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Abstract

Phylogenetic networks are used in biology to represent evolutionary histories. The
class of orchard phylogenetic networks was recently introduced for their computational
benefits, without any biological justification. Here, we show that orchard networks
can be interpreted as trees with additional horizontal arcs. Therefore, they are closely
related to tree-based networks, where the difference is that in tree-based networks the
additional arcs do not need to be horizontal. Then, we use this new characterization to
show that the space of orchard networks on n leaves with k reticulations is connected
under the rNNI rearrangement move with diameter O (kn + nlog(n)).

Keywords Phylogenetic networks - Orchard networks - Rearrangement moves -
Connectedness

1 Introduction

Phylogenetic trees and networks are used in biology to represent evolutionary histories
of groups of taxa (taxonomic units), which can for example be different species or
variants. Phylogenetic trees are used to show how the taxa (hypothetically) evolved
from a common ancestor by branching events. Phylogenetic networks are used to
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augment this view with the inclusion of reticulate processes such as hybridization,
recombination and horizontal gene transfer (HGT), which is also called lateral gene
transfer (LGT) (Bapteste et al. 2013; Elworth et al. 2019; Blais and Archibald 2021).
In this paper, we consider rooted phylogenetic trees and networks, in which the leaves
represent the considered extant taxa and other nodes represent hypothetical ancestors.
The direction of the arcs represents the direction of evolution. In phylogenetic net-
works, reticulate processes are represented by reticulation nodes with two or more
incoming arcs (called reticulation arcs). See Fig. 1 for an example.

Sometimes, only a subset of all phylogenetic networks is considered, either to ease
the computation of a good representation of the actual evolutionary history (e.g., van
Tersel and Moulton 2014; Bordewich et al. 2018; Erdés et al. 2019; van Iersel et al.
2021a; Borst et al. 2020), or because the evolutionary history is expected to have a
certain structure (e.g., Markin et al. 2019). Examples of such subsets are the classes of
phylogenetic networks called tree-child networks, tree-based networks, and temporal
networks. Tree-based networks are mainly used for their biological interpretation as a
tree with additional arcs (e.g., Francis and Steel 2015; Cardona et al. 2015; Fischer et al.
2020). Temporal and tree-child networks are especially interesting because of their
computation benefits and nice mathematical properties. Tree-child networks can be
biologically interpreted as networks in which each reticulate event leaves a trace in the
genetic information of the studied species (Cardona et al. 2008a; Markin et al. 2019).
Networks with a temporal labelling can be biologically interpreted as networks where
each reticulation represents a hybrid speciation event (Moret et al. 2004; Baroni et al.
2006). Networks that are tree-child and have a temporal labelling are sometimes simply
called temporal (Humphries et al. 2013). It should be noted though that extinctions
or undersampling may lead to phylogenetic networks that are not temporal or not
tree-based.

Another class of networks is the class of orchard networks, which were recently
introduced for their computational benefits (Janssen and Murakami 2021; Erd6s et al.
2019) while being more general than tree-child networks. They are usually defined as
networks that can be reduced to a single leaf by a series of cherry-picking reductions
(for this reason, they were called “cherry picking networks” in Janssen and Murakami
(2021)). Roughly speaking, a cherry picking reduction consists in (1) deleting one
leaf of a pair of leaves with a common parent (reducing a cherry) or (2) deleting a
reticulation arc of which each endpoint is the parent of a leaf (reducing a reticulated
cherry; see Sect. 2.1 for formal definitions). Orchard networks come up naturally when
one builds networks by repeatedly considering pairs of taxa that seem to be closely
related in the data (Bordewich et al. 2018; van Iersel et al. 2021a; Erdés et al. 2019; Bai
et al. 2021). Recently, it was shown that they can be characterized more structurally
using so-called acyclic cherry covers (van lersel et al. 2021b).

In this paper, we show that orchard networks can also be characterized in a very nat-
ural way. We prove that orchard networks are precisely those phylogenetic networks
that can be obtained from a phylogenetic tree by inserting horizontal arcs (when the tree
is drawn with the root at the top and all arcs directed downwards), see Fig. 1. Hence,
they are closely related to the class of LGT networks (Pons et al. 2019), because
the horizontal arcs can be used to model LGT events. However, note that, in con-
trast to LGT networks, orchard networks do not (necessarily) specify which arcs are
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Y. pestis CO92 (3)
B. aphidicola (5)
W. brevipalpis (6)
H. infuenzae (7)

P. multocida (8)
V. cholerae (9)

P. aeruginosa (10)
X. fastidiosa (11)
X. axonopodis (12)
X. campestris (13)

S. typhimurium (2)

Fig.1 A phylogenetic network on taxa within the y -proteobacteria class with two reticulate events (Nakhleh
et al. 2005). The dotted arcs with the arrowheads illustrate the passing of genetic material via a horizontal
transfer. In this and all subsequent figures, the non-horizontal arcs without arrowheads are directed down-
wards. The network is a binary orchard network, since it can be reduced by a sequence of cherry reductions
(see Sect. 2.1 for formal definitions of such reductions). One possible sequence that would reduce the
network is (1, 2)(3,4)(2,4)(5, 6)(4,6)(7, 8)(9, 8)(10, 6)(6, 8)(8,9)(9, 10)(11, 12)(12, 13)(10, 13). An
HGT-consistent labelling of the network is given, indicated by the number next to each vertex. Note that
the endpoints of an arc have the same label precisely if the arc corresponds to a horizontal transfer

horizontal. If a network is orchard, it can be drawn as a tree with additional horizon-
tal arcs, but there may exist multiple such drawings as well as other drawings. Our
characterization of orchard networks is similar to the previously mentioned concept
of tree-based networks, which are those networks that can be obtained from a phylo-
genetic tree, called a base tree, by inserting arcs, called linking arcs. The difference is
that for orchard networks the linking arcs need to be horizontal while for tree-based
networks they do not.

