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Abstract

Static pressure is a scalar magnitude that expresses the force per unit area exerted by a fluid at rest.
As such, it constitutes one of the two mechanisms through which fluid flows generate forces on bodies.
Moreover, static pressure is not only relevant in the definition of surface loads, as it plays a key role in
a number of fields, such as turbulence research due to its impact on the amplification or damping of
turbulent flow instabilities, or medical research, provided its key paper on cardiovascular disease.

Accordingly, different approaches exist that allow to obtain pressure information in Fluid Dynamics appli-
cations. Among these, simplified analytical models, Computational Fluid Dynamics and experimental
measurements stand out given their extensive use. While each of these comes with its own advan-
tages and limitations, the latter typically offers the advantage of being conducted with real flows, hence
providing a reliable source of information if proper similarity parameters and set-up are achieved.

While there exist different techniques to measure pressure experimentally, among which pressure tap-
ping and pressure sensitive paint stand out, these present major limitations, such as the limited spatial
resolution that can be achieved without intrusion effects or the challenges encountered during calibra-
tion, respectively. Consequently, more recent methods have been developed that allow to reconstruct
pressure from velocity fields obtained via Particle Image Velocimetry. An instance of such algorithms
is the Poisson Solver, which is based on the application of the incompressible relation to the momen-
tum conservation equations, yielding a boundary-value problem for pressure. Nonetheless, while this
approach benefits from the instantaneous and simultaneous nature of PIV measurements, it presents
its own challenges, among which the propagation of noise from the velocity field into the reconstructed
pressure field stands out.

More recently, with the proliferation of Machine Learning, the number of applications in Fluid Mechanics
has grown. In particular, an approach that stands out are Physics-Informed Neural Networks, which
optimize Deep NN models minimizing a loss function with contributions from labeled flow data variables
and residuals from physical equations, thus learning the flow field variables. While diverse use cases
have been reported for PINNs, such as the generation of reduced order models or the direct simulation
of flows, especial emphasis has been placed in research on their ability to infer unsteady or mean
pressure fields from velocity measurements, via the application of the Navier-Stokes equations.

Even if research has shown PINNs offer key advantages with respect to traditional pressure recon-
struction methods, such as robustness to Gaussian noise or lack of discretization errors, analysis of
the research available highlights key areas that require further exploration in the establishment of PINNs
as a reliable alternative to traditional methods. Specifically, the study of PINNs performance with real
experimental data and its comparison with solvers as the Poisson against direct experimental mea-
surements is of paramount relevance, provided that the vast majority of publications concern the use
of artificial experimental data from CFD simulations.

In accordance, a PINN framework has been developed and its accuracy in the reconstruction of surface
pressure has been tested using time-averaged data from both CFD simulations and experimental tests
of the two-dimensional flow around a cylinder. Particularly, comparison of the PINN and the Poisson
surface pressure reconstructions with pressure tap data showed superior performance of the former,
with respective MSE reductions of -1% and -21% for the flows around a smooth cylinder and one fitted
with zig-zag strips at § = +45°.

Additionally, sensitivity studies to understand the effect of various parameters in the PINN training
process has resulted in the identification of various trends. Among these, especial attention is required
by the ability of PINNs to add regularization in areas affected by correlated noise such as reflections
via the addition of collocation points, where the PDE loss is evaluated. Further noteworthy findings
concern the benefit of using physical boundary conditions at solid surfaces in the form of the no-slip,
no-penetration and no-fluctuations constraints. In this study, it has been proven that these allow not
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only to bypass non-physical pressure fluctuations that derive from spatially-correlated noise, but also
to reduce surface pressure reconstruction error when data gaps exist close to the surface, achieving
reductions of up to -92% for a radial data gap of 75% oof r.,; from the cylinder surface. Finally, it has
been shown that, provided that the dataset contains points that allow to define a reference pressure
value, the provision of sparse pressure tap data to the NN during training results in local, rather than
generalized, error reductions.

In conclusion, the sensitivity studies carried out on the smooth cylinder dataset have resulted in pres-
sure MSE reductions as substantial as -50% with respect to the Poisson solver when both are compared
with static pressure tap data, supporting the establishment of PINNs as an alternative method to con-
ventional pressure reconstruction algorithms as the Poisson solver, despite the time penalty that these
can represent given the instantaneous nature of the latter. On the qualitative side, it has been proven
that PINNs can provide a flexible framework to embed prior knowledge of the solution, such as the
positive nature of normal Reynolds Stress components or boundary conditions. Along the same lines,
it is shown throughout the thesis how PINNs can be used to perform debugging steps that allow to
identify sources of error.
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Introduction

1.1. The relevance of pressure in Aerodynamics

Static pressure is a scalar quantity that describes the force per unit area exerted by the flow on a given
surface [4]. As such, it is one of the two known mechanisms through which fluids can exert forces over
a surface: pressure and shear, with units of force per unit area ([N/m?] in the SI).

While the latter mechanism derives from the viscous nature of real flows and acts tangentially to the
surface, pressure results from the temporal rate of change of the momentum contained in fluid particles.

Furthermore, since pressure can be exerted by fluid parcels irrespective of their motion, it follows that
it must act normal to surfaces [28].

It then becomes central to reflect on the relevance of surface pressure on aerodynamic phenomena
from an analytic and practical standpoints:

* Pressure is one of the two primary mechanisms for generating aerodynamic forces. Consequently,
it is a key variable in the design and certification of aerodynamic components across various
engineering fields, including aerospace, wind energy, automotive and architecture.

Additionally, pressure is not only relevant in the reconstruction of local loads but its distribution
is also crucial to define aerodynamic moments and force distributions. The latter gains particular

relevance in defining flight and vehicle mechanics as well as in the design and optimization of
structural components.
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Figure 1.1: C, distribution along spanwise stations for an unswept (L) and swept-back (R) wings. [28]
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An example of this is shown in Figure 1.1, where the chord-wise C,, distribution of two wings have
been plotted at various spanwise locations. As shown, aft sweep induces a non-uniform variation
in spanwise loading. This will have major implications for structural design and stall behavior. The
peakier C,, distributions on the swept case suggest a higher likelihood of sudden leading edge
stall compared to the unswept wing, highlighting the relevance of estimating not only total loads
but also their distribution in various engineering applications.

Further support to the relevance of surface pressure in the above case can be found considering
the definition of pressure coefficient in Equation 1.1, which expresses a dimensionless pressure
difference to the reference value.

C = = 1.1

This expression can be rewritten as a function of velocity via the Bernoulli relation (Eq. 1.3) as-
suming total pressure is conserved. The resulting expression is included in the term at the center
of Eq. 1.2. Additionally, for potential flows, validity of the linearity and superposition principles
allow to rewrite its definition as a function of the local super-velocity, AU = U — Uy, as per the
RHS of the same equation.

U? AU

Accordingly, in transonic aircraft design, span-wise and chord-wise C,, distributions play a crucial
role in defining the location and strength of shock-wave formation [75], largely impacting cruise
drag and fuel consumption.

On the other hand, pressure is a key factor both on the surface and off-body in the production
and evolution of turbulence, making it relevant in research fields too.

Specifically, wall pressure gradients are critically influential in the amplification or damping of tur-
bulent instabilities, thus affecting the laminar-to-turbulent transition process. Favorable pressure
gradients (0p/0x < 0) delay the formation of inflection points in the wall-normal velocity profile,
postponing transition [77].

As a result, it becomes visible why surface pressure measurements gain importance in flow con-
trol applications and other research fields, contributing to the understanding and control the tur-
bulent transition process.

Another application where surface pressure data can be critical is in the medical field. For in-
stance, [67] examines the equilibrium between blood pressure and wall shear stress in arterial
walls as one of the principal mechanisms for cerebral aneurysm growth. This highlights the neces-
sity of pressure data even in conditions where the use of experimental measurement techniques
is challenging.

Beyond hemodynamics, pressure is also a central factor in the study of airway obstruction and re-
sistance. In [68], peak airway pressure, defined as the pressure required for air to move through
the lungs while inhalating in mechanical ventilation, is seen as a key performance indicator to
analyze the effects of different parameters (inflow velocity, airway diameter, etc.) on airway re-
sistance, as this shows a direct proportionality to peak pressure requirements.

Provided the above reasons that highlight the relevance of pressure in the context of Fluid Mechanics,
the present thesis aims to assess the use of Physics-Informed Neural Networks as a tool to obtain time-
averaged pressure data from experimental measurements of the mean velocity field, placing special
emphasis on surface pressure.
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1.2. Traditional techniques to obtain static pressure

With the aim to obtain pressure data in fluid-dynamic applications, different methods exist with their
own limitations and levels of fidelity to reality. These include:

1.2.1. Analytical Methods

One of the techniques used in preliminary studies, as well as academia due to its simplicity is the ana-
lytical approach. This generally involves the evaluation of simplified physical models that approximate
the flow solution under a given set of assumptions.

As a result of these simplifications, the complexity of the expressions to be evaluated is reduced, which
results in an efficient way to compute approximate flow solutions. On the contrary, such assumptions
can limit their applicability to very specific flows or even only in certain regions. Consequently, one of
the core challenges is to understand the application envelope of such techniques.

An example of the above are cases which respond to inviscid flows [6], where the effect of shear
stresses is assumed to be negligible. This simplification is theoretically feasible as the Reynolds number
tends to infinity (i.e. Re — ).

Furthermore, inviscid flows that are incompressible (M < 0.3 [23]) and irrotational are especially attrac-
tive, since their velocity fields can be expressed through a single scalar quantity, the velocity potential
[5]. This facilitates the construction of analytical expressions for the velocity field of such potential flows
as exposed in [4], where the four canonical potential flows, namely the uniform, the source (sink), the
doublet and the vortex flow solutions are developed.

Although potential flow models fail to accurately predict drag forces due to obviating shear stresses,
they allow point pressure to be inferred from local speed and total pressure at infinity by assuming
conservation of the latter as per Bernoulli's equation [34], offering a simple method to yield the pressure
field.

P+ 5 PUZ = py 3 0 (13)
While these assumptions appear to limit the applicability of potential flow models, certain properties
make them extensively used. On the one hand, dimensional analysis of the wall normal momentum
conservation equation for a Boundary Layer Flow results in the conclusion that pressure remains vir-
tually constant across an attached boundary layer [64]. Furthermore, the linearity and superposition
characteristics of the velocity potential permit complex flow solutions to be produced as the sum of
their simpler forming parts. As a result, potential flow models such as panel methods [35] are useful to
define approximate surface pressure distributions for real attached flows.

However, this family of models is not as extensively used in more advanced engineering or research
fields because of the difficulty it presents in adding specific boundary or design conditions, such as
geometric modifications, but it can still prove useful in providing reference results for more advanced
studies.

An example of this is the potential flow solution around a non-lifting cylinder, which can be found from
the expression for the doublet flow in a uniform flow. Notably, the doublet flow arises from the addition
of the canonical flow solutions of a source and a sink at an infinitesimally small distance [4]. The
resulting expression for the velocity potential distribution is given by Equation 1.4, where R stands for
the cylinder radius, r is the radial coordinate and @ is the angular coordinate with origin at the back of
the cylinder.

RQ
¢(r,9):Uw-r~0039(1+rQ> (1.4)

Furthermore, this can be evaluated at the cylinder surface where r = R to yield the expression for the
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angular velocity, as the no-through flow condition causes the radial velocity, U.,., to be null:

oo

90 o = —2Uqsinb (1.5)

U9|7’:R =

Finally, one can find the expression for the pressure coefficient on the surface using Bernoulli’s relation
with u, = Uy, which will be used in later sections and has been represented in Figure 1.2.

Cpl,_p=1- 4 sin? 6 (1.6)
To provide further information on the applicability of the above equation, experimental results from

[1], conducted in a pressurized wind tunnel featuring a 0.5 x 0.9 m closed test section and with Re =
3.6 x 10° [—] have also been represented in Figure 1.2.

Pressure Coefficient Distribution and Percentage Erro_.r{“_

Potential Flow Theory d
11 e Experimental F1.75

o

IAC,| [-]

Pressure Coefficient, Cp
Lol

0 T s 90 135 180
Angular Position, 6 (degrees)

Figure 1.2: C), distribution around a smooth 2D cylinder - potential flow vs experimental data from [1]

Examining the C,, distribution around a smooth 2D cylinder, which will be discussed throughout the
thesis, the stagnation point can be identified by C,, = 1[—] at § = 0°. This point is characterized
by having zero dynamic pressure, causing static pressure to equal total pressure. At this location,
the experimental and potential flow theory results match perfectly, since the high-Re regime of the
experimental test causes viscous effects to be negligible locally. As 6 grows, the flow is accelerated
due to surface curvature, causing pressure to decrease through the relation in Equation 1.3, in this
region correlation between both results is great, with a slight but progressive deviation from 6§ = 45°
due to minimal loss of total pressure through viscous effects.

Regarding suction peak magnitude and location, the potential flow continues to accelerate to § = 90°
with a Cp min = —3[—]. On the other hand, the experimental measurements show a Cp in, = —2.4 [—]
at 8 ~ 80°, reflecting a modeling error of around AC,, ~ 20% and =~ 10% on suction peak location when
neglecting viscous effects.

Beyond the suction peak, the potential flow solution is perfectly symmetric as it assumes the flow stays
attached throughout the cylinder with no total pressure loss, as given by C,, = 1.0[—] at § = 180°. In
contrast, the real flow exhibits signs of separation at § ~ 115° as shown by the inflection point on C,,
and virtually constant C,, beyond that location.
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Overall, observing the absolute deviation between real and model results, one could argue that an
acceptance criterion with AC,, < 0.1 x Cp, min,pot Would make the model valid up to 6 ~ 70°, showing
its limited suitability for the prediction of suction peaks and separation.

1.2.2. CFD Simulations

Going one step further in complexity and freedom to implement case-specific features come CFD sim-
ulations. While meshless CFD models such as those based on Smoothed Particle Hydrodynamics
exist [43], the most extended CFD tools consist of the application of the governing equations to the el-
ements of the discretized domain. Subsequently, iterative numerical schemes are utilized to minimize
the residuals of such governing equations (typically mass, momentum and energy conservation) until
the specified convergence criteria are met.

Furthermore, several steps exist in complexity for turbulent flow simulations, which can provide en-
hanced correlation to reality and further insight into the production and evolution of turbulent structures.

Highest on the modeling versus computational effort scale are RANS models, which do not represent
but rather simulate the effects of all turbulent scales through the Reynolds-Averaged conservation
equations. This simplification assumes that flow variables can be decomposed into an averaged (e.g.
u) and fluctuating (e.g. «’) components, leading to the reformulation of the conservation equations in
their Reynolds-Averaged form, where fluctuating components are the modeled ones, as they derive
from turbulence.

Applying Reynolds decomposition to the momentum conservation equation and temporally averaging it
yields Equation 1.7, where the only surviving fluctuating component terms are the so-called Reynolds
Stresses, which reflect the rate of energy drain from the mean flow into the turbulent scales. The
need to model them has given rise to a number of approaches, from eddy-viscosity models (EVMs) to
Reynolds Stress Models (RSMs).

- oul - 2.

K ox;  Ox;  pox o3
On the one hand, EVMs model the effect of turbulent scales through analogy to a viscous-dissipation
term, contained in the eddy viscosity - 7. Besides, a variety of models exist depending on the number
of additional transport equations — ranging from Prandtl’s zero-equation mixing length model, that yields
a single approximate value for v7, to one and two-equation models, these adding further terms like the
turbulent kinetic energy, k, and turbulent (k — ¢) and specific turbulent (k¥ — w) dissipation rates.

On the other hand, Reynolds Stress Models attempt to add one conservation equation for each of
the Reynolds Stress Components and the dissipation rate. Therefore, they require four or seven ad-
ditional transport equations in two and three-dimensional problems respectively, performing better in
anisotropic flows at a higher computational cost [29].

While RANS turbulence treatment is the most extended in engineering applications due to its simplicity
and computational efficiency, it becomes apparent that its time-averaged nature and approach to mod-
eling limit its ability to accurately represent flows with strong transient dynamics or anisotropy and make
it challenging to represent turbulent structures [37]. As a result of this limitation, alternative approaches
have emerged such as Large Eddy Simulations and Direct Numerical Simulations, which respectively
solve the largest scales or the entirety of the turbulence spectrum [56].

1.2.3. Experimental Simulations

Finally, experimental simulations are another alternative to obtain information about the flow. In this
case, real flows are generally used in controlled environments such as wind tunnels to analyze the flow
around scaled down or real-sized models of the geometry under study. Due to the ability to capture real
flow behavior as well as the ability to conduct parametric studies in an efficient manner, experimental
flow analysis is at the core of every research or engineering design process.
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However, physical modeling errors are still present in wind tunnel testing, such as wall interference or
the challenge of matching the most representative dimensionless numbers that characterize the flow
regime across many engineering fields. Take, for example, the flow around an A-320 wing, which has
a full-scale chord length of 3.6 m and a flight speed of around 250 m/s [3]. In this case, the two most
relevant dimensionless numbers for aerodynamic performance are the Reynolds number,

_pUL  0.320kg/m?-250m/s - 3.60m

R
‘T4 1.42- 105N s/m?

~20-10° -], (1.8)

which will govern the turbulent flow behavior and depends on the reference speed, U, and length, L,
as well as the fluid properties, p and u, and the Mach number

M===2T"" _ 086, (1.9)

which depends on the reference speed and the speed of sound, «, affecting compressibility effects such
as shock wave pattern formation and wave drag. Attempting to match both of these conditions would
be impossible even in one of the most capable atmospheric wind tunnel facilities in Europe, such as the
DNW. This wind tunnel features a test section of 6 by 6 m? and a speed capability up to 145 m/s [66].
For example, using a test model with a scale of 1:7 to ensure the 34 m wingspan fits the test section
would yield a maximum Re and M of:

_ 1.225kg/m®-145m/s - 0.514m 6
Relyr = 1.8 105N s/m2 ~5-10°[—] (1.10)

_ 145m/s B
|WT—m—O.43[ ] (1.11)

According to the above, it is observed that neither of the two full-scale dimensionless parameters can
be attained with such test conditions and tunnel specifications. In the case of the Reynolds number,
while the flow regime might not be extremely different due to both values being in the turbulent regime,
a four-fold factor will certainly cause variations in the boundary layer thickness and location of the
separation points. These two phenomena are of major relevance in aircraft design, not only in the
prediction of accurate total force and moment coefficients but also in properly capturing interactions
between different aircraft components.

On the other hand, the mismatch in Mach number is likely to impact performance to a larger extent.
While M = 0.43 is very close to the M = 0.3 value, generally considered as a boundary below which the
effects of compressibility are limited, M = 0.86 is much closer to the sonic regime. Accordingly, due to
curvature-induced flow acceleration, shock waves are likely to appear, and so is the transonic buffetting
phenomenon, of paramount relevance in terms of aerodynamic and structural aircraft certification.

The above exemplifies the challenges associated with dimensionless parameter matching. Among the
ways to reduce them are pressurized wind tunnels, to increase air density through pressurization, and
cryogenic wind tunnels, using liquid nitrogen to reduce air temperature, and hence air viscosity as well
as its density, to a lower extent. However, each experiment and application usually finds its sweet spot
at a different compromise between scale, speed, blockage factor, and other parameters depending on
the research goals, always accounting for some level of uncertainty and error with respect to full-scale
physics.

Finally, the controlled nature of the wind tunnel environment, with turbulence intensity levels as low as
0.1% like in the Low-Speed Lab facility at TU Delft, make experimental simulations extremely suitable
for flow characterization using sensors of various types. This is because flow-induced phenomena can
be discerned properly from environmental effects, as opposed to free-flight tests.
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Experimental Measurement Techniques

As a result of this suitability of experimental testing to capture flow behavior, a number of techniques
have been developed to measure static pressure around testing objects. Focusing on the measurement
of surface pressure due to its relevance in this thesis, the two most widespread techniques are pressure
tapping and pressure sensitive paint.

Pressure Taps

The most commonly used method to obtain pressure information on the surface is through pressure
tapping, which consists of drilling a cavity perpendicular to the surface and placing a pressure trans-
ducer locally or connecting it to a pressure scanner by means of a soft piping system. The 90° angle
of the cavity to the local flow is of paramount importance as it aids to avoid the mis-classification of
dynamic pressure as static pressure.

Furthermore, provided that the intent is to measure the pressure around the object being analyzed,
research has been conducted to weigh and minimize the impact of each step in the measurement
process. As a result, variables such as pressure tap size, geometry and finish, as well as the associated
Reynolds number have been found to be determinant [48]. While the intent is not to provide a detailed
insight into these, it is worth exposing the magnitude of the errors that can be incurred in by some of
these variables, as this technique will be employed in the present work.

For simplicity and coherence with the thesis, the focus is placed on the very low-speed regime effects,
and thus attention is brought to the M = 0 line in the graph on Figure 1.3a, which shows the effect
of both compressibility and absolute hole diameter on the relative static pressure error. As observed,
error remains negligible up to 0.5 mm hole diameter, having a seemingly constant slope up to hole
sizes of 1.5 mm and plateauing at about 1.1% error above.
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(a) Error as a function of compressibility and hole diameter. (b) Error due to relative cavity length.

Figure 1.3: Pressure tap measurement errors from [17].

In addition, Figure 1.3b displays the effect of the relative cavity length as a function of the hole diameter
Re, measuring the pressure error relative to the reference shear stress. As may be witnessed, larger
relative pipe lengths have a detrimental effect, magnifying the S-shaped response with increasing Re.

While these errors are kept within certain boundaries, especially when appropriate manufacturing prac-
tices are followed, pressure taps find a major limitation in the spatial resolution they can provide. This is
not only because of the need to have simultaneous acquisition, but also because increasing the spatial
resolution comes at the expense of intrusion errors, thus possibly affecting the measured data.



1.2. Traditional techniques to obtain static pressure 8

This has also been studied in [38], where the effect of pressure tap diameter as well as that of single-
chord versus multiple spanwise locations were studied for a pseudo-infinite DU96-W-80 airfoil. The
results showed that while small for overall lift coefficient values, the local effects of pressure taps in
regions of high curvature can lead to the formation of separation wedges. These have been highlighted
in the flow-vis pattern of Figure 1.4, where one of the pressure taps closer to the leading edge appears
to have caused a separation triangle.

Figure 1.4: separation wedge in DU96-W-80 due to LE pressure tap - adapted from [38]

Further challenges presented by pressure tap measurements are the cost of manufacturing and acces-
sibility. Although the first issue has seen a decrease thanks to the advent and proliferation of additive
manufacturing techniques, it is still present in any test that requires drilling and piping. In terms of ac-
cessibility, this limits the type of bodies that can be fitted with pressure tapping systems due to a lack
of thickness. This issue is especially pressing when one considers the widespread use of scaled-down
models for wind-tunnel testing.

Alternatively, Pressure Sensitive Paint has been introduced as a method to acquire surface pressure in-
formation in experimental set-ups, overcoming some of the challenges of pressure tapping like intrusion
and limited spatial resolution.

Pressure Sensitive Paint

Pressure Sensitive Paint or PSP, presents a reduced cost of manufacturing processes compared to
pressure tapping methods. This technique makes use of oxygen’s ability to quench to organic lu-
minophores [49] to define pressure. This is because oxygen pressure directly affects the extent of
quenching and thus the higher the partial pressure, the smaller the luminosity of the UV-excited dye.
Accordingly, pressure can be inferred from luminosity using the Stern-Volmer equation 1.12 [49]. It is
noted that the coefficients in this equation depend on temperature and can be defined in a calibration
set-up.

I P P\’
i A(T) + B(T) <Po> + C(T) (Po> + .- (1.12)
In addition, hints of the set-up required for PSP measurements are given in Figure 1.5. In this arrange-
ment, it is required that the test object is fitted with a binder and sprayed with the light-reactive dye,
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which is illuminated during the test with UV light. Parallel to this, the acquisition equipment is formed
by the camera and computer, where the information is processed to yield the light intensity maps.

Digitizer

Camera

@5 oV Filter Computer
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Coating emits light  Pressure
{luminesces) map
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Figure 1.5: Pressure Sensitive Paint set-up and equipment - from [49]

Provided the above figure, it becomes obvious that, while this set-up addresses some of the key issues
in pressure tapping, such as intrusion and spatial resolution, it presents a number of technical and
application challenges. In particular, aeroelastic-induced deformations of the test body will result in
variations not solely in the incident light intensity but also in the location of the test body with respect to
the acquisition equipment. This is studied in [49], where the need to use reference points and algorithms
to correct for these load-provoked modifications is highlighted.
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Figure 1.6: Pressure Sensitive Paint error relative to freestream pressure due to compressibility-related temperature [44]

Not only this, but also the speed envelope for applicability of the PSP technique could be rather limited,
as is exposed in Figure 1.6, where the effect of the freestream Mach number on the uncertainty of
the pressure distribution around the suction surface of a Joukowsky airfoil is presented. The rapid
escalation of the uncertainty level with increasing M, presents a bias around the suction peak and is
stated to be related to thermal effects on PSP, with a peak of 50% uncertainty level around the suction
peak at M., = 0.7. Finally, some research [49] also challenges the idea that PSP is subject to some
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intrusion errors, as the PSP coating can cause dust particles entrained in the wind tunnel flow to adhere
to the geometry under study, particularly affecting laminar-to-turbulent transition.

1.3. Pressure reconstruction from PIV - traditional methods

Overall, it has become apparent that conventional techniques to measure surface pressure experimen-
tally present a number of limitations. Some of the most relevant ones are intrusion, lack of spatial
resolution, or complexity of implementation.

As a result, more recent developments have focused on attempting to reconstruct pressure from alter-
native experimental techniques, such as Particle Image Velocimetry, which can provide time-averaged
and/or time-resolved velocity fields.

1.3.1. Particle Image Velocimetry

Provided that this technique is utilized in the present work, its working principles, equipment, variables
and output data are exposed here before introducing the conventional pressure reconstruction tech-
niques from PIV data.

Firstly, a typical schematic of the set-up used in PIV experiments is displayed in Figure 1.7, where the
wind tunnel test section is represented in light gray and the flow direction with blue arrows. It is noted
that the example given corresponds to a set-up aimed at capturing two velocity components in two
dimensions.

As observed, a pulsed laser device is fitted with a set of optical lenses to create the target laser sheet
shape. In turn, this incident light illuminates the tracer particles of the flow, which need to have a certain
set of characteristics to ensure they are representative of fluid motion [50]. Typical examples of tracer
particles include fog, Helium-filled soap bubbles [63] and others, depending on the flow characteristics
and light intensity requirements.

Laser light sheet

Flow with
tracer particles &=

o

Imaging optics

e First light pulse at 7,
e Second light pulse at 7 +Az

1

A Image plane

' Flow direction

Figure 1.7: Example of set-up for two-dimensional, two-component PIV - from [57]

fD+At

As the fluid flows around the test object, the laser firing is coupled with an image acquisition device that
is placed normal to the illumination plane. The camera also features a set of lenses to achieve optimal
imaging characteristics, controlling the amount of light captured and image particle size, among other
parameters.

In order to measure flow displacement, an image pair is required, where two consecutive firings are
performed in the order of a few microseconds [30]. This demands image acquisition technology that
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converts photons into electric charge in a low-latency framework, such as CCD and CMOS cameras
[55]. This operation produces two images containing the light intensity at each pixel, which are pro-
cessed to locate tracer particles, characterized by higher light intensity regions. To reduce uncertainty,
these often benefit from batch-processing operations to remove background light and reflections [2].

The next step typically involves a correlation mechanism between the two images that form the pair in
order to estimate particle displacement, for which spatial cross-correlation can be used, among other
techniques [36].

In this algorithm, the first image in the pair is split using a windowing set of rules, including the window
size and window displacement at each step. In addition, at each stage a correlation map is generated
from the cross-correlation function (Equation 1.13). This can be seen as a similarity metric between
the intensity map of the window in the first frame and the intensity map of a window of the same size
shifted around the original position in the second frame of the pair.

S X L g) B4+ m, g+ n)
o (m, n) =

o T T 12 o =l T (1.13)
VI S B G) - S S 136, )

In the above equation, I; and I, denote the light intensity fields in the first and second frames. These
are evaluated on the dummy indices {4, j}, which indicate the pixel location and range from {1,1} to
the dimensions of the interrogation window, I x J.

Finally, the output of the cross-correlation function is the pixel displacement yielding the highest corre-
lation value for each window, A,,. In turn, this enables to compute the velocity vector in length units
for that location through the magnification factor, M, and the time-step size between frames, At, as
per Equation 1.14. It must be noted that, despite not being discussed here, there exist ways to achieve
sub-pixel accuracy levels when estimating the particle displacement.

Ape

= —Mf Al (1.14)
It is also noteworthy that the basic principles shown here to capture two velocity components across a
planar domain can be extended to achieve more complex datasets. For example, a step in complexity
adds a second camera and places both at a known angle, thus allowing one to determine the third
velocity component for the particles in the laser sheet plane, which is termed stereoscopic PIV [57].
Finally, tomographic PIV uses laser volumes and at least four cameras to determine all three velocity
components over the illuminated domain, or a portion of it, to then assemble the three-dimensional
measurements [21].
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Figure 1.8: Normalized x-velocity of the flow around NACA 0012 via PIV - from [65].
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An example of the data that can be obtained with PIV is shown in Figure 1.8, featuring the two-
dimensional, normalized x-velocity profile around a NACA 0012 airfoil. This specific image has been
selected due to the data gaps it contains around the leading and trailing edges, which appear due to the
refraction of the laser-light rays across the curved plexiglass volume, showing one of the challenges
found in PIV, as is the required direct view for the laser and imaging devices.

