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Abstract

The casting process of aluminum products involves the apdistribution
of alloying elements. It is essential that these elemergsuaiformly dis-
tributed in order to guarantee reliable and consistentymtsd This requires
a good understanding of the main physical mechanisms tfeatt de solid-
ification, in particular the thermodynamic description atsdcoupling to the
transport processes of heat and mass that take place. Ttirucon mod-
eling is reviewed and methods for handling the thermodynarmomponent
of multi-element alloys are proposed. Savings in dataag®rand comput-
ing costs on the order of 100 or more appear possible, whemdination
of data-reduction and data-representation methods is usedest the new
approach a simplified model was proposed and shown to ciladitacapture
the evolving solidification front.
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Modeling and simulation of phase-transitions in alumindimyacasting

6.1 Introduction

In aluminum half products such as direct-chill (DC), cagfdts (aluminum blocks
of 0.5 x 1.5 x 6 m°), and billets (aluminum poles of ®— 05 m diameter and 6 m
length) the spatial distribution of alloying elements isywenportant. In advanced
aluminum products a considerable number of elements @ilpielements such
as Cu, Cr, Fe, Mg, Mn, Si, Zn) is involved at small to internadiconcentrations.
These elements are very important as they determine thdispeoperties of the fi-
nal alloy such as strength, fracture toughness, hardnegkeress, dent resistance,
surface quality et cetera. The aluminum research in inghgsstuch as Corus aims
at developing new products for demanding applications sisctine aerospace and
automotive markets. It is the objective of this researclptinaoize the specific prop-
erties of the alloy for the particular applications by mgdif) the alloy composition
in a generally narrow composition window. The consistenoy homogeneity of
the cast product in the solid phase is a prime aspect of cgsiimnology. However,
due to the casting process the homogeneity of the cast piocey be compro-
mised. Understanding and controlling the mechanisms thatibute to formation
of spatial heterogeneity, also called macrosegregatahgirefore crucial.

In the casting process initially all elements in the mixtare in the liquid phase
and spatially well-mixed. In semi-continuous casting efmrainum alloys the liquid
metal is poured into a cooled mould. The molten metal isetiily contact with the
mould and application of cooling water. As the temperat@@&eases solidification
sets in and a front between the already solidified and thidigtiid part develops.
It is exactly this transition band between solid and ligaido known as the ‘mushy
zone’, that plays a crucial role in the uniformity and hertoe quality of the final
cast product. Upon solidification the elements tend to tabige between the solid
and the liquid phases. Each element does this in its own mamhieh is controlled
by the thermodynamic equilibrium. Consequently, the ligphase can become
enriched and the solid phase can become depleted in elemeotsl transport
of the liquid phase due to shrinkage induced straining ofsthiel phase and due
to buoyancy driven flow effects in the liquid part of the dom#éius will cause
redistribution of the elements on the scale of the ingot betitross-section. For a
comprehensive overview of macrosegregation literatued e

This partial segregation is detrimental to the quality @f tesulting cast and gen-
erally the resulting cast is beyond repair. As a consequtreeesulting product
is off-spec and has a reduced economic value or becomesegj@chich results in
recycling of the entire cast product and obvious econonss.lorhese additional
production costs can potentially be reduced if a more peaamslerstanding of the
origin of these cast defects can be obtained. In this papeateseribe mathemat-
ical models that aim to simulate the details of solidificatand transport induced
segregation that take into account a large number of diffespecies. We specifi-
cally present efficient methods for including in a computadilly efficient manner
the complex thermodynamics that characterize the soldifio of many-species
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6.1 Introduction

mixtures used in modern aluminum products.

In casting technology research over the last decennia mamencal models
have been developed for the prediction of the many diffepbysical phenomena
involved in the casting process (for example [2, 3, 4]). Scamputational models
generally predict the fluid flow in the liquid part, compute tholidification (the
transition from liquid to solid) and calculate how the meataforms when cooling
down. These models often assume a constant compositiamghoat the domain.
This assumption ignores the effect of spatial segregatdnch is at the heart of
current aluminum casting problems. The crucial step fouatons of industrially
relevant alloys is that a large number of elements (aboutdiveore) should be
included in the simulations to achieve a proper modelinpefirocesses and phase-
transitions. This leads to a strong increase in the simaridimes. The challenge is
to propose computational strategies to establish thigalrsiep in an efficient way.

Currently solidification models are under development iheltide the variation
of composition during solidification (e.g. [5, 6, 7]). Thisquires that the relation
between the local composition and temperature is compiited.good approxima-
tion, this relationship is determined by considerationsheirmodynamic equilib-
rium. A key element is the phase diagram, which gives theiogldetween phases,
composition and temperature. For a binary mixture thisaalyeesults in a complex
parameter-space with widely different transitions ineliént regions. In case of a
realistic multi-element mixture the complexity of the thmerdynamic representation
rapidly increases. Direct coupling of a thermodynamic base to a solidification
simulation may impose limitations to the practical appbitisy.

