valid
either for crystal sizes below or above the Kolmogorov scale. The typical size range in the
adipic acid crystallization at BASF is 5 to 1000 µm according to Riemann and Gerstlauer
(Riemann and Gerstlauer, 2003). When the Kolmogorov scale is calculated with Equation
(2-12) in becomes clear that the crystal size in the adipic crystallization process are both
below and above the Kolmogorov scale. This is the reason why the collision of crystals in the
process cannot accurately be described by the above models.

Another disadvantage of the aforementioned models (except Yuu (Yuu, 1984)) is the fact
that their theoretical basis is laid in the classical kinetic theory of gases. One would expect
some uncertainties if such a model was to be used for modeling particles in a liquid. One
phenomena for which these models do not account is "added mass". In fluid mechanics this is
"the inertia added to a system because an accelerating or decelerating body must move some
volume of surrounding fluid as it moves through it" (Falkovich, 2011).
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More recently Kruis and Kuster (Kruis and Kusters, 1996) have developed a model for particle-
particle collisions in a liquid. It is also applicable for crystal sizes both below and above the
Kolmogorov scale. Due to these unique features this model will be used for modeling the
collision part of the agglomeration. More detailed information can be found in Section 3-6-3.

2-6-3 Cohesion model

After collision two particles should cohere to form a larger agglomerate. This cohesion step
is controlled by two competing processes (David et al., 1995):

1. Growth of a crystalline bridge between the mother crystals.

2. Turbulent velocity fluctuations on the opposite sides of the agglomerate leads to a shear
effect that might separate the two crystals.

The formation of a crystalline bridge requires good contact between the two crystals (David
et al., 1991b). The condition can only be met if the smaller crystal is big enough to puncture
the boundary layer which surrounds the larger crystal. If the smaller crystal is not large
enough it will not puncture the boundary layer but it will slide over it, thus not agglomerating.

In literature there are several models described for modeling the agglomeration efficiency. The
first model to be reviewed is the model of David et al. (David et al., 1991b). The authors
assume that the sticking probability P2 (agglomeration efficiency) is proportional to the non-
dissociation probability of the two crystals P3. It is also assumed inversely proportional to
the time tc needed to build up the bridge:

P2 ∼
P3

tc
. (2-15)

The time tc can be estimated by the ratio between the mass of the bridge and the mass flux
FM of solute from the solution:

tc =
ρcv
FM

(2-16)

in which ρc is the crystal density. FM depends on the growth rate G:

FM = ρcsG. (2-17)

Here s is the crystalline bridge surface. The volume of the crystalline bridge v can be calcu-
lated by:

v =
πS2

m

4

(

Sm

2
+ x

)

− πS
3
m

12
− πx2

(

Sn

2
− x

3

)

(2-18)

in which Sm is the size of the smallest crystal and x is a part of the crystalline bridge length
(David et al., 1991b).

The surface of the crystalline bridge can be calculated by:

s = πSm

(

Sm
2

+ x
)

(2-19)
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in which x can be calculated by:

x =
1
2

(

Sn −
√

S2
n − S2

m

)

(2-20)

in which Sn is the size of the largest crystal.

The time tc can be written as:

tc =
Sm
f(ρ)G

(2-21)

in which f(ρ) is a relative shape function of both crystals.

Agglomeration can only occur if both crystals are not separated by the flow before the bridge
exists. The source of this fluid shear is the velocity fluctuations. The probability of two points
a distance y from each other in a turbulent flow having the same fluctuating component of
velocity is expressed by the Eulerian autocorrelation function F1(y). As the crystals are
convected by the average flow the probability of them staying together is the Lagrangian
correlation function F2(y) (David et al., 1991b).

F2(y) = 1− y
2

λ2
e

(2-22)

The Lagrangian micro scale λe is difficult to estimate and accurate measurements are lacking
(David et al., 1991b). For these reasons it is assumed that the order of magnitude of the
Lagrangian micro scale is similar to the order of magnitude of the Taylor micro scale λg. The
Taylor micro scale can be approximated by (Costes and Courderc, 1988):

λg = u′
(

60ν
ε

)1/2

(2-23)

in which ǫ is the power input. The fluctuating average component of the local velocity u′ can
be approximated by Laufhütte and Mersmann (Laufhütte and Mersmann, 1985):

u′ =

√

√

√

√

√

3
∑

k=1
u2
k

3
= 0.3πNdstirrer. (2-24)

Summarizing the above the sticking probability can be approximated:

P2 ∼
[

1− (Sn + Sm)2

λ2
e

]

H(λe − Sn − Sm)
f(ρ)G
Sm
. (2-25)

The authors Baldyga et al. (Baldyga et al., 2003) suggested additional models for the ag-
glomeration efficiency.

ηAgglo = exp(−tc/tr) (2-26)

ηAgglo = (1 + kψtc/tr)−1 (2-27)
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In which tc is the cementation time required to build the crystalline bridge. Tr is the average
interaction time i.e. the time between two rupture events. The parameter kψ is a empirical
parameter. Equation (2-26) is based on theory for drop coalescence (Chester, 1991). The ex-
periments of Baldyga and Mersmann (Baldyga et al., 2003) showed the the agglomeration rate
is proportional to the growth rate. This proportionality can described better by (2-27). The
cementation time and average interaction time can be approximated by different expressions
which will be reviewed in this Section.

The cementation time can be approximated by considering a force balance of the particle
doublet in the turbulent flow (Ilievski and Livk, 2006).

tc ∝
γLm2

σcλcG
(2-28)

In which γ is the local shear rate, Lm is the mean diameter of the doublet, σc is the fracture
strength of the crystalline bridge, λc is the contact length between two crystals and G is the
growth rate.

Different expressions for the cementation time can be written, depending on the assumptions
one makes. If λc and σc are assumed constant one obtains (Lindenberg et al., 2007):

tc = kc
γLm2

G
(2-29)

in which kc accounts for the hydrodynamics, material properties and contact geometry. An-
other expression for tc is derived by Baldyga and Mersmann (Baldyga et al., 2003):

tc =
1

f(L, λ)

√

ρc(ε/ν)
0.5Lm

G
(2-30)

in which f(L, λ) is a shape function defined by David et al. (David et al., 1995) and ν is the
kinematic viscosity.

If one also distinguishes the type of contact between the two crystals additional expressions
can be found in literature (Ilievski and Livk, 2006):

tc = kc

√

ρν(ε/ν)0.5Lm

G
Point contact (2-31)

tc = kc
ρν(ε/ν)0.5Lm

G
Line contact (2-32)

in which ρ is the liquid density. For the average interaction time also multiple expressions
can be derived. Tt is interpreted as the lifetime of the small turbulent eddies (Baldyga et al.,
2003). This lifetime is equivalent to the Lagrangian time micro scale τl which can be expressed
as:

tt = τL ≈ Reλ0.5(ν/ε)0.5. (2-33)

Here, Reλ is the Taylor micro scale Reynolds number. The authors Hounslow et al. (Hounslow
et al., 2001) defined the average interaction time as:
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tt = τkol =
(

ν

ε

)0.5

(2-34)

in which τkol is the Kolmogorov time micro scale. According to Rielly and Marquis (Rielly
and Marquis, 2001) the lifetime of a turbulent eddy is given by:

tt =
C

3/4
µ√
2

k

ε
(2-35)

in which Cµ = 0.09 is a model constant in the k − ǫ turbulence model and k is the turbulent
kinetic energy which is calculated by (Yuu, 1993):

k = 1.5
(

εdimp
A′′

)2/3

(2-36)

in which A′′ has a value of 6.5 (Laufhütte and Mersmann, 1985).

Another model is the model of Riemann and Gerstlauer (Riemann and Gerstlauer, 2003). The
authors state that the formation of the crystalline bridge is counteracted by both mechanical
and fluid dynamical effects i.e. collisions with the stirrer and fluid shear. In this model it
is assumed that all the agglomeration events occur just after the crystals have passed the
stirrer. In this way the crystals will have one residence time to grow a crystalline bridge
without being disrupted. Thus this efficiency model only treats the disruption by fluid shear
forces. The fluid shear effect is caused by a difference in the turbulent velocity fluctuations on
the opposite sides of the agglomerate. The smaller the difference in the velocity fluctuations
the smaller the fluid shear forces.

The similarity of the velocity fluctuations can be described by a correlation function which is
a function of the distance d. The distance d is defined differently than in the work of David
et al. (David et al., 1991b). In this model the following expression is used:

d = 2
d1d2
d1 + d2

(2-37)

in which d1 and d2 are the diameters of the crystals considered. The aforementioned corre-
lation function can be approximated by an exponential function (Riemann and Gerstlauer,
2003). This assumption is only valid if the distance d is larger than the Kolmogorov scale.

ηAgglo = exp
(

−a5
d

Λ

)

(2-38)

In which a5 is a fitting factor for experimental data.

All the models considered fluid shear as the main disruptive force. The way fluid shear is
modeled differs between the models but they all use a correlation function for the similarity of
the fluctuating fluid velocity. All models except the model of Riemann and Gerstlauer (Rie-
mann and Gerstlauer, 2003) are dependent on the supersaturation or growth rate. According
to Mersmann (Mersmann, 2001) the agglomeration efficiency should be used as a fitting factor
due to the fact that the real mechanisms are complex and difficult to describe.

The model by Riemann and Gerstlauer (Riemann and Gerstlauer, 2003) is chosen for specific
reasons:
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2-7 Population balance equation 21

1. The efficiency model in combination with the collision kernel of Kruis and Kusters
(Kruis and Kusters, 1996) has already been successfully used to model small scale lab
reactors crystallizing adipic acid (Riemann and Gerstlauer, 2003).

2. Dependent on fluid shear (power input) and size-dependent (David et al., 1991b) while
still able to be fitted to experimental data.

3. Due to the fact that the agglomeration efficiency is not a direct function of supersatu-
ration the calculation of the total agglomeration rate will have a smaller computational
burden which can be beneficent for control purposes. This computational burden is
caused by the way that the agglomeration flux is calculated (see Section 3-5-3).

2-7 Population balance equation

The population balance equation was introduced by Hulbert and Katz (Hulburt and Katz,
1964) and was later formulated for crystallization processes by Randolph and Larson (Ran-
dolph and Larson, 1988). The PBE is a well-established mathematical framework for dynamic
modeling of particle size distribution in particulate systems (Ramkrishna, 2000).

In case of a crystallization process in which the crystallizer volume is constant and the process
includes crystal nucleation and growth the one-dimensional PBE can be written as (Mersmann
(2001)):

∂n

∂t
= −∂(Gn)

∂L
+B(L)−D(L) +

∑

i

V̇ini
VC
. (2-39)

A full derivation of this equation can be found in Appendix A.

In Equation (2-39) the term ∂n/∂t is the change of the number density with time. The first
term on the right side ∂(Gn)/∂L is the difference between the crystals growing in and out
of the size range dL. The terms B(L) and D(L) are the birth and death term respectively.
These terms account for phenomena like attrition, agglomeration, breakage and dissolution.

Let us consider the number of crystals within a small size interval between L and L + ∆L
and a differential time period, see Figure 2-10. Crystals smaller than size L can enter this
size interval by crystal growth but crystals with a size L to L+ ∆L can grow out of this size
interval.

Besides growth crystals can also enter or exit this size interval by other mechanisms. Abrasion,
agglomeration, dissolution and breakage are usually incooperated in a birth and a death term.

Crystals can also enter the size domain via the feed (only if the feed contains crystals). The
crystals can also exit the size domain via product removal. Within the PBE the hydrodynamic
terms like the feed and the product removal are usually combined. This is the last term on
the right hand side of equation (2-39).

An equation like Equation (2-39) can’t be solved analytical except for very simple cases
(Kumar and Ramkrishna, 1997). There are numerous numerical techniques to solve the
PBE each with their own merits and drawbacks. Numerical solution of an PBE is usually
accompanied with some problems like numerical diffusion and stability issues (Mesbah, 2010).
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Growth Growth

L L+dL

Death rate D

Product Removal Birth rate B

Feed

Figure 2-10: Change in the number of crystals per unit volume in the crystal size range L and
L+dL from Mersmann (Mersmann, 2001)

Numerical diffusion is a phenomena which can be explained by an example based on the
"advection equation" (Figure 2-11):

∂C

∂t
+ U
∂C

∂x
= 0. (2-40)

This equation describes a purely advective process without any diffusion. The scalar property
C is advected over distance x by the velocity U . The formal solution (blue) is that the initial
profile shifts over the x-axis without changing shape (Fitzpatrick, 2011). The numerical
solution (red) depicts the initial profile shifted over the x-axis by the same amount as the
formal solution but the solution is smeared i.e. the peak has lowered and widened. This
phenomena of smearing is called numerical diffusion, the solution behaves as if diffusion is
present where it physically is not.

In this work (numerical) stability designates that any numerical errors introduced at some
stage of the calculation are propagated in a mild fashion i.e. do not blow up in the subsequent
steps of the method (Spijker, 1998). An example of numerical instability in solving a PBE is
the calculation of negative number densities which are physically impossible.

S. Molenaar CONFIDENTIAL Master of Science Thesis



2-7 Population balance equation 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

t=0

t>0 (formal)

t>0 (numerical)

S
c
a
la

r 
p
ro

p
e

rt
y
 C

Distance x

Figure 2-11: Advection equation; initial profile, formal and numerical solution

These problems are usually caused by the convective nature of the PBE. In the case of
steep moving fronts and/or sharp discontinuities in the solution these problems become even
more pronounced (Mesbah, 2010). These complexities have awakened the attention of many
researchers to develop specialized algorithms. A short review of the different solving methods
is given below. It does not act as a complete overview of all methods available, it is merely
an introduction for the most commonly used schemes. For a complete review of up to date
numerical schemes for the PBE the reader should consult (Mesbah, 2010), (Costa et al., 2007)
or (Ramkrishna, 2000). In this report five categories of solving methods are distinguished:

• Method of moments

• Finite difference methods

• Discretization techniques

• Method of weighted residuals

• Monte Carlo simulation

2-7-1 Method of moments

The method of moments was the first numerical method for the solution of a PBE (Hulburt
and Katz, 1964). This method has been widely used because of the efficiency and accuracy
when coupled with CFD (Su et al., 2009). The PBE is transformed into a system of ordinary
differential equations. These ordinary differential equations give the solution for the moments
of the distribution. A clear disadvantage is the fact that it is not possible to retrieve the full
distribution from the moments due to the fact that this problem is ill-conditioned (Randolph
and Larson, 1988). According to Mesbah (Mesbah, 2010) another disadvantage is the fact
that for some combinations of crystallization mechanisms (e.g. agglomeration/breakage) it is
impossible to transform the PBE to closed system of moment equations. For more detailed
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information the reader is referred to (Hulburt and Katz, 1964) and (Randolph and Larson,
1988).

2-7-2 Finite difference methods

According to Carnahan and Luther (Carnahan and Luther, 1990) finite difference methods
are the most popular methods to solve a PDE. When a finite difference method is applied
to a PBE, the partial differential terms of the PBE are approximated by finite differences.
This is done by discretizing the size domain between the minimum and the maximum crystal
sizes (Lee et al., 1999). According to Mesbah (Mesbah, 2010) finite difference methods may
not adequately cope with the hyperbolic nature of the PBE. This could result in numerical
diffusion which causes the broadening of sharp discontinuities. Another drawback of these
solution methods is the fact that they conserve mass and numbers only if the number of grid
cells is infinite (Patankar, 1980). A high or infinite number of grid cells translates into a high
computational burden. The above drawbacks make finite difference methods less attractive
for solving a PBE in a crystallization process.

