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Abstract: In this paper the attention is focused on the e�ect of various VOF methods on e�cient
and accurate simulation of free surface water waves. For this purpose, we will compare several
VOF methods in numerical simulations of propagating waves where strong nonlinear behavior is
dominant in the �ow. Comparisons and discussions will be provided to underline the signi�cance
of free surface modeling on the accuracy of wave propagation.
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1 Introduction

Free surfaces or interfaces between immiscible �uids are broadly featured in many processes in modern
industry as well as within the human body and in the environment we live in. In addition to various
computational modeling challenges that the free surface �ows present, the mere existence of a free surface
poses some di�culties. On the one hand the solution region changes as the free surface evolves, and on the
other hand, the motion of the free surface is in turn determined by the solution. Changes in the solution
region include not only changes in size and shape, but in some cases, may also include the coalescence and
break up of regions (i.e., the loss and gain of free surfaces). During these processes it is important to keep
the free surface sharp and well-de�ned, and evolve it without smearing, dispersing or wrinkling. This is a
critically signi�cant task in order to achieve an accurate solution to the overall physical problem.

Numerical methods for modeling free surfaces have been a popular subject for several decades among
researchers from various �elds of science. This resulted in various types of strategies with di�erent theoretical
backgrounds that can robustly and e�ciently represent evolving and topologically complex free surfaces. It
is a quite challenging e�ort to cite all major developments due to the large volume of the existing literature.
Below we give a brief survey of these strategies and refer interested readers to [1] and [2] for more extensive
surveys.

In marker methods massless markers or tracers are used on a �xed mesh to track �uid volumes in the
entire �ow domain (volume markers) or to track exactly the location of the interface (surface markers). The
positions of the markers are updated using the underlying velocity �eld in a Langrangian fashion. One of the
earliest works in this �eld goes back to [3] where massless markers were used in the entire �ow domain, the
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marker-and-cell method (MAC). In following works markers were used only on the interface. This resulted in
a signi�cant reduction in computer time and storage, and also provided the explicit location of the interface.
Over the years [4], [5] and [6], among others, made important contributions to this idea.

In the level-set method introduced by [7] a continuous level-set function is used to track the motion of
an interface. The interface is represented as the zero level set of this signed distance function. Inside one of
the �uids the function takes a positive value, and in the other �uid it takes a negative value. The level-set
function moves with the �uid, and therefore evolves according to a simple transport equation. Even though
it is conceptually simple as well as easy to implement, issues with mass conservation were reported in early
implementations especially when the interface undergoes large deformations. [8] and [9] proposed strategies
to improve the mass conservation property of the level-set method.

In [10] a powerful family of constrained interpolation pro�le (CIP) methods was proposed. The CIP
method was initially presented by [11], and the abbreviation then stood for cubic interpolated pseudo-
particle. Over the years the method has evolved, its name has changed but the abbreviation stayed the
same. Nonetheless it has been successfully applied to various multi-phase �ows; see [10]. The strength of
this method stems from the strategy that it uses the primitive variables and their derivatives as a set of
dependent variables. For the �rst group the conservation equations are used and for the second group the
corresponding derivatives of these equations are used. The recent version of the method guarantees exact
mass conservation, and results in a low dispersion error. The reader is referred to the aforementioned and
other publications from these researchers for further discussions on the CIP method.

Before going into the details of the volume-of-�uid (VOF) method which constitutes the backbone of the
present work, it is important to note that there are other methods used for interface tracking/capturing in
interfacial and free surface �ows. Among these methods are phase-�eld [12] and [13], continuum advection
[14], point-set [15], Langrangian [16] and [17], and moment-of-�uid (MOF) [18].

Volume-of-�uid (VOF) methods have been successfully used in computational �uid dynamics (CFD)
simulation of interfacial and free surface �ows for several decades since the introduction by [19]. Typically,
the VOF approach presents a model based on a scalar indicator function to transport the �uid from one cell
to another on a �xed computational mesh using the underlying velocity �eld. This function is characterized
by the volume fraction F occupying one of the �uids within each cell. If a cell is completely �lled with one
�uid, the volume fraction takes the value of 1, and 0 if only the second �uid is present. The values between
these two limits indicate the presence of the interface or free surface. In the VOF approach, the volume
fraction �eld is the only available and required information representing the interface pro�le. Therefore, if
the explicit location of the interface is needed, special algorithms have to be applied to attain an approximate
reconstruction of the interface by exploiting the volume fraction distribution of the neighboring cells in a
compact stencil.

In the VOF technique, the volume fraction �eld is propagated by solving a scalar transport equation.
Discretization of the transport equation with an accurate numerical method is critical for not only the
conservation of mass but also evolving the interface without smearing, dispersing or wrinkling it. This
basically constitutes the principal drawback of the VOF approach, especially considering the fact that the
discrete volume fraction �eld is not smoothly distributed at the interface (on the contrary it displays sharp
discontinuous changes between 0 and 1). In this regard, conventional convective di�erencing schemes, such
as upwinding, are unable to maintain a well-de�ned interface due to numerical di�usion, even if they do
not violate the boundedness of the solution (0 ≤ F ≤ 1) through the su�cient boundedness criterion.
In order to resolve the interface while modeling �uid �ow behaviors such as large deformation, interface
rupture and coalescence in a natural fashion, researchers have developed numerous techniques within the
VOF function framework. They can be classi�ed into three categories: donor-acceptor formulation, high
resolution di�erencing schemes and line techniques (explicit geometrical reconstruction of the interface).

In the donor-acceptor formulation, the volume fraction values of the downwind and upwind of a �ux
boundary are used to estimate the amount of volume fraction transported through that boundary during a
time step. These volume fraction values are used to predict the orientation of the interface when computing
the �ux volume. Hence, local interface reconstruction is not essentially needed. However, the inclusion
of downwind information generally violates the boundedness criterion causing unphysical overshoots and
undershoots. In order to ensure boundedness, several improvements have been incorporated into the donor-
acceptor formulation, such as controlled downwinding. This idea established the structure for the derivation
of the well-known VOF method by [19]. To take a more in-depth look at the donor-acceptor formulation,
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see [20, 21, 22, 23].
High resolution di�erencing schemes utilize the idea of implementing a higher order or blended di�erencing

scheme to approximate the transport equation. These schemes outperform the �rst-order upwind scheme in
terms of accuracy, and the second-order central di�erence scheme in terms of stability; see [24]. However, they
fail to satisfy the boundedness criterion of the volume fraction values provoking overshoots and undershoots
in regions where steep gradients of the �ow variables appear along with the high local Peclet number. To
surpass this shortcoming, many techniques have been proposed. For a discussion concerning high resolution
schemes, see [25], [23], and [26].

