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Abstract
Nowadays, software is an integral part of many companies. However, the codebase can grow large
and complicated and is often insufficiently documented. To gain insight, tools have been made to
infer state machines and process models from software logs. These tools produce different types
of models such as automata and Petri nets. The main objective of this research is to determine
which tool is the optimal choice for inferring a readable and correct model within reasonable time.
Currently, Petri nets and automata are not compared to each other and not all key performance in-
dicators are applicable to both model types. To compare these different concepts, suitable metrics
must be identified.

For this work, 8 configurations of 4 programs will be compared. Finite State Machines (FSMs)
will be inferred with FlexFringe (AIC), MINT and PRINS (using MINT internally). Petri nets will be
minedwith ProMusing the InductiveMiner, InductiveMiner Infrequent - All Operators, Hybrid-ILP
and the Directly Follows miner. The configurations will use 5-folds cross validation to infer models
on 9 software logs. Negative traces were synthesised as they were not available. The quality of the
models will be measured though inference time, complexity, 𝐹2-score, balanced accuracy, fitness
and perplexity.

Some of the used metrics were adequate, but others were not suitable. Inference time, 𝐹2-score,
balanced accuracy could bemeasured for both FSMs and Petri nets. The complexity was measured
with the Petri net 𝑒𝐶𝐹𝐶 metric and the Cyclomatic complexity 𝐶𝐶. The 𝑒𝐶𝐹𝐶 does not properly
express complexity onFSMs. Furthermore, Petri nets canmodel parallelism,which introduces extra
complexity compared to an FSM. This was not adequately expressed by either of these metrics. To
measure fitness, both token-based replay and alignment fitness were used. FSMs were converted
to Petri nets. Token-based replay (TBR) fitness was not an expressive metric for the FSMs, as the
concept of tokens did not carry over well. In addition to this, the external implementation of TBR
fitness was flawed for the specific structure of the converted FSMs. Alignment-based fitness is the
superior fitness metric as it does not rely on the notion of tokens, which the FSMs do not have.
Unfortunately, the time and memory needed for alignment computations was too large for some
models. Lastly, the perplexity FSM metric was successfully adapted for Petri nets. It expresses
the difference in structure and could be tailored even further for the purposes of comparison by
adjusting its parameters.

The results of the comparison showed that almost all configurations could complete inference
in feasible time and memory. The time out was set at 4 hours and the available memory was 16GB.
The MINT and PRINS ran out of memory on one of the larger logs and timed out for one other set.
Hybrid-ILP timed out for 2 sets. All other configurations completed inference for all data sets in
under 40 seconds. PRINS and MINT boasted excellent performance across all correctness metrics,
andwere only outperformedby FlexFringe and theDirectly Followsminer onperplexity. PRINS and
MINT were most suitable for modelling traces of data sets with a low trace similarity and generalis-
ing to identify new traces. However, MINT models were a lot larger than those of any other config-
urations and PRINSmodels are generally many times larger thanMINTmodels. So, if complexity of
models is a big concern, FlexFringe and the Directly Follows miner offer the smaller models, at the
cost of a small amount of performance for most sets. However, these two tools perform poorly on
sets that are both incomplete and contain dissimilar traces. If time is of the essence, one should use
FlexFringe, the Directly Follows miner of one of the Inductive Miners. The Petri net miners used,
were not designed to introduce new behaviour in a model. Therefore, FlexFringe is preferable for
modelling an incomplete log.
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1
Introduction

Nowadays, computers with their software are an integral part ofmany companies. Software is often
used to perform many different types of complicated tasks. Thus, a piece of software can get large
and difficult to understand. As needs and requirements for the software change over time, the com-
pany may start adjusting the software and adding new features to it. This may prove challenging.

First of all, the developers that originally created the software may no longer be at the company.
The new developers will need correct, up-to-date and complete documentation if they wish to add
components to the software, without causing bugs, in a timely manner. In reality, documentation
is often not up-to-date, badly written or unclear, incorrect or just difficult to find [30].

Secondly, software will deteriorate over time [37], further increasing the need for documenta-
tion. One factor to deterioration occurs when adding components. A new developer may lack of
understanding of the software’s intended structure and make a change incompatible with it. If this
happens many times over a span of years, the software structure will degrade and ultimately, there
will be no one left that understands its true intent. When software deteriorates, its performance
and reliability decreases [37], costing the company time and money.

To solve the problem of missing documentation and prevent further software deterioration, the
newdevelopersmaywish to identify and analyse the structure andbehaviour of the software before
starting work on it. This can be done through process mining and inferring state machines. This
produces a visual model that represents observed software behaviour. Process mining and state
machine inference are two separate fields of research that are able to produce models for software
traces. Research into inferring state machines has been done for decades and has produced many
different methods[4][10][51][14][12]. Process mining has been around since the 90s and has also
spawnedmanydifferent approaches to process discovery [47]. Manyof these inference andprocess
discovery methods have been implemented in tools that can be used by anyone.

The question that arises now is, which tool and which method should a developer choose? This
question unfortunately does not have straightforward answer. The creators of the aforementioned
methods analyse and compare the performance of the models. But the models created by process
mining are not compared to those produced by state machine inference methods. Process models
and state machines differ in concepts, thus invalidating certain metrics commonly used on either
processmodels or statemachines. To bridge this gap, it is important to determine how a comparison
be made between these different concepts.

Let us demonstrate this problem with a simple example. A developer has logged the behaviour
of its software which shows that the software can call 5 difference methods 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 in 3 different
orders: {𝑎, 𝑏, 𝑐, 𝑑}, {𝑎, 𝑐, 𝑏, 𝑑} and {𝑎, 𝑒, 𝑑}. They mine a Petri net, seen in figure 1.1, and the state
machine seen in figure 1.2. Both models represent the same behaviour, but look different. First
of all, the Petri net models 𝑏, 𝑐 and 𝑐, 𝑏 with a structure specific to Petri nets. This makes the Petri
net look more simple, but is it actually easier to read and investigate? The state machine is easy
to follow, but will it grow more convoluted as it models more software behaviour? Is one of these
models more ‘correct’ than the other?

1



2 1. Introduction

Figure 1.1: A Petri net
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𝑐 𝑏

𝑒

Figure 1.2: A finite state machine

In this example, the amount of observed software behaviour is small, but in real life there will
be many methods and many orders they can appear in. This will impact how large these models
become. Process mining tools and state machine inference tools will try to model the behaviour
as efficiently as possible. This can impact the amount of behaviour they can model and how the
model looks. If one were to look purely at how much behaviour could be recognised, the ‘best’
model may be extremely large. Additionally, it is possible that the ‘worse’ models only deviated
slightly. Measuring quality in a deeper, more meaningful way is done differently for both of these
concepts. This makes it difficult to make a fair and useful comparison.

1.1 Research Objectives
So, how would a company compare state machine and process mining tools to analyse their soft-
ware and determine which one to choose? This brings us to the main goal of this thesis: to in-
vestigate how a comparison can be done and evaluate the practical use of various programs and
algorithms. To achieve this goal, this work will answer the following sub questions:

• How can Petri nets and automata output be compared?

• Can the programs produce a model in feasible time and memory?

• How accurate and correct are the produced models?

• How complex are the models?

• Do data set characteristics have influence on performance?

This research ismeant as an exploratorywork to the connect results of processmining and statema-
chine inference in the terms of analysing software. Specifically, this work limits the output models
to ‘finite state machines’ and ‘Petri nets’, created by the tools FlexFringe,MINT, PRINS and ProM.

1.2 Thesis Structure
This thesis is organised as follows. Section 2will introduce the reader to the relevant concepts: type
of input, structure of the inferred models, inference methods and evaluation techniques. Then,
section 3 will give an overview of inference performance as reported by other works. Section 4 will
describe the set-up of the experiment and evaluate the choices made in this regard. The evaluation
(4.4) includes an analysis of the performance metrics that were used. All results obtained through
the experiment will be reported in section 5, and will be discussed thoroughly in section 6. This
sectionwill also go into the limitations of this research. Lastly, sub questions and themain research
question will be answered in section 7.



2
Background

The tools that will be compared in this work, utilise different algorithms for inference and output
the model in different forms. This chapter will first give a definition of the input (software execu-
tion traces) and the output (state machines and Petri nets) created. After this, the model inference
techniques for each tool will be explained. Lastly, the theory of various evaluation techniques will
be elaborated upon.

2.1 Software Execution Traces
Aprogramor software execution log is a set of traces generatedby the execution of someprogram. A
trace is a sequence of events, where each event contains certain variables. To give a simple example,
say a log is created in a smoothie bar. A trace would be: take order→ cut fruit→ add fruit to blender
→ add milk → add cinnamon → turn on blender → settle bill → serve smoothie. The actions in this
trace are the events, which can vary in type and order in different traces. The smoothie bar log 𝐿
can contain multiple traces 𝜎 ∈ 𝐿. A trace 𝜎 is a finite event sequence ⟨𝑒1, ..., 𝑒𝑛⟩, where each event
usually has some parameters, such as the time, date or other variable values [53].

In software execution logs, it is common to only have positive traces. Positive means the be-
haviour in the trace is feasible in the context, i.e. the software has the ability to execute this order
and type of events. A negative trace would be behaviour that the software cannot exhibit [53]. In
the smoothie bar log, a negative trace could be to omit the ‘turn on blender’ event, as this would not
result in the customer getting a smoothie.

2.2 Finite State Machines
Afinite statemachine (FSM) is a computationalmodel that can be represented in a state diagram, an
example can be seen in figure 2.1. The circles labeled 𝑞0, ...𝑞5 represent states. State 𝑞0 is the start
state and the double circled 𝑞4 represents an accept state. One can move to another state with the
transitions 𝑒1, ...𝑒6. State machines are useful for recognising patterns in data [43, p. 35-36].

The formal definition of an FSM is a 5-tuple (𝑄, Σ, 𝑞0, 𝐹, 𝛿), where:
• 𝑄 is a finite set of states

• Σ is a finite set of symbols (events), also called the alphabet

• 𝑞0 ∈ 𝑄 is the start state

• 𝐹 ⊆ 𝑄 is the set of accept states

• 𝛿 ∶ 𝑄 × Σ ⟶ 𝑄 is the transition function
[43].

In the processmining field, a similar concept is called a transition system. In a transition system,
the set of states can be infinite and the start and end states are not necessarily defined. In practice,
most transition systems will have a finite state space and defined start/end states, and thus can be
referred to as FSMs [1, p. 58].

3



4 2. Background
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Figure 2.1: Example of a state diagram

Determinism
An FSM can be determinisic (DFA) or nondeterministic (NFA). An automaton is deterministic if:

1. Each state 𝑞 ∈ 𝑄 has exactly one outward transition for each symbol in the alphabet.

2. All transition labels 𝑒𝑛 are in the alphabet: 𝑒𝑛 ∈ Σ.

Thismeans the example 2.1 would be anNFA. However, for clarity, all transitions leading directly to
a reject state are not shown. Instead, it is assumed that this automaton rejects when it encounters
symbol 𝑒𝑛 in a state with no outgoing transition for 𝑒𝑛.

Every NFA can be transformed to an equivalent DFA, although the resulting DFA can have a
(much) larger amount of states that the original NFA. The formal definition of an NFA differs in the
transition function; rather that producing the next state, it produces the set of possible next states
[43, p. 35-36].

Probabilistic Deterministic Finite Automata
The transition function of a DFA outputs exactly one state, whereas an NFA transition function can
produce a set of states. A Probabilistic Finite Automaton (PFA) produces a weighted set of states. A
deterministic PFA (PDFA) has a probability assigned to each event, and all outgoing transitions of a
state sum to 1.

The formal definition of a PDFA is a 6-tuple (𝑄, Σ, 𝑞0, 𝛿, 𝑆, 𝐹), where:

• 𝑄 is a finite set of states

• Σ is the alphabet, a finite set of symbols (events)

• 𝑞0 ∈ 𝑄 is the start state

• 𝛿 ∶ 𝑄 × Σ ⟶ 𝑄 ∪ {0} is the transition function

• 𝑆 ∶ 𝑄 × Σ → [0, 1] is the symbol probability function

• 𝐹 ∶ 𝑄 → [0, 1] is the final probability function where ∀𝑞∈𝑄 𝐹(𝑞) + ∑𝑒∈Σ 𝑆(𝑞, 𝑒) = 1

This allows for easy calculation of the probability of a sequence of symbols occurring. Instead of
defining 𝐹, probability functions can also be calculated over Σ𝑛 for some PDFA A: for all 𝑛 ≥ 1,
∑𝑠∈Σ𝑛 A(𝑠) where 𝑠 is a sequence of observed symbols [51].

Extended Finite State Machines
The Extended Finite State Machine (EFSM) model was meant to generalize the FSM model. In this
model, data registers are not part of set of states 𝑆, but instead its operations are modeled in tran-
sitions [7]. Essentially, the EFSM is an FSM with memory that holds variables. A transition is no
longer enabled by encountering its symbol alone, it can also have conditions for the current value
of the variables [53].

The formal definition of an EFSM is a 7-tuple (𝑄, Σ, 𝑞0, 𝐹,𝑀, 𝑈, 𝛿), where:

• 𝑄 is a finite set of states

• Σ is a finite set of symbols

• 𝑞0 ∈ 𝑄 is the start state
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• 𝐹 ⊆ 𝑄 is the set of accept states

• 𝑀 is a finite set of variables in memory, assigned to values

• 𝑈 ∶ 𝐿 × 𝑀 ⟶ 𝑀 is the update function

• 𝛿 ∶ 𝑄 × Σ ×𝑀 ⟶ 𝑄 is the transition function
[53].

