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Abstract: Traditional manufacturing paradigms cannot deal with the current pace of uncertain events in 
demand, supply and beyond. Reconfigurable Manufacturing Systems (RMS) are designed to adapt to these 
challenges in a rapid and cost-effective way. In order to decide when and how to reconfigure an RMS, it is 
necessary to identify the external events which trigger change in the system. This paper proposes a 
framework for uncertainty representation in RMS based on three levels of uncertainty and decision 
horizons. An illustrative example shows how such framework can be used by researchers and practitioners 
to better understand RMS and its context.  
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1. INTRODUCTION 

Manufacturing and logistics systems are the backbone of 
contemporary consumer societies. Factories all over the world 
integrate supply-chains, which are responsible for producing 
and delivering industrial goods globally. However, these 
systems currently operate in increasingly uncertain 
environments, due to several reasons, such as unexpected 
supply disruptions, rapidly evolving costumer`s demand, and 
rapid technological development (Vital-Soto and Olivares-
Aguila 2023). Additionally, the need to adopt more sustainable 
manufacturing and logistics processes, introduces additional 
uncertainties for industries worldwide. Traditional 
manufacturing systems are not designed to deal with these 
challenges, with changes in production lines taking months 
and construction of new ones taking years. 

Unlike traditional systems, Reconfigurable Manufacturing 
Systems (RMSs), as first conceptualized by Koren (Koren et 
al. 1999), can rapidly and cost effectively adapt to uncertain 
situations. The lifecycle of an RMS consists of the following 
stages (Napoleone et al. 2023): 

 Configuration period, in which the system`s structure is 
determined in a way that ensures fast and cost-effective 
changes in the future; 

 Ramp-up period, in which the initially unstable behaviour 
of the system is brought to stability (stage triggered once 
a configuration is determined, or once a reconfiguration 
takes place); 

 Service life, in which the system has stable behaviour and 
production rate; 

 Reconfiguration period, in which the system`s structure is 
changed based on scalability and convertibility 
requirements, usually triggered by an outside event (e.g. 
change in demand). 

This structure results in the RMS having more degrees of 
freedom when compared to traditional manufacturing 
paradigms, which allows it to better respond and adapt to 
multiple uncertain and challenging events. Most of these 
events are external to the RMS direct boundaries (i.e. a factory 
or logistics centre) and are also the main cause of change in an 
RMS. So, these events can be seen as the main triggers of the 
system`s reconfiguration (Rodrigues et al. 2018), leading to a 
new ramp-up and service life periods. Such events are also 
referred to as change drivers in the literature (Wiendahl et al. 
2007). Thus, it is necessary to continuously monitor the RMS`s 
context (its environment) in order to identify its 
reconfiguration triggers (Caesar et al. 2023), which allows to 
define when and how to perform the system`s reconfiguration.  

This paper intends to provide a framework to facilitate the 
representation of uncertain reconfiguration triggers present in 
an RMS context, and how it can be used to select appropriate 
decision making methods. In order to do so, two research 
questions must be addressed: 

1. What are the definitions and representations of 
uncertainty present in the RMS literature? 

2. Which categories of uncertainty can be used to select 
appropriate decision making methods in RMS? 

The remain of this paper is structured as follows. Section 2 
describes the research design and how a literature review in 
RMS and uncertainty was conducted. In section 3, different 
classifications of uncertainty are presented, and common 
typology is defined. A brief description of the decision making 
methods most used in literature to deal with the different types 
of uncertainty is presented in section 4. In section 5, a 
framework for representing uncertainty in RMSs is proposed, 
with some common reconfiguration triggers being presented 
in an illustrative example. Finally, section 6 provides the 
conclusions of this work and point to further research 
opportunities. 
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2007). Thus, it is necessary to continuously monitor the RMS`s 
context (its environment) in order to identify its 
reconfiguration triggers (Caesar et al. 2023), which allows to 
define when and how to perform the system`s reconfiguration.  