From the above explanation, it becomes clear that PIV presents solutions to several of the issues
exposed for conventional experimental pressure measurement techniques. For example, it can pro-
vide instantaneous measurements of all velocity components simultaneously [78] and has the main
advantage of not causing significant intrusion [2], compared to techniques that require the sensor to be
immersed in the flow. Furthermore, its instantaneous nature and focus on tracer particles removes the
calibration challenges in PSP.

1.3.2. Traditional Methods to infer pressure from PIV

In order to benefit from the advantages of PIV with respect to the other pressure measurement tech-
niques, algorithms aimed at reconstructing pressure from the temporal [16] [45] [32] or time-averaged
[54] velocity fields obtained with PIV have been developed. The techniques discussed here are con-
ceptually similar because they are based on the principle of momentum conservation to obtain an
expression for the pressure gradient.

Direct Integration of the Pressure Gradient

The first method exposed here yields an expression for the pressure gradient directly from the mo-
mentum conservation equation, either in its Eulerian (Equation 1.15) or Lagrangian (Equation 1.16)
formulations, which correspond to a viewpoint that is stationary in space and moving with the flow,
respectively.

Vp=—p (681; + (u-V)u — Z/V2u> =F (1.15)
Vp=—p <gl; + VVQu) =F (1.16)

In the above equations, the term on the left-hand side represents the pressure gradient, whereas on
the term at the centre, the two formulations of the material acceleration component and the viscous
term are shown. As noted in [54] or [45], while the contribution of the viscous term can be computed,
it is generally a few orders of magnitude smaller than the other terms and can be neglected where the
inviscid flow assumption holds.

In addition, it can be deduced that the right-hand side (RHS) represents a conservative vector field,
F, which equals the gradient of a potential function, p, in this case. As a consequence of the gradient
theorem [71], it can be stated that any line integral of the right-hand side from one point to another will
equal the pressure difference between them.

Observing the above equations, one can see the term in the centre of Equation 1.15 can be evaluated
directly using a finite-difference scheme in space and time with the velocity data obtained through PIV
measurements. On the other hand, evaluating its Lagrangian counterpart requires that the fluid parcel
trajectories be reconstructed. Nonetheless, this can be achieved directly from the velocity field and
thus does not require particles to be tracked, as exposed in [46].

The last step consists of the integration of the pressure gradient term to yield the pressure field, which
requires that a Dirichlet boundary condition is specified at least at one point. This is possible with
limited uncertainty if selecting a reference point or region where viscous effects are limited, e.g. outside
of shear layers, and applying the steady Bernoulli relation (Equation 1.3) or its unsteady counterpart
(Equation 1.17).

1 r . —
poo+§PUo20:pp+§P(up'up"'up/up/) (1.17)
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It must be noted that a variety of methods have been proposed to carry out the integration step, such as
space-marching integration [8] or the virtual-boundary omnidirectional integration algorithm presented
in [46]. While the former is based on integration from neighboring points, the latter uses a more complex
algorithm to produce integration paths between points placed on virtual boundaries, constructing the
pressure on the internal nodes by averaging the pressure values yielded by all passing paths. Even if
both have been used extensively, comparative studies such as [16] have proven the latter method is
less sensitive to error propagation along the direction of integration.

Poisson Formulation

The alternative algorithm exposed here arises from the Poisson formulation of the momentum conser-
vation equation, which derives from the application of the divergence operator to Equation 1.15:

V-{Vp——p<gltl+(u-V)u—1/V2u)}, (1.18)

which, after applying the steady incompressibility relation, V - u = 0 results in the Poisson equation
for pressure:

Vp=—-pV-(u-Vu)=V- -G (1.19)

where the vector field G represents the incompressible version of the conservative field F. The second-
order differential function represents a boundary value problem, which requires that a Dirichlet boundary
condition is defined at least on one of the domain boundaries or internal region to provide a unique
solution, while the rest of boundary conditions may be set to be of the Neumann type.

In this case, the resolution of the second-order differential equation given by the Laplacian of the pres-
sure field and the forcing term may be approximated using a number of methods. For instance, via a
second-order finite difference scheme, using local basis functions or through spectral methods [61].

Advantages and limitations

Despite the two methodologies being extensively used and compared back-to-back in a number of
research articles, there is no data demonstrating that any of them presents a consistently better perfor-
mance. For instance, comparison of the NS-based and the Poisson-based methods in [52] found that
the latter is less sensitive to noise propagation from velocity to pressure for the flow around a Savonius
rotor. In contrast, the results reported in [16] for a decaying Taylor vortex flow provide a different view,
where most of the resolution methods used for both formulations display a significant error propagation
from velocity measurements to pressure estimations.
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Figure 1.9: Relative reconstructed pressure RM S as a function of measured velocity error - from [16].
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The results of the latter paper are included in Figure 1.9, where the total relative RM S of the recon-
structed pressure is graphed as a function of the velocity measurement error. It is noted that the
velocity error was introduced artificially by the authors following a Gaussian distribution with standard
deviation equal to the error amplitude. As may be witnessed, different formulations of the Poisson
boundary-value problem provide disparate responses to noise, with the conservative one delivering
the most consistent results. On the other hand, the Navier-Stokes based results all give similar results,
displaying a quasi-linear response between both error magnitudes.

Although some research argues that a standard Gaussian smoothing operation could suffice to address
the issue of noise propagation, a number of solutions have been proposed, such as Proper Orthogonal
Decomposition-based smoothing [10] or low-pass filtering.

A different challenge that derives from the formulation of both approaches is the divergence caused
by outliers. As can be deduced, an outlier data point can result in a divergent gradient computation
that propagates for path-integration-based algorithms. As a result, a careful data curation process
is required for conventional pressure reconstruction, possibly followed by a reconstruction step, via
interpolation or NS-based algorithms [65].

Finally, with typical engineering PIV set-ups, conventional pressure reconstruction algorithms make it
difficult to reconstruct pressure up to the surface. This is because, in most engineering applications, the
focus tends to be placed on capturing the most dominant integral scales, at the cost of spatial resolution.
Additionally, near-the wall regions are often affected by light reflections, even if light-absorbing paints
are used.

(a)
05

x/D ‘ x/D

(a) Vorticity. (b) Pressure coefficient.

Figure 1.10: Results from PIV around a square prism - from [32].

An example of this is visualized in Figures 1.10a and 1.10b, where the vorticity and reconstructed
C, fields around a square prism are plotted. As can be observed, while off-body structures around
the wake and shear layer are properly captured, PIV data immediately around the solid boundary has
been cropped, making surface pressure inference through traditional methods unfeasible unless a prior
reconstruction step is performed. A more extreme case of this corresponds to the gappy-PIV in Figure
1.8, where missing data would make pressure reconstruction impractical.

From the above information, it can be concluded that, while traditional methods to infer pressure from
PIV have the advantage of extensive research and already being implemented in commercial programs,
they present a number of limitations. Some of the most relevant ones are noise and outlier sensitivity
or the dependence to boundary conditions and choice of the integration paths.
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1.4. Deep Learning in Fluid Mechanics

More recently, machine learning models - statistical tools optimized to learn patterns from large datasets
[11], have been increasingly used in Fluid Mechanics applications for various reasons. Among them,
increased data access, more sophisticated algorithms, advances in parallel computing or the rapid rise
of Al-related research are highlighted in [12].

Within Machine Learning models, Deep Learning algorithms, which rely on neural network frameworks
to learn the underlying patterns in training data, have proliferated due to the rich variety of model
architectures and their efficiency in learning to map input to output vectors via (un)supervised training
[26].

Although all neural networks (NNs) are based on similar principles, where neurons serve as nodes that
are interconnected through linear operators of the form output = weight x input + bias, it is precisely
the layout of connections that provides the variability in network types.

While detailing the nature of each NN type is not the goal of this thesis, it is worth noting examples of
their use cases in Fluid Mechanics for the reader’s reference. For instance, the architecture of Long
Short Term Memory (LSTM) networks has been found to be especially powerful in the reconstruction
of temporal flow variations. An instance of this is reported in [20], where an LSTM architecture is used
to yield the temporal POD coefficients from non-time-resolved PIV and temporal point velocity data,
allowing to generate time-resolved PIV samples at a frequency of up to 2 kHz.

20x6x64
3Mxi2x32

1% 76322316

15034438

W //7' a ; 7 R\ B
[ L f/ P pe=—= “{ <> o A

00x88x2

Latent
Space

Encoder

Figure 1.11: Transformer architecture - adapted from [70].

Further results on the use of NNs in modal-based flow decomposition are reported in [70], where the
(-variational autoencoder architecture in Fig. 1.11 is used to find an efficient representation of the flow
in a low-dimensional and near-orthogonal latent space. Comparison to conventional POD on a periodic
and chaotic flow suggests that the proposed architecture might be superior to conventional techniques.
This is because, when trained on the chaotic flow case, it is able to reconstruct an additional +25%
energy content with the first 20 modes, making data representation more efficient.

In the above image, the block diagram of the convolutional network is displayed, including the encoder
and decoder architectures, as well as the mean and standard deviation of the distributions that charac-
terize the latent space of variational autoencoders.

Additionally, feedforward Deep NNs have also proven to be useful in a number of Fluid Mechanics
applications. In [42], researchers were able to embed Galilean invariance in a DNN framework aimed
at predicting Reynolds Stress anisotropy in RANS simulations.

A different application is reported in [40], where a DNN architecture is employed to provide the optimal
wall blowing and suction levels to reduce skin-friction drag. The architecture, shown in Figure 1.12,
is fed spanwise data of the shear-stresses and reportedly achieves drag savings of up to 20% in the
simulation of a Turbulent Channel Flow case. As observed, the proposed architecture contains a single
hidden layer to predict the optimal wall blowing ratio for a given shear stress distribution on the surface.
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Figure 1.12: Feedforward network to control wall blowing ratio - from [40].

1.4.1. Physics-Informed Neural Networks

More recently, particular attention has been brought to the concept of Physics-Informed Neural Net-
works (PINNS), firstly introduced by Raissi et al. [58] in 2019. The core idea behind this family of Deep
Learning models is to embed the physical laws that describe the problem by including a loss term based
on the residuals of its governing equations. By doing so, the set of allowed solutions are ensured to
have physical meaning, potentially adding a layer of regularization [51].

NN Architecture

In Figure 1.13, an example of PINN framework from [31] is shown, specifically for an unsteady, three-
dimensional flow case. In this representation, the components of the NN architecture have been high-
lighted in green.

In the first place, the input layer takes the spatial and temporal coordinates of the domain. This in-
formation is propagated through the fully-connected, hidden layers, where information undergoes the
aforementioned linear transformation, i.e. output = weight x input + bias from neuron to neuron. Here,
the weights and biases represent the trainable parameters in the network. Finally, an output layer is
present that contains the prediction for all flow variables of interest at each of the input coordinates.
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Figure 1.13: Example of PINN framework for unsteady 3D3C flow - adapted from [31].
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As can be observed, the entire framework is more complex, since the loss function to tune the trainable
parameters contains various components. In the above case, for an unsteady flow, initial conditions
are enforced softly in blue. Additionally, all known data points in the space-time domain are learnt
through the boundary condition loss term, in yellow. These two terms form the contribution of supervised
learning to the total loss, where NN predictions are compared with labeled data.

However, the term that characterizes PINNSs is the Partial Differential Equation loss, in red, which re-
quires that the partial derivatives of the output variables are computed locally with respect to the input
coordinates. In this framework, this is achieved in an efficient manner via Automatic Differentiation.

Automatic Differentiation

One of the key advantages PINNs offer over numerical-differentiation-based pressure reconstruction
methods is their ability to compute partial derivatives locally and up to machine precision, without relying
on finite-difference schemes. This is made possible thanks to automatic differentiation, a technique that
evaluates the derivatives of composite functions efficiently using the chain rule [9], and is inherently
supported by the deep learning framework of PINNs [58].

In the case of PINNs, where the derivatives of outputs with respect to inputs are required, automatic
differentiation in reverse mode is used. To better understand this concept, a reduced version of a PINN
system with two hidden layers for x-velocity is presented in Figure 1.14.
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Figure 1.14: Forward pass operations.

In the above diagram, from left to right there are: the input layer, a hidden layer with two neurons, the
activation layer, a second hidden layer with two neurons and finally the single-output layer. Furthermore,
the operations that relate the output of each layer to its inputs are shown for each connection. This
diagram, with its operations, reflects the so-called forward pass, where information is transferred from
inputs to outputs.
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Figure 1.15: Derivatives of outputs with respect to inputs.
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On the other hand, in Figure 1.15, the derivatives of the outputs with respect to the inputs of each node
are shown for the same architecture. As may be observed, derivative expressions in neurons take very
simple forms due to the linear transformation, whereas more involved expressions take place in the
activation layer.

Thus, the expression to compute the derivative of the NN output with respect to one of the inputs, in
this case z, would be as per Equation 1.20, where each term in the differentiation chain can be taken
from the diagram above.

% . ou (8021 80’11 8011 8021 (90/12 8012) ou (8022 (90/11 8011 (9022 80/12 8012) (1 20)
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Even if the above expression can appear to be cumbersome, in practice this is implemented in a straight-
forward way using the autograd function in PyTorch, which creates a computational graph that allows
one to efficiently compute the required first and second partial derivatives in tensor form. An example
is given by the following command:

du_dx = torch.autograd.grad(u, x, torch.ones_like(x), create_graph=True) [0]

Activation functions

So far, the discussion on PINNs has considered internal NN operators as linear. However, focusing
on turbulent-flow applications, where non-linearities are present, the so-called activation layers are
required by the feedforward DNN to provide a sufficiently complex representation space that can contain
the flow solution.
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Figure 1.16: Representations of common activation functions.
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Activation layers include a non-linear input-to-output transformation of the form output = f (input),
where f (-) denotes a non-linear function. Although there are a number of possibilities for activation
functions, such as ReLU, sigmoid or tanh, which are shown in Figures 1.16a, 1.16b, and 1.16c, respec-
tively, not all activation functions are suitable for all problems.

After the above discussion on the use of automatic differentiation to compute local derivatives, it be-
comes apparent that the activation functions in PINNs require, at least, an order of differentiability equal
to that of the largest partial derivative in the governing equations. In the specific case of turbulent flows,
where the unsteady or Reynolds-Averaged Navier Stokes equations are used to compute the PDE loss
term, the activation function has to be twice-differentiable, as required by the second-order derivative
of the viscous term. This already discards activation functions such as the Rectified Linear Unit (ReLU)
or its leaky version, which includes a non-zero slope for Vx < 0.

Loss function

As exposed at the beginning of this section, the loss function is a conglomerate of various elements
that depend on the specific problem. Nonetheless, these can generally be reduced to the two main
loss contributions - the data and PDE losses.

» The Data Loss term is the error metric that represents the deviation in the reconstruction of all
known variables in space-time. Accordingly, the process to compute it is rather straightforward,
as it only requires a direct comparison between the labeled data and the prediction given by the
PINN.

For each {z, y, t} set of inputs describing a point where labeled data is available, hereafter refer-
enced as measurement point, the magnitude of the deviation between the PINN prediction and
the ground truth is computed via the Squared Error across the literature, given by the expression
in Eq. 1.21 for w.

SEu (xiv yz) = (upred (2171', yz) — Udata (:Eiv yz) )2 (1 21)

Furthermore, each training iteration involves optimization based on a subsample of all available
measurement points. The size of this subsample is defined as the measurement batch size,
which is a random sampling of the entire pool of measurement points. Additionally, the number
of iterations required to run through the entire set of measurement points conforms an epoch.
Accordingly, in order to yield a single representative value over all points where data loss is com-
puted, an unweighted average is performed, resulting in the Mean Squared Error. The expression
of this metric for the x-velocity is shown in Eq. 1.22, where N, reflects the measurement batch
size.

s

N,
1
MSE, = — Ey (25, vi 1.22
S N;S (i, i) (1.22)

S

Finally, the addition of the above expression for each of the labeled variables used for training,
gives the total data loss. In Equation 1.23, this has been shown for the case discussed in Figure
1.13, where only the three velocity components are known.

Laate = MSE, + MSE, + MSE,, (1.23)

Finally, it can be deduced that this format can accommodate a variety of loss types, including
initial conditions, boundary conditions of the Dirichlet type, and others.

Secondly, the Partial Differential Equation loss reflects the agreement of the flow solution given
by the PINN to the governing equations, thus softly enforcing solutions with physical meaning.
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In particular, the metrics used to enforce physics are the residuals of such governing equations.
For instance, the example provided earlier in Fig. 1.13 uses the unsteady, incompressible Navier-
Stokes equations to compute the PDE loss term. In accordance, the expressions for the momen-
tum (e; — e3) and continuity (e4) residuals take the forms in Equations 1.24 and 1.25 respectively.
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The locations where residuals are computed are referred to as collocation points. Furthermore,
given the flexibility offered by the Automatic Differentiation framework to compute derivative terms,
the PDE loss can be evaluated at any point in space with its accuracy remaining unaffected by
spatial resolution, since finite differencing is not required. Accordingly, a number of sampling
strategies have been studied in literature to define their optimal distribution, such as residual-
based adaptive refinement or RAR in [31].

This technique trains the PINN on an initial set of randomly placed collocation points, then eval-
uates the total loss at a much larger randomly sampled space and retains the locations where
the PDE loss falls above a certain threshold to keep training. Nevertheless, while reporting error
reductions of up to 50% for the Kovasznay flow, little attention is given to the collocation sample
size sensitivity. This could mean that error reduction could be tied to the sample size rather than
the sampling strategy, hence reflecting the challenge to efficiently define collocation points.

Similarly to the data loss, the Mean Squared Error is generally selected to compute a representa-
tive metric of the PDE loss across the batch of collocation points that is evaluated at each iteration.
Consequently, the PDE loss takes the form of Equation 1.26. In the expression, the dummy index
1 reflects each collocation point, while j represents the number of equations that form the PDE
loss.
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In general, the construction of any PINN framework requires at least these two loss terms, which form
the most basic form of total loss. In the literature, a number of investigations have been conducted
to determine whether the unequal weighting of both terms can lead to increased noise robustness or
improved learning dynamics. A generic formulation of this is shown in Equation 1.27, where « and
represent the weights.

Liot = aLppr + B Ldata (1.27)

In this regard, static weighting of the N-S loss for the 2D decaying vortex problem with artificial Gaussian
noise in [76] showed that biasing the loss towards the PDE term resulted in no additional regularization
for noise levels up to 20%. On the other hand, in [31] the dynamic weighting of the data and PDE loss
terms is proposed to balance their contribution during training. Results applied to the 2D Kovasznay
flow using the velocity-vorticity and velocity-pressure formulations of the N-S equations, suggest that
the dynamic formulation can bring a consistently balanced contribution of both loss terms during training,
addressing the issue of problem-specific optimal weights.

Training Process

Once the various components of the PINN framework have been discussed, it is worth exposing how
the trainable parameters are adjusted to provide an optimal flow solution. In order to achieve this, the
loss function acts as a key performance indicator that must be optimized.
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Before the optimization process is started, the NN architecture must be created and its parameters
initialized, for which several methods exist such as He or Xavier [24]. After initialization and definition
of the various NN hyperparameters, such as the learning rate or batch size, the iterative optimization
process is conducted.

The first step in gradient-based methods is the evaluation of the PINN model in the batch of measure-
ment and collocation points. This operation generates a set of output variables as a function of the
inputs, allowing to compute an instance of the loss function. Since the weights and biases are the
tunable parameters, these are to be adjusted such that the loss function is minimized.

For stochastic gradient-descent (SGD) this step, known as backpropagation, takes the form of Eq. 1.28,
where 6 represents the set of trainable parameters, n is the iteration step, n the learning rate and L is
the loss function. Interpretation of this formula leads to the conclusion that the trainable parameters
are modified in the direction specified by the negative gradient of the loss function with respect to
the trainable parameters themselves, which should provide the direction of maximum loss descent.
Furthermore, the magnitude of the update step is controlled by the learning rate, 7.

Ot = 0n — 1 VoL (0;%) (1.28)

Nevertheless, given the complexity of the optimization space, various approaches exist to determine in
which direction trainable parameters should be adjusted. These are known as optimizers, among which
the most wide-spread are variants of SGD, such as momentum, RMS-prop or Adam [26]. The latter
is the most widespread in most deep learning applications, as it uses exponentially-weighted moving
averages to efficiently store first and second order statistical moments of gradients through iterations,
which are used to set the optimization direction.

However, a crucial advantage of PINNs lies in the fact that the gradient computation required for back-
propagation incurs only minimal additional computational effort. This is shown in Figure 1.17, which
reflects back-propagation (magenta) and the computation of PDE derivatives (blue) in the simplified
architecture used prior.
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Figure 1.17: Diagram depicting the reuse of PDE derivatives in backpropagation.
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As is observed in the expression of the total loss gradient with respect to the trainable parameter w1,
the chain rule of differentiation allows to reuse a number of the derivatives obtained during the PDE loss
computation, which is performed prior to backpropagation. In particular, all the terms in blue inside the
expression are reused from the PDE loss calculation, making backpropagation, which requires higher
computational cost than the forward pass [58], more efficient.
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PINNSs for Pressure Reconstruction

The above summary on how PINNs work already highlights some of its core advantages, such as the
ability to compute derivatives without discretization error, the freedom to define collocation points or
the flexibility it offers when defining the PDE loss. As a result, extensive use cases have been studied.
These include forward and inverse problems, as well as unsteady [39] and time-averaged [27] problems
for data assimilation [76] and direct simulation [31] of various engineering flows and even in medical
use cases [59].

Focusing on the data assimilation branch and, in particular, on PIV applications, a number of use cases
have been studied for PINNs. The researchers in [39] have reported their use to increase the temporal
resolution of PIV. Their proposal is based on embedding an unsteady Navier-Stokes loss term that
allows to reconstruct the flow field between CFD velocity snapshots at 15 Hz when used in conjunction
with point pressure data. Additionally, comparison of the results with a high-frequency simulation of the
flow around one, two and three cylinder arrangements resulted in relative errors as low as 4% in the
most complex flow case, showcasing its ability to approximate unsteady flow dynamics.

Additionally, researchers in [76] have studied the performance of PINNs on real tomographic PIV data
of the flow around a hemisphere. Their findings support the suitability of the framework to de-noise ex-
perimental data and to enhance spatial resolution when experimental measurements are rather sparse,
of particular relevance in tomo-PIV.
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(a) Tomo-PIV data. (b) PINN output (c) DNS simulation.

Figure 1.18: Isosurfaces of Q-criterion, Q@ = 0.2 colored with dimensionless velocity and of /U, = 0.5. [76]

An instance of this is represented in Figure 1.18, where Q-criterion isosurfaces with @ = 0.2 reflect
the effect of the PINN algorithm on flow interpretability. This can be observed by direct comparison
of Figures 1.18a and 1.18b, corresponding to the 3D PIV data before and after the PINN execution
respectively. Visibly, the NN output data offers a clearer picture of the flow pattern, not only in the
hairpin vorticity but also regarding the sheet vorticity along the shear layer. What’s more, comparison
of the structures with the high-fidelity simulation data in Figure 1.18c shows that certain structures such
as the standing vortex can only be appreciated after running the DNN.

Even if the above study places no special emphasis or accuracy assessment on it, reference is made to
the ability of the PINN framework to reconstruct the pressure field without additional data requirements.
In particular, the pressure contours along the centerline of the wake shown in Figure 1.19a are included,
of which the only comment is the correspondence between the low pressure regions at the core of the
eddies.

This ability of PINNs to infer pressure derives from the fact that the PDE loss term used during the NN
optimization includes the momentum conservation equations, of which the only unknown variable re-
main the spatial derivatives of the pressure field. Consequently, the pressure field can be reconstructed
up to a constant as the spatial pressure gradient terms are adjusted to minimize the momentum resid-
uals, while all the other terms including the velocity field are additionally constrained in a soft manner
by the supervised learning component.

This idea was already presented in the initial paper by Raissi et al. [59] and has been studied ex-
tensively with artificial PIV data generated from CFD simulations [76] [31] [51] [14], highlighting the
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robustness of PINNs to artificial Gaussian noise and its performance when compared to more con-
ventional pressure reconstruction methods. An instance of this is displayed in Figure 1.19b, where
the pressure reconstruction error has been represented as a function of the artificial Gaussian noise
level for 2D Taylor decaying vortices. The graph depicts a superior robustness of PINNs compared to
conventional spectral (SDFPI) and direct-integration (IC-OPI) methods.
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(a) Pressure field on the wake centerline of the flow around a hemisphere. [76] (b) Noise propagation for 2D Taylor decaying vortices [22]

On the contrary, research on the ability of PINNs to reconstruct the pressure field from real experimen-
tal PIV data is scarce. However, certain examples exist which reflect the suitability of the method for
data obtained experimentally. For example, the research group in [15], demonstrated that the unsteady
pressure field along the lateral line of swimming fish can be reconstructed with superior accuracy than
the Queen 2.0 algorithm, introduced in [18], when compared to DNS simulation data. Similarly, results
reported in [22] expose the performance of PINNSs in the reconstruction of the pressure field from 2D-3C
PIV measurements of a synthetic jet impinging on a wall. In this study, the assessment against conven-
tional methods also reflects the reduced sensitivity of the proposed PINN architecture to measurement
noise.

Overall, the research based on experimental data appears to be limited and has only been compared
with high-fidelity simulation data or even just judged qualitatively, seldom focusing on surface pressure
in particular. As a result, the need appears to directly compare PINNs with more established pressure
measurement techniques such as pressure tapping and conventional PIV-based measurements.

1.5. Research proposal
1.5.1. Background synthesis

Synthesizing the above section, the relevance of surface pressure in fluid dynamic applications has
been introduced first, highlighting its role as a force generation mechanism and its influence on the
production and evolution of turbulence. Subsequently, the analytical approach, CFD simulations and
experimental measurements have been introduced as the methods that allow to obtain surface and
off-body pressure information. After placing emphasis on the advantages and limitations of all three
techniques, the relevance of experimental measurements has become apparent due to the measure-
ment of real flows and their flexibility when conducting parametric studies.

Keeping the interest on experimental simulations, the conventional surface pressure measurement
techniques of pressure tapping and pressure-sensitive paint have been exposed. Even though these
are used extensively, especially pressure tapping, they present a number of limitations. In the case of
pressure taps, major drawbacks are intrusion and low spatial resolution, while the experimental set-up
and variations in light intensity due to aero-elastic effects are particularly challenging in the case of
pressure-sensitive paint.
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As a consequence, alternative pressure reconstruction methods have emerged that work with Particle
Image Velocimetry data, an experimental technique used to obtain instantaneous and simultaneous
velocity fields, thus addressing some of the above issues. Such methods, which are based on the
principle of momentum conservation, have been tested in extensive flow applications with success.
However, they still present certain limitations, such as dependence on the integration path or sensitivity
to experimental measurement noise.

Finally, the advent and proliferation of Machine Learning in Fluid Mechanics has been introduced, high-
lighting their versatility and the wide range of applications that have been found for the various types
of architectures. A special emphasis has been placed on Physics-Informed Neural Networks, a spe-
cific group of Deep Neural Networks that blends supervised and unsupervised training, thanks to the
addition of the residuals of governing equations as a loss term. Among the wide range of applications
explored by researchers so far, the attention has been focused on PINNs as a novel technique to infer
pressure from PIV data.

The PINN framework presents certain advantages with respect to conventional PIV-based pressure
reconstruction methods, among which the avoidance of discretization schemes, the flexibility to define
different PDE formulations or their robustness to noise stand out.

However, after revision of the literature on the use of PINNSs for pressure reconstruction, a number of
knowledge gaps have been observed by the author:

» The majority of papers focus on artificial PIV data [13] [31] [39] [51] [58] [59] (i.e. CFD data with
added Gaussian noise), avoiding the challenges associated to experiments, such as reflections
and correlated noise.

» Even if actual experimental data is used in a couple of papers, reference pressure is either not
provided [22] [76] or obtained with high-fidelity simulations [15], thus obviating the layer of uncer-
tainty introduced by the experimental setup.

» The challenges of reconstructing surface pressure from experiments, such as data gaps, are
avoided across literature by placing the focus on off-body structures [76].

1.5.2. Research Questions

Consequently, the following primary and secondary research questions have been formulated in order
to provide further insight on the applicability of PINNs as a novel technique for reconstructing pressure
information from experimental PIV data.

Primary research question

* How does the performance of PINNs quantitatively and qualitatively compare to a conventional
PIV-based pressure reconstruction technique like the Poisson Solver in the inference of surface
pressure information when compared to pressure tap data?

Secondary research questions
» How do data gaps close to the solid boundary affect the accuracy of surface pressure reconstruc-
tion accuracy for PINNs?

» To what extent does the inclusion of physics-based boundary conditions on the surface (e.g. the
no-slip condition) affect the accuracy of surface pressure reconstruction?

* How much does the provision of reference surface pressure data from pressure taps positively
affect the pressure reconstruction accuracy of PINNs?

» To which extent is the performance of PINNs on CFD simulation data representative of its ability
to reconstruct pressure from experimental data?



Problem definition

After the definition and justification of the research objectives of this thesis, the present chapter focuses
on laying out the methodology and specific tests conducted to answer them. Furthermore, a detailed
insight is given on the characteristics of the PINN framework used in this thesis due to its central role.

2.1. Tools and Methods

With the aim of answering the main and secondary research questions, the two-dimensional and time-
averaged flow around a cylinder will be used as a test case. In addition, the project is divided into two
major branches - while the first one is focused on the assessment of PINNs performance using data
from CFD simulations, the second and most novel part uses experimental data to run the algorithm.