In line techniques, the interface is locally reconstructed and corresponding volume �uxes are computed
to preserve the sharp pro�le of the interface. Based on the volume fraction values of the neighboring cells,
the orientation and location of the interface in a cell can be calculated in a piecewise constant, piecewise
linear or piecewise parabolic fashion. The resulting reconstructed interface is not necessarily continuous,
but a rather discontinuous chain of discrete line segments. However, from piecewise constant to piecewise
parabolic reconstruction, the discontinuities at the cell boundaries decrease substantially, see [27].

The Simple Line Interface Calculation (SLIC) by [28] was the cornerstone of the geometric interface
reconstruction techniques. Here the reconstructed interface is a straight line parallel to one of the spatial
directions. For the reconstruction, only the volume fraction values of the neighboring cells along a coordinate
direction are taken into account in a 3 × 1 block of cells. Therefore, the interface has a di�erent represen-
tation depending on the coordinate direction considered for the reconstruction. [29] further improved this
reconstruction concept by evaluating the volume fraction information in a 3× 3 block of cells, nevertheless
his version also yields di�erent �uid distributions for each sweep direction. In any case, the extension of
SLIC to 3D is straightforward. In addition to �rst-order accuracy, SLIC also results in the shedding of many
isolated blobs of �otsam and jetsam by arti�cially breaking up the interface [1].

Among the three approaches, the piecewise linear reconstruction is nowadays the most popular approach,
and the methods which fall into this category are usually referred to as Piecewise Linear Interface Calculation-
or Construction (PLIC) methods. In this approach, the interface is reconstructed by oblique or piecewise
linear line segments (or plane segments in 3D). As the reconstruction is performed in a multidimensional
manner, the interface does not have a di�erent representation depending on the sweep direction. After
[30] and [31] designed �rst PLIC methods, researchers have made a signi�cant e�ort developing methods
to achieve second-order accuracy at reasonable computational cost. See [18, 32, 33] for a survey of PLIC
methods.

In Piecewise Parabolic Interface Calculation (PPIC) by [27], the interface is approximated by an arbi-
trarily rotated parabola. Hence, the interface is modeled in a more natural way especially in high curvature
regions. Moreover, the local curvature of the interface is directly available, which is especially required for
modeling the surface tension force acting on the interface. PPIC is inherently third-order accurate if the
interface is su�ciently smooth. Unfortunately, this method is only available in 2D.

In the VOF context, to advect the volume fraction �eld in time, the following transport equation is
solved,

∂F

∂t
+ u · ∇F = 0, (1)

where u = (u, v, w) denotes the �uid velocity vector, and ∇ = (∂/∂x, ∂/∂y,∂/∂z) is the gradient operator.
Assuming a solenoidal velocity �eld (incompressible �ow) modeled by ∇ · u = 0, Eq. (1) can alternatively
take the form:

∂F

∂t
+∇ · (uF ) = 0. (2)

Equation (2) can be solved using either an unsplit advection or an operator split advection scheme. Although
both strategies have been successfully applied in simulation of interfacial �ows, direction split advection
schemes are more common in VOF methods due to ease of implementation. Treating individual velocity
components to compute 1D �uxes for a sequence of updates in each spatial direction is easier compared to
treating velocity components acting in all directions to compute multidimensional �uxes using inherently
di�cult geometric tasks. However, operator splitting has a strict limitation: it is applicable only within
structured mesh environments. The transport problem in the VOF method is analyzed in more detail in
Section 3.

Several attempts have also been made to bene�t from advantages of various strategies through coupling
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them in a hybrid method. [34] developed a coupled level-set/VOF method (CLSVOF) in order to exploit
the favorable features of both the VOF and level-set methods. Here the contribution of the level-set method
is to keep a �ne description of the geometrical properties of the interface, while that of the VOF method
is to minimize mass loss, see [35] for a further discussion on this coupling. Recently [36] proposed a hybrid
level-set/moment-of-�uid method (CLSMOF) which uses information from the level set function, volume of
�uid function, and reference centroid.

The PLIC-VOF technique in this work has been incorporated into a numerical method called ComFLOW.
ComFLOW was initially developed to simulate one-phase �ow. Later, implementation of the method was
extended to a wider class of problems after improving the method to model two-phase �ows [37] and [38].
Simulation of sloshing on board spacecraft [39], [40], [41]; medical science [42], [43]; µ-gravity biology appli-
cations [44]; engineering problems in maritime and o�shore industry [45], [46], [47], [48], [49], and [50] are
among those where ComFLOW has been generally used. The reader is referred to [51, 52] and the Com-
FLOW website (www.math.rug.nl/∼veldman/com�ow/com�ow.html) for an overview of the current status
of the method.

Since the CFD tool ComFLOW is currently in use for practical applications especially in 3D, the required
VOF method must be computationally cheap, robust and easily applicable while retaining a reasonable accu-
racy for representing complex free surfaces. In each section below, after shortly explaining the corresponding
subject, we will keep these criteria in mind while choosing or implementing a numerical technique. As one
of the main application areas of ComFLOW is wave impact loading on o�shore structures and coastal con-
struction, accurate simulation of propagating free surface waves with reasonable computational resources is
of critical importance. In that respect, we will pay particular attention to the performance of the methods
in this problem. The layout of the rest of the paper is as follows. In Section 2, a brief introduction to
piecewise linear interface reconstruction will be given. Section 3 discusses interface advection along with
geometrical �ux computation. Section 4 presents results from a series of test cases which includes advection
tests, and an application example where VOF methods are used in ComFLOW to simulate two wave cases,
a small-amplitude wave with low steepness and a relatively large-amplitude wave with high-steepness. We
end the paper with conclusions in Section 5.

2 Interface reconstruction

The interface reconstruction is the �rst stage of a typical VOF method. In the PLIC approach, the interface
in each cell is approximated by a line (or a plane in three dimensions). Within each cell, the approximated
interface can be de�ned by the equation:

m · x = mxx+myy +mzz = α, (3)

where m is the local surface normal, x is the position vector of a point on the interface and α is a constant
which is related to the shortest distance from the origin of the cell. Essentially, the interface reconstruction
involves two procedures: the determination of m and α. In this section, we will investigate the algorithms
designed to obtain m, and the determination of α is explained in Section 2.1. For a given discrete volume
fraction �eld, m in each cell is usually calculated using the data in a compact neighborhood of the cell
considered. However, since the discrete volume fraction �eld is not smoothly distributed at the interface,
computation of m with high accuracy can be complicated and expensive. Modeling the interface by simply
adopting a piecewise linear representation does not always result in a second-order approximation since the
accuracy of the reconstruction depends critically on the calculation of the normal. Furthermore, the size
of the discontinuities at the cell boundaries are also sensitive to the calculation of the normal. As the grid
resolution and the accuracy of the calculation of the normal increase, the discontinuities decrease. However,
in general, truly second-order reconstruction methods tend to require high computational e�ort especially
for three-dimensional implementations. Computational costs increase even further when these methods are
used in combination with operator split advection techniques because the resulting algorithm will demand a
number of reconstruction sweeps at each time step.