2.3 Petri Nets
A Petri net is a modelling language that is able to express concurrency and it can be represented
with a diagram [1, p. 59-63]. An example of a Petri net can be seen in figure 2.2.

The formal definition of a Petri net is a 3-tuple (𝑃, 𝑇, 𝐹), where:
• 𝑃 is a finite set of places

• 𝑇 is a finite set of transitions with 𝑃 ∩ 𝑇 = ∅
• 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is the flow relation; a set of directed arcs from places to transitions and
vice versa

[1, p. 59-63].
Places correspond to states of an FSM and the transition squares correspond to events. A black

square is a silent transition. This does not correspond to an event in the trace, but effectively en-
ables a skip. In figure 2.2 this means that neither 𝑏 or 𝑐 need to be fired after 𝑎.

Figure 2.2: Example of a marked Petri net

The structures in a Petri net are subject to different firing rules. Tokens can enable transitions
and flow through the net according to these rules:

• Transition 𝑎 has multiple outbound arcs. This models concurrency, meaning that after 𝑎 both
𝑑 and 𝑏, 𝑐 or the silent transition can be fired. If 𝑎 is fired, the token in start is consumed
and 2 tokens are produced for places 𝑝1, 𝑝2. Thus the beginning of a valid trace in this net
can be 𝑎𝑑 (silent transition fired), 𝑎𝑑𝑏, 𝑎𝑑𝑐, 𝑎𝑏𝑑, 𝑎𝑐𝑑. This also means that this Petri net is
non-deterministic as it moves to 𝑝1 and 𝑝2 with transition 𝑎.

• Place 𝑝1 has multiple outbound arcs. This models choice, meaning that either 𝑏, 𝑐 or the silent
transition can be fired from 𝑝1. enabling one of these transitions consumes the token in 𝑝1
and produces a token for 𝑝3.

• 𝑝2, 𝑑, 𝑝4 models a simple sequence. The token in 𝑝2 is consumed to enable transition 𝑑, and a
token is produced for 𝑝4.

• Transition 𝑒 hasmultiple inbound arcs, and needs a token from each place connected to these
arcs to be enabled. Therefore, 𝑒 can only be fired if there is a token in both 𝑝3 and 𝑝4.

The marking 𝑀 of a Petri net is defined as the places that are holding a token. The initial marking
of the example net is [𝑠𝑡𝑎𝑟𝑡], which enables transition 𝑎. After 𝑎 fires, the marking will be [𝑝1, 𝑝2]. A
firing sequence 𝜎 is a sequence of transitions ⟨𝑒1, ..., 𝑒𝑛⟩ for which markings exists that enable them
in this order, i.e. a valid sequence of events [1, p. 59-63].
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Workflow Nets
A workflow net (WF-net) is a type of Petri net. It has exactly one source place 𝑖, one sink place 𝑜
and all its places and transitions are on a path from the source to a sink. This concept is relevant as
it is a more intuitive and logical model to define a process. In real world examples, there is usually
a begin and and end to a procedure, even if the steps in between may vary [1, p. 65].

Soundness
The ultimate goal of process mining is to model a valid process. If, for example, some transition 𝑡
does not have outbound arcs, dead end has been reached. The process is now stuck and no token
will reach the sink place. Such amodel can be classed as ‘incorrect’. This is the notion of soundness
in WF-nets. A DFA can be seen as sound by definition; since each state has one outward transition
for each 𝑒 ∈ Σ, the machine will always either reject on seeing the symbol, or continue to another
state. A WF-net is sound if it satisfies the following requirements:

1. Safeness: a place can hold no more than one token at the same time.

2. Proper termination: the process ends in a sink place. At termination, only the sink place in the
WF-net has a token.

∀𝑀(𝑖
∗−→ 𝑀 ∧𝑀 ≥ 𝑜) ⇒ (𝑀 = 𝑜)

3. Option to complete: for every marking 𝑀, there exists a firing sequence that ends in the sink
place.

∀𝑀(𝑖
∗−→ 𝑀) ⇒ (𝑀 ∗−→ 𝑜)

4. No dead transitions: for every transition 𝑒, there exists a marking that enables 𝑒.

∀𝑒∈𝑇 ∃𝑀,𝑀′ 𝑖
∗−→ 𝑀 𝑒−→ 𝑀′

Requirement (3) implies (2), as the option to complete means it is indeed possible to properly ter-
minate [46][1].

2.3.1 Conversion to Petri Net from FSM
An automaton can easily be transformed into a Petri net, as done by Habben-Jansen [18] and S. J. J.
Leemans et al. [25]. This is done by creating a place 𝑝 for each 𝑞 ∈ 𝑄, a new start place 𝑝0 and an end
place 𝑝𝑒𝑛𝑑 . Start state 𝑞0 will be connected to 𝑝0 with a silent transition and all 𝑞 ∈ 𝐹 will be con-
nected to 𝑝𝑒𝑛𝑑 with a silent transition. After this, a transition 𝑡 is added for each transition (𝑞, 𝑒, 𝑞′),
and arcs (𝑝𝑞 , 𝑡) and (𝑡, 𝑝𝑞′) to corresponding places are created. The definition of soundness will
hold for a DFA. Each transition has only one outbound arc, as a DFA does not model concurrency
and a transition goes to one state only. Thus, there will never be more than one token, resulting in
a safe Petri net. A DFA must have an outward transition for each symbol of the alphabet, meaning
it is always possible to complete and terminate properly. However, DFAs can contain dead states:
these are states with only self-loops. This would violate requirement (4) [18].

2.4 Model Inference Techniques
This section will elaborate upon the inference methods used in this work. The first three methods
can infer Petri nets and are included in the ProM [49]: the directly followsminer, the Hybrid Integer
Linear Programming based miner and the Inductive Miner. After, the Evidence-Driven blue-fringe
state-merging algorithm [23] that was implemented in Flexfringe [52] will be discussed. Lastly,
MINT’s [53] inference technique and PRINS’ [42] technique to improve scalability will be explained.

2.4.1 Directly Follows Miner
This is a miner by S. J. J. Leemans et al. [25] that outputs a directly follows model (DFM), which is
somewhere inbetweenanFSMandaPetri net. Unlike anFSM, thismodel doesnot focuson the state
of a process, but on the order of activities. States represent events and edges represent a ‘directly
follows’ relation between events. DFMs do not model concurrency like Petri nets generally do and
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thus are more scalable and easier to interpret. The models generated by this approach are always
sound [25].

Theminer works as follows. The user can set a threshold for theminimum amount of traces that
will be kept formining. The initial DFM is generated by adding nodes and edges for each trace in the
log. It keeps track of how often an edge (i.e. a directly-follows relation) occurs in a log. All traces
that contain the least frequent edges are removed. Then, a new DFM is generated on the filtered
log and the procedure starts again. It is repeated until the threshold is reached. For example, if the
threshold is 0.8, the procedure will stop before the size of the filtered log becomes smaller than 80%
than that of the original log [25].

Since the DFM is modelled on traces, without removing edges from the model directly, com-
pletion and proper termination is always possible. This also ensures there are no dead transitions.
There is no concept of multiple arcs coming out of an edge, so the DFM is 1-safe. Thus, the DFM is
sound. S. J. J. Leemans et al. [25] convert the DFM to a Petri net as described in section 2.3.1, which
means the resulting Petri net is also sound.

2.4.2 Hybrid ILP Miner
This process discovery algorithm was proposed by Zelst et al. [55]. It is a language-based region
miner and builds upon the Integer Linear Programming (ILP) formulation of previous work. The
idea of mining language-based regions is to use a language as input. The ‘language’ in this case
is and event log 𝐿 with a set of activities 𝑇 [1, p. 218-222]. First, language-based regions will be
explained. Then, the workings of the base algorithm are explained in terms of the ILP-formulation
it uses and how it applies them to causal relations. Lastly, its approach to over-fitting is discussed:
sequence filtering.

Language­Based Region Mining
Suppose a Petri net 𝑁 is mined with a log 𝐿 that has a set of events 𝑇. One could produce a Petri net
with the set of transitions being 𝑇. If there are no input places for a transition, each transition is
always enabled. This means the net can reproduce any trace 𝜎 in 𝐿, in fact, it can produce any trace
over 𝑇. Adding a place 𝑝𝑖 can restrict behaviour, as the transition it connects to now needs a token
in 𝑝𝑖 to be able to fire. The idea of language-based region mining it to map places to transitions,
while not imposing restrictions that prevent any 𝜎 ∈ 𝐿 from being valid in net 𝑁 [1]. In conclusion,
in the context of a Petri net, a region represents place with a set of in- and output transitions.

The ILP­Formulation
An ILP problem is defined as a function that is optimised, while adhering to certain constraints for
the function variables. For each potential region 𝑝, a function is minimised. A potential region is
definedby a set of input transitions, a set of output transitions and an initialmarking𝑚0 fromwhich
𝑝 is reached. This function consists of three parts. The first part denotes how many tokens are in
the initial marking: 𝑐. The second part 𝑓1, is a sum of all tokens produced by all input transitions
of 𝑝. The third part, 𝑓2, is the sum of all tokens can be consumed by the output transitions of 𝑝.
Then, the function 𝑐 + 𝑓1 − 𝑓2 ≥ 0 is minimised. The result of this function must be ≥ 0, as a lower
number would mean more tokens were consumed than the amount of tokens 𝑝 had available. This
definition concerns a dual variable region, as the in and output transitions are considered. 𝑓2 can be
omitted to obtain a single variable region, which does not differentiate in- and output transitions. A
dual variable region is needed tomodel self-loops the typical Petri net patterns, such as parallelism.
However, this does add more variables to the optimisation problem Zelst et al. [55].

So, what are the ILP constraints and how does this work in the miner? First of all, the algorithm
tries to find potential places by mining causal relations between events. A causal relation between
events 𝑎, 𝑏 exists if any sequence in the log contains 𝜎 = {..., 𝑎, 𝑏, ...}. These causal relations will
serve as the constraints for the ILP problem: e.g. a potential place must model 𝑎 as input transition
and 𝑏 as output, without allowing causal relations to do not exist in the log. Then, the ILP prob-
lem is solved to obtain a place that restricts the initial disconnected set of transitions to a causal
relationship as seen in the log. The ILP is solved for each causal relation [55].

The previous paragraphs explain the basic idea of this miner in a simple way. For more specifics
of the optimisation function, hybrid regions and the exact ILP constraints, one is advised to read
the work by Zelst et al. [55].
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Sequence Encoding and Filtering
The proposed hybrid ILP miner has problems dealing with unusual traces in event logs. The al-
gorithm will attempt include all behaviour from the log. Thus, an unusual trace can result in very
restrictive ILP constraints, causing the algorithm to not find a place that does adhere to all other
traces. This problem will be addressed by applying filtering [54].

A prefix set of the log is created. For example, a log 𝐿 = {⟨𝑒1, 𝑒2, 𝑒3⟩, ⟨𝑒1, 𝑒2, 𝑒4⟩}, has the prefixes
𝐿 = {𝜀, ⟨𝑒1⟩, ⟨𝑒1, 𝑒2⟩, ⟨𝑒1, 𝑒2, 𝑒3⟩, ⟨𝑒1, 𝑒2, 𝑒4⟩}. The idea is to count the occurrences of all prefixes, and
filter all occurrences below a certain threshold. The prefix set is used to create an acyclic graph.
This graph contains all prefixes in the set of nodes and has the 𝜀 prefix as root. Nodes are connected
if the source is node is a prefix for the target node. Transitions are weighed with the frequency
of it occurring in the log 𝐿. The weight of a transition coming form node 𝑛 with frequency 𝑓 is
computed as 𝑓

𝑓𝑛,𝑚𝑎𝑥
, where 𝑓𝑛,𝑚𝑎𝑥 is the highest frequency on the out transitions of the node 𝑛. If

this fraction is below the the threshold, the transition is removed from the graph. The prefix nodes
are called sequence encodings. Only causal relations present in the filtered graph will be added to
ILP constraints [54].

2.4.3 Inductive Miner
The inductive miner (IM) is a state-of-the art process discovery approach, introduced by S. J. J.
Leemans et al. [28]. The algorithm and its variants, such as the inductive infrequent [29] miner,
guarantee a sound process and preservation of fitness [27] [1, p. 222-236]. This subsection will
introduce the basic inductive miner and the ‘infrequent - all operators’ extension (IMfa).

The inductive miner does not use Petri nets internally, but process trees. A process tree consist
of nodes with operators⊕ = {→, #, ∧,⟲⟲⟲} and leaves with events. Figure 2.3 gives an example of a
process tree with the sequence operator → as root node. This operator will execute its children in
sequential order, meaning this process always starts with the redo loop ⟲⟲⟲. A redo loop has a ‘do’
and a ‘redo’ part. The leftmost child first is the ‘do’ part and is executed first. If the loop is entered,
the other children are executed: the redo part. This also means the ‘do’ part is executed again. The
parallel operator ∧ models sub traces {⟨𝑒, 𝑓⟩, ⟨𝑓, 𝑒⟩}. The sequential part of the tree ends with the
choice operator #, meaning the trace will end with either 𝑐 or 𝑑. A process tree can be mapped to a
workflow net, and this net will always be sound [1, p. 80-83].