This paper intends to provide a framework to facilitate the 
representation of uncertain reconfiguration triggers present in 
an RMS context, and how it can be used to select appropriate 
decision making methods. In order to do so, two research 
questions must be addressed: 

1. What are the definitions and representations of 
uncertainty present in the RMS literature? 

2. Which categories of uncertainty can be used to select 
appropriate decision making methods in RMS? 

The remain of this paper is structured as follows. Section 2 
describes the research design and how a literature review in 
RMS and uncertainty was conducted. In section 3, different 
classifications of uncertainty are presented, and common 
typology is defined. A brief description of the decision making 
methods most used in literature to deal with the different types 
of uncertainty is presented in section 4. In section 5, a 
framework for representing uncertainty in RMSs is proposed, 
with some common reconfiguration triggers being presented 
in an illustrative example. Finally, section 6 provides the 
conclusions of this work and point to further research 
opportunities. 
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define when and how to perform the system`s reconfiguration.  

This paper intends to provide a framework to facilitate the 
representation of uncertain reconfiguration triggers present in 
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2. RESEARCH DESIGN 

This paper`s main aim is to define a framework for uncertainty 
representation tailored to RMSs. To do so and address the first 
research question, a literature review was conducted to identify 
classifications and typologies of uncertainty present in the 
RMS literature. This was done by checking the abstract, 
keywords and title for “reconfigurable manufacturing 
systems” AND “uncertainty” in the SCOPUS database. The 
identified publications were then screened so to select the ones 
which contained a clear definition of a category or type of 
uncertainty, and which was applied to an RMS. These steps 
are detailed in the PRISMA flow diagram presented in Fig. 1 
(Cordova-Pozo and Rouwette 2023). 

 

Figure 1. PRISMA flow diagram showing the different steps of the 
literature review. 

Considering the results of this literature review, additional 
searches were conducted to establish the theoretical basis for 
the proposed framework for uncertainty representation. Other 
searches were conducted to identify methods for decision 
making under uncertainty, necessary to answer the second 
research question, and with the goal of complementing and 
enriching the framework.  

3. UNCERTANTY REPRESENTATION 

Most reconfiguration triggers are uncertain events happening 
in an RMS context (i.e. external entities strongly related to the 
RMS). Thus, an adequate representation of these events is 
necessary to allow for effective decision making on the 
reconfigurability effort. In this section, different definitions 
and classifications of uncertainty are given, coming from the 
RMS literature as well as other knowledge domains. 

3.1 Uncertainty representation in the RMS literature  

The RMS literature provides some examples of 
reconfiguration triggers, and some categories of uncertain 

events. These were obtained in the literature review, which 
started with 55 records and was reduced to only 16 studies, as 
shown in Fig. 1, which used the term uncertainty in a precise 
and deliberate way.  

When comparing different manufacturing paradigms, Vital-
Soto and Olivares-Aguila affirm that RMSs are designed to 

deal with demand uncertainties, supply disruptions, and 

machine failure (Vital-Soto and Olivares-Aguila 2023). 

Demand uncertainty is the most mentioned reconfiguration 

trigger, with many authors considering this as the main source 

of uncertainty (Maganha et al. 2019; Du et al. 2006). Ostovari 
et al. consider both demand and exploitation cost (opportunity 
cost) as uncertainty parameters. However, they do not treat 
these as random variables with an associated probability 
distribution, as other authors do (Beldiceanu et al 2021; 
Delorme et al. 2023). Instead, they implemented a scenario-
based robust optimisation model (Ostovari et al. 2023). Some 
authors focus on uncertainty sources internal to an RMS, such 
as inaccurate observation of components health and age 
(Achamrah and Attajer 2023), or unexpected disruptive events 
in machines (Gu et al. 2015). 

These are cases of the representation of a single or multiple 
sources of uncertainty in RMS in which a clear distinction on 
distinct types of uncertainty is not clearly provided. At most, a 
methodological distinction between stochastic and scenario-
based methods is mentioned (Ostovari et al. 2023). 
Nevertheless, other authors in the identified RMS literature do 
provide some categorization. For instance, in the context of 
manufacturing processes, uncertainty can be categorised as 

depending either on variation or ambiguity (Lee and Banerjee 
2009). In the first category, changes in process create 

uncertainty in the whole manufacturing systems, with the 

causes of these changes being known or not. The second 

category is related to unclear or imprecise information about a 

process, which can be related to human error (e.g. improper 

documentation) or even automatic measurements (e.g. sensor 

malfunction). 