Our characterization of orchard networks can be seen as a time-consistency prop-
erty, which we call an HGT-consistent labelling (see Fig. 1). It basically says that
orchard networks are consistent with an evolutionary history in time in which retic-
ulate events represent instantaneous (horizontal) transfers such as HGT events. This
is similar, but not the same, as the notion of time-consistency, or temporal labelling,
that is commonly found in the phylogenetic networks literature (Moret et al. 2004;
Baroni et al. 2006). The difference is that in a temporal labelling both arcs entering
a reticulation need to be horizontal, which is more natural when reticulations repre-
sent hybridization events. This notion has been widely popular in defining network
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classes, which have been explored in relation to metrics (Cardona et al. 2008b), encod-
ings (Cardona et al. 2008b), and reconstruction methods (Borst et al. 2020). Another
related notion of time-consistency was introduced in Erdem et al. (2006), which allows
bidirectional horizontal arcs as well.

Unlike the other definitions of orchard networks, the HGT-consistent labelling that
we introduce here can easily be interpreted biologically. This makes the class of orchard
networks even more relevant, as it has a natural biological interpretation as a tree with
horizontal arcs. Nevertheless, as with the classes of temporal and tree-based networks,
extinctions or undersampling may lead to networks that are not orchard, because one
or more arcs corresponding to HGT events may need to be drawn forward in time.

To showcase the mathematical utility of the new characterization, we use it to
prove that the space of orchard networks is connected under rooted Nearest Neighbor
Interchange (rNNI) moves. This confirms the speculation that was mentioned in the
concluding remarks of Erdds et al. (2021). Connectedness of search spaces under
rearrangement moves, such as the tNNI move, is important because of their use in
local search heuristics and Bayesian methods in phylogenetics (e.g., Markin et al.
2019; Bouckaertetal. 2019; Wen et al. 2018). Although it has already been proven that
rearrangement moves are sufficient to connect several classes of networks (Bordewich
et al. 2017; Klawitter 2020; Erdds et al. 2021), the connectedness of the space of
orchard networks has not been investigated yet.

In this paper, we fill this gap in the literature. Because orchard networks naturally
occur as results of statistical models for network generation, such as the level-k LGT
networks from Pons et al. (2019), this result may prove to be especially important.
Indeed, our results then show that it is possible to use such a model as a prior in
a Bayesian method in conjunction with tNNI or rooted Subtree Prune and Regraft
(rSPR) moves, while keeping the search space connected.

2 Preliminaries

In this section, we define phylogenetic networks and the original definition of orchard
networks. Then we recall the definition of an rNNI move on a phylogenetic network,
and some results related to these moves.

Definition 1 A directed phylogenetic network on a set of taxa X is a directed acyclic
graph whose nodes are of the following types:

Root: a node with indegree-0 and outdegree-1.
Tree node: a node with indegree-1 and outdegree at least 2.
Reticulation: a node with indegree at least 2 and outdegree-1.
Leaf: a node with indegree-1 and outdegree-0.

The leaves are bijectively labelled by the taxa in X. Because of this, we refer to a leaf
by its label in X and vice versa. Non-leaf nodes will also be called internal nodes.
Furthermore, we refer to directed phylogenetic networks as networks for short.

A network where each tree node and each reticulation has a total degree (sum of
indegree and outdegree) of exactly 3 is called a binary network. We use the term
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non-binary to mean not necessarily binary; in particular, binary networks are also
non-binary. Most networks we consider in this paper are binary networks. We prove
results on non-binary networks only in Sect. 3.2.

As anetwork N is a directed acyclic graph, we have a natural ordering on the nodes
of N.If N contains an arc (u, v), then we say that u is a parent of v, that v is a child
of u, that u is the tail of (u, v) and that v is the head of (u, v). If there is a directed
path from u to v, then we say that u is above v and v is below u. An arc (u, v) is a
reticulation arc if v is a reticulation; it is a tree arc otherwise.

The reticulation number r (N ) of anetwork N is the total number of reticulation arcs
minus the total number of reticulation nodes in N. In a binary network, the reticulation
number is simply the number of reticulation nodes.

We say that two networks N and N’ are isomorphic if there exists a bijection f
between the nodes of N and the nodes of N’ such that (u, v) is an arc of N if and only
if (f(u), f(v))isan arc of N and each labelled node of N is mapped to a node in N’
with the same label.

Let N be a network and let v be a node in N. For an arc (u, v) in N, contracting
the arc (u, v) is the action of deleting the arc (u, v) and identifying # and v. We say
that a network N’ is a binary resolution of N if N’ is binary and a network isomorphic
to N can be obtained from N’ by contracting arcs.

2.1 Orchard Networks

Orchard networks were first introduced as networks that can be reduced by picking
cherries and reticulated cherries (Janssen and Murakami 2021; Erdds et al. 2019). In
this section, we recall this definition of orchard networks.

Definition 2 An ordered pair of leaves (x, y) in a non-binary network N is a cherry if x
and y share a common parent. The pair (x, y) is a reticulated cherry if the parent p,
of x is a reticulation, and p, and y share a common parent. If (x, y) is a cherry or a
reticulated cherry, we call it a reducible pair.

Observe that (x, y) is a cherry in N if and only if (y, x) is a cherry in N. Such an
equivalence does not hold for reticulated cherries. Suppressing a node v with exactly
one parent u and exactly one child w refers to deleting the node v and adding an
arc (u, w).

Definition 3 Let N be a non-binary network and let (x, y) be a reducible pair in N.
Let p,, py denote the parents of x, y, respectively. Reducing (or picking) the pair (x, y)
in N consists of the following operations (see Fig. 2).

e If (x, y) is a cherry, then delete x and suppress p, if p, is consequently a node of
indegree-1 and outdegree-1.

o If (x, y)isareticulated cherry, then delete the arc (py, px) and suppress indegree-1
and outdegree-1 nodes (py and p, are the only candidates for this suppression).

