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Vertical Takeoff and Landing
of Flexible Wing Kite Power Systems

Sebastian Rapp* and Roland Schmehl
Delft University of Technology, Faculty of Aerospace Engineering

In this work a novel vertical take-off and landing methodology for flexible wing kite power
systems is presented. Starting from a basic mast-based launching and landing concept the
operational envelope will be enlarged using the external assistance of a multicopter. The multi-
copter is used to drag the kite along a specified launching path until the operational altitude is
reached, where the kite is detached and steered to its characteristic parking position while the
multicopter lands. The landing of the kite will be conducted without multicopter assistance
and solely the winch will be used to pull the kite towards the ground station. For all maneuvers
flight control algorithms are presented and the feasibility of the proposed methodology is ana-
lyzed using a developed simulation environment incorporating models for the kite, multicopter,

ground station, as well as the tethers that connect the individual subsystems.

I. Introduction

NE of the open technical challenges of airborne wind energy (AWE) is the automation of the launching and
O landing procedures for flexible as well as rigid wing kite power systems [1, 2][3, p. 111-113]. To ensure the
commercial viability of the technology, these procedures, which envelope the operational phase of the system, have
to be highly reliable and robust in different weather conditions. However, as an atmospheric phenomenon, wind is
fluctuating in magnitude and direction, on short and long time scales, which makes launching and landing in particular
challenging. For most of the practically pursued system concepts the launching starts from a configuration at which
the tether is short and the airborne device is consequently close to the ground station. This requires either external
supporting devices for the launching and the landing phase such as catapults for a translational launch, a rotating arm
mechanism for a rotational launch or additional onboard engines. In practice, several companies that operate rigid wing
kite power systems such as e-kite, Kitemill, Makani and TwingTec are in favor of additional onboard engines that enable
a vertical take-off and landing (VTOL) solution [4]. One advantage over other launching and landing concepts is that
the required additional infrastructure for a VTOL system is negligibly small and comparably simple since no additional

mast, rotating platform or rotating arm is required. This makes the VTOL approach a cheaper and more mobile solution
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compared to other concepts. Furthermore, the kite system can be launched in an arbitrary direction, which is not
possible if for instance a horizontal take-off approach is chosen, unless the corresponding launching platform can be
rotated, which of course increases the complexity and cost. Moreover, precise landing maneuvers are possible, since
the wing can be pulled towards the ground station while the rotor thrusts can be used to stabilize the kite attitude in a
quasi-hover state. For a more detailed comparison of different launching and landing approaches for rigid wing kite
power systems it is refered to [1].

Companies and institutes with flexible wing systems have tested different strategies including a simple static
mast-based launch and landing, which is utilized by the company SkySails, an upside down swing-up launching as
presented in [2] or a launching and landing system based on a rotating arm, a concept pursued by the company KiteGen
[4]. The major disadvantage of these concepts is their strong dependency on the wind conditions in ground proximity,
resulting in a limited control authority at low wind speeds. Because of the wind shear effect the wind velocities at
ground level are generally low and the turbulence level is high, both conditions negatively affecting the robustness and
reliability of these launching and landing mechanism.

In general, a VTOL approach for flexible kites leads to additional technical challenges since the rotors are difficult to
integrate into the wing. One possibility is presented in [5], where the rotors are instead mounted on the steering unit and
the kite is dragged upside down to the operational altitude. The downside of this approach is the required onboard
power which is necessary to compensate kite weight as well as the aerodynamic forces. Moreover, the additional mass
has to be carried onboard during the entire power cycle, which has a negative impact on the overall system performance.
Furthermore, scaleability issues could arise for larger kites that generate large aerodynamic forces that might be difficult
to compensate by the onboard power of the multicopter system.

Besides the work in [5] the potential of VTOL for flexible kite power systems has not yet been addressed in the
scientific community. The present work tries to fill this gap by proposing a hybrid VTOL approach. It complements the
simplicity of a static mast-based approach, whose operational envelope will be extended with an externally attached
multicopter system. In fact, it drags the kite to the operational altitude only in certain wind conditions that would
not allow a passive mast-based launch. In case of a sufficiently high ground wind speed the kite will be launched
without the external assistance of the multicopter. Both concepts, mast and multicopter launching, can be regarded
as complementary since the static mast-based launching is appealing due to its simplicity and autonomy with the
disadvantage that it works only well in combination with a sufficiently high ground wind speed, whereas the VTOL
concept works most reliably in low wind conditions at the cost of increased complexity. Compared to the approach
presented in [5] the present concept will suffer less from the scaleability problem, since the higher aerodynamic forces
generated by larger kites can be exploited explicitly during the launching and the additional mass of the VTOL system
will not deteriorate the overall power output.

The presented approach in this paper allows, in theory, to launch multiple kite systems in a kite park with a single



multicopter. However, such a fully automated launching procedure is challenging due to the required automation of
the attachment process, as already pointed out in [5]. In the present work, the requirement for full autonomy will be
weakened, such that a manual attachment of the multicopter still complies with the system requirements. Nonetheless,
the presented approach can be regarded as a preliminary study of a single kite VTOL concept that can be extended to a
multiple kite VTOL concept in the future. This would require the development of the attachment automation, which is
out of the scope of this paper, but leaves ample space for future research.

Photographic footage of a preliminary small-scale experimental study conducted in cooperation with Kitepower B.V.

is shown in Fig. 1 and a schematic visualization is depicted in Fig. 2.

Fig.1 Custom made drone launching a 9 m? kite. Photo credits: Marcos Jerez Venegas.

Fig. 2 Sketch of drone assisted launching with ground station 1, kite steering unit 2, kite 3 and multicopter 4.

The paper is structured as follows. In section II a detailed theoretical analysis is conducted with the aim to develop
boundary conditions for the launching and landing phase. In section III simulation models for all the involved subsystems

are developed. For each of the subsystems a controller is designed in section IV. Simulation results will be presented in



section V along with an overview of the developed methodology and a conclusion is given in section VI.

I1. Theoretical Analysis

A. Boundaries of Assisted and Non-assisted Launching and Landing Maneuvers

The subsequent calculations require the definitions of several coordinate systems. The wind frame W will be used to
define the position of the kite and is defined as shown in Fig. 3, where the xw axis is pointing in downwind direction
and the zw axis is pointing upwards, while the yw axis forms a right-hand coordinate system together with xw and zw.
The tangential plane frame 7 will be used in combination with a body-fixed frame B to describe the orientation of the
kite. Figure 4 shows the definitions of the 7- as well as the B- frame, whose origins are both attached to the center of
gravity of the kite. The z, axis is pointing towards the origin of the wind frame W, the x, axis points towards the zenith
position, which is located above the ground station. Note, the 7-frame is defined equivalently to the North-East-Down
frame for a small earth with radius one and center at the origin of the W-frame, which is visualized in Fig. 3. The
body-fixed axis xp is parallel to the center chord of the wing, while the zg axis points from the center of gravity of the

kite towards the steering unit.

Fig. 3 Visualization of wind frame W, body-fixed frame B and tangential plane frame 7.

For the subsequent analysis it is assumed that the steering unit coincides with the center of gravity of the kite. This
point-mass assumption of the kite system will be dropped in section III, where 6-DoF simulation models are developed.
It turns out that the point-mass assumption in this section leads to conservative results, which can be improved by
defining a pitch angle ®, about which the wing is rotated relatively to the tangential plane frame. In reality, this rotation
is mainly caused by the drag as well as the weight of the tether and the steering unit which lowers the angle of attack of
the kite.

