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Abstract. The ISNaS-project aims at providing tools for computer aided design and engineering in
aerodynamics and hydrodynamics by developing an Information System for the simulation of complex
flows based on the Navier—Stokes equations. Major components of the project are the development of a
method-shell and of accurate as well as robust solvers for both compressible and incompressible flows. For
the incompressible case, guided by typical applications in the field of river and coastal hydrodynamics, a
solution procedure is being developed that is capable of handling complicated geometries, including free
surface effects, in particular for high-Reynolds number flow regimes. In the present paper the invariant
discretization of the incompressible Navier-Stokes equations in general boundary-fitted coordinate systems
is discussed. It is found to be important that certain rules are followed concerning the choice of unknowns
and the approximation of the geometric quantitics. This is illustrated by some preliminary results.
Extensions to moving coordinate systems and time-varying computational grids are indicated.

1. Imtroduction

Before proceeding with the subject proper of this paper, a brief outline is given of the
larger context of our research. Complex flow problems are encountered in many
branches of engineering science. Although the basic formulation of fluid flow
phenomena was already presented over a century ago by Navier and Stokes, the
solution of the resulting equations could only be obtained for idealised conditions and
simple geometries. However, with the advent of recent high speed (super)computers
more realistic (complex) applications are coming within reach. This implies that more
complicated geometries and more realistic flow conditions can be handled, at least in
principle. This also implies, however, that more and more effort is required to
formulate, program, test and maintain the software involved. This applies to all kinds
of fluid flows and is of major concern.

In order to combine efforts in The Netherlands, the ISNaS-project was initiated by
the National Aerospace Laboratory NLR, Delft Hydraulics, Delft University of
Technology and Twente University, co-funded by the Dutch government. The ISNaS-
project aims at providing tools for computer aided design and engineering by
developing an Information System for flow simulation based on the Navier—Stokes
equations. Details on background, scope and conceptual design are described in [12].
The two major components of the ISNaS-project are the development of a method-
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shell consisting of a method base, a method manager and an executive, and of accurate
as well as robust solvers for both compressible and incompressible flows.

The purpose of the method shell is to provide tools for management and execution
of computer programs. Different program components, supplemented with an
extensive description of their functions and aspects of implementation, are stored in a
method base system (MEBAS) which supports developers in composing application
programs, ready for execution by end-users, by combining the appropriate program
components. Implementation of component programs is handled by a method
manager, enabling the user to access, compose and execute the methods in functional
terms only. MEBAS is specifically designed for use in incremental software develop-
ment and for support in algorithmic research. The executive ISNEX supports users in
executing programs that are composed via MEBAS, on a distributed network of
compufer systems, keeping track of scheduling and data transfer. A description of the
method base system and executive as tools for management and execution of software
systems in computer aided engineering is given in [5].

The development of the compressible flow solver for aerodynamic applications is
discussed in [2]. The present paper focusses on the incompressible flow solver. It has
been decided to use a staggered finite volume discretization on a boundary-fitted grid,
in a coordinate-invariant formulation. The purpose of this paper is to present this
formulation. The choice between the various alternatives (finite volume or finite
element, staggered or non-staggered grid, Cartesian or contravariant velocity compo-
nents) is not clear-cut, It would lead too far to present here the considerations that
have led to the present choice. Suffice it to say that the invariant discretization of
physical conservation laws such as the Navier—Stokes equations is in itself a
fundamental and interesting subject, which has not yet received much attention.

2. General curvilinear coordinates

In order to be able to handle fluid flow problems of engineering interest in domains of
irregular geometry, an appropriate coordinate system has to be defined. General
curvilinear non-orthogonal grids, suitable to deal with quite arbitrarily shaped flow
domains and allowing adequate control of the computational grids, will be used in the
ISNaS-project. A distinction can be made between methods which employ grid-
oriented {contravariant) velocity components and methods which are based on
Cartesian velocity components. The choice is not at all trivial and indeed strong
arguments can be made for either of the two methods. Both formulations have
received considerable attention in the ISNaS project. The present paper follows the
contravariant approach.

Boundary-fitted computational grids are used, which implies that the boundaries of
the solution domain coincide with grid lines. The physical domain is mapped onto a
computational domain consisting of a number of rectangular blocks. In this way the
accurate implementation of boundary conditions is substantially simplified and
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efficient use can be made of vector and parallel computers. Here we restrict ourselves
to the one block case. It is assumed that admissible transformations x = x(&) and
£ = &(x) exist between the two domains, which implies that the Jacobians of the
coordinate transformations do not vanish; x are Cartesian coordinates, § are
boundary-conforming curvilinear coordinates.