In simulations of the casting process that include the efi€composition, the
thermodynamic equilibrium needs to be determined eachgtey@and in each grid
cell. Commercial software is available to compute the tloelymamic equilibrium
via a minimization of the Gibbs free energy (examples are fi@jtsage[9], jmat-
pro[10]), but this is a computationally time consuming step direct coupling
between the database and the casting simulation will ressinlfeasible simulation
times. The challenge is to propose efficient coupling methmetween the solidifi-
cation simulation and the thermodynamic database. Theiqnas how the solid-
ification path in the computations can be constructed in goedationally efficient
manner, considering that thermodynamic equilibrium datgans highly irregular
features such as discrete transition points (e.g., an ufsant) and large varia-
tions in the regions in which phase equilibria appear (e@ne phases appear over
a range of 5 Kelvin, others are present over several hundeddr{. One approach
applied and presented in this work is to adopt local polyrabriis to thermody-
namic data. This resulted in a significant reduction of theagotational expense
with full recovery of the physical properties of the castipgcess within the re-
qguired numerical accuracy. The problem posed by CORUS t&3ne&European
Study Group Mathematics With Industmas twofold: (1) Propose a simple PDE
model for the simulation of the aluminum casting processragthods to establish
an efficient coupling between the thermodynamic databage¢heninvolved PDEs.

119



Modeling and simulation of phase-transitions in alumindimyacasting

(2) Assure that the model can simulate efficiently an indaisgrrelevant number
of alloying elements.

In this paper we review the continuum modeling in Sectiona@hd present an
efficient method for simplifying the complex and computatly intensive ther-
modynamics that occur in Section 6.3. A one-dimensionalenioal model will be
adopted in Section 6.4 to illustrate the basic physicalgsees arising in the casting
process, emphasizing the treatment of the solid-liquidhpz®ne front. Finally,
concluding remarks will be collected in Section 6.5.

6.2 Modeling transport and phase-transitions in
multi-component aluminum casting

In this section, we present a complete model for transpatipdrase transitions that
occur during the aluminum casting process. Our aim heretisone@do more in-
volved mathematical models describing aluminum casting (B2, 12]), but to find
a simple, yet realistic description of fluid flow and solidifion of an aluminum
alloy which allows to develop and test techniques for hangdthe multi-element
thermodynamics during solidification. The formulationd vésult in the definition
of a one-dimensional model that will be used in Section 6rdtésting the ther-
modynamics evolution and to assess whether the main ckasticss of the casting
process can be recovered.

n —
N—

mould

water

Figure 6.1: Sketch of the basic geometry in the aluminuminggirocess. The
bottom block is continuously lowered as liquid aluminum dsled on
the top. Throughout water is applied for cooling the bougdzrthe
aluminum block.

We consider a spatial domain split into a solid and a liquglae, see Fig. 6.1.
The two regions are separated by a mushy zone, whose exa@tpbsas to be cal-
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6.2 Modeling transport and phase-transitions in multi-ponment aluminum casting

culated along with the flow and temperature fields. To desdtib fluid mechanics
and solidification physics a number of unknowns needs to tbedaced. We refer
to Table 6.1 for the unknowns of the problem as well as Talidd.the list of the
necessary ‘parameters’. We refer to these as parametids,gh strictly speaking
their values are functions of the primary unknowns (e.cg, ltent heatAh is a
function of the molar concentrations of various alloy elatsethermal properties
of the hosting material and, of course, of the local tempeeat For simplicity, we
assume no pouring of liquid material into the solid domaid aeither changes nor
motion of the physical domain.

Notation Dimension| Description
€ 1 local volume fraction occupied by liquid
e&s=1—¢ | 1 local volume fraction occupied by solid
c,X mol/m3 molar concentration of material X in liquid
cX mol/m?3 molar concentration of material X in solig
% m/s fluid velocity
p kg/(ms?) | fluid pressure in liquid and mushy region
T K temperature
Table 6.1: Unknowns of the model.

Notation | Dimension | Description

m* kg/mol molar mass of specie$

v, m?/s kinematic standard/bulk viscosity of liquid
g m/s? gravitational acceleration

K m? permeability tensor in the mushy zone

K kg m/(Ks®) | heat conductivity

Ah kg/(mS) latent heat of phase transition

Cp kg m?/(K s?) | heat capacity at constant pressure

Table 6.2; Parameters of the model.

Our model consists of conservation laws for the liquid ardisnass of all alloy
elementsXy, ..., Xy, the averaged momentum of the fluid flow, and the total inter-
nal energy. Since the formation of micro-structure (detedrisee Fig. 6.2) creates a
mushy environment with a definite porous structure of theennal{ the momentum
equation is formally replaced by the conceptually simplardy law; see, e.g., [11].
The unknowry| serves to distinguish between those parts of the domaiatbaiur-
rently liquid, mushy, or solid. Note that, e.g., the “liquigtgion could be defined
as that part of the domain with € (0.9, 1].