In the present work, boundaries for the launching and landing procedures are defined in terms of equilibrium

positions that a kite is able to reach if the wind speed is high enough to keep the kite airborne. For a kite that is not
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Fig. 4 Visualization of the launching kinematics.

flying crosswind this equilibrium position is located in downwind direction at a certain elevation angle ¢ = ¢q and
results from a moment equilibrium around the tether attachment point on the ground. The equilibrium is often denoted
as the parking position in the airborne wind energy literature [6]. Most publications regarding flight control of kites
assume that the kite is already airborne and the existing control approaches usually start controlling the kite from the
parking position into crosswind flight and back. The work in this paper aims to fill this gap by providing a methodology
and a simulation environment that allows to guide the kite from the ground to the parking position and from the parking
position back to the ground. Due to the modularity, the presented approach can be combined later on with existing
crosswind flight controllers such as the control approach presented in a previous work of the author [7]. The goal of the
kite launching maneuver will be to control the kite from the ground to the parking position with or without assistance of
the multicopter depending on the wind conditions. Based on an equilibrium analysis a minimum wind speed in ground
proximity can be used as a threshold that if not reached will require the assistance of the multicopter system to launch
the kite to higher altitudes with sufficiently high wind speed. All feasible parking positions are primarily a function of
the wind speed. The contributing forces that are used to derive the equilibrium condition are the aerodynamic force
consisting of drag D and lift L and the weight myg of the kite. The tether force is neglected in the moment equilibrium

due to the straight tether assumption. This leads to the well-known equation for the parking elevation angle:

L(¢) —mxg

tan(¢) — D@ 0, (1)



with

L = 0.5p5.Cr(a)v2, 2)

D = 0.5p8Cp(a)v, 3)
and

a:g—/l—¢+®7, )

where O is the pitch angle of the kite with respect to the tangential plane, p is the air density and S is the kite reference
area and v, is the absolute value of the apparent wind speed vector as defined in Eq. (6). A is defined as the angle
between the wind speed vector and the apparent wind speed (see Fig. 4) and is defined by the difference of the wind and
the kinematic kite speed:

-

viv

A = arccos (a—w), 5)
Ivall2 IV ll2

where the apparent wind speed vector v, is given by
Va = Vw = Vk. (6)

In the following, the absolute values for v,, v, and v are denoted with v,, vy, and vk. Note that in case of a stationary
kite v = 0 and hence A = 0. For C (@) and Cp(«a) the same values as in [6] are used, as they reflect the aerodynamic
properties of the kite used in the present work. Equation (1) depends implicitly on ¢, hence it has to be solved
numerically. The solutions of Eq. (1) are calculated for different wind speeds and pitch angles ®, and visualized in the

contour plot of Fig. 5, where the contour lines represent the parking elevation angles ¢. Note, in order to ensure a
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Fig. 5 Parking elevation angle ¢ as a function of pitch angle ®, and wind speed vy,.

minimum distance to the ground an additional constraint in form of a minimum elevation angle of approximately 45° is
imposed. Furthermore, in practice positive pitch angles are not obtained hence the mathematical solutions for @, > 0°

can be ignored. It can be observed that depending on the kite pitch angle ®, the boundary for the minimal wind speed



changes and usually ranges from ~ -5.4 m/s with ®,=-20° to ~ -8 m/s with @, = 0°.

For the subsequent launching and landing analysis it is beneficial to look at equilibrium points with a constant radial
velocity vy, which in the case of a straight tether is equal to the reeling-out velocity. This enables to calculate boundaries
that frame the non-assisted launching envelope as a function of v;. Solving Eq. (1) numerically for different wind and
reeling out speeds yields the results as depicted in the contour plot of Fig. 6. Note the consistency of the solutions in
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Fig. 6 Parking elevation angle ¢ as a function of v, and vy, with fixed @, = 0°.

Fig. 5 and Fig.6 for the parking equilibrium elevation angle with v, = 0 m/s and ®, = 0°.

As mentioned above, assuming a zero pitch angle of the kite for the calculation of the equilibrium points induces
conservatism, which will be discussed in the following. Based on the results in Fig. 6 it can be observed that a kite
attached to a vertical mast i.e. ¢ = 90° is not within the depicted feasible solution space. If for instance the kite is
launched with v, = 0.5 m/s a wind speed of vy, < 8.1 m/s and additionally an initial inclination ¢ = 67° is required,
otherwise no launching along equilibrium points is possible. For arbitrary reeling out velocities v, > 0 the wind speed
and elevation angles have to satisfy vy, > 8 m/s and ¢ < 72 °, respectively, in order to enable a non-assisted launching.
This restriction does of course not hold for the multicopter assisted launch, since the force differential required to lift the
kite is provided by the multicopter thrust.

In theory, the reeling out velocity determines the required initial inclination of the kite for a given wind speed. The
choice for the reeling out velocity for a given wind speed is a design parameter and could be determined based on the
to be expected parking elevation angle. As can be observed in Fig. 6, decreasing the reeling out velocity for a given
wind speed will increase the equilibrium elevation angle. For instance, assuming that just before the target altitude a
wind speed of vy, = 11 m/s is present and assuming that the kite is launched with a constant radial velocity controlled
by the winch e.g. v; = 1 m/s, then stopping reeling out i.e. v — 0 creates a velocity component perpendicular to the
radial velocity vy, i.e. in x; direction, since the equilibrium elevation angle increases up to approximately 76°. This
observation will be used later on for the path planing.

From the results depicted in Fig. 5 it can be observed that for @, € (-7.5°, 0°), which is the usual range of the pitch

angle observed during experiments, and wind speeds v, > 8 m/s, which is required for non-assisted kite launches, the



parking elevation angle will be greater than 64°, while the maximum elevation angle will be around 73° for vy max = 14
m/s. This means that launching path elevation angles up to 73° are possible, since it is desired that the kite will move in
positive x; direction if v, — 0. Note that the equilibrium path angle during the launching will always be smaller than
the parking elevation angle. Eventually, the maximum reeling-out speed is theoretically determined by an operational
constraint regarding the minimum possible elevation angle during launching provided for instance by an inclined mast.
In addition, higher reeling-out speeds require higher wind speeds to compensate the loss in apparent wind speed. The
smallest reeling out speed is essentially limited by other operational constraints such as requirements on the launching
time or the accuracy of the winch controller at low rotational winch speeds. It is assumed that in practice the reeling out
speed will be between 0.5 m/s and 1.0 m/s. To illustrate the effect of the pitch angle on the equilibrium elevation angles
as function of wind speed and reeling out speed, the results for ®, = -7.5 ° are depicted in Fig. 7. By comparing Fig. 6
with the results depicted in Fig. 7 it can be observed that the pitching down of the kite leads to smaller lower bounds

on the minimal wind speed, which reflects the mentioned conservatism. This indicates that for a non-conservative
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Fig. 7 Parking elevation angle ¢ as a function of v, and v,, with fixed ®, = -7.5°.

estimation of equilibrium points the pitch angle of the kite plays a major role. Since the pitch of the kite is mainly
influenced by the tether drag and steering unit weight, the simple point mass model is not sufficient to calculate the
optimal bounds, but due to the conservatism leads to safe bounds, which is sufficient for the further analysis in the
present work.

An equivalent analysis can be made regarding a steady landing. Steady solutions with v; < 0 are depicted in Fig. 6.
The results in Fig. 6 and Fig. 7 indicate that also during the reeling-in phase negative pitch angles shift the minimal
wind speeds required for a steady descent to lower values. Therefore, depending on the wind measurement on the
ground conservative reeling-in speeds that lead to a steady descent of the kite can be selected. Note, if a reeling-in
speed higher than the recommended speed based on the results in Fig. 6 is chosen, the kite can overshoot the ground

station i.e. ¢ > 90 ° which is not desirable from an operational point of view.