Covariant base vectors a,, are defined as tangent vectors to the curvilinear
coordinate lines £* = constant, i.e.

Jx
a(u) = 'a_g‘; . (2. 1)

Contravariant base vectors a'® are defined as normal vectors to the surfaces on which
& is constant, i.e.

o¢s
@ _ 7> 2.2
at = 2.2)

We have a,-a® = 6/ with 6 the Kronecker delta. The covariant and contravariant
metric tensors ¢,; and g** are defined by
Gop =8y ;g% =a®-a® (2.3)

The determinant of the covariant metric tensor g,, is denoted by g; \/2; equals the
Jacobian of the transformation, given by :

J = /9 =124, (@ A ag) (2.4)

Tensor notation proves indispensable for formulating physical conservation laws in
general coordinates. An introduction to tensor analysis can be found in for example
[1], 6], [7], [10]. For completeness we summarize some basic facts. Tensors are
induced transformations that are isomorphic to transformations of coordinates, i.e.
tensors are mathematical objects that are independent of the coordinate system. We
will only consider tensors of rank zero (scalars), one (vectors) or two. An example is a
mixed relative tensor Qf of weight w and rank two with Cartesian components g},
satisfying the following transformation law:

03 = (V9)"aalp a3, 2.5)

where Q% are the components in the curvilinear coordinate system. Relative tensors of

weight zero are called absolute; relative tensors of weight one are called densities.
A covariant derivative is a tensor which reduces to a partial derivative of a vector

field in Cartesian coordinates. For an absolute scalar o, the covariant derivative is
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identical to the partial derivative, and is denoted by

do

=55 (2.6)

T o

The fluid density p is a tensor of weight 1 (a density). This means that p is not invariant
under coordinate transformation, but \/5 p is. Its covariant derivative is given by

a 14 1
pe= g~ =oses () @

where {3} represents the Christoffel symbol of the second kind, defined by

ol .08 08" 02X
{v} "3 = o ozoe 28

The covariant derivative of a contravariant tensor of rank 1 is defined by

Q4 = %&Q—; + {y‘;} 0. 2.9)

The covariant derivative of a contravariant tensor of rank 2 is defined by
20" fa B
af =% aff mé‘ 2.1
ot = +{5y}Q +{5v 0 (2.10)
It can be shown that

aﬂ=_}_a\/£;Qaﬂ {a} 173
Q% \/5_———*66,, + 2B Q. (2.11)

In tensor notation the divergence theorem is given by
f 0%dQ =SE Q%ds,, (2.12)
Q N
where dQ is the infinitesimal volume element given by

dQ = JgdEtde? .. dee, (2.13)

d being the number of spatial dimensions, and dS, represents the (physical) surface
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element. A fundamental geometric identity can be derived by applying the divergence
theorem to a constant vector field which gives

J 0%dQ = fﬁ 0%dS, = ¢ fﬁ dds, = 0. (2.14)
Q S hY

Since ¢” is arbitrary, this leads to the following geometric identity:
fh ads, = 0. (2.15)

It is important to satisfy this identity also numerically, in order to prevent
conservation errors in the numerical solution.

The governing equations are the incompressible Navier—Stokes equations. Using
contravariant tensor components for the fluid density, velocities, viscous stresses and
pressure, the coordinate-invariant formulation of the governing equations becomes

U% =0 2.16)

and
0 o« ay B af off «
a(ﬂU )+ (pUUP) 5 + (g%p) g — 7% = pf*, (2.17)

where 1% represents the deviatoric stress tensor given by
8 = #(gavaly + gV”U‘f‘,,), (2.18)

with u the (laminar or turbulent) viscosity and p the fluid density. The convection-
diffusion equation for a scalar T is given by

T
¢t ==+ (UT)e — (K¥Ty) o + DXT = 4, (2.19)

where ¢*, K*, D* and f* are given functions.