In order to help visualize the processes and tools used in the project, the flow charts in Figures 2.1 and
2.2 are referenced. Furthermore, these charts include the following color codes:

+ gray boxes and black arrows for CFD data and processes.

+ green boxes and arrows for experimental data and processes.

+ orange boxes for PINN items with red arrows to indicate the flow of information during training.
* blue boxes to include the tools and software used to obtain or process the data.

2.1.1. Data acquisition and processing

Using the chart in Figure 2.1 as support and starting from the top-left, the simulation data of the un-
steady flow around a cylinder is produced using the STARCCM+ software package. Even though the
simulation is three-dimensional, the output of interest are the unsteady flow variables on the symmetry
plane, among which u, v, p are extracted. Since the PINN framework used here is based on the flow
averaged over time rather than on instantaneous snapshots, the time-average is computed using the
same software via Equation 2.1, where N denotes the number of snapshots.

1 N

The above yields the mean flow variables @, 7, p, which appear in the two-dimensional steady con-
tinuity (Eq. 2.2) and momentum conservation (Eq. 1.7) equations. Furthermore, it enables one to
perform Reynolds decomposition and compute the time-averaged Reynolds Stress components, thus
completing all the required flow variables.
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As depicted in the diagram in Figure 2.1, the process to acquire experimental data of the flow around
a cylinder is similar but contains some key differences. Firstly, from the top right, experimental tests
are conducted in the M-tunnel of the Low-Speed Lab Facility in the TU Delft using a PIV acquisition
system, as well as pressure taps across the top semi-circumference of the cylinder, which provide the
time averaged pressure values at each angular station.

Unsteady Reynolds PIV WT
CFD around 4/u,v,p(x,y,t)/Lv Reynolds Averaging CAACIA) algorithm ] Experiment :

Averaging

cylinder DaVis DaVis Flow around
i
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| Poisson
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Figure 2.1: Flowchart depicting the methods and tools used to obtain data.

Subsequently, the flow images are processed to obtain the two-dimensional velocity field after run-
ning a PIV algorithm in DaVis. Later, statistical analysis is performed on the instantaneous samples,
analogously to CFD, to provide the mean velocities and Reynolds Stress components.

Another key difference from CFD simulations is the source of reference pressure values, as this is
provided directly by the simulation in the case of CFD. On the contrary, two sources are used in the
experimental branch. On the one hand, the aforementioned pressure tap data on the cylinder surface,
and, on the other hand, the conventional pressure reconstruction technique from PIV, i.e. the Poisson
solver. It is noted that the Poisson solver built in DaVis is used and run directly on the time-averaged
data obtained from PIV.

2.1.2. PINN training and results assessment

Once the flow data is processed, the variable fields on the plane across the centerline of the cylinder
are split into known variables, namely @, v, v'«’, u/v’, v'v/, and the unknown variable, p.
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Figure 2.2: Flowchart depicting the methods and tools used to train and analyze the performance of PINNs.
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As is reflected in the diagram in Figure 2.2, the known variables are used during the PINN training
process, since comparing them to the PINN-predicted fields yields the supervised learning contribution
of the loss. On the contrary, pressure data is only used to compute the validation loss. Additionally, all
PINN-output variables are used to compute the residuals of the governing equations, in this case the
time-averaged and two-dimensional continuity and momentum conservation equations.

It is noted that Python is used as the programming language to develop, train and analyze the results
given by PINNs, making extensive use of the open-source PyTorch library. Besides, Visual Studio Code
is selected as the programming environment.

Once an overview of the processes and tools used in this thesis has been given, a more detailed look
is provided next on the characteristics of the PINNs used in the present thesis, with a prior exposition
of the computational resources used to carry out the above activities.

2.1.3. Computational resources

With the exception of the PIV acquisition and algorithm, the rest of processes exposed above are carried
out with an HP-Omen 16 laptop, featuring the following specs:

* CPU: 12th Generation Intel(R) Core i7-12700H @2.30 GHz.
* GPU: NVIDIA GeForce RTX 3060.

* RAM: 16.0 GB dedicated memory.

+ OS: Windows 11 Home.

» Framework: Python 3.9.19, PyTorch 2.4.1, CUDA 12.1.

2.2. Physics Informed Neural Network framework

The Physics-Informed Neural Network framework used in this thesis is focused on learning the values
of fluid variables at each location of a two-dimensional plane describing the mean flow around a cylinder.
To achieve this, the adjustable parameters in the network are optimized such that the loss function is
minimized during the training phase.

In the following sections of the chapter, the PINN framework is exposed and justified in detail, covering
its architecture, the different terms that form the loss function and the training parameters that have
been selected.

2.2.1. NN architecture

Architecture

First of all, the neural network used is of the deep type, specifically a feed-forward deep neural network.
In practice, this means it has an input layer, with N;,, neurons, a number (L) of intermediate or hidden
layers, with Ny;q44.n NEUrons each, and an output layer, with N,,; neurons.

Since all layers are fully-connected, this implies that the data passing through each node in a given
layer, i, is propagated to all the nodes in the following layer. The result are N; x N;; connections plus
a bias term for each neuron in the second layer. With this in mind, one can compute the total number of
trainable parameters by means of the expression in Eq. 2.3, where the above notation has been used.

Nparams = Nin X Nhidden + Nhidden + L x (Nhidden X Nhidden + Nhidden) + Nout X Nhidden + Nout (23)

In the present case study, where the focus is placed on the time-averaged and two-dimensional flow
field around a cylinder, the number of neurons in the input layer is just two, N;, = 2, namely the x and
y coordinates. On the other hand, since the flow variables of interest are the time averaged velocity
components, pressure and all three Reynolds Stress components for two dimensions, the output layer
has six output neurons, i.e. N,,; = 6.
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Figure 2.3: Architecture of the neural network used.

A visual description of the above is provided in Figure 2.3, where neurons are represented by circles
and each connection by a line.

Variables and Coordinate System

It must be noted that, based on the observations in [69], all variables are made dimensionless, as
this can foster a reduction in training time and prediction error. In order to achieve non-dimensionality,
a number of approaches can be followed, such as normalization in the range [—1, 1], standardization
using p and o or any arbitrary definition. However, since the PDE loss includes all variables in the same
physical dimension, an additional de-normalization step would be required prior to its computation.

If, instead, one makes use of characteristic magnitudes of the problem in the normalization process,
the dimensionless version of the Navier-Stokes equations (Eq. 2.4) can be employed in the PDE loss
term, thus saving a de-normalization step.
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In the above equation, the tilde (%) denotes the dimensionless version of each variable. For spatial
coordinates, the cylinder diameter, D, is used as the reference length, namely:

T
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whereas for each velocity and Reynolds Stress components, U, serves as a reference magnitude:
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Finally, static pressure has been made dimensionless with twice the dynamic reference pressure:
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Additionally, along the thesis, both the Cartesian and Cylindrical reference frames are used, adjusting
the choice to aid in the interpretation of results. As depicted in Figure 2.4, both coordinate systems have
their origins at the cylinder center. On the one hand, the dimensionless { z, y } coordinate axes take
positive values downstream and above the cylinder, respectively. Besides, two variants of cylindrical
coordinates { r, 6 } are employed. Firstly, all calculations are conducted with the standard convention
in black, where 6 finds it origin to the right horizontal of the cylinder and increases counter-clockwise.
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Moreover, in cyan, the plotting convention is reflected, where the origin of the angular coordinate coin-
cides with the location of the stagnation point for the non-lifting cylinder. It is direct to see that the two
variables are related through the expression in Equation 2.8.

eplot =70 (28)

Note that the radial coordinate is made dimensionless with the cylinder diameter, as per Equation 2.9.

=L (2.9)

Figure 2.4: Cylindrical and Cartesian reference frame conventions used in the thesis.

Activation Function

After definition of the overall network architecture, an appropriate choice of non-linearity is required
to affect the output at each neuron in the hidden layers. Following the observations in §1.4.1, the
second-order differentiability requirement set by the viscous term in the momentum equations allows
to disregard non-linearities with discontinuities, such as RelLU or leaky ReLU.

Additionally, research in [25] reports the difficulties the fanh and sigmoid activation functions present
for deep architectures to converge to global optimal minima, as well as their poor learning dynamics
during training due to the problem of vanishing gradients. This phenomenon appears specifically in
deep neural networks or those with large recurrent dependencies and consists of the inability to back-
propagate information during training due to the cumulative product of near-zero gradients, causing
certain neurons to be effectively deactivated.

Although this phenomenon can be partially offset with proper weight initialization [25], alternative activa-
tion functions such as the Swish or Adaptive Swish functions, introduced in [60], allow to circumvent it.
Additionally, results in [76] for PINNs on the two-dimensional Taylor decaying vortex problem show the
superior performance of these two functions in training and validation loss, especially when compared
to the other mentioned possibilities.
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Swish Activation Function
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Figure 2.5: Swish activation function..

When comparing the Swish and Adaptive Swish functions, the latter demonstrated marginally better
performance in the above study. However, it introduces an additional layer of complexity due to the extra
trainable parameter 5. Therefore, in this study, the Swish activation function — illustrated in Figure 2.5
— is chosen for its balance between performance and simplicity. Note that this non-linearity is applied
after every neuron in all hidden layers, except for the output layer, where no activation functions are
used to prevent imposing undesired boundedness on the predicted variables.

2.2.2. Loss function components

Once the input/output data and all the architecture components have been exposed, it is of interest to
introduce the different loss terms that intervene in the NN training process. In this thesis, these are:

+ data loss term, accounting for the flow variables with labeled data.
* PDE loss term, including the laws that describe the physical flow behavior.
« reference pressure loss term, to achieve the unique pressure field solution.

* Reynolds Stress component loss, to ensure physically sensible values for the components normal
Reynolds Stresses.

» boundary condition loss term, to add known values (Dirichlet) or spatial derivatives (Neumann),
at any point in space.

Next, the formulation of each loss term will be included along with a description and justification.

Data Loss

As exposed in §1.4.1, the Data Loss term is the error metric that represents the deviation in the recon-
struction of all known variables in space. For this purpose, the Squared Error averaged over the batch
of measurement points at each iteration is used as an indicator.

In the present thesis, where the known data are the time-averaged velocity and Reynolds Stress fields
in two dimensions, the data loss takes the expression in Equation 2.10:

Ldata = MSEz + MSE= + MSEﬁ + MSEW + MSEW (2.10)
From the above, it is deduced that the loss at each measurement point and for every variable is given
the same relevance in the present study. However, it becomes apparent that a different strategy could
be implemented, such as weighting data points based on measurement uncertainty or biasing the loss
function towards first-order statistical moments, i.e. @, 0.
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Partial Differential Equation Loss

Secondly, the Partial Differential Equation loss reflects the agreement of the flow solution given by the
PINN to the governing equations, thus softly enforcing solutions with physical meaning.

In this case, for the time-averaged, two-dimensional and turbulent flow around a cylinder, the Reynolds-
Averaged Navier Stokes equations are used. Consequently, the expressions for all three residuals,
namely the conservations of mass, x and y-momentum, are given by Equations 2.11, 2.12 and 2.13
respectively:
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As elaborated in §1.4.1, the above expressions are evaluated at each iteration in the batch of colloca-
tion points thanks to the use of the autograd package for differentiation in PyTorch. Accordingly, the
expression to compute the total PDE loss is as given in Eq. 2.14.
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1 = . . .
Lppr = E Le; = A { E et (€ Gi) + €5 (€ Gi) + €3 (% yv)} (2.14)
j=1 ¢ Li=1

In the equation, the dummy index j ranges through the different residuals, while i sweeps through
collocation points. As may be withessed, the expression represents the mean-squared residual over
the collocation batch size, N., which is the subsample of the entire collocation point space that is
optimized at each iteration. Notably, each residual is squared to ensure both positive and negative
residual values equally contribute to the loss term.

Reference Pressure Loss

The reference pressure loss term represents the deviation in the PINN prediction with respect to a
known or inferred pressure value, forcing the predicted pressure field to take a unique solution.

As has been made clear so far, the aim of the PINN framework in this thesis is to reconstruct pressure
from a set of velocity measurements, and, accordingly, pressure can be taken to be a hidden state. In
order to reconstruct it, the PDE loss term is used, which allows to find pressure fields that comply with
the spatial pressure gradient constraints specified by the RANS equations. It is direct to see that this
approach can only provide pressure field uniqueness up to a constant, hence an additional constraint
is needed to find the right unique solution. This constraint is contained in the reference pressure loss.

While its expression takes the same form as the data loss term, the source for the reference pressure
can take various forms. For example, in this thesis, two different approaches have been used:

+ in Chapter 3, where the solution is obtained via CFD, the reference pressure is readily available.

 on the other hand, in Chapter 4, where no pressure data is known except for the pressure tapping
output, reference pressure values are computed via the C,, relation to velocity magnitude (Eq.
2.15), for which a region away from the cylinder and outside of the wake is selected, where the
inviscid flow assumption holds.

2 Vow et
U8 Vet g2 (2.15)

Cpref =1= 73 = 2
oo oo
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According to the above, the expression for the reference pressure loss term for an experimental dataset
where pressure is unknown would be as per Eq. 2.16. As stated, the expression takes the form of
the squared error with respect to half the reference pressure coefficient averaged over the selected
number of reference points, N, ,..s. It is noted that the expression takes this form due to the definition
of dimensionless pressure given in Eq. 2.7, which results in 5 = C,, /2.

Np,ref 2
1 1
ref = E Dpred (Ti Yi) — = Cpref (Ti Ui 2.1
;CP» f Np;r-ef P (pp d (-T Y ) 2 Cp, f (x Y )) ( 6)

An example of the effect of including the reference pressure loss term is attached in Figure 2.6, where
the dimensionless pressure distribution and its x-gradient along a horizontal line at y/D = 0.75 are
shown for the flow around a cylinder at Re = 250, where the reference data is provided by CFD [73].
Note that the reference pressure gradient is obtained through a central differencing scheme, while
automatic differentiation provides a noiseless pressure gradient in the case of PINNSs.
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Figure 2.6: Effect of including £,, ... s - distributions of § and 9;p along a horizontal line at y/D = 0.75.

In this case, the solid red line depicts the CFD reference data, while the black and blue dashed lines,
respectively, represent the cases before and after adding the £,, ..y term during optimization. As can
be observed by looking at the pressure gradient plot, both PINN versions replicate the data pressure
gradient with minimal deviation. However, a constant offset is seen in the pressure distribution when
the reference pressure loss term is not included. This shows the need for this loss term to compute
meaningful error metrics and sensible pressure values.

Reynolds Stress Loss

The Reynolds Stress loss, hereafter referred to as prior loss, aims to ensure that the main diagonal
Reynolds Stress components predicted by the PINN are physically sensible by making sure they only
take larger-than-zero values. The term prior loss is used because the information enforced is known
before any results, thus prior information is embedded into the solution.

While it could be argued that this loss is not required because the PDE and data losses should already
constrain the solution space to comply with physics, it is here argued that this is only partially true.
On the one hand, data loss weighs all the squared error terms equally, which inherently biases loss
optimization to locations and variables which contain the largest error magnitude.
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To exemplify this, consider a point where @ and ﬁ take the values of

=05 &  wu =0.05, (2.17)

IS

considering a 10% error on both variables would result in respective data loss contributions of
L==(045-0.5)?=0.0025 & L— = (0.045 — 0.05)? = 0.000025 (2.18)

Then, it can be deduced that, for unweighted data losses, the locations where Reynolds Stress compo-
nents take values close to zero, the contribution to the total data loss term is reduced and thus small
negative values could be allowed.

The second reason is that, because the x and y momentum equations in the PDE loss contain the
pressure gradient terms, which are otherwise unconstrained, 9,p and 9,p can act as sinks for error,
thus making it challenging for the NS loss to regularize the Reynolds Stress components. In contrast,
this is not the case for @ and 7, as they need to satisfy the mass conservation equation.

Since no reference is made to this type of loss in any of the literature reviewed, three different ap-
proaches were investigated to enforce positive diagonal Reynolds Stress values:

» on the one hand, a ReLU activation function layer previous to the w'u’ and v'v/ output neurons
is studied. The reason is that, given its definition equation, ReLU (z) = maz(0, ), all negative
values are clipped to zero. However, provided that the initialization of the NN weights can take
negative values, gradient information is prevented from flowing due to the null slope of ReLU for
negative values. The phenomenon is reflected in Figure 2.7a, where the evolution of all three
Reynolds Stress component loss terms is shown as a function of the training epoch. Given the

constant value of its loss term, it can be deduced that v/« is not optimized during training.

« the second proposal attempts to solve the above by using the lcaky version of ReLU, where a
non-zero slope can be specified Vx < 0, as given in Equation 2.19. While this addresses the
stagnant variable during optimization, probably only a careful tuning of the slope, A, can achieve
optimal results in our primary intent. This is because a small slope of 0.01 causes negative values
to vanish slowly, i.e. still be present at 40k iterations, while large slopes do not address the issue.

Az, fz<O

= ’ 219

Y { T, ifx >0 ( )

+ the third approach attempts to penalize negative normal Reynolds Stress components, RS(i,1),

directly. After testing a penalty term affecting only the largest negative value for each component

at each iteration, a very slow convergence of the loss term was identified. To address this, a
modification is made to include the mean of all negative values.

Accordingly, the loss term is defined as per Eq. 2.20, where N,; represents the batch size and IV, ; is
the number of points where the given RS(i,7) component takes negative values.

Lprior,RS = N, max (0,—%(@-,%)) (2.20)
Pty

Below, Figure 2.7b shows the effect of adding the prior loss term on the predicted /v’ and v'v' com-
ponents along a horizontal line at y/D = 0.75. In this case, the reference data corresponds to a CFD
dataset of the flow around a cylinder at Re = 1000. On the one hand, it may be observed that both
PINN models match the CFD prediction downstream of the cylinder origin, i.e. Z = 0, with similar error
levels. On the other hand, notable differences are found in the freestream, where the lack of fluctua-
tions causes both variables to be null. In this region, it becomes evident that the penalization allows to
avoid negative errors and with these, errors of up to ~ 0.01.
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While this is not of paramount relevance in terms of absolute values unless these components are
of specific interest (which could presumably be fixed by weighting their data loss components), their
gradients become non-zero, thus potentially adding error to the pressure gradient terms through the
N-S loss.

Boundary Condition Loss

Finally, the boundary condition loss is conceived to enforce values or derivatives that must be fulfilled
due to the nature of the problem or even physical laws. To exemplify, specifying velocity or pressure
at the inlet would be a Dirichlet boundary condition bound to the given problem. On the other hand,
enforcing the no-slip boundary condition on a solid wall would represent the imposition of a physical
constraint.

In the present study, only boundary conditions bound to the cylinder surface are considered, since the
focus is placed on surface pressure reconstruction. In particular, the following terms are implemented:

* no-slip condition, to ensure that viscous effects are fulfilled exactly at the cylinder surface, where
PIV resolution of typical engineering flows can make it difficult to capture the boundary layer
velocity profile.

* no through-flow, which prevents velocity predictions inward or outward of the cylinder surface
from taking place.

+ no fluctuations due to the presence of the wall, thus forcing Reynolds Stress components to take
null values on the cylinder surface.

In order to evaluate these loss terms, a grid of points on the cylinder surface is generated and a forward
pass, that is a PINN evaluation, is performed on them. Once the values of the output state variables
are known, the various boundary condition loss terms can be calculated.

It can be deduced that, for the flow around a cylinder, the no-slip and no through-flow conditions require
that the tangential and radial velocity components be computed at the cylinder radius. Bearing in mind
that the Cartesian origin of coordinates is placed on the cylinder center, one can obtain them via the
expressions in Egs. 2.21 and 2.22 respectively, which consist of projections of the cartesian velocity
components into the cylindrical system of coordinates.

up (T,7) = —u(Z,7) - sin(0) + v(Z,7) - cos(0) (2.21)

uy (7,9) =u(Z,7) - cos(0) + 0 (Z,7) - sin(6) (2.22)

In addition, the relation of 6 to the Cartesian coordinate system is given by Eq. 2.23.
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0 = arctan (%) (2.23)
T

Finally, the no-slip and no-through flow boundary condition loss terms take the forms given in Equations
2.24 and 2.25 respectively. Observation of the expression leads to the identification of squared errors
averaged over the boundary condition collocation points, N,., which are placed on the cylinder surface.

1 th __9
Ebcmofslip = Ni % (ﬁl? :’U‘;) (224)
be i—1
1 Nbc —2 o
Ebc,nothrough—flow = m Uy (xiv yl) (225)

On the other hand, the last term, which forces the Reynolds Stress components to take null values at
the cylinder surface, takes the form shown in Equation 2.26, where the interpretation of the expression
is analogous to the previous.

Npe

——2 —2 )
wu' (z;, i) +uw'v' (z, i) + 00 (5, Ui) (2.26)
i=1

1
Nbc

Ebc,no fluct =

Although these loss terms are not implemented initially, their effect has been studied separately and
will be discussed in further detail in Chapters 3 and 4 due to their relevance to the research questions.

Total Loss

Having explained and justified the role of each loss term used in the present thesis, the expression for
the key performance indicator governing the NN training is shown. As introduced in §1.4.1, numerous
papers have exposed the possible benefits of including static or dynamic weights in different loss terms
to improve learning dynamics and/or the global optimum. However, these have been disregarded at
first in the present work and will be discussed in the following chapters given their problem-specific
nature.

Consequently, the expression for the total loss takes the form of Equation 2.27, which is simply an
unweighted sum of the terms covered above.

‘CTot = ﬁdatu + EPDE + £Prio7‘ + ‘Cp,ref (227)

2.2.3. Training process

In this section, the specific tools and hyperparameters that have been selected to control the initializa-
tion and NN training process are exposed. Furthermore, every test shown has been performed on the
CFD data of the flow around a non-lifting cylinder that will be exposed in Chapter 3.

NN construction and initialization

As a reminder from §1.4.1, once the loss function has been defined, the neural network architecture
needs to be created and its learnable parameters initialized before the training process can be started.

On the one hand, the initial neural network architecture has been defined arbitrarily, as the effect of the
number of hidden layers and neurons per hidden layer will be exposed in detail in the coming chapters.
Hence, the initial neural network architecture features 8 hidden layers and 50 neurons per hidden layer,
which amounts to a total of Ny &~ 21000 trainable parameters for the entire network.

Furthermore, two initialization schemes for the weights and biases, namely Xavier and He [24] are
compared to define the most suitable one given the NN architecture and loss function definition. Note
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that the two schemes are based on similar principles, as they are conceived to keep a similar variance
to the activations across different layers in order to stabilize the flow of gradients along the network.

In order to achieve this, they modify the definition of the distribution from which they randomly sample
the weights and biases. On the one hand, Xavier is inherently more suitable for symmetric activation
functions such as fanh or sigmoid, as it scales the variance of the distribution with the number of
input and output connections at each neuron. Conversely, He is inherently more appropriate for non-
symmetric activation functions like ReLU, given that it merely uses the number of input connections at
each neuron to define the variance of the sample distribution. The respective expressions are included
in Equation 2.28, where the number of input and output connections are denoted by n;, and n,.;
respectively.

2 2
Ug{avier = U?{e - (228)

Nin + Nout Nin

With the aim to define which initialization scheme is more suitable to the problem of reconstructing
surface pressure for the dimensionless, two-dimensional flow around a non-lifting cylinder, batches of
4 runs are conducted with each initializer, tracking the evolution of the various loss components during
training.

In Figure 2.8a, the total loss function evolution during training has been represented for the He and
Xavier initialization schemes. Note that, since four different runs were used, the mean is represented
by the solid line, while the shaded bands reflect the standard deviation across the batch. Looking
at the results displayed, it can be stated that both initialization schemes present very similar learning
dynamics, with the Xavier scheme runs presenting reduced variance especially around the plateau
region.
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Additionally, given the small variance observed between the two algorithms in the optimization of the
loss function, the mean time per iteration for both schemes is shown in Figure 2.8b. Note that this plot
is analogous in nature to that shown for the total loss, where the solid line reflects the mean across all
four runs in the batch and the bands represent the standard deviation across the set. In this case, a
maijor difference can be witnessed, since the Xavier scheme seems to be ~ 25% more efficient than
its counterpart. Focusing on He, the different runs present a mean time per epoch of around ~ 16 s
consistently and for the vast majority of the training process. On the other hand, results for Xavier offer
a much more significant variance, with the upper band nearing the performance of He and the lower
band touching mean execution times per epoch as low as ~ 6 s, while the mean is kept at around
~12s.

From the above it is concluded that, despite not presenting a major advantage in terms of learning
dynamics and noting that the mean time per iteration is not corrected for possible variations in computer
workload, the Xavier scheme is selected given the potential time savings it could offer.
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Optimizer and batch size

Regarding the control of the training process, one of the most relevant decisions is the use of the
optimizer. As covered in §1.4.1, this determines the set of calculations that lead to the update of the NN
trainable parameters at each iteration. In the present work, the Adam optimizer [26], which combines
first and second-order statistical moments of the loss gradient with respect to the trainable parameters,
has been selected.

The selection of this specific optimizer lies in its main advantages, which derive from its formulation
and make the algorithm efficient and robust to noisy data altogether. These characteristics have led to
its wide-spread use in similar use-cases across the literature [51] [76] [27] [31].

Furthermore, the Adam optimizer is often used in PINNs as a means to find an initial convergence of the
solution towards the global minimum. In these occasions, it is often followed by additional iterations on
the Limited-memory Broyden—Fletcher—Goldfarb—Shannon optimizer, more commonly referred to as L-
BFGS. This optimizer, instead of focusing on the gradient, attempts to reconstruct the inverse Hessian
to allow for more significant optimization steps. However, provided that it is a full-batch approach, which
means it requires execution over the entire set of data points at each iteration, it typically only finds its
application in simpler flows [76]. Accordingly, this second optimization step has been avoided in the
present work, focusing on the mini-batch-based Adam optimizer.

Additionally, the batch size has been kept constant throughout the thesis to approximately ~ 1/5 of the
total number of measurement points, unless otherwise specified. As a reminder of previous sections,
this causes the number of iterations per epoch to be 5 on average.

Learning rate and scheduler

One of the most relevant hyperparameters that must be set is the learning rate, which controls the
extent to which learnable parameters are updated at each training iteration. In order to comprehend
the relevance of accurately tuning this parameter, one should attend to how gradient descent-based
optimization methods operate.

Following the discussion in §1.4.1, one can understand its relevance by looking, for instance, at a
simplified 2D optimization space with a global minimum and several local minima. In this scenario, too
small a learning rate could cause the optimization process to be halted at a local minimum. The reason
being that taking too small steps would prevent the optimization state from escaping the small basin.
On the other hand, a learning rate that is too large could quickly converge to the main basin but be
unable to take steps small enough to reach the global minimum point.

As can be deduced, an appropriate value for the learning rate, n, is problem-dependent, due to the
influence of the various agents (the loss function, the neural network architecture, etc.) on the shape
of the optimization space. Not only this, but its optimal value to minimize training time and final loss
changes during training as it is influenced by the local optimization landscape. Consequently, a number
of strategies exist when dealing with the learning rate, from fixed values, to schedulers that adjust its
value according to the learning dynamics or even dynamically-adjusted learning rate schemes [26].

In the present thesis, the decision is made to use a scheduler that accommodates a dynamic learning
rate, granting more granular control on the progression of values it takes during training. In particular,
the ReduceL ROnPlateau algorithm from the Pytorch library is used. This specific scheduler is based on
the principle that an optimal progression of the learning rate is such that its value must decay gradually,
taking steps when the loss is not reduced over a given set of epochs [72].

However, prior to the definition of the scheduler parameters, a test is run to get an estimate of the value
that would be appropriate for the initial learning rate. The test consists of running 20000 training itera-
tions with different values of the learning rate, which are kept constant throughout training. Additionally,
this test helps form an understanding about how a too-small or too-large value could be identified during
training, thus aiding in the subsequent selection of the scheduler parameters.

The results of the test are shown in Figure 2.9, where the various loss components have been repre-
sented during the training epoch for each of the selected »n values, namely from n = 0.1 to n = 0.0001,
with an order of magnitude variation.
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Focusing on Figure 2.9a first, where the total loss optimization is reflected, various observations can
be made:

on the one hand, the largest learning rate, n = 0.1, is seemingly too large even at the beginning,
as it takes ~ 300 it to converge into the main basin. In the following iterations, it appears that it
is unable to optimize the learnable parameters any further, as the loss establishes at ~ 2 x 1072.

among the other runs, the second largest learning rate, n = 0.01, is the fastest to progress into
the main basin and towards the global optimum.

while the smaller learning rates eventually evolve towards the same global optimum, it appears
that they take too small steps and therefore find an initial plateau at the main basin, where L;,; ~
2 x 1072, before progressing into the optimal sink.

in addition, the behavior of the various curves as the loss is reduced gives insight into how the
optimal learning rate changes during training. For example, the n = 0.01 curve in orange has
virtually no noise up to epoch ~ 500 with L;,; ~ 2 x 1073, Then, n = 0.001 starts to fluctuate
significantly at £,,, ~ 5 x 1074, while the smallest n curve does not present noisy behavior in the
range shown.
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Figure 2.9: Effect of fixed learning rate value on loss components during training.

At the same time, the two graphs shown in Figure 2.9b provide further information on how the two most
significant loss components are affected by the learning rate and behave during training:

* In particular, the PDE loss initially takes near-zero values for the highest and lowest learning rates,

suggesting that the variables initially take near-zero values throughout the domain, which is to be
expected given the initialization scheme for weights and biases.