⇒

⟲⟲⟲ #

𝑐 𝑑𝑏∧

𝑒 𝑓

𝑎

Figure 2.3: Example of process tree,
→ = sequential composition, # = exclusive choice, ∧ = parallel composition and ⟲⟲⟲ = redo loop

The inductiveminer aims to discover the process tree for log of traces. It startswith constructing
adirectly follows graph (DFG) of the log 𝐿: 𝐺(𝐿). This is a graphwhere each event is a state. The edges
in the graph denote directly follows relations: states 𝑎, 𝑏 are connected with an arrow if there exists
a trace in 𝐿 where ⟨..., 𝑎, 𝑏, ...⟩. The start states in the graph Σ𝑠𝑡𝑎𝑟𝑡𝐿 are the events the logs start with.
The same goes for the end states: Σ𝑒𝑛𝑑𝐿 . After constructing 𝐺(𝐿), the algorithm will try to discover
cuts of 𝐺(𝐿) with patterns that correspond to the four operators⊕ = {→, #, ∧,⟲⟲⟲} [28][27][1].

If a cut is found, log 𝐿 is split into sub-logs. Cut discovery continues recursively: DFGs for the
split logs are created, the search for a cut starts on these sub-graphs and the sub-logs are split. The
logs are split differently depending on which type of cut was found. This will be illustrated with an
example log 𝐿 = {⟨𝑎, 𝑏, 𝑐⟩, ⟨𝑎, 𝑐, 𝑏⟩, ⟨𝑎, 𝑑, 𝑒⟩, ⟨𝑎, 𝑑, 𝑒, 𝑓, 𝑑, 𝑒⟩} by S. J. J. Leemans et al. [28]:
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• Sequence→ split: effectively separates the sequenced activity sets. The new log 𝐿2 becomes
{⟨𝑏, 𝑐⟩, ⟨𝑐, 𝑏⟩, ⟨𝑑, 𝑒⟩, ⟨𝑑, 𝑒, 𝑓, 𝑑, 𝑒⟩}. It is not necessary to recurse on log 𝐿1 = {𝑎}.

• Exclusive choice # split: in 𝑙2, an exclusive choice cut can be found at {𝑏, 𝑐}, {𝑑, 𝑒, 𝑓} as they
have no events in common. The log is split into sets with common events: 𝐿3 = {⟨𝑏, 𝑐⟩, ⟨𝑐, 𝑏⟩}
and 𝐿4 = {⟨𝑑, 𝑒⟩, ⟨𝑑, 𝑒, 𝑓, 𝑑, 𝑒⟩}.

• Parallel ∧ split: log 𝐿3 contains a parallel cut. The split logs consist of each parallel event set:
{𝑏} and {𝑐}.

• Redo loop ⟲⟲⟲ split: log 𝐿4 has a repetitive sequence 𝑑, 𝑒. The loop cut is {𝑑, 𝑒}, {𝑓} and is split
on the ‘do’ and the ‘redo’ part: 𝐿5 = {⟨𝑑, 𝑒⟩} and 𝐿6 = {⟨𝑓⟩}

[28][27][1].
The recursion ends by matching with a base case. There are two base cases, which are tried in

order. The first base case that is checked is emptyLog, which is returned when the log is empty. It
returns the silent event 𝜏. The second case is singleActivity. It applies when all traces in the log
contain only one type of event. This single event is returned as a leaf [27].

It is possible that no base case applies or no cuts can be found. To avoid not returning a process
tree, the IM algorithm has a fall-through function, which tries to apply the following patterns in
order:

1. emptyTraces: if an empty trace is in the log, 𝜖 ∈ 𝐿, an exclusive choice construct with a silent
event as child is added: #(𝜏, ..). The recursion is nowable to continue on sub logwithout empty
traces.

2. activityOncePerTrace: if some event 𝑒 occurs exactly once in each trace of the log, event 𝑒 is
filtered from 𝐿 resulting in 𝐿′. The tree structure ∧(𝑒, 𝐼𝑀(𝐿′)) is added.

3. activityConcurrent: this fall-through filters a specific activity 𝑒 from 𝐿, thus obtaining 𝐿′
where 𝑒 is filtered from all traces and 𝐿″ which contains all traces with everything except 𝑒
filtered. If a cut is found for 𝐿′, event 𝑒 is added parallel to 𝐼𝑀(𝐿′).

4. strictTauLoop: if a loop is detected, this fall-through applies. To detect the loop, the log
splits traces where an end event is followed by a start event. If at least one split was found,
the structure ⟲⟲⟲ (𝐼𝑀(𝐿′), 𝜏) is added.

5. TauLoop: similar to the previous fall-through, except the traces are split on every occurence
of a start activity. If at least one split is found, structure ⟲⟲⟲ (𝐼𝑀(𝐿′), 𝜏) is added.

6. flowerModel: this fall-though requires a log without empty traces. It returns a model that
allows any behaviour over the event set Σ(𝐿) of 𝐿, resulting in the following tree: ⟲⟲⟲ (#(𝑒 ∈
Σ(𝐿)), 𝜏)

Thus, returning the flower model is the absolute last resort [27].
This algorithmpreserves precision, i.e. themodel does not allow extra behaviour, for the choice,

sequence and parallel operators. The redo operator introduces unbounded behaviour, which can-
not exist in a log with finite traces and thus is not precision preserving. IM also guarantees sound-
ness, as process trees are sound by design, and perfect fitness [27].

Inductive Miner ­ All Operators
The ‘all operators’ (IMa) extension adds three operators: silent event 𝜏, interleaved↔ and inclusive
choice ∨. The interleaved operator executes all of its children, without overlap. This means a child
needs to finish its execution before the another child can start execution. The silent event models
optionality. If a silent event is in the process tree, a new state can be moved to without firing an
event. Silent events are only relevantwhen they are a child of a redoor an exclusive choseoperators.
For the inclusive choice, at least one of its children is executed. The followed traces of children can
overlap if multiple are executed. The following subsection will elaborate upon the detection and
log splitting for the interleaved↔ and inclusive choice ∨ operators, as the silent event 𝜏 is handled
by a fall-through [27].

The log splitting functions for {→, #, ∧,⟲⟲⟲} of IMa are the same as those of the base IM. New func-
tions for the additional operators are added, and illustrated with example:
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• Interleaved ↔ split: the log is split by the corresponding subtraces. For example, an inter-
leaved cut is found in log 𝐿 = {⟨𝑎, 𝑏, 𝑐⟩, ⟨𝑏, 𝑐, 𝑎⟩}. This will split the log into 𝐿1 = {⟨𝑏, 𝑐⟩2} and
𝐿2 = {⟨𝑎⟩2}.

• Inclusive choice ∨ split: works like the interleaved split, but assumes that there are no empty
traces in 𝐿, courtesy of the emptyTraces fall-through, to preserve fitness. If an inclusive choice
cut is found in log 𝐿 = {⟨𝑏, 𝑐, 𝑎⟩, ⟨𝑎⟩, ⟨𝑏, 𝑐⟩}, it is split into 𝐿1 = {⟨𝑏, 𝑐⟩2} and 𝐿2 = {⟨𝑎⟩2}.

[27]
The base cases and fall-through cases are the same as those of the basic IM and do not need to

be extended. The emptyTraces case detects the silent event 𝜏 pattern.

Inductive Miner ­ Infrequent ­ All Operators
Both the base IM and IMa have issues correctly modelling infrequent and deviating behaviour in
logs. If a log contains a deviating trace, that occurs only once, it will create a process tree that
models this trace as well. Such a tree may bemany times larger or introduce extra behaviour. If this
deviating trace is only one out of hundreds, it may not be desirable to output an overly complicated
model to obtain a replay for the deviating trace, especially if it lowers the precision a lot. This is
addressed with filtering at every step of the IM algorithm, using a deviation threshold 𝑓 [27].

Cut detection starts the same as in the base IM. However, if the cut detection does not succeed,
the DFG is filtered based on 𝑓 and the search for a cut starts with the filtered DFG. If a cut is found,
the log is split and recursion continues. The log splitting functions are also slightly changed. When
entering the log splitting function for the chosen operator, infrequent log behaviour that violates
this operator is filtered out. However, parallel and inclusive choice operators allow for any be-
haviour and thus nothing will be filtered. The functions split logs as in the IM algorithmwhen there
are no deviating events [27][29].

The singleActvitiy base case and emptyTraces are also slightly altered. Amore detailed expla-
nation of this and the whole IM algorithm and all of its guarantees, can be found in the PhD thesis
of Leemans [27]. IMfa does not preserve fitness, but it does preserve soundness.

2.4.4 Evidence­Driven Blue­Fringe State­Merging
FlexFringe implements the Evidence Driven blue-fringe State Merging (EDSM) [23] algorithm. The
idea of state merging is to start with a tree, the prefix tree acceptor, that accepts all traces in a log
and start merging compatible states. The decision whether states should be merged is based on an
evaluation function, such as Akaike’s Information Criterion (AIC).

Blue­fringe EDSM
The prefix tree acceptor is constructed by iterating through a log of traces. From a start node, tran-
sitions are added for each unique first event in each trace. Then, the second events are added as
transitions to their proper prefix. This is done for all events in all traces in the log [52]. An example
can be seen in figure 2.4.

𝑞0

𝑞1

𝑞2 𝑞5

𝑞4

𝑞3

𝑞7

𝑞6

𝑞8

𝑎

𝑏
𝑑

𝑑
𝑏

𝑐

𝑎
𝑐

Figure 2.4: Prefix tree acceptor for log 𝐿 = ⟨𝑎𝑑, 𝑎𝑏, 𝑎𝑑𝑐, 𝑏𝑑𝑎, 𝑏𝑑𝑐⟩

The basic concept of EDSM is to iterate over all node pairs and compute a merge score. The
highest valid merge is performed. The first step is to compute whether nodes are equivalent, i.e.
if their in- and output transitions are the same. If they are, the potential merge will be scored.
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When some pair (𝑞1, 𝑞2) with the highest score is found, they are merged as follows: all in- and
out transitions of state 𝑞1 are transferred to 𝑞0. If both states were accept states, the merged state
is also accepting. This is the same if one state is a reject state. An accept state and a reject state
cannot be merged [23]. In FlexFringe, if a merge causes non-determinism, the target states of the
non-deterministic transitions are also merged [51].

The aforementioned algorithm will merge nodes in a random order and has many candidate
pairs. FlexFringe implements a more restrictive variant: the blue-fringe algorithm. This algorithm
limits the choice of candidate nodes, by colouring nodes and only considering blue/red pairs. In
the beginning, the start state is coloured red and its children are coloured blue. Throughout the
state merging, the following characteristics will remain constant:

• Red nodes form a connected graph

• If a red node has children that are not red, they must be blue

• Blue nodes are not the endpoint of any transition, i.e. they are roots of isolated trees

Instead of iterating over all pairs, only the merge score of red/blue pairs will be computed. If one of
the merges is consistent, the merge with the highest score is performed. Merge candidates scoring
below a certain score, are coloured red. The children of the new red states are coloured blue. This
restriction speeds up the state merging significantly [23][51].

Akaike’s Information Criterion
FlexFringe’s implementation checks consistency rather than equivalence of amerge candidate. This
is can be donewith various algorithms such as Alergia, the likelihoodratio andAIC. If amerge is per-
formed on some PDFA A, it becomes the more restricted PDFA A′. Akaike’s Information Criterion
computes the difference in transitions and the loglikelihood between A and A′. These two differ-
ences are then deducted. The AIC is computed as follows:

2(|A| − |A′|) − 2( ∑
𝑞∈𝑄,𝑎∈Σ

𝐶(𝑞, 𝑎) log(𝑆(𝑞, 𝑎)) − ∑
𝑞′∈𝑄′ ,𝑎∈Σ

𝐶(𝑞′, 𝑎) log(𝑆′(𝑞′, 𝑎))) > 0,

where |A| is the number of transitions in A, 𝐶(𝑞, 𝑎) is the frequency count of an event 𝑎 in state 𝑞
and 𝑆(𝑞, 𝑎) is the symbol probability function of an event 𝑎 state 𝑞. Thus, amerge decreasing the log
likelihood and/or the number of transitions in A′ compared to A, minimizes the AIC. Such a merge
is consistent [51].

2.4.5 MINT
MINT is a generalised Model Inference Technique by Walkinshaw et al. [53] to infer EFSMs. How-
ever, the update functions of the EFSMs are not inferred, which means the resulting models are not
complete EFSMs and only capture whether sequences of events and variable values are possible.
This technique builds upon existing state-merging approaches such as EDSM [23] andGK-tails [32].
In contrast to thesemethods,MINT is amodular algorithm, allowing insertion of various data classi-
fier inference techniques. These are type pattern recognition techniques, or more specifically, clas-
sifiers. Classifiers identify patterns in order to assign an output class to a set of observations. This
subsectionwill explainMINT’s inference technique and the classifier inference technique AdaBoost
[53].

Inference Algorithm
This algorithm startswith the inference of a set of classifiers. The classifiers correspond to the event
names in the traces and aremeant to predict the next event in a trace. So, there is a classifier for each
unique event in the log. The rest of the inference algorithm is much like the the aforementioned
EDSM: A prefix tree acceptor (PTA) is generated and pairs of states aremerged, in away that ensures
determinism. However, there are a few key differences in the PTA and extra constraints formerging
pairs.

during preprocessing, a classifier is learned for each event in the log. E.g. a classifier for an
event 𝑎 can receive an event 𝑏 as input and will 1 if 𝑏 is likely to follow 𝑎, 0 otherwise. Unlike in the
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basic state merging algorithm, the PTA transitions include a set of data variables in addition to the
event label. Another difference in the PTA is that pairs of states only share a prefix if the classifiers
produce the exact same result both states.