2-7-3 Discretization techniques

This category comprises of both discretized population balances and finite volume methods.
In the discretized population balance methods the spatial domain is divided into a finite
number of grid cells. The continuous PBE is converted into a series of discrete equations by
use of the mean-value theorem . This method has been used extensively in literature (David
et al., 1991b), (Lister et al., 1995) and (David et al., 2003). Although this technique allows
for the determination of the desired characteristics the complete construction of the entire
distribution is subject to errors (Mesbah, 2010). Another drawback of this method is the fact
that it often exhibits oscillatory behavior which results in negative number densities but also
numerical diffusion at discontinuous fronts (Mesbah, 2010).

Recently High Resolution Finite Volume Methods (HR-FVM) used originally for gas dynam-
ics are also used for solving the PBE. These methods are the state-of-the-art in aerodynamics,
astrophysics, detonation waves and related fields where shock waves occur (LeVeque, 2004).
These HR-FVM have been specifically developed to provide high accuracy while avoiding
numerical diffusion and numerical dispersion (non physical oscillations) associated with other
finite difference and finite volume methods (Gunawan et al., 2004). An advantage of these
HR-FVM is that they are general purpose; the simulation code can be quickly modified to
solve a particular problem of interest (Gunawan et al., 2004). Recently Qamar and War-
necke (Qamar and Warnecke, 2007) used HR-FVM with a flux limiter to successfully model
crystallization processes including nucleation, growth and agglomeration.

2-7-4 Method of weighted residuals

The weighted residuals comprise of methods that retrieve the distribution by approximating
the solution with a series of trial functions, whose coefficients are to be determined so that
their sum will satisfy the PBE (Costa et al., 2007). Within the method of weighted residuals
two different classes can be distinguished:
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1. Weighted residual methods with global function

2. Finite element methods

The weighted residuals method with global functions is unable to capture the features of
an arbitrarily shaped distribution. This is especially true if the distribution exhibits sharp
changes and discontinuities (Rigopoulos and Jones, 2003). The trial functions can be tailored
to accommodate a resulting distribution if knowledge about the shape of the resulting distri-
bution is available a priori. According to Costa et al. (Costa et al., 2007) the method will in
this converge and might even become computationally attractive.

The finite element methods on the other hand are capable of capturing sharp discontinuities.
This is due to the fact that the solution is approximated with piecewise low-order polynomials
that are locally nonzero (Rigopoulos and Jones, 2003). Thus their advantages are the accurate
reconstruction of the distribution and their flexibility to cope with any formulation of the PBE.
The drawbacks are the fact that it cannot cope with discontinuous distributions and steep
fronts (Mesbah, 2010).

2-7-5 Monte Carlo methods

According to Gooch and Hounslow (van Peborgh Gooch and Hounslow, 1996) the Monte
Carlo (MC) method is an alternative to posing and solving PBE. MC simulations were
first applied to particulate processes by Spielman and Levenspiel (Spielman and Levenspiel,
1965). They studied the influence of coalescence on reactions in the dispersed phase of two-
phase systems. Shah et al. (Shah et al., 1977) developed a general simulation for particulate
processes.

Whenever the Crystal Size Distribution (CSD) is affected by many factors discretizing and
numerically solving a PBE becomes increasingly arduous. Such complex processes lend them-
selves to study by MC simulations, the intrinsic simplicity of which allows the inclusion of
several mechanisms and several internal coordinates in the problem (van Peborgh Gooch and
Hounslow, 1996) and (Lin et al., 2002).

MC uses probabilistic tools to sample a finite subset of a system in order to infer its properties.
Thus instead of discretizing the PBE and then numerically integrating it, a MC simulation
simulates the evolution of the system as a series of particulate events (Shah et al., 1977).
Each event may influence one or more particles, thereby altering the property distribution
and the system behavior as a whole. Instead of expressions coupled to the PBE the particulate
phenomena (kinetics) are described in terms of their transition probabilities usually referred
to as frequencies.

Other advantages are the possibility to study finite-size effects, spatial correlations and lo-
cal fluctuations. This is something that cannot be done by continuum mean field treatment
(Smith and Matsoukas, 1998). A drawback of MC is that the method is typically computa-
tionally expensive.
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Chapter 3

Modeling approach

3-1 Introduction

The modeling framework used in this thesis is depicted in Figure 3-1. When modeling a
crystallization process there are two distinct phases one should model; the continuous liquid
phase and the dispersed solid phase. The continuous phase is usually modeled using mass and
energy balances. The dispersed solid phase is modeled using a Population Balance Equation
(PBE). These two phases are connected by the crystallization kinetics i.e. nucleation, growth
and agglomeration.

This Chapter starts with a Section explaining the process which is modeled. The subsequent
Section discusses the modeling purpose. Based on the modeling purpose several assumptions
are done which are reviewed in Section 3-4. Section 3-5 discusses the modeling of the dispersed
solid phase. The crystallization kinetics are reviewed in Section 3-6. The modeling of the
continuous liquid phase is discussed in Section 3-7. Section 3-8 gives an overview of the
modeling framework.

Figure 3-1: Modeling framework, the continuous liquid phase and dispersed solid phase are
connected trough the kinetics
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3-2 Process description

The final step in the production process of adipic acid is the crystallization from solution. At
BASF Ludwigshafen this is done in a so-called Draft Tube Baffle (DTB) crystallizer. This
type of crystallizer allows for larger crystals to grow and small crystals to be dissolved in
the recirculation loop. In the crystallizer there is a slow moving impeller which thrusts the
solution upwards. Small crystals move upwards to the solution surface where there is the
highest supersaturation and they grow out. At a certain crystal size the gravitational force
on the crystal is larger than the impellers thrust and thus this crystal will settle in the bottom
where it is removed as product.

The feed (S02) stream in Figure 3-2 enters the crystallizer and contains a solution of adipic
acid and water, it does not contain any crystals.

The DTB crystallizer is operated at adiabatic evaporative cooling i.e. the solvent is evaporated
by the use of vacuum, this creates the supersaturation. This vacuum is created using a steam
ejector. A steam ejector makes use of the venturi effect to create an under pressure. For high
vacuum multiple ejectors are needed. This evaporation of the solvent creates a vapor flow
(S04) which is removed from the crystallizer.

The product stream (S05) is split into two separate streams. One of these streams is heated by
the heat exchanger and is recirculated into the crystallizer (S06). The other stream is the final
product stream (S07) which is redirected to subsequent process steps such as centrifugation
and drying.

The process flow diagram of the crystallizer in use at BASF is depicted in Figure 3-2. An
overview of the normal operating conditions is given in Table 3-1.

Table 3-1: Normal operating conditions for the DTB crystallizer

Operating condition Sensor Value Units

Feed flow rate F1229 18 m3/hr

Recirculation flow rate F1501 60 m3/hr

Product flow rate F1331 16 m3/hr

Crystallizer temperature T1502 60 C◦

Product temperature T1503 60 C◦

Recirculation temperature T1501 65 C◦

Crystallizer pressure P1500 0.2 bar

Crystallizer level L1501 74 %
34 m3
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Figure 3-2: Process flow diagram of the DTB crystallizer at BASF Ludwigshafen (flow sensors
S, temperature sensors T and pressure sensors P )

3-3 Modeling purpose

The intended use of the model dictates the assumptions one makes and the equations one
uses. The intended use of the model developed in this thesis is model-based control. From a
control point of view, the main criteria which should be controlled are the properties of the
produced crystals i.e. size distribution and mean size (Moldovanyi and Lakatos, 2005). As
mentioned earlier these properties greatly influence the downstream processing of the crystal
product.

In model-based control applications, empirical power-law functions are the most commonly
used kinetic relationships to model the total nucleation rate and the size-independent growth
rate (Braatz and Hasebe, 2002). In this thesis empirical functions are used for both the
growth and the secondary nucleation rate. More information can be found in Sections 3-6-1
and 3-6-2 respectively.
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3-4 Model framework assumptions

In order to restrict the complexity of the model the following simplifying assumptions are
made:

• crystallizer can be modeled by a well-mixed single compartment

• constant temperatures of feed, output, recirculation and product stream;

• a crystal-free feed stream;

• constant crystallization volume;

• equal liquid fractions of the output, recirculation and product stream;

• equal number densities of the output, recirculation and product stream;

• negligible power input by the impeller;

• negligible heat of crystallization;

• negligible heat losses to the environment;

• temperature of the output stream is equal to the crystallizer temperature;

• the solid phase is pure and single-component;

• solute and crystal-free vapor stream;

• constant material properties during the isothermal operation;

• negligible primary nucleation and breakage;

• formation of nuclei of infinitesimal size;

• size-independent growth of crystals;

• the attrition caused by the recirculation pump is negligible;
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3-5 Dispersed solid phase

3-5-1 Population balance equation modeling

As discussed in Section 2-7 there are different methods for solving a PBE. Each method has
its advantages and drawbacks. The method chosen for this model is a high order finite volume
method with flux limiter. This method is capable of describing sharp discontinuities and steep
moving fronts (Qamar and Warnecke, 2007). Model-based control strategies require that the
numerical solutions should be obtainable in a time-scale commensurate with the process time
scale (Kumar and Ramkrishna, 1997). The computational burden is relatively low compared
to the other types of solution methods (Mesbah, 2010). The aforementioned characteristics
makes the high order finite volume method with flux limiter best suited for the solution of
the PBE in on line control applications (Mesbah, 2010). In the next Section the underlying
notion of the high order finite volume method is reviewed.

3-5-2 High order finite volume method with flux limiter

The finite volume methods involve discretization of the spatial variable domain and the use of
piecewise functions to approximate derivatives with respect to the spatial variable (Mesbah,
2010). The procedure results in a Ordinary Differential Equation (ODE) for each grid point.
This system of ODE’s can be solved by any standard ODE solver (Qamar, 2008).

This procedure is explained below for a relatively simple case. The following equation is a
PBE which only accounts for crystal growth (Qamar, 2008):

∂n

∂t
= −∂ [Gn]

∂L
. (3-1)

The spatial variable L is divided into a number of subintervals Ωi with i = 1, ..., N and Ωi is
bounded by the cell boundaries (Li−1/2, Li+1/2) this is depicted in Figure 3-3(a).

The cell centered finite-volume discretization of Equation (3-1) results in:
∫

Ωi

∂ni
∂t

= −
[

(Gn)i+1/2 − (Gn)i+1/2

]

. (3-2)

The average value of the number density in each cell Ωi is defined as:

ni =
1

∆L

∫

Ωi

ndL. (3-3)

Equation (3-2) can then be written as:

∂ni
∂t

= −

[

(Gn)i+1/2 − (Gn)i+1/2

]

∆L
. (3-4)

Equation (3-4) shows that both the values for growth and the number density are required
at the cell-face. For growth these values can be directly obtained from the kinetics. The
estimation of the number density at the cell-face poses a difficulty as only the values at
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the cell centers are known. According to Qamar (Qamar, 2008) the way the cell-face fluxes
(Gn)i±1/2 are approximated mainly determines the accuracy of a finite volume method.

The cell-face fluxes can be approximated by a first order upwind scheme:

(Gn)i+1/2 = (Gn)i, (Gn)i−1/2 = (Gn)i−1. (3-5)

According to Mesbah (Mesbah, 2010) this scheme does not exhibit instability but it does suffer
from numerical diffusion unless a fine grid mesh is used thus increasing the computational
burden. There are numerical schemes that exhibit less numerical diffusion; the higher order
linear or quadratic interpolation schemes are such schemes. Qamar (Qamar, 2008) uses a
piecewise polynomial interpolation formula:

(Gn)i+1/2 = (Gn)i +
1 + k

4
((Gn)i+1 − (Gn)1) +

1− k
4

((Gn)i − (Gn)i−1),

(Gn)i−1/2 = (Gn)i−1 +
1 + k

4
((Gn)i − (Gn)i−1) +

1− k
4

((Gn)i−1 − (Gn)i−2). (3-6)

In Equation (3-6) k ∈ [−1, 1] and for different values of k it will result in a weighted blend
between the central and the fully one-sided scheme. Unfortunately this high order scheme
suffers from under- and overshoot and lack of positivity in regions of truly strong variations
(Qamar, 2008). This drawback can be relieved by implementing a flux limiter.

A flux limiter provides a way to achieve positivity of the solution. This limiting function
defines a high order accurate scheme in smooth regions of the solution where no wiggles will
arise. When there is a sharp gradient in the solution the limiter prevents wiggles and enforces
positivity. The limiter function is a switch between a high order and a first order scheme
(Qamar, 2008).

With the flux limiter implemented, Equation (3-6) can be written as:

(Gn)i+1/2 = (Gn)i +
1
2

(

1− k
2

+
1 + k

2
ri+1/2

)

(

(Gn)i − (Gn)i−1

)

. (3-7)

In which ri+1/2 is the flux limiter which will be discussed in the next section.

This section showed the steps to discretize the PBE for a simple test case and reviewed the
underlying notion of the high order finite volume method with flux limiter. In the next Section
the derivation of the actual discretized process PBE is given.
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Li-1 Li Li+1

Li-1/2 Li+1/2

(a) Regular cell centered finite volume grid (Qamar, 2008)

Li-1 Li Li+1

Li-1/2 Li+1/2

(b) Geometrical cell centered finite volume grid

Figure 3-3: The different kinds of size discretization grids

3-5-3 Process model PBE

Size domain discretization

As mentioned in the previous chapter when numerically solving the PBE the first step is to
discretize the size-domain. For this discretization two types of grids are possible.

Regular grid (Figure 3-3(a)) If N is the total number of grid cells, a grid of [Lmin, Lmax]
is denoted by (Li−1/2)i∈{1,...,N+1}. In which Lmin is the lower bound and Lmax is the
upper bound value of size domain. The grid center and boundary values are given by:

Li =
(

Li−1/2 + Li+1/2

2
,

)

L1/2 = Lmin, LN+1/2 = Lmax,

Li+1/2 = Lmin + i∆Li, for i=1,2,...N-1

∆Li = Li+1/2 − Li−1/2. (3-8)

Geometrical grid (Figure 3-3(b)) In some cases it is useful to use a geometric grid, this
type of grid can capture initial profiles properly. The reason for this is that the initial
step sizes are much smaller then the final step size. A typical geometric grid is given
by:

Li+1/2 = Lmin + 2(i−N)/q(Lmax − Lmin). (3-9)

Discretizing the PBE

The most important equation in the model is the PBE given by equation (2-39). Based on
the assumptions stated in Section 3-4 the PBE can be written as:

∂n(t, L)
∂t

+
∂[G(t, L)n(t, L)]

∂L
=
V̇recn(t, L)
V

− V̇outn(t, L)
V

+K±agg(t, L) (3-10)
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In which n(t, L) is the length based number density, G(t, L) is the crystal growth and
K±agg(t, L) is the agglomeration term. The agglomeration term is defined as:

K±agg(t, L) =
1
2

x
∫

0

β(t, x− x′, x′)f(t, x− x′)f(t, x′)dx′ −
∞
∫

0

β(t, x, x′)f(t, x)f(t, x′)dx′

(3-11)

in which x is the crystal volume, the first term of Equation (3-11) accounts for the formation
of particles with a volume x resulting from the merging of two particles with a volume x′

and x − x′ respectively. The second term is a death term describing the loss of particles of
volumes x by agglomeration with other particles of any size. The agglomeration coefficient
βagg describes the rate at which crystals of volume x and x′ produce a particle of volume
x+ x′. This is a non-negative and symmetrical function.