Another typology of uncertainty in RMS assumes that 
uncertainties arise throughout the product value chain and can 
be categorised into three areas (Milisavljevic-Syed et al. 
2023). The first one is problem modelling, in which both 
internal (e.g. assumptions, simplifications) and external 
factors (e.g. customer satisfaction) introduce uncertainties to 
the model of complex engineering systems. The second area, 
decision process, is concerned with the representation of 
interconnected subsystems and the propagation of uncertainty 
in the model and process chain. In the third area, design 
exploration, both incomplete models and decision preferences 
should be considered as these factors can lead to error 
accumulation in design decisions. 

The results of this literature review show that, although some 
examples of uncertainty sources are given, not many 
categories or typologies of uncertainty are proposed in the 
RMS literature. The lack of a systematic categorisation of 
uncertain events makes it harder to choose adequate decision 
support tools to address them. Therefore, additional concepts 
from different knowledge domains are needed to form the 
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causes of these changes being known or not. The second 

category is related to unclear or imprecise information about a 

process, which can be related to human error (e.g. improper 

documentation) or even automatic measurements (e.g. sensor 

malfunction). 

Another typology of uncertainty in RMS assumes that 
uncertainties arise throughout the product value chain and can 
be categorised into three areas (Milisavljevic-Syed et al. 
2023). The first one is problem modelling, in which both 
internal (e.g. assumptions, simplifications) and external 
factors (e.g. customer satisfaction) introduce uncertainties to 
the model of complex engineering systems. The second area, 
decision process, is concerned with the representation of 
interconnected subsystems and the propagation of uncertainty 
in the model and process chain. In the third area, design 
exploration, both incomplete models and decision preferences 
should be considered as these factors can lead to error 
accumulation in design decisions. 

The results of this literature review show that, although some 
examples of uncertainty sources are given, not many 
categories or typologies of uncertainty are proposed in the 
RMS literature. The lack of a systematic categorisation of 
uncertain events makes it harder to choose adequate decision 
support tools to address them. Therefore, additional concepts 
from different knowledge domains are needed to form the 

theoretical basis of the intended uncertainty representation 
framework.  

3.2 Uncertainty representation in other knowledge domains 

Uncertainty representation encompasses various levels that 
reflect the varying degrees of predictability and randomness 
inherent in different processes. Lev Tarorasov (Tarorasov 
1988), when talking about decision making, defines two types 
of uncertainty: stochastic, which can be treated using 
probability theory, and “bad” uncertainty, which does not 
present statistical stability, thus not having a notion of 
probability.  

Another classification, which can be seen as more nuanced 
version of the previous one, consists of four levels of 
uncertainty located between complete determinism and total 
ignorance (Marchau et al. 2019). The first level regards a 
future that is clear enough where processes are primarily 
treated as deterministic, with point estimates for each outcome. 
In this level, only small fluctuations are expected (e.g. derived 
from measurement noise), and no notion of probability is 
needed. The second, "stochastic uncertainty", acknowledges 
the presence of random variables, which represents a higher 
level of unpredictability in the system, requiring the use of 
probability distributions. In manufacturing, this could involve 
factors such as machine breakdowns or variations in 
production times. 

Moving further along the spectrum, the third level is 
characterized by "scenario-based uncertainty". This level 
recognizes the complexity of both internal and external events 
that are challenging to predict individually. Instead of 
attempting to model every possible outcome, scenario-based 
approaches consider a range of plausible future situations. In 
the context of manufacturing, this could involve changes in 
market demand, evolving regulatory landscapes, or 
unexpected disruptions in the supply chain. The fourth and 
most challenging level is "deep uncertainty". Here, the 
inherent unpredictability of certain events leads to many 
plausible future scenarios, making it impractical to use 
conventional scenario planning. Deep uncertainty arises when 
there is limited knowledge about the parameters and dynamics 
of a system. Predicting disruptive technological shifts is an 
example where deep uncertainty prevails.  