The classifiers are also incorporated into the state merging algorithm. The inference algorithm
iterates over a set of chosen candidate state pairs and after each merge, the model is checked for
consistency with the classifiers. If a model A′ generated by a merge in model A is not consistent
with the classifiers after a merge, A′ is discarded and the node pair is stored in memory as a failed
merge. Iteration continues withA.

The candidate pairs are not random pairs, they are chosen by considering several variables and
calculating a merge score. The score is computed by iterating over pairs of equivalent transitions
of a pair of states. In each iteration, the score is incremented by 1 and added to the merge score of
the target states of the transitions. Transitions are equivalent if their data variables are considered
equivalent by its classifier. This function also includes an optional minimum merge score 𝑘. Any
pair of states below that score is never considered equivalent.

AdaBoost
Adaptive Boosting (AdaBoost) is an algorithm by Freund and Schapire [16] that aims to find clas-
sification rules. The key idea of boosting is to combine prediction rules (hypotheses) that are not
very accurate to find an accurate prediction rule. The algorithm receives training samples (𝑥𝑖 , 𝑦𝑖),
where 𝑥𝑖 is the input and 𝑦𝑖 its label. In this context, that means the event name 𝑒𝑖 and its successor
𝑒𝑖+1 respectively. In short, this method will start with a weight vector that has equal weights for all
data points and use it as input for a weak learner to train a model. A weak learner creates predic-
tions with variable accuracy, but at least slightly better than random guessing. The samples that
are wrongly classified by the weak learner receive a higher weight. This new weight vector is used
in a subsequent iteration, which trains another model and updates the weight vector the same way.
This continues until a satisfactory model is created or for a specific number of iterations [16].

More specifically, the algorithm with 𝑁 training samples works as follows:

• A weight vector 𝑤1 of length 𝑁 is initialized with an uniform distribution. All weights are 1
𝑁 .

• A specific number 𝑇 is set to determine the amount of iterations

• Iterate 𝑇 times, 𝑡 = 1, 2, .., 𝑇:

1. Compute distribution:
𝑝𝑡 = 𝑤𝑡

∑𝑁𝑖−1𝑤𝑡𝑖
.

2. Train a model with a weak learner and 𝑝𝑡, this outputs a weak hypothesis ℎ𝑡.
3. Compute the error 𝜀𝑡 of the weak hypothesis over all training samples:
𝜀𝑡 = ∑

𝑁
𝑖−1 𝑝𝑡𝑖 ∗ |ℎ𝑖(𝑥𝑖) − 𝑦𝑖|.

4. Compute parameter 𝛽 as:
𝛽𝑡 =

𝜀𝑡
1−𝜀 .

5. Update weight vector by multiplying each weight 𝑖 by 𝛽1−|ℎ𝑖(𝑥𝑖)−𝑦𝑖|𝑡 :
𝑤𝑡+1 = 𝑤𝑡𝑖 ∗ 𝛽

1−|ℎ𝑖(𝑥𝑖)−𝑦𝑖|
𝑡 .

• Output final hypothesis ℎ𝑓:

ℎ𝑓(𝑥) = {
1 if ∑𝑇𝑡=1 (log

1
𝛽𝑡
) ℎ𝑡(𝑥) ≥

1
2 ∑

𝑇
𝑡=1 log 1

𝛽𝑡
0 otherwise

[16]. In the context of MINT, a classifier is made for each unique event during pre-processing. This
algorithm is run for each event 𝑒𝑖 in the log and the [0, 1] prediction outputs correspond to ‘𝑒𝑖 does
not follow this event’ and ‘𝑒𝑖 follows this event’ respectively. During state merging, the in- and
outgoing events of a proposed merged state are checked for consistency with these predictions.
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2.4.6 PRINS
PRINS is a technique by Shin et al. [42] that aims to address scalability problems of inference al-
gorithms. The idea is to use an inference tool that produces deterministic models, such as MINT,
and infer a model for each component in a log. An example of a component in a software log could
be a class or a module. After this, all component models are merged into one model. This model is
determinised with a novel hybrid determinisation technique to produce the final model.

Themodels are inferred on the component logs. A component log consists of traces with events
called by the component. For example, a log with events 𝑒𝑐, where 𝑐 is the component could be:
{⟨𝑎1, 𝑏1, 𝑐2, 𝑑1⟩, ⟨𝑎2, 𝑏1, 𝑐2, 𝑑1⟩}. The two component logs will then become: 𝐿1 = {⟨𝑎1, 𝑏1, 𝑑1⟩, ⟨𝑏1, 𝑑1⟩}
and 𝐿2 = {⟨𝑐2⟩, ⟨𝑎2, 𝑐2⟩}. An inference tool is then used to obtain the set component models 𝑀𝑐 =
𝑚1, 𝑚2.

Combining Component FSMs
After the set of component models is obtained, PRINS initiates the stitching stage. The idea is that
all models are combined according to the sequence of events in the traces of the log. This stage
consists of four phases: partition, slice, append and union. The idea is to loop through all traces in
the data set and create a sub model for each trace. Afterwards, the sub models are merged to one
model in the union phase.

Partition. The loop for one trace starts by initialising an empty model𝑚𝑠𝑢𝑏. Then, it partitions
the trace into sequences created by one component. So, for the first trace in the example, the par-
tition 𝑃 becomes: 𝑃 = ⟨𝑙𝑐,1, 𝑙𝑐,2, 𝑙𝑐,3⟩ with 𝑙𝑐,1 = ⟨𝑎1, 𝑏1⟩, 𝑙𝑐,2 = ⟨𝑐2⟩ and 𝑙𝑐,3 = ⟨𝑑1⟩. Then, the slice and
append phase will be initiated for each of the sequences 𝑙𝑐 in this partition [42].

Slice. For each sequence 𝑙𝑐, the model𝑚𝑐 of the corresponding component 𝑐 will be sliced and
appended to the 𝑚𝑠𝑢𝑏 for the current trace. Model 𝑚𝑐 is sliced to obtain a sliced model 𝑚𝑠,𝑐 that
only accepts sequence 𝑙𝑐. This is done by reading 𝑙𝑐 in order and traversing it in𝑚𝑐. All successfully
traversed states are added to𝑚𝑠,𝑐 [42].

Append. After the slice, model 𝑚𝑠,𝑐 is appended to the sub model 𝑚𝑠𝑢𝑏. If 𝑚𝑠𝑢𝑏 is empty, it is
simply updated to be 𝑚𝑠,𝑐. If this is not the case, the final state of 𝑚𝑠𝑢𝑏 is merged with the initial
state of𝑚𝑠,𝑐. Merging the states is done by adding all incoming edges of the𝑚𝑠𝑢𝑏 final state and all
outgoing edges of the𝑚𝑠,𝑐 initial state [42].

Union. Finally, the union phase merges all initial states of every 𝑚𝑠𝑢𝑏. The resulting model 𝑚𝑢
accepts the same traces as all 𝑚𝑠𝑢𝑏. This phase, as well as the append phase, can make a model
non-deterministic. At the end of this step, there is a tree-like model with a branch for each trace in
the log [42].

Hybrid Determinisation
Standard algorithms used for determinisation can have an exponential worst-case complexity.
Other techniques can over-generalise the model, i.e. causing the determinised model to accept
more behaviour then its non-deterministic source. To combat this, Shin et al. [42] propose Hybrid
Determinisation with parameter u (𝐻𝐷𝑢). This approach merges target states of non-deterministic
transition, only if it has been merged less than u times before. The idea is to avoid merging states
many times and limiting the introduction of new behaviour in the determinised model. The
approach is based on the standard algorithm powerset construction and heuristics-based determin-
isation [11]. The concept of heuristics-based determinisation is to recursively merge target states
of non deterministic transitions. A choice of 𝑢 = 0 results in the use of the powerset construction,
and a choice of 𝑢 = ∞ in heuristics-based determinisation [42].

2.5 Evaluation Techniques
Models are often evaluated in terms of how amodel reacts to a set of test traces. These traces can be
positive or negative. A positive trace is a trace that should be compliant with the model. A negative
trace should be rejected by the model. A positive trace that is correctly classified is a true posi-
tive (TP), and one that is incorrectly classified as negative is a false negative (FN). Traces that are
correctly classified as negative are true negatives (TN) and if a negative trace is classified as posi-
tive, it is a false positive (FP). These counts can be used to calculate the widely used metrics: recall,
precision, accuracy and specificity [42][14][53][13].
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This section will discuss various other evaluation techniques for models as well as Petri nets.
Firstly, the 𝐹-score and the balanced accuracy will be discussed, as can be computed with the
aforementioned metrics. After, the trace fitness will be explained. Fitness expresses how much
of a positive trace is can be replayed on a model, i.e. how well a trace fits the model. For Petri-nets,
this can be calculated in two different ways: token-based and alignment based. Lastly, perplexity
will be discussed. This evaluates how surprised, i.e. ‘perplexed’, a model is by a trace.

2.5.1 F­score
The F-score is defined as the harmonic average of precision and recall. Precision 𝑝 and recall 𝑟 are
calculated as follows:

𝑝 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 𝑟 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
The F-score can be weighted with 𝛽 to assign more importance to either precision or recall. The
standard 𝐹1-score is the harmonic average and is calculated when 𝛽 = 1. A 𝛽 < 1 assigns more im-
portance to precision, while a𝛽 > 1 givesmoreweight to recall. Theweighted𝐹𝛽-score is computed
as follows:

𝐹𝛽 = (1 − 𝛽2)
𝑝 ∗ 𝑟
𝑟 + 𝛽2𝑝

[17].

2.5.2 Balanced Accuracy
Accuracy expresses how many traces in the test data were correctly classified by the model. It is
defined as:

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

Balanced accuracy 𝐵𝐴 is the mean of recall and specificity. Specificity is the true negative rate:
𝑠𝑝 = 𝑇𝑁

𝑇𝑁+𝐹𝑃 . The 𝐵𝐴 is simply calculated as:

𝐵𝐴 = 𝑟 + 𝑠𝑝
2

This measures the average of how well a model can identify positive and negative traces [53].

2.5.3 Fitness
Oneway to compute fitness is to simply check which portion of a trace can be replayed on amodel.
However, this may result in a low fitness or even a fitness of 0, even if a trace almost fits. This can
be a problem in Petri nets especially, as the transition necessary may present, but not enabled.

Token­Based
The general idea of token-based replay (TBR) fitness is to continue replaying a trace even if a tran-
sition is not enabled. During the trace replay, the produced tokens 𝑝, consumed tokens 𝑐, missing
tokens𝑚 and remaining tokens 𝑟 are counted:

• A produced token is counted each time a transition is enabled and produced a token.

• A consumed token is counted after a transition was enabled and produced its tokens.

• A missing token is counted when a transition needs to fire, but its input place contains too
few tokens or none at all. E.g. a transition can have multiple inbound arcs, and needs tokens
in all places connected to these arcs. If 𝑥 amount of these places do not contain a token,𝑚 is
incremented by 𝑥.

• A remaining token is counted when a token gets ‘stuck’, i.e. it is not consumed to fire a transi-
tion. This can be computed at the end from the other counts: 𝑟 = 𝑝 +𝑚 − 𝑐
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The token-based fitness of trace 𝜎 on Petri net 𝑁 is then defined as:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑇𝐵𝑅(𝜎, 𝑁) =
1
2 (1 −

𝑚
𝑐 ) +

1
2 (1 −

𝑟
𝑝)

The value lies between 0 and 1, where 1 denotes a perfectly fitting trace. During replay𝑚will always
be lower than or equal to 𝑐 and 𝑐 ≤ 𝑝 +𝑚 [1, p. 246-255][2].

Alignment­Based
Alignment-based fitness builds on alignments of traces. The idea is to align the moves done in the
trace with what is possible in the model. This means that if the end of a trace is completely valid,
this will positively affect the fitness. An alignment is a sequence of moves that aligns a trace to a
model. An example in table 2.1 for trace 𝜎 = ⟨𝑎, 𝑥, 𝑑, 𝑒⟩ on a straightforwardmodel that accepts only
𝜎 = ⟨𝑎, 𝑏, 𝑐, 𝑑, 𝑒⟩. In this alignment, 2moves≫were needed to align the trace to the log. Additionally,

𝑎 𝑥 ≫ ≫ 𝑑 𝑒
𝑎 ≫ 𝑏 𝑐 𝑑 𝑒

Table 2.1: Optimal alignment

the model needs an 𝑥 move as it does not have this transition in the model. An optimal alignment
is the best alignment match between a log and a model, i.e. an alignment with the lowest cost.
Selecting the appropriate alignment is donebyassigning costs to asynchronousmoves andpossibly
silent transitions. Silent transitions can be minimised as they can make the alignment longer than
it needs to be. If this is done, its cost is set much lower than that of an asynchronous move as it
is technically a valid move. There can be more than one optimal alignment for a given trace and
model [1, p. 256-263].

These alignment costs are used to compute a fitness value between 0 and 1, where 1 denotes a
perfectly fitting trace. This is done by getting aworst case alignment 𝜆𝑤𝑜𝑟𝑠𝑡(𝜎), with no validmoves,
seen in 2.2 In the optimal alignment, 3 moves were necessary to align the log. In the worst case, 9

𝑎 𝑥 𝑑 𝑒 ≫ ≫ ≫ ≫ ≫
≫ ≫ ≫ ≫ 𝑎 𝑏 𝑐 𝑑 𝑒

Table 2.2: Worst case alignment

moves are necessary. The fitness is now calculated as:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐴𝐿(𝜎, 𝑁) = 1 −
𝛿(𝜆𝑜𝑝𝑡(𝜎))
𝛿(𝜆𝑤𝑜𝑟𝑠𝑡(𝜎))

= 1 − 39 ≈ 0.66

[1, p. 256-263].