3. Invariant finite volume discretization

Invariant (ie. invariant with respect to change of coordinates) formulations and
discretizations of physical conservation laws are complicated at first sight, and costly.
Therefore most formulations are in special coordinate systems, or not completely
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invariant. For example, Cartesian vector components are used as scalar unknowns.
The accuracy and stability of such approaches is sufficient for practice only if
restrictions are placed on the mapping x = x(&). Both from a practical and a
fundamental point of view it seems attractive to develop general invariant discretiza-
tions of invariant formulations of physical conservation laws. To the authors’
knowledge, the only publication where this is done for the incompressible Navier—
Stokes equations is [4], using the Gibbs notation. We will adhere to standard tensor
notation. A useful general discussion of invariant formulations and discretizations of
conservation laws is given in [11].

For simplicity we restrict ourselves to the two-dimensional case. In order to obtain
a stable discretization without introducing artificial stability terms, a staggered grid is
used. For a comparison between the staggered and the non-staggered approach, see
[3]. Figure 3.1 shows part of the staggered grid in the physical plane. This is the image
under the mapping x = x(&) of a uniform grid in the &-plane. The pressure is
computed in cell centers (@), U® is computed in the centers of cell faces connecting
vertices with equal values of £* (U! in (=) and U? in (1)). The symbols — and 1 are
used for typographical convenience only and are not meant to indicate the direction of
a vector. It is assumed that the only geometric information available is the value of
x(§) in the cell vertices. The other geometric quantities (\/‘ , 4 etc.) have to be
deduced carefully. For accuracy reasons, the following requirements should be met:

(i) When representing a constant velocity field u on the staggered grid in terms of
its contravariant components U?% and recomputing u from U% the original
vector field u should be recovered exactly.

(i) The geometric identity (2.15) should be satisfied exactly for all cells.

These requirements can be met if:

(i) Instead of the velocities U® the fluxes V“=\/§U“ are used as primary
unknowns,

x -plane

Fig. 3.1. Staggered curvilinear grid.
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(ii) The geometric quantities are computed as follows. The base vectors a, are
computed according to

Sxf SxP

X
afyy = senr Y =5a (3.1)

in the U2- and U*'-points respectively. Here § implies taking differences between
the points where x(£) is given (i.e. the cell vertices) in the obvious way.
Furthermore,

9 = alyalsy — ataly (32)

taking averages where required. Finally,

1 1
al) = -—\/—Z(a(zzb —ap), A= ~';(““(21)’ ) (3.3)

again taking averages where required.

For convenience we introduce the local cell coordinates given by Fig. 3.2, which shows
part of the computational grid in the &-plane. Integration of the incompressibility
constraint over a pressure cell with center at (0,0) gives

j UsdQ ZSE U%ds,. (3.4)
o} S

Let 88 be the vector with direction along the outward normal to a face with a U*®
point as center, and with length equal to the length of that face. Hence

88 = fga®sEs, o, f cyclic. (3.5)

Computing a® according to (3.1), (3.3) implies that effectively in the x-plane the faces
of the cells are taken to be straight (hence they are curved in the &-plane; they have

0,2 2,2
| | 1
-1 — 01 — 11 — 21 — 31
l l i
-1,0 0,0 1,0 2,0 3,0
I l |
— -1 — 01 — L1 — 21 — 31 —

Fig. 3.2. Local cell coordinates.
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been drawn straight in Fig. 3.2 merely for convenience). To explain the discretization

of the integral along S in (3.4) it suffices to consider the integral along the face with
vertices (1, —1) and (1, 1). We have

1,1
j U“dS, = (USSY)y o (3.6)
1 1

We have 65! = a{‘a,\/; a8 = \/5562 since afl,al’ = 6). Hence
1,1
J UdsS, = V3 o0&
1.—1
and
fﬁ UsdS, = VL0 0562 + V2L, SEL. (3.7)
S

Let u be a constant vector field. Substituting V* = \/5 af'u? and using (3.1) and (3.2)
one finds that

VLS 088 + V2L 68 =0, (38)

so that requirement (ii) is satisfied. Requirement (i) is verified as follows. Let w be a
constant vector field. Its representation in terms of V* on the staggered grid is

ve=_/gaw. Hence, using (3.3),
Vi =akw' — abw?, V= —a}l,w' + alwh (3.9)
Now recompute the Cartesian components u* from (3.9) in the cell vertices:

1

1,1=5—\/—§

where Z, indicates summation over grid points (1,0) and (1,2), and X, indicates
summation over (0, 1) and (2, 1). Substitution of (3.9) in (3.10), and evaluation of \/a
according to (3.2) results in

u(!