In order to apply the finite volume scheme, Equation (3-10) should be discretized. Instead
of discretizing the original PBE the PBE is first multiplied by the crystal volume kvL3. This
multiplication results in a conservative finite volume formulation. The authors Filbet and
Laurencot (Filbet and Laurencot, 2004) have rewritten the PBE for aggregation problems
in a form which can be readily solved by a finite volume scheme. This rewritten PBE is
also a conservative finite volume discretization. This scheme was thoroughly validated from
a theoretical and numerical point of view (Qamar, 2008). Thus by discretizing the PBE
multiplied by the crystal volume the agglomeration flux can conveniently and accurately be
implemented.

kvL
3∂n(t, L)
∂t

+ kvL3∂[G(t, L)n(t, L)]
∂L

= kvL
3 V̇recn(t, L)

V
− kvL3 V̇outn(t, L)

V
+ ...

kvL
3Qagg(t, L). (3-12)

The second term on the left hand side can be rewritten by using the product rule for deriva-
tives. For ñ(t, L) = kvL3n(t, L) equation (3-12) can be rewritten as:

∂ñ(t, L)
∂t

= −∂[G(t, L)ñ(t, L)]
∂L

+ 3
G(t, L)ñ(t, L)

L
+
V̇recñ(t, L)
V

− ...

V̇prodñ(t, L)
V

−
∂F̃ ′agg(t, L)

∂L
. (3-13)

Equation (3-13) is integrated over the control volume Ωi = [Li−1/2, Li+1/2].
∫

Ωi

∂ñ(t, L)
∂t

= −
∫

Ωi

∂[G(t, L)ñ(t, L)]
∂L

+ 3
∫

Ωi

G(t, L)ñ(t, L)
L

+
∫

Ωi

V̇recñ(t, L)
V

− ...
∫

Ωi

V̇prodñ(t, L)
V

−
∫

Ωi

∂F̃ ′agg(t, L)

∂L
. (3-14)

If ñi = ñi(t) equation (3-14) becomes:

∂ñi
∂t

= − 1
∆L

[(Gñi)i+1/2− (Gñi)i−1/2]− 1
∆L

[Fi+1/2−Fi−1/2] + 3
Gi+1/2ñi

Li
+
V̇recñi
V
− V̇prodñi
V

(3-15)
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in which the fluxes for growth and agglomeration (from Filbet and Laurencot (Filbet and
Laurencot, 2004)) can be calculated by:

(Gñ)i+1/2 = Gi+1/2

(

ñi +
∆Li

2∆Li−1/2
φ(r+i )(ñi+1 − ñi)

)

, (3-16)

(F )i+1/2 = 3kvL2







i
∑

k=0

∆xkñk







N
∑

j=αi,k

∫

Ωj

β(x′, xk)
x′

dx′ñj +

xαi,k−1/2
∫

xi+1/2−xk

β(x′, xk)
x′

dx′ñαi,k−1
















.

(3-17)

In which φ(r+i ) is the flux limiter, it is defined as:

φ(r+i ) =

∣

∣ri
+
∣

∣+ ri+

1 + |ri+|
, (3-18)

ri
+ =
ñi − ñi−1 + ε
ñi+1 − ñi + ε

. (3-19)

In the above equation ri+ is called the upwind-ratio of two consecutive solution gradients and
is always evaluated with a small value for ǫ = 1e−10 to avoid a division by zero.

3-6 Crystallization kinetics

3-6-1 Nucleation modeling

Secondary nucleation model

Secondary nucleation is the process where nuclei are formed in the presence of crystals. In
reality crystals are born over a distribution of sizes and exhibit a size dependent growth rate
and growth rate dispersion (Ó Meadhra, 1995). In modeling it is usually assumed that all
crystals are born at a near-zero size and all grow with the same growth rate. The reason
for this assumption is that the required information about the phenomena present are not
available.

A great deal of work has been dedicated to empirical modeling of contact nucleation in a
variety of crystallization systems (Mesbah, 2010). Most of these correlations were related
to properties of the crystallizing solution, the mechanical agitation in the crystallizer and
a property representing the Crystal Size Distribution (CSD). Due to the fact that these
correlations are empirical they cannot be used for a predictive model but they can be used
for a descriptive model as in this thesis.

As mentioned in Section 2-3-2 secondary nucleation can occur by several mechanisms. Accord-
ing to Mersmann et al. (Mersmann et al., 1988) contact nucleation, i.e. attrition dominates
in industrial solution crystallization. Attrition is a two-step process (Mesbah, 2010):

1. Generation of attrition fragments

2. Growth of the attrition fragments
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Figure 3-4: Streamlines for particles above and below the critical Stokes number

The generation of attrition fragments is mainly by crystal-crystal and crystal-hardware colli-
sions. According to Gahn and Mersmann (Gahn and Mersmann, 1997) the crystal hardware
collisions are the most dominant collisions due to the fact that their occurrence and their
kinetic impact energy are quite high.

In this thesis the following expression for contact nucleation is used (Ruiter, 2009):

B0 = a1
N
∑

a2

niL
3
i∆Li. (3-20)

In which a1 is the nucleation parameter which is usually deduced from experimental data,
and a2 is the lower boundary for integration.

This lower boundary for integration is a result of the fact that particles with small inertia
e.g. small mass and/or velocity will not contribute to crystal impeller collisions (Wolf, 2007).
The physical reason behind this is inertial deposition. This is the phenomenon that particles
with low inertia tend to follow the stream over an object (e.g. stirrer blade) and thus will
not collide. Particles with higher inertia will follow the stream but can imping on the object
because of their inertia. This process is depicted in Figure 3-4.
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3-6-2 Crystal growth model

As mentioned in Section 2-4 crystal growth is the outgrowth of nuclei by the addition of solute
molecules from the supersaturated solution. It is a difficult process to comprehend; that is
why in modeling usually simplified models are used. In this work a simplified relation is used
to express the growth rate.

G = a3

(

c− csat
csat

)a4

= a3σa4 (3-21)

It is a function of driving force i.e. supersaturation (relative) σ and two fitting factors a1 and
a2. The factor a1 is the growth rate constant and a2 is the growth order. The growth rate
order a2 has a value of one for diffusion limited growth and a value larger than 1 for surface
limited growth. This expression was taken from Ó Meadhra (Ó Meadhra, 1995).

3-6-3 Agglomeration model

As discussed earlier in section 2-6 the agglomeration model consists of two parts, the collision
kernel and the agglomeration efficiency. For this model the collision kernel of Kruis and
Kusters (Kruis and Kusters, 1996) is chosen.

Collision kernel

The advantages of the Kruis and Kusters (Kruis and Kusters, 1996) collision kernel are:

• Capable of predicting collision rates for particles both below and above the Kolmogorov
scale

• Applicable to liquid systems (e.g. inclusion of virtual mass)

For a complete derivation of the model the reader is referred to the original paper of Kruis
and Kusters (Kruis and Kusters, 1996). What follows below is the derivation specific for the
adipic acid crystallization case. The collision rate of particles with sizes dP and d′P can be
described by:

βColl(dP , d′P ) =
(

8π
3

)1/2(dP + d′P
2

)2√

3w2
i (3-22)

in which wi is the one dimensional relative velocity between particles. This relative velocity
can be expressed by:

w2
i =

(

v2f (1− b)2 γ

γ − 1

)

∗ ...
(

(ΘP1 + ΘP2)2 − 4ΘP1ΘP2[(1 + ΘP1 + ΘP2)/((1 + ΘP1)(1 + ΘP2))]1/2

ΘP1 + ΘP2

)

∗ ...
(

1
(1 + ΘP1)(1 + ΘP1)

− 1
(1 + γΘP1)(1 + γΘP1)

)

(3-23)
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in which vf is the root mean square fluid velocity, b is the added mass coefficient, γ is a
correction constant for the small particle velocity correlation and Θ is dimensionless particle
relaxation time.

The root mean square velocity vf can in the case of homogeneous turbulence set equal to the
isotropic fluctuation velocity uf .

v2f = u2
f,iso = C ∗ (εΛ)2/3 (3-24)

in which C is a prefactor which has the value C = 2 according to Riemann and Gerstlauer
(Riemann and Gerstlauer, 2003) and Λ is the integral length scale which is in the same order
of magnitude as the object responsible for the energy input i.e. the stirrer (Riemann and
Gerstlauer, 2003).

Λ =
1
3
dstirrer (3-25)

The added mass coefficient b can be calculated by:

b =
3ρf

2ρP + ρf
(3-26)

in which ρf and ρp are the density of the fluid and the particle respectively.

The correction factor γ can be evaluated by:

γ = 2
(

TL
τL

)

. (3-27)

In this equation TL is the Lagrange time scale and τL is the Lagrange micro time scale. They
can be calculated

TL = 0.4
Λ
√

v2f

, (3-28)

τL =

(

2
v2f
ε3/2
ν

1/2
f

)1/2

. (3-29)

The dimensionless particle relaxation time ΘP is defined as:

ΘPi =
τP
TL
. (3-30)

The particle relaxation time can be calculated by:

τP =
ρPd

2
P

18µ
. (3-31)

With Equations (3-22) to (3-31) it is possible to calculate the collision rate of crystals within
the size range under investigation. For an example from literature (Kruis and Kusters, 1996)
the collision rate is depicted in Figure 3-5. The physical properties for this example are given
in Table 3-2.

From Figure 3-5 it can be seen that for small particles the collision rate decreases tremen-
dously. This is due to the fact that small particles like this can only collide by their random
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Property Symbol Value Units

Particle density ρp 2000 kg/m3

Particle density ρf 1000 kg/m3

Fluid dynamic viscosity µf 1e−3 Ns/m2

Specific mean power input ǫ 5 W/kg
Root mean square velocity ν2

f 270 −
Correction factor γ 0.1 m/s

Table 3-2: Physical properties for the adipic acid example from Kruis and Kusters (Kruis and
Kusters, 1996)
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Figure 3-5: The collision rate for a solid-liquid system according to Kruis and Kusters (Kruis
and Kusters, 1996) (particle diameters dP1/dP2)

Brownian motion. When the particle size increases the particles can collide by both the shear
and inertia mechanism as stated in Section 2-6. The collisions by these mechanisms occur
much more frequently (Riemann and Gerstlauer, 2003). On the diagonal a small indent is
seen. This small decrease in collision frequency has to do with the fact that particles with the
same size (within the Kolmogorov range +/- 20µm) have correlated velocities. This means
that the crystals will follow the same fluid stream lines and will collide less frequent. For
similar sized particles with a larger diameter this correlation deteriorates and so does the
decreases in the collision rate.

In order to calculate the number of agglomeration events, the agglomeration efficiency should
be calculated.

Agglomeration efficiency

As mentioned before the agglomeration efficiency can be defined by:
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Figure 3-6: The agglomeration efficiency for the example case (particle diameters dP1/dP2)

ηAgglo =
Number of agglomeration events

Number of collisions
. (3-32)

In this report the expression for agglomeration efficiency of Riemann and Gerstlauer (Riemann
and Gerstlauer, 2003) is used:

ηAgglo(d) = exp
(

−a5
d

Λ

)

(3-33)

in which a5 is a parameter which is extracted from experimental data. The distance d can be
calculated by:

d = 2
dPd

′
P

dP + d′P
(3-34)

where dP and d′P are the aforementioned particle diameters.

Agglomeration rate

As mentioned before, agglomeration is a two step process. When the collision rate is multiplied
with the agglomeration efficiency the result is the total agglomeration rate. For modeling
purposes a parameter a6 is added to fit the model data to experimental data. This results in:

βAgglo = a6βCollηAgglo. (3-35)

In Figure 3-7 the total agglomeration rate of the example case is depicted. It is clear that
the agglomeration rate of crystals with the same size is small. Small crystals agglomerate
with large crystals much easier, this is also a result of the experiments of David et al. (David
et al., 1991a).
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Figure 3-7: The agglomeration rate for the example case (particle diameters dP1/dP2)

3-7 Continuous liquid phase

The continuous liquid phase in a crystallizer consists of both solvent and solute. In this thesis
the continuous liquid phase is modeled on the basis of conservation laws i.e. mass and energy
balances. There are four volumetric flow rates in the crystallizer model:

1. The feed flow rate [m3/s]

2. The product flow rate [m3/s]

3. The recirculation flow rate [m3/s]

4. The vapor flow rate [m3/s]

Of these four flow rates the product and recirculation flow rate are known while the feed and
vapor flow rate are unknown. Making use of the total mass balance and the energy balance a
system of algebraic equations can be derived which can be solved for the unknown flow rates.

As will be shown, both the total mass balance, the energy balance and the concentration
balance contain a term dε/dt. This term describes the evolution of the liquid fraction with
time. Based on the PBE an expression for this term can be derived:

dε

dt
= −3kv

∞
∫

0

GnL2dL+
V̇out
VC

(1− ε)− V̇rec
VC

(1− ε)− kv
∞
∫

0

L3KaggdL (3-36)

With the assumptions stated in Section 3-4 the total mass balance can be written as:

dε

dt
[ρliq − ρcrys]V = V̇feedρliq − V̇out [ερliq + (1− ε)ρcrys] + ...

V̇rec [ερliq + (1− ε)ρcrys]− V̇vapρvap. (3-37)
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The energy balance can be rewritten as:

dε

dt
[VCρliqcp,liqT − VCρcryscp,crysT ] = V̇feedρliqcp,liqTfeed + ...

V̇rec[ερliqcp,liqTrec + (1− ε)ρcryscp,crysTrec]− ...
V̇out[ερliqcp,liqT + (1− ε)ρcryscp,crysT ]− ...
V̇vapρvaphevap. (3-38)

Equations (3-36), (3-37) and (3-38) can be combined to form a system of algebraic equations
with an equal number of equations and unknowns, thus it is solvable. This results in the
calculation of both the feed and the vapor flow rate.

As discussed before, the driving force of crystallization i.e. supersaturation is usually ex-
pressed as equation (2-4):

∆c = c− c∗

in which c∗ is the supersaturation concentration, which in this model is only a function of
the known crystallizer temperature. The actual solute concentration c should be calculated
and evolves with time. An ODE is required describing the change of concentration with time.
The basis of this ODE is the concentration balance. Simplified with the above assumptions
it can be rewritten as:

dc

dt
=

1
V ερliq

[

V̇feedρliqcfeed − V̇out [ερliqc+ (1− ε)ρcrys] + V̇rec [ερliqc+ (1− ε)ρcrys]−

dε

dt
[ρliqc− ρcrys]V

]

. (3-39)

Equations (3-36) to (3-39) comprise a system of equations which can be solved resulting in
the feed flow rate, the vapor flow rate and the concentration (at time t). Thus defining the
complete continuous liquid phase. For the complete derivations of equations (3-37) to (3-39)
the reader is directed to Appendix B.
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3-8 Modeling framework

According to Mesbah (Mesbah, 2010) the crystallization kinetics relate the dynamic evolution
of crystal population (PBE) to the state variables of the continuous phase.

In this model framework the solute concentration is calculated using both mass and energy
balances. The solute concentration determines the supersaturation which is the driving force
for crystallization kinetics. The crystallization kinetics are the cause of CSD evolution and
therefore link the dispersed solid phase PBE to the continuous liquid phase.

For easy reproduction of the model described in this thesis an overview of the complete model
framework is given in this Section.

Dispersed solid phase

N times an ODE describing the PBE in every grid cell (3-15):

∂ñi
∂t

= − 1
∆L

[(Gñi)i+1/2− (Gñi)i−1/2]− 1
∆L

[Fi+1/2−Fi−1/2] + 3
Gi+1/2ñi

Li
+
V̇recñi
V
− V̇prodñi
V
.