B. Multicopter Performance Definition

In this section the required power and resulting mass of the multicopter will be estimated based on the flight time as
well as the mass of the kite and tether. According to [5] the required power P; ¢ to lift a certain mass with a multicopter
system can be estimated based on momentum theory. P; ¢ essentially depends on efficiency factor 7, launching time 7,
battery energy density yg, mass for electronics and airframe my, kite mass including steering unit mass my, maximum
tether mass my, power to mass ratio Ay, gravity g, air density p, thrust to weight ratio A as well as the total swept rotor

area Ap. Following the steps in [5] an implicit expression for P can be derived, which is given by

D 3
e
1 ((‘—tL + mo + my + m; + Pt,e/lM) g/l)

Pe=— 7
e = o 204, (7N
This expression can be solved numerically for Py .. The resulting battery mass m,, is then given by
Py ot
my = —5L (8)
YE

The chosen numerical values in this work are summarized in Table 1, selected mainly based on the values proposed in
[5] and [6]. A mean launching time 71, of three minutes has been chosen in this work, which in combination with a

Table 1 Design parameters

Parameter [unit] Value
ve [Wh/kg] 130

my kgl 14.61
my  [kg] 1.3
Ay [m?] 0.28
Am  [kg/kW] 0.2
my [kg] 0.5

p [kg/m’] 1.225
A [-] 1.5

g [m/s?] 9.81
ne [-] 0.8
t,  [min] 3

mean launching velocity of 1 m/s produced reasonable results. In general, if there is no requirement for the maximum
launching time, smaller launching velocities are preferable to save power and to reduce the aerodynamic effects acting
on the multicopter. The thrust to weight ratio 4 = 1.5 seems to be reasonable since no highly dynamic flight paths will
be flown. Moreover, the kite will compensate at least partially its own weight by exploiting the generated lift force.
Solving Eq. (7) with the values in Table 1 yields a required power of P; . = 11 kW, which requires a battery mass of m,

= 4.3 kg and motor mass of m, ~ 2.2 kg using the assumed power to weight ratio A,,. All together this leads to an a



multicopter weight of my, = mg + my, +mp = 7 kg.

III. Simulation Models

A. Multicopter

The multicopter is modeled as a point mass with three translational degrees of freedom. The rotational dynamics
have been neglected, since they do not have a major influence on the presented results in this paper. This is especially
due to the fact that in this application no high dynamic maneuvers are flown and the multicopter remains most of the
time in a quasi-hover state. A full six degrees of freedom model can be included in the future, as soon as relevant
geometric, aerodynamic and motor characteristics are derived from a real prototype. Note, that the size estimation of the
multicopter in the previous section is conservative enough, such that stabilizing the attitude dynamics of the multicopter
is possible with the allocated thrust reserves. The governing equations of motion can be derived by Newton’s second

law of motion [8, p. 243-277] and are given by

X ©)
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where (pm)w e R¥! and (Vm k) € R represent the position and kinematic velocity of the center of gravity in the
A
fixed reference frame W, respectively. The total force vector (Fm mt) € R¥>! can be split into
o w

(Funsody = Py + (Fu), +f By + (Fnp). - (10)

where (Fp.a)y, € R**! represents the acrodynamic force, (Fm’g)w € R¥! represents the gravitational force, (Fm’t)w €
R3*! represents the force that is transmitted by the tether between kite and multicopter and (Fm’p)w € R**! represents
the propulsion force. Note, that f € {0, 1} is set to zero if kite and multicopter are detached and to one otherwise.
Since the multicopter is flying at low speeds the drag and lift forces are negligibly small compared to the thrust and the
disturbance induced by the kite, thus a detailed aerodynamic model is omitted. The weight of the multicopter is defined

by

(Fm,g);=(o 0 —mmg)w~ ()

Since the rotational dynamics as well as the actuator dynamics are neglected the orientation of the propulsion force
vector is directly given by the desired flight direction calculated by the flight controller as described in section IV, which
is equivalent to the assumption of perfect and infinitely fast attitude and rate loops. If the attitude dynamics are included

in the future the orientation of the multicopter defines the orientation of the propulsion force vector which is then given

10



by
0

(Fm,p)W=MWB 0] - (12)

Fr
B

where it is assumed that the resulting thrust force vector is perpendicular to the xp yg-plane of the multicopter body-fixed
reference frame and Fr represents the absolute value of the thrust force vector. The matrix Myg € R¥3 transforms a
vector from the B frame into the W frame. It can be split into two transformation matrices Mwo and Mop, where the
former is given by
cosé  siné 0
Mwo =|siné -cosé 0 | (13)

0 0 -1

and hence depends on the wind direction ¢ relative to the x-axis of the north-east-down reference frame O. Mop
represents the well-known transformation matrix between the B-frame and the North-East-down reference frame O (see

(9, p. 111).
The tether connection between the kite and the multicopter is modeled as a spring-damper element, where the force

in the tether is given by

(Fino)y = p(e) (k (e = k) +

1), (i)~ (), ) (67),

where the Euclidean distance e between the tether attachment point at the kite (pg)w and the attachment point at the

(14)

multicopter (pm)yw is given by

€= “(Pm)w - (pg)wuz' (15)

The direction of the tether force is defined by

(tkm)w _ (Paw - (P2)w ’ 6

[ = (e2), ],

ls is the length of the tether, k is the spring constant, d is the damping coefficient, (Vk k)w is the kinematic kite velocity,

(vm k)w is the multicopter speed and u(e) is a smoothed heavyside function given by

u(e) = min (max (Aie+ 1,0),1), (17)

€

11



that drives the tether force to zero whenever the tether is not fully stretched. The function interpolates linearly between
zero and one depending on the chosen slope 1/A¢. In this work A¢ = 0.001 is chosen. The smoothing of the tether force
turns out to be numerically more efficient, since the tether force does not change infinitely fast between the taut and

loose tether state. For the spring and damping constants the same values as in [6] are used.

B. Kite

The dynamics of the kite are implemented in the simulation framework according to the model presented in [6].
A short overview of the model will be given in the following. For a detailed derivation of the equations of motion
please refer to [6]. The kite is modeled as a four point particle system, where the individual particles are connected by
spring-damper elements. The shape of the kite is approximated by two sidesurfaces and one top surface, where the
center of each surface represent one particle point-mass. Aerodynamic forces are calculated individually with respect to
the local airflow at the locations of the two side particles and the top particle. The fourth particle is added to obtain a
three dimensional body with rotational inertia. The attachment of the tether that connects kite and multicopter coincides
with the top surface particle. The steering behavior of the kite is modeled by changing the local angle of attacks of
the side surfaces differentially and proportional to the steering input [6]. This results in a differential change of the
aerodynamic forces acting on the side particles which induces a yaw moment that results in a turn rate. The steering
behavior model is a great simplification compared to reality, but sufficient for the purpose in this paper. For a more
realistic high fidelity model please refer to [10]. The coupled system of differential equations that describes the dynamics

of the kite is obtained eventually by applying Newton’s second law of motion for every particle point mass which yields

(1) = (o)

(18)
. 1 .

. i _ . i
(ki = - (P )y

where i denotes the ith kite particle and the resultant force is denoted by (F}.),,. The calculation of the specific forces
that form the resultant force is discussed in detail in [6] and will not be repeated here. The only additional force that
appears in the equations of motion in the present work is the tether force transmitted through the tether that connects the
multicopter with the kite, as defined in Eq. (14). It is supposed that the attachment point coincides with point B as

defined in [6].

C. Tether
The tether between ground station and kite is modeled as a n-particle system and is also adapted from [6]. The
individual segments are modeled as spring-damper elements according to Eq. (14). In contrast to the connection

between the multicopter and the kite, the tether between kite and ground station has a variable length. This will be

12



modeled by simultaneously changing the lengths of the segments during the reel-out phase. Analogously to the kite
particles for every tether particle Newton’s second law will be applied. For particles 2 to np-1, where n, is the number

of particles, this yields
(pi)w - (vi’k)w’
(v = o (P2 (2, + 19

(Fi,i—l)w + (Fi,i+l)w) .

(Fi’)w and (Fg)w denote the gravitational and the aerodynamic force for particle i, respectively. A detailed derivation

of these forces can again be found in [6]. (FLH )w and (Fi

it )W represent the spring-damper forces of the connecting

tether segments. For the first particle i = 1 the lower spring-damper force is replaced by the force as experienced by the
winch and for the last particle i = n the upper spring-damper force is replaced by the three spring-damper forces that

model the bridle system.