As afirst step toward the mathematical model we present tinetiess describing
conservation of mass of each individual elemgrgarticipating in the solidification
process. We express the balance of mass of the liquid ardisgdcies separately.
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() é (b) (c)

Figure 6.2: Local conditions in liquid (a), mushy (b), andidaegions (c) of the
domain.

Assuming that diffusion due to concentration gradientsegligible at the char-
acteristic flow time scale in the solidification process, ¢baservation of mass of
speciesX in the liquid state is

o€ C|X
ot

+ V- (vag*) =0. (6.1)

This evolution equation assures that the integraﬂcﬂ‘ over any volume in the
flow domain can change only due to fluxes through the bounda€y. Gimilarly,
the conservation of mass of speciksn the solid state reads

8ESC§(
ot

+ V- (vescd) = 0. (6.2)

To characterize the flow in this scenario, we distinguishwieen liquid, mushy
and solid zones. The balance equation for the linear momentdnich applies in
the liquid zone, is given by

om; 0aij

—+V.-(myv) =g — 6.3

8t+ (m;v) glp+8xj’ (6.3)
fori,j = 1,...,3. The liquid is considered incompressible wjhs constant.

Throughout, we adopt the Einstein convention on summatien epeated indices.
Here, we have used the total momentum densijtyn the x; direction

m; =vojp,

p = pl+ ps = € Clkaxk + Escgkmxk,
withk =1, ..., N. The two terms on the right-hand side of (6.3) representityrav
and viscous drag, modeled as Newtonian fluid for simplicity:

5 ov; ovj 2 Ov 81)|5
P ST < .
' Paij OX; OXi 3’78x| N §8x| N
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6.2 Modeling transport and phase-transitions in multi-ponment aluminum casting

In the mushy zone, solidified alloy dendrites form a densep®medium. In-
spired by [12], we use Darcy’s expression to relate velcanitgt pressure:

1 - op
€up| ' 0X;j '

v = —

This is only an Ansatz. A rigorous derivation via homogeti@matype arguments
is still needed (see, e.g., [13]). Finally, the solid zore @luminum) is described
as a state of rest:

v=0.

In the liquid region § ~ 1) we define the velocity through solving the momentum
equation, in the solid zoned ~ 1) we use the state of rest and in the remaining
mushy zone the Darcy formulation is chosen. Temperatureeaacyy dynamics is
sketched next. We express the total internal energy deasity

5« 1 2
e =CpT + 0] + const.
The conservation of total internal energy is given by

%@€H4%@€W=Q+Vwmh (6.4)

with the heat source rate expressed as
o€
Q=V-(kVT) + Ahﬁ'

Heat is thus added to the system by the liquid-solid phaseitians taking place
in the mushy region, expressed by the latent lidatas well as by heat conduction
with coefficientk (Fourier’s law). Viscous heating due to friction is negeatt

Besides the calculation of the model parameters (whictc@jtyi depend on the
unknowns of the problem), we need to close our model by amditiconstitutive
relations. Here we suggest two such relationships. In jplec(local) thermody-
namic properties could be used to determine the pressuréuastson of tempera-
ture and species concentrations:

p=Fu(T, ¢, ..., ¢%). (6.5)

Alternatively, we could use information from thermodynarphase diagrams to
calculate the liquid fraction

a = F(T, clxl, . ..,qx", P). (6.6)

The evaluation of (6.5) (or (6.6)) can be based on infornmadieailable from ther-
modynamic databases. Only one of these two expressions nede selected -

123



Modeling and simulation of phase-transitions in alumindimyacasting

which particular one is chosen may depend on the applicatiurthermore, to
solve the pressure a more involved analysis is required ichw{6.5,6.6) do not
play an important role. The closure poses the problem ofieffity accessing the
thermodynamic information, especially in the case whenytspecies are present.
Alternatively, this may be obtained via variational pripleis (by minimizing the
corresponding Gibbs functional), which poses the problésimultaneously solv-
ing a PDE system and finding local minimizers to a non-linean-nonvex func-
tional. Both these approaches increase the computatitioal éConsiderable care
in the reduction of the mathematical model and algorithrmetgyment is needed to
achieve realistic costs of simulation. We present an agbrbased on local poly-
nomial fitting in Section 6.3 and estimate theoretically doenputational saving
compared to a full gridding of the thermodynamic state-spac

In Section 6.4, some example calculations are given for algied one-dimen-
sional model for a slow solidification process of a singlecig® This model can
be readily appreciated as a special case of the general fatiorugiven above. The
purpose of this reduced model is to isolate the main charatits of the solidifica-
tion process and to test the efficiency of the evaluation witich thermodynamic
properties such agh are being processed. The 1D model that is proposed can be
written as

oo ta =0

o oxt ¢ (6.7)
o€ o0ce
- _ -0,
ot ox

wherelL is a coefficient related to the latent heat used to producetiase transi-
tions, whileM is a constant effective diffusivity of the liquid. The rat@le behind
this model is that we neglect all fluid flow, thus= 0, i.e., both in the liquid and
in the solid. Correspondingly, only diffusive transport & remains in this very
crude model. In the absence of gravity and at constant presgie momentum
equations are trivially fulfilled. It remains to discuss #reergy conservation equa-
tion (6.4). Under the additional assumption that the patarag, k, andC are
constant, equation (6.4) yields = CpT in which temperature is governed by