It is easy to see that the graph obtained by reducing a pair from a network is
still a network, precisely because we suppress indegree-1 and outdegree-1 nodes. We
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a b c d a c d a b c d
N N(b,a) N(d,c)

Fig.2 The network N on the set of taxa {a, b, ¢, d} has a cherry (a, b) and a reticulated cherry (d, ¢). The
networks N (b, a) and N (d, c) are the networks obtained by reducing the respective pair from N

let N (x, y) denote the network obtained by reducing a pair (x, y) from a network N.
Let S be a sequence of ordered pairs on distinct elements. The network obtained by
repeatedly reducing the pairs of S in order from N is denoted N S.

Definition 4 A non-binary network is orchard if there exists a sequence of ordered
pairs S such that N S is a tree with one leaf. In such a case, we say that S reduces N.

We call a sequence of ordered pairs a cherry-picking sequence if it reduces some
orchard network, such that the length of the sequence is minimal. It was shown inde-
pendently in Janssen and Murakami (2021) and Erd&s et al. (2019) that picking any
reducible pair in an orchard network results in another orchard network (also for non-
binary networks Janssen and Murakami 2021). This means that in general, orchard
networks may have multiple cherry-picking sequences that reduce them. See Fig. 1
for an example of an orchard network.

2.2 Tree-Based Networks

Tree-based networks were introduced as those that can be obtained by adding arcs
between arcs of a given base tree (Francis and Steel 2015). We recall the following
definition.

Definition 5 A binary network N is tree-based with base tree T if N can be obtained
from 7 in the following steps.

1. Replace some arcs of T’ by paths, whose internal nodes are called attachment points;
each attachment point is of indegree-1 and outdegree-1.

2. Place arcs between attachment points, called linking arcs, so that the graph contains
no nodes of total degree greater than 3, and so that it remains acyclic.

3. Suppress all attachment points not incident to any linking arcs.

Definitions regarding rearrangement moves are given in Sect. 4.1.

3 Characterization of Orchard Networks

In this section, we prove that orchard networks can be characterized as phylogenetic
networks that admit a certain type of time-consistent labelling. We show this first for
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binary orchard networks, and later extend the characterization to non-binary orchard
networks.

3.1 Binary Orchard Networks

Definition6 Let N be a binary phylogenetic network with node set V. An HGT-
consistent labelling of N is a labelling # : V — R such that

1. For all arcs (u, v), t(u) < t(v) and equality is only allowed if v is a reticulation.

2. For each internal node u, there is a child v of u such that (1) < t(v).

3. For each reticulation r with parents u and v, exactly one of (1) = #(r) and ¢ (v) =
t(r) holds.

The properties listed in Definition 6 will be referred to as Properties 1,2, and
3, respectively. The biological interpretation of a network with an HGT-consistent
labelling is that reticulations are caused within the network by horizontal transfers.
Given a network with an HGT-consistent labelling, we call the arcs whose endpoints
have the same labels horizontal arcs. Property 3 ensures that reticulation nodes are
contemporaneous with one of their parents—in particular, with the parent from which
genetic material is passed via the horizontal arc. Intuitively, one can view a network
with an HGT-consistent labelling as a tree with horizontal arcs added to it. This means
that a base tree of a given network with HGT-consistent labelling can be obtained by
deleting all horizontal arcs. The following observation follows immediately.

Observation 1 Each binary network that admits an HGT-consistent labelling is tree-
based. In particular, a base tree can be obtained by deleting all reticulation arcs where
the tail and head have the same label.

The converse of Observation 1 does not hold. This can be seen as follows. We say
that a network contains a crown if there exists a set of nodes {uy, ..., ug, vy, ..., v}
with arcs {(u;, vi), (uj, viy1) : i € [k]} where [k] = {1, ..., k}, and where the indices
are taken modulo k. Consider a tree-based network that contains a crown, such as the
network in Fig. 3. Such a network does not admit an HGT-consistent labelling. To
see this, first note that in such a labelling ¢, without loss of generality, #(u1) = t(v1)
(by Property 3). Moreover, if ¢#(u#;) = t(v;) then it follows that 7(u;) < t(vi+1) (by

Fig.3 A binary tree-based

network N on the taxa set {a, b}

that does not admit an

HGT-consistent labelling since it u1 Uz
contains a crown on the

nodes uy, up, vy, v

V1 V2
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Property 2) and hence that #(u; 1) = #(v;+1) (by Property 3). Then, by induction, it
follows that 7 (u1) < t(up) < --- < t(ug) < t(uy), a contradiction.

We now show that every binary orchard network admits an HGT-consistent labelling
of a certain form.

Lemma 1 Each binary orchard network admits an HGT-consistent labelling t where
two nodes have the same label only if they are a parent—child pair where the parent is
a tree node and the child a reticulation.

Proof Let N be a binary orchard network with leaves I, ...,l,, and let § =
(x1,¥1), - -+, (xm, ym) be acherry-picking sequence for N. Because N is binary, it can
be reconstructed from S by starting with the one-leaf tree with leaf y,, and reattaching
the pairs from S in reverse order'. Now label the root node p with 7(p) = 0, each leaf
lj with t(l) = m+ j, and each internal node v added when reattaching the pair (x;, y;)
witht(v) =m+1—1.