D. Ground Station
In this work only the mechanical part of the ground station, i.e. the winch, is modeled as a simple scalar second
order system given by

éW = w,
(20)

1 .
bw = (rw ’(Ft{l)WHz — vy + Mc) :
where ry, is the drum radius, vy, is the friction coefficient, H(Fll l)W“ is the absolute tether force of the first tether
g 2
segment, and M is the control moment. System specific parameters are listed in [6]. The overall tether length is given
by
I = rwby. 21

E. Wind Shear and Turbulence Models

In order to simulate the launching and landings maneuvers in a realistic wind environment a Dryden turbulence
model has been superimposed to a shear wind field model. Both models are implemented according to MIL-F-8785C
for category C flight phases, which incorporate takeoff and landing maneuvers of aircraft. Therefore the model seems to

be adequate in the analyzed launching and landing context of this work. According to the specification the shear model

13



is given by

In (ﬂ)
20
20\’

In (5)

where Wy is the wind speed at 6m, & is the current altitude in feet and zo = 0.15 is a parameter chosen according to the

(22)

vy = W

specification. If it is assumed that Eq. (22) reflects the local wind profile accurately it can also used to estimate the
altitude at which a certain wind speed is expected if no other information about the wind profile is available. In this case

it is assumed that W5, is measurable. The wind shear field for different reference wind speeds is depicted in Fig. 8.
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Fig. 8 Wind shear with W5y = 3 m/s (circles), 5 m/s (crosses), 7 m/s (triangles) and 9 m/s (squares).

IV. Controller Design

A. Multicopter Flight Path Controller

In this section the control strategy will be presented and the control laws will be derived. Overall the launching
procedure can be divided into three phases. In the first phase the multicopter takes off while the kite remains in the initial
state until the tether between multicopter and kite is taut. In the second phase the multicopter drags the kite along the
launching path until the specified operational altitude is reached. At the same time the winch reels out the tether using
the control approach presented in section IV. As soon as the multicopter reaches the operational altitude the kite will be
released and the tether length setpoint will be set to the previous value, which sets the reeling-out speed to zero. The
multicopter continues following the landing path and the kite is steered towards its parking position according to Eq. (1).
As soon as the multicopter has landed the launching phase is terminated and the kite goes into power production mode.

The landing maneuver will be carried out inversely. As soon as the landing mode is triggered the kite will be steered
to the parking position. From there it will be pulled towards the ground station using a force feedback control approach.
The force feedback control allows to adapt the reeling-out speed to the wind speed as experienced by the kite. For
low wind speeds the kite will be pulled faster to the ground station, for high wind speeds the reeling-in speed will be
decreased. Note that the same control strategy is used if the kite is launched without multicopter assistance.

For the multicopter flight control architecture a cascaded structure is chosen. Since highly curved flight paths are
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not required during the launching and the landing procedure a path following controller that enables the multicopter
to follow straight line segments connected with circular orbits with a defined velocity profile is sufficient. Since the
rotational dynamics of the multicopter are neglected in this work, no inner loop controller will be derived. However,
due to the modularity of the cascade structure an attitude and rate loop can be added effortlessly in the future as soon as
more model data becomes available. The output of the path following control module will be the required attitude that

the inner loop has then to track.

1. Path Planner
In this section the launching path will be defined, consisting of straight line segments connected with circle segments
to achieve smooth transitions from one line segment to another. The general appearance of the reference flight path

with a path angle of ¥y = 60° is depicted in Fig. 9. The solid lines represents the flight path segments connected by the
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Fig. 9 Visualization of an example reference launching path in the xw zw-plane

waypoints indicated with the circular markers. During the first part of the launching phase the multicopter follows a
vertical path segment before transitioning into the inclined path segment via two circle segments that start and end
tangentially to the two adjacent straight line segments. As soon as the multicopter reaches the release altitude, which is
indicated by the cross, the kite is released and the multicopter follows another circular orbit and a final straight line
descend path segment. Note that the tangential transitioning into the circular orbit after the kite release helps to control
the sudden acceleration the multicopter experiences after the detachment. To keep the path planning as simple as
possible a minimal representation of the reference flight path is developed. More specifically, the path is fully defined by
the release altitude 4, the path angle of the straight line segment until the release altitude v, and the altitude of the initial
vertical segment £;. The former two values are chosen based on the results in section I, the latter is chosen according to

spatial constraints at the launching side. The radii rj,j € {1,2,3} as well as the centers of the circular segments (pc,j)w
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can be calculated based on the geometry of the path. The first circular segment is defined by
T Y1
= h. t (_ — _) S
r itan (7 -

(23)
(pc,l)vTv=(r1 0 hi)~

The derivation of r, and (Pc,z)w requires intermediate steps, First, the waypoint between the first and second circular

segment is calculated according to

(Ws)@=(pc,1)&+(o 0 r]) : (24)
W

The subsequent waypoint can be calculated with

1 +cosy
W3,z
= =+ . - N 25
(Wa)w = (W3)w 0 (tan " W3,x) (25)
siny;

where w3 x, w3 , represent the xw and yw components of (w3 )y, respectively. The radius and origin of the second orbit

are then given by

= W4 x — W3 x

2= .
sin

"N (26)

(pc,2)\-|)—v = (pc,l)\-l)—v + (O 0 rn+ 7’2) ’
W

where wy x is the xw component of (w4)y . The radius and origin of the third orbit can be calculated according to

r3 = i ta (f_ﬂ)
siny 4 2/ 27
T
(pc’3)W: (r3 0 Slﬁr')’l)
The remaining waypoints are given by
(Wi)y = (o 0 0) ;
w
(Wa)y = (o 0 hi) ;
v (28)
To_
(Ws)y = (taﬁry - 0 hr)w,
T _ h,
(We)w = (O 0 siny.)w



The path parameters 4, and y; are determined according to the results in section II. The path inclination is chosen such
that the kite will be launched below the parking equilibrium elevation angle, since this will result in a tangential motion
towards the equilibrium position as soon as the kite is detached from the multicopter. The expected parking equilibrium
angle can be determined based on the results in section II. Since the wind field is in the general case not known at all
altitudes only bounds on the launching elevation can be given. Since the multicopter is designed such that it can lift the
kite without relying on a minimum wind speed the operational envelope can be enlarged such that the kite system can
also be launched in low wind conditions in ground proximity. The condition that at release altitude the wind speed must
be higher or equal 8m/s will be used to determine the release altitude. Note that this yields a conservative boundary
condition according to the discussion in section II. The release altitude can either be determined based on a wind model
or on an online estimation of the wind speed at the kite. The latter one would additionally require that the reference path
is adapted online as a function of the estimated wind field. The online estimation of the wind field is not part of this
work, hence it is assumed that a model for the wind field is available, e.g. from previous wind field measurements or
estimations and used to predict the release altitude at which v,, > 8 m/s is to be expected. The proposed methodology
will be carried out using the example wind shear model depicted in Fig. 8. Using this model it can be observed that
for low wind speeds e.g. Wao = 3 m/s the required release altitude might become unfeasible due to onboard power
constraints defined by the design choices presented in section II.B. Therefore, it is necessary to also constrain the
maximum release altitude in order not to violate the maximum available flight time given a specific velocity trajectory.
In this work the launching phase of the kite is estimated to take at most 180 s, which represents a time constraint for the
launching phase that can be transformed into a maximum path length requirement. With a launching velocity of 1 m/s
the maximum launching distance can be calculated to be 180 m. Note that this is a conservative bound since it assumes
that the multicopter is flying with full throttle during the entire launching phase. The constraint for the maximum release
altitude depends then only on the path angle, which is conservatively chosen based on the measured ground wind speed.
Assuming conservatively that ®, = 0 ° the minimum path angle is approximately y; = 72°, which corresponds to a wind
speed of vy, min ~ 8 m/s. The maximum release altitude is then given by /iy max = 180 sin(y;) = 170 m.