Among many techniques that are available in the literature, we will consider four methods: Parker
and Youngs' method (P&Y) [53], the least squares gradient (LSG) technique by [54], the Mixed Youngs-
centered (MYC) implementation of [55] and the e�cient least squares VOF interface reconstruction algorithm
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(ELVIRA) by [56]. The ELVIRA scheme by [56] was originally proposed in 2D. For the 3D implementa-
tion, we will consider the approach by [57]. We will later demonstrate that the level of accuracy of some
of these methods are satisfying for the problems we typically encounter. In addition, all the four schemes
are mathematically simple, non-iterative and involve a small number of algorithmic tasks. Therefore, imple-
menting these methods require a modest amount of programming work, and the result can be achieved in
an economical manner.

2.1 Computation of the plane constant

Once the normal vector is known, the planar interface within the cell is located so that local volume con-
servation is satis�ed. In other words, the resulting plane should pass through the cell in such a way that
the truncated volume lying below the plane is equal to the exact material volume in that cell. In three
dimensions, the intersection of a plane with a cube is an inscribed, irregular polygon with one of four basic
shapes which have 3 to 6 intersection points, as shown in Fig. 1.

As Eq. (3) suggests, the location of the planar interface results from the computation of α. With the
available knowledge of the normal vector m and the volume fraction F within the cell, α can be calculated
either iteratively or analytically.

(a) 3-sided polygon (b) 4-sided polygon (c) 5-sided polygon (d) 6-sided polygon

Figure 1: Possible candidates of irregular polyhedron within a cubic mesh cell.

Several approaches have been proposed for computation of plane constant, which can be classi�ed as
analytical and iterative methods. [54] proposed the use of Brent's scheme as in [58] which includes a
combination of bisection and inverse quadratic interpolation methods to �nd a near-optimal next guess for
α. They also report that Newton's method does not guarantee convergence. An algorithm based on secant
and bisection methods is given in [59].

Analytical relations for the forward and inverse problems were presented in [60, 61] (forward problem refers
to �nding the volume fraction for a given α and inverse problem refers to �nding α given the volume fraction).
They report that analytical relations are computationally cheaper than a fast root-�nding technique. In a
recent study, [62] reports that the forward and inverse routines by [60] have been well tested and are free
from inconsistencies which may occur due to round-o� errors in limiting cases. Analytical relations by [60]
were also used in this work.

3 Interface advection

After the orientation and location of the planar interface are determined, the volume fraction �eld is advected
in time via Eq. (2). This is the second stage of a VOF method. Algorithms for the transport problem may
generally be divided into two categories: unsplit schemes and operator split schemes. In operator splitting,
the transport of the volume fraction �eld is realized by considering sequential updates along each direction
with calculating one dimensional �uxes by treating only one velocity vector component in each update.
This inherent feature makes operator splitting applicable only within structured mesh environments. After
advancing the interface along each coordinate direction, intermediate volume fraction values are computed.
As a result, three consecutive updates are required to transport the interface to the next discrete time level
in three dimensions, Fn → F ∗ → F ∗∗ → Fn+1, which also necessitates at least three interface reconstruction
sweeps based on the corresponding intermediate volume fraction �elds. Additionally, the sequence of updates
in each direction must be changed in order to avoid, or at least minimize, asymmetries caused by the operator
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splitting; [54], [63]. For this purpose, six possible permutations of the sweep sequence in three directions
need to be realized; [64], [63]. In unsplit advection, however, �uxes are calculated using the velocity vector
components acting in all directions. Therefore, several neighboring cells may contribute to a multidimensional
�ux volume across a mesh cell face over a time step which is truncated by an arbitrarily-oriented planar
interface. This procedure constitutes the fundamental bottleneck of unsplit advection since the resulting
multidimensional �ux volume may have a very complex geometry. Once multidimensional �ux volumes
through each mesh cell face are determined, the interface is propagated along all coordinate directions in
a single update, Fn → Fn+1, which entails only one interface reconstruction sweep. This clearly brings a
signi�cant advantage in terms of computational costs. Compared to unsplit advection, operator splitting is
more common among researchers and well-documented.

Irrespective of the transport strategy, an advection method should be mass conserving, shape preserving
and satisfy the constancy condition. The total mass must be conserved without a posteriori numerical treat-
ment. The constancy condition requires that an initially uniform scalar �eld governed by Eq. (2) should
remain uniform in a divergence free velocity �eld. A shape preserving advection scheme does not generate
unphysical undershoots or overshoots, i.e., the volume fraction �eld must always be bounded everywhere,
0 ≤ F ≤ 1; see [63] for an in-depth discussion. Unfortunately, it is di�cult to design an advection scheme
which satis�es all criteria simultaneously. Typically shortcomings of various advection schemes are compen-
sated through ad hoc workarounds. For example, when there is an overshoot and/or undershoot in volume
fraction values, excess values are clipped or dispensed over several neighboring cells, e.g., [65] present a mass
redistribution algorithm to account for overshoots and undershoots without violating mass conservation, [54]
also search for and conservatively redistribute any volume fraction excess values (F < 0 and/or F > 1), [66]
only mention such a local redistribution procedure, and [49] uses a local height function to restore mass
conservation. When mass is redistributed, also momentum is likely to change. Hence, although mass con-
servation is repaired, momentum conservation is lost. Another approach to circumvent this di�culty is to
combine the advection method with a �ux correction scheme, e.g., [67] introduces such a scheme which is
embedded into the procedure for the computation of the �ux volume. [68] also discusses this subject and
presents and idea to overcome this problem which is based on the concept of allowing volume of a cell to
change e�ectively during each one-dimensional sweep of advection. He mentions that even after this measure
small round-o� errors can accumulate and a�ect the boundedness of the volume fraction �eld later in the
simulation. For discussions about the useful attributes which an advection scheme should retain, see [63],
[69] and [70].

Both strategies for advection have been investigated by many researchers. In this work, we restrict the
discussion regarding advection methods to operator split schemes. For unsplit advection techniques, the
reader is referred to the works by, e.g., [71], [54], [72], [73], [56], [33], and [74].

In [63] two operator split advection methods were introduced which, to the best knowledge of the authors,
have not been used within the context of interfacial or free surface �ows. The schemes are Multidimensional
Advective-Conservative Hybrid Operator (MACHO) and Conservative Operator Splitting for Multidimen-
sions with Inherent Constancy (COSMIC). In 2D, the MACHO and COSMIC schemes take the following
form:

• the 2D MACHO scheme:

F ∗ = Fn −∆t
∂uFn

∂x
+ ∆tFn

∂u

∂x
,

Fn+1 = Fn −∆t

(
∂uFn

∂x
+
∂vF ∗

∂y

)
,

(4)

• the 2D COSMIC scheme:
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FX = Fn −∆t
∂uFn

∂x
+ ∆tFn

∂u

∂x
,

FY = Fn −∆t
∂vFn

∂y
+ ∆tFn

∂v

∂y
,

Fn+1 = Fn −∆t

[
∂

∂x

(
u
Fn + FY

2

)
+

∂

∂y

(
v
Fn + FX

2

)]
.