2.5.4 Perplexity
Perplexity is a metric expressing the probability of words [21]. The perplexity 𝑃𝑃 of some log 𝐿 on
a modelA is calculated as follows:

𝑃𝑃 = 2−
1
𝑁 ∑𝜎∈𝐿 log2(𝑃A(𝜎)),

where 𝜎 ∈ 𝐿 are all traces in the log and𝑁 is the amount of symbols of the traces that are recognised
by themodel. 𝑃A(𝜎) is the probability of a trace 𝜎 inmodelA. The probability of a trace is computed
by multiplying all event probabilities.

The probability of some event 𝑒𝑖 occurring is 𝑐𝑖
|A| , where |A| is the total number of transitions

going out of a state. An example of this can be seen in figure 2.5, in this model, all probabilities
are uniform. All probabilities coming out of a state must sum to 1. A smaller 𝑃𝑃 value indicates the
model less surprised by the traces, and thus a better model than one with a higher 𝑃𝑃 on the same
log.
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Figure 2.5: Example of a PDFA with its probabilities

2.5.5 Complexity
The complexity of a model can reflect two aspects of a model. Firstly, there is the visual aspect. A
highly complex model will visually look like spaghetti; some models have so many transitions to
states, it becomes impossible to discern which transitions go where. The second aspect relates to
how easy it is to follow the control flow, i.e. the order of events, in a model.

Cyclomatic Complexity
McCabe’s Cyclomatic Complexity (CC) [34] is graph-theoretic complexity metric that counts the
paths that can be taken through a model. The CC of a graph 𝐺 with 𝑛 nodes and 𝑒 edges and 𝑝
connected components is defined as:

𝐶𝐶(𝐺) = 𝑒 − 𝑛 + 2 ∗ 𝑝.

An FSM can be represented by a directed graph. If this were to be translated one-to-one to a Petri
net, it would result in:

𝐶𝐶(𝑃𝑒𝑡𝑟𝑖) = |𝐹| − (|𝑃| + |𝑇|) + 2 ∗ 𝑝,

where |𝐹| is the number of arcs, |𝑃| the number of places and |𝑇| the number of transitions. This
gives an indication of the visual aspect similar to that of a graph. However, it does not give an
indication of how complex the model is. The concurrency in the Petri net introduces many more
paths than the 𝐶𝐶(𝑃𝑒𝑡𝑟𝑖) indicates. It would be possible to replicate the CC by constructing the
reachability graph of the Petri net. A reachability graph of a Petri net has all possible markings as
states, with transitions between them if it is possible to move to a certain marking. Calculating this
can take an extremely long time [24].

Control Flow Complexity
A complexity metric for process models was presented by Cardoso [6]. The complexity of a process
model is measured in terms of the XOR-, OR- and AND-split structures. The splits are calculated as
follows:

𝐶𝐹𝐶𝑋𝑂𝑅(𝑎) = fan-out(𝑎)
𝐶𝐹𝐶𝑂𝑅(𝑎) = 2fan-out(𝑎) − 1
𝐶𝐹𝐶𝐴𝑁𝐷(𝑎) = 1,
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where the fan-out is the out-degree of an activity. The idea is to penalize the splits with how many
extra paths it introduces. Then the absolute 𝐶𝐹𝐶 is calculated by summing all of these splits:

𝐶𝐹𝐶𝑎𝑏𝑠(𝑃𝑒𝑡𝑟𝑖) = ( ∑
𝑖∈𝑋𝑂𝑅−𝑠𝑝𝑙𝑖𝑡𝑠

𝐶𝐹𝐶𝑋𝑂𝑅−𝑠𝑝𝑙𝑖𝑡𝑖)

+ ( ∑
𝑗∈𝑂𝑅−𝑠𝑝𝑙𝑖𝑡𝑠

𝐶𝐹𝐶𝑂𝑅−𝑠𝑝𝑙𝑖𝑡𝑗)

+ ( ∑
𝑘∈𝐴𝑁𝐷−𝑠𝑝𝑙𝑖𝑡𝑠

𝐶𝐹𝐶𝐴𝑁𝐷−𝑠𝑝𝑙𝑖𝑡𝑘)

Lastly, the relative CFC is calculated as follows [6]:

𝐶𝐹𝐶𝑟𝑒𝑙(𝑃𝑒𝑡𝑟𝑖) =
𝐶𝐹𝐶𝑎𝑏𝑠(𝑃𝑒𝑡𝑟𝑖)

|{XOR-splits of p} ∪ {OR-splits of p} ∪ {AND-splits of p}| .

The CFC was further defined for Petri nets by Lassen and van der Aalst [24], resulting in the
extended CFC. An example of each of the splits in a Petri net can be seen in figure 2.6. The defini-
tion for XOR and AND splits is the same, but the OR split equals the amount of the unique place
sets each transition can move to. In this example, 𝑒𝐶𝐹𝐶𝑋𝑂𝑅 = 2, 𝑒𝐶𝐹𝐶𝐴𝑁𝐷 = 1 and 𝑒𝐶𝐹𝐶𝑂𝑅 =
|{{𝑝2}, {𝑝4}, {𝑝2, 𝑝3}, {𝑝3, 𝑝4}}| = 4

(a) Petri XOR-split (b) Petri OR-split (c) Petri AND-split

Figure 2.6: The three different splits for Petri nets.

The eCFC can easily be computed for FSMs as well. An FSM does not model concurrency and
thus only has XOR-spits. These are defined as the fan-out of a place, which is the equivalent of the
out-degree of a state. All out-degrees of a state will equal the number of edges |𝐸|. The number of
XOR-splits will be equal to the number of states |𝑄|:

𝑒𝐶𝐹𝐶𝑟𝑒𝑙(𝐹𝑆𝑀) =
∑𝑞∈𝑄 |out edges 𝑞|

|𝑄| = |𝐸|
|𝑄| .





3
Related Work

To the best of the author’s knowledge, no extensive work was done in terms of the direct compari-
son of Petri nets and state machines. However, the performance of some the inference techniques,
which were explained in the previous chapter, was evaluated by their respective researchers. The
performance evaluation of ProMminers, FlexFringe, MINT and PRINSwill be reported in this chap-
ter.

3.1 ProM miners
This section discusses performance of ProM miners. The Directly Follows miner did not have a
performance analysis in its introductory paper, so the results of the IEEE1 Task Force on Process
Mining Process Discovery Contest (PDC) 2021 [38] are included as well.

3.1.1 Process Discovery Contest 2021
This contest included the Hybrid-ILP miner, Inductive Miner - frequent & all operators and the Di-
rectly Followersminer. It reports the 𝐹-score, the recall= 𝑇𝑃

𝑇𝑃+𝐹𝑁 and the specificity= 𝑇𝑁
𝑇𝑁+𝐹𝑃 , which

are called the positive and negative accuracy respectively. The Directly Follows miner reported a
89% 𝐹-score on average, with both a high positive and negative accuracy. The Inductive Miner
- frequent & all operators has an 𝐹-score of 42.3% and a lower positive than negative accuracy.
Hybrid-ILP has a similar performance, but a slightly higher 𝐹-score of 46.4%. The basic Inductive
miner was included in the contest of the previous year. The PDC 2020 reported an 𝐹-score of 40%,
a low positive accuracy and a high negative accuracy [38][39].

3.1.2 Hybrid ILP miner
This miner [55] and its filtering method [54] were tested by its authors, Zelst et al. [55]. The miner
was tested in terms of run time performance of the single, dual and hybrid variable-based ILP for-
mulations. The performance of the sequence filtering was testing using precision (= 𝑇𝑃

𝑇𝑃+𝐹𝑃 ).

Run Time Base Miner
The hybrid ILP-miner was evaluated with regard to its run time versus the run time of a single or
dual variable-based ILP formulation. Theminer was runwith all three settings on 10 generated logs
with a number of events ranging from 2 to 12. Each log contained 5000 traces. All 3 settings were
run 10 times on every log [55].

The run times for all formulations increases as the number of events increase. The hybrid ILP
formulation is in between the single and dual setting for all logs. As the number of events increase,
the run time of the hybrid formulation approaches that of the dual formulation formulation. The
differences between all formulations are small. The authors found that using ILPs within a more
reasonable time may require more research [55].

1Institute of Electrical and Electronics Engineers
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Sequence Filtering
The sequence filtering was evaluated using artificial logs. The aim was to test performance with
an increasing percentage of unusual behaviour in the log. There were 2 ground truth logs without
exceptional behaviour. From these, new logs were generated with 5%, 10%, 20% and 50% noisy
traces. The new noisy traces were generated by removing the head or tail from the trace, a random
part of the trace body or swapping two random events in the trace. Models were inferred from the
logs, using the hybrid ILP miner without filters and with filtering, using 𝑐𝑐 = 0.75, 𝑐𝑐 = 0.5 and
𝑐𝑐 = 0.25. The initial precision values for the ground truth logs were 0.7 and 0.6 [54].

They found that for theminerwithout filtering, theprecisiondropped to 0.1 for both logs as soon
as any noise was introduced, and stayed there for all extra noise added. Precision for 𝑐𝑐 = 0.75 and
𝑐𝑐 = 0.5 were similar too each other. The precision both drops with approximately 0.2 for 5% and
rises slightly for the 10% noise log. Both decrease further as the noise percentage rises. 𝑐𝑐 = 0.25
outperformed the others. While initial drop for the 5% log is similar to the other filtered miners, it
had a significantly higher precision for both 50% logs. The best setting 𝑐𝑐 = 0.25 still sees a decline
in precision: −0.1 on one set at 50%, −0.3 on the other [54].

3.1.3 Inductive Miners
The Inductive Miners were evaluated in the PhD dissertation of Leemans [27]. This evaluation was
conducted on the Inductive Miners as implemented in ProM 6.6 and compared to performance of
several ProMMiners andother stand-aloneminers. Itwasnot compared to theHybrid-ILPor theDi-
rectly Follows miner, however it was compared to the regular ILP miner. This section will elaborate
upon the evaluation concerning the scalability of the implementation and their quality analysis.

Scalability
An experiment was conducted where all miners were run on a randomly generated log, which had
the number of events and traces was increased synchronously for 10 rounds. Each round 𝑟, the
number of events was increased by 2𝑟 and the number of traces by 4𝑟. The researchers increased
these numbers asynchronously in another work [26], which lead to similar results. Theminers were
run with 2GB RAM, and the number of successful runs were measured.

The base Inductive Miner and its ‘all operators’, ‘frequent’ and ‘frequent - all operators’ variants
start to fail some runs after round 7 (128 events, 16384 traces). This is due to running out ofmemory.
In round 8, the ‘frequent’ variant is a little better than the ‘all operators’ variant and their combi-
nation variant is a little worse than both. They perform the same in round 9 and 10: round 9 fails
almost all runs and round 10 fails all runs. Most other miners started to fail runs at round 5 or 6 [27].

Model Quality
To measure fitness and precision, the miners were run on 5 real-life event logs. The logs were split
into 3 parts, 23 of the log formed a training set and the remaining part was the test set. Then, the
fitness was determined with the test log and precision was measured on the full log.

The Inductive Miners all report fitness values of 1 or extremely close to 1. The lowest fitness
value of an InductiveMinerwas that of the ‘frequent - all operators’ variant: 0.96. Manyotherminers
also achieved (near) perfect fitness on all sets. The ILP miner did not generate any sound models,
thus its fitness and precisionwere not reported. The precisionwasmuch lower. The base Inductive
Miner reports a precision of around 0.65 across all data sets. The ‘all operators’ variant reports the
exact same precision as the base miner. The ‘frequent’ and ‘frequent - all operators’ variants report
almost identical specificity values, which are higher than the other two [27].

3.2 FlexFringe
FlexFringe [51] implements several evaluation functions (Alergia, likelihoodratio, MDI and AIC) and
tested all of them by inferring models on the PAutomaC learning competition [50] data sets. The
sets were generated by a ground truthmodel with probabilities. The perplexity was computed with
the real probabilities and the probabilities in the inferred models. Only the results of the PDFA
problems are reported in this section.

For the PAutomac problems, AIC either reported a lower perplexity score or a score that was
almost the same as the other evaluation functions. The MDI function performed the worst overall,
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although there was never a large gap. Alergia and the Loglikelihoodratio often report the exact
same perplexities as AIC. Some report higher perplexities, but the difference is generally small. In
addition to the PAutomaC problems, an analysis was done on a labeled HDFS data set, using the
AIC evaluation function. Using a test set on the model, they found it gave a low amount of false
negatives and a large amount of false positives. The 𝐹-score was 0.89 [51].

3.3 MINT
Walkinshaw et al. [53] analysed the accuracy and the scalability of MINT models with four dif-
ferent classifier techniques: AdaBoost ([16]), C4.5 ([40], called J48), Naive-Bayes ([36]) and JRIP
(Java implementation of RIPPER [9]). Models were inferred for 5 different minimum merge scores,
𝑘 = {0, 1, 2, 3, 4}, on 5 different data sets. They used 5-folds cross validation and measured recall,
specificity, balanced accuracy and inference time. The number of states and transitions were also
reported.