11 {21:(“?1)1/1) + ;(a‘(z)Vz)}, (3.10)

Wy = w1, (3.11)

We also have (3.11) in cell centers (0, 0). Hence, requirement (i) is satisfied. If U* is used
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as primary unknown instead of ¥*(3.11) would not hold exactly, which is why the use
of V* is to be preferred.

As a preliminary to the discretization of the momentum equation we first discuss
the discretization of a general conservation law of the form

T = f*, (3.12)

This equation is to be integrated over finite volumes. On the staggered grid used here,
integration takes place over cells with vertices in U?-points and center in a U'-point
for @ = 1, and vice-versa for o = 2. Taking a cell with center at (1,0) as an example,
equations (2.11) and (3.12) and partial integration gives

f Tid0 - f WY g f {ﬂﬂ%d@*d&z
Q Q o (7B

Filad
= (/g THYR80E + (/g T”)[i;tlécw(ﬁ {;ﬂ} Tvml,o) 5168, (313)

This method of discretization we will call variant 1. Christoffel symbols occur. These
are computed in the obvious way by computing a® and a,, in the way described
before, and taking differences. The Christoffel symbols involve second derivatives of
the mapping x = x(&€), which may not be approximated accurately by the method just
described (nevertheless, as will be seen, results with variant 1 look promising). The
Christoffel symbols can be avoided by the following more subtle approach, which we
will call variant 2. Variant 2 is equivalent to the discretization presented in [4]. We
contract (3.12) with linearly independent vector fields w', y = 1,2, before finite
volume integration. In order to prevent the occurrence of Christoffel symbols, w'”
should be constant. In order to obtain stable discretizations in general, w”’ should be
chosen differently in each cell. We define w in the center of the finite volume under
consideration by

W = 50, (3.14)
with § the Kronecker delta, and extend the definition of w” over the whole domain by
imposing w” = constant. Integration takes place over cells with vertices in the U?3-
points and center in a U'-point with y = 1, and over cells with vertices in U'-points

and center in a U2-point with y = 2. This gives, taking a cell with center at (1,0) as an
example,

L WOTHAQ = L(W;UT“/*),,,dQ

2 (/g WOTEE5E + (g WO T hL 82 (3.15)
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We have

W)o0 = (afywylo.0 = afylo.owi 10

= af’a)lo.o(a?)w(y”)h,o = a&)l(o.ma}})h.o‘ (3.16)

Note that Christoffel symbols do not appear, and that the mapping x = x(&) is
differentiated only once to obtain a,, and a™®.

Variants 1 and 2 are applied as follows to the momentum equation (2.17),
abbreviated as

ST = (3.17)

Integration over a finite volume of T% is done according to (3.13), or to (3.15) and
(3.16). Next, T* has to be approximated. The convection and pressure parts are easily
obtained, averaging where necessary. In the viscous part covariant derivatives occur.
These are handled as follows. If suffices to discuss variant 2. As an example we take

again a cell with center at (1,0), and consider the term (\/5 WugUl)lo 0. Let now Q
be the pressure cell with center in (0,0). We write

(JIWLRIUoo =38 | (/g WgTUN,40

’l‘al" WG Vids,, (3.18)

where we have used the fact that \/5., =0 and g% = 0. The remaining contour
integral is discretized in a similar way as before. Figure 3.3 shows for variant 2 the
structure of the resulting stencils; (a), (b), (c) and (d) refer to the continuity equation
and the contributions of the inertia, pressure and viscous terms, respectively. The
stencils for the U?-momentum equation are obtained from those for the U!-equation
by rotation over 90°. The total number of variables linked together in a momentum
equation is 23, Variant 1 results in slightly smaller stencils, not given here.

& T L * * + T + Tb P Tb by
. ,J_, T N T . . ~T" 1 T iR ﬁf_r) T
1 + + P 4 1 + +
4 + T iR i . . LI e L
T
(a) (v) @ @

Fig. 3.3. Stencil structure.
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Discretization in time can be done by any of the usual methods. We have
f WwPUdQ ~ (\/a WOUSELSE? = VESELSE?, (3.19)
o
where C is the center of Q. A possible time discretization is

yn+ 1 Yol

5515:2
+ p(@f+L 4 (1 — @)f*")}Q. (3.20)

For stability we take ® > 1/2. ‘

Details about the implementation of boundary conditions are not given here. We
restrict ourselves to noting that if the grid is orthogonal at the boundary, the situation
is similar to the Cartesian case. Since it is possible to generate boundary-orthogonal
grids in two or three dimensions, this may be the most attractive way to proceed.