(5)

Similar to typical operator split methods, MACHO requires the direction of propagation to be alternated
at each time step to reduce directional bias. This, however, is not required by COSMIC because of its
inherent symmetric form. By considering the transverse contribution to each �ux in (5), COSMIC maintains
multidimensional stability. On the other hand, the COSMIC scheme demands one more reconstruction
sweep per time step in 2D than any other operator split advection schemes mentioned in this work. In 3D,
the increase in computational cost becomes more signi�cant with COSMIC. MACHO and COSMIC can be
written as the following in 3D:

• the 3D MACHO scheme:

F ∗ = Fn −∆t
∂uFn

∂x
+ ∆tFn

∂u

∂x
,

F ∗∗ = F ∗ −∆t
∂vF ∗

∂y
+ ∆tF ∗ ∂v

∂y
,

Fn+1 = Fn −∆t

(
∂uFn

∂x
+
∂vF ∗

∂y
+
∂wF ∗∗

∂z

)
,

(6)

• the 3D COSMIC scheme:

FX = Fn −∆t
∂uFn

∂x
+ ∆tFn

∂u

∂x
, FY = Fn −∆t

∂vFn

∂y
+ ∆tFn

∂v

∂y
,

FZ = Fn −∆t
∂wFn

∂z
+ ∆tFn

∂w

∂z
,

FXY = FY −∆t
∂uFY

∂x
+ ∆tFY

∂u

∂x
, FY X = FX −∆t

∂vFX

∂y
+ ∆tFX

∂v

∂y
,

FXZ = FZ −∆t
∂uFZ

∂x
+ ∆tFZ

∂u

∂x
, FZX = FX −∆t

∂wFX

∂z
+ ∆tFX

∂w

∂z
, (7)

FY Z = FZ −∆t
∂vFZ

∂y
+ ∆tFZ

∂v

∂y
, FZY = FY −∆t

∂wFY

∂z
+ ∆tFY

∂w

∂z
,

Fn+1 = Fn −∆t

[
∂

∂x

(
u

2Fn + FY + FZ + FY Z + FZY

6

)
+
∂

∂y

(
v

2Fn + FX + FZ + FXZ + FZX

6

)
+
∂

∂z

(
w

2Fn + FX + FY + FXY + FY X

6

)]
.

The COSMIC scheme thus entails computing and storing of the three basic one-dimensional updates (FX ,
FY and FZ) and the six cross-coupling updates (FXY , FY X , FXZ , FZX , FY Z and FZY ), all of which
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are substituted into the single-step explicit update written in conservation form. While MACHO and other
operator split algorithms demand three interface reconstruction sweeps at each time step in 3D, COSMIC
demands nine interface reconstruction sweeps. Obviously, the symmetry feature of the COSMIC scheme
comes at a substantial price. It is noted in [63] that MACHO and COSMIC are not strictly shape preserving
under circumstances such as large time steps and deformational velocity �elds. However, they add that
shape preservation errors are quite small in most practical situations.

Geometric interpretation of the �uxes in MACHO and COSMIC is explained next. For simplicity, let us
consider the �rst relation in Eq. (4) and discretize it in a grid cell such as illustrated in Fig. 2:

F ∗
i,j = Fni,j −∆t

[
(uF )

n
i+ 1

2 ,j
− (uF )

n
i− 1

2 ,j

∆xi,j

]
+ ∆tFni,j

[
un
i+ 1

2 ,j
− un

i− 1
2 ,j

∆xi,j

]
(8)

where ui+ 1
2 ,j

is the velocity component at the center of the right cell face. Suppose that ui+ 1
2 ,j

is positive and

divide the cell into two parts, with areas ui+ 1
2 ,j

∆t∆yi,j on the right and
(

∆xi,j − ui+ 1
2 ,j

∆t
)

∆yi,j on the left.

The amount of �uid contained in ui+ 1
2 ,j

∆t∆yi,j and illustrated as the cross-hatched area will be advected

Figure 2: The amount of �uid illustrated as the cross-hatched area crosses the right cell edge in a splitting
advection.

across the right cell face during this time step. If V n
i+ 1

2 ,j
denotes the cross-hatched area corresponding to the

initial Fn �eld, then the approximate volume fraction at the right cell face Fn
i+ 1

2 ,j
can be written as

Fni+ 1
2 ,j

=
V n
i+ 1

2 ,j

un
i+ 1

2 ,j
∆t∆yi,j

. (9)

In a VOF method, the �ux volume can be calculated by exploiting the location of the reconstructed interface.

The limits for the �ux volume can be stated as V n
i+ 1

2 ,j
= min

(
max

(
V n
i+ 1

2 ,j
, 0
)
, un
i+ 1

2 ,j
∆t∆yi,j

)
.

After following the same process for the volume fraction at the left cell face and substituting the corresponding
relations into Eq. (8), we obtain the following expression for the �rst step of the MACHO splitting

F ∗
i,j = Fni,j −

[
V n
i+ 1

2 ,j
− V n

i− 1
2 ,j

∆xi,j∆yi,j

]
+ ∆tFni,j

[
un
i+ 1

2 ,j
− un

i− 1
2 ,j

∆xi,j

]
. (10)

Now, consider the second step in the MACHO splitting in Eq. (4). Following the same procedure explained
above, the discrete form of the second step is given as
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Fn+1
i,j = Fni,j −

[
V n
i+ 1

2 ,j
− V n

i− 1
2 ,j

∆xi,j∆yi,j

]
−

[
V ∗
i,j+ 1

2

− V ∗
i,j− 1

2

∆xi,j∆yi,j

]
(11)

where V ∗
i,j+ 1

2

is the �ux volume across the north cell face corresponding to the updated volume fraction �eld
F ∗.

4 Numerical results

The order of accuracy of the reconstruction methods used in this work has been extensively studied by
various researchers, see, e.g., [56], [54], [33], [55], [66], and [75]. Therefore, we will not present any static
interface reconstruction tests and focus our attention on the kinematic simulations. In all advection tests
presented here, velocity �elds are de�ned in such a way that advected �uid bodies return to their initial
shapes and locations at the end of the simulation time (often by multiplying the velocity with the Leveque
cosine term; [76]). Therefore, a volume fraction distribution at the end of the simulation should be equivalent
to the initial volume fraction distribution which can be considered as the exact solution. In order to compare
the two distributions, the following error de�nitions are used

E =
∑
i,j,k

∣∣∣Fi,j,k − F̃i,j,k∣∣∣∆xi∆yj∆zk, (12)

E =

∑
i,j,k

∣∣∣Fi,j,k − F̃i,j,k∣∣∣∑
i,j,k Fi,j,k

. (13)

In both expressions, Fi,j,k denotes the exact volume fraction distribution, and F̃i,j,k denotes the volume frac-
tion distribution obtained by a pair of reconstruction/advection algorithms (simpli�cation to 2D is straight-
forward). In order to have consistency with previous work, we will switch between the two formulae in the
numerical tests.