With the example shear wind model as described by Eq. (22) the minimum reference wind velocity at 6 maltitude
can be calculated by solving the wind model for Wy with v,, = 8 m/s and &, = 170 m, which yields Wxg min = 4.76
m/s. If this is done for different release altitudes the results in Fig. 10 are obtained. Note that the hatched rectangular
areas represent unfeasible solutions since they violate the maximum altitude constraint. For the subsequent simulations
a theoretical boundary of 5 m/s is chosen since it leads to a much lower release altitude of 126 m instead of 176 m,
where it would be required that the multicopter tracks the velocity command of 1m/s perfectly in order not to violate the
launching time constraint of 180 s. Note that with the given wind profile this would enlarge the operational launching
envelope from 8 m/s to 5 m/s, conservatively.

For the landing no prescribed landing path is defined. The reason is that only the radial motion of the kite can be
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Fig. 10 Required launching altitude /. with vy, = 8 m/s as a function of W5.

controlled actively by the winch. However, from the equilibrium analysis in section II it can be deduced that for v, < 0
the kite has the tendency to reach an equilibrium elevation angle if the reeling-in speed and the wind speed form a
feasible solution. Since the kite starts from an equilibrium deviations from this equilibrium due to external disturbances
will always induce a motion in x, direction towards an equilibrium point. Connecting all the equilibrium points along
the wind sheer profile from the parking altitude to the ground given a certain reeling-in speed, results in a virtual landing
flight path that will be followed automatically due to the inherent flight physics of the kite. Theoretically, this makes the
landing of the kite rather simple if the wind speed is sufficiently high. To further improve the robustness the reeling-in
speed is adjusted according to the measured tether force on the ground. The landing performance will be assessed in

section V in a turbulent wind field.

2. Path-following Controller

Since the path consists of several individual segments a logic module is required that switches between the active
path segments. The switching is triggered as soon as the multicopter reaches the current target waypoint. Smooth
transitions onto the path are achieved by implementing a virtual target pursuit algorithm. In both cases the current to be
followed path segment is defined by the waypoint ahead (W, )y, and the previous waypoint (w_)y . In case that (w, )y

and (w_)y are connected with a straight line the path segment vector is given by

(8w = (Wow = (Wo)w (29)

and the relative position between the multicopter and the previous waypoint (w_)yy is given by

Pwm)w = Pm)w — (Wo)w - (30)
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In order to calculate the virtual target on the path, the current multicopter position needs to be projected onto the path.

In case a straight line has to be followed, the closest point is simply given by the normal projection according to

— (pwm):}—\/ (S*)W
(ot = ST o

(8 )w - €1y

The virtual target that the multicopter has to follow is then obtained by moving the normal projection forward in positive

segment direction according to

(8:)w

s wll’

P = v + ([Pl + Avr) (32)

where Ay is a tuning parameter that defines how aggressive the path following controller will guide the multicopter onto
the path. If Ayt — 0 the multicopter will be guided perpendicular onto the path, which results eventually in oscillations
around the path due to the inertia of the system. If Ayt is too large the perpendicular distance error component will only
be reduced slowly. Hence, a trade-off between the two scenarios has to be made, for the results in this work Ayt = 0.5
resulted in a reasonable path following performance.

To determine the position of the virtual target on a circular orbit the orthogonal projection (pm,p)C’ i in the circle

frame C, j is calculated according to

(Pm)c,j = (Pm)w — (Pej)yy -

(pm,z)c,j = 09

(pm,p)c,j = (pm)c,j s (33)

(pm,p)c,j

(Pmp)ej =T 7%
| m). €.

which represents the closest point on the circle relative to the current position. In order to obtain the virtual target the
projected position has to be rotated by a user specified angle A.. Depending on the circle segment, A has to be chosen
positive or negative such that the multicopter follows the orbit in clock- or counter clockwise direction. For the reference
path depicted in Fig. 9 |A.| = 6 ° is chosen where the first circular segment is followed in clock- and the remaining two

segments are followed in counter-clockwise direction. The virtual target to be followed is eventually transformed back
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into the W reference frame according to

cosA 0 sinA
Pvw=| o 1 0 (pm,p)c,j + (Pe.j)w - (34

—sinA 0 cosA

Note that in both cases, straight line and circular orbit following, additional constraint are implemented that ensure that
the virtual target is not placed further than the waypoint ahead.

The desired velocity vector the controller has to track is finally given by

Pv)w — (Pm)w

, 35
[Pv)w — Pmwll, )

(chd,k)w = Vemd, k

where vema k is the desired absolute kinematic velocity. Based on the error between the real and the desired velocity
vector the required acceleration that guides the multicopter onto the path can be calculated. The current velocity tracking
error and its time derivative are defined as

(eV)W = (Vr,k)W - (Vm,k)W’
(36)

@w = iy = (Vo) ,

(Vm k)w can be substituted by Eq. (9), where only the known forces will be considered for the derivation of the control

law. All the remaining uncertainties are summarized in A, according to

Ae=(Fro)w+ S (Fudy- (37)

including the induced disturbance by the kite, as well as the aerodynamic force. The resulting path following error

dynamics are then given by

. 1
€0 = (= - (Fme)y + (Fmghy + 0. )
m
This yields the required thrust vector (Fema,p)yy:
(chd,p)w = Mpy (Vr)w - (Fm,g)w s (39)

where (v;)y represents the desired acceleration given by

(Vr)W = (ar,k)w +Ky (eV)W P (40)
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with a diagonal positive feedback gain K, € R**3 and (ar,k)w represents the desired acceleration that can be calculated

with a first order reference filter defined by

1 1
(ar,k)w =—-— (Vr,k)w + — (chd,k)w7 41)
Tr Tr

where 7; represents the time constant of the filter. The choice of the time constant is usually constraint by the time
constants of the inner loop dynamics and the bandwidth of the actuator dynamics. Since both inner loop and actuator
dynamics are neglected, no further constraints on 7, are imposed. The pseudo-control law in Eq. (39) ensures stable

error dynamics assuming that A. is bounded, which is trivial to see from Eq. (42).

(e )w + K (ey)w = —Ac/mpy. (42)

Based on (chd,p)w the desired attitude set points for the inner loop controller can be calculated similar to the approach

presented for instance in [11] using the relation

fx 0
Mow (Fema,p)w = | - fy| =Mos 0 . (43)
3 R S SN Y

It is again assumed without restriction to generality that the wind direction coincides with the north direction. The
desired roll and pitch angles can then be calculated by solving Eq. (43) for ®¢ng and O¢mg, which yields
fx sin Wemd + fy €08 Wema)

)

D, g = — arcsin (

[Forls

1
Omd = arctan (—7 (fx cos Wema — fy sin ‘{’md)) )

z

(44)

The heading angle W.,q can be chosen arbitrarily. The tuple (®c¢md, Ocmd, Pemd) Will be the input to the attitude control
loop. Since the attitude and rate dynamics are neglected so far, Eq. (44) serves as an interface that can conveniently be
connected to a future attitude control loop. Due to the high forces that the kite can generate it is likely that the multicopter
actuators saturate during the launching and landing phase. Although actuator dynamics are not yet implemented in the
simulation framework the available thrust is still limited based on the multicopter design decisions in section II.B. To
generate feasible reference trajectories and to prevent integrator windup in case of saturation pseudocontrol hedging [9,

p. 674] is implemented.
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B. Kite Attitude Controller

Kite power systems are usually controlled on the unit sphere, where the radial and tangential motion are assumed to
be decoupled. In this case, the course controller tracks a reference course y, on the moving tangential plane T while the
winch controller controls the movement in radial direction z; (cf.Fig. 3). During the launching the kite has ideally
no tangential movement, which means that the course in the tangential plane is not defined. In fact, the translational
movement of the kite is entirely controlled by the winch and the multicopter. The control objective for the kite attitude

controller will be to keep the kite oriented into the wind by controlling the tangential plane heading angle ¥, . to 0 °.