Considering these broader classifications of uncertainty and 
their link to decision making methods, they provide an 
appropriate theoretical basis for the representation of a 
multitude of uncertain events relevant in RMSs. In particular, 
the three most uncertain levels (stochastic, scenario-based, and 
deep) in the classification scheme presented by Marchau et al. 
are a good reference for the proposed framework for 
uncertainty representation. Thus, these types of uncertainty are 
used to both classify reconfiguration triggers and to determine 
appropriate decision support tools and methods to assist on 
decision making in RMSs. 

4. METHODS FOR DECISION MAKING UNDER 
UNCERTAINTY 

A clear characterisation of the types of uncertainty present in 
manufacturing systems, and its representation, is the first step 

in dealing with the uncertainty. The next step is to use adequate 
methods to incorporate uncertainty into decision making, 
improving the reliability and robustness of manufacturing 
systems. Considering the stochastic, scenario-based, and deep 
uncertainty levels (Marchau et al. 2019), multiple methods are 
available to deal with each one. They are grouped according to 
the level/type of uncertainty they address. The goal of this 
section is to provide a general overview of such methods and 
serve as an initial reference for researchers and practitioners. 

It is worth noting that risk management is one of the most used 
families of methods to deal with uncertainty. However, due to 
its broad scope and different formulations, it is not presented 
in the three uncertainty classes shown here. For a specific view 
on risk management methods, the interested reader is 
encouraged to look at the work of Aven (Aven 2016). 

4.1 Stochastic methods 

Bayesian inference provides the optimal way to update 
probabilities in the context of stochastic uncertainty (Murphy, 
2023). Multiple mathematical and computational methods 
provide an updated posterior belief, given prior evidence/data, 
while balancing the trade-off between accuracy and 
computational efficiency. These methods can be grouped in 
three categories: Variational, sampling, and analytical 
(Lukashchuk et al. 2023). In Bayesian inference, only linear 
Gaussian systems have analytical solutions available, which 
limits its applications. For more complex systems, including 
manufacturing ones, the posterior distributions need to be 
approximated either by Monte Carlo sampling or by 
variational optimisation of a bound on the data evidence 
(Lukashchuk et al. 2023). 

Monte Carlo sampling methods work by constructing a 
Markov chain that has an equilibrium distribution proportional 
to the desired posterior distribution (i.e. the intended result 
from the inference procedure). These are commonly known as 
Markov chain Monte Carlo (MCMC) methods. Some 
commonly used examples are Metropolis-Hastings, Gibbs 
sampling and No-U-Turn Sampler (NUTS) (Robert et al. 
2018). The strength of these methods is the guarantee of 
convergence for almost any distribution, making them widely 
applicable. However, this universality usually comes at a large 
computational cost, leading to slow convergence behaviour. 
Some techniques to accelerate MCMC algorithms are 
presented by Robet et al. (Robert et al. 2018). 

Variational inference (VI) or variational Bayesian methods 
also aim at approximating a posterior distribution, but while 
MCMC methods provide a numerical approximation to the 
exact posterior, variational methods give the locally optimal 
values for an approximation of the posterior distribution. By 
relying on fast optimization techniques, VI methods tend to be 
preferred with respect to MCMC when accuracy is not 
paramount. Different techniques are used to solve the 
optimization problem in VI, some like Automated 
Differentiation Variational Inference (ADVI) rely on 
information from the derivative of the objective function. 
Other algorithm use message passing to solve the optimization 
problem using the principle of dynamic programming 
(Murphy 2023). Some examples of this type of algorithm are: 
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Stochastic Variational Message Passing (SVMP), 
Approximate Nonlinear Gaussian Message Passing (ANGMP) 
and Conjugate-computational Variational Message Passing 
(CVMP) (Lukashchuk et al. 2023). 