» Consequently, the data loss initially appears to dominate the learning process, which can also be

deduced from the relative magnitudes of both loss terms.

+ Finally, it can be argued that the PDE loss potentially benefits more from the reduction in learning

rate as the global optimum is approached. Proof of this is the wider noise amplitude in the n = 0.01
and n = 0.001 curves with respect to the same curves for the data loss. The consequence is that
the PDE loss plateaus earlier than the data loss for both cases.

From the above observations, several of the parameters that govern the learning rate scheduler are
defined. However, it is of interest to first introduce its formulation, so that the various parameters are
understood by the reader.

The ReducelLROnPlateau algorithm starts with a fixed initial learning rate. Once an initial number of
epochs have passed, the algorithm starts tracking the total loss at each epoch and, when this is not
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lowered over a number of epochs (defined by the patience), a step is taken to reduce the learning
rate via Equation 2.29. As deduced from the expression, the reduction factor must be f < 1. After
7n is updated, a cooling number of epochs halts the scheduler to let the optimizer find an appropriate
descent path. This process is repeated until the minimum specified learning rate, 7,,:,, is attained, thus
forming a staircase reduction trend.

Thew = f * Nold (229)

With this in mind, the parameters set from the results from the above study are:

+ the initial learning rate is set to 9 = 0.01.
+ the number of initial iterations before the scheduler starts operating is set to 500.
+ the minimum learning rate is set to 1,,,;,, = 1 x 107%.

« the reduction factor at each scheduler step is set to f = 0.5, given the large variation in response
observed between the =1 x 1073 and n = 1 x 10~* curves.

Further study of how the scheduler works led to the introduction of a slight variation with respect to the
original algorithm. By design, the scheduler stores the last loss term among all iterations in an epoch. If
instead, the best total loss among all the iterations within an epoch is fed to the algorithm, robustness is
gained to the specific batch of points used in the last iteration, making convergence smoother. Besides,
an additional modification is made to restore the trainable parameters from the last best loss right after
each learning rate update, avoiding an escape from the basin if the learning rate is too large.

With this approach, the cooldown parameter is fixed to 100 epochs, while an optimal patience for this
problem is found at 50 epochs. This presents as a compromise between too frequent learning rate
reductions, leading to stagnation at local minima, and too disperse updates of the learning rate, leading
to slow convergence.

The resulting learning curves are represented in Figure 2.10 in conjunction with the n = 1 x 1072,
n=1x10"3and n =1 x 10~* curves.

Total Loss vs Epoch Data Loss vs Epoch
T 1 T 1
—— Scheduler —— n=0.01 —— n=0.001 —— n=0.0001 100 Scheduler —— n=0.01 —— n=0.001 —— n=0.0001
10°
% 10-1
910
-
w107 % 1072
L] o
- 1073
& 107
]
= 104
1073
1072
10~ a
. 0 .5-3
Learning Rate -1 10
5 4
€ ;5-2
2 10
o & 104
E 1073
[
10 1073
3 550 1000 1506 3000 3500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Epoch Epoch
(a) Total loss vs epoch. (b) Data (top) and PDE (bottom) losses vs epoch.

Figure 2.10: Fixed vs scheduler-based dynamic learning rates effect on training.

On the one hand, Figure 2.10a to the left reflects not only the total loss but also the progressive reduction
in the learning rate parameter of the scheduler run as the training takes place. About loss dynamics, it
may be said that the scheduler run closely follows the n» = 0.01 curve initially, which is sensible given that
no = 0.01. Slightly after epoch 500, when the initial holding period ends, the first learning rate reduction
is triggered, which already positively impacts the total loss dynamics by reducing it further than any of
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the static 7 lines. Subsequently, steps are taken approximately every 110-150 epochs, which is just a
few times the patience of 50 epochs. Finally, the minimum learning rate of 7,,;, = 1 x 10~ is reached
at around 1600 epochs, after which the total loss is reduced only to a limited extent but in a smooth
manner, signaling the plateau is reached.

Additionally, Figure 2.10b to the right provides further information about how the two loss components
behave as the learning rate is progressively reduced. Firstly, it is worth noting the noticeable reduction
in the noise amplitude when compared to all the fixed learning rate curves except for the n = 1 x 1074
curve. Secondly, it can be appreciated how the PDE loss appears to plateau already on epoch 1500
at a final value of Lppr =~ 5 x 10~°, while the data loss component is still progressively reducing until
Laata = 1.2 x 1074, Hypothetically, this could be due to the relative magnitude of both terms, which
shall be discussed further in subsequent sections.

Overall, it can be argued that the NN version with scheduler presents a smoother yet faster convergence
towards the respective loss term plateaus, achieving the intent of the algorithm. It is here noted that,
in the subsequent sections, the training stopping criterion has been set to whichever is the minimum
between the maximum number of iterations of it,,,, = 20000 or 500 epochs with no loss improvements.
Furthermore, the final results of each version correspond to the set of trainable parameters yielding the
lowest recorded loss before the convergence criterion is reached, and not necessarily the final set of
parameters.

2.2.4. Framework overview

To aid the reader in visualizing the interconnectedness of the entire PINN framework, the block diagram
in Figure 2.11 is referenced.

From the top-left, the representation includes the NN parameters initialization under the Xavier scheme.
Additionally, the PINN takes in {Z, §} coordinate pairs and outputs all six time-averaged flow variables at
the given spatial locations. Subsequently, the outputs are used to compute the various loss components
- while the automatic differentiation (AD) block is required to yield the spatial derivatives for all three
PDE loss equations, the rest of loss components do not require further steps other than the use of
labeled data to yield the data loss.
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Figure 2.11: PINN framework used in the thesis.
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Furthermore, the addition of all loss components yields the total loss, used to check the convergence
criterion. That s, if less than 500 epochs have passed without any loss minimization, the total loss is fed
to the ReduceLROnPlateau scheduler and the Adam optimizer, where the former is used to compute
the appropriate learning rate from the learning dynamics. Finally, the optimizer provides the adequate
adjustment of the weights and biases, A6, and the network is updated. This process is repeated at a
randomly sampled batch of measurement points at each iteration until the aforementioned convergence
criterion or the maximum number of pre-specified iterations are satisfied.



PINNSs performance on CFD
simulations

In the first place, the performance of the PINNs framework discussed in Chapter 2 is analyzed on
the CFD data of the two-dimensional flow around a non-lifting cylinder. This allows to assess the
capability of the algorithm in the prediction of surface pressure from data without measurement noise
or reflections, also benefiting from high spatial resolution close to the solid boundary of interest, as well
as the ability of CFD simulations to provide data with no measurement error.

3.1. Dataset Generation

Initially, the dataset of the two-dimensional flow around a cylinder at Rep = 250 from [73] was consid-
ered. However, execution of the PINN algorithm on the time-averaged flow solution led to the conclu-
sion that the mesh size is too coarse to properly resolve the high spatial gradients around the shear
layer and wake, causing too large a discrepancy in the data-calculated residuals.

Accordingly, the decision is made to generate a dataset, for which the STARCCM+ software is used.

3.1.1. Pre-processing

Flow regime

Firstly, the various geometric and flow parameters are selected such that the turbulent flow regime is
achieved, which is desirable as a realistic application for an engineering or research test-case.

Accordingly, the experimental data of the drag coefficient as a function of the Reynolds number for
the flow around a cylinder shown in Figure 3.1 is analyzed. As may be witnessed, annotations on the
characteristics that define the various flow regimes are included, as taken from [4].

From such annotations, a constraint for the flow regime can already be established, as distinct turbulent
phenomena arise for Re > 1000. Above this Reynolds number value, while separation happens at the
forward face of the cylinder, namely 6,., < 90°, the flow transitions into the turbulent regime at the
shear layer, giving place to a fully-turbulent wake from the vortex-shedding. In turn, this translates into
a virtually constant value for the drag coefficient, with Cp =~ 1.

In addition, it is of relevance to consider the vortex-shedding frequency, as this largely determines the
simulation time-step size that is sufficiently small to properly capture flow dynamics. In this case, the
Strouhal number is regarded, which, for periodic flows, defines the relevance of the flow oscillations
produced by inertial forces relative to velocity changes induced by the convective acceleration of the
fluid flow [33].
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Figure 3.1: Drag coefficient vs Reynolds number for a smooth cylinder - adapted from [4].

Furthermore, the definition of the Strouhal number for the flow around a cylinder with diameter D and
free-stream velocity U, is given by Equation 3.1. In this expression, f represents the frequency at
which eddies are shed off the cylinder surface.

St = fUE (3.1)

In Figure 3.2 next, experimental measurements around a smooth cylinder are used to show the depen-
dency of the shedding phenomenon to the turbulent regime, via the Reynolds number. As observed,
a virtually constant value of St = 0.22 is held in the aforementioned turbulent flow regime, where the
turbulent transition happens at the wake after laminar separation.

047 =
- S yd \l
° 7/ \
z Z,x w / \
04— © axw 5 ’ H
’ G |xz|3"% g = |/ |
(il faf=] [ Sz |
& (ol>=_ Fraa I
) - x §¥ oW i pz-w
% =l g =3~ REGION OF TURBULENT VORTEX TRAIL. e 2EZ |
,‘f, o3l & zz 23g LAMINAR BOUNDARY LAYER ON CYLINDER ;ag; l‘
o -2
= > |1z8|S23w :<§” v
3 Y |3|esE &3z \_
z - @ 35 grPk 4 -1
= - 7
- L2] AR - 2'_
= 0.2 — =z ‘\\\\\\\\ \\\\\\\\\\\\ - w 3
5 ° T 7 2us
(=] x>
@ So=
s REGION IN WHICH EDDY | &
4 SHEDDING FREQUENCY |uiF>o
ol CAN BE DEFINED AS oxsZ
THE DOMINANT FREQUENCY 9,':'25
IN A SPECTRUM (13
) 58z
o pod ol L1 bl L 1l Lol [ EERIT
40 10* 10° 10 10 i0* 100

REYNOLDS NUMBER, Re

Figure 3.2: Strouhal number vs Reynolds number for a smooth cylinder -from [41].
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Therefore, considering the above information leads to the selection of Re = 1000 as a desirable value.
On the one hand, it provides a fully-turbulent wake to test the ability of PINNs to reconstruct pressure in
the non-linearities of turbulent flow motion. At the same time, choosing the lowest possible Re number
for this regime ensures that the shedding frequency (and hence the simulation time step) are kept at an
acceptable value, due to their direct proportionality to the free-stream speed. This relation is included in
Equation 3.2, which is a mere rearrangement of Equation 3.1 and has been particularised for St ~ 0.22.

f =St %O ~0.22 %"7 (3.2)

Finally, the following characteristics have been selected for the rest of variables:

kg

D =1m; UOO:5T; p=1-—%;
s m

pw=>5x10"2Pa-s; (3.3)
Note that D and p are selected such that the non-dimensionalization process is simplified. Furthermore,
to ensure a sufficiently high free-stream speed can be selected, the fluid kinematic viscosity has been
increased significantly with respect to standard values for air.

Computational domain and grid

After definition of the cylinder geometry, good practice standards are used to define a sufficiently large
computational domain to prevent boundary conditions from affecting the flow field solution. Further-
more, since the focus is on the two-dimensional flow solution, the third dimension is kept to a minimum,
thus saving computational effort without the need to force a purely two-dimensional solution.

With this information, the resulting computational domain is as shown in Figure 3.3. From left to right,
the front, side, and perspective views of the computational domain are shown. As observed in the
measurements, five diameters are left upstream and on each side of the cylinder, while fifteen charac-
teristic lengths are left downstream to give sufficient space for the turbulent structures to fully develop.
Additionally, the different types of boundary conditions used are shown, including a uniform velocity
inlet, the pressure outlet and symmetry planes for the side and top/bottom faces.
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Figure 3.3: Front, side and trimetric views of the computational domain with boundary condition types.

In addition, the decision is made to resolve the boundary layer, avoiding the use of wall functions.
In accordance, an inflation layer is generated to ensure that the wall-induced gradients are properly
captured. Moreover, the experimentally-derived expression for the turbulent boundary layer thickness
along a flat plate is used to get a proxy for the target inflation layer thickness. This is shown in Equation
3.4:
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0.16-D  0.16-1m

099 = “pI/m = 0017

= 0.060m (3.4)

With the above in mind and targeting a wall y* below unity to ensure a proper resolution of the wall-
normal gradients, the following settings are used in the inflation layer:

» total inflation thickness of 6 = 0.06m.
+ a number of inflation cell layers equal to NV;4ycrs = 10.
+ growth rate equal to GR = 1.5.

Furthermore, three additional refinement cubes are placed to ensure the gradients around the cylinder,
shear layer, and wake are properly captured:

+ high refinement block with target size of 0.045m around the cylinder, extending 1D upstream,
1.5D to the top and bottom and 2D downstream of the cylinder.

+ medium refinement block with target size 0.060 m, placed right downstream of the previous block
and having a size of 3D x 3D.

+ low refinement block with target size 0.08 m, immediately downstream and extending until 12D
from the cylinder center.

» rest of computational domain with target size of 0.6 m.

The above settings result in a polyhedral computational grid with the characteristics described in Table
3.1 below:

Table 3.1: Mesh Metrics

Num. Cells Max. Skewness Max. Wall y™

Mesh 105651 69° 0.1
Quality criterion - <89° <1.0

Finally, a close-up of the inflation layers and the computational mesh in the proximity of the cylinder
is shown in Figure 3.4. In the image, the mesh outline is displayed on top of mean x-velocity con-
tours, which allows to verify that the approximation of the boundary layer thickness is appropriate. This
is because the inflation layers enclose the entire boundary layer before the flow separates from the
surface.
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Figure 3.4: Mesh outline and mean x-velocity contours.
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Turbulence modeling and numerical schemes

Once the computational mesh is generated, the various physical models that define the conservation
equations to be solved are defined, as well as the appropriate numerical schemes that allow to discretize
the solutions.

In the first place, the flow is assumed to be incompressible, provided that the expected maximum speed
is well below the M = 0.3 threshold. More importantly, the Reynolds Stress turbulence treatment is
selected, such that additional transport equations are added for all six components. The main reason
behind this is the further ability of RSM to accommodate flow anisotropy, while avoiding the high com-
putational cost of DES or LES, which is also acceptable provided that the intent is to obtain the mean
flow variables. In particular, given the relevance of the near-the-wall region in the reconstruction of
surface pressure, the Elliptic Blending variant proposed in [47] is used, which enhances transition from
the outer region to the viscous sub-layer especially in flows with strong curvature.

With the above, the number of transport equations amounts to 12:

1. mass conservation equation.

2. conservation of momentum in all three directions.
3. six, for all Reynolds Stress components.

4. one for the elliptic blending parameter a.

5. one for the turbulent dissipation rate.

Secondly, the implicit time-stepping approach is selected, not only because it can accommodate larger
time steps thanks to its unconditional stability, but also due to its robustness to the complex stability of
the RSM equations. In particular, a first-order time-stepping scheme is used with a manual reduction of
the time-step size. In particular, since the flow is initialized from rest, a time step of Atg = 0.1 s is kept
initially to trigger the alternating vortex pattern. Subsequently, this time step is progressively reduced
to Aty = 0.002 s for the last ten cycles, which are used to get the time-averaged solution.

In Figure 3.5a, contours of the Courant-Friedrichs-Lewy criterion are shown along the Z/D = 0.1
plane. In order to understand its significance, its definition in Equation 3.5 is referenced, where the
CFL number is computed at each cell, i. As seen, the criterion provides the ratio of the Euclidean
distance traveled by the local flow at each time-step, |U;| At, to the characteristic cell length, Ax;.

CFL; = |U)| Ai; (3.5)
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(a) Contours of CFL criterion - symmetry plane. (b) Temporal evolution of lift (top) and drag (bot) coefficients.

Accordingly, an acceptable time-step is such that the flow does not travel more than a cell’s distance
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over the course of an iteration, leading to CFL < 1. While this is not a hard stability constraint for
implicit time stepping, it is checked as good practice for proper resolution of the unsteady phenomena.

Overall, for the plane shown, the maximum value of the criterion is CFL ~ 0.3, while for the entire
domain is slightly above 1, with CFL,,.. ~ 1.6. In the contours, it is observed that the most critical
location is the shear layer right after separation and into the early wake. In this area, even if the grid
size is refined by the additional control volumes, the the turbulent eddies shed off the cylinder induce
large local velocities.

On the other hand, the temporal evolutions of the lift and drag coefficients are plotted in Figure 3.5b. In
this case, both lines depict a similar picture, where an initial transition process takes place as the oscil-
latory flow motion is settled. Specifically, at around 7' = 20 s, both coefficients enter into a statistically
steady, periodic, motion with amplitudes of ACy, ~ £0.55 around Cr, ., = 0 and ACp ~ £0.03 around
Cp,eq = 1.26 of which the last 10 flow cycles are used to perform the time-averaging process.

As additional information about the level of convergence achieved in the simulation, Tables 3.2 and 3.3
next display the residual for each conservation equation, averaged over the last 1000 iterations. It is
here noted that the method to compute residuals in STARCCM+ is such that the value at each iteration
is normalized with the maximum of the set, hence forcing residuals to be comprised in 0 < R < 1.

Furthermore, assessment of the values for each equation leads to the conclusion that all residuals
show satisfactory levels of convergence except for the cross Reynolds Stress components, especially
u'v’, which is kept in mind going forward in the present Chapter.

Table 3.2: Residual averages - last 1000 iterations.

Mass X-mom Y-mom Z-mom o €
2.2x 1074 1.4 x 1072 6.1 x 1072 1.7 x 1072 5.8 x 1075 9.3 x 1073

Table 3.3: Reynolds Stress components residual averages - last 1000 iterations.

u'u’ u’'v’ u'w’ v'v’ v'w’ w’w

2.9 x 1073 0.2 5.2 x 1072 3.4x1073 5.5 x 1072 2.2x 1073

3.1.2. Flow solution

Once the geometry, computational grid, simulation parameters and convergence level of the simulation
have been exposed, it is meaningful to display some of the mean flow results, as these are referenced
extensively along the following sections of the present Chapter.

As it has been hinted in the previous section, provided that the present thesis focuses on two-dimensional
applications of the PINN framework, the region of interest corresponds to the flow imprint on the sym-
metry plane, namely Z/D = 0.1. The resulting dataset, thus, is formed by 38600 data points, corre-
sponding to all the cells on that particular plane.

In the first place, contours of mean dimensionless velocity magnitude are represented in Figure 3.6, lim-
iting the range to the cylinder proximity. Furthermore, in Figure 3.7 the pressure coefficient distribution
on the cylinder surface is included, where 6 = 0° corresponds to the left-most point on the cylinder.

Observation of the contours allows to identify a symmetric flow pattern around the Y/D = 0 line. Be-
sides, the stagnation point is highlighted by the red arrow at {z,y} = {—r, 0}, characterized by a null
local speed. However, it is acknowledged that the stagnation pressure coefficient appears to be larger
than unity, signaling numerical error, lack of convergence, a by-product of the RANS-based approach,
or a product of viscous effects, as noted in [7], which can likely be discarded at the given Reynolds
number.
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Figure 3.6: Contours of time-averaged velocity magnitude, Z/D = 0.1.

Subsequently, the flow acceleration region is reflected by the magenta arrow, induced by the cylinder
curvature and translating into the pressure reduction that is shown in the C,, plot. This flow acceleration
takes place up to 8 ~ 75° and has associated a certain boundary layer build-up, which can be observed
in more detail in Figure 3.4. Furthermore, right after the suction peak, with a value of C}, i, = —1.5
the flow is still attached, seemingly separating at around 6 = 90°. This is highlighted by the blue arrow,
and can be identified thanks to the sudden change in the slope of the pressure coefficient slope.

Finally, at the back of the cylinder a recirculation region can be found, where the pressure coefficient
presents a virtually constant value of C,, ~ —1. As pointed out by the black arrow in the above contours,
the separation produces a wake downstream of the cylinder surface, creating a shear layer with the
free-stream.
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Figure 3.7: C,, distribution on the cylinder surface.

In order to provide further insights, the mean flow streamlines around the cylinder are shown in Figure
3.8, taken at the same plane as the previously discussed contours. In this representation, two coher-
ent, counter-rotating vortex structures can be clearly identified in the wake region behind the cylinder.
Additionally, based on the periodic nature of the lift and drag coefficients, it can be inferred that these
eddies are generated in an alternating fashion. Accordingly, it may be said that the flow motion involves
the roll-up of shear layers from either the top or bottom of the cylinder into coherent vortical structures.
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In turn, each vortex is shed downstream, allowing the formation of the next eddy on the opposite side.

Besides, the streamline pattern provides further support to the aforementioned location of flow separa-
tion, given that the top and bottom separation streamlines emanate from the 6 ~ {90°,270°} points.

Mean flow streamlines
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Figure 3.8: Mean flow streamlines on Z/D = 0.1.

3.2. Results from PINN baseline

After providing a broad overview of the flow that characterizes the selected regime, the performance of
the PINN baseline framework that has been covered in Chapter 2 is exposed.

3.2.1. Numerical results

In the first place, it is of interest to analyze the various loss and error metrics of the PINN after con-
vergence. To this end, the algorithm is evaluated at all measurement locations, hence providing more
representative values than would be expected from its analysis over the training batch size.

On the one hand, Table 3.4 includes the total loss and the values for each of the contributing terms.
From the results, it can be said that the data loss component dominates the learning process, followed
by the PDE loss, which is about a third of the former. On the contrary, the prior loss and pressure
boundary conditions are matched much more closely, meaning that they are barely contribute to the
update of network parameters during the final iterations.

Table 3.4: Loss components for PINN baseline.

Lotal Lpata LppE Lprior Ly BC
1.18 x 104 8.98 x 10~° 2.79 x 10~° 4.90 x 1077 1.25 x 10~8

Looking further into the sub-components of each loss term, Table 3.5 features the Mean Squared Error
metric for each variable across all measurement points. Paying attention first to all variables except
for pressure, as this does not directly contribute to the data loss, it may be said that both velocity



3.2. Results from PINN baseline 50

components represent the largest contribution and are reconstructed with similar accuracy. On the
other hand, all three Reynolds Stress components offer a similar precision with respect to the reference
data.

Besides, in line with expectations, the pressure mean squared error for the hidden variable, namely
pressure, is the largest but still in the same order of magnitude as the rest of loss contributions. This
already reflects the power of the PDE loss, which can enforce precisions comparable to those achieved
by a supervised loss term.

Table 3.5: Mean squared error per predicted variable.

P —

u'u’ u’v’ v'v’

.70 x 1073 1.02 x 107° 1.17 x 107° 8.00 x 1076
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Finally, all three residuals appear to display similar contributions to the Partial Differential Equation loss
term, with a somewhat larger x-momentum value. While it is not especially remarkable, it is interesting
to note that having a ’sink’ term such as the x and y pressure gradients on both equations appears
to have no major effect on the minimization of the x and y momentum loss terms with respect to the
the continuity residual. This is likely due to the fact that the pressure terms undergo a constrained
optimization, since the rest of terms in both equations are constrained by the data loss component.

Table 3.6: PDE residuals.

Rcontinuity Rx-momentum Ry-momentum

9.24 x 1076 8.57 x 107° 1.01 x 107°

In order to provide a more comprehensive and visual representation of the above information for the
reader, Figure 3.9 next reflects the proportion of each loss component with respect to the total loss,
namely the full pie circumference.

Hierarchical Loss Breakdown

LData

Figure 3.9: Pie chart of loss contributions.
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3.2.2. Spatial distribution of errors

Once an idea of how accurate the PINN reconstruction is in overall terms, as well as how the error
is distributed across the various variables, it is of interest to further investigate how such errors are
distributed in space, paying special attention to the cylinder proximity to better understand surface
pressure reconstruction accuracy.

Firstly, Figure 3.10 includes contours of the reference (left), PINN-predicted (right) and relative delta in
dimensionless x-velocity, limited to the cylinder proximity.

Even though the comparison between the reference and predicted fields does not reflect major notice-
able differences, the relative delta plot provides some more insight into which areas show the largest
deviations. Note that the delta plot is calculated such that the magnitude shown is the difference be-
tween the reference and the prediction as a percentage of the free-stream magnitude. The expressions
of the error metric for each variable are included in Equation 3.6. Rather than reflecting the Squared
Error, which is used during training, this metric is selected to aid in the interpretation of PINN perfor-
mance.

T T 5 5 i, —
L - L - 1 1
e — iPINN iRef | 100: = PINN E Ref 100: S JPINN2 iRef 100;

Focusing on the delta, it is possible to see that the freestream is largely error-free, with non-zero devi-
ations being limited to the cylinder proximity and wake areas. In particular, it appears that the largest
error accumulation happens around the recirculation region and the edge of the wake, which is to
be expected given the higher concentration of gradients. The deviations present maximums of up to
e = +10%, but mostly limited to ¢ < +5%. Furthermore, it may be stated that the error pattern looks to
be approximately symmetrical around the y/D = 0 line, which could signal a physical explanation for
the deviation rather than a by-product of the stochasticity in the PINN training process. Focusing on
the delta around the wake edge, the alternating positive and negative pattern signals a smoother wake
edge, resulting in a ~ 0.3D wider wake predicted by the PINN.
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Figure 3.10: Contours of dimensionless x-velocity - results from PINN baseline.

Before delving into further exploration of the error source, it is worth representing the delta magnitudes
for the rest of the variables to form a more complete judgment on the overall performance of the baseline
algorithm. Accordingly, Figure 3.11 includes the relative delta contours for the dimensionless y-velocity
(Fig. 3.11a) and pressure (Figure 3.11b).

Placing the spotlight on the former, the recirculation region contains the principal deviation with respect
to the reference data, with maximum errors of ¢ ~ £10%. As pointed out by the blue and green arrows
and attending to the direction of rotation of the main vorticity in Figure 3.8, the observed difference in
vertical velocity may be interpreted as a reduction of vortex-induced velocity and thus a possible loss
of primary vortex strength in the PINN version.
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Further support to this hypothesis is given by the results depicted in the pressure delta plot, where the
purple arrow signals a larger local static pressure around the region where the cores of the primary
eddies are located, explaining their reduced strength. Additionally, the higher wake pressurization
matches the observations made earlier on the wake width, provided that this promotes the exchange
of momentum with the mean flow.

Additional deviations in the pressure pattern are identified by the black and red arrows. With respect
to the first one, the pointed region of additional suction can indicate a latter separation in the PINN
solution, which can aid in the explanation of the above differences. Finally, the red arrow indicates
a substantial deviation in the stagnation region, where the largest absolute error with respect to the
reference pressure is located.

Overall, pressure errors are contained in ¢ € [—15, 12] %, which is a comparable level of reconstruction
accuracy as that of the variables where labeled data exists, putting forward the advantage of the PDE
loss.
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Proceeding with the analysis, Figure 3.12 includes the relative delta contours for both normal Reynolds
Stress components. In this case, reconstruction errors take values contained within ¢ € [-5,+5]%
of U2,. In this case, pronounced deviations are observed close to the cylinder surface around the
start of the shear layer, with over-predictions from the PINN solution on both cases. Since these two
components form the mean turbulent kinetic energy, this can be interpreted as a ~ 4 — 5% increase in

early turbulence production, which could explain the minimal delay in separation.
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Figure 3.12: Contours of absolute delta - normal Reynolds Stress Components.
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Finally, the Reynolds Shear stress reference data, PINN prediction and the relative difference between
the two is attached in Figure 3.13. In this case, maximum errors are bounded to || < 3% of U2,
displaying a symmetric pattern around y/D = 0. The most remarkable variation, as pointed out by the
black arrows, lies on the shear layer that forms the wake edge. Particularly, the PINN solution predicts
a stronger exchange of momentum between the streamwise and transversal velocity fluctuations, thus
enhancing turbulent mixing and potentially affecting the width of the wake downstream, as commented
above.

Reference Data Relative Delta . 3 PINN Prediction

>
E]

Figure 3.13: Contours of dimensionless turbulent shear stress - results from PINN baseline.

Finally, the reference and PINN-predicted pressure coefficient distributions on the cylinder surface are
represented in Figure 3.14, as well as the difference between the two. Firstly, it can be argued that the
overall reconstruction of the pressure is physically sensible. Furthermore, looking at the differences with
respect to the reference data, the same observations which were hinted at the pressure contours are
materialized here. From larger to smaller deviations, the stagnation pressure coefficient value predicted
by the PINN at stagnation, namely ¢ = 0°, is of C,, = 1, which is more in line with expectations than
the reference data. Besides, smaller deviations of AC,, < 0.1 are found right before and at the suction
peak, with the PINN resulting in an overall smoother C), distribution.
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Figure 3.14: C,, distribution on the cylinder surface - PINN vs Reference data.
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3.2.3. Investigation on the sources of reconstruction error

In order to better understand whether the observed differences have a physical foundation or rather
are a lack of reconstruction ability of the PINN, a method is here developed to further investigate on
the source of the deviations above exposed.

The proposed method consists of training an identical NN architecture solely with the data loss term,
disregarding the PDE and other loss components. In this scenario, since pressure is learned directly
from the data, the full state is required in advance and thus would be impractical in a PIV set-up. The
main purpose of this method is to benefit from the ability of the NN framework to provide derivative
calculations locally and independently of the discretization scheme, thus allowing to compute the cor-
responding residuals for all three conservation equations in an accurate manner.

It must not be neglected, though, that this method provides only an approximation of the reference
data, since the NN still acts as a general function approximator for all flow variables. However, this is
equally desirable, as it allows to gauge the extent to which the NN architecture and selection of training
parameters allow to reconstruct the flow solution. In fact, such results are included in Table 3.7, where
the PINN baseline results are included for reference.