Performance of the different classifiers on the balanced accuracy varied per set. There was no
classifier that outperformed all others on every set. However, AdaBoost was consistently in the the
top three. Performancedid not only vary due to the classifier, but also the choice ofminimummerge
score 𝑘. Again, there was no 𝑘 that performed well on all sets. For example, 𝑘 = 0 results in (near)
perfect recall with low specificity on 4 sets for all classifiers. But on one of the sets, it achieved high
specificity with a mediocre recall. Some data sets performed excellently for low 𝑘 values, whereas
others needed a higher 𝑘 (3,4) to perform well.

The inference timewas theworst for theNaiveBayes classifier. It did not complete any inference
for one data set, though it should be noted that the other three classifiers also did not returnmodels
for higher𝑘 valueson this set. For theeof the sets, inference timegot larger as𝑘 got larger. AdaBoost,
J48 and JRIP performed similarly.

The amount of states and transitions in the inferred models also varied per 𝑘 value. Overall, a
larger 𝑘 results in a larger model as less states are merged due to the higher minimum merge score.
For most data sets, 𝑘 = 1 and 𝑘 = 2 producedmodels of similar size. 𝑘 = 4 increases the size greatly
for 3 of the 5 sets. This work concludes that MINT is capable of returning a good model, but there
is no single combination of classifier and 𝑘 that always performs well [53].

3.4 PRINS
Shin et al. [42] compare the models inferred by their algorithm, using MINT (AdaBoost, 𝑘 = 2) for
component models internally, with models that were fully inferred with this MINT configuration.
In addition to this, they test their hybrid determinisation 𝐻𝐷𝑢 with different values for 𝑢. They use
10-folds cross validation and compare recall, specificity, balanced accuracy, inference time and
model size for 9 data sets.

The inference time was tested for different amounts of workers 𝑤. This parameter determines
how many component models are inferred in parallel. For most, the run time of 𝑤 = 2 inference
was a big improvement over 𝑤 = 1. For 𝑤 = 3 and 𝑤 = 4 the decline in run time was much less
steep. The decrease in run time is not linear as some components produced a far greater amount of
traces in the logs.

The hybrid determinisation 𝐻𝐷𝑢 was run for 𝑢 = {0, 1, 2, ..., 9, 10}, The execution time, recall,
specificity and balanced accuracy was measured. The determinisation time of 𝑢 = 0was low for all
data sets, except one. 𝑢 = 1 generally had a much larger run time than 𝑢 = 0. Values for all higher 𝑢
were similar to those of 𝑢 = 1. Recall remained stable for all values of 𝑢, and even went up at 𝑢 = 1
slightly for 2 data sets with low recall. Specificity is stable as well, but decreases for 2 data sets.
They report that 𝑢 = 1 is the best trade-off between run time and balanced accuracy.

The comparison of PRINS and MINT shows that the PRINS model generally performs similar to
MINT in terms of recall. For 2 sets, PRINS’ recall was significantly lower. Specificity is significantly
higher for PRINS on 3 data sets. The balanced accuracy is significantly higher for one data set
and significantly lower for another. As for the model sizes, it was found that PRINS models are on
average 3 times as large as MINT models, with 5.5 times as many transitions. For some sets, the
amount of states was over 5 times as high, and the amount of transitions over 7 times as high, with
one set resulting in models with 19.3 times as many transitions [42].





4
Methodology

The goal of this thesis is to evaluate and compare software behaviour models created by various
techniques in FlexFringe [52], ProM 6 [48], MINT [53] and PRINS [42]. To make a comparison, the
four programs with their various algorithms were used to create models on the same dataset. This
section will go into what the experimental set-up looks like and why it was done this way.

4.1 Tools and Settings
This evaluation will use several external programs to create and evaluate models. This section will
discuss these programs and their settings. Both model inference andmodel evaluation were run on
a Windows 10 machine with an Intel Core i7-7700HQ processor and 16GB RAM. All model creation
jobs and alignment jobs were run in sequence, without anyone using the machine.

4.1.1 Model Inference
FlexFringe
FlexFringe’s [52] source code can be downloaded and be made into an executable with Cmake. With
this executable FlexFringe can be run from the commandline with arguments for the input data,
output file and an .ini file with the settings, which can be found in appendix A.1. FlexFringe (FF)
will be run with the AIC heuristic. Symbols and states that are infrequent will not be filtered. Pa-
rameter largestblue=1 speeds up the inference by not considering all blue states, just the most
frequent ones.

ProM 6.11
TheProM [49] tool1 is free andversion6.11was released in2021. ProMcanbeusedvia aGUI, but this
is not suitable forbatchprocessing. Therefore, theProMplugins are called from theProMCommand
Line Interface (CLI) with a Java-like script. The command line java call and an example script with
one miner can be found in appendix A.2. The miners are called with their standard parameters, the
exception being the inductive miner with the ‘infrequent all operators’ (IMfa) settings. The values
of the standard settings for each miner can be found in table 4.1. Note that noise thresholds in the
inductive miner and directly follows miner are not defined the same way.

PRINS and MINT
PRINS is a programwritten in Python, its source code is in a public project onGithub2. It usesMINT
internally, which comes packaged with its source code3 in a .jar. The PRINS code parses input to
a format suitable for MINT and runs the java program by calling it from a python script. The PRINS
python code can thus be used to runbothPRINS andMINT. Apython script is used to run all desired
jobs for PRINS and MINT.

1http://promtools.org/doku.php?id=prom611
2https://github.com/SNTSVV/PRINS
3https://github.com/neilwalkinshaw/mintframework
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MINT is runwith the AdaBoostDiscrete classifier andminimummerge score 𝑘 = 2. PRINS is run
with worker amount 𝑤 = 4 and with the authors’ new hybrid determinisationwith state merge limit
parameter 𝑢 = 1. PRINS was also run without determinisation, which returns an NFA.

Program Configuration Method Parameter Value

FlexFringe AIC Akaike Informa-
tion Theory

ProM IM Inductive miner
(IM)

Noise threshold 0

IMfa Inductive miner
(IMfa)

Noise threshold 0.10

Hybrid-ILP Hybrid Integer
Linear Program-
ming miner

Discovery algorithm

Constraints

Filter
Filter threshold

Mine a place
per causal relation
(flexible heuristics miner)
No trivial regions
Empty after completion
Theory of regions
Sequence encoding
0.25

DF Directly follows
miner

Noise threshold 0.80

MINT ADB-2 AdaBoostDiscrete min merge score:
𝑘

b
2

PRINS W4-HD1 MINT
Hybrid Deter-
minisation

Worker amount
HD 𝑢

4
1

W4-NFA MINT Worker amount 4

Table 4.1: Parameters of the inference methods

4.1.2 Evaluation Tools
The run calls to the model inference tools, data preparation and evaluation were implemented
in Python, mostly utilizing well-known libraries such as Pandas. To assist in analysis of FSMs,
NetworkX [45] was used. This is a package that defines graph objects and implements well-known
algorithms for graph analysis.

The ‘Process Mining for Python’ (PM4Py) [3] library was used to construct and analyse Petri nets.
This library was used to import and export Petri net (.pnml) and .xes files, run token-based replay
and find alignments.

4.2 Data Sets
Thedata thatwill be used consists of 9 software execution logs in csv format. These are thenine logs
used by Shin et al. [42] in the PRINS project. Shin et al. [42] took five of these sets (Hadoop, HDFS,
Linux, Spark and Zookeeper) from Loghub [20], parsed them with Drain [19] and MoLFI [35] and
manually refined them. Working versions of Drain andMOLFI can be found in the Logpai logparser
project [56]. The other four logs (CoreSync, NGLClient, Oobelib and PDApp) were collected by
Shin et al. from a personal computer. As these are logs of software executions, they only contain
examples of event sequences that can happen, i.e. there are no negative examples available. Each
dataset represents a system. The system log containsmultiple execution logs, denotedby the logID.
An execution log represents a trace that contains log entries. Each log entry is a line containing
information such as the date, component or event identifier tid. An example can be seen in 4.2

logID lineID date time level component message tid template values
1 1 16/04/07 10:46:05 INFO ApplicationMaster "Registered signal handlers for [TERM, HUP, INT]" E22 "Registered signal handlers for [TERM, HUP, INT]" []

Table 4.2: Example of a log entry, taken from the Spark system log [20]
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4.2.1 Data Preparation
As the data sets are taken from the PRINS project, they can be used as input for PRINS and MINT
without much issue. However, PRINS was created on Linux and generates directories during run-
time with component names. Windows naming conventions are more restrictive than Linux’s, re-
sulting in errors when a forbidden character is used to create a directory. To prevent this, the for-
bidden characters are replaced with an underscore beforehand.

Flexfringe only requires an id and a symb column,which correspond to the logID and tid column
respectively. The input for FlexFringe is parsed to only contain these columns.

ProM input is best given as XES format. XES, or eXtensible Event Stream, is an XML like file format
describing the process structure [49]. Each XES file contains at least a log tag that contains one or
multiple trace tags. Within these trace tags are event tags containing the informationof a log entry.
Converting a csv to XES can be done within ProM, but the function has also been implemented in
PM4Py [3], making batch processing easier. Before it can be converted, a timestamp column with a
date and time needs to be created. The timestamp is converted to a unified format. After this, PM4Py
can be used to export the data to XES format using the logID and tid as case_id and activity_key
respectively.

4.2.2 Data Analysis
The input data was analysed to give an idea of its composition and to investigate whether there is
a relation its composition and inference performance on it. Table 4.3 gives an idea of how the data
looks in terms of number of traces, unique events and trace lengths. Along with these, diversity of
the data will be measured with:

• The average Levenshtein [31] similarity 𝑆 between all pairs of traces. This similarity is an edit
distance that counts the minimum amount of deletions, insertions or substitutions needed to
transform some trace 𝑡0 in to 𝑡1. The similarity is calculated as:

1 − 𝑑𝑖𝑠𝑡
𝑚𝑎𝑥(𝑙𝑒𝑛(𝑡0), 𝑙𝑒𝑛(𝑡1))

,

meaning identical traces get a score of 1. Two traces of different lengths would need many
insertions to transform 𝑡0 into 𝑡1, thus this metric also reflects deviations in trace length.

• Normalized entropy 𝐻𝜂(𝐸) [41], where 𝐸 is the set of unique events, is used to measure the di-
versity of the event probabilities 𝑝(𝑒𝑛) =

number of 𝑒𝑛 occurrences
𝑁 . Normalisation is done using the

maximum entropy 𝐻𝑚𝑎𝑥 [22], which is calculated with the total amount of events 𝑁 occurring
in the dataset:

𝐻𝜂(𝐸) = −
1

ln𝑁

𝑁

∑
𝑛=1

𝑝(𝑒𝑛) ln𝑝(𝑒𝑛),

where an outcome of 1 reflects a perfectly uniform distribution of events.

Log #Traces #Events |T | 𝜎|𝑇| #Log entries

CoreSync 1418 204 21.3 98.4 30223
Hadoop 68 41 52.6 0.7 3575
HDFS 1000 16 18.7 3.8 18741
Linux 42 115 268.1 243.0 11259
NGLCLient 42 70 21.2 23.3 892
Oobelib 250 147 226.2 61.3 56557
PDApp 787 75 60.2 54.2 47394
Spark 217 21 312.1 489.2 67725
Zookeeper 36 40 702.7 1403.1 25298

Table 4.3: Data charcterisicts: number of traces and unique events,
average trace length |𝑇| and its standard deviation 𝜎|𝑇|, number of log entries
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4.3 Model Analysis
To analyse the inference tools, 𝑘-Folds cross-validationwill be used to infermodels on training sets.
After this, the output models are parsed into a uniform format. With the test set and the inferred
models, general metrics, such as the 𝐹2-score, trace fitness, and perplexity will be computed. Run-
time and model complexity were also measured.

4.3.1 𝑘­Folds Cross­Validation
𝑘-Folds cross validation is a technique widely used in machine learning to avoid overfitting and
utilise every part of the data. It is also helpful when there is no reference model, i.e. a ground truth,
which is the case in this research. This technique divides the data into 𝑘 partitions, as seen in figure
4.1, one partition is labeled the test set and the other partitions will form a training set. The model
is inferred using the training set and evaluated with the test set. This process is repeated 𝑘 times,
each time with a different partition as test set and the remaining sets as training set [5, p. 32-33].

Figure 4.1: 𝑘-folds division of a data set with 𝑘 = 5

This methodwas also used for evaluation by Shin et al. [42] andWalkinshaw et al. [53]. Applying
𝑘-folds to this data means considering each trace as a data point, and making 𝑘 partitions contain-
ing #𝑇𝑘 traces, where #𝑇 is the total number of traces in the data set. Then, each model inference
technique will be run 𝑘 times on each unique training set, resulting in 𝑘 models for each data set.

4.3.2 Parsing and Conversion
The FSM output is parsed into a NetworkX graph. Models inferred by all programs are parsed to
a uniform format. The event labels for transitions are correctly assigned as edge attributes and
the accept states are identified and stored in their respective node attributes. During parsing, the
transition probabilities are also calculated and stored.

To compute alignments for FSMs, they are converted into Petri nets, as done in the work of
Habben-Jansen [18].

4.3.3 Synthesising Negative Logs
Most metrics require true positive (TP), false negative (FN), true negative (TN) and false positive (FP)
counts from the test set. ATPorTNclassification for a tracemeans it has been correctly classified. A
false negative is a trace that should be classified as positive by themodel, but is not. A false positive
is an invalid trace that should havebeen classified as negative. Thedata sets donot contain negative
examples and thus cannot retrieve the TN and FP. To solve this, negative logs will be synthesised in
the same way as by Shin et al. [42] and Mariani et al. [33].