We show that ¢ is indeed an HGT-consistent labelling of N. When adding a pair to
a network, the two newly introduced nodes are not above any existing internal nodes,
and have a greater labelling than any other existing internal nodes. Thus any internal
node has a label greater than or equal to that of any of its parents. Adding to the fact
that we label the leaves so that they have labels of at least m + 1 and internal nodes
have labels of at most m, we have that for all arcs (u, v), t(#) < #(v). The labelling
of the leaves also means that two nodes in the network have the same label under ¢
only if they are a parent—child pair where the parent is a tree node and the child is a
reticulation. Therefore, Property 1 of the HGT-consistent labelling is satisfied. To see
that ¢ satisfies Property 2, we look at tree nodes and reticulations separately. A tree
node u has two children, one of which is possibly added to the network at the same
time as u. The other child v of u is either a leaf or an internal node that is added to the
network after u has been added. But this would mean that #(z) < f(v). On the other
hand, a reticulation r has one child c. Every reticulation node is added to the network
with one of its (non-reticulation) parents; this means that c is either a leaf or an internal
node that is added to the network after r has been added. This implies #(r) < t(c).
So Property 2 is satisfied. Finally, to see that Property 3 is also satisfied, consider a
reticulation r with parents u# and v. The reticulation » must have been added to the
network with one of its parents, say u, so that #(u) = #(r). This means that the node v
was already in the network when r was added; due to how we have defined ¢, we must
have that #(v) < #(r). Thus ¢ satisfies Property 3, and therefore it is an HGT-consistent
labelling.

In addition, this gives a labelling ¢ in which each label is used at most twice. Indeed
foreachi € {1, ..., m}, the nodes with label i are added to the network when (x;, y;) is
reattached, and for each such reattachment, at most two nodes are added to the network.
Observe that under this construction, if two nodes have the same label, then they must
be a parent-child pair where the parent is a tree node and the child a reticulation. O

A proof of the following lemma was sketched in Janssen and Liu (2021). We give
a more rigorous proof here.

I We refer the interested reader to Janssen and Murakami (2021) for more information on this construction.
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Lemma 2 Each binary network that admits an HGT-consistent labelling is orchard.

Proof Suppose a binary network N admits an HGT-consistent labelling 7. We prove
that N is orchard by proving that each network that admits an HGT-consistent labelling
which has at least one internal node must contain a cherry or reticulated cherry. More-
over, after reducing such a pair, the resulting network still admits an HGT-consistent
labelling. Therefore, any HGT-consistent network can be reduced to a tree with one
leaf and is thus orchard.

Let x be an internal node with 7(x) maximal. If x is a reticulation, then its child /
must be a leaf, and one of its parents p has label #(p) = #(x), by Property 3. The
node p cannot be a reticulation as this would contradict Property 2 of HGT-consistent
labellings. Hence, the other child I’ of p must be a leaf as well, and the reducible
pair (1, 1’) is a reticulated cherry in N. Reducing this reticulated cherry, we obtain a
new network N’, which still admits an HGT-consistent labelling t' = |y ). If x is
a tree node, then either both of its children are reticulations, one of its children v is
a reticulation node, or both its children are leaves. In the first case, the reticulation
children v; and v, must have labels #(v;) = f(v2) = #(x), since x has the greatest
label out of internal nodes and internal nodes have label greater than or equal to that of
their parents, by Property 1. But this contradicts Property 2, so this case is not possible.
In the second case, the reticulation child has label 7 (v) = #(x), and we can reduce the
reticulated cherry involving x and v as in the previous case. In the third case, x has two
leaf children, which must thus form a cherry. After reducing this cherry, the network
still admits an HGT-consistent labelling, which can be obtained by restricting ¢ to the
remaining nodes. O

A direct consequence of these lemmas is the following new characterization of
orchard networks as networks that admit an HGT-consistent labelling.

Theorem 1 A binary network N is orchard if and only if it admits an HGT-consistent
labelling.

The next corollary, which was also shown in Huber et al. (2019) and van Iersel et al.
(2021b), follows from Observation 1 and Theorem 1.

Corollary 1 The class of binary orchard networks is contained in the class of binary
tree-based networks.

This means in particular that orchard networks have a base tree.

3.2 Non-binary Orchard Networks

By recalling a key lemma from van Iersel et al. (2021b) regarding non-binary orchard
networks and their binary resolutions, we extend the HGT-consistent labelling char-
acteristics to non-binary orchard networks.

Lemma 3 (Lemma 11 of van Iersel et al. (2021b)) A non-binary network N is orchard
if and only if some binary resolution of N is orchard.

@ Springer
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Fig.4 A non-binary orchard

network on {a, b} that does not t1
admit a labelling on the nodes

that adheres to the ‘reticulations

have the same labels as all but

one of its parents’ rule. Indeed,

under this rule, exactly two

of 11, 1, t3 must have the same

label, but no labelling can satisfy ts
this rule. Therefore, this

labelling rule does not fully

characterize the class of

non-binary orchard networks

Theorem 2 A non-binary network N is orchard if and only if some binary resolution
of N admits an HGT-consistent labelling.

Proof The combination of Theorem 1 and Lemma 3 immediately gives the claim. O

Ideally, we would like to extend this characterization by finding a direct labelling
of non-binary networks that captures orchard networks, with a meaningful biological
interpretation. A natural generalization would be to consider a labelling where every
reticulation is contemporaneous with all but one parent in the network. This implies
the existence of a base tree, for which all arcs that are not in the base tree are horizontal
arcs. Unfortunately, this characterization does not fully capture the class of non-binary
orchard networks. Figure 4 gives an example of a non-binary orchard network that
does not admit a labelling under this property.

4 Orchard Network Space

We prove that the space of binary orchard networks is connected using a strategy that
is reminiscent of the proofs of connectedness in Janssen (2021) for local head moves
and in Erdés et al. (2021) for tree-based networks. We first move all reticulations to
the top of the network and then change the pendant trees below these reticulations.
Before we prove connectedness, we first give the formal definitions and introduce
some structures and subgraphs we use in the proofs.

4.1 Rearrangement Moves

We start by defining rSPR and rNNI moves on phylogenetic networks. Intuitively,
rSPR moves can be seen as moving either the head or the tail of an arc and rNNI
moves are local rSPR moves.

