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A Data Perspective on Ethical Challenges in
Voice Biometrics Research

Anna Leschanowsky , Associate Member, IEEE, Casandra Rusti , Graduate Student Member, IEEE,
Carolyn Quinlan , Michaela Pnacek(ova) , Lauriane Gorce , and Wiebke Hutiri , Student Member, IEEE

Abstract—Speaker recognition technology, deployed in sectors
like banking, education, recruitment, immigration, law enforce-
ment, and healthcare, relies heavily on biometric data. However,
the ethical implications and biases inherent in the datasets
driving this technology have not been fully explored. Through a
longitudinal study of close to 700 papers published at the ISCA
Interspeech Conference in the years 2012 to 2021, we investigate
how dataset use has evolved alongside the widespread adoption
of deep neural networks. Our study identifies the most commonly
used datasets in the field and examines their usage patterns.
The analysis reveals significant shifts in data practices since the
advent of deep learning: a small number of datasets dominate
speaker recognition training and evaluation, and the majority
of studies evaluate their systems on a single dataset. For four
key datasets–Switchboard, Mixer, VoxCeleb, and ASVspoof–we
conduct a detailed analysis of metadata and collection methods
to assess ethical concerns and privacy risks. Our study highlights
numerous challenges related to sampling bias, re-identification,
consent, disclosure of sensitive information and security risks
in speaker recognition datasets, and emphasizes the need for
more representative, fair, and privacy-aware data collection in
this domain.

Index Terms—Ethical aspects, privacy, biometrics (access con-
trol), speaker recognition, human voice, data transparency, data
handling.

I. INTRODUCTION

SPEAKER recognition is widely used in voice biometrics
in the private and public sectors, e.g., to verify the identity

of banking clients [1], [2] or employees [3], and to secure
an expanding network of voice assistants and voice-based
Internet of Things devices through which people interact with
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digital services [4]. The large scale deployment of speaker
recognition systems has been facilitated by the adoption
of deep learning, which has greatly improved technology
performance [5]. However,data-intensive, deep learning systems
are prone to produce disparate speaker recognition error rates
across demographic groups [6], [7], [8], [9], a phenomenon
that we call bias.

Bias is well studied in machine learning and algorithmic
fairness research [10], [11]. In its simplest form bias refers to
a skewed or slanted perspective. Biased technologies can carry
significant social consequences if they produce systematic
errors in their outputs that disproportionately advantage or
disadvantage certain people without reason [12]. Bias is
frequently viewed as a source of unfairness which can arise in
the machine learning development process, for example from
unrepresentative training or evaluation data, or inappropriate
data labelling choices [11]. Fairness is the aspirational antithe-
sis to unfairness. A biased speaker recognition system can
lead to discriminatory decision outcomes. In many countries
discrimination is illegal [13], and (algorithmic) decision-
making processes must treat individuals and groups of people
equally with regards to protected personal attributes [14].

Despite rapid progress and widespread adoption of speaker
recognition technology, bias, fairness and discrimination remain
largely unexplored in voice biometrics research. In commercial
systems, evaluating bias in biometrics is however gaining
prominence. For example, the NIST Face Recognition Vendor
Test now includes an evaluation of bias across demographic
groups [15], and several studies have evaluated error rate dis-
parities across groups in face recognition models [6], [8], [16].
However, model bias is only one of several sources of bias
in deep learning systems [17]. Oftentimes it is caused by bias
in training datasets, which then reflects downstream in the
learned models [18]. Similarly, bias in evaluation datasets skews
evaluation outcomes, channels future development efforts and
makes it impossible to assess if models are biased [17]. Beyond
evaluating bias in models, it is thus also important to interrogate
training and evaluation datasets.

Motivated by prior research on dataset evalua-
tions [19], [20], [21] and data collection [22], [23], this
paper presents the first study of ethical concerns in speaker
recognition datasets, and their impact on bias in voice
biometrics. Grounded in a comprehensive literature review of
papers published at the ISCA Interspeech conference between
2012 and 2021, we explore dataset usage dynamics to gain
insights into community adoption of datasets and potential
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cultural shifts in data practices. In particular, our study aims
to address the following questions:

1) Which datasets are used for training and evaluation in
speaker recognition research?

2) How has dataset usage changed over the period from
2012 to 2021?

3) What are the attributes of the most used datasets?
4) What are the implications of the above questions for

bias, fairness, privacy, and other ethical challenges in
speaker recognition?

This paper expands our prior work [24] with an extensive
metadata analysis, and a detailed review of the ASVspoof,
VoxCeleb, Switchboard and Mixer Corpora. We start by
reviewing related literature in Section II and describe our
research approach in Section III. We present results on dataset
dynamics in Section IV, analyse the metadata in Section V
and examine ethical concerns in Section VI. We consolidate
and reflect on our findings in Section VII, before concluding
in Section VIII.

II. RELATED WORK

This section explores the history of voice biometric systems
and existing research on bias in biometric systems, with a
specific emphasis on face recognition. It examines methodolo-
gies for evaluating demographic bias in biometric verification
and the impact of data and dataset biases on machine learning
models. This context underscores the need for our study, which
expands these discussions to speaker recognition, emphasizing
the importance of rigorous dataset evaluations in this special-
ized area of voice biometrics.

A. A Brief History of Voice Biometrics

The ability to recognize a person’s voice is inherent in
humans and forms the foundation of voice biometrics tech-
nology. Automatic voice biometric systems have emerged
alongside human-based approaches, such as auditory com-
parison or visual spectrogram inspection, often conducted
by forensic experts [25]. The first fully automated speaker
recognition system built by Texas Instruments in the early
1970s [5], [26], [27]. Statistical models like Hidden Markov
Models (HMMs) replaced rule-based speech recognition
systems in the 1980s, followed by Gaussian-Mixture-Models
(GMMs) in the mid-1990s to early 2000s [25], [28], [29].
The introduction of GMM supervectors and their ability to
represent a single utterance by a fixed-dimensional vector
made it possible to use machine-learning classifiers for speaker
recognition tasks [25], [30], [31]. In particular, support vector
machines (SVMs) and various combinations thereof used
supervectors [30], before i-vectors became the state-of-the-
art approach [32]. By the mid-2010s, deep neural networks
(DNNs) became dominant for speaker recognition due to their
overall better performance, and ability to learn from unlabeled
data [9]. Unlike HMMs and GMMs, the performance of DNNs
improves with larger training sets, provided that the target
speaker is well represented [29], [33], [34]. Deep learning in
speaker recognition has been utilized for feature extraction
and has replaced the i-vector with the d-vector [5], [35]
and x-vector [36], [37]. This has improved the classification

and comparison of speaker embeddings. The new approaches
rely on large datasets such as VoxCeleb and data aug-
mentation [5], [37], [38]. Recent work has highlighted the
vulnerabilities of anonymized speaker voices, revealing that
such voices can be easy to imitate and difficult to recognize,
thus posing new challenges for voice biometric security [39].