Fig. 11 Definition of tangential plane heading ¥, and course y;.

Based on experimental data and kinematics a correlation between the steering input and the course rate can be
derived [7]. Since the sideslip angle is negligible due to the weathercock stability of the kite the heading rate is equal to
the course rate, which allows a straightforward adoption of the course rate law to derive the kite attitude controller for
the launching and landing phase. The tangential plane heading angle that will be tracked during launching and landing
can be calculated from the measured Euler angles using the relationship

M:p (\P‘r, 0., 0;) = 45)

MTW (/L ¢) MWO (6) MOB (\P’ ®’ CD) -

Comparing the general structure of Mg, which is equal to the structure of Mgg, with the right hand side allows to

determine the the attitude of the kite with respect to the tangential frame as follows

@, = arctan2 (Mg 23, Mgz 33) ,
O, = asin (—Mgq,13), (46)

¥, = arctan2 (Mg, 12, Mgz, 11) ,

where Mp. j; denotes the component of Mg in the i-th row and j-th column. In the simulation the orientation of the

kite in terms of Euler angles ¥, ® and ® is given by the relative position of the four particles as defined in [6]. An
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orthonormal basis representing the kite body-fixed frame B is then given by

(28)y = i), - ) :
), -1,
(pS),, — ®P)y )

(xB)w = (¥yB)w X (ZB)w »

with

(Po)w = 0.5 ((PC)W + (PD)W) . (48)

The transformation matrices in Eq. (45) can then be calculated according to

Mgo = MpwMwo =

(xp)y |[cosé  sing 0

(49)
(yB)w || sing —cosg 0 |
(2B )y 0 0 -1
with Mo = Mg, and
—sin¢gcosd —sind —cos¢cosd
Mwr =] —sin ¢sind cosd —cos¢sind |- (50)

cos ¢ 0 —sin ¢

The steering correlation will be based on the relationship between the rotational rate of the body-fixed frame relative to

the tangential plane frame 7, which is given by

o), 6, (), ),

where (wOB )B is measured by the onboard inertial measurement unit (IMU). The transport rate (wWO)B can be neglected
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in this application, hence the remaining rates can be written as

p Asin¢g

g| =MBw|—-gcosa| +

r ¢
B W (52)
b, — ¥, sinO,
O, cos @, + ¥, sin®, cos O, | >
-0, sin @, + ¥, cos D, cos O
with
="
G
[(9),, ] coe
; (53)
. k
¢ = T o\
|(+),],

where uy and vy are the x; and y, components of the kinematic velocity vector of the kite in the tangential plane frame
denoted with vy ; in Fig. 11 and (pf)w denotes the position of the kite’s center of gravity. Since during the launching
and the landing phase the movement of the kite in the tangential plane is negligible it can be assumed that A ~ ¢ ~ 0.

The third row of Eq. (52) can then be simplified to
r = -0, sin @, + ¥, cos O, cos O. (54)
The angle @, is usually negligibly small, hence
r= ‘PT cos®;. (55)
Using the steering correlation as presented in [7] the model for the tangential plane heading rate is chosen to be
1 (Fk,g)\TN (yB)w

= ClValls + cp—————"— | (56)
cos O, g

where u is the steering input and (Fk,g)\T,v (yB)w can be calculated based on the attitude correlation of the kite according
to Eq. (49) and is given by

(Fig)w (¥B)w = cos © sin dmyg, (57)
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The coefficients ¢ and ¢, are calculated based on a linear regression as described in [7] and are kite specific. During
the launching and landing phase the roll angle of the kite is close to zero i.e. @ ~ 0 which further simplifies the
steering law model. Inverting the heading rate law and substituting the heading rate with a commanded heading rate as

a pseudo-control input yields

cos O, vy
Uy = ———=, (58)
C1Va
with vy, is the pseudo control input defined by
. t,
Yy, = q”‘r,r + kp’\yT ey, + ki,\ll., / ey, dt, 59)
0

with the tracking error ey, = W, ; — ¥, and control gains kp y,, ki v, > 0. The reference heading rate is given by a
scalar first order reference filter
1 1

\P-r,r = __lPT,r + _lIlT,C' (60)
Ty Ty

The parameter c; has to be determined based on experimental data, hence represents a multiplicative uncertainty that

the feedback part in Eq. (59) has to account for.

C. Winch controller

For the winch controller two different modes are implemented. The first mode is used to control the winch during
the multicopter based launching, the second mode is active for non-assisted launching as well as for landing. In the first
mode, the winch controller is based on the model defined in Eq. (20). Within the scope of this paper a simple linear

quadratic regulator (Igr) with servomechanism is chosen [12, p. 51-62]. The linear model for the controller synthesis is

defined as
O 0 1 ol 6w 0
ow|=1 0 —v/lyw Ol ww |*F]|1/7]|Me (61)
eo] \-1 0 0\ [ epdr 0

with ey = 0y cmd — Ow. The feedback law is then given by

(7] I
Mc=-Kop| |+ kes / eq, dt, (62)
0

Wy

with Kg ;, € R'*2 and kg ; € R are the Igr gains. The feedback law allows to control the tether length according to Eq.

(21). The setpoint 6y, ¢ is given by the current multicopter position and the dimensions of the kite and tether connection
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according to

O.cmd = % (H(pm)w”2 o hy - hB) : 63)
where [ is the constant length of the tether between multicopter and kite, i = 2.23 m is the height of the kite and Ay, =
4.9 m is the length of the bridle system. As a safety measure the reeling-out speed will additionally be constrained by
the launching velocity set point of the multicopter.

For the non-assisted launching and landing the tether force is controlled. The set point calculation for the reeling
out speed is based on a simple state-machine with states s = {sg, sy, s2}. If the measured tether force on the ground
exceeds a threshold Tinax,y the state transition so — 1 will be triggered and the current reeling-out speed set point will
be increased until the tether force drops below Tmax1 (51 = S0), Where Tiax,1 < Tmax,u to avoid chattering . Similarly, if
the tether force drops below a specified threshold Tiin | the transition so — s2 will be triggered and a higher reeling-in

speed will be commanded until the tether force exceeds Tin,u (S2 — 50), Where Tiin,u > Tmin,1- The set points for v ¢mg

in each state are calculated according to

—Kp (lT - Tmax,1|) if T > Tmax,l AS =81
Veemd =V Kp (IT = Toinnl) it T < Trning A5 = 2 (64)

v if Tin,l <T < Tiax,u A S = So,

where K, = 0.01, Tinax,1 = 4 kN, Tinax,u = 5 KN, Thnin,1 = 10 N and Tiyin,u = 200 N is chosen. As long as the tether force is
between the maximum and minimum value (s = so) the winch will reel-in or reel-out with the nominal reeling out speed
¥ set by the operator, where v, is either negative or positive during landing and launching, respectively. The speed
controller is implemented analogously to the tether length controller. In this case however only the angular velocity

commands from the state machine will be tracked by the proportional-integral (PI) controller.