The resulting nonlinear system of equations is solved approximately by the well-
known pressure-correction method ([13]), as follows. We abandon tensor notation.
Let = be the vector containing all pressure unknowns, and let o contain all V*
unknowns. The algebraic system can be written as

f {W("'(®T°'ﬁ B + (1 — Ta:ﬁ

6" = g" 4+ N(@"*1) + @D "t + f7,  Dyo"t! =0, (3.21)

where N is a nonlinear operator, D, and D, are linear operators, and f" is a known
source term. The pressure correction method is used. First ¢* is determined from

o* = 0" + N(c*) + OD n" + " (3.22)

To determine ¢* one Newton iteration is carried out with ¢" as initial guess. The
resulting linear system is solved with a conjugate gradient type iterative method. Next,
on"*! and ¢"*! are determined from

"t =g* + @D, Sn"*!, D"t =0. (3.23)
This gives
D,D "t = ——é—Dza*. (3.24)

This equation is also solved by a conjugate gradient method. Finally one puts

77:n+1 =" + 57'C"+ l. (3'25)
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4. Time-varying computational grids

In the previous sections, curvilinear boundary-conforming structured grids were
considered, that are stationary in time. In this section the implications of a moving
coordinate system and time-varying three-dimensional computational grids for grid
generation and discretization are indicated.

Since in general it is not possible to map an arbitrary three-dimensional domain
onto a single cube, a given domain is first divided into subdomains, each of which is
topologically equivalent to a cube. This is known as domain decomposition. In this
way, quite complicated geometries can be handled and smooth computational grids
can be constructed. For a survey of domain decomposition, see [8], [9]. Within each
subdomain a structured computational grid is generated. Details on the foundation
and application of numerical grid generation can be found in [10].

In many hydrodynamic applications the free fluid surface plays an important role.
Sometimes changes in the fluid surface are induced by the flow itself, e.g. by the
Bernoulli-effect for flow over a weir, sometimes a moving fluid surface is caused by
external forces, e.g. in case of wind-generated waves. Since the free surface boundary
conditions have to be specified at the free surface position — which may be part of the
solution — special treatment is required to handle free surface flow problems.

One way to model a moving fluid surface is to use so-called adaptive computational
grids where the surface motion is either prescribed or governed by the fluid flow. In
both cases it is necessary to re-compute the positions of the grid points at various time
intervals. Moreover, an adaptive moving mesh method will introduce additional
terms in the transformed equations of motion due to the time-varying grid point
locations. The relative importance of these terms depends on the length and time
scales of the physical problem at hand. It is assumed here that they have to be
included.

The governing equations expressing conservation of mass and momentum in a
stationary reference frame are given by (2.16) and (2.17). In a moving reference frame,
the grid point locations vary in time and hence Christoffel symbols related to time-
varying grid point locations appear. To account for the time coordinate we introduce
the four-vector (&%, £%) where the index O refers to the time coordinate £° = t. The
additional Christoffel symbols related to time derivatives can be derived from the
definition {2.8) which gives

0 *ﬁt_ 0*x? ~0 il
vBf = ox? opaet (41)
o a) 08 *x ot okt s

{yo}"{()y}—@%“a?&?“x’ (42

{“}sa_éffx_aza_fixa:_jga (4.3)
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where %% and %? are the Cartesian grid point velocities and accelerations, X? and X?
being the associated contravariant components. The contravariant grid point velocity
is readily obtained by invoking

aEx ax® o
cq@ = il = 44
Ao A= T e
which gives
ag* .5 0¢° ;
= — _xﬁ_aF___ X3 @4.5)

The fundamental metric identity given by (2.15) in a stationary reference frame can
also be extended to a moving coordinate system by applying the divergence theorem
to a constant vector field

f 0%4Q + f 0%4Q =0, (4.6)
Q Q

which, by virtue of the divergence theorem, gives

L 0%4Q + 3& Q%dS, = 0. 4.7

Analogous to (2.14) the expression

a0
q° {‘a? - fﬁ xadsa} +q ﬁ ads, =0 (4.8)

should hold for an arbitrary four-vector (¢°, ¢*) which implies the following geometric
identities in a time varying coordinate system:

Q_ 3§ xdS,; f]g afds, = 0. (4.9)
ot s s

Expressions (4.1), (4.2), (4.3) and (4.9) can be used to formulate the governing equations
in a moving curvilinear coordinate system. If the contravariant velocities relative to
the moving curvilinear coordinate system are used as unknowns, the governing
equations take the following form