B. Bias in Biometrics

Existing bias literature on biometrics mainly focuses on
measuring disparate error rates across demographic groups
in face recognition systems. Various measures have been
proposed for doing this, such as statistical methods [16]
and the Fairness Discrepancy Rate [8]. Meanwhile, others
have provided checklists for measuring racial bias in face
recognition, emphasizing the need to consider data-driven
factors and scenario modeling including accounting for sub-
population distributions, algorithm quality, the representation
of and conditions captured by images, threshold selection and
appropriate considerations around demographic pairing [6].

In the voice biometrics domain, an empirical and analytical
examination of bias in the machine learning development
workflow of speaker verification benchmarks identified various
sources of bias during the data gathering stage, and when
models are deployed [9]. A follow-up study showed that the
pairing of trials in speaker recognition benchmarks can result
in evaluation datasets of variable difficulty across demographic
groups [40]. Similar effects have been shown to lead to bias
in evaluation settings in face recognition systems [6].

C. Bias in Data and Datasets

Machine learning models are impacted by bias in data and
datasets, including historical, representation, measurement,
and evaluation bias [17], [22]. As datasets form the basis
for training, evaluating, and benchmarking models, dataset
evaluations are important to interrogate bias in machine learn-
ing systems [18]. Prior research has found that the dominant
developer culture, which emphasizes rapid progress and ever-
larger models, can lead to representation bias in datasets and
inadequate dataset documentation [18]. Similarly, evaluation
failures can result from implementation variations, errors in
test set construction, overfitting, and inadequate baselines [23].

While prior speaker recognition dataset studies have been
published [41], [42], they focused primarily on describing
available corpora and did not interrogate how data practices
impact ethical and societal outcomes. Some recent stud-
ies have analysed data documentation [43] and benchmark
practices [44] in speech recognition, but their findings do
not account for the nuances particular to voice biometrics.
As the advancement of speaker recognition research shares
many common attributes with that of face recognition, this
study takes inspiration from dataset evaluations in the visual
domain [19], [20], [21]. We particularly draw on Raji and
Fried’s study of evaluation datasets and benchmarks in face
recognition research [19]. In contrast to their work which
surveyed over 100 face datasets, we start our study by exam-
ining (the change in) dataset usage in the speaker recognition
research community over a period of time.
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Fig. 1. Distribution of analyzed papers identified with the keywords in
Section III, published at Interspeech over a decade from 2012-21.

III. RESEARCH APPROACH

Our study focuses on peer-reviewed research published
over a ten year period from 2012 - 2021 at the Interspeech
conference, one of two main international conference venues
for academic and industrial speech research.

We included all papers from the International Speech
Communication Association (ISCA) archive1 that contained
the search terms speaker recognition, voice recognition,
speaker verification, voice verification, speaker identification,
voice identification, speaker authentication, or voice authen-
tication in their title or abstract. This query resulted in 702
papers, which we analyzed further. We excluded 29 papers
that were overview papers, that studied speaker recognition by
humans, applications rather than model development, or that
did not explicitly mention which datasets were used to train
and evaluate their models. Our final analysis thus includes
673 papers. Over the decade that we analyzed, the number
of papers on speaker recognition published at Interspeech has
doubled, as can be seen in Figure 1.

All papers were tagged with the training and evaluation
datasets that they used. As datasets were not always named
consistently, some assumptions were made. For example,
studies that used datasets from the NIST Speaker Recognition
Evaluations (SREs) often rely on several of these datasets
for training and refer to them as a range (e.g., NIST 2004 -
2008). In these cases, we assumed that every dataset in the
range was used for training or evaluation, as indicated by
the authors. Overall, we encountered many naming inconsis-
tencies. Especially evaluation datasets were sometimes only
referred to on the highest level (e.g., VoxCeleb), without
specifying which dataset version, subset or evaluation protocol
was used. Whenever possible, we standardized dataset and
subset names and otherwise tagged papers by their training and
evaluation dataset family. The dataset family name was created
by manually cleaning the dataset names, and then extracting
the first word in the name as the family name. It is common in
the speech processing domain to refer to training datasets as
development data or corpora, and to evaluation datasets as test

1https://www.isca-speech.org/archive/

data. In this paper, we use the terms training and evaluation
datasets, unless we refer to the names of specific datasets.

IV. SPEAKER RECOGNITION DATASET DYNAMICS

OVER A DECADE OF USE

We now examine which datasets have been adopted over
the past decade, and how the use of datasets for training and
evaluation purposes has changed over time.

A. Adoption of Speaker Recognition Datasets

Over the past decade, a wide range of datasets has been
used for training and evaluating speaker recognition systems.
In total, the literature references 185 unique training and 164
unique evaluation dataset families. Despite this variety, a small
number of dataset families has dominated speaker recognition
research, as can be seen in Figure 2 which shows the frequency
counts of the top 30 dataset families used for training. As
papers can use more than one dataset to train and evaluate
systems, the total count of use of dataset families exceeds the
number of analyzed papers.

The NIST Speaker Recognition Evaluation (SRE) corpora
dominate both training and evaluation. These corpora are
not unique datasets in their own right, but rather collections
and subsets of other datasets, predominantly Switchboard and
Mixer. The NIST SREs were both users and drivers of these
dataset collections, as annual evaluation challenges required
new datasets to evaluate speaker recognition technology in
ever more difficult settings [45]. We have kept the NIST SRE
labels distinct from Switchboard and Mixer to stay true to
the naming conventions used by researchers. Moreover, the
NIST SREs typically required specific settings for training and
evaluation that did not necessarily include the entire datasets.
Switchboard occurs second most frequently for training, but
surprisingly is only rarely used for evaluation. The reason
for this is that speakers appear across multiple recordings
in different dataset releases. As it is not possible to connect
speakers between the various releases, using Switchboard for
training and evaluation thus has potential for data leakage,
which diminishes the quality of an evaluation.