Table 3.7: Mean squared error per predicted variable - £, only vs PINN.
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By comparison of the above numbers, it is deduced that the solution space allowed by the NN frame-
work makes it possible to increase the reconstruction accuracy beyond the baseline results. This is
concluded since the mean squared error for most states is reduced by approximately an order of mag-
nitude, signaling margin for further accuracy.

Furthermore, since the rest of loss contributions other than the PDE, namely £, and L, ;. are indeed
fulfilled by the reference data, it is concluded that the root cause for the observed differences is the
PDE loss. With the aim to investigate further into this, contours of all three residuals are represented
for both the £4.:, only (left) and the PINN baseline (right) in Figure 3.15. Before elaborating on the
results, it is here noted that the color scale required by the £,,:, only version is ten times that required
by the PINN baseline, already exposing the lack of converged residuals for the reference data.

Firstly, regarding the residual for mass conservation, the most relevant features in Figure 3.15a appear
right after separation, where, by virtue of the onset of turbulence, three-dimensional motion appears to
cause a positive residual in the reference data, as pointed out by the red arrows. On the contrary, a
seemingly random pattern dominates the entire PINN-solution domain. Additionally, hints of a positive
R,qss are observed around the stagnation region, but limited to the cylinder proximity.

On the contrary, a very different picture is laid out in the x and y momentum conservation residuals,
attached in Figures 3.15b and 3.15c respectively. In both cases, the model that has been trained
on data alone displays residual values of up to R = 0.8 around the edge of the wake, with especial
emphasis on the edge of the shear layer. On the contrary, the PINN baseline results again reflect a
chaotic distribution of residuals of at least an order of magnitude below.

It is noteworthy that the wake edge region, which is highlighted by black arrows, has been the center
of discussion in the previous subsection as the main source of deviations between the prediction and
labeled data. Accordingly, it can be firmly stated that these findings support the hypothesis that the
differences with respect to the reference data are explained by an enhanced fulfillment of the governing
equations by the PINN, rather than a limited reconstruction ability of the framework.

Finally, it is also noticed that the stagnation region contains a non-zero x-momentum residual close
to the solid boundary, which is the main source of observed pressure reconstruction error in the C,
surface plot of Figure 3.14, further strengthening the above idea.
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Figure 3.15: Contours of residuals: PINN vs L ;44 Only.

Overall, it is concluded that the exposed PINN framework, when applied to the mean velocity data of
the flow around a cylinder obtained via CFD, is able not only to reconstruct pressure with a similar
accuracy to the fields with labeled data but it also proposes solutions constrained by the conservation
equations, potentially improving the physical validity of the solution. Furthermore, these qualities are
not solely limited to off-body regions, but also apply to the ability to reconstruct surface pressure.
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3.3. Sensitivity studies

After an initial exposition on the ability of PINNs to reconstruct off-body and surface pressure, it is of
interest to explore how the various parameters that characterize the framework affect the solution.

Accordingly, some of the parameters like the neural network shape or the distribution and number of
collocation points are here studied not only to gauge their effect on the absolute accuracy of the PINN,
but also to comprehend how these may be tuned to achieve similar results in a more efficient manner.

However, prior to exposing the results, it is worth showing the expected variation that a single PINN
framework with no modifications can provide in terms of the most relevant loss terms. This can be visu-
alized in the scatter plot of Figure 3.16, where the mean and standard deviation of each loss component
are shown for five different runs with the baseline PINN architecture and training parameters.

From the plot, it is deduced that the PDE loss generally takes lower values than the data counterpart,
with deviations of cppr = 3.4 x 1075 around a mean of uppr = 6.8 x 107°. In the case of the data
loss, the fluctuations are of o4,;, = 5.9 x 10~° around a mean of jig.:a = 1.6 x 107, hence making
it more stable in relative terms. Besides, the prior loss deviation lies within o0, < 1 x 10~9, barely
contributing to the overall variance. Finally, the addition of these deviations add up to g, = 8.5 x 107°
for the total loss.
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Figure 3.16: Mean and variance for each loss term - data from five baseline PINN runs.

With this variance in mind, which is mostly due to the randomness in the weight initialization scheme
and stochasticity of the training process, the results presented in the forthcoming sections become
more interpretable, as it allows to discern significant trends over variations that are expected due to the
randomness inherent to the algorithm.

3.3.1. NN shape

Introduction

As a first investigation, the effect of the shape of the neural network is studied. To do so, various
architectures of different widths, or number of neurons per layer, and depths, or number of layers, are
analyzed with respect to the key performance indicators, such as the various loss components.

It is noted that, by modifying these variables, the total number of learnable parameters in the network
is altered. In turn, this changes the complexity of the set of allowed solutions, as well as that of the
optimization space. Accordingly, the intent is not only to understand how the complexity of the allowed
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solution space changes with size, but also to provide guidance on minimum requirements for both
dimensions. Presumably, these findings will likely only be applicable to the present problem or, at
best, to similar ones. The reason behind is that the complexity of the solution, while somewhat vague,
includes factors as the number of variables, spatial gradients, data sample size and ultimately depends
on how efficiently the NN stores information.

In order to conduct this study, a one-factor-at-a-time (OFAT) approach has been used to design a
sensitivity study that allows to properly differentiate the effects of both variables on the results and
performance metrics. To do so, four levels have been determined for each parameter based on Central
Composite Design for k = 2 factors, resulting in the test matrix in Table 3.8. As reported, the number of
layers, L, changes from an extremely low value of 2, up to a model that is 12 layers deep. On the other
hand, the number of neurons per layer, N, sweeps from 8 until 92, covering a wide range of model
widths. Finally, the last column features the total number of trainable parameters, which are obtained
via Equation 2.3, taking into account that the number of input and output neurons are kept constant at
N,;, =2and N,,; = 6.

Table 3.8: NN Shape/Size study.

Test # L N Npa'rams
Level Value Level Value
1 -1 4 -1 20 1866
2 -1 4 1 80 26 646
3 1 12 -1 20 5226
4 1 12 1 80 78 486
5 0 8 0 50 20856
7 —1.4 2 0 50 5556
8 0 8 1.4 92 69 282
9 0 8 —14 8 654

Results

In order to analyze the performance of the various model architectures, the contours in Figure 3.17 are
firstly referred to. To the left, the total loss variation with the number of layers and neurons is shown.
In red, scattered locations reflect the tested architectures and the interpolation and extrapolation of
information is carried out via linear radial basis functions. To the right, an analogous interpretation can
be made, but the variable represented by the contour colors is the mean-squared error of pressure, the
main key performance indicator in the present thesis.
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Figure 3.17: Contours of different KPIs as a function of the number of layers (L) and neurons (V).
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Delving into the test results, observation of both Figures leads to the conclusion that these present very
similar overall trends, thus reflecting the validity of the total loss optimization as a means to reconstruct
the unknown pressure field. From the contours, it may be acknowledged that the low extremes for
either the amount of neurons or of layers lead to the least accurate models, with A/ SE,, values as high
as 8.0 x 10~* and 7.3 x 10~ for the shallowest and narrowest architectures respectively. Interestingly,
displacement from such low dimensions seems to provide a sizable step in performance, achieving an
MSE, = 1.3 x 10~* even for a reduced size model as the 4L, 20N .

Overall, as the model size is increased it appears that the reconstruction error decreases. However,
drawing the attention to the bigger picture shows a slight trend of worse accuracy for very deep or wide
models. This can be drawn from comparison of the M SE, values for the L = 8, N = 50 model with
the L = 8, N = 92 architecture or contrasting the results for the N = 20, L = 4 NN with those from the
N =20,L =12,

Provided these observations, it becomes apparent that the trend is not necessarily as straightforward
as a direct proportionality between model size and reconstruction error. Accordingly, further insight is
provided into the underlying trend via the graph in Figure 3.18a. Specifically, the two subplots show
the evolution of the two same key performance indicators, namely £1,; and M SE,, as a function of
the ratio of trainable parameters to the amount of data points used during training. Starting from the
left, where the simpler models are represented, it appears that the absolute neuron and layer sizes
gain relevance to the detriment of the ratio Npurams/Naate- This is because the two extreme models
produce more than twice the pressure reconstruction error than the models with a similar number of
parameters but a more balanced share between layers and neurons.

Furthermore, as the number of trainable parameters grows to one half of the data points, the accuracy
of the NN models seems to find a consistent optimum, as deduced from the two similar results provided
by the L = 8, N = 50 and the L = 4, N = 80 architectures. As the number of tunable parameters is
increased further still, the optimization appears to struggle to converge to the same optimum, potentially
depicting an overly complex optimization landscape.
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Figure 3.18: Effect of NN shape on pressure reconstruction error.

Finally, an illustration of the modes of error for the simplest models is given in the C,, distribution plot of
Figure 3.18b. Review of both the absolute and delta plots offers an interesting insight into the preferen-
tial modes of failure when the model complexity is not sufficient. In particular, regions that concentrate
the most significant spatial gradients, such as the stagnation point and the two suction peaks, seem
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to accumulate most of the error, contrary to a virtually constant error distribution in the case of the
L =8, N = 50 model.

While this study does not allow to define an universal law of appropriate NN sizes for every PINN
application, key findings are made based on this specific problem:

« for equal amounts of trainable parameters, NN shapes with extremely low dimensions, e.g. L =2
or N = 8, seem to incur the largest errors.

the ratio of trainable parameters to the amount of data points seems to be a more representative
metric than the NN shape to gauge the effect of the NN size.

» model complexity does not inherently aid reconstruction accuracy.

regions of high gradients appear to be more susceptible to error from overly simplistic architec-
tures.

With this in mind, certain guidelines can be provided on a general basis:

» start with a model architecture that aims for about one half of the total number of data points.

+ ensure that model sizes lay above a certain threshold, avoiding too shallow (L > 4) or thin (N >
20) NNs.

3.3.2. Data loss weighting

Once the effect of the neural network geometry on the solution has been exposed, it is of interest to
study how the definition of the key performance indicator used during training, that is the total loss,
affects the reconstruction error for each variable and, ultimately, how it affects pressure reconstruction
at the cylinder surface.

Introduction

To achieve this, the data loss term is weighted as per Equation 3.7, which modifies the relative contri-
butions of L4,:, and Lppg to the total loss during training. According to the definition of the weighting
factor given, it is deduced that models trained with a € [0, 1] will be more inclined to enforcing the
Navier-Stokes loss, whereas those using « > 1, will favor the learning of the labeled data variables.

ETotal = ‘Cdata + »CPDE + »CPrior + »Cp.,bc (37)

In particular, the values for alpha that are included in the present study are:

a={0.01, 01, 1, 10, 100, 1000} (3.8)

In addition to the variation in the bias of the NN to enforce the labeled data or the PDE equations in the
final solution, it is expected that the training dynamics are affected too. The reason behind this is that
the total loss is inherently dependent on the weighting factor and hence the value of a directly impacts
the size of the gradients of the total loss with respect to the training parameters, which are used during
the back-propagation step. To aid with understanding this phenomenon, a very simplified example is
here included.

Consider a single-input-single-output neural network with one hidden layer and one neuron. Using this
architecture with a mean-squared error loss can be considered as performing a linear regression on
the set of input points such that the MSE is minimized.

Now, taking two different weighting factors, «; = 0.01 and «; = 100, one can compute the corre-
sponding loss values for a prediction of y,,..q = {1.2, 6.0, 10.5} where the ground truth is y,.; =
{0.5, 7.1, 12.1} as per Equations 3.9 and 3.10, respectively.

N
Li=01)  (Yipred — Yirer)? =0.01{(1.2 = 0.5)% + (6.0 — 7.1)2 + (10.5 — 12.1)?} = 0.0426  (3.9)
i=1
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N
Ly =02 Wipred — Yirer)’ =0.01{(12—0.5) + (6.0 — 7.1)* + (10.5 — 12.1)*} =426 (3.10)

i=1

As observed, while the real deviation is the exact same, the two loss terms differ by four orders of
magnitude. Accordingly, computing Vg L for both versions will yield disparate results, which could add
or subtract relevance to the problems of vanishing and exploding gradients for deep networks.

Additionally, the decision is made to consider the dynamic weighting scheme proposed in [31] as
well. As exposed in §1.4.1, this method has the main reported advantage of dynamically adjusting
the weights of each loss term to allow for an evenly distributed contribution during training. In particu-
lar, the formulation here implemented is as per Equation 3.11, where the PDE loss is scaled with the
dynamic weight, Sgyn

ETotal = »Cdata + den : ACPDE' + EP?‘iOT + ﬁp,bc (311)

Additionally, 54, takes the definition given in Equation 3.12, where the coefficient at each iteration is a
blend between the weight at the previous iteration, 6;‘?;} and the estimate for the current iteration, Bgyn.
Such a combination, controlled by the blending factor, A, ensures that the weighting coefficient evolves
smoothly, which is especially relevant given the stochasticity inherent to the mini-batch approach of
the Adam optimizer. In the present case, ) is fixed to 0.1, following the recommendations given in the
presentation paper.

Additionally, the estimated dynamic weight for the current iteration, B}}yn, is presented as the quotient
of the norms for the gradients of both loss terms with respect to the NN parameters. Intuitively, this
ratio ensures that the contributions of both terms are balanced during the back-propagation step.

_ |VeLppE|

g = (L—=X) - "_1+)\.Aﬂn; Ann_i 3.12
ﬁdy ( ) den ﬂdy ﬁdy |VQ£data| ( )

Finally, it is noted that an initial buffer of 500 iterations or ~ 120 epochs is given with no dynamic
adjusting of the weights, keeping (4, = 1, as it would happen in an unweighted training process.

Results

Prior to exposing and commenting on the results, it is noted that the performance metrics shown are
evaluated on the entire set of available measurement points, rather than just taking the value at the last
training batch. With this in mind, the effect of the data loss weighting factor on the various loss terms
are included in Figure 3.19.

First of all, it is direct to see that the PDE loss, in solid red, follows a quasi-linear positive relation
to «, with lower values aiding to minimize the N-S residuals. In a similar but opposite way, the data
loss, in blue, follows an inverse relation to the weighting coefficient with a saturation above o = 100.
Interestingly, this saturation value of £;,,, is only twice as large as that of the NN model when trained
only on the data loss of all known states (namely, all but pressure). This is insightful, as it means that it
likely represents a learning limit for the given combination of architecture, loss definition and optimizer.
It can also be said that the behavior witnessed for both the data and PDE losses is expected given the
definition of the loss weighting parameter.

Accordingly, more insightful are the total loss results, depicted by the black and light green lines. Re-
spectively, these reflect the weighted total loss, as defined in Equation 3.7, and the unweighted coun-
terpart, which would be a realistic metric for how well the NN optimizes the baseline problem. On the
one hand, the weighted loss line finds a very similar trend to the PDE loss with respect to «, as it is
mostly dominated by the weighted component of the data loss. However, it is possible to see that the
two lines are not perfectly parallel, with the two being the closest when o = {1, 10}. Intuitively, this co-
incides with the minimum absolute unweighted total loss, which happens at a = 1. Additionally, given
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the difference in the slope of total loss with « to either side of the optimum, it can be stated that the
sensitivity is larger for o < 1 than for a > 1.

Loss Components vs. Data Loss Weighting Factor
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Figure 3.19: Dependence of loss components on data loss weighting coefficient.

In order to better understand how the data loss weights affect the region of focus in the present thesis,
the pressure coefficient distribution on the cylinder surface is shown in Figure 3.20 for all weights except
for « = 103. Note that the reference data has been represented too with the dash and cross line.
Additionally, the difference of each version with respect to the CFD output has been included in the
second and third subplots.

First and foremost, the two versions with o < 1 stand out due to the large deviation with respect to the
ground truth data. Visibly, it appears that the lack of agreement with the reference dataset due to the
small weighting only achieves a smoothed out version of the correct C,, distribution. Specifically, the
version with the smallest weighting factor, o = 0.01 in blue, differs from the reference data in values of
up to AC, =~ 1.3 at stagnation and AC,, ~ 1 in the suction peak. Increasing « by an order of magnitude
offers a step improvement in accuracy, as reflected by the orange line, still containing errors of up to
AC, = 0.7 at stagnation.

On the other hand, the version with e = 100 in red shows a virtually perfect match to the reference data,
with maximum AC, values of 0.09. When compared to the baseline case, namely o = 1, it appears
that the biggest difference lies in the stagnation region, where the higher weight brings the o« = 100
solution closer to the reference data. This is indeed interesting, as pressure is obviously not being fed
to either version. However, it appears that a larger data weight, which, as has been exposed, reduces
the extent to which the N-S equations are enforced, brings the solution closer to the CFD data. This is
in line with the observations made in §3.2.3, where it was hypothesized that the C, = 1 at stagnation
predicted by the PINN was due to the PDE regularization.

Having exposed the observations on the static loss weighting factors, it is of interest to dive into the
performance of the dynamic weighting scheme. Firstly, the loss terms corresponding to this version
are included in Figure 3.19 as dashed horizontal lines. Analyzing these results, it appears that the
model performs overall very similarly to the ae = 10 model, with final values of Lppr = 5.5 x 10~* and
Laata = 1.0 x 1074, Interestingly, if one looks at the progression of Bayn shown in Figure 3.21b, it is
possible to deduce that there is an overall equivalence in weighting the data and the PDE loss terms.
This is because the dynamic model, which is weighting the PDE loss by around 5 = 1/10, shows very
similar performance metrics to the o = 10 model. Besides, in the same Figure 3.21b, it is possible to
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verify that the dynamic weight definition equation is indeed representative of the inverse ratio of loss
terms, making it a suitable balancing term.

Pressure Coefficient Distribution Around Cylinder
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Figure 3.20: C,, distribution and comparison with reference data for various data weighting approaches.

Finally, as it was previously hinted, there is a subtle but consistent effect of the weighting factor on train-
ing dynamics. This is reflected in Figure 3.21a, where the total loss for each run has been normalized
with the mean of their final value to provide a representative comparison of the learning dynamics. As
highlighted by the purple arrow, there is a slight dependence to the loss weight in the training progres-
sion, such that lower values of & show a smoother yet quicker convergence to their final, asymptotic
value. The interpretation, which can also be supported by the magnitude of the oscillations between
epochs, is that the loss weight initially acts as an up or down-scaling factor for the weight updates, just
as a larger or smaller learning rate would. However, as the training process advances and the asymp-
totic region of the learning curve is reached with a small learning rate, the effect of the loss weight is
limited to the proportion of loss metrics shown above.

Overall, it can be concluded that the loss weighting factor for this problem has its optimum at the
baseline value of « = 1, where the solution appears to find an appropriate balance between enforcing
a physically sensible solution and learning the labeled data. Along these lines, it has been proven that a
too small value of o makes the NN unable to converge to the right pressure fields, showing the relevance
of the reference data. Similarly, too large a weighting factor appears to subtract excessive relevance
from the PDE loss, causing certain areas such as the stagnation region to converge to solutions that
provide higher local residuals. Despite this, it becomes obvious that these guidelines are limited to the
present problem, given that the data normalization selection and nature of the problem can affect the
magnitude of each loss component.
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Figure 3.21: Training dynamics for various data weighting schemes.

3.3.3. Data and collocation points

Introduction

Another parameter that influences the training process is the number and distribution of locations where
the loss is computed during the optimization. As previously exposed, these are commonly referred to in
literature as measurement points, where L ;... is evaluated, and collocation points, where the Navier-
Stokes equations are enforced.

So far in the present thesis, these two have been specified to be equal to all locations where labeled
data exists, as this ensures that representative reconstructed pressure values are obtained at all points
where reference pressure data is available.

Nonetheless, several questions of interest arise regarding these points, their proportion and distribution,
as it becomes obvious that, the smaller the total amount of points, the more efficient the training will
be, provided that all other parameters remain unchanged. Accordingly, some of the questions that are
targeted here are:

1. Should labeled data be available with a smaller level of resolution, would it be possible to achieve
similar reconstruction errors for all states at all initial locations via the PDE loss?

2. Can the reconstruction of pressure be positively affected by the inclusion of additional collocation
points?

3. To which extent are the key performance metrics of each variable affected by the increase or
reduction in each type of points?

In order to address these questions, various tests have been conducted by training the PINN baseline
model with different amounts of collocation and measurement points. Similarly to previous tests, the
approach to define the test points has been a mixture of D-optimal and One-Factor-At-a-Time, that
allows to properly discern the separate effects of both factors while covering the domain of interest with
a reduced number of tests. In particular, the test matrix is as per shown in Table 3.9, where N,,,.., are
the number of measurement points, N.,; are the number of collocation points and their amounts are
defined as ratios to the total number of available data points from the CFD simulation, Ngqq-

In the design of the experiment, it is taken into consideration that the ground truth is only available at
the CFD data point locations. Accordingly, the number of measurement points can only take values
Nieas/Ndata € [0,1]. When this ratio is below unity, the measurement points are randomly sampled
from the entire pool of data points. On the other hand, the ratio of collocation points can theoretically
take values of Ny /Nyata € [0, +00[. Whenever the ratio is smaller than one, the same approach is
followed, i.e. the entire batch of data points is randomly sampled. However, when this ratio becomes
larger than unity, the collocations points are randomly sampled from a uniform distribution in the range
of the domain dimensions.
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Table 3.9: Number of measurement and collocation points study.

Test # Nmeas/Ndata Ncoll/Ndata

Level Value Level Value
1 -1 0.25 -1 0.5
2 -1 0.25 1 1.5
3 1 0.8 -1 0.5
4 1 0.8 1 1.5
5 0 0.55 0 1.0
6 14 1.0 0 1.0
7 —-14 0.1 0 1.0
8 0 0.55 14 1.7
9 0 0.55 —-1.4 0.3

Given this approach, it can be deduced that the only tests where there will be a full overlap between
measurement and collocation points are those where the ratio of collocation points is Ny /Naata > 1.

Otherwise, the random distribution can result in overlapping and non-overlapping regions. This random
sampling approach is followed to provide an unbiased view on the extent of data resolution needed and
on guidelines to define the number of collocation points in relative terms.
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Figure 3.22: Data, measurement and collocation points on cylinder proximity for different point ratios.

In order to provide a visual reference of the above description, Figure 3.22 is attached. On the one hand,
to the left, Figure 3.22a includes the measurement and collocation points, in red and black respectively,
for Test #1, namely N,cas/Naata = 0.25 @and Ny /Naata = 0.5. As can be recognized, when both ratios
are below unity, there is no need for them to overlap, since both distributions are randomly sampled
from the total batch of data points. Moreover, in Figure 3.22b on the right, it is possible to see that,
when the ratio of collocation points is larger than one, all data points are sampled and the remaining
collocation locations are randomly placed across the domain.

Finally, it is noted that the mini-batch size, which is the amount of locations that are considered for the
evaluation of the loss during training, is kept at 1/4 of the number of measurement points. This ensures
that the batch size effect is left out of the equation, causing each epoch to be formed by four iterations
on randomly sampled mini-batches.
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Results

As a first look into the results, contours of the two main loss contribution terms are exposed in Figure
3.23, where the test points are reflected by red dots and the contours are produced with a second order
inter and extrapolation method around the points.

The focus is first placed on Figure 3.23a, which depicts the dependency of the data loss to both param-
eters. Note that the data loss metric, which does not include the reconstruction error of pressure, is
computed at all CFD data locations, independently of the number of points used during training. From
the shape of the contours, a major trend can be identified which results in an inverse relation of the data
loss term with the number of measurement points used during training. This can be inferred by looking
at the evolution of the data loss along any horizontal line, with a consistent picture for any number of
collocation points. For example, moving from the {1,1} test to the {0.1,1} result, an increase in the
data loss from the Lg4:0 = 1 x 1074 level to L4404 = 7x 10~* is observed. Indeed, this trend is expected,
given that feeding a bigger portion of the entire data batch allows to minimize the data loss further at
all data locations.
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Figure 3.23: Contours of different loss terms as a function of the number of collocation and measurement points.

On the other hand, and to provide an answer to the first of the questions provided above, moving
along a diagonal line such as the pink arrow allows one to realize that, should the number of data
points diminish, the effect of the missing data would not be completely offset by additional collocation
points. Not only this, but also displacement along a vertical line in the plot, such as the yellow line,
depicts the limited extent to which collocation locations aid in the reconstruction of known states. This
is because moving from {0.55, 3} to {0.55, 1.7} barely reduces the data loss from £, = 1.3 x 10~% to
Liata = 1.0 x 1074,

Secondly, the contours in Figure 3.23b reflect the extent to which the residuals of the N-S are minimized
for each combination of measurement and collocation points. Interestingly, the major trend with respect
to the relevance of measurement points is still present, as displacement to the left side of the domain
along any horizontal line in the plot results in an increase in Lppgr. Besides, it is also remarkable
that modifications in the number of collocation points for a certain amount of measurement locations
appears to yield no discernible advantage in terms of PDE loss minimization.

In order to better comprehend how these trends affect the main target of the thesis, the C,, distribution
on the cylinder, Figure 3.24 is attached, showing the effect of the number of measurement points (Figure
3.24a) and number of collocation locations (Figure 3.24b) on the cylinder surface C,, distribution.

Focusing on the plot to the left first, it is clear to see that the version using only measurements at 10%
of the total number of data locations incurs significant errors. These peak at AC, ~ 0.6 at stagnation
and AC, =~ 0.5 at both suction peaks when compared to the reference distribution. However, only
minor differences appear between the versions using 55% and 100% of the data points during training.
This behavior differs significantly from the picture the two main loss terms offered in Figure 3.23, likely



3.3. Sensitivity studies 66

due to the large density of points placed in close proximity to the cylinder, which form the inflation layer
mesh. This causes the 'random’ point selection to be biased towards regions of high data point density
in an inherent manner. Consequently, the distribution of the rate of change in reconstruction error is
unequal, it being less significant for regions with fewer data points per unit surface.
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Figure 3.24: Effect of measurement and collocation points on cylinder surface pressure.

Regarding the analogous plot in Figure 3.24b for the sensitivity to the number of collocation points, the
extent of variability is significantly reduced. Even if a small inverse relation between the reconstruction
error and N, is present at stagnation, reflected by the magenta arrow, its extent is very limited, namely
AC), < 0.1. Infact, so small is the dimension of that trend, that it falls within variability of the accuracy of
the Neoii/Naata = 1.7 model between the top and bottom suction peaks, as signaled by the red arrows.

Overall, this allows to partially answer question # 2 above, as it seems that, beyond a threshold, further
collocation points have little influence on C,, accuracy. Again, this matter is only partially addressed
because the increased point density in regions adjacent to the cylinder surface clouds the results.

Following with the analysis to provide an answer to question # 3 above, it is possible to provide a
quantitative estimate for how the reconstruction error of each variable is affected by the number of data
and collocation points. This information is contained in the bar plot of Figure 3.25, where the mean
derivative of the mean squared error for each variable with respect to the number of collocation and
measurement points are included.

Prior to discussing the results, it is of interest to explain how the following graph is obtained. Firstly,
the mean squared error of each variable has been computed for each of the trained models in Table
3.9. Furthermore, to compute the derivatives, the ’One-Factor-at-a-Time’ nature of the design of ex-
periments has been used, thus calculating the derivative with respect to the number of measurement
points at each level of collocation points and vice-versa. Finally, all derivatives for each variable are
averaged out, and the standard variation computed, both shown as bars and wicks in the next Figure.
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Figure 3.25: Mean variation of MSE for each variable with collocation and measurement points.

To give an example, the derivative of the x-velocity MSE with respect to the number of collocation
points corresponding to Tests 1 & 2 from Table 3.9 would be as per Equation 3.13, where the number
of measurement points is fixed at N,,cqs = 0.25 - Nyara-

OMSE= MSE;, — MSE; |

ntl ] (3.13)
6Ncoll Nmeas —( 25 Ncoll,2 - Ncoll,l
Naata

Delving in the actual results, it is possible to see that, on average, all derivatives take negative values,
meaning that adding either type of points tends to reduce the reconstruction errors. Note that this
is not always necessarily true, as all the wicks trespass into the positive range. Of special interest
is the noticeable difference between the sensitivities to both types of points. In fact, quantifying the
above hypotheses on the significantly larger impact of the number of measurement points, one can
see that, on average, one additional measurement point is able to reduce the reconstruction error of
most variables around ~ 20x more than adding a collocation point for the present problem and range
of points studied.

Finally, the focus of attention is brought to the last of the questions exposed, that is, the addition of
computation effort both types of points add. The method followed here to assess this in a practical
manner is to measure the mean time it takes to evaluate either type of loss, namely PDE and data,
depending on the amount of their respective types of points, the collocation and measurement.

Provided that the above study has been performed with a constant batch size for all loss types equal
to one quarter of the total number of measurement points, an alternative approach is here considered
to account for the possibility to include different amounts of measurement and collocation points at
each iteration. This method is based on measuring the mean time it takes to compute each type of
loss for batch sizes equal to one quarter of the collocation points (for the PDE loss) and one quarter of
the measurement points (for the data loss). Following this procedure, the mean computation time and
corresponding standard deviations for each combination of loss and number of points are included in
the bar plot of Figure 3.26, where the data for each bar is obtained from N = 100 loss evaluations.

At first glance, a major delta can be observed between the computation times for the PDE loss and
those for the data loss. The theoretical explanation for this phenomenon has already been exposed in
§1.4.1, where the procedure to obtain the PDE loss is covered in detail. However, it is now possible to
determine this difference for the present application in a quantitative manner, with the PDE loss taking
approximately one additional order of magnitude in terms of time per computation.
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Figure 3.26: Mean time per type loss computation with N = 100 samples as a function of the number of points.