Definition 7 (See Fig. 5) Let N be a binary network with an arc (z, w) and an arc e with
endpoints x and y (either e = (x, y) or e = (y, x)), and let p and ¢ be, respectively,
the parent and child of x that are not y. The rSPR move (p, x, c¢) % (z, w) consists
of the following: replace the arcs (p, x), (x, ¢), and (z, w) with the arcs (p, ¢), (z, x),
and (x, w). If {p, ¢} N {z, w} # @, then the move is an rNNI move.
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p Y z p Yy z
e
Pz, 0) & (2,w)
T T
c w c w
p z p z

(p.2.c) 2 (z,w)

c Yy w c Y w

Fig.5 Application of an rSPR move. The top figure shows the case that the arc e being moved is a reticulation
arc, the bottom figure the case that e is a tree arc

An rSPR (or rNNI) move is valid if the resulting graph is a network. We first show
that this holds automatically for orchard networks if the resulting graph has an HGT-
consistent labelling. For that, we need to define HGT-consistent labellings on more
general directed graphs. Note that the following definition is equivalent to Definition 6
if D is a network.

Definition 8 Let D = (V, A) be a directed graph that may contain parallel arcs, with
indegree and outdegree at most 2 and total degree at most 3. An HGT-consistent
labelling of D is a labelling t : V — R such that:

1. For all arcs (u, v), t (1) < t(v) and equality is only allowed if v has indegree 2.

2. For each node u with at least one child, there is a child v of u such that 7 (u) < #(v).

3. Foreach node r with two parents u and v, exactly one of r (u) = #(r) and t(v) = #(r)
holds.

Lemma4 Let N be a binary orchard network and N’ the result of an rSPR move on N.
If N’ admits an HGT-consistent labelling, then N' is a network and hence the rSPR
move is valid.

Proof Suppose the rSPR move is (p, x, ¢) % (z, w), where e is the arc incident on x
that is not incident on p nor c. Let ¢ be an HGT-consistent labelling of N’.

First note that N’ cannot contain parallel arcs say from a to b. Indeed, this would
make b into a reticulation node, and one of its parents must have the same label,
so t(a) = t(b). However, at least one child of a must have a larger label than a by
Property 2 of Definition 8, so f(a) < t(b), a contradiction.

In addition, N’ cannot contain a directed cycle. Suppose for a contradiction that N’
does contain a directed cycle. Then, by Property 1 of Definition 8, all nodes in this cycle
must have the same label, and they must be reticulation nodes. However, reticulation
nodes only have one outgoing arc, and the head of this arc must have a strictly larger
label, a contradiction. Hence, N’ cannot contain a directed cycle.

Since N’ does not contain parallel arcs or directed cycles, and rSPR moves do
not change the degrees, if follows that N’ is a network and hence the rSPR move is
valid. O
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If the result of a valid rNNI move on N is a network that is isomorphic to network N’
(respecting leaf labels), then we say that N can be transformed into N’ using one
rNNI move. It is not too difficult to observe from the definition that rNNI moves are
symmetric, i.e., N can be transformed into N’ using one rNNI move if and only if N’
can be transformed into N using one rNNI move.

Definition 9 The rNNI space of orchard networks with n leaves and k reticulations is
the graph Orch(n, k), whose nodes are binary orchard networks, and there is an arc
between two networks if one can be transformed into the other in one rNNI move.

4.2 Connectedness of the rNNI Space of Orchard Networks

In this section, we prove that Orch(n, k) is connected for all n and k. The main idea of
the proof is to show that we can transform any orchard network into some canonical
network in which all reticulations are stacked just below the root of the network. This
is formalized as follows. See also Fig. 6.

Definition 10 Let N be a binary orchard network where v, is the child of the
root. Then we say that N has k reticulations at the top if it contains two directed
paths vy, ay, ..., ar and vy, by, ..., by where all a; and b; are distinct, and a set of k
reticulation arcs {(x;, y,-)}f.‘:1 where {x;, y;} = {a;, b;}, which are called the horizontal
arcs at the top. In addition, there is no arc between the child of y; and the child of xj
that is not y; (because otherwise N would have k + 1 reticulations at the top). The
reticulations y1, ..., yx are reticulations at the top. If (x;, y;) = (a;, b;) for all i, then
we say that N has k reticulations neatly at the top.

We now show that the name “horizontal arcs at the top” is well chosen, i.e., that
they are horizontal with respect to any HGT-consistent labelling.

(az-,bz-,bs)*;wl'b)) (az, as) (b3, as,as) (£2:93), (bg, by)
>
>

> b

Fig.6 The application of Lemma 6 twice in order to get all reticulations neatly at the top. Left: A network N
on a set of taxa {a, b} with four reticulations at the top. The network N contains a triangle at v, with
arcs (vp,ay), (vp, by), and (ay, by), where v, is the child of the root. Middle: A binary network N’
obtained by applying the valid rNNI move (az, by, b3) M, (ap, a3) on N. This illustrates Lemma 6,
where the highest 2 horizontal arcs at the top are reoriented. Right: A network N’ by applying the valid
rNNI move (b3, az, as) M, (b3, bg) to N'. The highest 3 horizontal arcs at the top are reoriented. The

network N’ has four reticulations neatly at the top
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Lemma5 If N is a binary orchard network with k reticulations at the top, and t
an HGT-consistent labelling, then for each horizontal arc at the top (x;, y;), holds
that t(x;) = t(y;).

Proof The proofis by induction oni. First consideri = 1. Since y; is areticulation, we
have, by the definition of HGT-consistent labelling, that either #(y;) = #(x1) ort(y1) =
t(vp). We have t(y1) > t(x1) because (x1, y1) is an arc. Furthermore, (x1) > #(v,)
because x| is not a reticulation. Hence, we have #(y1) > t(x1) > 1(vp). So t(y1) =
t(vp) is not possible and we must have 7(y;) = #(x1).