This is done by randomly selecting positive traces. The amount of traces that will be selected is
equal to the amount of traces in the test set. For each trace, a random event will be either swapped,
deleted or added. The choice between the actions is random. To make sure ProM reads the trace in
the same order, the swap operation will also swap the timestamps assigned to the swapped events.
After any operation, the trace is sorted by event timestamps. This is done until the trace does not
match anypositive trace in the dataset. This ensureswe endupwith apositive test set and anegative
test set of the same size.

4.3.4 General Metrics
To evaluate the models, the TP, FN, TN and FP will be counted through token-based replay for the
Petri nets. A simple breadth-first search to follow a path has been implemented for automata. With
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these counts, the recall, precision, accuracy and specificity can be calculated. These metrics can
be used to determine the balanced accuracy 𝐵𝐴 and the 𝐹2-score. The different fitness metrics will
be calculated with the positive test set.

4.3.5 Token­Based Fitness
To identify which traces are correctly classified, they need to be replayed on the inferred model
to determine whether the traces end in an accept state. This cannot be done with PM4Py as the
the converted Petri nets fall victim to the limits of its implementation due to their characteristics.
The algorithm struggled to find the proper path through the model. The exact culprit could not be
found, but it appears to be caused the combination of multiple transitions with the same label and
the silent 𝜏 transitions inserted at the start and end.

However, it is possible to simulate this algorithm for automata through a Breadth-first search
(BFS). Following a given tracewith BFS, it is possible to determinewhether a trace complieswith the
model and to calculate token-based fitness. This fitness is calculated by keeping trace of produced
𝑝 and consumed 𝑐 tokens, and calculating missing 𝑚 and remaining 𝑟 tokens. In a Petri net, each
transition consumes one token in order to be able to fire; A token is produced for each outgoing arc
of a transition.

In terms of automata, there are no firing rules and the concept of a token does not exist. If a
transition has the right label, it can always fire. A transition in an FSM cannot have multiple out-
bound arcs, so no more than one token can be produced. Therefore each FSM transition will both
consume and produce one token: 𝑝 = 𝑐. 𝑝 effectively denotes how many transitions have been
traversed. Missing tokens for a Petri net are inserted if some transition is missing a token it needs
to fire. The amount of missing tokens will exceed 1 if a transition has multiple inbound arcs from
places with no token. It can also increment when the right transition can be reached from a mark-
ing, but its input place has no token. As the FSM transition neither needs a token to fire nor has
multiple inbound arcs, a missing token will only be inserted a trace when does not end in an accept
state. An FSMnever producesmore than one token, so𝑚will be 1 if a trace is not valid, 0 otherwise.

All of these characteristic of FSM token-replay simplify the calculation 𝑓𝐹𝑆𝑀 for some trace 𝑡:

𝑟 = 𝑝 +𝑚 − 𝑐 with 𝑝 = 𝑐
⇒ 𝑟 = 𝑝 +𝑚 − 𝑝 = 𝑚

𝑓𝐹𝑆𝑀(𝑡) =
1
2(1 −

𝑚
𝑐 ) +

1
2(1 −

𝑟
𝑝)

⇒ 𝑓𝐹𝑆𝑀(𝑡) =
1
2(1 −

𝑚
𝑝 ) +

1
2(1 −

𝑚
𝑝 )

⇒ 𝑓𝐹𝑆𝑀(𝑡) = 1 −
𝑚
𝑝 where𝑚 = 0 or𝑚 = 1.

The relations that must hold for token-replay still hold here: 𝑐 ≤ 𝑝 +𝑚 and𝑚 ≤ 𝑐 [2]. Pseudo code
of the token-replay can found in appendix B.2.

4.3.6 Alignment­Based Fitness and Cost
Alignments were run with the PM4Py library, using a time-out of 15 minutes. With the alignments
on the positive test set, the average trace fitness and alignment cost is calculated. PM4Py calculates
this cost with standard values for certain modes. It assigns 1 for silent transitions, meaning the
converted Petri nets will always have a cost of at least 2. For each non-synchronous move it adds
1, 000 to the cost.

4.3.7 Perplexity
Perplexity on both FSMs and Petri nets is calculated by assigning a probability to each unique event
𝑝(𝑒𝑛). This probability is defined as the count of 𝑒𝑛 divided by the sum of counts of all out edges
of the state. Unfortunately, only FlexFringe returns these true counts. Therefore, the probabilities
of a transition in a state will be defined as the number of outgoing transitions with label 𝑒𝑛 divided
by the total number of outgoing edges of that state. Smoothing is used to assign a probability to an
event that cannot happen in a certain state. This unseen probability is computed with the alphabet
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size of the model and is defined as 1
|𝑉| . The probabilities of outgoing transitions must sum to 1, so

eachprobability is normalisedwith 1
1+ 1

|𝑉|
. This gives the computation for the probability of an event

𝑒𝑛 in a certain state:
𝑝(𝑒𝑛) =

|𝑒𝑛|
𝑁𝑒

∗ 1
1 + 1

|𝑉|
,

where |𝑒𝑛| is the amount of outgoing transitions with this label in the current state, 𝑁𝑒 is the total
number of outgoing transitions in the current state and |𝑉| is the amount of unique events in the
model. The unseen probability is added when a test trace cannot be fully replayed on the model.
The probability of a trace 𝑠 in test set 𝑆 then becomes:

𝑝(𝑠) = {
∑𝑒∈𝑠 log2 𝑝(𝑒) (1)

(∑𝑒∈𝑠 log2 𝑝(𝑒)) + log2 𝑝(𝑒𝑢𝑛𝑠𝑒𝑒𝑛) (2),

where case (1) is a trace that can be fully replayed and ends in accept state. Case (2) is a trace that
cannot be fully replayed, stops at an unseen event or does not end in an accept state. The perplexity
of a test set 𝑆 is computed with the trace probabilities 𝑝(𝑠):

𝑃𝑃(𝑆) =
∑𝑠∈𝑆 𝑝(𝑠)
|𝑒𝑠𝑒𝑒𝑛|

,

where |𝑒𝑠𝑒𝑒𝑛| is the total number of events that the model was able to replay from all traces in the
test set.

Figure 4.2: A Petri net concurrency relation

The perplexity implementation is trivial for FSMs. After storing the machine into a graph, the
probabilities are simply computed by looping though nodes, retrieving their edges, and assigning
𝑝(𝑒𝑛) to each edge. For Petri nets, this requires some additional steps. The concurrency of Petri
nets introduces extra paths that are not expressed by the out-degree of places or transitions. A
Petri net’s reachability graph would express this, but due to the space and time complexity, it is not
feasible to convert all Petri nets to reachability graphs. However, it is still possible to compute the
perplexity for a Petri net.

𝑞01 𝑝11𝑝21

𝑝21𝑞11

𝑝11𝑞11

𝑞12𝑎
𝑏

𝑐

𝑐

𝑏

Figure 4.3: Transition graph of figure 4.2

Let us demonstrate this with an example Petri net, seen in figure 4.2. If the implementation for
the FSMs would be followed, the probabilities for the transitions would be 𝑝(𝑒𝑎) = 1 and 𝑝(𝑒𝑏) =
𝑝(𝑒𝑐) =

1
2 . There are two possible paths in this net: 𝑎𝑏𝑐 and 𝑎𝑐𝑏. If the probabilities of these paths
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is computed with the aforementioned probabilities, both become 𝑝(⟨𝑎, 𝑏, 𝑐⟩) = 1 ∗ 12 ∗
1
2 =

1
4 . But

since there are two paths, both should have probability 1
2 . The correct probabilities could be found

by transforming the net into a reachability graph. This is done by listing all possible markings and
setting them as the states of the reachability graph. A marking 𝑀1 receives an edge with label 𝑒𝑛
to 𝑀2 if activating activity 𝑒𝑛 when in 𝑀1 leads to 𝑀2 [1, p. 62-64]. The reachability graph of the
example Petri net can be seen in figure 4.3, the numbers behind the place labels denote the amount
of tokens in the place in this marking. By the definition of 𝑝(𝑒𝑛) the probability of both traces are
computed as: 1 ∗ 12 ∗ 1 =

1
2 , resulting in the correct probability.

Although computing the reachability graph is not feasible, it is possible to retrieve all travelled
markings of a trace. This information is retrieved during the token-based replay. From the defi-
nition of the reachability graph follows that: the total number of outgoing edges, is the number of
transitions that can be reached from all places in the marking. When identifying these edges, all
occurrences of the desired transition can be counted, resulting in the correct 𝑝(𝑒𝑛). In the exam-
ple, the list of travelled markings for trace ⟨𝑎, 𝑏, 𝑐⟩ is: [[𝑞0], [𝑝1, 𝑝2], [𝑝2, 𝑞1], [𝑞1]]. Marking [𝑞0] only
has outgoing transition 𝑎, so 𝑝(𝑒𝑎) = 1. Marking [𝑝1, 𝑝2] has two outgoing transitions, 𝑒𝑏 , 𝑒𝑐, so
𝑝(𝑒𝑏) =

1
2 in this marking. After this, one token will be in 𝑝2 and one in 𝑞1, i.e. marking [𝑝2, 𝑞1]. 𝑞1

has no outgoing transitions and 𝑝2 has 1 outgoing transition: 𝑐. Therefore, 𝑝(𝑒𝑐) = 1 in thismarking,
resulting in the correct 𝑝(⟨𝑎, 𝑏, 𝑐⟩) = 1 ∗ 12 ∗ 1 =

1
2 .

This was implemented by modifying PM4py’s token-based replay to return a list of all travelled
markings. The out edges of eachmarkingwere then checked for total occurrences and occurrences
of the next transition in the replayed path. The silent transitions were treated the same as the other
transitions. This penalises silent transitions inparallel constructs; if a silent transition is present in a
parallel construction, itwill introduce extra paths that represent the same trace. If a silent transition
𝜏 was added to the previous example, it can still only produce 𝑎𝑏𝑐 and 𝑎𝑐𝑏. The trace ⟨𝑎, 𝑏, 𝑐⟩ can
be obtained by travelling through its transition graph in three different ways: 𝑎 → 𝜏 → 𝑏 → 𝑐 and
𝑎 → 𝑏 → 𝜏 → 𝑐 and 𝑎 → 𝑏 → 𝑐 → 𝜏. Each of these paths has a probability of 16 in the reachability
graph, which is lower than if the silent transition were not there. Only one will be travelled during
token replay, and thus the perplexity for this 𝜏 model will be higher. Lastly, it can happen that
a marking has multiple outward 𝜏 transitions. Since 𝜏 is technically not a symbol, these will be
treated as separate and receive a probability of 𝑝𝜏 =

1
𝑁𝑒
.

4.3.8 Cyclomatic and Control Flow Complexity
The cyclomatic complexity (CC) [34] was calculated for the FSMs with:

𝐶𝐶 = |𝐸| − |𝑉| + 2,
Where |𝐸| is the number of edges, |𝑉| the number of nodes. The inference methods do not return
several components, so the 2 ∗ |𝑃| is omitted. The cyclomatic complexity for Petri nets [44] is com-
puted as follows:

𝐶𝐶𝑝𝑒𝑡𝑟𝑖 = |𝐹| − (|𝑇| + |𝑃|) + 2,
Again, the components areomitted asmultiple components in aPetri netmeans thenet is not sound.

The eCFC [6] is computed using the standard calculation for the Petri nets:

𝑒𝐶𝐹𝐶𝑟𝑒𝑙(𝑃𝑒𝑡𝑟𝑖) =
𝑒𝐶𝐹𝐶𝑎𝑏𝑠(𝑃𝑒𝑡𝑟𝑖)

|{XOR-splits of p} ∪ {OR-splits of p} ∪ {AND-splits of p}| .

For automata, is is calculated with the reduced version:

𝐶𝐹𝐶𝑟𝑒𝑙(𝐹𝑆𝑀) =
∑𝑞∈𝑄 |out edges q|

|𝑄|

4.3.9 Run Time
The run times were measured slightly differently for the programs. PRINS has a built-in the mea-
surement in their python script. The run time of the MINT jar is determined from when its Python
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subprocess is called to when it returns. This is added to the run times of the rest of their algorithms,
that just enclose the function calls.

FlexFringe does not output any time, so its run-time is read in a similar manner to that of the
MINT jar. However, since there is only one FlexFringe call from the python script running inference
many times in sequence, the script parses the command line output and stores the run time when
it encounters certain start and stop lines.

ProM run times are measured as seen in the run script, appendix A.2, using Java’s call to the
system time.

4.4 Evaluation
This section will give an explanation of the important choices made for running this experiment.
The last subsection will elaborate upon choices made in terms of comparing Petri nets to automata.

4.4.1 Data Sets
The decision was made to use the same data sets as Shin et al. [42] for two reasons: the data was
available, divers andworked as input for PRINSandMINT. All of thesedata setswere freely available
for research purposes. The 5 Loghub [20] sets are widely used by other research as well.

Secondly, the data has sets with very different amounts of traces, unique events and trace
lengths. The 4 sets Shin et al. [42] generated, were meant to diversify sets. They also computed log
confidence scores [8] to determine if the sets were suitable for inference.

Lastly, using the same data sets is practical as inference with PRINS requires a specific format
for the data, namely a component column and more than 10 traces. Since MINT was included in
the PRINS program, these data sets were also be converted internally by the PRINS code to run
inference with MINT.