Crystallization kinetics

Algebraic equation describing the secondary nucleation rate (3-20):

B0 = a1
N
∑

a2

niL
3
i∆Li.

Algebraic equation describing the growth rate (3-21):

G = a3

(

C − Csat
Csat

)a4

= a3σa4 .

Algebraic equation describing the agglomeration rate (3-35):

βAgglo = a6βCollηAgglo.

Continuous liquid phase

An algebraic system of equations by combining equation (3-37), (3-38) and (3-39). The
solution to this algebraic system of equations will yield both the feed and the vapor flow rate.

dε

dt
[ρliq − ρcrys]V = V̇feedρliq − V̇out [ερliq + (1− ε)ρcrys] + ...

V̇rec [ερliq + (1− ε)ρcrys]− V̇vapρvap
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dε

dt
[VCρliqcp,liqT − VCρcryscp,crysT ] = V̇feedρliqcp,liqTfeed + ...

V̇rec[ερliqcp,liqTrec + (1− ε)ρcryscp,crysTrec]− ...
V̇out[ερliqcp,liqT + (1− ε)ρcryscp,crysT ]− ...
V̇vapρvaphevap

dε

dt
= −3kv

∞
∫

0

GnL2dL+
V̇out
VC

(1− ε)− V̇rec
VC

(1− ε)− kv
∞
∫

0

L3KaggdL

ODE describing the solute concentration at time t (3-39):

dc

dt
=

1
V ερliq

[

V̇feedρliqcfeed − V̇out [ερliqc+ (1− ε)ρcrys] + V̇rec [ερliqc+ (1− ε)ρcrys]−

dε

dt
[ρliqc− ρcrys]V

]

.

3-8-1 Matlab implementation

The complete model framework is implemented in Matlab. The set of ODE’s is solved using a
built-in ODE solver. The system of discretized PBE’s is a stiff system of differential equations.
Although there is no formal definition of "stiffness" in literature it can be defined as a problem
which contains widely varying timescales i.e. some components of the solution decay much
more rapidly than others.

The problem with "stiff" systems lays within the stability of the numerical method. In lit-
erature the stability of a numerical method is assessed using the stability region (Shampine,
2003). This is a plot of the area in which the product of the time step with the eigenvalue of
the equation result in a stable numerical integration. Explicit numerical integration schemes
like Matlab’s ODE45 solver (Runge-Kutta) have a finite stability region, depicted as the in-
terior of the curves in Figure 3-8(a). Explicit numerical integration schemes such as Matlab’s
ODE23s are so called "A-stable" (Shampine, 2003) i.e. the stability region encompasses the
whole left plane of the coordinate system (first and second order backwards differentiation).
This is depicted in Figure 3-8(c), in this figure the stability regions are the exteriors of the
curves.

With this difference in stability regions it can be explained why it is not computationally
efficient to use an ordinary ODE45 solver for a stiff system of differential equations. A solver
like ODE45 is a so-called variable time step solver. This means that during the integration
process the solver continuously adjusts the time step to ensure both accuracy and stability
Shampine (2003).

The reason why this can be very computationally inefficient can be illustrated by the following
situation. The ODE45 solver is used to solve a relatively simple system of differential equa-
tions. This means that in order to ensure a good accuracy the time step can be quite large.
The solver will increase the time step up to a certain point where the integration will become
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Figure 3-8: The stability regions of different numerical ODE solvers

unstable i.e. errors will start to grow out instead of diminish. At this point the calculation
is called a failure and the time step is decreased to make the integration stable again. This
process is an iterative process and will continue until the system of differential equations is
solved. The occurrence of a lot of failures will result in a high computational burden.

A stiff solver such as the ODE23 solver has no stability criteria due to the fact that it is
"A-stable". Thus a conflict between the accuracy and the stability will never occur. The size
of the time step is therefore only determined by the required accuracy of the solution. This
will result in much less failures and thus a smaller computational burden. An illustrative
example can be found in Shampine (Shampine, 2003). For the aforementioned reason a stiff
solver is chosen in favor of a normal solver.

The other part of the model framework consists of a system of algebraic equations. This sys-
tem is solved using Matlab’s backslash operator and results in the vapor and feed volumetric
flows. The complete Matlab code can be found in Appendix C.
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Chapter 4

Experimental setup and data

In order to validate the model developed in this thesis experimental data is required. The
methodology and the equipment which was used to acquire the data is discussed in the first
Section (4-1). Section (4-2) discusses the actual process data and its post-processing.

Due to the fact that the crystallizer itself is already discussed in Section 3-2 it is omitted in
this Chapter to avoid repetition.

4-1 Experimental setup

4-1-1 Control system

In order to achieve the desired product quality a control system is in place. The crystallizer
temperature (T1502) is compared with a set point temperature. If this temperature is different
from the set point temperature, the set point for the pressure is adjusted. The adjustment
in pressure causes a change in the amount of solvent which is evaporated and thus controls
the crystallizer temperature. The magma level in the crystallizer is also monitored (L1501).
The level in the crystallizer is controlled by the feed flow, this flow is adjusted by a valve.
The temperature of the outgoing stream (T1503) is monitored and should be the same as
the crystallizer temperature (T1502). If this is not the case this usually is an indication of
a blockage in the crystallizer causing a shortcut from the feed to the outflow. The product
flow is also measured (F1331), the amount of flow is controlled by the product pump.

4-1-2 CSD measuring

In order to measure the Crystal Size Distribution (CSD) a sensor is required. At BASF a new
on line image analysis sensor was developed by the research group of Dr. Michael Schäfer. This
sensor is called a Hüllstrom sensor and was developed to overcome the technical limitations
of the existing CSD measuring sensors. In this thesis a brief description of the sensor and

Master of Science Thesis CONFIDENTIAL S. Molenaar



48 Experimental setup and data

HP01

HS03

HV01

HS02

HS01 B2221

Drain

Condensate

T
T

P

P

F

T

F

Figure 4-1: Process flow diagram of the sampling loop (Ruiter, 2009) (valves HV , flow sensors
HS and pumps HP )

the software is given. For a complete description the reader is directed to de Ruiter (Ruiter,
2009).

The CSD sensor is placed in the product stream (S05) via a t-connector . The t-connector
has a larger diameter to keep the overall flow velocity constant around the sensor. The sensor
takes a sample of the product stream which is diluted before the measurement. The dilution
is done with two sheathed streams, in this way the sample stream is squeezed between these
streams and all the particles are orientated in the same manner. In this way all the particles
can be measured individually.

The solution used for the sheathed streams is prepared in a separate tank (B2221). The
solution is recirculated throughout the plant by stream (HS01). A small portion of stream
(HS01) is used for the sheathed streams (HS02). The temperature, pressure and flow rate
of this stream are measured. The flow rate can be altered using valve (HV01). After mea-
surement the diluted product stream (HS03) exits the sensor where the temperature and the
pressure are measured once more. Pump (HP01) determines the flow rate which is taken from
the sensor head to the drain.

Two possible problems with this method are the mixing of the streams and possible formation
of "schlieren". In order to avoid the mixing of streams all flow characteristics are chosen such
that the streams are laminar. The formation of "schlieren" is due to the existence of a chemical
potential difference between the sheathed and the product stream. Light will refract at the
boundary between the two streams causing a difficulty to measure the particles correctly. In
order to avoid this problem the sheathed streams should mimic the product stream (same
concentration and temperature).

Due to the squeezing of the product stream all the particles are orientated in the same manner
and can be photographed by the sensor. These images are processed by image software. This
software uses anti-shading correction for all the pictures. This means that dirt on the lens
and also particles which can stick on the lens are removed resulting in a clearer picture and
a more accurate measurement.

Using the image software makes it possible to measure partly transparent crystals as well. The
software recognizes the borders of the crystals and converts it into a solid particle. Overlapping
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or touching crystals are counted as one crystal. In order to alleviate this problem the particle
density within the image should not be too high. This can be accomplished by altering
the outlet stream (HS03) by changing the pump (HP01) settings. After post-processing the
software translates the images to several crystal sizes and characteristics which are tabulated
in Table 4-1.

Table 4-1: Different sizes and characteristics crystals measured by the sensor

Size or characteristics Equation Explanation

Maximum Ferret diameter Fmax The maximum diameter of a
crystal

Minimum Ferret diameter Fmin = Acrystal/Fmax The minimum diameter of a
crystal

Waddel disk diameter Farea = 2
√

Acrystal
π The diameter of a circle with

the same area as the crystal
Elongation E = Fmax/Fmin The ratio between the maxi-

mum and minimum diameter
Heywood H = P

2
√
πAcrystal

The ratio of the perimeter of
the crystal and the perimeter
of a sphere with the same area
as the crystal

Volume V = 0.55FmaxF 2
min The volume of a rectangular

cuboid of the maximum and
the minimum diameter times
a shape factor

3D Equivalent diameter 3dE = 3

√

6V
π The diameter of a perfect

sphere with the same calcu-
lated volume as the crystal

4-2 Experimental data

A variety of data was gathered in earlier research by de Ruiter (Ruiter, 2009) and BASF.
Besides the CSD data, operational data is also required to validate the model. This opera-
tional data such as pressures, temperatures and flows are all continuously monitored at the
production site at BASF. This section will start by explaining the way in which the CSD data
is displayed in the report. The section ends with an overview of the available experimental
data.

4-2-1 Graphical representation of the data

The crystal size distributions measured by the sensor are written to data files as a cumula-
tive distribution (Figure 4-2(a)). The change of the cumulative distribution with time can
be plotted on a surface graph but reading data from these graphs is rather inaccurate. A
better alternative is to look at the change with time of different percentiles of the cumulative
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distribution (Figure 4-2(b)). In this thesis L10, L50 and L90 are chosen as the representative
percentiles. The tenth percentile (L10) means that 90% of the particles are larger than this
value. By plotting the L10, L50 and L90 an indication of the mean crystal size and the width
of the distribution is given.

(a) Cumulative distribution (b) The 10th, 50th and 90th percentiles

Figure 4-2: A cumulative size distribution with its percentiles

4-2-2 Matching the CSD data to the process conditions data

Next to the CSD data the process conditions are required to validate the model. These are
continuously monitored and saved by a variety of computer programs. The CSD data is
not monitored continuously, this causes a time mismatch. The CSD data should be shifted
in order to be orientated at the correct time. Due to the amount of data this is a quite
cumbersome process. A Matlab script was written to automate this process. The Matlab
script can be found in Appendix C-3. This Matlab script uses Microsoft Excel files as an
input, the data is saved by the monitoring system as a RAW text file. This means the text
files should be converted to Excel files.

4-2-3 Overview of the experimental data

The data can be sorted into two categories: steady-state and dynamic data. The steady-state
data describes the operation of the crystallizer at steady-state conditions. The dynamic data
includes data sets where one of the process variable i.e. temperature, flow rate or stirrer speed
is perturbed. An overview of the dynamic data available is given in Table 4-2.

A part of the model validation is a parameter estimation to estimate the values of the ex-
perimental parameters a1 to a6 in the model framework. As mentioned earlier de Ruiter
(Ruiter, 2009) described agglomeration as being a dominant phenomenon in adipic acid crys-
tallization. The best suited dynamic data set is the one with the change in impeller speed
because impeller speed is proportional to power input one of the most dominant parameters
in agglomeration.

The increase in stirrer rate results in an increase in all the percentiles as depicted in Figure
4-3. This increase is more pronounced in the 50th and 90th. percentile. The reason for this
increase is that with in increasing stirrer rate, the power input is increased. This increase
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Table 4-2: Data availability

Process variable changed Units Change Date

Recirculation rate m3/hr 60 -> 30 -> 60 08.04.2009
Recirculation rate m3/hr 60 -> 30 -> 60 14.04.2009
Recirculation rate m3/hr 60 -> 70 70 -> 60 60 -> 30 20.07.2009
Recirculation rate m3/hr 30 -> 60 21.07.2009
Crystallizer temperature ◦C 60 -> 65 07.07.2009
Crystallizer temperature ◦C 65 -> 65 07.07.2009
Stirrer rate rpm 24 -> 35 -> 40 06.08.2009
Outlet flow m3/hr Short disturbances 26.07.2009
Outlet flow m3/hr Upward/downward step 27.07.2009

in power input results in a higher collision rate and thus a higher agglomeration rate. At a
certain stirrer rate the attrition and fluid shear forces become larger i.e. the agglomeration
efficiency becomes smaller and the agglomeration rate decreases again. The comparison with
model results can be found in Section 5-2.

Time [hr]

C
ry

st
al

si
ze

[µ
m

]

L10

L50

L90

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

Figure 4-3: Increase in stirrer rate from 24 to 35 to 40 rpm
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Chapter 5

Results and discussion

In this chapter the results are discussed, it is conveniently divided into two parts:

1. Results of the numerical test cases

2. Results of the process model simulations

5-1 Numerical test cases

In order to see if the numerical method can accurately describe the different kinetics in
crystallization several numerical test cases are modeled. These test cases have an analytical
solution. In this way the numerical results can be compared to the analytical results. The
following test cases are modeled:

• Pure growth

• Pure agglomeration

• Simultaneous growth and agglomeration

• Simultaneous nucleation and growth

• Simultaneous growth, nucleation and agglomeration

• An industrial continuous crystallizer (MSMPR)

As one can see the list does not contain nucleation only. There is no need to model nucle-
ation alone as the Population Balance Equation (PBE) would be rewritten into an Ordinary
Differential Equation (ODE) which could be solved with any standard ODE solver. This case
would have no connection with the numerical scheme. As far as the case for simultaneous
growth, nucleation and agglomeration is concerned, there is no analytical solution available
for this case thus it is not possible to compare the numerical and analytical results. However
the numerical results can be compared to the results from Qamar (Qamar, 2008).
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5-1-1 Pure growth

The first test case is pure growth, the volume size range x = 0 : 20µm is divided into 100
grid cells with equal size (regular grid). Growth rate has the value G(x) = 0.1. The initial
number distribution is given in table 5-1. This is a slightly altered example from Leonard
and Niknafs (Leonard and Niknafs, 1991).

It is a initial distribution with very sharp peeks (large gradients) this was chosen to test
the performance concerning numerical diffusion. According to Qamar (Qamar, 2008) normal
initial particle distributions are of the Gaussian-type but sharp peeks can occur due to process
operation (e.g. injection of seeds into a initially super-saturated solution, this will result in a
burst of near zero-sized particles due to secondary nucleation).

Table 5-1: Initial number density for the pure growth case

x f(0, x)

2 < x ≤ 4 1√
0.32π

exp(−500(0.1x− 0.3)2)
6 < x ≤ 8 1

10 < x ≤ 12 1− |x− 11|
14 < x ≤ 16

√

1− 100(0.1x− 1.5)2

elsewhere 0

The analytical solution to this problem is relatively easy, the initial distribution just shifts in
time due to the constant (size-independent) growth, thus:

f(t, x) = f0(x−Gt). (5-1)

The result of the model is depicted in figure 5-1. It can be seen that the numerical results
are in good agreement with the analytical results but there is a small amount of numerical
diffusion visible. This is due to the solution of the hyperbolic growth term in the PBE.
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Figure 5-1: Number density distributions after ten seconds, numerical and analytical in the case
of ’pure’ growth

5-1-2 Pure agglomeration

The case for pure agglomeration is an example from Scott (Scott, 1968). The initial density
distribution is given by equation (5-2). The agglomeration kernel β is taken constant β = β0.
The values of β, N0 and x0 are all taken as 1.

f(0, x) =
N0

x0
exp(−x/x0) (5-2)

The analytical solution is given by:

f(t, x) =
4N0

x0(τ + 2)2 exp
(−2x′

τ + 2

)

(5-3)

in which τ = N0β0t and x′ = x/x0.