V. Results
In this section the feasibility of the proposed launching and landing methodology will be tested by means of
numerical simulations employing the developed simulation models and controllers in section III and IV. The section is
subdivided into two parts, where in the first part results of launching simulations will be discussed including VTOL
with and without multicopter assistance. In the second part, results of landing simulations will be presented. The goal
of both parts is to detect boundary conditions for automatic VTOL maneuvers for flexible wing kite power systems and
to demonstrate the theoretical feasibility of the proposed methodology that can be used as a basis for the development

and construction of an experimental setup.
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A. Multicopter Launching

According to the measured wind speed at the reference altitude s, = 6 m the launching path angle and the release
altitude will be determined based on the results in section 1. The feasibility of the multicopter assisted launching will be
verified at the boundaries using the following numerical simulation setup. For the simulation of the VTOL phases a
wind field as depicted in Fig. 12 with Wy = 5 m/s and an additional side wind component of vy y = 2 m/s is chosen.
With a release altitude of /. = 130 m the results depicted in Fig. 13 are obtained, visualizing the altitude trajectory of

the kite’s center of gravity. It can be observed that after the release the kite stays airborne and converges to the parking
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Fig. 12 Turbulent wind field selected for the multicopter launch.
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Fig. 13 Visualization of the kite’s altitude trajectory in a turbulent wind field

elevation angle as expected. Also, the effect of a launching path inclination ¢,.; which is slightly below the parking
elevation angle ¢, is visible, indicated in the slightly higher equilibrium altitude, corresponding to ¢, > ¢,.;, since
the tether length is kept constant after the kite release. During the entire launching phase the multicopter path following
controller is able to track the reference velocity accurately despite the unknown induced disturbance of the kite and
hence guides the multicopter and kite along the predefined flight path robustly in the turbulent wind environment. After

the kite is released at = 143 s the multicopter accelerates slightly, indicated by the peaks in Fig. 14, but recovers the
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Fig. 14 Visualization of the velocity tracking performance.

tracking performance rapidly. Due to the lack of an aerodynamic model for the multicopter the only disturbance the
controller has to account for is represented by the kite. In the simulation this leads only in the initial lift-off phase
to deviations from the reference flight path. After the multicopter starts following the inclined flight path segment
defined by waypoint 4 and 5 (see Fig. 9) the deviations from the flight path are negligible. The initial and final segments

of the multicopter flight path are depicted in Fig.15. In Fig. 16 it can be observed that as the wind speed increases
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Fig. 15 Path following performance of the multicopter during the initial and final approach phase.

with altitude the induced disturbance of the kite acting on the multicopter raises which has to be compensated with
more thrust. Eventually, this leads to a saturation of the total thrust according to the design specifications in section
IL.B. Saturation of the control input can usually cause integrator windup, which is prevented in this work using Pseudo
Control Hedging that essentially slows down the multicopter by adapting the generated reference velocity. Note that in

the future the flight path could be further optimized such that the aerodynamic force of the kite would be exploited more
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Fig. 16 Evolution of the total thrust of the multicopter.

beneficially to decrease the required thrust of the multicopter.
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Fig. 17 Performance of the Kkite attitude controller.

As can be observed in Fig. 17, the kite heading controller is able to keep the kite pointing towards the zenith position
Y, =0, except the small deviations due to the high frequency disturbances induced by the wind turbulence especially in
ground proximity i.e. at the beginning of the launching phase, where the turbulence intensity is high.

Note, the flight path can also be chosen such that the kite will be guided along the equilibrium points given by
the wind speed and the launching velocity profile according to Fig. 6. In this case the tendency of the kite to leave
the imposed launching path by the multicopter can be reduced, which reduces the disturbance induced by the kite
aerodynamics on the multicopter. However, as has been discussed in section II, higher radial velocities result in higher
elevation angles. Hence, after the detachment of the kite a tangential motion towards lower elevation angles will result.
This can lead to high angles of attack that are not yet predictable by the model implemented in this work and are
therefore not further investigated. Note that a forward acceleration instead of a backward acceleration after the release
could be also beneficial for the transition into crosswind flight. In this case the kite would not be parked after the release

but directly steered into the traction phase figure.
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B. Comparison of Assisted Versus Nonassisted Launching

In this section the simple mast-based launching concept will be compared with the multicopter based concept in a
wind field with W5p = 8 m/s and &, = 100 m. The mast-based concept relies simply on the lifting force of the kite that
triggers the launching phase as soon as the lift force exceeds the weight of the kite. This approach obviously relies
on sufficiently high wind speeds in ground proximity, in this case vy, > 8 m/s. For the wind field W,y = 8 m/s as well
as the same turbulence intensity as shown in Fig. 12 is chosen to produce the subsequent simulation results. The
corresponding equilibrium elevation angle as a function of the reeling-out speed can be chosen according to Fig. 6.
Furthermore, a nominal reeling-out speed equal to the commanded multicopter flight speed of 1 m/s is chosen to allow a
proper comparison between the two approaches. Assuming that in the initial kite position ®; = 0° a mast inclination
angle of ~ 72° is chosen according to Fig. 6. The simulation results of the kite path in the xwzw plane are shown in Fig.
18, where the trajectory indicated with the circles and crosses represent the multicopter-assisted and non-assisted case,
respectively. It can be observed that apart from initial oscillations in tangential direction a launching performance similar
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Fig. 18 Visualization of multicopter assisted (circles) and non-assisted (crosses) flight path.

to the case with multicopter assistance can be achieved. Small changes in the wind speed due to the turbulence lead to
motions perpendicular to the virtual launching path. This is due to the fact that the kite is not forced to follow a path, but
instead tries to find a new equilibrium elevation angle depending on the current experienced apparent wind speed. This
demonstrates the implicit control of the tangential motion of the kite, which makes the kite VTOL launch robust for
sufficiently high wind speeds. Based on these observations, controlling only the radial motion of the non-assisted kite
with the winch represents a feasible alternative to the multicopter assisted launch, where the tangential movement can be
controlled via the multicopter, hence making the launching performance less dependent on the wind speed.

In order to assess the conservatism of the minimum wind speed requirement for a non-assisted launch, simulations
with W5y < 8 m/s and different nominal reeling-out speeds ¥,, have been conducted. Figure 19 shows the results of a
non-assisted launching maneuver with Wpg = 7 m/s. As expected, high nominal reeling-out speeds that do not comply

with the suggested speeds in Fig. 6 deteriorate the launching performance due to the decreasing apparent wind speed and
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Fig. 19 Kite trajectories with 7. = 0.5 m/s (circles), 1 m/s (crosses) and 2 m/s (triangles) and W,y = 7 m/s.

hence the decrease of the aerodynamic damping. As expected, the sensitivity towards the reeling-out speeds becomes
less significant as the wind speeds increases. This can be observed in Fig. 20, which shows the resulting flight paths if
the reference speed Wy is increased to 10 m/s. It can be concluded that the non-assisted kite launch should be carried
out with small reeling-out speeds, which is essentially only limited by the accuracy of the winch speed controller, as
discussed in section II.

From a flight physical point of view a lower nominal reeling-out speed leads to less oscillatory motions in radial and
tangential direction compared to a higher reeling-out speed in the same wind field, due to the increased aerodynamic
damping which is proportional to the square of the apparent wind speed. This limitation is not present in the case
of the multicopter assisted launch, since the required aerodynamic damping necessary to control the kite’s tangential
movement is replaced by the control authority of the multicopter system, which in fact works best in low wind conditions
where the low aerodynamic damping of the kite results in smaller disturbances acting on the multicopter. Both concepts
can thus be regarded as complementary where advantages and disadvantages are a function of the current wind speed.
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Fig. 20 Kite trajectories with 7, = 0.5 m/s (circles), 1 m/s (crosses) and 2 m/s (triangles) and W,y = 10 m/s.
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C. Landing

In this section the controller performances during the landing will be analyzed. Supporting the kite landing with the
multicopter is difficult to achieve, since it would require that the multicopter catches the airborne kite autonomously,
while the kite is in a parking equilibrium. Although this seems to be a major disadvantage of the present concept
compared to the approach presented in [5] it will be shown that with the presented winch controller a predictable
landing performance even without multicopter assistance can be achieved. The analysis of the landing phase is carried
out similarly to the launching phase and the controller performance will be tested in different wind conditions with
turbulence and side wind components as well as with different nominal reeling-out speeds v,-, which are chosen based
on the presented boundary conditions in section II. Note, that during the time this research was conducted no further
design decisions regarding the mast or the reattachment process were available. Therefore the landing phase will be

defined as terminated as soon as a specific minimal tether length of 5 m is reached. The results of the first landing
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Fig. 21 Kite trajectories with W,y = 4 m/s (circles), 7 m/s (crosses) and 10 m/s (triangles).