VoxCeleb and ASVspoof are two further dataset families
that have been popular for training and evaluation. ASVspoof
datasets have been released by the Automatic Speaker
Verification and Spoofing Countermeasures Challenge2, which
was launched in 2015 to address growing concerns of security
breeches in speaker verification technology due to voice
spoofing and deepfakes.

Moving from dataset families to individual datasets, Table I
shows the top ten training datasets. For the NIST SREs we
show whether they draw on the Switchboard or Mixer corpora.
Overall, individual papers trained on a far greater number of
datasets than what they evaluated on. While this in itself is not
surprising, it is concerning that the majority of papers used
only a single dataset for evaluation, as shown in Figure 3.
Papers that evaluated on more datasets rarely used more
than three. While speaker recognition development on limited

2https://www.asvspoof.org/
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Fig. 2. Histogram showing the count of most used training dataset families from 2012 - 2021.

TABLE I
MOST FREQUENT TRAINING DATASETS

Fig. 3. Histogram of number of datasets used for evaluation by each paper
that we reviewed. Most papers use a single dataset.

corpora that target specific and evolving tasks over an extended
period of time may have been justified to advance the field
prior to the adoption of deep neural networks [42], the same
practices today will lead to overfitting. The limited diversity
and use of evaluation datasets is reminiscent of evaluation
failures in machine learning more broadly [23], and should
lead to greater scrutiny of research claims.

B. Dataset Dynamics over a Decade of Use

Next, we examine changes in dataset usage over the past
decade. Where the NIST SREs, Switchboard and Mixer
datasets featured prominently when aggregating dataset use
over the past decade, a finer grained year-on-year analysis
reveals that their popularity has declined dramatically. In their
stead, VoxCeleb now dominates speaker recognition training
and evaluation. In addition, the ASVspoof datasets, notably the

TABLE II
EVALUATION DATASETS USED IN SPEAKER RECOGNITION STUDIES

ASVspoof 2017 dataset which focused on replay attack, have
influenced speaker recognition training and evaluation within
recent years. Figures 4 and 5 illustrate these dataset dynamics
by visualizing the proportional use of datasets in training
and evaluation. These figures show densities and should be
considered together with Figure 1, which shows the growth
in publications and consequently total dataset usage over the
decade. Thus, since 2017 more papers have been published in
speaker recognition, and a greater proportion of these studies
uses VoxCeleb to train and evaluate their models.

Particularly striking is the extent to which VoxCeleb1
dominates speaker recognition evaluations. The dataset is
disjoint from its successor, VoxCeleb2. A popular pairing is
thus to use the larger VoxCeleb2 dataset for training, and
VoxCeleb1 for evaluation. In 2020 and 2021, over half of
all evaluations used VoxCeleb1. More so, VoxCeleb1-test, a
small subset of 40 predominantly male, U.S. speakers whose
name starts with an E is used in a significant proportion
of evaluations. As mentioned previously, papers may use
more than one dataset for evaluation. We thus investigate
the number of papers relying solely on VoxCeleb, or on its
even more limited subset VoxCeleb1-test for evaluation in
Table II. This additional analysis reveals that VoxCeleb1 is not
only popular for evaluation, but that a significant proportion
of studies evaluated their methodological contributions on a
single VoxCeleb dataset only.

V. DATASET ATTRIBUTES

The previous section highlighted that the Switchboard,
Mixer, and VoxCeleb dataset families, together with the NIST
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Fig. 4. Distribution (%) of dataset use for speaker recognition training (VoxCeleb datasets purple, NIST SREs turquoise & green). Datasets are included if
they appeared in more than 10 papers. Over the past decade, the use of NIST SREs, Switchboard, and Mixer datasets has declined, with VoxCeleb datasets,
and particularly VoxCeleb2, becoming the dominant datasets for training.

Fig. 5. Distribution (%) of dataset use for speaker recognition evaluation (VoxCeleb datasets purple, NIST SREs turquoise & green). Datasets are included
if they appeared in more than 5 papers. From 2019 onwards, VoxCeleb1 has become the dominant dataset for evaluations. In 2020 and 2021, over half of all
evaluations use VoxCeleb1, in particular the VoxCeleb1-test subset.

Speaker Recognition Evaluations (SRE) have dominated the
development of speaker recognition technologies, each in its
own era. Additionally, the ASVspoof datasets are increasingly
adopted to address growing concerns of spoofing attacks.
Therefore, we now investigate attributes of these dataset
families and their influence on bias, fairness, and privacy of
the technology today.

A. Background and Motivation for Corpora Collection

The collection and release of the Switchboard corpora
started in the 1990s and continued through the early 2000s. In
total, seven datasets of two-sided English language telephone
conversations were released. The dataset collections were
funded by the U.S. Defense Advanced Research Projects
Agency (DARPA) and the U.S. Department of Defense. The
Linguistic Data Consortium (LDC) was primarily responsible
for data collection and management. According to the LDC,
these datasets were intended for “research, development, and
evaluation of automatic systems for speech-to-text conversion,
talker identification, language identification and speech signal
detection purposes” [46].

The Mixer and Transcript Reading (short Mixer) corpora
succeeded Switchboard, as the collection protocol of the
latter became complicated, time-consuming, and expensive.
Moreover, telephone behavior of people changed as cell-
phones became popular [45]. The Mixer project aimed to

support various speaker recognition tasks in multi-lingual and
cross-channel settings.3 Mixer was created by the LDC in
collaboration with the Lincoln Laboratory, the U.S. NIST and
the Speaker Identification research community.

The VoxCeleb datasets were a response to an increasing
appetite in the speaker recognition community to test and
develop their approaches in more challenging real-world (i.e.,
“in the wild”) settings. VoxCeleb1 was released in 2017 by the
Visual Geometry Group (VGG) at the University of Oxford,
with the goal of creating a large scale, text-independent
speaker recognition dataset that mimics unconstrained, real-
world speech conditions [47]. A key driver for this was to
explore the use of deep neural networks (DNNs), which had
gained traction in computer vision, for speaker recognition
tasks. A year later, VGG released VoxCeleb2 to expand the
original data collection.

While the previously discussed datasets have been
specifically constructed for the evaluation and devel-
opment of speaker recognition systems, the Automatic
Speaker Verification and Spoofing Countermeasures Challenge
(ASVspoof) and its accompanying datasets were designed
to encourage the development of anti-spoofing countermea-
sures [48]. Since 2013, this challenge has taken place every
second year. The datasets released by ASVspoof are created

3Channel refers to the medium used for speech recordings, e.g., microphone
types.
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TABLE III
SPEAKER-DEPENDENT METADATA IN SWITCHBOARD DATASETS

using existing speech datasets, e.g., RedDots corpus [49] or
Voice Cloning Toolkit (VCTK) [50], [51]. Spoofed speech is
then generated with voice conversion and speech synthesis
algorithms as well as replayed versions. In 2021, ASVspoof
extended its focus to include tasks independent of ASV
systems to promote the detection of deep fakes more generally.
In 2023, ASVspoof encouraged contributions for generating
spoofed speech [52].