UL+ X5 =0, (4.1

o

i} o
o« arf af — af
% (U +(pUU") 5 +(g™p) g — % +{00}p+2{0[3

}pU”=pf", 4.11)
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where grid point velocities and grid point accelerations appear because of (4.2) and

(4.3). The need to compute the grid point accelerations can be avoided by using,

instead of the contravariant velocities U* relative to the moving curvilinear coordinate

system, the contravariant components U® relative to the stationary grid, given by
U*=U*+ X~ (4.12)

The incompressibility constraint is again given by

0% =0, (4.13)

but the momentum equations now become
o ch ﬂ raf
NNT, U)+\[a§,,(fp (U7 - X~ /g3)
"y Xli — g8
{yﬁ}(pU( ) - % )+\N§a fp)+{ }p

{ﬁ} (UP — X% = pf~, (4.14)

\/‘m

where the deviatoric stress tensor is given by

2 = w(gue, + g %) 4.15)
and the metric tensor by

g = g0 — X=X, (4.16)

and only locations and velocities of the grid points appear, and no accelerations.
These equations can be used as a starting point for the numerical discretization in very
much the same way as described above for a stationary computational grid. However,
the moving grid point positions and velocities in the interior of the computational
domain have to be computed by a grid generator from the prescribed or computed
values along the boundaries. This implies a direct coupling between the grid generator
and the flow solver.

5. Preliminary results
In this section some preliminary results will be presented obtained with variant 1. The

domain and the grid are given in Fig. 5.1. We have an L-shaped channel. This
geometry has been chosen because it leads to rather abrupt variations in grid
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i
i
Dyt

Fig, 5.1. Domain and grid.

geometry and solution, thus presenting a severe test for discretization methods. First,
a uniform flow field is prescribed at the boundaries in an arbitrary direction. The exact
solution is a uniform flow field. The exact solution is reproduced exactly by the
numerical method. This is a nice feature, which many general coordinate codes lack.
Next, a parabolic velocity profile is prescribed at inflow and the shear stress
component and tangential velocity component are put zero at outflow. The resulting
streamlines are given in Fig. 5.2. The Reynolds number is based on the width of the
channel. This solution shows good agreement with results obtained with a standard
finite element code. Figure 5.2 also gives results with a modification of variant 1, in
which, contrary to the recommendations of Section 3, U* are used as unknowns
instead of V% On this coarse mesh a significantly different solution is obtained which
deviates appreciably from finite element results. It may be concluded that the
recommendations of Section 3 should be followed, and that variant 1 provides a
robust and accurate discretization on coarse and non-uniform grids. Results for
variant 2 are not yet available.

6. Concluding remarks

A brief outline has been given of the ISNaS-project, which aims at providing tools for
computer aided design and engineering by developing an information system for flow
simulation based on the Navier—Stokes equations. The main topic discussed is the
discretization for incompressible flow.

Fig. 5.2. Streamline patterns obtained with variant 1; Re = 10. (a): V* unknowns; (b): U* unknowns.
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The physical domain is mapped onto a computational domain consisting of a
number of rectangular, uniformly gridded blocks. Only the single block case is treated.
In order to formulate the physical conservation laws in general coordinates, tensor
notation is used. An invariant finite volume discretization is derived for the governing
equations describing the physical conservation laws. Particular attention is given to
the way in which the geometric quantities are deduced from the discrete geometric
information in the cell vertices. The contravariant flux-components rather than
velocity components are used as primary unknowns. Christoffel symbols appear in the
conservation equations. They involve second derivatives of the mapping, which might
lead to inaccuracies. Two variants have been presented. In variant 1 the Christoffel
symbols are approximated in a straightforward manner. In variant 2 the occurrence of
Christoffel symbols is avoided by contracting the governing equations. Preliminary
results obtained with variant 1 show that a robust discretization is obtained on coarse
and non-uniform grids, For stability reasons a staggered grid arrangement is used for
the velocity components and the fluid pressure. Research is under way to investigate
the applicability of collocated methods as well.

Time discretization is presented and an outline is given of the solution strategy
based on the pressure correction method. The resulting systems are solved with a
conjugate gradient type iterative method.

It is shown that time-varying computational grid can be handled in very much the
same way, thus enabling extension of the solution method to adaptive computational
grids as encountered in hydrodynamic applications involving a moving free fluid
surface.
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