It can be seen from figure 5-2 that the results are similar to the analytical solution. However
it is clear that at the right face of the distribution there is an offset in the values. This offset
does not seem to be increasing with time. According to Qamar (Qamar, 2008), this smearing
of the solution was also observed in other numerical schemes. A clear explanation of this
smearing is not yet available.
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Figure 5-2: Number density distributions at different elapsed times, numerical and analytical in
the case of ’pure’ agglomeration

5-1-3 Simultaneous growth and agglomeration

The case with simultaneous growth and agglomeration is from Kumar and Ramkrishna (Ku-
mar and Ramkrishna, 1997) and treats a case with constant agglomeration kernel and size-
dependent growth. The initial distribution has the form of equation (5-2). Growth has a
value of G = G0x with G0 = 1, the agglomeration kernel is β = 10. The analytical solution
is given by:

f(x, t) =

(

M0
2

M1

)

exp

(−M0

M1
x

)

(5-4)

with M0 = 2N0/(2 +BN0t) and M1 = N0x0exp(G0t).

The results can be seen in figure 5-3. The simulation results are in good agreement with
the analytical results. Again there is some smearing of the result which was also observed in
sub-section 5-1-2.
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Figure 5-3: Number density distributions at different elapsed times, numerical and analytical in
the case of growth and agglomeration

5-1-4 Simultaneous growth and nucleation

This case is from Lim et al. (Lim et al., 2002) and is a case with simultaneous growth and
stiff nucleation. The reason why a case with stiff nucleation is chosen is because this is similar
to what will be used to model nucleation in the adipic acid crystallization case. The initial
number density is given in table 5-2 and is a square step.

Table 5-2: Initial number density for simultaneous growth and nucleation case

x f(0, x)

0.4 < x ≤ 0.6 100
elsewhere 0.01

The stiff nucleation takes place at the minimum crystal volume:

f(0, t) = 100 + 106exp(−104(t− 0.215)2). (5-5)

The growth rate is given by G = 1, the volume ranges from 0 to 2.0 and the time range
is given by 0 ≤ 0.5. As seen in figure 5-4 the numerical model approximates the analytical
solution reasonable but numerical diffusion is clearly visible.
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Figure 5-4: Number density distributions at different elapsed times, numerical and analytical in
the case of growth and nucleation

5-1-5 Simultaneous growth, nucleation and agglomeration

This case has been discussed in Qamar and Warnecke (Qamar and Warnecke, 2007) and as
mentioned before it does not have an analytical solution. The initial number distribution
is the same as (5-2). The nucleation is exponential and is given by equation (5-6) and the
agglomeration is constant with β(x, x′) = β0.

S(x) = B0/x0,nexp(−x/x0,n) (5-6)

When the results of this thesis are compared with the results from Qamar and Warnecke
(Qamar and Warnecke, 2007) it can be seen that both the trends of the curves as well as the
order of magnitude are similar.
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(a) Number density distributions at different elapsed times in the case of growth, nu-
cleation and agglomeration (this thesis)

(b) Number density distributions at different elapsed times in the case of growth,
nucleation and agglomeration ((Qamar and Warnecke, 2007))

Figure 5-5: Comparison between the model results of this thesis and the model results of Qamar
and Warnecke (Qamar and Warnecke, 2007)

Master of Science Thesis CONFIDENTIAL S. Molenaar



60 Results and discussion

5-1-6 An industrial continuous crystallizer (MSMPR)

This test case is a simulation of an industrial continuous crystallizer. The crystallizer consid-
ered is a so-called Mixed Suspension Mixed Product Removal (MSMPR) crystallizer. This
type of crystallizer is the crystallization equivalent of a Continuous Stirred Tank Reactor
(CSTR) in reactor engineering, an ideal case model. It can be interpreted as follows (Mes-
bah, 2010):

• Constant nucleation rate at all points in the magma

• Constant growth rate and independent of crystal size and location

• All volume elements of mother liquor contain a mixture of particles ranging in size from
nuclei to large particles

• Particle size distribution is independent of location in the crystallizer and is identical
to the size distribution in the product

The MSMPR crystallizer has the same dimensions and properties as the adipic acid crystallizer
at BASF Ludwigshafen. For modeling this MSMPR crystallizer a model similar to the one
discussed in section 3-8 is used (excluding agglomeration).

According to Randolph and Larson (Randolph and Larson, 1988) the MSMPR has an ana-
lytical solution. The steady state number density distribution can be described by:

n(L) = n(0) exp
(

− L
Gτ

)

(5-7)

in which τ is the residence time, which can be calculated by:

τ =
Vc

V̇prod
. (5-8)

It is clear from figure 5-6 that the model accurately describes the steady-state number density
of the MSMPR crystallizer. This is a clear indication that the model framework developed in
section 5-6 can accurately describe an industrial crystallizer. In Section 5-2 the agglomeration
phenomenon is also taken into account and the results are compared to experimental data.
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Figure 5-6: The steady-state number density distribution of an MSMPR crystallizer

5-2 Process model simulations

In Section 5-1-1 to 5-1-5 it was shown that a PBE including nucleation, growth and agglom-
eration can accurately be solved. In Section 5-1-6 an MSMPR crystallizer was modeled which
also included a concentration, total mass and energy balance. The results were similar to the
analytical case. In this Section the model is extended to include agglomeration and its results
are compared to experimental Crystal Size Distribution (CSD) data.

The model was run for an amount of time in which it reached its steady state. Mass flows,
mean crystal size and the distribution percentiles were monitored to ensure that it arrived at
steady state. The model equations contain a number of parameters which should be fitted to
the experimental data.

This data fitting or parameter estimation is done by using Matlab’s build in FMINCON
optimization routine. According to MathWorks:

"FMINCON attempts to find a constrained minimum of a scalar function of several vari-
ables starting at an initial estimate. This is generally referred to as constrained nonlinear
optimization or nonlinear programming."

The scalar function mentioned above is the objective function. This objective function has
the form of a non-weighted least square method and is described as:

fobjective =
∑

i

(Li,model − Li,experimental)2 i = 10, 50, 90 (5-9)

Thus by minimizing the objective function the error between the model and the experimental
data is minimized.
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5-2-1 Steady state results

In this Section the steady state results of the model are reviewed. The nucleation rate is
given by Equation (3-20) and the crystal growth rate is described by Equation (3-21). The
agglomeration rate is modeled by a product of the collision kernel and the agglomeration
efficiency Lindenberg et al. (2007):

• The collision kernel of Kruis and Kusters (1996) discussed in Section 3-6-3

• The agglomeration efficiency by Riemann and Gerstlauer (2003) as discussed in Section
3-6-3

In Table 5-3 the different values for the kinetic parameters are given as well as the value for
the means square error.

Table 5-3: Kinetic parameters and least square error

Parameter Description Value

a1 Nucleation parameter 4e13

a2 Nucleation order 3.7e−5

a3 Growth parameter 1e−7

a4 Growth order 0.7
a5 Agglomeration parameter 9e4

a6 Agglomeration efficiency factor 5.0
fObjective Least square error 3199.3

The percentiles of this model run can be seen in Figure 5-7. It is clear from this figure that
the model reaches steady state conditions in approximately 50 hours. This time is longer than
the mentioned startup time in Ruiter (2009). The steady state percentile values are given in
Table 5-4.

Table 5-4: Steady state percentiles experimental and modeled

Percentile Experimental [µm] Modeled [µm] Deviation [%]

L10 30.00 70.96 136.53
L50 90.00 128.26 42.51
L90 300.00 307.58 2.46

It is clear that both the L10 and the L50 are over estimated while the L90 is predicted with a
2.46% deviation. In the next Section possible reasons for this deviation will be discussed.
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Figure 5-7: The distribution percentiles, modeling and experimental result

5-2-2 Reasons for deviations in the modeled CSD

As seen in the previous Section the modeled CSD was deviating from the experimental CSD
this became clear by comparing the percentiles of both the distributions. For this deviation
two possible causes can be thought of:

1. Numerical errors in solving the PBE

2. Incorrect expression for the agglomeration kinetics

As mentioned by several authors Mesbah (2010) and Su et al. (2009) obtaining a numerical
solution of the PBE has multiple pitfalls e.g. numerical diffusion and instability (explained
in Section 2-7). In Section 5-1 several examples are given for numerical test cases. All
crystallization kinetics were modeled alone and in combinations. (nucleation, growth and
agglomeration). The numerical results of the MSMPR crystallizer case were also in good
agreement to the analytical solution. Thus it can be concluded that the numerical scheme is
accurately implemented and that the results are correct.

The main difference between the final model case and the numerical test cases is the inclusion
of a size dependent agglomeration rate. Thus in investigating possible causes for the deviation
from experimental data the expression for agglomeration should also be investigated.

As discussed in Section 3-6-3 the expression for the agglomeration rate is not a function of
supersaturation. Several authors have claimed that agglomeration rate indeed is a function
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of supersaturation Lindenberg et al. (2007) and David et al. (1991b). Thus to make the
agglomeration rate supersaturation dependent the following expression is used:

βAgglo = a6βCollηAggloσa7 . (5-10)

in which a7 is the order of the supersaturation dependency. The kinetics for nucleation and
growth remain unchanged. The parameter values of the kinetics can be found in Table 5-5.

Table 5-5: Kinetic parameters and least square error (supersaturation dependent)

Parameter Description Value

a1 Nucleation parameter 4e13

a2 Nucleation order 3.7e−5

a3 Growth parameter 1e−7

a4 Growth order 0.7
a5 Agglomeration parameter 9e4

a6 Agglomeration efficiency factor 1e9

a7 Agglomeration order of supersaturation dependence 1
fObjective Least square error 3011.4

From Figure 5-8 it can be seen that with the supersaturation dependency the time required for
reaching steady state is approximately the same as without the supersaturation dependency
(50 hours). The L10 and L50 are again overestimated while the L90 is correctly modeled. A
comparison between the model with and without the super saturation dependency can be
found in Table 5-6. The least square error decreases 5.87% by including supersaturation in
the agglomeration expression.

Table 5-6: Steady state percentiles with and without supersaturation dependency

Percentile Supersaturation Supersaturation Absolute deviation [%]
independent [µm] dependent [µm]

L10 70.96 70.3276 0.89
L50 128.26 126.8803 1.09
L90 307.58 304.9951 0.84
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Figure 5-8: The distribution percentiles, modeling and experimental result

Instead of using a size-dependent agglomeration rate one could also use a constant size-
independent agglomeration rate as used in the numerical test cases (Section 5-1). Again
nucleation and crystal growth are described by the expressions given earlier. The values of
the kinetic parameters can be found in Table 5-7.

Table 5-7: Kinetic parameters and least square error (constant agglomeration rate)

Parameter Description Value

a1 Nucleation parameter 1.8e12

a2 Nucleation order 3.70e−7

a3 Growth parameter 1e−7

a4 Growth order 0.7
a5 Constant agglomeration kernel 1e−15

fObjective Least square error 2866.6

Depicted in Figure 5-9 are the CSD percentiles of the distribution with a constant agglom-
eration rate. The time needed to reach steady state conditions is approximately 15 hours
which is a 70% decrease compared to the mechanistic model. In this model run both the L10

and L90 are modeled correctly while only the L50 is over estimated. A comparison of the
steady state percentile values can be found in Table 5-8. Compared to the mechanistic model
independent of supersaturation the least square error decreased 10.40%. Compared to the
supersaturation dependent mechanistic model the decrease is 4.81%.
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Figure 5-9: The distribution percentiles, modeling and experimental result (constant agglomer-
ation rate)

Table 5-8: Steady state percentiles experimental and modeled (constant agglomeration rate)

Percentile Experimental [µm] Modeled [µm] Absolute deviation [%]

L10 30.00 30.35 1.17
L50 90.00 142.528 58.36
L90 300.00 301.1274 0.38

Another approach could be to model the agglomeration flux with an empirical correlation
which has a dependency on both the supersaturation and the power input by the stirrer.
This expression combines the size independence of the constant agglomeration rate with the
dependency on supersaturation (growth) and impeller input from the mechanistic model. An
expression from Lindenberg et al. (2007) is used:

βAgglo = a8 ∗Ga9 ∗ εa10 (5-11)

The values for the kinetic parameters can be found in Table 5-9.

The least square error is 1800.7 as can be seen in Table 5-9. This translates in a CSD where
the L10 and L90 are slightly underestimated while the L50 is overestimated. This is the most
accurate CSD. The time to reach steady state is again 15 hours. A comparison with an
absolute deviation is given in Table 5-10.
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Table 5-9: Kinetic parameters and least square error ((Lindenberg et al., 2007))

Parameter Description Value

a1 Nucleation parameter 8e12

a2 Nucleation order 3.7e−5

a3 Growth parameter 1e−7

a4 Growth order 0.7
a5 Agglomeration parameter 6e−9

a6 Agglomeration order of growth dependence 0.7
a7 Agglomeration order of power dependence 0.7
fObjective Least square error 1800.7

Table 5-10: Steady state percentiles experimental and modeled (Lindenberg et al., 2007)

Percentile Experimental [µm] Modeled [µm] Absolute deviation [%]

L10 30.00 24.18 19.40
L50 90.00 130.46 44.96
L90 300.00 288.66 3.78

It is clear that different expressions for the agglomeration rate result in different CSD’s.
The supersaturation dependence of the mechanistic model did not change the resulting CSD
significantly. According to the model results the models which are size-dependent require a
longer time to reach the steady state. The least square errors for the models which are size-
independent are smaller compared with the size-dependent models. The errors are compared
in Table 5-11.

Table 5-11: Least square errors of the different models compared to Lindenberg (Lindenberg
et al., 2007)

Agglomeration rate expression Least square error [µm] Absolute deviation compared
to Lindenberg
(Lindenberg et al., 2007) [%]

(Lindenberg et al., 2007) 1800.7 −
Constant 2866.6 37.18
Supersaturation dependent 3011.4 40.20
Supersaturation independent 3199.26 43.72
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Figure 5-10: The distribution percentiles, modeling and experimental result (Lindenberg et al.,
2007)
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Chapter 6

Conclusions and recommendations

6-1 Conclusions

In this thesis a dynamic model for adipic acid crystallization was developed in order to answer
the following research question:

"Can the dynamics of the adipic acid crystallization process be described in terms of the

product quality when nucleation, growth and agglomeration are included in a mathematical

model?"

The development of the process model was done in several step. The first step consisted of a
small literature study for numerical methods to solve a Population Balance Equation (PBE).
It was concluded that the High Resolution Finite Volume Methods (HR-FVM) with flux
limiter was the best suited for this particular problem. The HR-FVM method is capable
of describing sharp discontinuities and steep moving fronts found in crystallization processes
with a limited amount of numerical diffusion (Qamar, 2008). Besides its accuracy the compu-
tational burden of the HR-FVM is relatively low compared to other types of solution methods
(Mesbah, 2010). The aforementioned properties ensure that the numerical solution is accu-
rate and obtained in a time-scale commensurate with the process time scale (Kumar and
Ramkrishna, 1997).

The Matlab implementation of this numerical method was tested using several numerical test
cases from literature. These test cases included nucleation, growth and agglomeration with
different initial distributions. Based on the numerical test cases it can be concluded that
the HR-FVM can indeed solve the PBE with reasonable accuracy and a small computational
burden.