oT o€
Copir = V. (KVT) + AhZE.
PP 5t (kVT) + Ah—

If in additionk = Cpp, then the last equation reduces to

whereL = Ah/(Cpp) and we dropped the subscript The second equation of
the simplified model (6.7) is then obtained by assuming thatijuid fraction is
proportional to the temperatuiie within some reasonable range™f In this case,
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6.3 Thermodynamic representations and data reduction

the second equation of (6.7) is recovered. This model hasfect ef latent heat
being released, while the solidification front progressgshpd by diffusion. This
is a particularly appealing model for numerical analysid élastration of the main
physics of solidification. We return to this in Section 6.4.

6.3 Thermodynamic representations and data
reduction

Any CFD simulation of solidification of an alloy requires theodynamic input in
each fluid cell and at each time-step. This input may be trentdieat, the heat
capacity, and the local predictions of phase concentratéomd compositions that
occur for a given temperature under certain thermodynassaraptions. Mini-
mization of the Gibbs functional ‘on the fly’, i.e., everywbeand anytime, is too
time-consuming in this context. One way to circumvent tmahem is to employ a
thermodynamic database, which is also called a mappingnfilled literature [18].
This database can be pre-computed by performing Gibbs nzaiions for a large
number of specific combinations of temperature and phaseectrations. The
database is a discrete numerical representation of themiatton contained in the
physical phase diagram. In general, the local temperangghase concentrations
in a fluid cell in the CFD simulation are not precisely equathe available dis-
crete values of the entries in the database. Interpolatitimiis necessary, which is
much less time-consuming than the Gibbs minimization caatmn itself. In this
section we will pursue this method and incorporate polyrabfitting to reduce the
storage requirements for the database. Theoretical éssnoéthe efficiency are
also provided.

6.3.1 Polynomial fit

The problem with precomputed databases is that they eastdgrbe much larger
than the present memory of computers. Consider for exampkdlay solidified
from the four materials Al, Cu, Fe and Mg. Then a thermodymaguiantity, such
as the heat-capacit@p, is dependent on temperatufeand on three independent
species concentratioms, ¢, andcs, while the remaining oney is given bycy :=
1—-c1—cp—c3in anon-dimensionalized situation. The funct@pthen depends on
4 variables. If we would use a uniform grid for each of the farguments, covered
each by 600 points for sake of argument, we would need a meofi@ry4 x 600" =
4TB to store two thermodynamic quantities with single . Such a database
approach has been considered in [18], where it was noteddhatlations of up to
four elements can thus be realized, but calculations imnglfive or more elements
seem to be beyond reach at present. The aim of the preseioinsiedb investigate
whether it is possible to reduce the size of the databasegitowithout unduly
affecting the accuracy of the thermodynamic input deliddcethe CFD-simulation.
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Figure 6.3: Example of the dependency of the heat capacigroperature for fixed
composition at 5% of Cu, Fe and Mg in an Al alloy.

Since the thermodynamic quantities in phase diagramsaifpidisplay strong
jumps, a large number of grid points is necessary in eacltdreif a uniform grid
is used for the entries of the database. Unstructured nfoxomimeshing of the
table automatically adapted to the shape of the phase diagraxpected to reduce
the size of the grid needed to represent the table. That ssichtagy leads to much
smaller databases is illustrated in the remainder of thiticse by considering a
simple example of homogeneous solidification.

The temperature in a process of homogeneous solidificatidrealloy Al-Cu-
Fe-Mg can be described by the following equation:

dT
Cp(T, cy, C2, Cs)a =-0Q <0, (6.8)

whereT is the temperature, assumed to be spatially independehisicase, and
Q the heat extracted from the system. The heat-cap&uitys the so-called ef-
fective heat-capacity, in which the latent heat is includBaree concentrations,
c; andcz are needed to describe the concentration distributioas,the relative
amount of molecules of Al, Cu, Fe and Mg. For the present examp assume
that the three concentrations of Cu, Fe and Mg are equak c; = c3 = 5%
(mass concentrations). Since the solidification processidered in the present ex-
ample is homogeneous, the concentrations are constanade sput also constant
in time, because of mass conservation. Therefore, to s6l8¢the thermodynamic
database (the phase diagram) can essentially be redudetrepresentation @p
as a function of temperature.

We computed the temperature dependendepotinder these concentration con-
ditions for the Al-Cu-Fe-Mg system by minimizing the Giblbbed energy. The
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6.3 Thermodynamic representations and data reduction

result is shown in Fig. 6.3, clearly illustrating a centreafure of the phase dia-
grams: strong jumps appear, but in between these ‘disaotiés’, the function is
relatively smooth. Fig. 6.3 has been obtained with a unifssmperature grid con-
taining 600 points. Obviousl¥p can be accurately captured with much less points
if one would only store the locations at which the ‘discountiies’ appear, while
the smooth parts in between would be approximated by seifadlynomials. This
basic observation will be worked out in more detail next,ltovs the principle.