In total, we have twelve alternative interface-reconstruction/advection combinations. Four interface re-
construction methods that we consider here are: Parker and Youngs' method (P&Y) by [53], least squares
gradient (LSG) method by [54], mixed Youngs-centered (MYC) method by [55] and E�cient least squares
VOF interface reconstruction algorithm (ELVIRA) by [56]. The ELVIRA scheme by [56] was originally
proposed in 2D, hence it will be used in 2D problems. For 3D problems we will consider the ELVIRA
scheme by [57]. These interface reconstruction schemes will be combined with the three direction split ad-
vection schemes: MACHO and COSMIC by [63], and EI-LE by [66]. However, since the EI-LE scheme
is inherently 2D, we will use only MACHO and COSMIC in 3D problems. We will not use every single
interface-reconstruction/advection combination in every test. This is required for brevity and compactness.

In addition to the above algorithms, we will show results obtained by using the current VOF implemen-
tation in the CFD simulation tool ComFLOW. It employs the classical VOF technique introduced by [19]
and a local height function (LHF) to overcome the bottlenecks which originate from this VOF technique
such as violation of mass conservation and spurious �otsam and jetsam. For a detailed description of the
LHF, see [77]. The combination of this VOF method with the LHF will be referred to as H&N + LHF in
the remainder of this chapter.

We will demonstrate the performance of the methods both qualitatively and quantitatively. For qual-
itative assessment, we will compare graphical results from numerical computations to the exact graphical
solution. Figures will illustrate graphical results using F = 0.5 isosurfaces. For quantitative assessment, we
will analyze the rate of convergence of the methods by using the error metrics given previously. The rate of
convergence is computed using

O =
ln
(
E∆x

/
E∆x/2

)
ln (2)

, (14)

where E∆x/2 is the error obtained on a grid resolution of ∆x/2, whereas E∆x is obtained on a grid resolution
of ∆x.

9



We will not focus our attention on the volume conversation since the methods are applied in such a way
that volume is strictly conserved. In the numerical tests, we sometimes encountered mild overshoots and
undershoots in volume fraction values after advecting the �uid con�guration along a coordinate direction.
Whenever and wherever this behavior is observed, the local height function is applied to ensure that these
excess values are not thrown away.

4.1 Rotation of a slotted disk - 2D

The solid body rotation of the slotted disk problem, often referred to as Zalesak's test [78], has been commonly
used by researchers such as [68], [66], [56], [75] and [36]. In this test, a slotted disk with a radius of 0.15, and
a slot length of 0.05 and width of 0.25 is initially located at (0.5, 0.75) inside a unit sized box. The rotating
�ow is generated by a constant vorticity velocity �eld which is given as:

u = (π/3.14) (0.5− y) ,

v = (π/3.14) (x− 0.5) .
(15)

According to this con�guration, the geometry makes a solid body rotation around the center of the unit
sized box, and after 628 time units, it completes one revolution and is expected to return to its initial shape
and position.

The velocity �eld in (15) has the one-dimensional incompressibility, ∂u/∂x = 0 and ∂v/∂y = 0. Therefore,
there is no �uid shear introduced by the velocity �eld, and the interface topology should not change as a result
of this advection. Furthermore, since the dilatation term in each one-dimensional update of an operator split
advection method vanishes, the advection schemes discussed previously degenerate to similar expressions.
Hence, this test becomes useful especially for assessing the convergence rate of reconstruction methods. As
a result, only one advection method is considered in combination with several reconstruction algorithms.

0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.90.9

x

y

 

 
EXACT

H&H+LHF

MYC

LSG

ELVIRA

Figure 3: Solid body rotation of a slotted disk in 2D. Numerical results are obtained after one rotation on a
1282 uniform grid with CFL=0.5. The PLIC methods are combined with the MACHO advection scheme.

The results after one rotation using four methods are illustrated in Fig. 3 in a close-up view. Graphical
representation of the exact shape is also shown in black color. The results are obtained by combining
the MACHO advection scheme with four reconstruction schemes; P&Y, LSG, MYC and ELVIRA. These
methods are also compared to the Hirt and Nichols' VOF combined with the local height function (H&N +
LHF). Here the grid size is 128× 128, and the CFL number is 0.5.

H&N + LHF performs quite poorly yielding signi�cant distortion on the interface topology even on the
smooth segments of the geometry. The results from the MACHO/PLIC schemes are considerably better.
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The pro�les di�er from the exact geometry only in regions with high curvature. We observe that in the
corners of the slot, the MACHO/PLIC schemes fail to capture the sharp discontinuities, and smear them
out over the neighboring cells. The di�erence between the PLIC schemes is hardly visible, which suggests
that all the methods share similar characteristics in regions of sharp discontinuity.

Mesh P&Y MYC LSG ELVIRA H&N+LHF

322 1.64×10−2 1.66×10−2 1.68×10−2 1.65×10−2 8.26×10−2

1.48 1.48 1.50 1.49 0.99

642 5.88×10−3 5.94×10−3 5.96×10−3 5.87×10−3 4.17×10−2

1.07 1.10 1.11 1.12 1.05

1282 2.81×10−3 2.78×10−3 2.77×10−3 2.71×10−3 2.01×10−2

0.99 1.00 1.01 1.03 1.07

2562 1.41×10−3 1.39×10−3 1.38×10−3 1.33×10−3 9.60×10−3

Table 1: Nondimensional error (13) for the solid body rotation of a slotted disk problem. CFL is equal to
0.5. The PLIC methods are combined with the MACHO advection scheme. Rate of convergence (14) is
written in italics between mesh entries.

Table 1 shows the nondimensional error (13) for the solid body rotation of a slotted disk problem.
Con�rming the qualitative observation, the PLIC schemes produce comparable results in terms of both
magnitude of nondimensional error and rate of convergence. This behavior was also observed by [56]. Even
though the rate of convergence is similar with all the VOF modules, the magnitude of the nondimensional
error is considerably larger with H&N + LHF compared to the PLIC-VOF techniques.

4.2 Single vortex test - 2D

After being introduced by [79], the single vortex test has been used by many researchers, e.g., [68], [54], [80],
[9], [66], [33] and [36]. In the previous test, there was no �uid shear, therefore the geometry did not deform
during its advection. In this test, we introduce shear into the velocity �eld in the form of a single vortex. A
circle of radius 0.15 initially centered at point (0.5, 0.75) inside a unit sized box is subjected to the following
non-uniform velocity �eld which imposes a single vortex in the domain,

u = sin (2πy) sin2 (πx) cos

(
πt

T

)
,

v = − sin (2πx) sin2 (πy) cos

(
πt

T

)
.