Now assume that 7 (x;) = #(y;). We show that #(x;4+1) = #(y;j+1). First note that we
do not know whether x; is a parent of x; 1 and y; of y;41 or if x; is a parent of y; 11
and y; of x;41, but this does not matter for the proof since 7(x;) = #(y;). Since y;+1
is a reticulation, we have that either #(y;+1) = f(xj+1) or t(yi+1) = t(x;) = t(y;).
We have #(y;j+1) > t(x;4+1) because (x;j+1, yi+1) is an arc. Furthermore, 7(x; 1) >
t(x;) = t(y;) because x;41 is not a reticulation. Hence, we have #(y;j4+1) > t(xj4+1) >
t(x;) =t(yi). Sot(yi+1) = t(x;) = t(y;) is not possible and we must have 7 (y;1+1) =
t(Xi41). a

Reorienting an arc (u, v) of a network N refers to modifying N into a network N’
that is isomorphic to N with (u«, v) replaced by (v, u). Note that reorienting any subset
of the horizontal arcs at the top of a binary orchard network results in a binary orchard
network, as the node labelling remains HGT-consistent. The following lemma shows
that, if a network has k reticulations at the top and kX’ < k, then the highest k" horizontal
arcs at the top (i.e., the arcs (x;, y;) fori = 1,...,k’) can be reoriented using one
rNNI move in total.

Lemma 6 (Lemma 5 of Janssen (2021)) Let N be a binary orchard network with k
reticulations at the top and k' < k. Then, using one rNNImove, the highest k' horizontal
arcs at the top can be reoriented.

We apply Lemma 6 twice in Fig. 6, where we use one rNNI move to reorient the
highest two horizontal arcs at the top of a network, and another rNNI move to reorient
the highest three horizontal arcs at the top of the resulting network. In this way, we
use in total two rNNI moves to get all reticulations neatly at the top.

We prove that we can transform any orchard network into a network in which all
reticulations are at the top. We first consider the case of moving a reticulation r that
is part of a triangle, i.e., when there are arcs (v, p), (v, r), and (p, r). In this case,
we also say that the triangle is at v. Observe that, by the same argument as in the first
part of the proof of Lemma 5, t(p) = t(r) for any HGT-consistent labelling ¢. The
following lemma shows that such a reticulation r can either be moved up or directly
to the top.

Lemma?7 Let N be a binary orchard network with k < r(N) reticulations at the top.
Lett be an HGT-consistent labelling and r a reticulation not at the top minimizing t (r).
Suppose that r is part of a triangle (w, p), (w, r), (p, r). Then we can either reduce
the number of nodes above r by 1, in 2 rNNI moves, or transform N into an orchard
network with k + 1 reticulations at the top, in at most 4 rNNI moves.
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N N N

Fig.7 The first case in the proof of Lemma 7, where ¢ is not an endpoint of a horizontal arc at the top. Two
rNNI moves are applied to the orchard network, which results in an orchard network where the triangle is
at g. The heights of the nodes represent an HGT-consistent labelling

Proof Let t be an HGT-consistent labelling for N. Let ¢ be the parent of w. First
suppose that g is not an endpoint of a horizontal arc at the top. Then g is a tree node by
our choice of r. Let v be its child other than w. In that case, the graph N’ obtained by

rNNI move (g, w, p) =% (w.r) (g, v) admits an HGT-consistent labelling (see Fig. 7)

t(x) otherwise,

V) = {min{t(w), tW))—e  ifx=uw;

where € > 0 is small enough. In particular, choose € so that ' (¢q) < ¢'(w). Then, N’
is an orchard network by Lemma 4 and Theorem 1. Let ¢ be the child of r in N’, and
we apply to N’ the move (¢, w, r) Y% (r, ¢) to obtain the graph N”'. The graph N
is an orchard network, since it admits the HGT-consistent labelling

() = {t/(w) —€ ifx e{p,r};

t'(x) otherwise,

where again, € > 0is very small. Observe that N” contains a triangle at ¢ consisting of
the arcs (g, p), (¢, r),and (p, r). Hence, we have reduced the number of nodes above r
by 1, using 2 rNNI moves, and r is still a reticulation not at the top minimizing ¢” (r).

Now suppose that g is an endpoint of a horizontal arc at the top. Then we can use
the following rNNI moves to move (p, r) to the top. First, if ¢ is not a reticulation,
reorient the reticulation arc leaving g so that ¢ becomes a reticulation, using one
rNNI move (Lemma 6). Let s be the parent of g with 7(q) = 7(s), let v be the child
of s that is not ¢ and let ¢ be the child of r (see Fig. 8). Apply the following three
moves: (¢, w, p) 7% (s, q), (s, w,q) 7% (s,v), and (s, w, r) Y (r,¢). To
see that the graphs after the three moves are orchard networks, note that the following
are HGT-consistent labellings of the respective resulting graphs:

, imin{t(wx 1)) —e ifxelgwh
r'(x) = )
t(x) otherwise,
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£ o

(q,w,p) L7, (s, q) (s,w,q) (1), (s,v) (s, w,r) (), (r,c)

> >

Fig.8 The second case in the proof of Lemma 7, where ¢ is a reticulation at the top. Three rNNI moves are
applied to the orchard network, which results in an orchard network where reticulation r is also at the top.
If ¢ is not a reticulation in the original network, one extra rNNI move is applied first to make g a reticulation

t'(s) ifx =gq;
Vx)y=1t@6)+6 ifx = w;
t'(x) otherwise,

and

t///(x) _ t"(w)—y ifxe{p,r};

t"(x) otherwise,

where 0 < y < § < € are very small. Observe that reticulation r is now at the top
and (p, r) a horizontal arc at the top (see Fig. 8). Hence, the resulting graph obtained
using at most 4 rNNI moves is an orchard network with k + 1 reticulations at the
top. O

We are now ready to prove that we can move all reticulations to the top.