simulation study are depicted in Fig. 21, where three different wind fields have been simulated with a nominal reeling-in
speed of v, = -1. In the case of Wyg = 7 m/s and W,y = 10 m/s the kite is pulled towards the ground with a constant
speed after a short transition phase where the winch accelerates from v, = 0 m/s to v, = -1 m/s, as can be seen in Fig.
22. The pitch angle ®; in both cases oscillates slightly around =-5 ° and ~ -3°, as can be observed in Fig. 23. The
oscillations can be attributed to the turbulence contained in the wind field. In the low wind speed case i.e. Wy =4 m/s
the winch controller is actively adjusting the reeling speed to keep the measured tether force within the specified bounds.
The continuous change in apparent wind speed leads eventually to significant oscillations in ®,, which induce forward
and backward motions of the kite, resulting in a strong coupling between the radial and the tangential dynamics. In fact,
reeling-in faster will first increase the apparent wind speed and hence the lift, which results in a higher tether tension.
As a consequence the tether will be reeled-in again with a lower speed hence the apparent wind speed and consequently
the tether tension drops and the cycle starts all over again. Eventually, this leads to the observed oscillations in low wind

speed conditions. It can be concluded that although the force feedback controller can adapt the reeling-in speed to
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sudden changes in the tether tension, it cannot overcome the fact that a certain wind speed in combination with a certain
reeling-in speed is required to keep the kite airborne. A better landing performance can be obtained if for low wind
conditions a higher nominal reeling-in speed is selected based on Fig. 6 and the force-feedback controller is only used

for disturbance compensation.
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Fig. 22 Reeling in speeds for W>) = 4 m/s (circles), 7 m/s (crosses) and 10 m/s (triangles).
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Fig. 23 Pitch angles for W5, = 4 m/s (circles), 7 m/s (crosses) and 10 m/s (triangles).

As has been discussed in the previous paragraph, in low wind conditions i.e. vy, < 8 m/s the winch has to actively
adapt the reeling-in speed to keep the tether taut. However, if too high reeling-in speeds are selected this can lead to
overshoots with respect to the ground station that result in non-stationary landing motions. This behavior has been
predicted theoretically in section II, but can also be observed in the simulation results in Fig. 24. Note that despite the
associated conservatism of the results depicted in Fig. 6 with ®; = 0° the minimum wind speed that would lead to a
reliable landing is the same as the minimum wind speed required for the non-assisted launching, which is vy, = 8 m/s.
Theoretically this would allow the kite to hover at constant tether length at every altitude during the landing procedure.
Reeling-in the tether increases the apparent wind speed and hence would only lead to higher tension and eventually to a

higher elevation angle. Although the maximum tension in the tether has to be respected the main boundary for the
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reeling-in speed during landing is given by the maximum elevation angle ¢= 90 °. Numerical simulations with vop = 8
m/s and different nominal reeling-in velocities in combination with the force feedback controller have been conducted to
qualitatively demonstrate this effect and the results are depicted in Fig. 24. Conservatively, for a wind speed of 8 m/s a
reeling-in speed until ~ -1.6 m/s allows a steady descend of the kite as can be deducted from Fig. 6. Using the less
conservative results from Fig. 7 a reeling-in speed until -2 m/s can lead to a steady landing behavior. In this case the
equilibrium elevation angle would be ¢ ~ 90°. These theoretical results match very well with the simulation results
depicted in Fig. 24, where the almost vertical (i.e. ¢ ~ 90 °) trajectory indicated by the triangular markers is obtained
with a reeling-in speed of v, = -2 m/s. Higher reeling-in speeds e.g. v, = -3 m/s lead to trajectories with ¢ > 90°, as

indicated by the diamond shaped markers in Fig. 24.
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Fig. 24 Kite landing path with v, =-0.5 m/s (circles), -1 m/s (crosses),-2 m/s (triangles) and -3 m/s (diamonds).

From a methodological point of view the nominal reeling-in speed v should be based on the measured reference
wind speed Wyo. Although higher wind speeds at the kite during the descend phase are expected this will not violate
the equilibrium conditions, as can be observed in Fig. 6. In fact, the boundaries for the wind speed W and reeling
speed v, should be determined based on Fig. 6, which are conservative bounds but guarantee a safe and predictable
landing performance. This is due to the fact that in both the launching and the landing case the pitch angle ®, moves
the minimum wind speeds to lower values. In future models the pitch angle could be expressed in terms of the apparent

wind speed, which will allow to calculate less conservative bounds including a safety-factor that can be chosen manually.

D. Summary of the Methodology

In this section the presented simulation results are used to summarize the proposed VTOL methodology for flexible
wing kite power systems. At this stage the methodology relies on the following key assumptions: 1) Knowledge of
Ci(@) and Cp(a) curves of the kite as well as the geometric properties of the kite such as wing area, bridle length and
weight, 2) available wind speed measurement on the ground at 6 m, 3) availability of a shear wind model that maps

altitude to wind speed, 4) knowledge of the downwind direction.
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If the previous requirements are satisfied the kite can be launched and landed according to the following procedures.
First, verify before the kite launch if for the measured reference velocity W a parking elevation angle ¢ exists using Fig.
5. In the following it will be assumed that such an equilibrium exists, otherwise the kite cannot be launched using the
presented methodology. Second, verify if Wag > Wag min = 8 m/s. If this condition is satisfied the kite can be launched
using the force based winch controller without multicopter assistance. As soon as the kite reaches the operational
altitude the winch stops reeling-out the tether and the kite will be steered into the parking position, which terminates the
launching phase. If Wag min < 8 m/s , the multicopter can be used to drag the kite to the operational altitude /. The
operational altitude can be predicted using a shear wind field model as well as the minimum wind speed vw(/;) that
fulfills the parking equilibrium condition (here vy (A;) =8 m/s). Note that usually release altitudes higher than 100 m
are required from an operational point of view, which means that 4, min = 100 m. At the operational altitude the kite will
be released and the reeling-out of the tether will be stopped. The multicopter will continue following the landing path,
while the kite stays in the parking position until the multicopter is landed. After the multicopter has landed the power
production cycle is triggered.

For the landing the following procedure is proposed. The landing will be conducted without the multicopter and it is
assumed that the kite is already in the parking position. First, the wind measurement on the ground will be used to
check if Wao > Wao min = 8 m/s. If this condition is satisfied the kite can be reeled-in using the tether force feedback
controller. Note, if this condition is not satisfied a controlled reeling-in of the kite towards the mast is still possible, as
can be observed in Fig. 21, where a controlled landing was possible until 6 m/s. However, the kite will descend in a
less predictable and non-stationary manner, which will make it difficult to land the kite such that it can be re-launched

without external assistance or even damage the kite on impact.

VI. Conclusion

In this paper, a vertical launching and landing methodology for flexible wing kite power systems was proposed and
evaluated by means of simulations and an equilibrium analysis. The equilibrium analysis turned out to be an effective
method to calculate boundary conditions that frame the launching and landing envelope. Results from the equilibrium
analysis show that a more refined kite point mass model that includes gravity and drag of the tether is necessary to
obtain less conservative results. This conservatism has been confirmed by the simulation results and is a result of the
negative pitch angle due to the weight and drag of steering unit and tether. Furthermore, it can be concluded that with
the multicopter assistance the launching envelope of the kite can be enlarged by reducing the minimal ground wind
speed from 8 m/s down to at least 5 m/s. Moreover, using the proposed tether force feedback winch controller it could
be demonstrated that for ground wind speeds greater than 8 m/s the kite can be launched and landed robustly without
additional external assistance. Also, the simulation results demonstrate that the tangential motion of the kite is implicitly

controlled through the aerodynamic damping, as expected from the equilibrium analysis. Hence, it is sufficient during
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launching and landing to control the radial motion either only by the winch or in case of low wind speed conditions by

the winch and the multicopter path following controller.
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