(16)

The velocity �eld is multiplied by the so-called Leveque cosine term cos (πt/T ) where T is the period at which
the �ow returns to its initial state, [76]. This is merely a convenient way to establish temporal accuracy. In
this test, T = 8 is used. The circle stretches and spirals about the center of the domain reaching maximum
deformation at t = T/2 = 4, and the Leveque cosine term reverses the velocity �eld returning the deformed
body back to its initial state at t = T = 8. The velocity values are averaged at the cell faces so that the
discrete incompressibility is satis�ed. The CFL number computed using the maximum velocity in the domain
is 1.

Common use of the single vortex test among researchers is not surprising as it is a convenient yet
challenging test to assess the ability of interface tracking methods in maintaining thin, elongated �uid
�laments in a �ow. In this test, these �laments are formed as a result of the vortex progressively stretching
and wrapping the initial circular �uid body inward toward the vortex center. The duration of evolution
from the initial con�guration is controlled by the period T . Using large values for T indicates that the circle
undergoes stretching for a long time, and the �uid �laments become thinner as more spirals are formed in
the domain. Consequently, it becomes increasingly di�cult for the interface tracking methods to bring the
deformed body back to its initial state.
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(a) t = 4 (b) t = 8

Figure 4: Single vortex test in 2D. Pro�le at maximum deformation (t = 4), and after full �ow reversal
(t = 8) using the H&N+LHF method. The grid is 128× 128, and CFL=1.

Figure 4 shows results from the H&N+LHF method on a 128× 128 grid. At maximum deformation we
observe a large amount of spurious fragmentation and coalescence, and at the end of the test the method
completely fails to capture the initial shape.

Figure 5 illustrates pro�les at maximum deformation at t = 4 using four reconstruction methods with
the COSMIC advection scheme on a 128 × 128 grid at CFL=1. Results indicate that as the �uid �lament
becomes thinner, fragmentation occurs at the tail of the deformed geometry where the curvature is high
and the interface is somewhat under-resolved. On the other hand, at the head of the geometry where the
curvature is also high, we observe coalescence which results in a blobby structure. Figure 5 shows that the
performances of the four PLIC methods are qualitatively similar. The amount of fragmentation is largest
with the Parker and Youngs' method (P&Y), and smallest with the ELVIRA method.

When the deformed geometry is brought back to its initial shape and location at t = 8, the four recon-
struction methods produce also somewhat similar results, see Fig. 6. The pro�les indicate a slight phase
shift compared to the initial circle.

Mesh
LSG ELVIRA LSF CVTNA

H&N+LHF

COSMIC EI-LE COSMIC EI-LE EI-LE PCFSC

322 2.74×10−3 2.70×10−3 2.55×10−3 2.54×10−3 1.75×10−3 2.34×10−3 1.01×10−2

1.97 1.96 1.97 1.97 1.91 2.12 0.94

642 7.01×10−4 6.93×10−4 6.50×10−4 6.47×10−4 4.66×10−4 5.38×10−4 5.25×10−3

1.84 1.87 2.11 2.16 2.19 2.03 1.09

1282 1.96×10−4 1.89×10−4 1.51×10−4 1.45×10−4 1.02×10−4 1.31×10−4 2.47×10−3

Table 2: Error (12) for the 2D single vortex problem with T = 2. CFL is equal to 1. The results in the
columns with the headers LSF/EI-LE and CVTNA/PCFSC are taken from [66] and [33], respectively. Rate
of convergence (14) is written in italics between mesh entries.

Table 2 shows the geometrical error (12) from various VOF modules. To be able to compare our results
with the literature, now we take T = 2. The data in the �fth column are taken from [66] as benchmark
results. [66] use their iterative linear Least-Square Fit (LSF) reconstruction scheme in combination with
the EI-LE advection. In this work, LSF was applied only in 2D, but later [55] extended the method to
the three-dimensional space. Another set of results is shown in the sixth column taken from [33]. This
work includes the implementation of the iterative Centroid-Vertex Triangle-Normal Averaging (CVTNA) for
reconstruction, and the Piecewise-Constant Flux Surface Calculation (PCFSC) for unsplit advection. For

12



(a) LSG (b) MYC

(c) P&Y (d) ELVIRA

Figure 5: Single vortex test in 2D. Pro�les at maximum deformation (t = 4) using four reconstruction
methods with the COSMIC advection scheme. The grid is 128× 128, and CFL=1.
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Figure 6: Single vortex test in 2D. Pro�les at t = T = 8 from four reconstruction methods with the COSMIC
advection scheme. The grid is 128× 128, and CFL=1.

the same advection method EI-LE, the LSG scheme performs the worst compared to ELVIRA and LSF in
terms of both magnitude of geometrical error and rate of convergence. However, the di�erence is modest
considering the fact that LSG is the cheapest and least complex among its counterparts [81]. For the same
reconstruction method, performances of the advection schemes COSMIC and EI-LE are close. Although not
shown in the table, this test was performed with MACHO as well, and the results were similar to those from
COSMIC. The �rst-order accuracy of the H&N + LHF method is con�rmed once again.

4.3 Shearing �ow - 3D

In the next test, introduced by [33] and later used by [82], a sphere of radius 0.15 and center (0.5, 0.75, 0.25)
in a domain of 1 × 1 × 2 is immersed in a velocity �eld which is a combination of the single vortex in the
x− y plane prescribed by Eq. (16) with laminar pipe �ow in the z-direction. The velocity �eld is stated by

u = sin (2πy) sin2 (πx) cos

(
πt

T

)
,

v = − sin (2πx) sin2 (πy) cos

(
πt

T

)
,

w = −Umax

(
1− r

R

)2

cos

(
πt

T

)
(17)

where Umax = 1.0, r =

√
(x− x0)

2
+ (y − y0)

2, R = 0.5, x0 = 0.5 and y0 = 0.5.
Figure 7 shows the results which are obtained on a 64× 64× 128 uniform grid with a CFL number equal

to 1. The LSG, MYC and ELVIRA schemes are used in combination with the MACHO advection scheme.
In the plots, geometries in blue color illustrate results from the numerical methods, and spheres in red color
at the bottom of the plots illustrate the initial geometry. Only the second half of the test is shown in several
snapshots; from maximum deformation at t = 3 to full reversal of the �ow at t = 6.