Lemma 8 Let N be a binary orchard network with k < r(N) reticulations at the top
and n leaves. Then, using at most 2n rNNI moves, N can be transformed into a binary
orchard network with k 4 1 reticulations at the top.

Proof Let N be an orchard network with HGT-consistent labelling ¢ such that two
nodes have the same label only if they are a parent—child pair for which the parent is a
tree node and the child a reticulation (which exists by Lemma 1). Let r be a reticulation
not at the top minimizing #(r). Let p be the parent of r with 7(r) = #(p) and u the
other parent of r. Observe that, since () = t(p), p must have a second child with
larger label. Hence, p cannot be a reticulation. Let g be the parent of p. In addition,
let y be a lowest common ancestor (LCA) of # and g in N.

First suppose #(u) > t(q) (and hence u # ¢). Note that u is either a tree node or a
reticulation at the top, by the choice of r. If u is a tree node, we can apply the move
(u,r,c) Qr_)) (s, u) where s is the parent of u, v is the child of u other than r, and ¢
is the child of r (Fig. 9). Then

t(u) ifx € {p,r},
Yx)=1tw)+e ifx=u,
t(x) otherwise,
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q s q s
Yo&—>p u
u P r q9¢
(u,r, ) M} (s,u) u
p T > p r
C v C v C
(@) (b)

Fig. 9 Illustration of the proof of Lemma 8 for the case 7(u) > t(g). a When u is a tree node, the head of
the reticulation arc (p, r) is moved up. b When u is a reticulation at the top, an LCA y of u and ¢ is a parent
of u with #(y) = t(u), leading to a contradiction to the assumption 7 (u) > t(q)

u S u S
ydata
q T P u
(a,p,¢) 27, (s,q) q
r p > r f P
C v C v C
(a) (b)

Fig. 10 Illustration of the proof of Lemma 8 for the case 7(¢) > t(u). a When g is a tree node, the tail of
the reticulation arc (p, r) is moved up. b When ¢ is a reticulation at the top, an LCA y of u and ¢ is a parent
of g with 7(y) = t(gq), leading to a contradiction to the assumption #(q) > #(u)

with € > 0 small enough, is an HGT labelling of the resulting network, which is
therefore an orchard network by Lemma 4. In the resulting network, the number of
nodes above r is reduced by 1.

If u is a reticulation at the top, then y is the parent of u with 7(y) = #(«). However,
because y is above g, we have ¢t(y) < #(q) and so t(u) < t(q), contradicting our
assumption ¢ (u) > t(q).

The case that (1) < t(q) is symmetric. We can argue as in the previous paragraph
but replacing u, r by ¢, p respectively, see Fig. 10.

The last case is that #(u) = t(g). We claim that u = ¢ = y. Otherwise, by
our choice of the labelling #, we either have an arc (g, u) and u is a reticulation,
or we have an arc (u, g) and ¢ is a reticulation. In the first scenario, # must be a
reticulation at the top by our choice of r. However, since r is a child of u# and p a child
of g, it follows that r is also a reticulation at the top, a contradiction. In the second
scenario, ¢ must be a reticulation at the top and we again obtain a contradiction, by
the same reasoning. Therefore, we conclude that u = ¢ = y. This means that there
is a triangle (v, r), (y, p), (p,r) and we can apply Lemma 7 to either increase the
number of reticulations at the top by 1 in at most 4 rNNI moves, or reduce the number
of nodes above r by 1 in 2 rNNI moves.

It remains to bound the number of moves. We say that a node is a base node if it is
an internal node of the base tree obtained by deleting all arcs (u, v) with #(u) = #(v)
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and suppressing indegree-1 outdegree-1 nodes. Hence, an internal node is a base
node precisely if it has no parent or child with the same label in the HGT-consistent
labelling ¢. Define a;(v) as the number of base nodes above v. Hence, a reticulation r
is at the top if and only if a;(r) = 2. Since a rooted phylogenetic tree with n leaves
has n internal nodes, the network N has n base nodes.

In the proof above, we consider a reticulation r not at the top minimizing #(r).
Consequently, all nodes above r are base nodes or endpoints of horizontal arcs at
the top. If r is not part of a triangle, we reduce the number of nodes above r, and
hence a;(r), by 1 in one INNI move. If r is part of a triangle, we achieve the same in 2
rNNI moves, or move r to the top in at most 4 rNNI moves. We end with a,(r) = 2.
Hence, we need at most 2 rNNI moves per base node, except the root and its child,
plus at most 4 additional moves. The total number of rNNI moves required to move r
to the top is at most 2(n — 2) + 4 = 2n. O

The next step is to move all but one of the leaves to one side of the network, see
Fig. 11.

Lemma9 Let N be a binary network on n leaves with r (N) reticulations at the top.
Let I be a leaf below the head of the lowest horizontal arc at the top. Then, using at
most 2n —4 rNNI moves, N can be transformed into a network with r (N) reticulations
at the top, where [ is the only leaf below the head of the lowest horizontal arc at the
top.