To reduce the thermodynamic database storage we define algaoaion by
a threshold of & J/(gK), fixed a priori for simplicity. We consider two options
for the smooth pieces between jumps: first-order (straigles) and second-order
Lagrange polynomials (parabolae). The coefficients of tigrmmials can simply
be computed from the values at and between two jumps. The mageints of
a smooth region are collocation points for the first-orderdiso for the second-
order polynomial. For the second-order polynomial a thotlocation point needs
to be added. For this we take the point half way in the intenvaler consideration.
Thus instead of 600 floating point numbers (uniform grid) veedhto store much
less floating point numbers to represent the behavior in &ig.with piecewise
continuous polynomials. In particular, we require only linbers in case of linear
polynomials, and 23 in case of second-order polynomials.

To assess the quality of the reduced data representatiossives(8) for the three
different numerical representations©f. We compare (a) the fine-grid represen-
tation consisting on 600 uniformly distributed points, ébinear polynomial and
(c) a second-order polynomial fit. In each case a four-stagggB-Kutta method
with a sufficiently small time-step is used to integrate thaaion. The right-hand
side is assumed to be constant and equ&) te —1 J/(gs). The results of the com-
putations are shown in Fig. 6.4. The second order polynofitiptovides a very
accurate approximation of the fully resolved case — thermisliscernible differ-
ence between the curves based on method (a) and (b). It itudexicthat in this
example the size of the database can be reduced by a factoyurfca30 without
significant loss of accuracy (in this example a reductiomf@)O0 data points to 17
or 23 in case linear or quadratic interpolation is used).

The homogeneous case above is very simflg;is reduced to a function of
temperature alone because the concentrations remainsthnarin practical CFD-
calculations the concentrations change. Neverthelessfdbve method can in prin-
ciple also be applied to more practical cases: the temperaimension can be
treated as in the example above, using piecewise discantsypolynomials, while
the concentration dimensions are still treated with linaggrpolation on uniform
grids. If we would use a structured nonuniform meshing otthrecentrations (clus-
tering in the most important regions) for the Al-Cu-Fe-Mtpglwe might be able
to obtain a reduction of a factor of 3 in each concentratialucgion. Thus the total
storage reduction would be a factor:382 ~ 800, such that the original database of
4TB would reduce to 5GB and thus fit well into the memory of arodern personal
computer.
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Figure 6.4: Simulation results for 1D solidification withrgtant composition.

The above basic approach to reducing the storage requiréaefthermodynam-
ics database can be extended to a more complete computakidaaepresentation
scheme for demanding casting problems. In the next sectidescribe the main
elements of this methodology.

6.3.2 Alternative approaches

In the following sections we consider an alternative apgpinobased on a non-
uniform mesh representation and discuss its merits andvhsgages. The devel-
opment of this method has been guided by the following ppiles::

1. The thermodynamic quantities of interest fall into twifetent categories:

a) Quantities that are smooth and change slowly with redpectianges
in composition and temperature, for exampknthalpiesand phase
compositionwhat elements are present in a certain phase).

b) Quantities that change abruptly and discontinuoushgxample:phase
information(what phases are present and in what relative amounts) and
effectiveheat capacities

2. Some regions of the phase diagram are more important anddsbe repre-
sented with higher accuracy than other regions of lessastefl his is partly
due to the occurrence of phase changes, but also since sdime @ements
are only present in rather small concentrations in the sysseich that large
parts of the phase diagram are (probably) never needed mudation.
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Figure 6.5: Example hierarchical sparse grids (Curtisa€ihaw type) containing
five levels of successive approximations (left panel) ardesiels (right
panel), respectively.

3. The evaluation of phase diagram data needs to be veryeeffiguch that
complicated interpolation schemes are out of the question.

With regards to the last point, the optimal solution wouldat@atabase approach
and multi-linear interpolation of the values of query psintvhich is very fast to
implement, running inO(n) time when the database is represented on a regular
grid with n grid points per dimension. As has been noted in the previeasos,
however, such an approach is ultimately infeasible dueddatge number of grid
cells needed to represent the phase diagram accuratespdlce complexity being
of orderO(n%), whered is the dimension.

It should be noted, though, that all thermodynamic qua#itf interest, for ex-
ample the heat capacities, can be derived from two ingrésligione: smoothly
varying enthalpies anghase informationWere this phase information discrete, we
could proceed with two different strategies:

1. Model the continuous enthalpies by some simple intetjpolacheme.
2. Model the discontinuous phase boundaries separately.