Analogous to the previous tests, H&N + LHF performs the worst amongst the VOF modules. With
the other methods, we observe holes in the thin, deformed �uid sheets around the instant t = 3. Also, at
the tail of the body, we observe spurious fragmentation. Comparing the PLIC schemes, ELVIRA shows the
best qualitative performance around the instant of maximum deformation. We notice signi�cant reduction in
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(a) H&N + LHF (b) MYC (c) LSG (d) ELVIRA

Figure 7: 3D reversible shearing �ow test: a combination of single vortex �ow and laminar pipe �ow. Only
the second half of the test is depicted through several snapshots taken at several instances from t = 3 (plots
at the top) to t = 6 (plots at the bottom). Results are obtained on a 64 × 64 × 128 uniform grid at CFL
= 1.0. The PLIC methods are combined with the MACHO advection scheme. Geometries in blue color
indicate numerical results, and spheres in red color in the plots at the bottom indicate the exact solution.
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fragmentation at the tail, and less holes in the thin �uid sheets. However, the results from the PLIC-MACHO
modules at the end of the test are almost indistinguishable.

Mesh
LSG ELVIRA CLC-CBIR

H&N+LHF

MACHO COSMIC MACHO COSMIC FMFPA-3D

32×32×64 1.20×10−2 1.17×10−2 1.16×10−2 1.17×10−2 9.95×10−3 6.20×10−2

1.51 1.51 1.53 1.52 1.61 1.07

64×64×128 4.21×10−3 4.10×10−3 4.01×10−3 3.97×10−3 3.27×10−3 2.95×10−2

1.45 1.44 1.51 1.49 1.82 1.05

128×128×256 1.54×10−3 1.51×10−3 1.41×10−3 1.40×10−3 9.27×10−4 1.42×10−2

Table 3: Error (12) for the 3D shearing �ow test (single vortex in the x−y plane with laminar pipe �ow
in the z-direction). CFL is equal to 1.0. The column with the header CLC-CBIR/FMFPA-3D shows data
taken from [82] for comparison. Rate of convergence (14) is written in italics between mesh entries.

Table 3 shows the geometrical error (12). The data in the column with the header CLC-CBIR/FMFPA-
3D is taken from [82] for comparison. This study includes the implementation of the coupled Conservative
Level-Contour and Cubic-Bezier-based Interface Reconstruction (CLC-CBIR), and the Face-Matched Flux
Polyhedra (FMFPA-3D) for unsplit advection in 3D. The �rst-order accuracy of the H&N + LHF method
is obvious. Although the CLC-CBIR/FMFPA-3D combination of [82] outperforms the other PLIC-VOF
modules, there is not a considerable di�erence in terms of both magnitude of geometrical error and rate
of convergence. Analogous with the previous test, the performance of the advection schemes MACHO and
COSMIC is similar for the same reconstruction method. Considering the reconstruction schemes, ELVIRA
shows a slightly better performance than LSG in terms of magnitude of error, though both schemes have
similar order of accuracy.

This and the previous numerical tests validate our VOF implementations as they compare favorably with
the seminal literature works. Taking into account the steep increase in mathematical complexity and the
large number of algorithmic tasks that come with the top-of-the-line contemporary VOF techniques, such as
the CVTNA/PCFSC combination of [33] or the CLC-CBIR/FMFPA-3D combination of [82], we opted to
implement techniques that result in a reasonable amount of decrease in accuracy for the sake of reduction
in computational e�ort and mathematical complexity [81]. In the end, the results from the numerical tests
proved to be consistent with this initial strategy.

4.4 Application example: Propagating Rienecker-Fenton waves

In the �nal test, we will assess the performance of the new VOF modules consisting of several reconstruction
and advection schemes in a practical application. For this purpose, the VOF modules are incorporated into
the CFD �ow solver ComFLOW. We will generate Rienecker-Fenton waves [83] in shallow water in 2D, and
monitor wave propagation throughout the domain. We particularly focus our attention on investigating
the e�ect of various VOF modules on energy dissipation in these simulations. Two Rienecker-Fenton waves
with the same period but di�erent heights are generated, see Table 4. WAVE2 has a steepness of 2.0% and
WAVE10 has a steepness of 10.8% which indicates strong nonlinear behavior in the �ow. Both waves are
started from rest, and within the �rst three periods, wave heights are gradually increased until full heights
are reached.

Waves
period height length steepness
T(s) H(m) L(m) H/L(%)

WAVE2 4 0.5 24.7 2.0
WAVE10 4 3.0 27.6 10.8

Table 4: Characteristics of the Rienecker-Fenton waves.

The length of the domain in the direction of propagation is de�ned in such a way that both waves do not
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reach the end of the domain during the simulations. This procedure guarantees that there is no re�ection
in the computational domain, and hence the solution is not perturbed. The duration of the simulations
should allow us to have a comprehensive picture regarding wave damping. Therefore, a stable wave system
for a large number of wave periods is required. In this analysis, we performed simulations for 200 seconds to
have a stable wave system for at least 18 consecutive wave lengths, and correspondingly a domain length of
2000 meters is considered su�cient taking the fastest propagating wave component into account. The water
depth in all simulations is 10 meters. Three uniform grid resolutions are considered for the grid convergence
study: 1m× 1m, 0.5m× 0.5m and 0.25m× 0.25m.

Figures 8 and 9 show wave elevation as a function of the horizontal position at time t = 200s on three
uniform grid resolutions for WAVE2 and WAVE10, respectively. The �rst 500m of the full computational
domain is plotted, since this part provides ample insight concerning the dissipation property of the VOF
schemes. The results are obtained by using three PLIC algorithms with the MACHO advection scheme; the
Mixed Youngs-centered (MYC) scheme of [55], the least squares gradient (LSG) technique by [54] and the
e�cient least squares VOF interface reconstruction algorithm (ELVIRA) by [56]. Also, the analytical results
from the Rienecker-Fenton theory and the Hirt-Nichols' VOF with local height function (H&N + LHF) are
plotted in the �gures.

To analyze the results quantitatively, we will use two error de�nitions. The �rst error is the relative
di�erence in wave height εH between the numerical results and the prescribed value for each wave given
in Table 4. The second error is the relative shift εL between the numerical and analytical positions in the
x-direction at which waves reach highest elevations. The expressions for εH and εL are given by

εH =
|Hn −H|

H
× 100, εL =

|xηn − xηa |
L

× 100. (18)

Table 5 shows maximum εH and εL values in Figs. 8 and 9. The rate of error reduction as the grid is re�ned
is obtained using (14) and written in italics and green color between mesh entries.