The numerical method was extended with mass, energy and a concentration balance to model
the actual crystallization process. Without agglomeration this model is equal to an Mixed
Suspension Mixed Product Removal (MSMPR). The simulation results of the MSMPR where
compared with the analytical solution. It was concluded that the model extended with the
mass, energy and concentration balance can accurately describe the steady-state Crystal Size
Distribution (CSD) of such an MSMPR.

Master of Science Thesis CONFIDENTIAL S. Molenaar



70 Conclusions and recommendations

Another literature study was done on the subject of agglomeration as this was described to
be a dominant phenomena in adipic acid crystallization by de Ruiter (Ruiter, 2009). The
size scale of the crystals have a large influence on the way the crystals collide with each
other. Due to the process conditions the size scale of the crystals in the BASF adipic acid
crystallization process extends from below to above the Kolmogorov length scale. As a result
there are several mechanisms by which the crystals collide. It was concluded that the only
model capable of describing such a system is the collision model of Kruis and Kusters (Kruis
and Kusters, 1996). The agglomeration efficiency is described by an expression from Riemann
and Gerstlauer as this expression has already been used in literature to model an adipic acid
crystallization process, it can be fitted to experimental data while keeping its dependency on
fluid shear and it has low computational burden.

The model was extended once more to include the agglomeration rate. The experimental
parameters were determined using a minimization of the least square error between the model
and experimental steady state percentiles. The modeled CSD deviated from the experimental
data. The L90 was predicted correctly while the L10 and L50 were over predicted. Making the
agglomeration rate dependent on supersaturation made no significant improvements. Several
other agglomeration rate expressions were implemented. The results improved especially for
the empirical expression which is dependent on growth and power input (Lindenberg et al.,
2007). The least square error decreased 43.72%. The L10 and L90 are slightly under predicted
while the L50 is over predicted. Thus it can be concluded that the steady-state CSD can best
be described by the empirical expression of Lindenberg (Lindenberg et al., 2007).

Summarizing the above and answering the research question; with the current model frame-
work it is proven not possible to describe the dynamics of the crystallization process as the
steady state can not be accurately predicted. Several recommendations are given in the next
Section.

6-2 Recommendations

There are several possibilities that should be investigated to see if the predicted steady state
CSD can be improved to match the experimental data. In the current model an empirical
expression is used for attrition (secondary nucleation). It should be investigated if a more
mechanistic model could produce a more accurate steady-state CSD.

The primary source for attrition is the impeller within the crystallizer. Another possible
source for attrition fragments could be the pump in the recirculation stream. This pump
could also be a source for crystal breakage.

Besides the pump there is also a heat exchanger implemented in the recirculation stream.
Although the temperature increase is currently implemented in the energy balance the disso-
lution of small crystals is not. This dissolution should be further investigated.

One of the assumptions is that there is no difference in the number density between the
output, product and recirculation stream. It should be investigated if this is the case and
if not it should be investigated if compartmental modeling could improve the results of the
model.

It is recommended to gather more experimental data. Currently no usable startup data is
available. The number of usable data sets with a change in process conditions is also quite
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limited. These data sets are required when the experimental parameters are to be determined
for reproducing the dynamics of the system.

As the collision rate and the agglomeration efficiency are both strongly dependent on the
hydrodynamic conditions within the crystallizer it is recommended to do produce a compu-
tational fluid dynamic model of the crystallizer. Such a model can result in useful insights
concerning the hydrodynamic conditions and can be used to verify some of the assumptions
in both the collision rate and agglomeration efficiency.
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Appendix A

Population balance equation

For the complete derivation the reader is directed to (Mersmann, 2001).

The number density is the limiting value of the number of particles per unit volume in the
crystal size interval ∆L.

n = lim
∆L→0

∆N
∆L

=
dN

dL
(A-1)

In order to derive an expression for the number density balance in differential form the particle
numbers in a differential crystal size interval should be examined. This interval dL can be
entered by crystals that are in the feed and can exit trough product removal (in case of a
continuous crystallization process). Crystals can grow into and out of the size interval. In
real crystallizers the processes of crystal breakage, abrasion, agglomeration and dissolution
occur. These processes are usually captured by a birth and death rate.

The number of particles that exists in a differential interval and in an infinitely small volume
dV at time t is expressed as:

dN = ndV. (A-2)

The total number of particles (within volume V) is:

NT (V ) =
∫

V

ndV . (A-3)

If a balance is made for a specific volume it can be expressed as:

Particle density = Particle inflow− Particle outflow + Netto number of births.

In mathematical form this results in:
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d

dt

∫

V

ndV =
∫

V

[B(L)−D(L)]dV . (A-4)

According to (Mersmann, 2001) the left hand side can be rewritten resulting in:

∫

V

(

∂n

∂t
+∇(v · n)

)

dV =
∫

V

[B(L)−D(L)]dV . (A-5)

Equation (A-5) can be rewritten as:

∫

V

(

∂n

∂t
+∇ve · n+∇vi · n+D(L)−B(L)

)

dV . (A-6)

As is visible from equation (A-6) the vector v from equation (A-5) consists of two parts, the
internal and the external part. The vector ve is given by the external coordinate system (e.g.
the crystallizer) and can be determined using a force balance on the specific particle. The
internal part ve orientates itself along an internal coordinate system. The linear growth rate
G = dL/dt yields the most important factor for internal velocity (in supersaturated solutions).

The terms n, B(L) and D(L) are only functions of time and not of position because ideally
mixing is assumed. Ideally mixing results in roughly the same particle distributions in the
entire volume. The external part of the velocity vector can be rewritten as a surface integral
(Gauss theorem).

∫

V

∇ve · ndV =
∫

S

vn · ndS (A-7)

In equation (A-7) the vector vn is the mean particle velocity perpendicular to the surface.
The parameter S is the sum of all moving surfaces of the system:

• The inflow and outflow of a total of k particle flows V̇i
∫

Sm

vn · ndS =
∑

k

v̇ini (A-8)

• The change in the solid-free systems volume
∫

Ss

vn · ndS = n
dVs
dt

(A-9)

• The change in aperture volume due to suspended particles
∫

Se

vn · ndS = −ndVe
dt

(A-10)
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In equations (A-8) to (A-10) SS represents the free surface of the liquid, VS is the solid-free
volume of the liquid, Se is the total solid-liquid phase boundary and Ve is the total particle
volume. Equations (A-9) and (A-10) can be combined:

∫

Ss

vn · ndS+
∫

Ss

vn · ndS = n
dV

dt
. (A-11)

Which can be rewritten into:

∫

V

∇ve · ndV =
∑

k

V̇ini + n
dV

dt
. (A-12)

When equations (A-7) and (A-12) are combined, integrated and divided by volume V it results
in:

∂n

∂t
+∇vi · n+ n

∂V

V ∂t
+D(L)−B(L) +

∑

k

V̇ini = 0. (A-13)

If only the linear growth rate G contributes to the internal velocity then equation (A-13) can
be rewritten to:

∂n

∂t
+
∂(Gn)
∂L

+ n
∂V

V ∂t
+D(L)−B(L) +

∑

k

V̇ini = 0. (A-14)

When it is assumed that the total volume does not change with time, equation (A-14) can be
rewritten to result in:

∂n

∂t
+
∂(Gn)
∂L

+D(L)−B(L) +
∑

k

V̇ini = 0. (A-15)
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Appendix B

Model equations

In order to derive the model equations the assumption given in Section 3-4 are taken as valid.

B-1 Population balance equation

∂n

∂t
+
∂Gn

∂L
=
V̇feednfeed
VC

− V̇outnout
VC

+
V̇recnrec
VC

+Kagg (B-1)

The feed is crystal free, see assumptions.

∂n

∂t
+
∂Gn

∂L
= − V̇outnout

VC
+
V̇recnrec
VC

+Kagg (B-2)

Multiplying with kvL3 and integrating over the complete size domain:

∞
∫

0

kvL
3∂n

∂t
dL+

∞
∫

0

kvL
3∂Gn

∂L
dL = −

∞
∫

0

kvL
3 V̇outnout
VC

dL+
∞
∫

0

kvL
3 V̇recnrec
VC

dL+
∞
∫

0

kvL
3KaggdL.

(B-3)

The second term on the left hand side can be rewritten by using integration by parts.

∞
∫

0

kvL
3∂n

∂t
dL = kv

∞
∫

0

3GnL2dL−
∞
∫

0

kvL
3 V̇outnout
VC

dL+
∞
∫

0

kvL
3 V̇recnrec
VC

dL+
∞
∫

0

kvL
3KaggdL.

(B-4)

Substituting kvm3 = 1− ε wherever possible:

∂ε

∂t
= −3kv

∞
∫

0

GnL2dL+
V̇out
VC

(1− ε)− V̇rec
VC

(1− ε)− kv
∞
∫

0

L3KaggdL. (B-5)
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B-2 Mass balance

d

dt
[V (ερliq + (1− ε)ρcrys)] = V̇feed [εfeedρliq + (1− εfeed)ρcrys]− V̇out [εoutρliq + (1− εout)ρcrys] + ...

V̇rec [εrecρliq + (1− εrec)ρcrys]− V̇vapρvap (B-6)

With the assumptions as stated before equation (B-6) can be rewritten to:

d

dt
[V (ερliq + (1− ε)ρcrys)] = V̇feedρliq − V̇out [ερliq + (1− ε)ρcrys] + ...

V̇rec [ερliq + (1− ε)ρcrys]− V̇vapρvap. (B-7)

The left hand side can be rewritten by using integration by parts:

dε

dt
[ρliq − ρcrys]V = V̇feedρliq − V̇out [ερliq + (1− ε)ρcrys] + ...

V̇rec [ερliq + (1− ε)ρcrys]− V̇vapρvap. (B-8)

B-3 Concentration balance

d

dt
V [ερliqc+ (1− ε)ρcrys] = V̇feedρliqcfeed−V̇out [ερliqc+ (1− ε)ρcrys]+V̇rec [ερliqc+ (1− ε)ρcrys]

(B-9)

The left hand side can be rewritten by using integration by parts:

dε

dt
[ρliqc− ρcrys]V+

dc

dt
V ερliq = V̇feedρliqcfeed−V̇out [ερliqc+ (1− ε)ρcrys]+V̇rec [ερliqc+ (1− ε)ρcrys] .

(B-10)

Rewriting equation (B-10) to concentration gives:

dc

dt
=

1
V ερliq

[

V̇feedρliqcfeed − V̇out [ερliqc+ (1− ε)ρcrys] + V̇rec [ερliqc+ (1− ε)ρcrys]−
dε

dt
[ρliqc− ρcrys]V

]

.

(B-11)

B-4 Energy balance

d

dt
[εVCρliqcp,liqT + (1− ε)VCρcryscp,crysT ] = V̇feed[εfeedρliqcp,liqTfeed + (1− εfeed)ρcryscp,crysTfeed] + ...

V̇rec[εrecρliqcp,liqTrec + (1− εrec)ρcryscp,crysTrec]− ...
V̇out[εoutρliqcp,liqTout + (1− εout)ρcryscp,crysTout]− ...
V̇vapρvaphevap + Pimp −Qloss +Qcrys (B-12)
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The same assumptions as before are applied here:

d

dt
[εVCρliqcp,liqT + (1− ε)VCρcryscp,crysT ] = V̇feedρliqcp,liqTfeed + ...

V̇rec[ερliqcp,liqTrec + (1− ε)ρcryscp,crysTrec]− ...
V̇out[ερliqcp,liqT + (1− ε)ρcryscp,crysT ]− ...
V̇vapρvaphevap. (B-13)

The left hand side of equation (B-13) can be rewritten by the use of integration by parts.

dε

dt
[VCρliqcp,liqT − VCρcryscp,crysT ] = V̇feedρliqcp,liqTfeed + ...

V̇rec[ερliqcp,liqTrec + (1− ε)ρcryscp,crysTrec]− ...
V̇out[ερliqcp,liqT + (1− ε)ρcryscp,crysT ]− ...
V̇vapρvaphevap. (B-14)

Equations (B-5), (B-8), (B-11) and (B-14) form a system of equations which can be solved
for the feed volume flow, vapor volume flow and the concentration.
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Appendix C

Matlab code

C-1 Crystallizer main model

1 function output = Ali_Main( p)
2 tic

3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 %Operational inputs
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6

7 %Volume flows
8 V_out=76/3600; %[m3/s], Outlet flow crystallizer
9 V_rec=60/3600; %[m3/s], Recirculation stream crystallizer

10

11 %Temperatures
12 T_feed=80; %[C], Feed stream temperature
13 T_rec=65; %[C], Recirculation stream temperature
14 T=60; %[C], Crystallizer temperature
15 Vc=34 .1; %[m3], Crystallizer volume
16 Crys_frac=0.025; %[−], Initial crystal fraction in the ...

crystallizer
17 epsilon0=1−Crys_frac; %[−], Initial liquid fraction in the crystallizer
18 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 %Physical parameters (densities, concentrations, viscos ities, specific heats, ...

heat of evaporation)
20 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21

22 %Densities
23 rho_vap=0.1308; %[kg/m3], Vapor density @ 200mbar and ...

quality=1 from FluidProp
24 rho_liq=1011; %[kg/m3], Liquid density (saturated and ...

crystal free) from Westhoff
25 rho_crys=1344; %[kg/m3], Crystal density
26

27 %Specific heats and enthalpy of evaporation
28 h_evap=2358 .11e3; %[J/kg], Enthalpy of evaporation @ 60C from ...