B. Attributes and Usage

Next, we analyse the metadata of the Switchboard,
Mixer, VoxCeleb and ASVspoof datasets. The analysis on
which this section is based is available as a Jupyter
notebook.4 We distinguish between speaker-dependent and
speaker-independent attributes captured in the metadata.
Speaker-dependent attributes are factors that are inherent to a
particular speaker, such as their gender or accent, and that can
influence a person’s speaking style. Speaker-independent fac-
tors constitute environmental acoustics or instrument-related
variabilities, such as background sounds or phone models.

1) Switchboard: Most Switchboard datasets typically
exceed 2,000 recordings, totaling over 100 hours of speech.
However, the Switchboard Credit Card dataset5 is an
exception, containing only 35 recordings and 227 minutes
of speech data. These datasets were initially valued as rich
sources for training speaker recognition models. An overview
of speaker-dependent attributes captured by the different
Switchboard datasets is shown in Table III. In addition to
the speaker-dependent information, Switchboard metadata
provides speaker-independent attributes such as environmental
acoustic factors as shown in Table IV.

Speaker Dependent Attributes: The demographic meta-
data in Switchboard includes age, gender, years of education,

4https://github.com/wiebket/bt4vt/tree/metadata_analysis
5Excluded from extensive attribute analysis.

country of birth, and location where the person was
raised. These are speaker-dependent attributes that affect
a speaker’s style and that convey paralinguistic or extra-
linguistic information. Additionally, call-specific details such
as the recording date and start time are included in this
category, recognizing that a speaker’s style may fluctuate
throughout the day. The frequency and duration of calls
made or received reflect a participant’s engagement in the
data collection process. This has a critical effect on speaker
representation in the dataset. For instance, the number of
utterances per speaker can vary significantly based on their call
activity. Importantly, the representation of individual speakers
in a dataset can impact speaker verification systems trained or
evaluated on the data [40]. The discussion topics during calls,
linked to the linguistic content exchanged by the speakers,
are another speaker-dependent element. Lastly, phone numbers
are considered speaker-dependent due to their unique link to
individual speakers within the dataset.

Demographic Representation: The gender distribution
across males and females in Switchboard is generally balanced
on a speaker level, but not reported for the number of
conversation or the duration of recorded speech. Switchboard
Cellular Part 2 Audio reported gender demographics across
recordings and has an overall balanced split in male and female
representation across the dataset versions (with most years
overrepresenting females by 5-10%). The age distribution
leans towards younger demographics with some variation
based on gender and dataset version.

In Switchboard 1 Release 2, detailed dialect area annotations
contrast with other dataset versions that only list speakers’
birthplaces and locations where they were raised. “South
Midland” is the most reported dialect in this dataset and
regions like “North Midland” and “Northern” are predomi-
nantly represented by male speakers. In Switchboard Cellular
Part 1 and Part 2, despite most speakers being U.S.-born, there
is a noticeable difference in birthplaces, with the majority of
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TABLE IV
SPEAKER-INDEPENDENT METADATA IN SWITCHBOARD DATASETS

speakers citing “Philadelphia” as their place of birth. While
the country of birth can serve as an approximate indicator of
a person’s dialect, it can potentially mislead evaluations due
to the presence of diverse dialects within the same geographic
origin.

We observed disparities in call frequency across indi-
vidual speakers in the Switchboard datasets. Specifically,
while Switchboard Cellular Part 1 and 2 have few outliers,
Switchboard 2 Phases 1 and 2 displayed significant variations,
with some individuals making or receiving over 30 calls
compared to the average of 10 calls per caller. Such disparities
can result in datasets that are imbalanced at the utterance level,
despite appearing demographically balanced at the speaker
level.

Speaker Independent Attributes: Switchboard recordings
are annotated for channel quality (e.g., echo, crosstalk, static)
and background noise. Annotations vary across datasets, with
a majority indicating minimal to no acoustic environmental
influence. Notably, the level of echo or background noise in
calls does not significantly differ by speaker gender, suggesting
a consistent quality of data collection across demographic
subgroups.

In Table IV, Switchboard Cellular Part 2 includes annota-
tions of the speaker’s environment. The data is predominantly
categorized as indoor, with relatively few outdoor or vehicle-
based calls. Despite this skew towards indoor environments,
the gender distribution remains balanced, with a slight over-
all tilt towards female speakers. Earlier versions of the
Switchboard datasets record landline conversations with a
variety of telephones and the later datasets contain cellphone
conversations. Although most calls do not specify the phone
model, Motorola, Ericsson and Nokia are the most frequently
cited brands in Switchboard Cellular Part 1 and 2. The datasets
aimed to encompass channel variability; however, our analysis
of the metadata suggests that they are limited for robustness
assessments, due to an uneven distribution of phone-related
metadata. Additionally, acoustic quality can be affected by
factors related to the environment and transmission which are

not captured in the metadata, such as room acoustics, rever-
beration, recording quality and compression techniques [25].

2) Mixer: Mixer recorded significantly more data than
Switchboard, with individual datasets capturing between
5 000 and 20 000 calls, resulting in tens of thousands
of hours of speech. The early phases of the Mixer cor-
pora focused on multi-lingual data collection, before shifting
focus towards multi-channel set-ups. Similar to Switchboard,
speaker-dependent and speaker-independent attributes were
captured. At the time of writing this paper the authors had
access to metadata capturing speaker-dependent information
only. Publicly available information on speaker-independent
attributes mostly contains details on the multi-channel set-up
and recording devices.6

Speaker Dependent Attributes: Speaker-dependent
attributes in the Mixer corpora go beyond those in Switchboard
including sex, year of birth, education, occupation, ethnicity,
height and weight, smoking status and information about
the speaker’s family. Given this detailed metadata, the Mixer
collection has been used for age estimation [53], smoker
identification [54], [55] and for predicting speaker demograph-
ics from word usage [56]. Annotations for these attributes
are consistent across different versions of the Mixer corpora,
making it possible to align and analyze metadata across
different data releases.