Waves Resolution
MYC ELVIRA LSG H&N+LHF

εH εL εH εL εH εL εH εL

WAVE2

1m×1m 30.5 12.9 27.2 12.9 29.5 12.7 48.9 8.9
3.12 0.70 3.04 0.72 2.47 0.64 1.78 0.36

0.5m×0.5m 3.5 7.9 3.3 7.8 5.3 8.1 14.2 6.9
0.37 3.30 0.40 3.28 0.72 3.33 0.94 2.52

0.25m×0.25m 2.7 0.8 2.5 0.8 3.2 0.8 7.4 1.2

WAVE10

1m×1m 66.5 35.1 62.3 31.4 65.1 35.2 80.3 49.6
1.12 0.12 1.33 0.08 1.19 0.13 0.78 0.57

0.5m×0.5m 30.5 32.2 24.7 29.7 28.4 32.1 46.7 33.3
1.65 2.08 1.59 2.28 1.64 2.30 0.73 1.87

0.25m×0.25m 9.7 7.6 8.2 6.1 9.1 6.5 28.1 9.1

Table 5: εH (%) and εL (%) values computed by (18). Rate of convergence (14) is written in italics and
green color between mesh entries. Results are shown for WAVE2 and WAVE10 using four VOF schemes on
three uniform grid resolutions of 1m×1m, 0.5m×0.5m and 0.25m×0.25m. The MYC, ELVIRA and LSG
reconstruction methods are combined with the MACHO advection scheme.

For both WAVE2 and WAVE10 the results show that the resolution of 1m×1m is very insu�cient, which
is expected since this resolution corresponds to, for example, only 3 cells per wave wave height and 27 cells
per wave length for WAVE10. On the �nest grid with the resolution of 0.25m× 0.25m all the VOF schemes
show better performances

If we look at the εL values in Table 5, we see that the performance of H&N + LHF for both WAVE2
and WAVE10 is comparable to those of the PLIC-VOF schemes. For WAVE2 the εL value from H&N +
LHF on the coarsest grid is 8.9% while the smallest εL value from the PLIC schemes is 12.7% produced by
LSG. For the same wave on the �nest grid H&N + LHF produces an εL value of 1.2% while the value from
PLIC schemes is 0.8%. Although H&N + LHF initially starts with the smallest εL value on the coarsest
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(a) Grid resolution is ∆x = ∆z = 1m
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(b) Grid resolution is ∆x = ∆z = 0.5m
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(c) Grid resolution is ∆x = ∆z = 0.25m

Figure 8: Wave elevations as a function of horizontal location at time t = 200s for WAVE2. The MYC,
ELVIRA and LSG reconstruction methods are combined with the MACHO advection scheme.
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(a) Grid resolution is ∆x = ∆z = 1m
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(b) Grid resolution is ∆x = ∆z = 0.5m
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(c) Grid resolution is ∆x = ∆z = 0.25m

Figure 9: Wave elevations as a function of horizontal location at time t = 200s for WAVE10. The MYC,
ELVIRA and LSG reconstruction methods are combined with the MACHO advection scheme.
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grid, its rate of convergence is somewhat poorer compared to PLIC methods, and it ends up with a larger
but comparable error on the �nest grid. For WAVE10 which is more challenging and more non-linear, H&N
+ LHF produces larger εL values on all the resolutions. On the �nest grid the 9.1% error from H&N + LHF
is larger than, but still comparable to, the 6.1% error from ELVIRA.

The values of εH in Table 5 depict, however, a di�erent picture. On all the resolution levels the PLIC
schemes demonstrate a clearly superior performance. For WAVE2 ELVIRA produces the smallest εH value
of 27.2% on the coarsest grid while H&N + LHF produces 48.9%. On the �nest grid this value reduces
to 2.5% with ELVIRA and 7.4% with H&N + LHF. For WAVE10 ELVIRA is again the best performing
method. On the resolution of 1m× 1m the εH value from ELVIRA is 62.3% while that from H&N + LHF
is 80.3%. As the grid is re�ned in two levels, the error from ELVIRA decreases at a rate of 1.33 and 1.59,
while the error from H&N + LHF decreases at a rate of 0.78 and 0.73. On the �nest grid the εH value from
ELVIRA in only 8.2% while that from H&N + LHF is 28.1%.

For WAVE2 the wave signals obtained with the three PLIC methods are almost the same for all the
three grid resolutions. For WAVE10 PLIC methods perform again very similarly. Both errors indicate that
ELVIRA performs better compared to others but only very slightly.

Figure 10 illustrates the results to compare the performance of the advection methods. Here wave
elevation as a function of the horizontal position is plotted at time t = 200s on three uniform grid resolutions
for WAVE10. The MACHO, EI-LE and COSMIC advection methods are used in combination with the
ELVIRA reconstruction scheme. The results demonstrate that all the three advection methods resulted in
almost the same pro�les at the three grid resolutions. When these advection methods were combined with
other PLIC reconstruction schemes, we again observed similar performances from the advection schemes but
preferred not to put those results here for the sake of brevity. This observation is valid for WAVE2 as well.

5 Concluding remarks

Several PLIC-VOF methods have been implemented in the CFD tool ComFLOW, and their performances
have been demonstrated in a number of test cases. In these tests the PLIC-VOF methods have also been
compared to the original VOF implementation in COMFLOW, the H&N + LHF method. The test cases
included a set of standard advection problems and an application example with Rienecker-Fenton waves. In
the advection tests velocity �elds are de�ned in such a way that advected �uid bodies return to their original
shapes and locations at the end of the simulation. Therefore, the volume fraction distribution at the end of
the simulation is expected to be equal to the original volume fraction distribution which can be considered
as the exact solution. The di�erence between these two distributions gives an estimation of accuracy of a
VOF method. In the application example with Rienecker-Fenton waves, spurious energy dissipation in the
computational domain was monitored, which manifests itself as loss of wave height accompanied by phase
shift. The results demonstrated that PLIC-VOF methods outperform the H&N + LHF method by a clear
margin without increasing computational costs in a disproportionate manner. In the advection tests the
PLIC-VOF methods showed a superior performance over the H&N + LHF method both qualitatively and
quantitatively, and in simulations of Rienecker-Fenton waves a signi�cant reduction in errors in terms of loss
of wave height as well as phase shift was observed. It is possible to conclude that although the H&N +
LHF method may be adequate to model low-steepness water waves, it has a limited ability to model more
nonlinear waves which are actually interesting in practical applications.

The PLIC-VOF methods which were used in this work do not involve highly complex mathematical
procedures with a large number of algorithmic tasks, and do not have strict limitations in stability. Therefore,
di�culty in implementing these methods was modest. Although direction splitting advection is easier to
implement than unsplit advection especially in 3D, it requires at least three interface reconstruction sweeps to
complete a volume tracking update. To overcome this increase in computational cost, we opted to implement
reconstruction techniques which have slightly lower accuracy compared to some of the contemporary PLIC
schemes, but are considerably cheaper as well as easier to implement [81]. In the end this strategy allowed
us to achieve a satisfying level of accuracy in an economical manner.
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(a) Grid resolution is ∆x = ∆z = 1m
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(b) Grid resolution is ∆x = ∆z = 0.5m
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(c) Grid resolution is ∆x = ∆z = 0.25m

Figure 10: Wave elevations as a function of horizontal location for WAVE10. The COSMIC, EI-LE and
MACHO advection schemes are combined with the ELVIRA reconstruction method.
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