4.2 Scenarios methods 

Moving to scenario-based uncertainty, multiple techniques 
were developed by three groups, also known as scenario 
planning schools, these are: Intuitive Logic method (ILM), La 
Prospective (LP) and the Probabilistic Modified Trends (PMT) 
(Cordova-Pozo and Rouwette 2023). They mainly differ in 
terms of a more qualitative or quantitative approach: ILM for 
instance, is more qualitative, while PMT is strongly 
quantitative, and LP mixes the qualitative techniques from 
ILM with more elaborate quantitative analysis. Cordova-Pozo 
and Rouwette identified 29 different techniques, from which 
the most cited ones like dynamic scenarios, cognitive fuzzy 
maps and cross-impact analysis belong to the PMT school. 
Some notorious methods, like role playing and Delphi, were 
identified, but were considered too generic by the authors, who 
focused on the already mentioned techniques. 

The two most important recently developed techniques are 
dynamic scenarios and cognitive fuzzy maps. Both methods 
are suited for short- to long-term decisions and present a cause-
and-effect perspective. They differ in terms of the type of 
information used, with both methods using (qualitative) 
experts and stakeholder judgement, but only dynamic 
scenarios considering different (quantitative) probabilistic 
data. 

4.3 Deep Uncertainty methods 

Regarding deep uncertainty, multiple approaches with some 
common features are presented in literature (Marchau et al. 
2019). They are all based on the need to reduce vulnerability 
of policies or strategies to uncertain future events, and they are 
structured with (most of) the following elements: Frame 
analysis; Perform exploratory uncertainty analysis; Chose 
initial actions and contingent actions; Iterate and Re-examine.  

One of the first proposed approaches for decision making 
under deep uncertainty (DMDU) is Info-Gap Decision Theory 
(IG). It is a non-probabilistic decision theory with the aim of 
optimizing robustness to failures in a system. This is done by 
reducing the information gap, which is understood as the 
difference between what is known and what needs to be known 
in order to make a reliable decision (Ben-Haim 2006). Two 
other approaches, Robust Decision Making (RDM) and 
Dynamic Adaptive Planning (DAP), were developed by the 
RAND Corporation. Both approaches do not try to make 
predictions about the future, rather, they used computational 
tools (in the case of RDM) and define adaptation strategies for 
initial plans as added information is acquired.  

5.  FRAMEWORK FOR UNCERTAINTY 
REPRESENTATION IN RMS 

As previously mentioned, reconfiguration in an RMS is 
triggered by events coming from some external entity (e.g. 
demand, supply, regulation), which in turn leads to uncertainty 
in the new ramp-up and service life stages. Thus, it is necessary 

to model the main external uncertainties to the RMS to decide 
when and how to start a reconfiguration process. In this 
section, the findings from the previous sections are combined 
in a framework for uncertainty representation suited for the 
needs of different RMSs. 

5.1 Framework definition 

The proposed framework is organized in four steps, going 
from the definition of the external entities of interest to the 
selection of appropriate decision making methods to deal with 
distinct groups of reconfiguration triggers. The complete 
process is shown in the flow diagram in Fig. 2, with the four 
steps identified by a number in its lower-right corner. These 
processes of uncertainty representation are analogous to a 
continuous improvement cycle such as Deming`s PDCA 
(Deming 1982), with significant changes in the RMS 
environment, its context, causing the entire process to repeat 
itself.  
 

 
Figure 2. Flow diagram of the uncertainty representation 

framework. 

The starting point, or step zero, is the definition of the RMS 
and its boundaries. Then, the first step consists in identifying 
the external entities of interest, which represent the sources of 
uncertainty for the RMS. On step two, each external entity is 
analysed with the goal of identifying the reconfiguration 
triggers associated with them. As uncertain events, these 
reconfiguration triggers are classified in step three, both in 
terms of their uncertainty level (i.e. stochastic, scenario-based, 
and deep) and the time impact in decision making (i.e. short, 
mid, and long-term). On step four, decision making methods 
and tools are selected to address each class of triggers 
previously identified. Such methods and tool can be used until 
a significant change to the RMS context takes place, in which 
case the process is restarted, and the four steps can be repeated. 
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Some notorious methods, like role playing and Delphi, were 
identified, but were considered too generic by the authors, who 
focused on the already mentioned techniques. 