The first point can be realized, for example, by a hierar¢hiepresentation
on sparse grids [16], for which an efficient implementatiorlMATLAB is avail-
able [21]. The mean of a quantity of interest over the phaagrdim is represented
as a single number in the first node of the hierarchy, and nocedized changes are
represented by a number of sparsely distributed pointsiadrltevels of the hierar-
chy. Fig. 6.5 shows an example of the sparse grids typicakyat different levels
of detail.
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If the thermodynamic data were representedhiermodynamic variabl@sthen
the phase diagram would consist of a so-cattetl structure[17], such that each
cell represents one unique phase. Unfortunately, it isrivaatto transform element
concentrations into thermodynamic variables and viceavelBait when concentra-
tions are used as variables, thaixturesof phases occur, where two or more phases
are coexisting in the system in varying amounts. For bingsgesns, these phase
mixtures can be described by analytical formulae, for eXartipeleverrule [17],
which is simply linear interpolation of two phases with respto concentration,
but already for ternary systems no such simple rule is availaThis means that
in certain regions of the phase diagram unfortunately niyt e phase boundaries
have to be represented, but also the complete phase inform@n the other hand,
this information is usually also smooth inside a given ragiothe phase diagram.

To conclude: In principle the thermodynamic informatioreded in actual sim-
ulations of solidification processes concerns either (19atily varying data, or
(2) discrete information about the phase boundaries. Tiktgdtion was already
apparent in the example discussed in Subsection 6.3.1.

6.3.3 Tracing the phase boundaries

From the above it is clear that the biggest problem in theiefftccalculation of
thermodynamic properties is the accurate representafidmecboundaries of the
phase diagram. These boundaries form-a 1 dimensional hyper-surface if the
system isr dimensional, i.e., is described by the relative conceioinatofn distinct
elements and temperature. Note that concentrations has@aup to one, so in
fact there are onlp— 1 independent concentration variables to consider. Inapin
system, the phase boundaries are one-dimensional, forpeam

In general, one can distinguish two basic approaches forgpeesentation of
hyper-surfaces such as occur in the thermodynamic closserithing the phase
transitions. Anexplicit surface is represented by some parametric surface, given
by a multidimensional spline, for example, or a represéntads an unstructured
grid by simplices. In two dimensions the latter is often imad by a Delaunay
triangulation [15]. On the other hand, amplicit surface is represented by a number
of smooth, local basis functions and the surface is definemhaso-contour of a
scalar function. This method is attractive, since it alldéwtrace surfaces elegantly
and accurately by level set methods [25], but unfortunatedycomputational costs
can be very high.

Since we need phase boundary information for the approattinediin the fol-
lowing section, we describe here a simple method to tradedbedaries. The infor-
mation obtained consists of a number of points lying vergelto the actual phase
boundaries (within a user-specified numerical toleranoé)@an be used as input

9Thermodynamic variables form a complete set that uniquelcdbes a thermodynamical sys-
tem. For the solidification process, these are usually takdre the temperature, pressure and
chemical potentials associated to the involved species
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for the more advanced level set methods mentioned. The agipis demonstrated
on a binary system consisting of the two elements Pb and Serniddynamic data
for this system is available through calls to the&mAPP library® which is the
calculational back end of the commerciahEMSAGE software [19, 20]. The in-
dependent variables are temperaflirand compositiorx. The latter measures the
relative amount of Pb, such that€f x < 1. The region of the phase diagram we
considered was a temperature range of 320 < 620, measured in Kelvin.

The boundaries of the phase diagram have been traced byletingcmethod.
For simplicity, we have distributed a number of points (3&@ularly along thel
axis and then bracketed all points where a phase changespseuyingx, by an
iterative bisection method [24]. The algorithm stores tviffedent concentration
valuesx; < X2 and evaluates the discrete phase information at both poifts
a difference is found, the phase information at the middletpry, = 252 is
evaluated. If the phase &i» is the same as the oneat, thenx; gets updated to
X12, otherwisex, gets updated. If the phase at the middle point is differesrnfr
both phases at; andx», respectively, both subintervals are (recursively) disgc
The algorithm continues untik; — x2| < €; here we used = 1074,
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Figure 6.6: Traced phase diagram of Pb-Sn binary examptersys

Complementing this “vertical” tracing, we have analoggudilstributed points
along thex axis and bracketed all phase changes, varyling-or this horizontal
tracing we have used 500 points. The resulting phase boigsdare shown in
Fig. 6.6. In each of the six areas in the figure a physicallfedéht equilibrium
state is found.

10A restricted version called @MAPPLITE is available for private, non-commercial use.
URL: http://gttserv.lth.rwth-aachen.de/"cg/Software/Chem App/
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Figure 6.7: Distance (left panel) and size function (rigabel) for the liquid-Pb
mixture phase in the Pb-Sn binary example system.

6.3.4 Triangulation of phase regions

The next step is the triangulation of the different phaséoreg These have been
performed with the simple mesh generator developed in [R2¢ input needed for
this code is a signed distance functa(T, x) that returns the distance to the nearest
phase boundary, and a size functhoi, x) that returns the desired edge length of
the triangulation at each point, thereby allowing non-omif adaptive meshing.