Demographic Representation: The sex distribution of
Mixer 3 (collected in 2006) is skewed towards female speakers
on a speaker level, but is not reported on an utterance level.
For Mixer versions 4, 5 and 6 (collected between 2007 - 2010),
the sex distribution is more balanced. Similar to Switchboard,
the age distribution leans towards younger demographics. In
Mixer 3, the peak year of birth is around the 1980s (implying a
speaker age around 26 years). For Mixer 4, 5 and 6 which were
collected later, year of birth peaks also appear later, which
implies speakers of a similar age participated in the collections.

6https://catalog.ldc.upenn.edu/docs/LDC2020S03/readme.txt;
https://catalog.ldc.upenn.edu/docs/LDC2013S03/readme.txt
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While age is a significant factor in speech, collecting the year
of birth rather than age makes metadata analysis and use more
cumbersome, as the collection date of the corpus needs to be
known and considered.

Unsurprisingly, Mixer 3 contains a variety of speakers
with different native languages, while later Mixer corpora are
dominated by native English speakers. Regarding smoking
status, there are notable differences between Mixer versions,
with Mixer 3 leaning towards smokers and Mixer 6 towards
non-smokers. Many metadata fields are empty. Over 80%
of speakers did not report their smoking status and 99%
did not report their education degree or family information.
This underscores a tension between collecting rich metadata,
which is only useful if it is complete, and collecting sensitive
and personal information, which should only be done on a
voluntary basis, and in a privacy-preserving manner.

3) VoxCeleb: The VoxCeleb datasets were scraped from
celebrity YouTube videos to capture a large number of audio
clips where people speak in unconstrained settings. VoxCeleb1
consists of 153,516 speech utterances from 1,251 speakers.
VoxCeleb2 contains 1,128,246 utterances from 6,112 speakers.
The creators of the dataset promote its use for speaker
identification and verification, speech separation, talking face
synthesis, cross-modal transfer between face and voice (i.e.,
making inferences about somebody’s face based on their voice,
and vice versa), emotion recognition and face generation.

The only metadata available for VoxCeleb1 are gender
and nationality labels, while VoxCeleb2 only has gen-
der annotations. Thus, all available metadata constitutes
speaker-dependent factors only, making further analysis
of speaker-independent attributes and their interplay with
speaker-dependent attributes not possible. Future research
could use signal-to-noise (SNR) estimators to evaluate
the acoustic features of the recordings and evaluate their
interaction with speaker-dependent and demographic charac-
teristics. The dataset descriptions are not transparent about
how gender labels were obtained, but it is likely that they
came from VGGFace1 and 2 [57], [58], which provided
the candidate list of speakers to include in VoxCeleb. The
nationality labels were inferred from speakers’ countries of
citizenship, as obtained from Wikipedia. The motivation for
doing this was to assign a label that is indicative of a speaker’s
accent [59]. The authors claim that the datasets are gender
balanced, with 55% and 61% male speakers in VoxCeleb1 and
2 respectively. However, subsequent research has pointed out
that VoxCeleb1, and in particular the VoxCeleb1-E, -H and
-test subsets suffer from representation bias on a speaker and
utterance level, across genders and nationalities [9].

An important difference between the VoxCeleb datasets and
the other two corpora is that VoxCeleb used to be freely
available for download.7 By contrast, Switchboard and Mixer
require a subscription to the LDC ($3 850 for universities,
$27 500 for corporations) or must be purchased. Licensing
costs for an individual dataset range between $100 to $300,

7The public download link has now been replaced with a privacy note on
the VGG website.

however, not all datasets can be licensed without an LDC
membership. This made the VoxCeleb datasets the first large
scale, freely available datasets for speaker recognition. It
is plausible that the free availability of VoxCeleb greatly
contributed to its adoption in the research community.

4) ASVspoof: The ASVspoof datasets primarily sourced
speech from existing collections to generate spoofed speech
samples. Focusing on the generalizability of countermeasures,
ASVspoof has employed various voice conversion and speech
synthesis algorithms to construct spoofed speech. For instance,
ASVspoof 2015 and 2019, use genuine English speech from
106 and 107 speakers respectively, with a gender distribution
of 45/46 male and 61 female speakers [48] [60]. In 2017,
the replay recordings of the RedDots corpora were collected
in controlled and uncontrolled environments using various
playback devices, but only for male speakers [61]. A later
collection has focused on constructing replay spoofed speech
corpora through different simulated acoustic configurations
using a more gender-balanced speech sample [60].

Depending on the dataset release, metadata for ASVspoof is
limited to gender information and information on the speech
spoofing system or the replay configuration. With gender being
the only demographic information, bias evaluation related to
speaker-dependent factors becomes challenging. For speaker-
independent factors, such as recording devices used for replay
attacks, the distribution is slightly skewed towards high-quality
devices, which may be more difficult to detect [62]. Moreover,
in recent years, ASVspoof has emphasized the development
of spoofing countermeasures that are robust to variabilities in
codec and transmission channel [63]. This is similar to the
collections of the Switchboard and Mixer corpora which have
specifically focused on capturing channel and recording device
variability. The latest version of the challenge introduced two
new base datasets: the English-language subset of Multilingual
Librispeech (MLS) [64] and an optional subset of the English
Common Voice Corpus 11.0 [65].

VI. ETHICAL CONCERNS

Our metadata analysis has highlighted that the Switchboard
and to a lesser exten the Mixer corpora are representative
across some demographic attributes, but also contain an exten-
sive amount of sensitive and personal information. By contrast,
VoxCeleb and ASVSpoof contain almost no metadata, but
their collection methods indicate that these datasets are not
representative across demographic groups. In this section, we
identify additional potential biases, privacy risks and ethical
concerns associated with these datasets.

A. Influence of Collection Method on Bias

The four dataset families that we analyze span across
four different data collection paradigms: direct data collection
in a lab setting, crowd-sourcing, webscraping and finally
synthetic data generation. This makes an examination of the
impact of the data collection method on bias particularly
interesting. Various sources of bias can arise in datasets and
their collection processes [17]. For example, historical bias
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reflects the influence of existing societal biases on datasets,
while representation bias arises when a dataset inadequately
mirrors the target population. Measurement bias is linked
to flawed or overly simplified data features or labels. We
investigate these three sources of bias, and also discuss other
types of biases that might have arisen, or that were accounted
for in the data collection process.