The two most important recently developed techniques are 
dynamic scenarios and cognitive fuzzy maps. Both methods 
are suited for short- to long-term decisions and present a cause-
and-effect perspective. They differ in terms of the type of 
information used, with both methods using (qualitative) 
experts and stakeholder judgement, but only dynamic 
scenarios considering different (quantitative) probabilistic 
data. 

4.3 Deep Uncertainty methods 

Regarding deep uncertainty, multiple approaches with some 
common features are presented in literature (Marchau et al. 
2019). They are all based on the need to reduce vulnerability 
of policies or strategies to uncertain future events, and they are 
structured with (most of) the following elements: Frame 
analysis; Perform exploratory uncertainty analysis; Chose 
initial actions and contingent actions; Iterate and Re-examine.  

One of the first proposed approaches for decision making 
under deep uncertainty (DMDU) is Info-Gap Decision Theory 
(IG). It is a non-probabilistic decision theory with the aim of 
optimizing robustness to failures in a system. This is done by 
reducing the information gap, which is understood as the 
difference between what is known and what needs to be known 
in order to make a reliable decision (Ben-Haim 2006). Two 
other approaches, Robust Decision Making (RDM) and 
Dynamic Adaptive Planning (DAP), were developed by the 
RAND Corporation. Both approaches do not try to make 
predictions about the future, rather, they used computational 
tools (in the case of RDM) and define adaptation strategies for 
initial plans as added information is acquired.  

5.  FRAMEWORK FOR UNCERTAINTY 
REPRESENTATION IN RMS 

As previously mentioned, reconfiguration in an RMS is 
triggered by events coming from some external entity (e.g. 
demand, supply, regulation), which in turn leads to uncertainty 
in the new ramp-up and service life stages. Thus, it is necessary 

to model the main external uncertainties to the RMS to decide 
when and how to start a reconfiguration process. In this 
section, the findings from the previous sections are combined 
in a framework for uncertainty representation suited for the 
needs of different RMSs. 

5.1 Framework definition 

The proposed framework is organized in four steps, going 
from the definition of the external entities of interest to the 
selection of appropriate decision making methods to deal with 
distinct groups of reconfiguration triggers. The complete 
process is shown in the flow diagram in Fig. 2, with the four 
steps identified by a number in its lower-right corner. These 
processes of uncertainty representation are analogous to a 
continuous improvement cycle such as Deming`s PDCA 
(Deming 1982), with significant changes in the RMS 
environment, its context, causing the entire process to repeat 
itself.  
 

 
Figure 2. Flow diagram of the uncertainty representation 

framework. 

The starting point, or step zero, is the definition of the RMS 
and its boundaries. Then, the first step consists in identifying 
the external entities of interest, which represent the sources of 
uncertainty for the RMS. On step two, each external entity is 
analysed with the goal of identifying the reconfiguration 
triggers associated with them. As uncertain events, these 
reconfiguration triggers are classified in step three, both in 
terms of their uncertainty level (i.e. stochastic, scenario-based, 
and deep) and the time impact in decision making (i.e. short, 
mid, and long-term). On step four, decision making methods 
and tools are selected to address each class of triggers 
previously identified. Such methods and tool can be used until 
a significant change to the RMS context takes place, in which 
case the process is restarted, and the four steps can be repeated. 

The proposed framework shows some similarities with the one 
presented by Wiendahl et al., in which change drivers help to 
define the change objectives for a company (Wiendahl et al. 
2007). However, by explicitly defining the external sources of 
uncertainty and the trigger events associated with them, the 
proposed framework may represent a larger variety of change 
drivers and show them with greater transparency then the one 
found in the literature. Also, the presented framework is setup 
as a cycle, allowing for constant redefinition of the main 
sources of uncertainty. This could be made either by a 
systematic analytical process performed at fixed frequency, or 
by an event driven approach, in which major external events 
(e.g. supply-chain disruption) would indicate the need to 
perform a new evaluation cycle. 