Besides, the computational effort for both loss terms exhibits unequal trends when the number of eval-
uation locations is altered. For the PDE loss, the computation time appears to grow linearly with the
number of collocation points - as expected due to the need to compute the derivatives in the N-S equa-
tions in additional coordinates. On the contrary, the mean time per data loss computation seems to be
insensitive to the addition of measurement points. This behavior is also anticipated, provided that the
number of computations remains the same, with only matrix size in the MSE equations changing. In the
PyTorch framework, where parallel computing is used, this adds barely any computational overhead,
only raising memory requirements.

While itis possible to compute the mean additional time per collocation point by simply taking derivatives
of the form of Equation 3.14, where index ¢ indicates all values above N,,; = 0.3, since this is taken
as the baseline time. It is noted, however, that this mean value of 0.00132 s per each additional 1000
collocation points is specific to this problem. It can be deduced from the explanation about how to
compute the PDE loss that, even for problems using the RANS equations in two dimensions as PDE
loss, the computational overhead largely depends on the NN shape, making it problem-dependent.

4
T 1 T, T
0 > Ll 0.00132 £ 0.00048 s/1000 pts (3.14)
~—

ONecou 4 “= Neoit,i = Neoir 1

As a summary of the above, it becomes apparent that additional data which matches the quality stan-
dards of the dataset largely governs the ability to reconstruct all variables across the domain, doing
so in a computationally efficient manner. On the other hand, it appears that the amount of collocation
points could be less relevant for reconstruction accuracy above a given threshold, thus allowing to cut
training time without incurring major performance reductions.

3.3.4. Boundary Condition loss
Introduction

As exposed in §2.2.2, the PINN framework makes the enforcement of boundary conditions a straight-
forward step through the addition of loss components which can take the form of problem-specific or
physical constraints, even if these include local derivatives.

In the present work, the physical constraints inherent to viscous flows are enforced at the cylinder sur-
face in the form of no-slip, no through-flow and no-fluctuations boundary conditions. These are defined
by Equations 2.24, 2.25 and 2.26 respectively. These allow to add another source of information to
guide the optimization process at the principal area of interest in the present study - the solid boundary.
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Prior to assessing the effects introduced by the different boundary conditions on the key performance
indicators, it is a matter of interest to investigate whether these are satisfied by the reference data, as
well as by the baseline PINN model. This information is represented in the Figures of 3.27, where
the three physical boundary conditions are represented on the cylinder surface. Specifically, these are
computed at an uniformly distributed grid of N,.; = 100, where the reference data has been obtained
through linear interpolation and the baseline PINN algorithm has been evaluated directly.

On the one hand, Figure 3.27a depicts the mean tangential speed at the cylinder surface, which should
take null values for the no-slip condition to be fulfilled. Looking at the reference data in orange first,
it can be recognized that the constraint is satisfied along the forward semi-circumference, namely for
6 € [0°,90°] U [270°,0°]. On the contrary, the region affected by recirculation appears to present a
deficit tangential speed in 8 € [90°,180°] and an excess of the same in 6 € [180°,270°]. In the case of
the baseline PINN prediction in blue, a different picture is observed, with the first and third quadrants
containing an excess in angular speed, while the other two contain negative values.

In second place, the mean speed in the radial direction is pictured in Figure 3.27b, where positive values
reflect outward flow and negative values represent flow into the cylinder surface. In this instance, the
reference data offers a seemingly perfect match, with in/out flows not overcoming 0.002x U,. Moreover,
the baseline PINN predicts major inflows of up to 0.03 x U, at stagnation and slightly smaller outflows at
all four diagonals, depicting a symmetric pattern around y/D = 0. Nonetheless, it can be firmly stated
that the fulfillment of the no through-flow boundary condition is fulfilled by both versions to a greater
extent than the no-slip boundary condition, given that the deviations from zero are nearly and order of
magnitude smaller.

Finally, the no-fluctuations boundary condition loss, computed as the sum of the squares of all three
Reynolds Stress components is attached in Figure 3.27c, offering a disparate behavior between both
data sources. While the reference data presents a null loss value, which is exactly the accomplishment
of the boundary condition, the NN model predicts loss values of up to £,., fuc: = 0.002. Bearing in mind
that this value is computed as the square of the sum of all three RS components, it can be considered
a significant mis-prediction in absolute terms.

Additionally, prior to introducing the boundary condition loss, it is relevant to understand what the mag-
nitude of the loss components are, especially for the PINN baseline results. This is because loss
magnitudes which fall severely under the baseline total loss might require a non-unitary weighting to
affect the optimization process. Accordingly, Table 3.10 includes all three loss terms for both data
sources. Comparison of all three PINN-predicted loss values with the total loss for the same model,
L7 = 1.18 x 10~%, one can check that the no-through and no-fluctuations loss terms are of the same
order of magnitude and the no-slip loss is one order of magnitude larger. Therefore, it is expected that
an unweighted version of the boundary condition loss suffices to include the constraints in the training
process.

Table 3.10: Boundary condition loss components - reference data and PINN baseline.

Lno-slip ACno—through ACno—fluct

Reference 2.52 x 1073 2.15x 1077 5.63 x 1079
BSL PINN 6.28 x 1073 1.88 x 10~* 717 x 1074
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Figure 3.27: Physical boundary conditions on the cylinder surface - baseline PINN vs Reference.

Missing data close to the boundary

Once the main differences between the reference data and the PINN in the fulfillment of surface bound-
ary conditions have been pointed out, it is important to note that the motivation to propose the inclusion
of these loss terms becomes more obvious for experimental datasets. The reason is that, while CFD
simulations often include higher grid resolutions close to the solid boundaries to properly capture the
gradients imposed by the viscous nature of real flows, experimental datasets often have poorer qual-
ity or even missing data in regions adjacent to solid walls. This is because, during PIV experiments
involving high-power laser beams, primary and secondary reflections abound, often making data acqui-
sition close to solid boundaries extremely challenging. Additionally, simultaneous visibility access for
the laser and imaging device can add complexity to near-the-wall acquisition, especially in internal flow
applications or external flows in close proximity to the ground, such as various motorsport categories.

In accordance to the above, the present study focuses on studying to which extent enforcing physical
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behavior at the cylinder surface during the PINN training results in an increased ability to reconstruct
surface pressure, particularly when data is missing close to the solid wall. To achieve this, various
PINN models are trained on datasets where the measurement data closer than a progressively bigger
radius, the cropping radius, or 7.,.p, is removed. In particular, the range of cropping radii that have
been studied are shown in Equation 3.15.

Ferop = {0.55, 0.625, 0.75, 0.875, 1.0} (3.15)

For reference, the measurement locations available for the versions with 7.,.,, = {0.55, 0.75, 1.0} are
represented in Figure 3.28. This allows the reader to better understand the extent to which data is
missing away from the cylinder boundary and associate each cropping radius run with the reason
that could cause such a dataset. For example, the 7.,,, = 0.55 data could correspond to the effect of
reflections, losing data only at 7 < 0.1 x 7,;. On the other hand, for experimental set-ups meeting good
quality criteria, datasets such as 7,.,, = 0.75 and beyond could only be attained through accessibility
issues.

Measurement Points for different 7.,
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Figure 3.28: Locations where data is available during training as a function of the cropping radius.

It is relevant to state that, while measurement points are not available at any location closer than the
cropping radius, the original data points are kept as collocation points, thus allowing the PINN algorithm
to reconstruct the data in the cylinder proximity via the N-S equations. In a similar manner, the boundary
condition locations take the form of 100 uniformly distributed points on the cylinder surface. Later in
the section, an investigation on the effect of the collocation point generation strategy is presented, as
it would be required in any experimental dataset with data gaps close to the surface.

Results

The attention is brought first to the potential of reducing the impact of missing data close to the surface
by including all three physical constraints. As a result, two PINN models, one with the boundary condi-
tion loss and the other one without it, are trained on the dataset corresponding to each cropping radius.
In Figure 3.29a are shown the MSE values of C,, on the cylinder surface for each of these models, as
well as the PINN baseline case with no cropped data, as a black dash-dotted line.

From the graph, it can be said that both sets of models follow the trend of increasing pressure coefficient
error with respect to the reference data as the cropping radius increases, which is to be expected given
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the large sensitivity observed to the number of data points in previous studies. However, a consistently
better outcome is achieved when the boundary conditions are enforced, achieving average MSE¢,
reductions of ~ 80% across the range of radii. Further notice is given to the fact that, for the two
smallest cropping radii, adding surface information in the form of physical constraints achieves the
same accuracy level as the un-cropped PINN model.

Further detail on the sources of error for the larger radii can be found in Figure 3.30b, where the
surface C), distributions of both models corresponding to the 7.,,, = 0.875 are plotted alongside the
baseline PINN and the reference data. While the BC-OFF model incurs errors of AC,, ~ 0.5 around
stagnation and suction peaks, not achieving to capture the regions with the largest gradients. On
the contrary, enforcing the boundary conditions allows the optimization process to converge to the
appropriate solution in both regions, highlighting the power of adding surface information with data
gaps.
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Figure 3.29: Effect of including the boundary condition loss on surface pressure reconstruction as a function of the cropping
radius.

After reviewing the effect of including all boundary conditions on datasets with missing data, it is worth
investigating further into the mechanism through which the pressure accuracy is improved. To do so,
the boundary condition enforcement in broken down into its components, leading to models trained
with the loss term combinations listed below, specifically on the dataset with 7., = 0.875.

1. ['no—slip

2. Enafthrough

3. ﬁno—slip + Eno—through,

4. Enoffluctuations

5. £no—slip + Eno—through + Eno—fluctuations

In the first place, the boundary condition loss values for all three physical constraints are represented
for each of the models in Table 3.11, where the reference data and baseline PINN results are kept
for reference. Notably, including either of the no-slip and no-through boundary conditions causes both
conditions to be met to a similar extent, irrespective of which is enforced, achieving values of L,,,_ ip ~
6 x 107° and Lyo—through =~ 1 x 107°. However, these appear to be achieved at the expense of
Lro— fluctuations, Which is increased in about two orders of magnitude with respect to the baseline PINN.
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Additionally, employing both conditions simultaneously seems to enable the reduction of the no-slip and
no-through constraints further still, not impacting the fluctuations loss.

Besides, the sole imposition of L, fiuctuations allows its corresponding loss term minimization to
achieve a value of 7 x 106, again to the detriment of the un-constrained physical loss terms, which face
increments of two orders of magnitude. Finally, imposition of all loss terms appears to find a compro-
mise, the performance of which falls short by an order of magnitude with respect to the independently
enforced constraints, with the exception of the no through-flow boundary condition that is reduced to
»Cnofth'r‘ough =71x 1076-

Table 3.11: Boundary condition loss components - effect of BC loss type.

Model ﬁno—slip L:no—through ﬁno-fluctuations
Reference 2.5 x 1073 2.2x 1077 5.6 x 1079
PINN BSL 6.3 x 1073 1.9 x 1074 7.2x107%
Lro—stip 6.3 x107° 1.3 x 107° 2.6 x 1072
Loo—through 5.8 x 107° 1.2 x 107° 2.6 x 1072
Lro—siip + Lno—through 2.8 x 107° 2.4 x 1076 2.3 x 1072
Lyo— fluctuations 5.0 x 101 2.1 x 1072 7.1 %1076
Eno—slip + Eno—through + Lno—fluctuations 1.4 x 1074 7.0 x ]-076 2.9 x 1075

However, focusing on how this materializes into a reduction of the main key performance indicator
of interest, namely the surface C,, the results in Figure 3.30a are referenced. The bar plot shown
reflects the MSE of C,, at the cylinder surface when the different combinations of boundary condition
loss terms are enforced on the 7., = 0.875 dataset. Analyzing the results from left to right, it may
be argued that more complex physical constraints appear to aid in the minimization of the surface
pressure reconstruction error. Specifically, the model with no boundary conditions incurs the largest
error, with MSEc, =1 x 10~1. Nonetheless, the independent addition of the constraints on the mean
velocities offer a similar step in accuracy, with the simultaneous addition attaining half the error of the
model without boundary conditions. Similarly, preventing fluctuations aids to reduce error by another
half, bringing it to M SEc, = 2.27 x 10~2. Finally, optimizing for all three loss values yields the lowest
recorded reconstruction error, attaining an error only twice as large as that of the uncropped model.
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Figure 3.30: Effect of different boundary condition loss types - #¢rop = 0.875.
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Itis relevant to note, however, that MSE is not necessarily always a representative measure of accuracy
in the case of the C,, distribution, since a distribution with a crossover with the reference data will likely
present a smaller MSE than a different one with a smaller, yet constant offset. Accordingly, it is of
relevance to represent the pressure coefficient distributions by each of the models considered, which
are plotted in Figure 3.30b.

Observation of the C,, distributions and AC), plots allows to re-inforce the idea that the regions where
largest spatial gradients in the wall-normal direction exist are the most susceptible to incur reconstruc-
tion errors. Accordingly, these regions see the biggest reductions in local errors when surface data is
added in the form of physical constraints. Moreover, as reflected by the magenta arrows, there is a
seemingly consistent trend in all three regions (stagnation at # = 0° and suction peaks at § ~ +75°),
where the reconstruction error is inversely proportional to the amount of boundary conditions enforced.

These observations allow to conclude that, in principle, there is no specific boundary condition that
yields superior results and the minimum error is consistently found for models including the most amount
of information at the cylinder surface.

With the aim to comprehend the mechanism through which the additional surface data reduces the
MSEc¢, on the cylinder, the effect of including the different boundary conditions on L.+, and LppE
in the near-the-wall regions is studied. To do so, the graphs in Figure 3.31 are included, where the
evolution of the data and PDE loss components as a function of the radial distance to the cylinder are
represented for various models trained on the 7., = 0.875 dataset. To yield each point, both loss
terms are evaluated at thirty-six evenly distributed locations along ¢ € [0°, 180°], repeating the process
for each of the radial locations in the plot.

Placing the focus of attention on the behavior of the data loss in Figure 3.31a, it is witnessed that all
models converge to a similar reconstruction error level of £44:0 =~ 3 x 10~* away from the wall, which
coincides with the un-cropped model accuracy. However, within the small variability among the models,
it seems that the bigger the amount of constraints on the surface, the larger the data loss at 7 = 1.0.
Hypothetically, this could be related to the NN using a portion of its learning capability to store the
surface data, limiting the extent to which error can be minimized in other regions. Moving closer to
the wall, there appears to be a crossover at ¥ = 0.7, as the models with larger complexity achieve
progressively better results.

Within the inflation layer, namely 7 < 0.56 two distinct trends are identified. On the one hand, the model
with no surface information (No BCs) keeps an increasing error trend, similarly as in the outer regions,
leading to data losses as large as L4.:. ~ 4 x 10~'. An analogous behavior is found with the model
where the null RS components are enforced on the surface. This is rather expected since the Reynolds
Stresses represent a smaller portion of the local loss than the mean velocity components, the local error
of which is largely worsened, as reflected in Table 3.11. On the contrary, the other models with boundary
conditions enforced see a step reduction in the data loss, achieving even superior performance than
the baseline model for the All BCs run.

Moving on to the radial distribution of the PDE Loss, two major observations can be made. Firstly,
adding constraints on the data variables causes the PDE loss to grow. This applies not only for con-
straints in the form of surface data, but also for measurement data, as reflected by the behavior of
the un-cropped model. Secondly, the models which performed the best see a sudden spike in the
N-S loss near the wall. This suggests that the main mechanism through which the surface boundary
conditions improve the reconstruction ability of the PINN is mostly tied to properly matching the vari-
ables themselves, rather than providing a constraint for the PDE loss that allows to properly reconstruct
information from the cropping boundary.

As a final aspect of interest, different strategies are assessed with respect to the generation of the
collocation points between the solid boundary and the cropping radius. In particular, two main topics
of interest are identified that concern the sampling strategy. On the one hand, it is worth studying
whether the progressive propagation of information towards the solid boundary is more effective than
simply optimizing for all the collocation points at once. Secondly, studying whether the addition of a
pseudo-inflation layer that mimics the grids utilized in wall-resolved CFD simulations has any effect on
the reconstruction error.
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Figure 3.31: Radial distribution of loss terms with different BC Loss types - 7crop = 0.875.

Accordingly, the testing strategies reflected in the diagram of Figure 3.32 are compared. Starting from
the top, a PINN model trained on the cropped data is used as a starting point for both approaches. Fo-
cusing on the progressive front method to the left first, the intention is to generate collocations points in
a progressive manner from the cropping radius towards the solid surface, producing a new ring only af-
ter optimizing the loss for the newest one. Accordingly an initial ring with IV, = 200 equally distributed
points is generated at A7 = —0.1 from the cropping radius. Subsequently, iterations are carried out to
minimize the Navier-Stokes loss at the given ring until a threshold loss value of LppE ring < 5 X 107°
is attained. This loop is repeated until the cylinder surface is reached, always keeping all previous ring
points in the optimization batch. It can be deduced that, since this study is carried out for 7., = 0.75,
the total number of points for the progressive front run is equal to Nps +0tar = 5000, as per Equation

3.16.
Npts,tot = Npts :
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Ring parameters
Ar =0.01
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Figure 3.32: Diagram reflecting the procedure to assess the effect of different collocation point generation strategies.
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The alternative collocation point generation mechanism, namely the full front approach, relies on ran-
dom sampling in the domain given by 0.5 < # < 0.75 and 0 < § < 2r to obtain N,:s = 5000 locations
where the PDE loss is evaluated. Note that, opposed to the progressive algorithm, the entire batch is
used at each step, provided that the sampling takes place prior to the training process.

Moreover, the number of V,,;s; = 5000 points is selected for both strategies because this is approximately
the number of points removed from the original dataset when cropping at 7., = 0.75, thus removing
the (small) effect of having additional collocation points.

In addition to the above, the effect of adding a pseudo-inflation layer is probed in the full-front version,
adding a back-to back comparison for this effect. Instead of attempting to match the inflation mesh
generation of the CFD simulation, an even bigger refinement level is imposed with a similar thickness
to create a bigger difference with respect to the model with no inflation layer. This results in a radial
grid generation with a first layer height of §; = 0.005 and N = 15 layers with a radial growth rate of
GR = 1.1. Note that, in angular terms, these nodes are aligned with the cylinder surface grid formed
by N,:s = 100 evenly spaced points.
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Figure 3.33: Comparison of collocation points for different bridging strategies.

To provide a visual reference of the different strategies, Figure 3.33 is enclosed, containing all three
versions for a cropping radius of 7., = 1.0. On the top left, the full-front method is reflected in Fig-
ure 3.33a, where the blue points are the original CFD locations, which are used to compute the data
and PDE losses. Besides, the locations in red denote the randomly sampled positions that serve as
collocation points to bridge the gap between the data and the solid boundaries. Similarly, Figure 3.33b
depicts the analogous distribution of collocation locations, however adding the inflation mesh, which
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visibly includes a significant larger local point density. Note that in this version, the randomly sampled
points do not extend to the solid boundary but rather to the outer edge of the inflation mesh. Finally, the
progressive front alternative is represented in Figure 3.33, where the newly generated ring is reflected
in red.

To assess the effect of the different strategies on the reconstruction accuracy, the mean radial distri-
bution of the two main loss components, as well as that of the pressure MSE are included in Figure
3.34 for the 7..,, = 0.75 case. Note that, additionally to the three methods, the baseline model is
represented, as well as both full-front versions including all three boundary conditions at the cylinder
wall.

Comparing first the point generation mechanisms with no boundary conditions, all three strategies
appear to provide similar error levels across the range of radii studied, as per Figure 3.34a, signaling
no major differences in the ability to propagate information from the data boundary towards the surface.
Slight differences, however, appear in Figure 3.34b, where the progressive ring generation approach
incurs a steadily increasing PDE loss up to £ppr = 10. Comparing both full-front models, they exhibit
equal behavior outside the inflation boundary, at which the model featuring the inflation points faces a
local detriment of the N-S loss minimization, converging to a similar value of Lppr = 4 x 107° at the
cylinder surface. Finally, these behaviors translate into a marginally better performance of the full-front
mechanism when it comes to pressure reconstruction accuracy. Moreover, no significant advantages
appear to be achieved by the addition of the inflation layer mesh.
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Figure 3.34: Effect of sample point generation strategy on the radial distribution of KPls.
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Finally, looking at Figure 3.34a and bearing in mind that all models stem from a parent PINN that
has been pre-trained on the data beyond 7., it is interesting to see that all models tend to the same
mean data loss beyond the cropping location, except those where the boundary conditions are enforced.
Since these offer better performance at the surface at the expense of increased errors away from the
wall, it could be argued that these should be enforced solely where surface data is the main target, rather
than blindly applying them. Furthermore, these results further reinforce the idea that imposing the BCs
on the wall acts to reduce pressure reconstruction errors via a better match of the other variables, rather
than through the minimization of the PDE loss.

Overall, the analysis conducted on the use of the no-slip, no through-flow and no-fluctuations boundary
conditions at the surface has lead to insightful findings. On the one hand, it appears that, whenever
data is missing close to the wall, their inclusion during training consistently aids in the reduction of
the pressure reconstruction error at the solid boundary. Additionally, the no-slip and no through-flow
conditions appear to have similar effects, as the optimization of one tends to encompass the other one.
However, it is found that the simultaneous use of the three proposed loss terms consistently brings
the most accurate results. Finally, it is concluded that the strategy to generate the collocation points
that allow to reconstruct data gaps close to the surface is, at least, second to the inclusion of physical
constraints at the surface. Nonetheless, marginal gains appear to be found by mimicking the inflation
layer of CFD simulations and optimizing for all collocation points from the start, rather than progressively
adding them towards the surface.

3.4. Observations from Chapter 3

Prior to assessing the performance of PINNs on experimental datasets, it is of interest to highlight some
of the key observations in this Chapter.

First and foremost, it has been demonstrated that the selected framework is able to successfully recon-
struct global and surface pressure values with accuracies of up to XX% and XX% respectively, with the
baseline settings.

Moreover, study of the effect of various parameters on its ability to approximate the flow solution has
revealed key insights on the different sensitivities:

* On the one hand, the NN architecture plays a key role on the ability to optimize the model. Since
too simple networks do not appear to have sufficient learning power, it is recommended that
N > 20 or L > 4. Nonetheless, as too complex architectures do not appear to provide further
ability to learn the data, it is recommended that the total number of trainable parameters is kept
to around one half of the total number of data points.

» Secondly, it appears that the non-dimensionalization of flow variables with physical properties
bound to the problem allows to balance the contributions from the PDE and data losses naturally,
avoiding the need to use weighting schemes for the main loss components.

» Besides, data resolution in the form of the number of labeled data points appears to be one of
the most influential parameters, equally affecting the reconstruction accuracy of the known and
hidden variables without incurring additional computational overhead. On the contrary, addition
of collocation points via random sampling appears to be of, at least, second order of magnitude
in terms of results accuracy, adding an approximate 0.00132 s per iteration every 1000 points (for
the given computational server and NN shape).

+ Finally, it has been demonstrated that the addition of physical boundary conditions at the solid
surface in the form of the no-slip, no-through flow and no-fluctuations constraints allows to con-
sistently reduce the surface pressure reconstruction error when data gaps exist around the body
of interest. In this regard, it has been proven that neither the addition of a pseudo-inflation layer
nor the technique to add collocation points from the data boundary to the solid object appear to
play a relevant role.



PINNSs performance on experimental
results

After studying the ability of the selected PINN framework to reconstruct the time-averaged pressure
field of the flow around a two-dimensional cylinder from Computational Fluid Dynamics simulation data,
the present Chapter presents an extension of the problem to experimental data. Specifically, and as
elaborated in Chapter 1, the intent is to compare the performance of PINNs with that of state of the
art pressure reconstruction techniques, such as the Poisson solver, when compared to conventional
experimental direct pressure measurement techniques, like pressure taps. To this end, the experimen-
tal datasets of the flow around a smooth cylinder and one fitted with zig-zag strips to trigger turbulent
transition are used as test cases.

Accordingly, this Chapter starts with a brief introduction of the procedure that has been followed to
produce the experimental data via Particle Image Velocimetry, as well as the Poisson solver method
used. Subsequently, following an analogous structure to Chapter 3, the performance of the baseline
PINN framework is analyzed and compared with the various sources of pressure data for both the
smooth and the zig-zag strips cases. Finally, the sensitivities of results to various NN and PINN-related
parameters are studied, placing the focus on how these may differ from the CFD observations.

4.1. Dataset Generation

In this section, the details of the experimental set-up to obtain both the smooth and zig-zag strips
datasets are exposed. Firstly, a brief description of the wind-tunnel facilities is given to provide context
and some of the constraints that limit the testing envelope, resultingi in the cylinder geometry selection.
Following, the set of characteristics of the PIV set-up are described and justified according to the target
dataset, leading to a brief exposure of the results obtained. Furthermore, the set-up details of the
pressure tapping measurement and the Poisson solver are exposed, closing the loop on the data-
gathering process with a deeper analysis of the two flow-fields.

4.1.1. Wind-Tunnel facility and cylinder geometry
M Wind-Tunnel

One of the first considerations when planning experimental aerodynamic tests are the characteristics of
the wind-tunnel to be used. In this thesis, the M Wind-Tunnel facility in the Low-Speed Lab of TU Delft
is used. This facility, first constructed in 1953 [62], is an atmospheric wind tunnel that can operate in
open-loop mode, providing a maximum test speed of 35 m/s [19]. In the present text, this is used with
a closed test section of Sy = 400 x 400 mm?, with reported turbulence intensity levels of T; < 0.5%
within the operating range.

79
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Figure 4.1: M Wind-Tunnel facility.

In Figure 4.1a, an image of the M-tunnel in open-loop and open test section configuration is enclosed,
highlighting some of the most representative parts of the tunnel, such as the air intake, the settling
chamber or the contraction section. Further insight is given by the diagram in Figure 4.1b, which is not
built to scale but rather to enhance the reader’s understanding. In the latter, key internal components
are highlighted, such as the air filter to limit internal debris accumulation, the fan drive, turning vanes
or the components of the settling chamber, which contribute to the flow quality.

Cylinder geometry

Given the availability of a suitable test section from other tests in the University, a cylinder diameter of
D.,; = 50mm is selected, providing a blockage ratio of 12.5% for the given test section. Accordingly,
assuming standard conditions for air properties, the range of Reynolds Numbers that can be tested is
of Re € [1.7 x 10%,1.2 x 10°] for testing speeds in the range U, € [5, 35] m/s. Taking into consideration
the Cy vs. Re plot provided in Figure 3.1 of Chapter 3, it is possible to deduce that the test range is
thus constrained to the drag plateau, characterized by the turbulent wake regime, where the boundary
layer is laminar at separation and transition takes place in the free shear layer.

Provided that a similar flow regime is expected irrespective of the selected test speed, an intermediate
value of U,, = 20m/s is chosen, ensuring sufficiently high static pressure difference values while not
pushing the envelope of the wind tunnel operating regime. Using the air properties as measured during
the experimental tests, the nominal test Reynolds number is of Re = 6.7 x 10%, as shown in Equation
4.1.

k}g m
P Us - Deyi 1.18 =% -20 2 . 0.05m
= = m 3 = 67430 4.1
I 1.75 x 10~ Pa - s 1)

Re

Furthermore, since a different flow regime can be attained easily and in a cost-effective manner, the
decision is made to conduct tests with zig-zag strips. Such aerodynamic devices are typically used
for drag reduction purposes by tripping the boundary layer of the surface they are glued on. This is
achieved locally via the introduction of physical disturbances above the critical roughness. Accordingly,
their thickness is typically a compromise between a sufficiently high value to ensure transition and as
thin as possible to limit their local pressure drag [74].

In this case, the decision is made to fit them at § = +45°, as literature suggests it provides the clearest
signs of transition for the Reynolds number of this test. This is shown in Figure 4.2, where the effect of
the strips azimuthal location on cylinder drag coefficient is reflected for zig-zag strips with t/D.,; = 0.01.
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Figure 4.2: Effect of zig-zag strips azimuthal location on C,;- adapted from [74].

Specifically, the zig-zag strips used during the present tests have a thickness of t = 0.6 mm and a width
of w = 4 mm, resulting in a relative thickness of 1.2 % of the cylinder diameter. These can be seen in
white in Figure 4.3b, where a portion of the cylinder has been painted in black Musou paint to limit laser
reflections during PIV tests. Additionally, an image of the smooth cylinder configuration is attached in
Figure 4.3a, providing a close-up of the static pressure ports around the circumference at the middle
of the cylinder.

(a) Smooth cylinder - pressure tap close-up. (b) Cylinder with zig-zag strips at 0 = +45°.

Figure 4.3: Test cylinder model.



4.1. Dataset Generation 82

4.1.2. Experiment set-up and data acquisition

Test set-up

Analogously to the CFD simulations, the intent is to obtain the dataset for the two-dimensional flow
around a cylinder. For this purpose, the test set-up reflected in Figure 4.4 is used.

On the one hand, the cylinder is placed such that it traverses the test section vertically. Accordingly,
in order to capture the two-dimensional flow around it, the laser sheet is placed normal to the cylinder
axis, illuminating the tracer particles contained in a planar section of the cylinder, as depicted in the
CAD diagram in Figure 4.4b. In particular, the EverGreen EVG00145 dual pulse laser in Figure 4.4a
is used, which operates with 532 nm wavelength light and provides firing frequencies of up to 15 Hz.
It is noted that, since the cylinder is painted to avoid laser reflections, the illuminated area is limited
to the top half of the cylinder. Nonetheless, assuming negligible non-uniformities in the inflow, this is
sufficient as the time-averaged flow-field is symmetric around the y = 0 line.