1) Switchboard: For Switchboard and Mixer, participants
were recruited to meet the language requirements of the study
and received financial compensation for participating. While
the Switchboard collection offered a free call with a fixed
compensation (in 2005 it was $1/minute for a maximum of
a 10 minute toll-free call to a friend), the Mixer collection
changed compensation to a per-call incentive and completion
bonuses [66]. The free phone call was a strong incentive
to participate when the Switchboard data collection started.
However, after the turn of the millennium it lost its appeal
as phone calls and mobile phones were near ubiquitous [45].
Between the releases of the Switchboard and Mixer datasets,
the team of data collectors had continuity. This has led to
consistency in the data collection method. However, it also
implies that cognitive biases of individuals who shaped the
design of the dataset collections can have gone unnoticed.

Although the data collectors for the Switchboard corpora
aimed to obtain gender balanced datasets, our analysis reveals
imbalances in other speaker-dependent and independent factors.
For instance, the datasets primarily feature native English
speakers from the American South, with a significant proportion
of college students. This skews the demographic representation
in the corpora towards younger and highly educated individuals.
Nonetheless, the extensive metadata available for Switchboard
enables in-depth analysis of underrepresented subgroups, which
is crucial for assessing the generalizability and robustness of
speaker verification models.

Switchboard’s annotation protocols and labelling taxonomy
are not disclosed, which makes it unclear how categories
like “country where raised” were determined. In particular,
it remains unclear how data annotators were instructed and
whether inter-annotator agreement was assessed. The lack
of clarity on labels and labelling protocols can introduce
measurement bias when using these datasets for bias evalu-
ations. In addition, the different Switchboard releases make
different labelling choices for speaker-independent factors such
as echo, background noise or distortion. Most commonly these
annotations are evaluated on scale of 0 to 3. Switchboard
1 however uses a scale of 0 to 5, and the Cellular datasets
employ a 0 to 2 scale for background noise and distortion.
This makes comparisons within the dataset family challenging
and can lead to innacurate comparisons across datasets.

2) Mixer: English has always been a dominant language
in speaker recognition. The first three phases of the Mixer
project thus focused on collecting multilingual data from
bilingual speakers. 16% of Mixer calls in Phases 1 and 2 are
in Arabic, Mandarin, Russian or Spanish [67]. The Mixer 3
collection also aimed at supporting language recognition, and
had more than 2900 participants making calls in 19 different
languages [45]. The defense backing of the Mixer datasets is
evident in the languages that were selected for the project, and

their connection to U.S. national security and military interests.
The different Mixer corpora include conversations in Arabic,
Egyptian, Farsi, Bengali, Hindi, Urdu, Tamil, 4 dialects of
Chinese (also Mandarin), Japanese, Korean, Tagalog, Thai,
Vietnamese, German, Italian, Russian, 3 dialects of English
(including American English), Spanish and Canadian French.

Mixer 4, 5 and 6 feature a wider variety of channels and
recording scenarios than its predecessors. As a consequence, the
variety of languages and accents decreased and the collections
focused on native speakers of American English only [68].
The data collectors attempted to balance dialects by recruiting
25% of participants from Philadelphia, 25% from Berkeley, and
specifically from Texas, Georgia, Illinois, and New York [68].
On-site recordings for Mixer 4 and 5 were carried out at two
different locations, the LDC in Philadelphia, Pennsylvania,
and at the International Computer Science Institute (ICSI) in
Berkeley, California. Recruitment for Mixer 6 was done at the
LDC [68], [69], thus decreasing the likelihood of collecting
speech samples from speakers of various dialects and increasing
the likelihood of representation bias.

3) VoxCeleb: The VoxCeleb datasets were constructed with
a fully automated data processing pipeline from audio-visual
media scraped from YouTube [47], [59]. Both data pipelines
consist of the same processing steps: first select a list of
candidate speakers, then download videos from YouTube,
apply face tracking, identify active speakers, verify identities
from faces, remove duplicates, and finally find associated
nationality metadata on Wikipedia. The candidate speakers
for the datasets were sourced from VGGFace1 [57] and
VGGFace2 [58] respectively. In a previous study, a compre-
hensive analysis of historical, representation and measurement
bias in VoxCeleb1 was carried out [9]. The study highlights
that this automated processing pipeline reinforces popularity
bias from search results in candidate selection, and directly
translates bias in facial recognition systems into the speaker
recognition domain. Moreover, celebrities, especially actors
and singers, have a high degree of control over their voice
and accent, and should not be assumed to represent ordinary
conversational speech. VoxCeleb2 is likely to show similar
biases as previously identified for VoxCeleb1 due to a similar
data collection approach.

4) ASVspoof: The ASVspoof datasets deviate from tradi-
tional speech data collection methods, primarily employing
voice conversion and speech synthesis algorithms. Their
reliance on pre-existing speech datasets raises the possibility of
transferring historical bias from these datasets into ASVspoof
datasets. The selection of genuine speech samples can signifi-
cantly influence the generalization capabilities of anti-spoofing
countermeasures across speaker subgroups. This is particularly
important as the early versions of ASVspoof datasets have
featured only a limited number of speakers. A striking example
of representation bias is observed in ASVspoof 2017, based
on the RedDots replayed spoofing corpus, which features
only male speakers [61]. This gender imbalance appears to
be a deliberate choice by the dataset creators rather than a
historical artifact, considering that the original RedDots corpus
features both male and female speech samples. Even if the
dataset creators can motivate this choice, dataset users may
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be unaware of the male-centricity of the dataset. It is unclear
whether the selection of speakers in that dataset sufficiently
represents the various channel, session, and accent variations
provided by the original RedDots corpus [49].

In contrast, the replay spoofing dataset for ASVspoof
2019 [60] shows a more balanced gender representation. Even
though ASVspoof datasets typically dominate evaluations only
in their challenge year, the potential reuse of prior releases still
warrants careful scrutiny of representation bias. In addition
to gender, language representation in ASVspoof is limited,
as the datasets have exclusively concentrated on English
language speech for both text-dependent and text-independent
speaker recognition scenarios [70]. Finally, as the synthetic
data creation method is highly reliant on algorithms and
data-driven systems, which are trained on datasets that likely
have their own challenges with representation bias, it is yet
unclear how bias inherent in these systems influences the
quality of spoofed speech datasets and thus, the development
of countermeasures.

B. More Than Bias: Privacy Risks and Ethical Questions

1) Risk of Re-Identification: The Switchboard and Mixer
dataset collections passed an institutional ethical review8 and
the LDC kept personal information like names and contact
details separate from the recordings [67], [68]. Nonetheless,
the two corpora would today be considered as posing sig-
nificant privacy risks to study participants. The privacy risks
stem from two sources, firstly the content of the conversations
and secondly the rich metadata, which makes it possible with
today’s data processing techniques to retrospectively correlate
personal attributes with voice characteristics. The amount of
personal information stored in the metadata is quite extensive
and makes it possible to use these datasets for various tasks
that include the identification of personal information from
speech data in future.