The result from the first three steps can be graphically 
represented as an uncertainty graph, in which the RMS and the 
external entities are represented by nodes and the 
reconfiguration triggers is given by directed edges. Using the 
uncertainty-level-time-horizon classification, it is possible to 
distinguish each type of trigger, for instance, by colour and line 
type. Such uncertainty graph allows to easily visualise all (or 
at least the most important) reconfiguration triggers, their 
source and type.  

5.2 Uncertainty Graph example 

In order to better illustrate the use of the uncertainty 
representation framework, an example is given considering an 
(illustrative) RMS in the automotive sector present in Europe. 
An uncertainty graph for this example is presented in Fig 3. 

 

Figure 3. Example of an Uncertainty Graph for a RMS. 

Step 1: As common to all manufacturing systems, two external 
entities to this RMS are the Demand and Supply. Due to 
characteristics of its sector, both Regulation and Technological 
Breakthrough are considered as important sources of 
uncertainty. Also, considering its location, uncertainties 
related to the Labour Market are included.  

Steps 2&3: For each of the five external entities, some 
reconfiguration triggers were identified. They were also 
classified using the uncertainty-level-time-horizon labels 
shown in Fig. 3. An explanation of these reconfiguration 
triggers is given as follows: 

Demand: 1. Number of sales of a specific vehicle model in the 
next quarter (Stochastic short-term); 2. Aggregate number of 
sales in the next year (Stochastic mid-term); 3. Number of 
sales of a new vehicle family in the next five years (Scenario-
based long-term). 

Supply: 1. Delivery lead time of brake pads (Stochastic short-
term); 2. Delivery lead time of specific microchips (Scenario-
based short-term); 3. Disruption in the production of a key 
microchip`s supplier (Scenario-based mid-term). 

Technological Breakthrough: 1. Commercialization of more 
power dense batteries (Scenario-based short-term); 2. Reliable 
level 5 autonomous vehicles (Deep uncertainty mid-term). 

Regulation: 1. Phase-out of internal combustion engines 
(Scenario-based mid-term); 2. Bans or import limitations on 
critical components (Deep uncertainty long-term). 

Labour Market: 1. Shortage of electricians in the sector 
(Scenario-based short-term); 2. Number skilled workers in the 
country in 10-15 years (Deep uncertainty long-term). 

Step 4: Some trigger classes are shared by multiple external 
entities, like the stochastic short-term trigger (solid blue 
arrows). Thus, similar methods could be used to deal with 
different triggers belonging to the same class. For instance, 
Variational Inference or MCMC methods could be used to give 
updated estimates on both the number of sales of a vehicle and 
the delivery lead time of specific parts. 

6. CONCLUSIONS 

This paper presents a framework for uncertainty representation 
suited for the types of uncertain events faced by 
Reconfigurable Manufacturing Systems. A review on how the 
growing RMS literature treats the concept of uncertainty was 
conducted. From it, a gap in the RMS literature regarding 
uncertainty classification was identified. Concepts from other 
knowledge domains were used to set the theoretical basis of 
the proposed framework. The framework is presented together 
with an illustrative example on how researchers and 
practitioners in RMS could use it to identify and classify 
reconfiguration triggers, and which decision making methods 
and tools can be used. Since this framework relies on experts 
or sufficiently advanced decision support systems (DSS) to 
identify and monitor the sources of uncertainty, it can be seen 
as a limitation of the framework`s applicability by some 
companies.  

Such limitations can inspire further investigation into DSS that 
can help with the implementation and use of such framework. 
One line of research could be the use of machine learning 
techniques and other AI methods, such as process mining, in 
helping with the construction of uncertainty graphs and 
keeping them updated. Another research direction is the 
integration of this framework with other decision making 
tools, such as factory Digital Twins, which could streamline 
different decision making processes, resulting in more 
efficient and robust RMSs. Finally, case studies may identify 
further barriers in the implementation and practical use of the 
proposed framework, allowing for its continuous 
improvement. 
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