Proof Let (x, y) be the lowest horizontal arc at the top. Let u( be the child of x other
than y. Let y, uy,...,u, = [ be the unique directed path from y to /. Let v; be
the child of u; other than u;1 or [, fori = 1,...,m — 1. We apply the following
sequence of TNNI moves: (y, u;, uj4+1) M (x,y) and (x, u;, y) M) (x,ui—1)
foralli = 1,...,m — 1. See Fig. 12. It can easily be checked that the following
maps t](l) and tz(l) are HGT-consistent labellings of the graphs obtained after the first

and, respectively, second tfNNI move, fori = 1,...,m — 1. Letting t = tz(o) denote
an HGT-labelling for N, we have

Fig. 11 The network used in the
proof of Lemma 9 and
Theorem 3, in which the
triangles

below uq, vy, ..., vy, —1 indicate 7 Al
trees rooted at those nodes

uo
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ug,v Y g,
(v, s, wiga) L9, (a,y) (,us,y) L9020, (@, uia)

Wi
Ui—1 Wi—1 wi—1
uj

Ui41 Vi Uit1 Vi Ui41 Vi

Fig. 12 Illustration of the rNNI moves in the proof of Lemma 9

t(x) +e€ if z € {u;, y};

(1)
1) =1 - .
1 tz(’ D) otherwise,
and
t(x) ifz=y;
1)) = {min{r(uo), 1)) — i€ ifz=u;
tl(’) (2) otherwise,

where € > 0 is very small. Hence, all intermediate graphs, as well as the final one, are
orchard networks. The final network (see Fig. 11) still has »(N) reticulations at the
top, and [ is the child of y. Moreover, as m < n — 2, the sequence of moves contains
at most 2(n — 2) = 2n — 4 rNNI moves. O

We are now ready to prove that the space of orchard networks is connected by rNNI
moves, for a fixed number of reticulations and set of taxa. We basically prove this
theorem by showing that each orchard network can be transformed into one particular
network (see Fig. 11). This shows that, in the space of orchard networks with the same
number of leaves and reticulations, there is a path from each node to one given node,
and, thus, the space is connected.

Theorem 3 The space of binary orchard networks with n leaves and k reticulations is
connected under rNNI moves with diameter at most 4kn + n[log,(n)] + 2k + 6n — 8
which is O (kn 4 nlog(n)).

Proof Consider any two binary orchard networks Ny, Ny with k reticulations on the
same set of n taxa. Fix an arbitrary leaf /. In each of the two networks, we do the
following. First move all reticulations to the top using the moves in Lemma 8. For
each reticulation, this takes at most 2n moves, so at most 2kn rNNI moves in total.
Using at most k TNNI moves, the horizontal arcs at the top can be reoriented such that
the network has k reticulations neatly at the top, and such that [ is below the head of
the lowest horizontal arc at the top, by Lemma 6. Using at most 2n — 4 moves, we
can move all leaves except [ below the tail x of the lowest horizontal arc at the top, by
Lemma 9. This is done on both N; and N3, so the contribution toward the number of
moves up until this point is 2(2kn + k + 2n — 4).

Let diamnni(72, k) denote the diameter of Orch(n, k). Let 7; denote the sub-
tree rooted at the child of x other than y in N; (i.e., the subtree rooted at u,,—1 in
Fig. 11). Note that 7; contains all leaves except [. We can change 77 into 73 using
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at most diamynn1(n — 1, 0) < 2n + n[log,(n)] moves (Li et al. 1996; Erdds et al.
2021). It follows that diamNny (72, k) < 2(2kn + k 4 2n — 4) 4+ diamynni(n — 1, 0) <
4kn 4 nllogy(n)] 4+ 2k + 6n — 8 = O (kn + nlog(n)) moves. O

Since rSPR moves are generalizations of rNNI moves, the following result follows
immediately from Theorem 3.

Corollary 2 The space of binary orchard networks with n leaves and k reticulations is
connected under rSPR moves with diameter at most 4kn + n[log,(n)1+ 2k +6n —8
which is O (kn + nlog(n))

5 Discussion

In this paper, we have shown that binary orchard networks can be characterized as
networks with an HGT-consistent labelling, meaning that they can be obtained from a
tree by inserting horizontal arcs. Hence, this class of networks, which was introduced
for its computational benefits, also has a biological interpretation.

This does not mean that orchard networks can only be applied in situations where
reticulations represent HGT events. Although orchard networks can be drawn as HGT
networks, they can also be drawn differently. Hence, orchard networks may still be
useful in applications where reticulations represent hybridizations or other reticulate
events. Restricting to orchard networks may exclude some scenarios in that case, but
the nice mathematical properties may outweigh that, especially when they can be
exploited to develop efficient algorithms.

We have also shown that non-binary orchard networks can be characterized using
this labelling on a binary refinement. However, this characterization is less satisfying
as it does not specify which binary refinement to use. We leave it as an open question
to find a characterization that uses a labelling directly on the nonbinary network.

To show the mathematical utility of the new characterization, we have used this new
characterization to prove that the space of orchard networks is connected under rNNI
moves. As mentioned, this may prove important, because some statistical network
generators introduce reticulations as HGT events (Pons et al. 2019), which naturally
leads to orchard networks. Hence, if such generators are used as a prior in a Bayesian
method for network inference, the prior probability of all non-orchard networks will
be zero, so it is important to know that the space of orchard networks is connected.

To see whether it makes sense computationally to restrict to orchard networks, it
would also be interesting to know whether our upper bound on the diameter of the space
of orchard networks of order O (kn + nlog n) is asymptotically tight. Indeed, smaller
diameters can be favorable when deciding on a network space to search through,
as it could mean a shorter mixing time for Markov Chain Monte Carlo methods
(Klawitter 2020). The bound is, in any case, close to the bound for tree-based networks
(O(kn 4 k* + nlogn) ErdGs et al. 2021). It is clear the asymptotic bound cannot get
smaller than O (n logn), as this is tight for trees, but it may be possible to remove or
reduce the kn part.

Note that our results are only given for rNNI moves, and not for local tail or local
head moves separately, as is done for tree-based networks in Erdds et al. (2021). It
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might be true that the space of orchard networks is also connected under distance-1
tail moves, or distance-2 head moves, but our proof does not imply this, as we have
used a mix of distance-1 tail moves and distance-1 head moves. It would be of interest
to investigate this further.
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