At the time of data collection, the ethical consequences and
privacy concerns due to the extent of personal information
contained in the voice may not have been clear to researchers.
However, a decade of progress in speech science has changed
that [71]. We are not aware that any efforts have been made
to address the presence of personal identifiable information
and sensitive attributes in the recordings, to assess risks of
re-identification, and to examine the potential impact on data
subjects. Moreover, it remains unclear whether a combination
of factors classified as speaker-independent information can
lead to re-identification or leak sensitive information. For
example, inferences made from background noise can reveal
context information or personal information [72]. In today’s
data-driven society, privacy and anonymity of data subject
are vital concerns that require attention and proper measures.
Therefore, future collections of speech corpora should con-
sider a privacy-bias trade-off and consciously decide on their
collection of speaker-dependent and independent factors.

2) Risk of Disclosing Sensitive Information: During data
collection, participants were asked to discuss a specific topic

8Guidelines of the Institutional Review Board of the University of
Pennsylvania.

with an automated operator on a phone call, but to withhold
personal information. Yet, the topics provided for discussion
included political, cultural, social and religious topics.9 For
instance, the topics annotated in the Switchboard Cellular
Part 1 and 2 range from education and leisure activities to
domestic politics and international news. While there are
inconsistencies in topic labels and provided metadata (e.g.,
topics above 61 have been annotated but are not shown in
the topics list), our analysis on the topic distribution shows
that a majority of calls have discussed hypothetical situations
or domestic politics. These categories include questions on
preferences regarding smoking bans, minimum wages and
personal wishes which can make participants disclose sensitive
information. Another category of interviews took the form of
informal conversations, adapted from sociolinguistic interview
modules. Here subjects were encouraged to describe events
of the past [69]. This form of interview creates the illusion
of an informal setting, making it more likely that participants
share personal information with interviewers [74]. While
participants were not forced to discuss the topic provided, most
of them followed the suggestion [68]. Moreover, participants
might have shared sensitive information during phone calls
or interviews, increasing the risk of re-identification. For
instance, Mixer 5 interviews covered family and personal
history, raising the likelihood of participants sharing personal
stories with similarly sensitive information as collected in the
metadata. To our knowledge calls were not redacted to exclude
personal information.

3) Lack of Consent: The VoxCeleb datasets present dif-
ferent privacy concerns. As has been the case with other
Web-scraped datasets, the dataset creators did not obtain
consent from data subjects to use their biometric data for
the purpose of technology development. Initially, the creation
of the datasets was justified by the data being available on
the public Internet. More recently, the authors have added a
privacy notice to their website, calling on a data protection
exemption of the University of Oxford based on Article
14(5)(b) of the U.K. GDPR, which allows data processing
for scientific or historic purposes. Considering the sensitive
nature of voice data, the military and security foundations
of speaker recognition, and the wide-scale application in the
surveillance industry, it seems prudent to interrogate whether
this exemption ought to apply to voice data collected for
speaker recognition purposes.

4) Security Risks: The collection of spoofed speech cor-
pora comes with major ethical concerns which have been
acknowledged in the evaluation plan of the ASVspoof
2023 [52]. While the challenge organizers ask contributors
to responsibly report vulnerabilities, detailed ethics guidelines
are missing. Meanwhile, the cybersecurity field has estab-
lished standards and protocols for responsible vulnerability
disclosure [75]. Along the same lines, codes of conduct and
codes of ethics have been intensively discussed for ethical
hacking [76], [77] and for computing professionals more gen-
erally. For instance, the Association for Computing Machinery

9In the European Union the General Data Protection Regulation (GDPR)
considers personal data revealing ethnic origin or religious beliefs as partic-
ularly sensitive and allows processing only on certain legal bases [73].
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(ACM) has adopted a Code of Ethics and Professional Conduct
to guide ethical usage and development of computing tech-
nology.10 The speech domain, particularly speech spoofing,
could benefit from established practices in other fields to foster
ethical development and research. This is especially important
as the data used for training spoofing attack algorithms stems
from people who might have donated their voice sample with
a specific purpose in mind, and would not have consented to
other usage scenarios.

C. Implications of Dataset Reuse

Our analysis of ASVspoof shows that datasets for deepfake
detection are typically sourced from existing datasets such
as VCTK or Mozilla’s Common Voice Corpus [52], [60].
Similarly, the Voice Privacy Initiative which focuses on
advancing voice anonymization techniques, i.e., suppressing
a speaker identity while preserving linguistic content and
naturalness of the speech signal,11 relies on several voice
biometrics corpora, including VoxCeleb 1 and 2, for training,
developing and evaluating voice anonymization systems [78].
While voice biometric dataset reuse is understandable given
the time and cost of data collection, reuse tends to be limited to
a few popular and openly available datasets. For instance, the
NIST SRE datasets have not been used in any of the discussed
challenges. This reliance on a few datasets increases the risk
of biased models across various voice-processing tasks.

Recent trends in relaxing training data policies across
challenges and allowing participants to train on external or
pre-registered data can help to increase data diversity. However,
increasing training dataset sizes may also pose challenges by
restricting the choices for evaluation datasets. For instance,
deepfake detection and voice anonymization systems often
rely on similar datasets for evaluation, such as LibriSpeech
or VCTK. This overlap, and the over-reliance on a small
number of evaluation datasets across challenges, hinders reliable
evaluations and the ability to detect bias [79]. There also exist
feedback loops between datasets and voice biometric systems
used for evaluation across tasks. For instance, in recent releases
of ASVspoof, ASV systems for assessing countermeasures have
been trained on VoxCeleb 1 and 2 [80]. Similarly, in the context
of voice anonymization, privacy is assessed through an ASV
system trained on subsets of LibriSpeech [81]. If ASV models
reproduce bias in their training data, using these models for
evaluation questions the reliability of voice anonymization and
deepfake detection evaluations.