Marsh 1987
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29 cp_liq=1590; %[J/(kg * K)], Specific heat of the saturated ...
solution from Westhoff

30 cp_crys=4022; %[J/(kg * K)], Specific heat of the crystals ...
from Westhoff

31

32 kv=0.55; %[−], Volumetric shape factor from BASF
33

34 %Concentrations
35 c_sat=0.7087* exp(0 .0509* T)/100; %[−], Saturated concentration
36 c0=0.1697; %0.18; %[ −], Initial concentration in the ...

crystallizer
37 c_feed=0.4; %[−], Feed concentration
38

39 %Viscosities
40 vis=0.0004665; %[Pa.sec], Visosity of water at 60C
41 kin_vis=vis/ rho_liq; %[m2/s], Kinematic viscosity of the crystal ...

free solution
42

43 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 %Impeller
45 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 Ne=0.72; %[−], Newton number from BASF
47 N_imp_crys=35; %[rpm], Impeller rotational speed
48 N_imp_crys=N_imp_crys/60; %[1/s], Impeller rotational frequency
49 D_imp=2.1; %[m], Impeller diameter
50 epsilon_imp=( Ne* N_imp_crys^3 * D_imp^5)/ Vc; %[m2/s3], Mean specific power ...

input from Bermingham 2003
51 epsilon_imp2=( Ne* (40/60)^3 * D_imp^5)/ Vc;
52 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 %Fitting factors
54 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55 % a1=p(1);
56 % a2=p(2);
57 % a3=p(3);
58 % a4=p(4);
59 % a5=p(5);
60 % a6=p(6);
61

62 a1=5e6; %[−], Nucleation parameter
63 a2=370 e−7; %370e−7; %[ −], Nucleation parameter
64 a3=1e−7; %;1e−7; %[ −], Growth parameter
65 a4=0.7; %[−], Growth parameter
66 a5=1.05e5; %1.05e3 %[−], K_eff
67 a6=p;
68 %a6=1.8e6;%4e6;%2e6;%3.35e −3; %[ −], K_agglo
69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 %Defining the grid
71 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72

73 %Grid parameters
74 N=100; %[−], Number of grid cells
75 Lmin=10e−6; %[m], Lower boundary grid
76 Lmax=1e−3; %[m], Upper boundary grid
77 q=12; %[−], Geometric grid factor
78 eps=1e−10; %[−], To avoid division by zero in the flux ...

limiter
79
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80 Lh(1) = Lmin;
81

82 for i=2: N+1
83 Lh( i) = Lmin+2^(( i−N−1)/ q) * ( Lmax−Lmin); % L_(i −1/2)
84 end
85

86

87 for i=1: N

88 L( i) = ( Lh( i)+ Lh( i+1))/2; % L_(i)
89 dL( i) = ( Lh( i+1)−Lh( i));
90 end
91

92 %For the agglomeration flux convert Lh, L and dL to volume
93 xh=kv.* Lh.^3;
94 x=kv.* L.^3;
95 dx=diff( xh);
96

97 %Converting the a2 parameter to a grid cell
98 for i=1: N

99 if L( i)> a2

100 LL=a2−L( i−1);
101 LR=L( i)−a2;
102 if LL<LR

103 a2_int=i−1;
104 break
105 else
106 a2_int=i;
107 break
108 end
109 end
110 end
111 a2=a2_int;
112 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
113 %Initial distribution
114 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
115 mu=log(100 e−6); %[m], Mean of the distribution (crystal size)
116 sigma=log(1 .5); %[m], Standard deviation of the distribution
117 Y = lognpdf( L, mu, sigma); %[−], Lognormal probability density function
118

119 %load('nlast.mat')
120 %ntilde0=nlast;
121 %Testing steady state
122

123 n0=Crys_frac* ( Y./( kv.* L.^3)); %[#/m * m3], Initial number distribution
124 ntilde0=Crys_frac* Y; %[#/m], Initial volume number density
125

126

127 t0=0; %[s], Starting time simulation
128 tmax=200000; %[s], Running time simulation
129

130 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
131 %Agglomeration
132 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
133 kernel=zeros( length( L), length( L));
134 for i=1: length( L)
135 for j=1: length( L)
136 kernel( i, j)= collision2( L( i), L( j), D_imp , epsilon_imp , kv, rho_crys , rho_liq , kin_vis , a5, a6, Vc)
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137 end
138 end
139 % figure(11)
140 % surf(kernel)
141 %tic
142

143 collisionrate1=zeros( N−1, N−1, N);
144 collisionrate2=zeros( N−1, N−1, N);
145

146 collisionrate11=zeros( N−1, N−1, N);
147 collisionrate22=zeros( N−1, N−1, N);
148

149

150 for i=1: N−1
151 for k = 1: i

152 xdif = xh( i+1)−x( k);
153 if xdif < xh(2)
154 xdif = xh(2);
155 end
156

157 for j=2: length( xh)
158 if xdif ≤ xh( j) && xdif > xh( j−1)
159 alpha=j;
160 end
161 end
162

163 for j = alpha: N

164 L1=L( i); %(x(i)/kv)^(1/3);
165 L2=L( k); %(x(k)/kv)^(1/3);
166 collisionrate1( i, k, j)= collision( L1, L2, D_imp , epsilon_imp , kv, rho_crys , rho_liq , kin_vis , a

167 collisionrate11( i, k, j)= collision( L1, L2, D_imp , epsilon_imp2 , kv, rho_crys , rho_liq , kin_vis

168

169

170 L1=((( xh( alpha) + xh( i+1) − x( k))/( kv))/2)^(1/3);
171 L2=( x( k)/ kv)^(1/3);
172 collisionrate2( i, k, j)= collision( L1, L2, D_imp , epsilon_imp , kv, rho_crys , rho_liq , kin_vis , a

173 collisionrate22( i, k, j)= collision( L1, L2, D_imp , epsilon_imp2 , kv, rho_crys , rho_liq , kin_vis

174 end
175 end
176 end
177 %toc
178

179 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
180 %Solving the PBE
181 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
182

183 col1=1;
184 col2=2;
185

186 options=odeset( 'Events' , @eventsDTB , 'RelTol' ,1 e−3, 'AbsTol' ,1 e−6); %, 'Refine',15);
187 %tic
188 [ t, X]= ode15s( @Ali_ode_model ,[ t0 tmax],[ c0 ntilde0], options , a1, a2, a3, ...

a4, c_feed , collisionrate1 , collisionrate2 , collisionrate11 , ...
collisionrate22 , cp_crys , cp_liq , c_sat , dL, h_evap , kv, L, Lmax , Lmin , ...
N, q, rho_crys , rho_liq , rho_vap , T, T_feed , T_rec , V_out , V_rec , Vc, Lh, ...
xh, x);

189 %toc
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190

191 output=[ t, X];
192

193 % %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
194 % %Plotting the figures
195 % %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
196 % %Splitting the output vector
197 %
198 % %Concentration vector
199 % conc=X(:,1);
200 %
201 % t=t/3600;
202 %
203 % %Number density
204 ntilde=X(:,2: size( X,2));
205 %
206

207 for i=1: length( t)
208 n( i,:)= ntilde( i,:) ./( kv.* L.^3);
209 end
210

211 % C_sat=ones(length(conc)) * c_sat;
212

213 % figure(1)
214 % plot(t,conc,t,C_sat,'red')
215 % title('Concentration versus time')
216 % xlabel('Time [hr]')
217 % ylabel('Concentration [ −]')
218 % %
219 % for i=1:length(t)
220 % m0(i)=sum(n(i,:). * dL);
221 % m1(i)=sum(n(i,:). * L. * dL);
222 % m2(i)=sum(n(i,:). * L.^2. * dL);
223 % m3(i)=sum(n(i,:). * L.^3. * dL);
224 % m4(i)=sum(n(i,:). * L.^4. * dL);
225 % epsilon(i)=1 −kv * m3(i);
226 % end
227 %
228 % figure(2)
229 % plot(t,epsilon)
230 % title('Liquid fraction versus time')
231 % xlabel('Time [hr]')
232 % ylabel('Liquid fraction [ −]')
233

234 % figure(3)
235 % subplot(2,3,1)
236 % plot(t,m0)
237 % title('Zeroth moment of distribution versus time')
238 % xlabel('Time [hr]')
239 % ylabel('Zeroth moment [ −]')
240 % subplot(2,3,2)
241 % plot(t,m1)
242 % title('First moment of distribution versus time')
243 % xlabel('Time [hr]')
244 % ylabel('First moment [ −]')
245 % subplot(2,3,3)
246 % plot(t,m2)
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247 % title('Second moment of distribution versus time')
248 % xlabel('Time [hr]')
249 % ylabel('Second moment [ −]')
250 % subplot(2,3,4)
251 % plot(t,m3)
252 % title('Third moment of distribution versus time')
253 % xlabel('Time [hr]')
254 % ylabel('Third moment [ −]')
255 % subplot(2,3,5)
256 % plot(t,m4)
257 % title('Fourth moment of distribution versus time')
258 % xlabel('Time [hr]')
259 % ylabel('Fourth moment [ −]')
260

261 % %Initial distribution and distribution at tmax
262 % figure(4)
263 % plot(L,n(1,:),L,n(length(t),:),'red');
264

265 %Mean crystal size
266 % mu2=m4./m3;
267

268 % figure(5)
269 % plot(t,mu2)
270 % title('Mean crystal size versus time')
271 % xlabel('Time [hr]')
272 % ylabel('Mean size [ −]')
273 %
274

275 %Calculating the L10, L50, L90
276 nopart=zeros( length( t), N);
277 for i=1: length( t)
278 nopart( i,:)= cumsum( n( i,:) .* dL);
279 percentiles( i,1)= nopart( i, N)/100 * 10;
280 percentiles( i,2)= nopart( i, N)/100 * 50;
281 percentiles( i,3)= nopart( i, N)/100 * 90;
282 L10( i)= interp1( nopart( i,:), L, percentiles( i,1));
283 L50( i)= interp1( nopart( i,:), L, percentiles( i,2));
284 L90( i)= interp1( nopart( i,:), L, percentiles( i,3));
285

286 end
287

288 % cum_sum=cumsum(n,2);
289 % for i=1:length(t)
290 % percentiles(i,1)=cum_sum(i,N)/100 * 10;
291 % percentiles(i,2)=cum_sum(i,N)/100 * 50;
292 % percentiles(i,3)=cum_sum(i,N)/100 * 90;
293 % L10(i)=interp1(cum_sum(i,:),L,percentiles(i,1));
294 % L50(i)=interp1(cum_sum(i,:),L,percentiles(i,2));
295 % L90(i)=interp1(cum_sum(i,:),L,percentiles(i,3));
296 % % end
297

298 % load('X10X50X90_fast20090408.mat')
299 %
300 % figure(20)
301 % plot(t,L10,t,L50,t,L90,time2,L10_exp/1e6,time2,L50 _exp/1e6,time2,L90_exp/1e6)
302 % legend('L10','L50','L90', 'L10 exp','L50 exp', 'L90 exp ')
303 % xlabel('Time [hr]')
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304 % ylabel('Crystal size [m]')
305

306 %
307 % figure(20)
308 % plot(t,L10,t,L50,t,L90)
309 % legend('L10','L50','L90')
310 % xlabel('Time [hr]')
311 % ylabel('Crystal size [m]')
312

313 %
314 % global V_feed_glob V_vap_glob t_plot
315 % figure(6)
316 % subplot(1,2,1)
317 % plot(t_plot,V_feed_glob * 3600)
318 % title('Feed volume flow versus time')
319 % xlabel('Time [s]')
320 % ylabel('Volume flow [m3/s]')
321 % subplot(1,2,2)
322 % plot(t_plot,V_vap_glob * 3600)
323 % title('Vapor volume flow versus time')
324 % xlabel('Time [s]')
325 % ylabel('Volume flow [m3/s]')
326 %
327 % %
328 % global B0_plot G_plot
329 % figure(7)
330 % subplot(1,2,1)
331 % plot(t_plot,B0_plot)
332 % title('Nucleation rate versus time')
333 % xlabel('Time [hr]')
334 % ylabel('Nucleation rate [#/s]')
335 % subplot(1,2,2)
336 % plot(t_plot,G_plot)
337 % title('Growth rate versus time')
338 % xlabel('Time [hr]')
339 % ylabel('Growth rate [m/s]')
340 % %
341 % %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
342 % %Plots for the steady state solution testing
343 % %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
344 %
345

346 % for i=2:length(mu2)
347 % mu2_diff(i)=((mu2(i) −mu2(i −1))/mu2(i −1)) * 100;
348 % end
349 %
350 % figure(8)
351 % plot(t,mu2_diff)
352 % xlabel('Time [hr]')
353 % ylabel('Difference between two subsequent calculated va lues [%]')
354 %
355 %
356 %
357 %
358 %
359 % %Analytical solution of the MSMPR
360 % global G_plot
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361 % %Calculation of residence time
362 % tau=Vc/(V_out −V_rec);
363 % for i=1:N
364 % n_ana(i)=n(size(n,1),1) * (1) * exp( −L(i)/(G_plot(length(G_plot)) * tau));
365 % end
366 %
367 % figure(9)
368 % semilogy(L,n_ana,L,n(size(n,1),:),'x')
369 %
370 % global Q_agg_plot
371 % figure(10)
372 % surf(Q_agg_plot)
373

374 %Calculating the sum of squares
375 SS(1)= L10( length( L10)) * 1e6−32;
376 SS(2)= L50( length( L50)) * 1e6−150;
377 SS(3)= L90( length( L90)) * 1e6−367;
378

379 output=sum( SS.^2)
380 toc

C-2 Crystallizer differential equations

1 %Differential equations for the DTB model
2

3 function dXdt = Ali_ode_model( t, X0, a1, a2, a3, a4, c_feed , collisionrate1 , ...
collisionrate2 , collisionrate11 , collisionrate22 , cp_crys , cp_liq , c_sat , ...
dL, h_evap , kv, L, Lmax , Lmin , N, q, rho_crys , rho_liq , rho_vap , T, ...
T_feed , T_rec , V_out , V_rec , Vc, Lh, xh, x)

4 t;
5

6 % if t>2200 && t<18000
7 % V_rec=30/3600;
8 % end
9

10 %Splitting the input vector in the PBE and the concentration
11 c=X0(1); %[−], Concentration
12 ntilde=X0(2: length( X0))'; %[−], Volumer number density
13 n=ntilde./( kv.* L.^3); %[−], Number density
14

15 %Calculating the liquid fraction
16 m3=n.* L.^3 .* dL;
17 epsilon=1−kv* sum( m3); %[−], Liquid fraction
18

19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 %Secondary nucleation
21 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 global B0_plot

23 B0=a1* sum( m3( a2: length( m3))); %[−], Nucleation rate
24 B0=B0* kv* Lh(1)^3;
25 B0_plot( length( B0_plot)+1)= B0;
26

27 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 %Growth
29 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S. Molenaar CONFIDENTIAL Master of Science Thesis



C-2 Crystallizer differential equations 89

30 global G_plot

31 G=a3* (( c−c_sat)/ c_sat)^ a4; %[−], Growth rate
32 G_plot( length( G_plot)+1)= G;
33

34 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 %Agglomeration
36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 Fhalfmin=0;
38 Fhalfmax=0;
39 for i=1: N−1
40 sumk = zeros( N,1);
41 for k = 1: i

42 xdif = xh( i+1)−x( k);
43 if xdif < xh(2)
44 xdif = xh(2);
45 end
46

47 for j=2: length( xh)
48 if xdif ≤ xh( j) && xdif > xh( j−1)
49 alpha=j;
50 end
51 end
52

53 for j = alpha: N

54 int1( j)=( xh( j+1)−xh( j)) * collisionrate1( i, k, j) * ntilde( j);
55 end
56 int2=( xh( alpha)−( xh( i+1)−x( k))) * collisionrate2( i, k, j) * ntilde( alpha−1);
57 sumk( k)=( sum( int1)+ int2) * ( xh( k+1)−xh( k)) * ntilde( k);
58 end
59 Fphalf( i)= sum( sumk);
60 end
61

62 Q_agg(1)=( Fphalf(1) −Fhalfmin)/( xh(2) −xh(1)); %First grid cell
63 for i=2: N−1
64 Q_agg( i)=( Fphalf( i)−Fphalf( i−1))/( xh( i+1)−xh( i)); %Grid cells in between
65 end
66 Q_agg( N)=( Fhalfmax−Fphalf( N−1))/( xh( N+1)−xh( N)); %First grid cell
67

68 global Q_agg_plot

69

70 Q_agg_plot( length( Q_agg_plot)+1,:)=( Q_agg);
71

72 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
73 %Balance equations (mass, energy and concentration)
74 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75

76 %Liquid fraction over time
77 de_dt=−3* kv* sum( G.* n.* L.^2 .* dL)+(( V_out/ Vc) * (1 −epsilon)) −(( V_rec/ Vc) * (1 −epsilon));
78

79 %System of equations for the calculation of V_feed and V_vap (based on
80 %energy and mass balance)
81

82

83 V_vap=((1/( rho_vap* h_evap)) * (((( V_out* (( epsilon* rho_liq)+((1 −epsilon) * rho_crys)) −V_rec* (( epsilon

84 ( V_out* (( epsilon* rho_liq* cp_liq)+((1 −epsilon) * rho_crys* cp_crys)) * T)−( de_dt* (( Vc* rho_liq* cp_

85

86 V_feed=( V_out* (( epsilon* rho_liq)+((1 −epsilon) * rho_crys)) −V_rec* (( epsilon* rho_liq)+((1 −epsilon) * rh
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;
87

88

89 % %Left side matrix
90 % P=[−rho_liq * cp_liq * T_feed rho_vap * h_evap;...
91 % rho_liq −rho_vap];
92 %
93 % %right side matrix
94 % ...