Fig. 6.7 shows the distance function for a certain phasenegi the liquid-Pb
mixture phase. We use the Euclidean distance

d(T, x) = ((T —TH2 4k (X — x*)z)l/z,

where(T*, x*) denotes the point on the phase boundary close@I t&) andk =
200 was used to weigh the contribution of concentration gharwith respect to
temperature changes. The distance function we used ipatéed on a regular
grid, where the distance to the closest phase boundary Ipaériteen approximated
by the minimum of the distances to the previously traced damnpoints.

From this distance function, a size function has been coegputor simplicity,
we used

h(T,x) =14 10 exp(|d(T, x)/2do|) ,

wheredp = mint x d(T, X) is the characteristic width of the phase region. Results
of such an adaptive meshing are shown in Fig. 6.8.

In a practical application of this method, one needs to mestphase diagram
separately in each region and then join the triangulatiotiseainternal interfaces,
i.e., the phase boundaries. A discussion of these issudsectund in [23]. Also,
the size function should depend on the local accuracy léalis required. In
fact, one can also consider a data-driven approach, wheaetaal simulation is
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Figure 6.8: Example triangulation of the liquid-Pb mixtyptease. Left panel shows
results by uniform size function, right panel shows resoijtslistance-
dependent size function.

performed in which the locations in the phase diagram tleahaeded are recorded.
From these data one can construct a density fun¢t{@n x), where regions of the

phase diagram that are needed often in a simulation wouldgresented in more

detail than regions that are needed rarely. Of course, analsa combine all these
considerations into one common size function.

This method generalizes todimensions by replacing triangles (2-simplices) by
n-simplices. Each simplex is then representednby 1 points and consists of
(”erl) edges. The storage requirements are therefore of @d@e?) in the number
of simplices used. More importantly, when a CFD simulati@eas to evaluate
phase diagram information, first the corresponding simpéseds to be found, and
then the values stored at its edges are linearly interphlaféne location of the
simplex containing the query point is an example of a poicatmn problem with a
typical time complexity! of orderO(logn) [15] in the number of stored simplices
n, whereas the interpolation is linear.

6.3.5 Localized caching

From the above it should be clear that the problem of effibjeepresenting phase
diagram information is quite difficult, and the familiar deoff between storage
and time complexity is encountered. Probably the biggeshga in computing

time can therefore be expected to be achieved on quite aatfifféevel. Recall

that thermodynamic data is needed for each grid cell andcht teme step, but (1)
the local state in each cell (temperature, concentratiosisally changes slowly in
between time steps, and (2) in most cases the local statgebatowly between
spatially neighboring cells. An efficient implementatidmosld therefore try to also
make use of these two properties, recycling already cordghermodynamic data

1In MATLAB this is implemented in the functiasearch, which is based on the iQULL code [14]
freely available fromhttp://www.ghull.org/
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as much as possible and only recomputing these data if dbohecessary.

The basic idea is to store a pointer in each grid cell thattpdimthe thermody-
namic data used in the last time step. If the state of the o&lsdhot change in a
certain range, the thermodynamic data is reused withoupatation (in a more ad-
vanced implementation, linear changes could be taken agoumt and interpolated
locally at each time step). Of course, the tolerance useddvswally depend on the
location in the phase diagram: close to a phase boundarphémmbdynamic data
of each cell should be updated more often than in the middhgpbfase region. Fur-
thermore, if the local state of a grid cell changes too much $iat re-computation
of thermodynamic data is necessary, the local structurbeftid could be used
advantageously. Quite often a neighboring grid cell coaldehused the necessary
data in the previous time st&p Only if no neighbor has the necessary data cached,
a re-computation/lookup should be started. Even then, talsagepresentation of
the phase diagram could use local structure advantageduostgad ofO(logn) a
constant time complexity (on the average) seems possible.

6.4 Computational modeling of solidification fronts

In this section we consider the PDE system (6.7) to illustsadme basic mech-
anisms that characterize a progressing solidificationtfré&&mphasis is given in
this model to the effects of latent heat release in the alesehfiow. The model
describes the phenomena in one spatial dimension onlyhtpagmicking the be-
havior along the central axis of the ingot. It will be showattla simple spatial
discretization suffices to capture the physics of the probded that the qualita-
tive features of the solidification front are well capturethis implies that (6.7)
can be used as an efficient vehicle for testing improvemarttssi thermodynamics
treatment without leading to lengthy simulations. This barbeneficial in devel-
opment stages of reduced thermodynamics representatvbiis,retaining a clear
view at the accuracy penalty incurred. In the future, it vdolé helpful to extend
this simple model with a realistic thermodynamic descoiptof the latent heat, to
illustrate the computational gain that may be achieved wité of the approaches
outlined above. Currently, this model is only used to iltatt the occurrence of
solidification fronts in case the latent heat is only rougtdyameterized.