D. Voice Biometrics in the Era of Generative AI

Despite challenges like ASVspoof, the limited advances in
speaker verification datasets suggest that voice biometrics will
not be able to keep up with the rapid rise of voice cloning.
In particular, generative AI breakthroughs are enabling speech
generation systems that are capable of synthesizing very realistic
voices. This has led to a sharp increase in voice cloning related
attacks within the last years [82]. For example, an Australian

10https://ethics.acm.org/
11https://www.voiceprivacychallenge.org/

journalist cloned their voice with just 4 minutes of audio data to
break into their own self-service government accounts. While
no real harm was done, it exposed the immense vulnerability
of the Australian Bank and Tax Office [83]. Similarly, another
journalist used voice cloning to trick voice biometrics systems
of banks in the EU and U.S. [84].

While the statistics of successful voice cloning attacks
on banks and government services evade us, we know that
voice cloning “keeps Bruce Reed, chief AI strategist of the
U.S., up at night” [85]. Yet, neither the attacks, nor the
fragility of speaker verification systems should come as a
surprise to the research community. For example, a study that
critically assessed the VoxCeleb datasets [40] showed that the
evaluation pairs that researchers construct from VoxCeleb1
to evaluate speaker verification systems are inadequate for
modern applications of voice biometrics. While research has
advanced the development of algorithms and models, only
limited efforts and investments have been made to advance
datasets and evaluation practices.

Voice cloning leaves civil society at risk, more so, if a
person’s unencrypted voice data is in the public domain. Would
participants of the Switchboard and Mixer corpora still consent
to their data being collected and processed, if they were well
informed about the capabilities and risks of voice cloning
today? In today’s age, is Web-scraping of voice data not only
a violation of privacy, but also a violation of personal security,
similar to placing your credit card details in the public domain?
Is it responsible to make voice data public given the limited
capabilities of current voice anonymization techniques? The
voice biometrics research community urgently needs to invest in
the development of datasets that reflect modern applications and
users. Simply collecting more data in the same way, however, is
not the answer. Future datasets need to simultaneously address
diversity and representation, privacy and security requirements,
while being sufficiently challenging for real use cases.

VII. DISCUSSION

This study highlights how the shift to deep neural networks
in speaker recognition has led to changes in research and data
practices. For over two decades, the NIST SREs, Switchboard,
and Mixer datasets have significantly influenced speaker
recognition research. An important focus of this period was
to address audio processing challenges and reduce intra-
speaker variability to ensure robustness of voice biometrics
technology [42], [86], [87]. NIST’s evaluation-driven research
agenda evolved alongside technology advancements, consid-
ered varied task environments, collection devices, background
noise, and room acoustics. However, inter-speaker differences
related to demographics or other speaker-dependent attributes
were considered secondary.

Since 2018, our analysis clearly illustrates the rise to dom-
inance of the VoxCeleb datasets for training and evaluation
in research contributions published at ISCA’s Interspeech
Conference. These datasets met the demand of researchers
to develop speaker recognition systems with deep neural
networks for unconstrained, “in-the-wild” settings. Has the
prioritization of studying such in-the-wild settings potentially
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come at the cost of developing systems that cater to diverse
users? Building robust systems to address inter-speaker vari-
ability is crucial to avoid biased and discriminatory systems
from being deployed in critical applications, such as financial
systems and voice-activated emergency response. Yet, the
shifts that we observed resemble observations made about data
practices in machine learning research more generally [18].

A. Recommendations

Speaker recognition technology offers benefits but also poses
potential risks and harms depending on its deployment and use.
When used for voice-based authentication and access control,
it is crucial to ensure the technology works for all users. To
do this, representative evaluation datasets are necessary. To
promote fairness and reduce bias when curating voice biometrics
datasets, valuable insights can be drawn from prior work in facial
recognition [19]. Diverse and representative datasets that accu-
rately reflect the demographics of the population being served
are needed. To create representative benchmarks, demographic
factors should be considered alongside other speaker-dependent
and independent characteristics. Factors such as age, gender,
accent and language, and their intersections [88], should
be considered when selecting people for dataset collection.
Comparable recommendations regarding benchmarks have been
discussed for speech recognition research [44] and could inform
the development of diverse benchmarks for voice biometrics.
Furthermore, representation should be ensured at the speaker
and utterance level to ensure equitable evaluation across demo-
graphic groups [40]. Additionally, dataset collection procedures
and dataset attributes should be documented carefully, for
example by adopting datasheets [43], [89] for voice biometrics
datasets. Further research is needed to understand application-
specific requirements and how to incorporate these into
evaluation protocols.

Beyond performance disparities, speaker recognition systems
contribute to a hidden and pervasive surveillance infrastructure
that enables governments and corporations to identify citizens
and extract sensitive personal information from their voice.
From a surveillance perspective, speaker recognition technology
poses privacy risks to citizens. Striving for more representative
datasets or detecting and mitigating bias can unintentionally
increase harm to citizens rather than reduce it. Data collectors
should pay attention to the privacy-bias tradeoff and critically
examine the need for collecting sensitive information [90], [91].
Finally, continued research efforts are needed to enable private
and privacy-preserving voice processing. In particular, given
recent advances in voice cloning [92], anti-spoofing research
should consider bias and fairness to ensure that all demographic
groups are adequately protected.

B. Limitations

We acknowledge limitations in our study and research
approach, focused solely on publications from the ISCA
Interspeech Conference, which might miss broader dataset
dynamics across the voice biometrics community. Including
analysis from the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) and biometrics

venues could enrich this study. Nonetheless, we believe our
findings to be broadly representative of general trends in
speaker recognition research. By analyzing peer-reviewed
research publications, we assume that dataset dynamics in
the research domain are also indicative of adoption and
attitudes towards datasets in the voice biometrics industry. Our
assumption that research practices extend to industry where
they may lead to bias in deployed applications is speculative.
Our focus in this study was on dataset dynamics, and we did
not consider evaluation protocols and metrics, which are also
important in speaker recognition evaluations. Further studies
and technology audits are necessary to evaluate bias in speaker
recognition, and to enable accountability, transparency, and
auditability of speaker recognition systems.

VIII. CONCLUSION

Our research provides a comprehensive overview of the
evolution of speaker recognition datasets used for training and
evaluation over the past decade. By analyzing the adoption,
dynamics, and attributes of these datasets, we have identified
issues related to bias, fairness, and ethical concerns in speaker
recognition research. Importantly, these insights shed light
on how data practices in research may influence downstream
development of voice technologies, raising awareness about
potential bias, privacy and security concerns. Our findings
emphasize the importance of ongoing investigation into dataset
attributes and usage, particularly in light of current research
practices in a data-centric era. Finally, our study highlights
the need for new datasets, that carefully trade-off challenging,
modern deployment scenarios with considerations for ethics
and fairness.
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