Q=[V_rec * ((epsilon * rho_liq * cp_liq * T_rec)+((1 −epsilon) * rho_crys * cp_crys * T_rec)) −...
95 % V_out* ((epsilon * rho_liq * cp_liq * T)+((1 −epsilon) * rho_crys * cp_crys * T)) −...
96 % de_dt * ((Vc * rho_liq * cp_liq * T)−(Vc * rho_crys * cp_crys * T));...
97 % V_out* ((epsilon * rho_liq)+((1 −epsilon) * rho_crys)) −...
98 % V_rec* ((epsilon * rho_liq)+((1 −epsilon) * rho_crys))+...
99 % de_dt * (rho_liq −rho_crys) * Vc];

100 %
101 % global P2 Q2
102 % P2=[−rho_liq * cp_liq * T_feed; rho_vap * h_evap;...
103 % rho_liq; −rho_vap];
104 %
105 % ...

Q2=[V_rec * ((epsilon * rho_liq * cp_liq * T_rec)+((1 −epsilon) * rho_crys * cp_crys * T_rec));...
106 % −V_out * ((epsilon * rho_liq * cp_liq * T)+((1 −epsilon) * rho_crys * cp_crys * T));...
107 % −de_dt * ((Vc * rho_liq * cp_liq * T)−(Vc * rho_crys * cp_crys * T));...
108 % V_out* ((epsilon * rho_liq)+((1 −epsilon) * rho_crys));...
109 % −V_rec * ((epsilon * rho_liq)+((1 −epsilon) * rho_crys));...
110 % de_dt * (rho_liq −rho_crys) * Vc];
111 %
112 % %Solving
113 % U=(P\Q)';
114 %
115 global V_feed_glob V_vap_glob t_plot

116 % V_feed=U(1); %[m3/s], Feed volume flow rate
117 % V_vap=U(2); %[m3/s], Vapor volume flow rate
118 V_feed_glob( length( V_feed_glob)+1)= V_feed;
119 V_vap_glob( length( V_vap_glob)+1)= V_vap;
120 t_plot( length( t_plot)+1)= t;
121

122

123

124 %Concentration balance
125 dc_dt=(1/( Vc* epsilon* rho_liq)) * (( V_feed* rho_liq* c_feed)−...
126 ( V_out* (( epsilon* rho_liq* c)+((1 −epsilon) * rho_crys)))+ ...
127 ( V_rec* (( epsilon* rho_liq* c)+((1 −epsilon) * rho_crys))) −...
128 ( de_dt* (( rho_liq* c)−rho_crys) * Vc));
129

130 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
131 %Population balance equation
132 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
133

134 %First grid cell
135 Gnim(1)= B0; %[−], Left boundary flux (stiff nucleation)
136 Gnip(1)= G* ntilde(1);
137

138 %In between cells
139 for i=2: N−1
140 Gnim( i)= Gnip( i−1); %[−] Left boundary flux is equal to the right ...
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boundary flux of the neighbouring cell
141

142 r=( ntilde( i)−ntilde( i−1)+1 e−10)/( ntilde( i+1)−ntilde( i)+1 e−10);
143 FluxL=( abs( r)+ r)/(1+ abs( r));
144 Gnip( i) = ...

G* ( ntilde( i)+ dL( i)/(2 * ( L( i)−L( i−1))) * FluxL* ( ntilde( i+1)−ntilde( i)));
145

146 end
147

148 %Last cell
149 Gnim( N)= Gnip( N−1); %[−] Left boundary flux is equal to the right ...

boundary flux of the neighbouring cell
150 Gnip( N) = G* ( ntilde( N)+ dL( N)/(2 * ( L( N)−L( N−1))) * ( ntilde( N)−ntilde( N−1)));
151

152 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
153 %Solving the population balance equation
154 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
155 for i=1: N

156 dntilde_dt( i)=−1/ dL( i) * ( Gnip( i)−Gnim( i))+(3 * G* ntilde( i)/ L( i))+( V_rec* ntilde( i)/ Vc)−( V_out* nti

157 end
158

159

160 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
161 %Defining the output
162 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
163 dXdt=[ dc_dt; dntilde_dt '];

C-3 Data matching program

1 %Data filter for xls file to matlab
2

3 clear all

4 clc

5 close all

6

7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 %Loading and combining data sets from CSD, Sensor and Proces s
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10

11 %Loading data set measuring probe
12 [ Filename1 , Pathname1 , Filterindex1]= uigetfile( ' * .xls' , 'Select the CSD ...

measurements file' , 'MultiSelect' , 'on' );
13 for i=1: length( Filename1)
14 numi=strcat( 'num1_' , int2str( i));
15 texti=strcat( 'text1_' , int2str( i));
16 Filename=char( Filename1( i));
17 eval([ '[' numi ' ' texti ']=xlsread(Filename);' ]);
18 end
19

20 %Combining the measuring probe data sets
21 num1=num1_1;
22 for i=2: length( Filename1)
23 num1=eval([ '[num1' ';' 'zeros(1,size(num1_1,2))' ';' 'num1_' int2str( i) ...

']' ]);
24 end
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25

26 text1=text1_1;
27 for i=2: length( Filename1)
28 text1=eval([ '[text1' ';' 'text1_' int2str( i) ']' ]);
29 end
30

31 %Loading data set process conditions
32 [ Filename2 , Pathname2 , Filterindex2]= uigetfile( ' * .xls' , 'Select the ...

measurement probe data file' , 'MultiSelect' , 'on' );
33

34 for i=1: length( Filename2)
35 numi=strcat( 'num2_' , int2str( i));
36 texti=strcat( 'text2_' , int2str( i));
37 Filename=char( Filename2( i));
38 eval([ '[' numi ' ' texti ']=xlsread(Filename);' ]);
39 end
40

41 %Combining the measuring probe data sets
42 num2=num2_1;
43 for i=2: length( Filename2)
44 num2=eval([ '[num2' ';' 'num2_' int2str( i) ']' ]);
45 end
46

47 text2=text2_1;
48 for i=2: length( Filename2)
49 text2=eval([ '[text2' ';' 'text2_' int2str( i) ']' ]);
50 end
51

52 %Importing the data (temperature, pressure etc.) from exce l
53 [ Filename3 , Pathname3 , Filterindex3]= uigetfile( ' * .xls' , 'Select the DP3 ...

process control system data file' );
54 [ num3 text3]= xlsread( Filename3);
55

56

57

58 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59 %Calculating time/date matrices
60 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 j=1;
62 for i=1: length( text1)
63 if isempty( text1{ i})==0
64 text1_final( j)= text1( i);
65 j=j+1;
66 end
67 end
68 text1_final=text1_final ';
69

70

71

72 %Calculating date/time vector
73 i=1: size( text1_final ,1);
74 timedate1=datevec( text1_final( i), 'dd.mm.yyyy HH:MM:SS' );
75

76

77 %Calculating time vector 2
78 timedate2=text2(1: length( text2),15);
79 timedate2=datevec( timedate2 , 'dd/mm/yyyy HH:MM:SS' );
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80

81 %Calculating time vector 3
82

83 timedate3=text3(6: length( text3),2);
84 %Correcting the import bug for 00:00:00
85 for i=1: length( timedate3)
86 if length( char( timedate3( i)))<19
87 timedate3( i)= strcat( timedate3( i), ' 12:00:00 AM' );
88 end
89 end
90

91

92 timedate3=datevec( timedate3);
93

94 %Start vector date and time (timevector 1)
95 start=datevec( text1_final(1), 'dd.mm.yyyy HH:MM:SS' );
96 stop=datevec( text1_final( length( text1_final)), 'dd.mm.yyyy HH:MM:SS' );
97

98 start2=timedate2(1,1:6);
99 stop2=timedate2( length( timedate2),1:6);

100

101 %Comparing the two start and stop date/time vectors to see wh ich is the
102 %smallest/largest
103 % if datenum(start) > datenum(start2)
104 % start=start2;
105 % end
106 %
107 % if datenum(stop)>datenum(stop2)
108 % else stop=stop2;
109 % end
110

111 %Checking the ADS data for starting and stopping point
112 start3=datenum( start);
113 stop3=datenum( stop);
114 timedate32=datenum( timedate3);
115 save_vector= timedate32>start3 & timedate32<stop3;
116

117 num3=[ save_vector.* num3(:,1) save_vector.* num3(:,3) save_vector.* num3(:,5) ...
118 save_vector.* num3(:,7) save_vector.* num3(:,9) save_vector.* num3(:,11) ...
119 save_vector.* num3(:,13) save_vector.* num3(:,15) save_vector.* num3(:,17) ...
120 save_vector.* num3(:,19) save_vector.* num3(:,21) save_vector.* num3(:,23) ...
121 ] %save_vector. * num3(:,25) save_vector. * num3(:,27)];
122

123 %Removing the zero rows from the num3 matrix
124 num3( ¬any( num3 ,2),:)=[];
125

126 %Multiplying the time vector with the save vector
127 timedate3=[ save_vector.* timedate3(:,1) save_vector.* timedate3(:,2) ...
128 save_vector.* timedate3(:,3) save_vector.* timedate3(:,4) ...
129 save_vector.* timedate3(:,5) save_vector.* timedate3(:,6)];
130

131 %Removing the zero rows from the time vector
132 timedate3( ¬any( timedate3 ,2),:)=[];
133

134 %Converting time and date to elapsed seconds (the mathemati cal model uses
135 %elapsed seconds instead of time and date
136
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137 %The elapsed seconds of the starting date/time
138 time_elapsed_initial=( start(1,4) * 3600)+( start(1,5) * 60)+ start(1,6);
139

140 %Individual time vectors
141 for i=2: size( timedate1);
142 time_elapsed1( i)=( timedate1( i,4) * 3600)+( timedate1( i,5) * 60)+ timedate1( i,6) −time_elapsed_initia

143 end
144

145 for i=2: size( timedate2);
146 time_elapsed2( i)=( timedate2( i,4) * 3600)+( timedate2( i,5) * 60)+ timedate2( i,6) −time_elapsed_initia

147 end
148

149 for i=2: size( timedate3);
150 time_elapsed3( i)=( timedate3( i,4) * 3600)+( timedate3( i,5) * 60)+ timedate3( i,6) −time_elapsed_initia

151 end
152

153 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
154 %Cleaning up workspace, clearing all unneccesary variable s, vectors and
155 %matrices
156 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
157

158 clear Filename Filename1 Filename2 Filename3 Filterindex1 Filterindex2 ...
159 Filterindex3 Pathname1 Pathname2 Pathname3 i j num1_1 num1_2 ...
160 num2_1 num2_2 numi save_vector start start2 start3 stop stop2 ...
161 stop3 text1 text1_1 text1_2 text1_final text2 text2_1 text2_2 ...
162 text3 texti time_elapsed_initial timedate1 timedate2 timedate3 timedate32

163

164

165 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
166 %Creating the x graphs from the csd data
167 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
168

169 %Separating different data from data structure
170 j=1;
171 for i=2:17:17 * ceil(( size( num1 ,1) −2)/17)
172 ferret_max( j,:)= num1( i,:);
173 j=j+1;
174 end
175

176 j=1;
177 for i=4:17:17 * ceil(( size( num1 ,1) −2)/17)
178 ferret_min( j,:)= num1( i,:);
179 j=j+1;
180 end
181

182 j=1;
183 for i=6:17:17 * ceil(( size( num1 ,1) −2)/17)
184 twod_equi( j,:)= num1( i,:);
185 j=j+1;
186 end
187

188 j=1;
189 for i=8:17:17 * ceil(( size( num1 ,1) −2)/17)
190 elongation( j,:)= num1( i,:);
191 j=j+1;
192 end
193

S. Molenaar CONFIDENTIAL Master of Science Thesis



C-3 Data matching program 95

194 j=1;
195 for i=10:17:17 * ceil(( size( num1 ,1) −2)/17)
196 heywood( j,:)= num1( i,:);
197 j=j+1;
198 end
199

200 j=1;
201 for i=12:17:17 * ceil(( size( num1 ,1) −2)/17)
202 volume( j,:)= num1( i,:);
203 j=j+1;
204 end
205

206 j=1;
207 for i=14:17:17 * ceil(( size( num1 ,1) −2)/17)
208 threed_qui( j,:)= num1( i,:);
209 j=j+1;
210 end
211

212 j=1;
213 for i=16:17:17 * ceil(( size( num1 ,1) −2)/17)
214 unknown( j,:)= num1( i,:);
215 j=j+1;
216 end
217

218

219 %For making arbitrary Xxx graphs
220 lwrb=10;
221 lwrbs=strcat( 'X' , int2str( lwrb));
222 mean=50;
223 means=strcat( 'X' , int2str( mean));
224 uprb=90;
225 uprbs=strcat( 'X' , int2str( uprb));
226

227

228 %Actual making of the x graphs from the defined diameter name
229 diam(1,:)= num1(1,:);
230

231 for i=1: size( twod_equi ,1)
232 [ B, I, J]= unique( twod_equi( i,:));
233 A=diam( I);
234 x_lwrb( i)= interp1( B, A,( lwrb/100));
235 end
236

237 for i=1: size( twod_equi ,1)
238 [ B, I, J]= unique( twod_equi( i,:));
239 A=diam( I);
240 x_mean( i)= interp1( B, A,( mean/100));
241 end
242

243 for i=1: size( twod_equi ,1)
244 [ B, I, J]= unique( twod_equi( i,:));
245 A=diam( I);
246 x_uprb( i)= interp1( B, A,( uprb/100));
247 end
248

249

250 %Plotting the Xxx graphs
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251 subplot(2,1,1)
252 plot( time_elapsed1 , x_lwrb , time_elapsed1 , x_mean , 'red' , time_elapsed1 , x_uprb , 'green' )
253 xlabel( 'Time [s]' )
254 ylabel( 'Crystal size, [\mum]' )
255 legend( lwrbs , means , uprbs)
256 subplot(2,1,2)
257 plot( time_elapsed3 , num3(:,4), time_elapsed3 , num3(:,3), ' −−' )
258

259

260

261

262

263

264

265

266

267 %
268 %
269 %
270 %
271 %
272 %
273 %
274 % %Plotting the Xxx graphs
275 % subplot(2,1,1)
276 % plot(time_elapsed,x_lwrb,time_elapsed,x_mean,'red' ,time_elapsed,x_uprb,'green')
277 % xlabel('Time [s]')
278 % ylabel('Crystal size, [\mum]')
279 % legend(lwrbs,means,uprbs)
280 % subplot(2,3,4)
281 % plot(time_elapsed,x_lwrb)
282 % title(lwrbs)
283 % subplot(2,3,5)
284 % plot(time_elapsed,x_mean,'red')
285 % title(means)
286 % subplot(2,3,6)
287 % plot(time_elapsed,x_uprb,'green')
288 % title(uprbs)
289 %
290 %
291 %
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Glossary

List of Acronyms

PBE Population Balance Equation

ODE Ordinary Differential Equation

PDE Partial Differential Equation

CSD Crystal Size Distribution

MC Monte Carlo

DTB Draft Tube Baffle

MSMPR Mixed Suspension Mixed Product Removal

CSTR Continuous Stirred Tank Reactor

HR-FVM High Resolution Finite Volume Methods
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