In accordance, the 16 available pressure taps in the cylinder are arranged so as to maximize the
information gathered in the same semi-circumference as the PIV acquisition. The layout can be partially
observed in Figure 4.3a, and is such that 13 taps are equally spaced ranging from stagnation (6 = 0°)
to the back of the cylinder (¢ = 180°) at steps of A9 = 5°. The remaining three taps are placed such
that the cylinder can be properly aligned with the inflow via comparison with their symmetric counterpart
taps. As a result, the last three orifices are located at § = {185°,270°, 355°} from stagnation.

PIV Camera

RN

Camera

< Cylinder

(a) Test set-up at the M-tunnel. (b) CAD diagram of the test set-up.

Figure 4.4: Set-up for experimental tests.

Additionally, given that the flow pattern is assumed to be purely two-dimensional, a stereoscopic PIV set-
up is not required, hence making use of a single LaVision Imager sCMOS camera placed in alignment
with the cylinder axis, as displayed on either of Figures 4.4a and 4.4b. Finally, the PIV test set-up is
completed with the SAFEX fog generator, placed adjacent to the inlet and below the test section to
ensure smoke particles are diffused inside the room and provide a homogeneous seeding density at
the test area.

On the other hand, the pressure acquisition set-up is simpler, as the pressure taps are directly con-
nected to a 16-port 600 Pa gauge pressure scanner, which transfers the time signals to the control
room computer at a frequency of 2 kHz.
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Note that, with the exception of the fog generator, all controls and data acquisition processes are carried
out from the the data acquisition and control computers, the former of which communicates with the
camera and laser via a control unit that synchronizes the firings during the tests.

Characteristics of PIV set-up

In order to define optimal settings for PIV data acquisition, an initial target acquisition of three cylinder
diameters in X is set, resulting in a 150 x 127 mm field of view, provided the 2560 x 2160 px camera
resolution. Additionally, taking into account the pixel pitch of 6.5 um, an image magnification factor
of M = 0.11 is obtained, yielding an approximate particle image size of d, = 1.1 x 10~ um before
considering light diffraction effects.

Furthermore, a camera lens with f = 105mm focal length is selected to provide a suitable object
distance of d,;; = 1030 mm between the camera and the acquisition plane. Besides, targeting an
image particle of d, ~ 2 pz, an optimal f, is found at 16 in combination with a high-power laser setting,
allowing to get a depth of field as large as 6z ~ 67 mm that can accommodate tests with an inclined
laser sheet.

Finally, to achieve target pixel displacements of approximately A,, ~ 8 mm that meet the one-quarter
rule of thumb for a nominal free-stream speed of U,, = 20m/s , a time-step of At = 23 us between
image pairs is used across the tests.

It is noted, however, that in order to achieve optimal data that aligns with the main thesis intent of
reconstructing surface pressure data, the camera is slightly offset laterally and two different arrange-
ments corresponding to up and downstream displacements of the camera are used. This allows to
minimize the loss of data close to the cylinder surface at the acquisition section due to the side effects
of perspective. An instance of the output data is included in Figure 4.5, where the up and downstream
frames after a minimum subtraction filter operation are shown in Figures 4.5a and 4.5b, respectively.
These frames are processed separately and their respective time-averaged datasets are merged.
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(a) Upstream. (b) Downstream.

Figure 4.5: Camera configurations used during the tests.

During the tests, N = 2000 image pairs are recorded for both the smooth and zig-zag strip cases, lead-
ing to an approximate image acquisition time of 7' = 130 s at an acquisition frequency of f = 15Hz.
Subsequently, these images are processed using a multi-pass algorithm with final circular correlation
windows of 16 x 16 pz and a 75% overlap. Additionally, an universal outlier detector and vector inter-
polation post-processing techniques are used to minimize data gaps across the captured domain.

Finally, the time-averaging process is carried out, providing the mean = and y velocity fields, as well as
all three Reynolds stress components in two dimensions. Besides, considering the amount of samples
taken and the range of the velocity fluctuations, the level of uncertainty in the mean velocity field can be
computed via Equation 4.2, assuming independent and identically distributed samples. As observed,
using a 3-sigma criterion (k = 3), a relative uncertainty of e = 0.023 - Ucc is estimated.

12 2
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To close this section, two instances of the results obtained are displayed in Figure 4.6, where the
mean dimensionless x velocity (Fig. 4.6a) and the shear Reynolds Stress component (Fig. 4.6b) are
displayed for the smooth cylinder case.
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Figure 4.6: Time-averaged fields for the smooth cylinder with N = 2000 samples.

Poisson Solver

With the aim to provide a state-of-the-art PIV-based pressure reconstruction solution that provides a
benchmark to assess PINN performance, the Poisson Solver built in DaVis 11.0 is used. This solver,
based on the principles described in [53], reconstructs the time-averaged pressure field via the reso-
lution of the Poisson pressure equation in the discrete mesh, taking Neumann boundary conditions at
the outer edges of the domain.

In addition, in this case a Dirichlet boundary condition for pressure is set to be calculated via the
Bernoulli equation of total pressure conservation. Accordingly, the selected regions for the up and
downstream datasets comprise a region of S = 20 x 45 mm? outside the main wake and shear layer,
where the inviscid flow assumption holds. In fact, Figure 4.7 contains an instance of the region where
the boundary condition is set for pressure reconstruction in the downstream dataset. As observed, this
is placed away from the cylinder wall and upstream of any shear layer, hence aiming for a region where
viscous effects are kept to a minimum.

604 27.5
. 25.0
225 0.96
20.0 150, Mean Pressure Coefficient Around Cylinder 0.72
17.5
T . 1.25 0.48
g 150 =
£ = 1.00 0.24
> 12.5
10.0 1073 0.00 |5
75 0.50 ~0.24
50 0.25 048
o 0.00 '
-0.72
0.0
-0.96
x [mm]
(a) Contours of velocity magnitude - region for Dirichlet condition in the (b) Poisson-based pressure coefficient field around the smooth
downstream dataset. cylinder.

Figure 4.7: Settings and outputs of the Poisson solver.

Finally, an example of the Poisson-based reconstructed pressure field is displayed in Figure 4.7b. Ob-
serving the values obtained, it can be said that the pressure field looks sensible from a theoretical
standpoint, provided that a C}, = 1.0 is attained at stagnation and the sudden change in C, right after
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the suction peak, indicating separation with a static pressure coefficient value close to zero in the re-
circulation region at the back of the cylinder. However, the error level in the Poisson-based pressure
reconstruction will be covered further in-depth in the following chapters, taking as a reference direct
pressure measurements and analytical solutions.

Static pressure measurement

As a closing remark to the present subsection, the specifics of the direct static pressure measure-
ments are briefly exposed. As mentioned in §4.1.2, 16 orifices are arranged throughout the spanwise
cylinder symmetry plane, where pressure is measured. Internally, these orifices are assembled with
flush-mounted pipes at a 90° angle, which have an internal diameter of 0.5mm. In turn, soft tubes
with an approximate length of [ ~ 1.2 m connect the pressure taps directly to the differential pressure
scanner, which has its reference taps open to the test room.

For simplicity, the measurement process is kept to time-averaged pressures, measured at a frequency
of 2kHz during T' = 120 s, ensuring no additional time is needed with respect to the image acquisition.
This results in time-averaged pressure values computed from N = f x T = 2000 Hz x 120 s = 2.4 x 10°
samples for each of the test cases. Note that, even if pressure measurements are taken simultaneously
to the up and downstream image acquisition tests, all values are drawn from the upstream case for
simplicity. Finally, since the zig-zag strips partially or totally cover the pressure taps at 6 = 45°, its
values are not relevant in the cases with zig-zag tape on the model.

4.1.3. Flow field

Prior to analyzing the results provided by the baseline PINN algorithm in terms of off-body and surface
pressure reconstruction, as well as in overall terms, it is of interest to provide a brief description of the
flow field as obtained during the experiments for both cylinder configurations.

In the first place, contours of mean dimensionless velocity magnitude are displayed for the smooth
cylinder and zig-zag strips cases in Figures 4.8a and 4.8b respectively. Note that, instead of the nominal
freestream speed, a corrected value of U,, = 21.3m/s is used for normalization, thus accounting
for solid and wake blockage in the closed section arrangement. Furthermore, attending to the major
differences between the two cases, a delta in maximum velocity magnitude of A||U|| ~ 0.3 [—] can be
located around both suction peaks, which are slightly offset between both cases. This appears to be a
consequence of a later flow separation in the case with zig-zag strips fitted, where the detachment point
seems to be past the cylinder apex, contrary to the smooth cylinder case. Beyond the separation point,
both wakes evolve differently likely due not only to the difference in flow departure angle at separation
but also because of the variation in the energy contained in the integral turbulent scales between both
cases. Further downstream, this results in a wider wake in the smooth cylinder case, where the total
height of the wake appears to be ~ 0.12 diameters taller at the /D = 0.5 station.
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Figure 4.8: Contours of mean dimensionless velocity magnitude - PIV data.

In terms of data quality, several spurious data points can be located close to the cylinder surface in
either cases, these likely deriving from local laser reflections and concentrating especially around the
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stagnation point.

Further supporting evidence for the change in flow topology between the smooth and zig-zag strips
cases is provided in the pressure coefficient plot of Figure 4.9, where the represented data is ob-
tained via the static pressure taps on the cylinder surface. As noted, both distributions are matched
around stagnation and up to # = 30°. Beyond this angle, the geometry with zig-zag strips displays a
larger favorable pressure gradient, to reach a larger suction peak in magnitude, with an approximate
ACp min =~ 0.62, as highlighted in black. The whole picture appears to be dominated by the delay in flow
separation of Af,., ~ 15°, which increases the effective curvature of the flow in the near-wall region,
thus causing the commented delta in suction peak magnitude. Note that even if both separation points
are identified by the inflection points highlighted in green, the lack of spatial resolution means these
are only approximate values.
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Figure 4.9: Comparison of C), distributions for smooth cylinder and with zig-zag strips @45° - pressure tap data.

Finally, both flow streamline patterns are displayed in Figures 4.10a and 4.10b. Building on the above
discussion, one of the central differences lies in the streamline curvature in the 6 ~ 60° — 90° region.
As a result, the effective shape of the cylinder changes between cases, particularly in terms of frontal
area and local loads, thus impacting the drag coefficient. In accordance, both models appear to differ
in the re-circulation region, where a lack of symmetry can be spotted in the case of the cylinder fitted
with zig-zag strips.

Mean flow streamlines - zigzag

1.51—

(a) Smooth cylinder. (b) Cylinder with zig-zag strips.

Figure 4.10: Flow streamlines from PIV data.

Overall, even if both problems are extremely similar in nature, key differences arise between both
flow patterns. Specifically, all observations point towards an adequate effect introduced by the zig-zag
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strips, as they seem to promote earlier boundary layer transition, effectively delaying separation and
thus changing the flow field and local loads on the cylinder surface. Accordingly, it is concluded that
hints on the ability of PINNs to reconstruct surface pressure in unequal cases can be provided.

4.2. PINNs vs Poisson Solver (state of the art) - baseline compari-
son

Once a base idea of the flow field that describes both cases has been provided, an analysis of the base-
line PINN performance is given for both flow fields. In order to assess the accuracy of the PINN models,
reference pressure values from pressure tap measurements on the surface are used. Besides, an in-
depth comparison to the pressure field provided by the Poisson solver is included, this representing
the current state-of-the-art pressure reconstruction technique.

4.2.1. Numerical Results

Following an analogous structure to our analysis in Chapter 3, an overview of the key performance
indicators are given for both converged models.

Thus, in the first place, Figure 4.11 is referenced, which shows the evolution of the two main loss
components, as well as that of the total loss, for both the smooth (Fig. 4.11a) and zig-zag strips (Fig.
4.11b) cases. As observed, both plots display similar learning dynamics, with hints of an excess learning
rate in the initial iterations leading to a noisy response up to epoch ~ 600. In terms of absolute values,
it appears that the smooth cylinder case is able to find a lower optimum, with signs of optimization
persisting even at it = 20000, contrary to the premature stop in the zig-zag strips case due to no
optimization for over 500 epochs.
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Figure 4.11: Evolution of main loss components during training.

In addition, Table 4.1 includes the loss values for both models after convergence. Visibly, the delta
when evaluating the loss at the full batch is unequal for both models, with the zig-zag model incurring
twice the PDE loss, with Lppr = 4.2 x 1072, which represents at least one order of magnitude less
than the data loss for either case. Accordingly, the total loss is only marginally higher than the data loss,
resulting in converged values of £;,; = 6.7 x 107* and L;,; = 9.1 x 10~* for the zig-zag and smooth
cases respectively.

Furthermore, it is of interest to observe what the distribution of errors with respect to the reference
data is among the different variables. These values are included in Tables 4.2 and 4.3, which feature
the MSE for each of the labeled variables, as well as the surface pressure MSE when compared to
the pressure tap data. Note that, in addition to the PINN results, the surface C, reconstruction errors
incurred by the Poisson solver are attached too.
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Table 4.1: Loss components for PINN baseline - smooth and zig-zag strips cases.

Model Lotal Lpata LppE Lprior Ly BC
Smooth  9.08 x 10~* 8.87 x 1074 2.11 x 107° 5.83 x 1078 1.25 x 1078
Zig-zag 6.71 x 1074 6.29 x 1074 4.16 x 107° 6.28 x 1078 1.25 x 1078

As may be witnessed, both cases show different responses, particularly in the x-velocity error level.
While this is kept to a similar value to the y-velocity MSE in the zig-zag strips case, with M SE- ~
MSE= = 2.9 x 197%, an unbalanced response is seen in the smooth cylinder case, with M SE= =
7.1 x 10~%. While this is inconclusive proof, the disparate response across cases possibly reflects a
mismatch between the optimal solutions in terms of PDE and data losses.

Table 4.2: Mean squared error per predicted variable - flow around smooth cylinder.

Source @ D w'u/ u'v’ v'v! D
PINN 713 x 1074 1.39 x 10~ 1.24 x 10~° 2.05 x 10~5 2.87 x 106 4.63 x 1073
Poisson — - — — — 4.67 x 1073

Table 4.3: Mean squared error per predicted variable- cylinder with zig-zag strips.

Source @ ? wu’ w'v’ v’ P
PINN 293x107% 290x107* 168x107° 203x107° 927x107% 3.54x1073
Poisson — - — — — 4.50 x 1073

In addition to the above, certain insight is already given in the last column on the comparative assess-
ment of both pressure reconstruction algorithms, namely PINN and the Poisson solver, when compared
to pressure tap data on the surface. Interestingly, both methods show comparable results in the smooth
case, with approximately M SE- ~ 4.6 x 10~3. On the other hand, a —25% reduction in error is seen
for the PINN prediction with respect to the Poisson solver in the case with zig-zag strips fitted. As a
closing note, it is possible to realize that the values of surface MSE are at least an order of magnitude
larger than the rest. Presumabily, this is not only due to the fact that pressure is the hidden state, but
also due to a larger concentration of gradients close to the cylinder walls posing a bigger challenge in
terms of reconstruction accuracy, as p is only evaluated at the surface.

Table 4.4: PDE residuals at convergence.

Model R continuity R x-momentum Ry-momentum
Smooth 1.15 x 107° 5.87 x 1076 3.72 x 1076
Zig-zag strips  2.88 x 1075 7.22 x 1076 5.61 x 1076

Finally, the values of the residuals at convergence are enclosed in Table 4.4. While these do not appear
to offer additional information other than the previous observation on the larger Lppg in the zig-zag
strips case, it can now be stated that the increment in loss does not appear to be biased towards any
of the three residuals.

4.2.2. Spatial distribution of errors

Moving on to the distribution of reconstruction errors in space, the pressure coefficient distributions
of both case studies are reflected in Figure 4.12, where the time-averaged pressure tap data and the
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Poisson-based solution are included. Moreover, the potential flow solution for the flow around a two-
dimensional cylinder is plotted too, providing a reference for what the inviscid and irrotational solution
would be.

Elaborating on the smooth case results of Figure 4.12a first, an initial deviation at & = 0° is incurred
by the Poisson solver, under-predicting C, at stagnation by AC, = 0.1. While this difference may
derive from data, it requires further investigation. Advancing to higher angles of up to = 90°, all three
sources of data predict milder favorable pressure gradients, reflecting non-negligible viscous effects
that deem the theoretical model useless for 6 > 30°.

In terms of overall suction peak prediction, while the PINN slightly over-predicts it by AC) in, = —0.07,
the Poisson solution again provides a milder peak value, incurring an error equal to AC), yin = +0.19.
Besides, distinct behaviors take place in the § € [75°,105°] range. First, the pressure taps follow a
regular pressure distribution with separation taking place possibly around 6 = 90° as per the inflection
point. In contrast, both the PINN and Poisson-reconstructed fields show signs of local suction at the
cylinder apogee. While this could be seen as a trace of a re-circulation bubble, this seems unlikely and
thus requires further investigation not only due to the lack of re-attachment, but also because the C, is
far from remaining constant, as it forms a local suction peak.
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Figure 4.12: Pressure coefficient distribution on the cylinder surface.

Shifting to the zig-zag strips case, a similar trace is found at ¢ = 0°, though now it affects both the
Poisson model, with AC;, = —0.16, and the PINN solution to a lesser extent, with AC}, = —0.08.
Focusing on the favorable pressure gradient region, there appears to be a mismatch between the
pressure tap data and the rest of information sources. Interestingly, both Poisson and PINN distributions
appear to follow the potential flow solution and match each other closely at the 6 = {45°,60°} stations.
It is noted that this area can be deemed of less reliability with regards to pressure tap information, as
the zig-zag strips are placed at around § = 45° and their 4 mm width causes them to extend over an
angle of Af ~ 10°. Accordingly, it can be assumed that the neighboring taps, namely the § = 30° and
6 = 60°, may be affected by local instances of back-pressuring or re-attachment at the near-wall scale.

Moreover, with regards to predicting the magnitude of the suction peak location, both algorithms fall
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within Afc, in < 15°, the Poisson solver representing the least accurate with an additional AC,, = 0.02.
Further downstream, the main delta between both reconstruction models appears to be a smoother
transition into separation of the PINN solution, as compared to the erratic C, response seen in Poisson.
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Figure 4.13: Contours of relative @ delta with respect to smooth cylinder PIV - M

With the aim to deepen the understanding on the modes of error for both models and identify what the
root causes are, a deeper investigation is presented. Firstly, Figure 4.13 contains the relative delta of
mean @ around the cylinder Note that this delta reflects the deviation of the PINN output with respect
to the reference data, as a fraction of the free-stream values, analogous to §3.2.2.

In the first place, one of the main deviations takes place close to stagnation, at {z,y} = {—0.5,0}, where
the reference data includes spots of low velocity that the PINN effectively smoothens out. Indeed, this
trace in the raw data appears to be an artifact of reflections close to the cylinder boundary, as per
the representation in Figure 4.14, where the evolution of @ and C, are shown along the stagnation
streamline. In this plot, it can be seen that the reference x-velocity distribution contains invalid data
in the range = € [—0.56, —0.5], hence reflecting the ability of PINNs to filter out noisy data. Besides,
coupling it with the pressure prediction, one can conclude that the error around stagnation observed
in the Poisson solution for the smooth cylinder is induced by the propagation of noise from the source
data into the hidden state.
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Figure 4.14: Comparison of @ and C), along stagnation streamline - smooth cylinder

Secondly, the region around the 6 € [90° — 100°] concentrates the biggest deviation between the PINN-
predicted and reference velocity fields, with local errors of |¢| > 10%. Similarly, inspection of the region
in the absolute reference data contours showcase a lack of smoothness at the start of the shear layer.
However, this region is particularly susceptible to time-averaging-induced error, as the local separation
makes it a strong point of unsteadiness, thus making it challenging to classify it as an un-physical
behavior.
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Since this particular region matches the small secondary suction peak observed in the surface pressure
distribution, further insight is searched via the analysis of the continuity and x-momentum residuals
attained by both models, which are displayed in Figures 4.15a and 4.15b respectively. Note that the
Poisson-based residuals are obtained by training the same NN architecture as the PINN, but removing
the PDE loss and learning the pressure field directly from the Poisson solution, as if it were another
term in the data loss function. Additionally, the colorbar limits for both models are different, with those
of the Poisson solver being one order of magnitude above.

From the fields shown, one can conclude that the near-wall region and the wake edge concentrate
the maijority of non-zero residuals in the Poisson case, while a virtually constant distribution is seen
for the PINN-optimized solution. Even if the cause for regions of larger x-momentum residuals can be
challenging to decipher, there are limited reasons as to why the conservation of mass should not hold
locally. While at stagnation the source of error might be due to the local noise highlighted earlier, the
region around the separation point and wake edge could indeed be areas where three-dimensional
effects abound due to the presence of larger coherent turbulent structures. Accordingly, one of the
strongest hypothesis to explain the local error seen by the PINN and Poisson solvers could be due to
the two-dimensional simplification of the flow-field.
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Figure 4.15: Contours of residuals for smooth cylinder - PIV with Poisson (left) and PINN(right).

Performing a similar analysis on the zig-zag strips case, it appears that the same trace in y-velocity
error shows around stagnation and beyond in Figure 4.16a, potentially deriving from reflections off the
cylinder surface. Yet again, this behavior is suppressed in the PINN output, showing consistency in
noise robustness across cases. Furthermore, despite the x-momentum residuals in Figure 4.16b are
of the same order of magnitude to the smooth case, their optimization does not seem to introduce
noticeable discrepancies between the Poisson and PINN-based pressure fields.
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Figure 4.16: Contours of zig-zag strips case.

Overall, it appears that, while both models have comparable responses, in agreement with the absolute
surface M SE5 values of Tables 4.2 and 4.3, their modes of failure are distinct. On the one hand,
Poisson consistently fails to achieve the correct stagnation pressure through propagation of errors
from the PIV data. Additionally, the fact that both models rely on two-dimensional formulations of
the conservation equations to reconstruct the pressure field appears to cause deviations from the tap
values. In general, it appears that the noise robustness of PINNs makes it more consistent across
cases.

4.3. PINNs Sensitivity studies

After studying how the baseline PINN algorithm performs and comparing to state of the art techniques
for pressure reconstruction from PIV data, the attention is shifted to understanding how various PINN
parameters affect its accuracy. To this end, an approach similar to that in Chapter 3 is carried out,
probing sensitivities to the NN shape, the number of data and collocation points, the relative weighting
between losses and the effect of enforcing physical boundary conditions at the surface, especially when
there are data gaps.

Nonetheless, an additional test is carried out to understand the sensitivity to incorporating pressure tap
data as a labeled variable during the NN training process, thus providing reference data for the hidden
state at the surface.

Finally, it is noted that all tests in the present section are carried out with a reduced data version of
the smooth cylinder dataset, where the domain has been cropped to include the rectangle enclosed
in {z/D,y/D} € [-1:1,-0.1: 1]. This is done to aid in training efficiency and overall RAM usage,
reducing the total amount of data and collocation points to N,,,..s =~ 100.000 while keeping the same
point density close to the surface.
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4.3.1. NN shape

Looking at the effect of changing the neural network architecture first, an initial test matrix was laid out to
replicate the same ratios of learnable parameters to data points as in the previous chapter, resulting in
the test models from #1 through #9. However, given the little sensitivity observed, which is discussed
next, additional points are added to fill the testing space, particularly towards thinner and shallower
networks.

Table 4.5: NN Shape/Size study

Test # L N Npara,ms
Level Value Level Value
1 -1 5 -1 40 8566
2 -1 5 1 80 33126
3 1 11 -1 40 18406
4 1 11 1 80 72006
5 0 8 0 60 29 826
6 14 13 0 60 48 126
7 —-1.4 3 0 60 11526
8 0 8 14 20 3546
9 0 8 —1.4 100 81706
10 - 2 - 50 5556
11 - 8 - 8 654
12 - 12 - 20 5226
13 - 4 - 20 1866
14 - 4 - 80 26 646
15 - 8 - 50 20856

Proceeding with the results of the test matrix, contours of data loss and pressure reconstruction error at
the surface are displayed in Figures 4.17a and 4.17b respectively. Interestingly, both key performance
indicators display substantially unequal sensitivities to the number of layers or neurons. Firstly, the
response of L;.:, is overall similar in trends to the observations made on CFD data, penalizing the
models where either the NV or L parameters take extreme values at the lower end.
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Figure 4.17: Contours of loss components with NN shape parameters.

Conversely, the MSEC—p contours show only a major trend, where deeper models incur the largest
pressure reconstruction errors at the surface. Presumabily, it could be that overly complex models that
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can accommodate spatial variations of higher order attempt to fine-tune data reconstruction, hence
reproducing part of the data noise. This hypothesis not only builds on the contours below, but also
on the observations made earlier with respect to the ratio of the data and PDE losses at convergence,
which reflect that £4,:, optimization is the main limiting factor to reduce the overall loss and thus any
additional degrees of freedom would be directed towards its minimization.

One of the key takeaways from the analogous study in §3.3.3 was the dependency of performance
indicators to the ratio of learnable parameters and total number of data points. Performing an analogous
analysis on the experimental dataset leads to the scatter plots in Figure 4.18a, where the evolution of
the data loss and the M SEC—p at the surface are shown with respect to that particular ratio. Assessing
the top figure first, one cannot really discern a particular trend, other than the two extreme models
provide the least ability to reconstruct the labeled variables, leading to values of L£g4:, = 1.1 x 1072 and
Laata = 8 x 1074 for the thinnest and shallowest models respectively. Alternatively, the rest of models
appear to provide comparable reconstruction errors, with £, € [5,6] x 1073.

On the other hand, the lower graph depicts the error when reconstructing the hidden state at the surface,
when compared with pressure tap data. Interestingly, the two simplest models are among the three most
accurate, achieving an error as low as MSEC—p = 5.7 x 103 with the 2 L, 50 N architecture. However,
it must be noticed that the level of dispersion due to the stochasticity in the training process is only half
an order of magnitude lower than the entire range of errors, given that | £,,4» — Emm|8L’60N =4x1073.
This signals that, if present, the dependencies are certainly more muted than in the CFD investigation,
where all KPIs showed the same consistent trend of reduced error with increased model complexity.
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Figure 4.18: Results of NN shape study.

As a final source of information to identify the underlying trend, Figure 4.18b includes the absolute and
delta ?p distributions on the surface for three different NN architectures. On this occasion, the main
remark concerns the 8 € {60°, 105°} region, where instances of data noise or unsteadiness have been
identified in the source data. Visibly, the shallow model with 2 L, in orange, follows a smoothed out
version of the distribution provided by the baseline architecture, in blue. This allows the simpler model
to achieve an overall better reconstruction, which would be accentuated should a finer spatial resolution
of taps be present, given the oscillations present in the baseline. Conversely, the deep model with 12 L
appears to worsen such oscillatory response, leading to local errors as large as AC,, = 0.045 at § = 90°.

While the trends are not as conclusive as those observed in CFD, a main hypothesis is built that justifies
the differences present in the experimental case. This theory assumes that more complex architectures,
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especially deeper ones, can accommodate a wider space of function reconstructions thanks to the
nesting of both non-linear and linear operators. Accordingly, deeper models potentially devote the
additional degrees of freedom to minimize the data loss further, which appears to be the limiting factor
for overall loss minimization in the baseline PINN model. As a result, deeper models appear to display
more oscillatory pressure distributions at the surface, incurring substantial reconstruction errors when
compared to the pressure tap data.

4.3.2. Data loss weighting

Building on the same discussion, an interesting test to carry out is to perturb the data loss weighting,
which can provide further insight into how its optimization affects the surface pressure reconstruction
accuracy. Supposedly, should a further minimization of the data loss lead to a similar failure mode as
the deep models, it would strengthen the hypothesis.

In order to produce this information, an analogous test as the one carried out in §3.3.2 is executed,
probing both a static weighting on L4,:, (« = {0.01,0.1,1,10,100,1000}) and a dynamic weighting
scheme, S on LppEk.

To begin with, Figure 4.19 depicts the evolution of the data, PDE and total losses (both weighted and
un-weighted) versus the data loss weighting. As witnessed, the PDE loss in red follows a direct and
virtually constant relation with «.. Just as was concluded in Chapter 3, this is to be expected, given that
its contribution to the total loss is inversely proportional to «.

Of bigger interest, however is the trend observed in the unweighted total loss, as well as in £;,4,. For
downscaling data weights, namely o < 1, the optimization remains stable around £g,;, ~ 103, while
biasing the weights towards the minimization of £;,;, worsens the actual, unweighted, loss function,
as seen for o > 10.
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Figure 4.19: Loss components as a function of data loss weighting.

A possible interpretation for this is that an optimum value for the data loss weight lies in the range
a € [1,10], where all relevant features in the data are learned. This would explain that, when o < 1,
a further PDE loss minimization does not violate those key features in the data. On the other hand,
the consequence of this optimum for o > 10 is that, even if the data loss is further optimized, the rate
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at which it decays, namely 9L 4:,/0c is smaller than the rate at which the PDE loss grows, namely
OLppr/Oa. The interpretation is that any efforts of the NN to learn the data better than the level for
a = 10 require for the N-S equations to be unfulfilled to a bigger extent in absolute terms.

Moving on to how these behaviors impact the accuracy of pressure reconstruction at the surface, Figure
4.20 shows the C, distributions for the o = {0.01,1,100} cases, as well as that of the dynamic loss
case. Similarly to the observations made in the CFD case, biasing the loss towards minimizing the
N-S equation residuals leads to an overly smooth pressure distribution, incurring errors as large as
AC, = —0.26 at stagnation or AC,, = +0.23 at the suction peak. On the contrary, a different behavior
to the study with CFD data is seen for the a = 100 case, which in this case reflects oscillations in the
6 € {75°,120°} region, leading to errors of AC,, = —0.36 when compared to pressure tap data. Finally,
the dynamic model offers similar results to those of the unitary weighting but reducing oscillations further
still, which aligns with the close loss values between both models, as per Figure 4.19.
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Figure 4.20: Surface C), distribution for various £,+, loss weights.