We consider the coupled system of equations (6.7) on theinteaitval 10, 1[.
The initial temperature is taken constant and larger thamtblting temperature of
the mixture, denoted by,,. Moreover, we consider the initial state to be liquid,
implying that att = 0 we haver; = 1 throughout the system. For convenience, we
drop the index and implicitly assume that= ¢ refers to the volume fraction in the
liquid phase. Fully solidified material corresponds ther te 0. To complete the
basic description, we impose Neumann conditions &t0, i.e., putde /0x(0, t) =

12t even seems possible to use a grid cell's spatial neightmoisterpolate the thermodynamic
values at that cell, sufficiently far away from phase bouiesaat least
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0T /ox(0,t) = 0 and Dirichlet conditions at = 1, i.e.,e(1,t) = 0andT (1,t) =
To where, with proper non-dimensionalizatidp = 1 < Ty, indicating that at
x = 1 the solidification front starts:

oT 82T o€

ot ox2 ot
o€ 02%¢ _
ot ox2

0

(6.9)
TX,00=1<Tm, e(Xx,00=1

oT o€

—(@0,t) = —(0,t) =0
ax( , 1) ax( , 1)
TLt)=1, €1,t)=0

where, for convenience, we use a unit diffusion coefficidnt 1.

This problem can be readily discretized using standarcefihifferences and an
explicit time-stepping method. For convenience, we foatrithe discrete model
on a uniform gridx; = jh whereh = 1/N denotes the mesh spacing. Likewise,
we choose a constant time-st&p and approximate the solution at timgs= nAt.
Following the usual steps, we arrive at

n+1 _
€ =€ +vlefig— 26 + €y 6.10)
o0e\N .
n+1 _ Tn n _ n n n(~*
T = TP o (TR, — 2T +TJ_1)+AtLJ(at)j

ot
approximated backward in time. At the boundaries weTiuit= 1 andey, = 0 and

use the simple approximation for the Neumann boundaxy-at0 as:T{' = T;" and
€y = €. In this formulationv = At/h? which has to be kept sufficiently small in
order to maintain stability of the simulation.

The effect of heat released during solidification is repméeszk by the functior.
Purely intuitively, one may expedt to be large in case the temperature is close to
the melting temperature and considerably smaller at teatypers away from the
melting temperature. Suitably normalized, the simplessjae discrete model for
Lis

forl1<j <n-—1. Here,e? ~ €(Xj,tn) ande” ~ T(Xj,tn). The term(a_f)? is

n_ {ﬁ aTm < TP < Ty (6.11)

711 otherwise

where for illustration purposes we assuphg> 1. More involved models fok. can
be obtained analogously to that presented in Section 3. kawat this level of
detail it is sufficient to indicate the effect of heat releasthis crude modeling.
Simulating the solution to the simple model can be done wekraightforward
MATLAB implementation. For this purpose we adopiegd = 2, # = 100 and
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Figure 6.9: Developing temperature profile characterizhmg solidification front.
The solid develops from the right - subsequent curves coores to
snapshots at different times.

o = 0.8. The moving solidification front that is obtained in thisyia shown in
terms of the temperature profiles in Fig. 6.9. We clearly gacre the progressing
solidification. Particular to the adopted model fors the slight jump in the deriva-
tive near the front. In Fig. 6.10 we display the effect of hedtase on the location
of the mushy zone. We notice that an increased heat releakts yi more rapid
solidification. This problem was also treated indepengenith an implicit time-
stepping method in combination with an adaptive mesh. Tllogva to capture the
phenomena in more detail at lower computational cost. Tla fesults of the two
codes compared very closely, thereby providing an indepaincheck.

6.5 Concluding remarks

In this paper we described the modeling of solidificationcesses in aluminum
casting. We emphasized the central role that the thermauligseof solidification

has. Particularly at realistic numbers of alloying elersahie proper description
of the thermodynamic components is a strong limiting factbine obvious brute
force approach based on minimization of the Gibbs free gndogs not provide a
realistic option. Rather, database approaches, not uthidse used in combustion
research, need to be developed to bring the computatiofwat dbwn to a more

manageable level. It was argued that simply using a pre-otedplatabase to rep-
resent the thermodynamics is insufficient and further dediaction is mandatory.
In Section 3 a simple approach based on piecewise polyndittired was described
and shown to bring the data-handling down to a realistidldé¥ewever, the method
cannot be easily extended to spatially dependent situsatigor that purpose more
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Figure 6.10: Effect of heat release on the solidificatiomfrdefined atk where
T(X,t) = Tyn. In (@) we use® = 1 and in (b) the valug = 100 is
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involved data representations and methods for efficientgesing were suggested
as well. The confrontation of these methods with realissldgication simulations
as are adopted in industry is still an open challenge. Basdteexperience with
the simplified approach, savings on the order of 100 or mopeappossible with-
out affecting the accuracy of predictions too much. Whiledalieping the improved
data-base handling for solidification processes, use dmildade of the simplified
one-dimensional simulation model that appears to capterenain physics of a pro-
gressing solidification front at modest computational €o$his could be a helpful
testing ground for the incorporation of several of the psmgzbdata-reduction tech-
niques and measures to speed-up the computations. Resedhett direction is
much needed and constitutes a challenge for the future.
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