As a general outline, it appears that the results obtained in this study support the hypothesis discussed
earlier. Specifically, steps that result in optimizations of the data loss function beyond baseline levels
lead to increased surface pressure reconstruction errors. This is a by-product of the baseline PINN
framework capturing the relevant data features while achieving a balance between the data and N-S
losses such that a physical meaning is ensured. Hence, attempts to learn data further only result in
deviations from the local optimum achieved for the PDE loss minimization, which seems to provide the
most accurate pressure reconstruction at the surface.

4.3.3. Data and collocation points

Following with the investigation to understand whether the various aspects of PINNs equally affect per-
formance on CFD and experimental data, an analogous study is carried out to to the one in §3.3.3,
seeking to measure the effect of the number of measurement and collocation points on pressure re-
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construction. To avoid repetition, the reader is referenced to Table 3.9, where the tested ratios of both
types of points to the total number of data locations are displayed.

Initially, Figure 4.21 is referenced, where the derivatives of the MSE of each variable with respect to the
number of measurement and data points are represented as red and blue bars respectively. Note that,
analogously to the previous chapter, the derivatives to either type of points are computed by keeping
the opposite number of points constant, thus isolating the effect. Moreover, in this case, the reference
is set to be the PIV data, except for the pressure field, which is only measured at the pressure tap
locations to be compared with the corresponding data.

Attending to the various values, the derivatives of the x-velocity and pressure reconstruction errors
stand out when compared to those of the rest of variables, which are at least two orders of magnitude
smaller in absolute terms. While the dispersion of results is significantly larger in magnitude that the
averages themselves, there appear to be unequal responses for both variables. In the case of the x-
velocity, the addition of both types of points appears to result in an increase in the reconstruction error.
On the other hand, the accuracy of the surface pressure field appears to benefit from the addition of
collocation points, while raising the number of measurement points during training seems to worsen
the reconstruction.
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Figure 4.21: Mean variation of MSE for each variable with collocation and measurement points.

In order to better understand the latter trend, which is notably different from the observations in the
CFD case study, Figures 4.22a and 4.22b next respectively show the surface pressure distributions for
various numbers of measurement and of collocation points.

Visibly, the main region affected by both parameters is that contained in § € [60°,105°], where the
concentration of error with respect to the pressure tap data takes place too. In this regard, data suggests
that the model trained with all data points, namely N,,c.s/Naata = 1.0, produces the largest oscillations,
thus producing a positive derivative of the error with respect to the number of measurement points.
Alternatively, the opposite behavior is reflected in the plot to the right, where augmenting the quantity of
PDE evaluation points reduces the oscillations in the pressure distribution, and hence the reconstruction
error.
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Figure 4.22: Effect of measurement and collocation points on the surface pressure distribution.

Even though these observations significantly differ from the results obtained in §3.3.3, a possible justi-
fication can be given along the same lines as the previous sections. Potentially, these findings support
the idea that the main deviations observed with respect to the pressure tap data derive from local noise
in the PIV data close to the cylinder boundary. Accordingly, removing data points could reduce the
number of noisy data locations, hence lessening the constraint that forces the reproduction of this er-
roneous data. Similarly, increasing the density of collocation points helps to add local regularization in
areas affected by noise, thus improving the physical meaning of data.

Note, however, that this appears to hold only because the data point density is sufficiently high that
the removal of up to 90% of these labeled data points still contains sufficient information about the flow
to permit an accurate reconstruction of it. In fact, based on the observations in Chapter 3, a lower
limit would exist that removes key flow features, causing more harm through data scarcity than good
through noise reduction.

4.3.4. Boundary Condition Loss

Building on the sensitivity that was observed to the addition of physical laws on the surface when
operating the PINN on CFD data, an analogous test is carried out on the experimental dataset of the
smooth cylinder. Accordingly, the effect of enforcing the no-slip, no through-flow and no-fluctuations
boundary conditions on the cylinder surface are studied - both for the original dataset and with artificial
data gaps, removing the labeled data from the cylinder surface to the pre-specified cropping radius. Itis
worth mentioning that, given the lack of sensitivity observed in §3.3.4 to the collocation point generation
strategy, the original PIV data locations are kept to evaluate the PDE loss when the data is cropped.

Previous to the exposition of the results from the study, the extent to which the boundary conditions
are fulfilled in the reference data as well as by the baseline PINN is reflected in Figure 4.23. Note that
the values corresponding to the source data have been obtained via linear extrapolation normal to the
surface.

Starting from the top-left, Figure 4.23a depicts the slip velocity at the cylinder surface. It can be seen
that both the source data and the baseline PINN offer a similar distribution, having a virtually null slip
velocity from stagnation to 6 = 45° in the reference data and to § = 90° for the PINN. At 6 = 90°, the
slip velocity largely increases to around Uy ~ —1.2 - U, progressively recovering towards zero at the
back of the cylinder.

On the other hand, the lines in Figure 4.23b show the radial velocity at the cylinder boundary. In this
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case, the differences between both data sources are more evident, with the reference data reaching
values of up to U, = +0.4 - U right before separation and negative values in the recirculation region.
On the contrary, the PINN output results in less error with |U,.| < 0.2 - U, concentrating the error
around the separation point.

Finally, the no-fluctuations boundary condition in Figure 4.23c offers disparate responses, where the
label data presents a null value throughout the surface and the PIN N incurs errors of up to 2% of U2
right before the cylinder apogee.

While the effects of these deviations at a local level are obvious in terms of data loss, the extent to
which they affect the pressure distribution at the surface is less obvious, as this takes place through
the N-S equations. Nonetheless, the subsequent results shed more light on this topic.
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Figure 4.23: Physical boundary conditions on the cylinder surface - baseline PINN vs Reference.

As a first step to understanding the interplay between the imposition of the various boundary conditions,
Table 4.6 reflects the extent to which these are satisfied for the PINN models trained with combinations
of all three physical constraints, including the reference and baseline PINN results for completeness.
To begin with, it can be seen that optimizing for the no-slip and no-through conditions independently or
jointly have similar effects, reducing L,,o—sip and L,,o—tnrougn OY approximately six and four orders of
magnitude with respect to the baseline or reference data levels, without particularly affecting the fluctu-
ations loss. In a comparable, but opposite way, enforcing the lack of fluctuations at the surface brings
that particular loss term to L,,o— fiuctuations = 5.7 % 1077, barely affecting the two other contributions.
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Table 4.6: Boundary condition loss components - effect of BC loss type.

Model Eno—slip L:no—through Eno-fluctuations
Reference 5.2 x 101 3.7x 1072 8.4 x 107°
PINN BSL 4.7 x 1071 3.7%x 1073 2.2x1073
Lno-slip 1.5 x 1077 1.5 x 1077 3.0x 1073
Lno-through 6.2 x 1077 7.4 %1077 51 %1073
Lno-slip + Lno-through 2.1 x 1077 1.7x 1077 8.4 x 1073
Lro-fluctuations 3.8x 107! 4.7 x 1073 5.7 %1077
Lno-slip + ﬁno—through + Lno-fluctuations 95 X 1077 2.1x1077 3.9x1077

Before investigating how the enforcement of the three physical constraints affects the reconstruction
of pressure, Figure 4.24a reflects the evolution of the surface MSEC—p as more and more data points
are removed from the proximity of the boundary, as well as the effect of including all three boundary
condition loss terms in the training process. In the plot, it is seen that the baseline (un-cropped) model
realizes an error of MSEC—p = 4.6 x 1073, as previously mentioned. Of considerable remark is that,
not only the 7., = 0.625 model without boundary conditions is able to overcome this level of accuracy
by achieving an MSEC—p of 4 x 1073, but also most of the models trained with the boundary conditions
loss are able to do so as well. Once again, this shows a consistent benefit of including any physical
behavior at the surface as a means to improve robustness to data gaps.
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Figure 4.24: Effect of data gaps and boundary conditions on surface pressure reconstruction.

However, one can see that the model with 7.,,, = 0.55 and boundary conditions appears to break the
trend. In order to identify the source of error, Figure 4.24b includes the pressure distributions for both
the un-cropped and 7.,,, = 0.55 datasets, featuring the variants including and neglecting the surface
boundary conditions. While the main point of deviation found in the 7.,,, = 0.55 model with boundary
conditions is at stagnation, two remarkable findings are made by observing the 6 € [90°,100°] region,
where consistent deviations have been found along the studies in this section. The first of these is that
the un-cropped model where the physical constraints are enforced at the surface, in orange, removes
the local secondary suction peak, highlighting the power of including L., s ¢ during training, even with
no data gaps. Secondly, the model where 7,,, = 0.55 and with no L. s..s also removes this local
error, supporting its relation to noisy data close to the cylinder boundary.
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As a next step to better understand the effect of the different boundary conditions on the reconstruction
accuracy, the mean squared root error of C,, at the cylinder surface is displayed in Figure 4.25a for all
the combinations in Table 4.6 when trained to the 7.,.., = 0.875 dataset. From the bar-plot, it is seen that
the cropped model with no boundary conditions enforced presents an error of MSEC—p =6.5x1072,in
line with the plot in Figure 4.24a. Notably, introducing the no-slip, no-through or both loss terms during
training appear to give distinct error reduction levels, with the latter barely introducing any benefit. This
seems to be tied to an inability of these three models to properly reconstruct the stagnation pressure,
as per Figure 4.25b.
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Figure 4.25: Effect of Lpc surs type on surface pressure reconstruction.

Besides, it appears that the other area of variability is the one around the suction peak and separation
point, where the largest wall-normal gradients occur. In this case, the cropped model with no boundary
conditions only achieves a smoothed out version of the distribution, resulting in AC,, = 0.4 at § = 60°.
On the other hand, it is difficult to establish a clear trend in how the various boundary conditions affect
accuracy, as the better-posed model is the one trained with all boundary conditions, which achieves
a comparable surface pressure error as the un-cropped model. This balanced impact of the various
boundary conditions could be related to the fact that the noise not only affects the first statistical mo-
ments, but also the fluctuating components, as all emanate from the same temporal data. Accordingly,
adding regularization terms for the mean velocities and for the Reynolds Stresses at the surface appear
to add comparable steps in accuracy for that particular region.

Finally, and in a similar procedure to the previous chapter, the mean radial distribution of the two main
loss components is shown for the various models assessed. Paying close attention to Figure 4.26a
first, it can be stated that there are minimal differences across the various models at the data boundary,
namely 7 = 0.875. Approaching the surface, the reconstruction error of all models decays at a similar
pace, except for that of the uncropped model, which shows the best reconstruction error, as it would
be expected. Nonetheless, as the cylinder surface is reached, all models display mean data losses of
Laata ~ 0.1, while the NN trained with all boundary conditions scales all the way to £4,:, ~ 0.5, hinting
a conflict between the labeled data and the fulfillment of the boundary conditions.

On the other hand, Figure 4.26b contains the analogous representation for the PDE loss. In this case,
the model with the labeled data constraint shows a consistently inferior performance across the radii to
those which are only focused on the minimization of the PDE loss. Additionally, at the cylinder surface,
there’s a clear trend that speaks of a conflict between the fulfiiment of the physical constraints and the
minimization of the RANS residuals. This can be deduced as the model with no BCs is able to minimize



4.3. PINNs Sensitivity studies 102

Lppe to around 1 x 1072, As more BCs are enforced, this value is increased to Lppg ~ 0.1 for the
model without fluctuations and to Lppr = 6 for the models with both mean flow constraints (in green)
and all three boundary conditions enforced (in purple).
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Figure 4.26: Radial distribution of loss terms with different BC Loss types - 7¢rop = 0.875.

Summarizing, valuable insights can be extracted from this section. Firstly, it has been verified that the
elimination of data within 10% 7.,; of the surface can be positive for overall reconstruction accuracy,
suggesting poor data quality due to reflections. Additionally, further support is given to the idea that the
inclusion of the no-slip, no through-flow and no-fluctuations conditions at the body surface can consis-
tently reduce the surface pressure reconstruction error, especially when data gaps are present close to
the surface. Also, the addition of the boundary condition loss term to the un-cropped model reinforces
the possibility to overcome reconstruction errors associated with noisy source data. Moreover, it has
been proven that forcing of all three physical constraints provides the most accurate C,, distribution,
highlighting the role of each term.

4.3.5. Surface pressure data

As a final test, the effect of including pressure tap data as another data loss term during the PINN
training process is investigated. The aim of this study is to understand whether feeding low resolution
pressure tap data information to the PINN allows to achieve reconstruction accuracy levels that would
otherwise be unfeasible. The reasoning behind this is that experimental set-ups to measure pressure
directly often include rather sparse pressure tap measurements, given some of the reasons discussed
in Chapter 1, such as intrusion or the cost of manufacturing. Accordingly, it would be of interest to
identify whether including such a layout in combination with a PINN-based pressure reconstruction
from PIV would elevate its performance.

To achieve this, the baseline PINN framework is trained adding the MSE of pressure at the cylinder
boundary locations corresponding to § = {0°,90°,180°}. These locations are chosen to be equally
spaced and as far away as possible from one another and it is reckoned that a linear interpolation
between their values would not provide a representative pressure distribution, hence deeming it an
insufficient resolution on its own.

In addition to the above, a complementary test is carried out by training another PINN model which
includes all pressure tap values as labeled data. The idea behind this is that training the PINN with this
information can provide further insight as to what the causes are that produce the persistent deviations
found in this Chapter, especially around the suction peak region.

Since the Mean Squared Error with respect to the pressure taps is not a representative metric to com-
pare these two models with respect to the baseline PINN due to the direct enforcement of the pressure
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tap data, the distributions of the output variables are analyzed directly.

In Figure 4.27, the mean pressure coefficient distributions on the cylinder surface are shown for the
baseline PINN and both pressure data-fed models, as well as their respective deltas to the pressure
tap data. Along the same lines as with previous sections, the area which concentrates the largest
spread among models is 6 € [60°,105°]. Remarkably, both models where pressure data is fed appear
to chase the un-constrained solution, presenting oscillations that tend towards the baseline distribution
in between the pressure data locations. An obvious instance of this is identified at 6 =~ 95°, where both
the orange and green lines display a peaky oscillation towards that secondary suction peak mentioned
in previous sections. This can be taken as tentative proof that there is a mismatch between the flow
solution that fulfills the N-S while reproducing the PIV data and the one that matches the pressure tap
data while following the PDE loss.
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Figure 4.27: Mean pressure coefficient distribution - effect of introducing surface pressure data.

In order to ensure this is the case, the velocity field output by the PINN model trained with all pressure
data points is plotted against the PIV data in Figure 4.28. As per the delta relative to the free-stream,
it becomes apparent that the imposition of the pressure data at the surface can only be accomplished
with a comparable level of PDE loss minimization via the increment of the x-velocity data loss.
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Figure 4.28: Contours of mean x-velocity - effect of introducing all pressure tap data.
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Finally, by assessing the distribution of the residuals around the cylinder surface, it is possible to iden-
tify which areas pose the main barrier for the PDE loss minimization given that the PIV data and the
pressure tap data are learned. An instance of this is displayed in Figure 4.29, where the distribution of
the residual corresponding to the x-momentum conservation equation is shown close to the surface for
both models.

Markedly, a different behavior is observed with respect to the apparently random distribution of residuals
shown in Figure 4.15b for the baseline PINN model. Specifically, in this case both models show a
concentration of higher absolute residuals close to the surface and around the separation point at
# = 90°. In alignment with the observations made above, this means that particular area requires a
penalty in terms of N-S loss minimization when accommodating the pressure tap and PIV data at the
same time.
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Figure 4.29: Effect of introducing surface pressure tap data on converged x-momentum residual distribution.

Overall, two main conclusions may be drawn from this study. On the one hand, it appears that the
enforcement of sparse pressure data values at the surface is able to minimize C,, reconstruction error
only locally. This appears to be the result of the data-induced solution prevailing locally where only PIV
data is available. In fact, the inclusion of such tap data may introduce non-physical oscillations where
both data sources disagree, as shown by the local increase of the PDE residuals, thus constituting the
second observation.

4.4. Observations from Chapter 4

Prior to attempting to answer the main research questions posed in this Thesis, it is of interest to
highlight some of the key findings made in this Chapter, regarding the use of the PINNs framework in
the reconstruction of surface pressure from experimental time-averaged PIV data.

In the first place, it has been demonstrated that the baseline PINN framework is able to reconstruct
surface pressure for two flow cases, namely the two-dimensional flow around a smooth cylinder and
with zig-zag strips fitted at 6 = 45°. In particular, the algorithm achieves respective reductions of 1%
and 21% in pressure MSE with respect to the state-of-the-art Poisson solver when comparing to evenly-
spaced pressure tap measurements at thirteen angular locations.

Furthermore, deeper investigation of the main sources of discrepancy between both solutions reveals
that the regularization added by the RANS equations in the form of the physics-loss is responsible, given
the local concentration of high-residuals around the suction peak area in the Poisson-solver output data
when compared to the PINN solution.

In addition, extensive analysis is made on the different sensitivities offered by the various PINN and
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training parameters on pressure reconstruction accuracy at the surface, particularizing for the smooth
cylinder case.

In that regard, it has been shown that simpler NN shapes with dimensions as small as L = 2 are able
to reconstruct surface pressure even beyond the baseline architecture, contrary to the observations
in Chapter 3. On the one hand, this is presumably possible due to the larger point density and lesser
information to be learned, given only the top half of the flow field is being fed. On the other hand, the
additional performance with respect to the baseline framework initially hints at the additional degrees
of freedom being aimed at learning the spatially correlated noise in the data close to the surface, this
effect being reduced for simpler NN architectures.

Secondly, the effect of static and dynamic weighting schemes on the data loss is shown to have only
a minor effect over the ability of the PINN to reconstruct surface pressure. However, weightings that
bias the total loss towards the data loss component progressively deviate from the target pressure
distribution in the same suction peak area, supporting the hypothesis of data-associated reconstruction
errors.

In the third place, the main findings from studying the effect of the number of measurement and collo-
cation points are along the same lines. While the removal of data points subtly reduced some of the
oscillations in the baseline pressure distribution, the addition of collocation points in a random sampling
approach aided to mute the un-physical response of the algorithm in the areas prone to errors. Thus,
this supports the idea that the PDE loss can aid to regularize areas affected by noise.

Subsequently, the effect of enforcing physical constraints at the solid boundary in the form of the no-slip,
no through-flow and no-fluctuations boundary conditions has been exposed, placing especial emphasis
on their role when labeled data gaps exist around the body of interest. In this case, the removal of
data within the boundary layer thickness reduces the reconstruction error in the suction peak area,
further evidencing the existence of noisy data. Furthermore, the enforcement of all three physical
constraints appears to provide consistent error reductions with or without data gaps, also aiding to
reduce fluctuations caused by reflections.

Finally, the addition of sparse surface pressure information from the pressure taps as labeled data
during training shows that this is only beneficial locally, given the tendency of the model to divert towards
the same non-physical oscillations in the areas where the PIV data is noisy. In addition, study of the
residuals distribution around the cylinder for the PINN model trained with data from all pressure ports
has been used to conclude that the areas where the predictions differ from the pressure tap data in
more than AC, = 0.1 show higher residuals, pointing to a mismatch between the physical solutions
that describe the C,, reconstructions from the (noisy) PIV data and the distribution given by the pressure
taps.



Conclusions

Once concluded the detailed discussion of the PINN results from both CFD simulations and experi-
mental measurements, it is of interest to provide concise answers to the main and secondary research
questions posed in §1.5.2 based on the observations and results obtained.

5.1. Main research question

How does the performance of PINNs’ quantitatively and qualitatively compare to a conventional
PIV-based pressure reconstruction technique like the Poisson Solver in the inference of surface
pressure information when compared to pressure tap data?

In Chapter 4, surface pressure reconstruction has been carried out from the PIV data of the flow around
a two-dimensional cylinder in two configurations, namely a smooth one and with zig-zag strips fitted
at § = 45°. Based on the comparison of the PINN and the Poisson solver outputs with pressure tap
data, it has been proven that the baseline PINN framework can achieve reductions of 1% and 21%
in surface pressure MSE with respect to the Poisson solver for both cases, respectively. Additionally,
fine tuning of the PINN model for the smooth case via the inclusion of the no-slip, no through-flow and
no-fluctuations boundary conditions has been proven to provide surface pressure MSE reductions of
up to 50% when compared to the state of the art (Poisson) solver.

Additional relevant quantitative comparison between both methods concerns the resolution time. In
this case, while the Poisson solver is instantaneous, the PINN training time can fluctuate depending
on several variables like the NN architecture or the number of collocation points. For reference, the
average physical time to converge to the final solution of the baseline architecture is of around 20
minutes when considering a batch size of ten-thousand collocation points and the workstation specified
in §2.1.

On the qualitative side, it has been proven throughout both Chapters that PINNs constitute a flexible
framework that allows to introduce further prior information into the optimization process. Examples of
this are the boundary condition loss terms or the ’prior loss’ term to enforce positive normal Reynolds
Stress components. Besides, part of such adjustability derives from the freedom to include colloca-
tion points using different techniques, which has been proven to provide local regularization in areas
affected by correlated noise, such as those where primary and secondary reflections exist.

Along these lines, the nature of the algorithm allows to get rid of discretization errors, thanks to the use
of the principle of automatic differentiation. This facilitates the computation of all first and second order
derivative terms in the PDE loss via the chain rule of differentiation of the NN outputs with respect to
the inputs.

Finally, it has also been shown that PINNs enable users to conduct thorough debugging steps, allowing
to identify the root causes of the main sources of error and respond accordingly. A clear instance of
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this is the possibility to train the PINN feeding the validation data, thus showing whether this entails a
localized worsening of the PDE residuals, for example.

5.2. Secondary research questions

How do data gaps close to the solid boundary affect the accuracy of surface pressure recon-
struction accuracy for PINNs?

One of the sensitivity studies most relevant to experimental studies concerns the effect that missing
data can have on the surface pressure reconstruction accuracy. Since missing data can derive from a
number of reasons, such as reflections, shaded areas or lack of visual access, a wide range of data
gap sizes has been assessed, covering gaps from 10% of 7.,; to 100% of 7., in the radial direction.

Results on the experimental dataset show that the error progressively increases with the radial data gap
size. Specifically, while the pressure MSE for a data gap of 10% 7., is of 0.0046, this value increases
to 0.014 or 0.083 for gaps with sizes 50% r.,; and 100% r,,;, respectively.

These results have been obtained retaining the original data points as collocation points, even though it
has been demonstrated that the collocation point generation around the data gap is of, at least, second
order of relevance when it comes to accuracy.

Nonetheless, it has been found that the penalty in surface pressure reconstruction accuracy introduced
by such gaps can be mitigated via the inclusion of information about the flow at the surface, for instance,
via the inclusion of physical boundary conditions, leading to the next secondary research question.

To what extent does the inclusion of physics-based boundary conditions on the surface (e.g.
the no-slip condition) affect the accuracy of surface pressure reconstruction?

In order to answer this research question, physical boundary conditions of the Dirichlet type in the form
of the no-slip, the no-penetration and no-fluctuations constraints have been enforced at the cylinder
surface in various contexts.

In the first place, and in line with the answer to the previous secondary research question, the effect of
their combined enforcement has been assessed at each of the data gap sizes, consistently obtaining
error reductions for both the CFD and the experimental datasets. Examples of this are the MSE reduc-
tions of -76% and -92% achieved on the experimental data set when including the boundary conditions
for data gaps with sizes 50% 7,; and 75% 7, respectively.

Not only this, but their use has also been shown to allow to mitigate the effects of poor data quality close
to the surface. In particular, the baseline PINN algorithm trained on the un-cropped dataset saw a -50%
reduction in overall surface pressure MSE. More importantly, local fluctuations in the areas identified to
be affected by lower quality data are successfully removed via the inclusion of such physical constraints.

Finally, the independent addition of all three boundary conditions and their respective combinations
supported that the combined effect of all three yields consistently better results than their respective
parts, both regarding CFD and experimental applications.

How much does the provision of reference surface pressure data from pressure taps positively
affect the pressure reconstruction accuracy of PINNs?

Yet another sensitivity study has been carried out with regards to the experimental dataset, aiming to
assess the benefit, if any, introduced by the enforcement of known surface pressure values on the
overall surface pressure reconstruction.

While the direct enforcement of surface pressure makes it challenging to quantify this effect via the MSE
at all pressure port locations, visual inspection of the deltas for the baseline PINN and an analogous
model fed with port data at § = {0°,90°180°} has allowed to conclude that the error minimization is only
materialized locally, rather than propagated along the entire surface. In particular, it has been witnessed
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that the un-physical oscillations around the noisy data regions are, rather than reduced, accentuated
as the model attempts to learn both the PIV and the labeled surface pressure data.

The findings in this study assume, however, that reference pressure values at certain locations in the
domain can be established, for instance, via the Bernoulli equation for pressure of incompressible,
inviscid flows.

To which extent is the performance of PINNs on CFD simulation data representative of its ability
to reconstruct pressure from experimental data?

While difficult to quantify numerically, analogous sensitivity studies have been carried out for both types
of datasets, enabling to highlight some of the main similarities and differences.

While some of the studies such as the effect of the NN shape or the sensitivity to the number of data
and collocation points have resulted in utterly dissimilar results for the two types of datasets, the sample
size and and nature of each dataset (spatial resolution, flow topology, number of samples in the time
averaging, etc) make it difficult to judge whether the source of dissimilarity is the type of data source.

Nonetheless, key findings have been extracted from the results on both data-sets, proving not only the
difficulty in establishing an universal law for all PINN applications, but also the fact that both sources
of information can be valuable to make informed decisions.

Note, however, that it has been proven that, while there are tools within the PINN framework to damp
their impact on accuracy, such as collocation points or boundary conditions, it has been proven that
correlated noise can and does affect the pressure reconstruction accuracy, perhaps to a greater extent
than random Gaussian noise. As a result, it becomes obvious why further research based on real flow
applications and experimental tests are required to better quantify the extent of such impact and ways
to mitigate it.

5.3. Future work

Based on the research carried out, further advancements are proposed next that can allow to compre-
hend and set limitations on the use of PINNSs for (surface) pressure reconstruction:

+ study more in-depth the effect of reflections - for instance, is it worthy removing noisy data, effec-
tively converting it into a data gap or keeping it during training?

deepen study on the relevance of the NN architecture size, especially due to its relevance on
training time. Questions of interest: is the performance drop-off for very small model dimensions
related to the ’amount of information’ contained on each labeled data point or rather on the number
of data points? This arises given the disparate response in the same study on the CFD and
experimental datasets, which can suggest the first aspect to be determinant. If so, how can one
identify what a suitable NN size could be for a given case without requiring to do a full sweep of
sizes?

given the observations made in the experimental section of the collocation points sensitivity study,
where non-physical fluctuations are reduced as more collocation points are included, can the local
addition of collocation points in noisy areas be sufficient to override its impact in a more effective
way?

if surface pressure data were to be the main target of a given study, what is the minimum amount
of data around the surface that is required to achieve optimal results? (as long as a reference
pressure value is known).

» what is the impact of having non-two-dimensional measurement planes (i.e. tilted laser with re-
spect to the onset) on the surface pressure reconstruction accuracy? How does this compare
to the analogous effect on the Poisson solver? Can one improve accuracy in such cases by
removing the continuity equation from the loss function?

can alternative types of architectures be laid out to improve efficiency? For instance, | initially
studied the use of a 'Frankenstein’layout (as per Figure 5.1), which effectively splits the labeled
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and hidden output variables into two models, which can take a huge advantage of initially applying
zero PDE loss to the known data, greatly reducing the initial optimum discovery phase given the
shape of the 'data-only’ optimization space.

Lyor @ Lyom
\TJLW
PROs
N . Possible to increase Lqgq., Weighting independently of model_p training
™ . Flexibility of NN hyperparameters (interesting since data-based training appears
| | to converge faster)
| | . Ease of debugging
CONs
- —»

. Training time

. Complexity of implementation

LMOM |

Figure 5.1: 'Frankenstein’ architecture with one model to reconstruct labeled data (can use feedback from data and/or PDE
losses) and a different model to reconstruct pressure data (using only the PDE loss component).

+ along the same lines, can different training data flows be studied to accelerate convergence? For
instance, using the 'Frankenstein’ architecture could allow one to do 'coupled’ (Figure 5.2a) and
'staggered’ (Figure 5.2b) iterative steps, where the latter could offer the advantage of reducing
the training time via the computation of the PDE loss only after advancing the labeled data model.

ITERATION N ITERATION N +1

(a) Coupled - both models are evaluated at every iteration.

ITERATION N
T

N
Xcolloc H

model_uv

A -
Xcolloc | [y 0 ...
------ ;'/ 0 N -
: ------- / E ;
N H H
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(b) Staggered - both models can be evaluated sequentially, where the output of the advanced labeled data model is used in the
PDE loss calculation to optimize the pressure reconstruction model.

Figure 5.2: Examples of iterative layouts that can be accommodated by the Frankenstin architecture.

+ since most of the literature supports the idea that PINNs display a noticeable robustness to noise
propagation, can this framework accommodate larger spatial PIV resolutions even if at the cost
of certain noise?

» further test cases on real applications, such as the flying-V TU Delft project, where pressure
tapping might be challenging due to space requirements.
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