FlexFringe and ProM do not have so many requirements. For FlexFringe, it is enough to sim-
ply extract the logID and tid and rename them to id and symb respectively. ProM input only re-
quires conversion into xes format. This is easily done using PM4Py and only needed identification
of the date/time format for each set. Some formats required extra parsing, but this can be donewith
Python’s Pandas library.

4.4.2 Data Analysis
The data sets will be analysed in terms of differences one would be able to see and calculate rela-
tively fast before starting inference. These methods should only measure surface level character-
istics, as the model inference is the real analysis of the data sets. One would not want to spend
much time computing a complexmetric on the data set that effectively replaces the need for model
inference.

To get an idea of the distribution of the events, the normalized entropy is computed. It is also
possible to compute the entropy for traces. However, this would only give an idea of how many of
identical traces are in the data set and does not detectminor differences between traces. Therefore,
it may be more interesting to investigate the diversity of traces in terms of distance. Since this is
the comparisonof simple data, namely two sequences of events, the Levenshtein distancewas used.
This is a simple string comparison metric, that does not require strings to be the same length.

4.4.3 Inference Method and Parameters
Since this work is comparing a total of 8 model inference methods on 9 datasets with 5-folds, the
decision was made to not tweak any parameters. The parameters were chosen based on the gener-
ally optimal settings reported by their creators.

FlexFringe
FlexFringe includes several PDFA learning algorithms. Verwer and C. Hammerschmidt [51] tested
their program on various PAutomac [50] problems. AIC infers a PDFA with the lowest perplexity
score for majority of the problems, and is close to the best score for the rest.

No filtering will be applied in terms of state and symbol frequency, as this will be applied to a
diverse set of data. To reduce run time and increase the likelihood of producing amodel for all data
sets, largestblue is set to 1.
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MINT
MINT was evaluated byWalkinshaw et al. [53], using 5 data sets and 5-folds cross-validation. They
found that the AdaBoostDiscrete algorithm with 𝑘 = 2 produced the best results overall, although
performance per data set heavily varied.

PRINS
PRINS’ inference and hybrid determinisation technique 𝐻𝐷𝑢 was evaluated with the 9 data sets
that will be used in this research as well. Setting the worker amount to 4, allows PRINS run MINT
inference for 4 components at the same time. This decreases PRINS’ run time. Shin et al. [42] found
that this did not significantly decrease the accuracy of the models. The 𝑢 parameter was set to 1, as
𝐻𝐷1 was found to have a good trade-off between run time and accuracy. This tool was chosen as it
can use another inferencemethod internally and speed it up. This does come at a cost of potentially
generating larger automata [42]. FlexFringe was not inserted into PRINS, as it is so speedy, the state
space expansion will not be worth it.

ProM
The ProM miners that were used were chosen from the miners that are in the ProM base package.
Three of these were selected by checking the results of the Process Discovery Contest 2021 [38],
hosted by the IEEE Task Force for Process Mining. The base inductive miner was added as well.
Parameters were left on the ProM standard settings, with the exception of the IMfa miner. The
standard noise threshold was lowered, as this research deals with multiple real life logs that are
diverse andnoisy. TheProMstandard settings for theHybrid ILPminerwere in linewith the settings
that gave good results in the work of Zelst et al. [54].

4.4.4 Negative Log Synthesis
The synthesis of negative logs raises the immediate and valid concern: is it possible that this syn-
thesised trace is positive after all? This method was used by [42] and [33], but no irrefutable evi-
dence was given that these logs are indeed negative. Other works collected their negative traces
differently.

Walkinshaw et al. [53] introduced small changes in the code for the program they collected soft-
ware traces from in their initial experiments. However, they note that this could still result in an
unchanged order of events or that the changes were much too obviously wrong. Their second ap-
proachwas to determine key characteristics for a program and create rules forwhat cannot happen.
With these rules, they synthesised the negative traces.

Mariani et al. [33] tried tovalidate their negative traceswith theClopper-Pearsonand theAgresti-
Coull confidence intervals. They synthesised negative traces and replayed them on a model. They
kept generating new traces until a 95% confidence level was obtained for the specificity ( 𝑇𝑁

𝑇𝑁+𝐹𝑃 ).
Traces of correctly programmed software are by definition positive traces. Finding other data

sets that are suitable and do contain negative traces is not easy. Creating negative traces manually
would require deep knowledge about each of the 9 software systems. It would also take a long time
to manually create all rules or traces necessary. The approach taken by [33] uses a rather circular
reasoning as it is unknownwhether themodel is correct andwhether the synthesised trace is indeed
negative.

Hence, in the scope of this research, it is not possible to obtain negative traces that are certainly
negative. To combat some of the irregularities that may arise from using synthesised negative logs,
some metrics that rely on the positive test data only were added, such as fitness and perplexity.
In addition to this, less importance was assigned to results from the synthesised log by using the
𝐹2-score rather than 𝐹1, thus weighing recall (

𝑇𝑃
𝑇𝑃+𝐹𝑁 ) higher than precision ( 𝑇𝑃

𝑇𝑃+𝐹𝑃 ).

4.4.5 Run Time
The run times are measures slightly differently for each program. In addition to this, Windows
tends to background tasks unexpectedly with little control over it. This can influence the run times
measured. There is not much that can be done about this; small differences in run times, in terms
of tens of seconds will not be considered relevant.
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4.4.6 Comparing Petri Nets to FSMs
The first research goal of this work, is determining how to compare Petri nets to FSM output. This
sectionwill go into how this was done, why certain choices weremade andwhat the drawbacks are.
Somemeasurements were easy, as they can be done on both Petri nets and FSMs. These will be dis-
cussed first. Then, the more complicated measurements, fitness and complexity will be elaborated
upon.

Using the metrics such as recall, specificity, precision, accuracy, balanced accuracy and the 𝐹-
score are common in other studies [42][14][53][13] on automata. The Process Discovery Contest [38]
reports on 𝐹-scores and accuracy for Petri nets, where the accuracy scores are split into positive
and negative accuracy. These metrics rely on counting TPs, FNs, TNs and FPs, which can be done
for Petri nets as well as automata; one only needs to check if a test trace complies with the model.

Perplexity was added to the experiment to give another point of view, one computed without
the synthesised negative logs. This metric only needs the occurrences of events in a state. This is
done for FSMs by counting the occurrence of each label on a transition in a state and can be done
in a Petri net by counting this for each travelled marking.

Fitness
Trace fitness was measure to give an idea of how close a machine is to recognizing traces. It is
done without the use of the synthesised negative logs, which is another advantage. The fitness is
calculated with token-replay and with alignments.

Token-basedfitness (TBRfitness) is computed for Petri nets andcanbedone for automata. How-
ever, it has three drawbacks for FSMs especially. First of all, for FSMs the TBR for an invalid trace
𝑚 = 1 becomes: 𝑓𝐹𝑆𝑀(𝑡𝑖𝑛𝑣𝑎𝑙𝑖𝑑) = 1−

1
𝑝 , where 𝑝 is length of the successfully replayed transitions. In

figure 4.4 one sees immediately that after 40 compliant events, all fitness scores approach 1. This
does not necessarily reflect reality. If a trace had 200 events, with the first 100 compliant, a fitness
score of 0.99will be achieved. A tracewith 4 events, with 3 compliant receives a score of 0.75. Thus,
this may not be fully representative how well a trace fits to a model.

Secondly, the method does not reflect how ‘far’ a trace ended from a sink state. When the trace
ends, only one more missing token is added to 𝑚. If an FSM model and two traces 𝑡1, 𝑡2 are con-
sidered, with equal lengths. 𝑡1 ends one transition away from an accept state and 𝑡2 would need to
traverse 10 more transitions. These two traces will receive the same fitness score. This is a problem
for both Petri nets and FSMs and it can be solved by using alignment-based fitness instead.

Figure 4.4: Relation between number of events compliant to the model and TBR fitness for𝑚 = 1 and 𝑝 = 𝑐

The last drawback relates to the comparison of Petri nets and FSMs. If a Petri net is missing a
token, but does encounter the transition, it keeps playing the rest of the trace. In Petri net terminol-
ogy, this is an invalid trace on the model. Continuing the replay increases its 𝑝 and 𝑐. Meaning, the
overall fitness increases. An FSM stops immediately at the point where a trace is invalid. This could
theoretically result in a lower fitness value if the same portion of the trace was valid. However, as
seen in our first drawback, there is a chance the FSM fitness comes back high anyway. Luckily,
PM4Py’s TBR algorithm has a parameter that returns immediately when a non-conforming transition
is detected. This does not necessarily mean that the first issue that was discussed for FSMs will
also arise for Petri nets. The TBR fitness can still be reduced if there are many remaining tokens, i.e.
𝑝 > 𝑐. Also, a transition with multiple incoming arcs can have more than one missing token. If this
is not the case, non-representative high fitness scores can be achieved in the same way as for the
FSMs. Moreover, the TBR of a petri net will also produce tokens when traversing silent transitions,
meaning its 𝑝 is often larger than the length of a replayed trace.
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Onemay wonder, why calculate the token-based fitness at all? First of all, TBR fitness does give
some clue about how many events can fit to a trace. Several sets have relatively short trace length,
thus allowing for larger differences. Furthermore, all 𝑓𝐹𝑆𝑀 have the same flaw and can be compared,
although the differences for the sets with longer traces will be small. To add further information
about the replay, the proportion of path that fits in terms of the total path size was added and will
be reported alongside the TBR fitness score: #model compliant events

#test path size . Note that this proportion will be
1 if the path was fully replayed but did not end in a sink, had missing tokens, or had remaining
tokens.

However, the main reason to give TBR fitness a try, is that computing alignments is time and
space consuming. This experiment needs to align 3, 860 traces, and some of them are very long. If
many of the traces are (almost) compliant and the model does not contain much parallelism, this
would not be a problem. However, many alignments could not be computed within a reasonable
time or space. With the timeout that was set, alignment should take about a day for each data set
at maximum. In reality, PMyP4’s alignment calculation can only be stopped once per loop and this
can take hours. Time-outs and out-of-memory errors mean it may not be possible to obtain all
alignment data. Because of these two reasons, the TBR fitness was calculated for analysis as well.

For the alignment based fitness, automata were converted to Petri nets. There should be no
reason for this metric to have a different meaning for the automata and Petri nets. The jury is still
out onwhether reporting the TBRfitnesswill provide any useful insights. Due to the time efficiency
of this metric, it will be computed anyway, and its usefulness will be discussed in chapter 6.

Complexity
Todetermine readability andcomplexity, the𝐶𝐶 and 𝑒𝐶𝐹𝐶were chosen. Twometricswill somewhat
supplement each other’s shortcomings. The 𝐶𝐶 is a good metric for automaton complexity, but it
does not capture complexity for Petri nets. This is mostly caused by a the concurrency structures
a Petri net has. However, the calculating the 𝐶𝐶 for a Petri net is still a good indicator for visual
clutter, as a net with many more arcs than transitions and places will look like a spaghetti model.
The reachability of the Petri nets will not be calculated, as this is not feasible for the amount and
size of Petri nets that will be generated due to the run time of constructing such a graph [24].

Since it is still desirable to express the complexity of the Petri nets somehow, Cardoso’s control
flow complexity metric was computed as well. The idea of this metric is to express howmany paths
some place 𝑝 spawns on average. For the automata, this metric may not reflect its complexity well,
as complexity rises most with the OR-splits, which are not present. Since such a great importance
is given to the concept of splits in this metric, it is possible for an automaton or a Petri net with high
𝐶𝐶 to still get a low 𝑒𝐶𝐹𝐶 score.

Furthermore, neither of the two metrics expresses impact of the parallel execution on readabil-
ity. It is more complicated to follow a trace when concurrency occurs, as one needs to remember
the extra tokens in other places. On the other hand, this parallel structure does decrease the visual
clutter significantly, which impacts readability positively.

Therefore, both complexity metrics will be reported, although onemust bemindful of their lim-
itations. The 𝐶𝐶 will not be fully informative for Petri net complexity, and the 𝑒𝐶𝐹𝐶 may not reflect
complexity of automata at all.
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Results

This chapter presents all results obtained by the experimental runs. Firstly, the run time of the
model inference will be shown in a set of graphs. Then, the size and complexity of the created
models will be reported. After this, correctness of the models in terms of soundness, 𝐹2-score, bal-
anced accuracy and other general metrics. This subsection also contains the perplexity scores and
the token- and alignment-based fitness. Lastly, the data analysis results will be reported in relation
to 𝐹2-score and perplexity.

327 models were created in total and 156 state machines were converted into Petri nets. Some
configurations did not create all models within 4 hours or crashed with memory errors. All config-
urations that did not generate models for the Oobelib set failed because of a timeout. Incomplete
runs for W4-HD1 and Hybrid-ILP were also due to timeouts. The incomplete runs on Spark were due
to out-of-memory errors. Table 5.1 gives an overview of which configurations completed success-
fully for each each data set. A full report of all results can be found in appendix C.

Log name FF PRINS MINT ProM

AIC W4-HD1 W4-NFA ADB-2 DF IM IMfa Hybrid-ILP

CoreSync 100% 100% 100% 100% 100% 100% 100% 100%
Hadoop 100% 100% 100% 100% 100% 100% 100% 100%
HDFS 100% 100% 100% 100% 100% 100% 100% 100%
Linux 100% 100% 100% 100% 100% 100% 100% 100%
NGLClient 100% 100% 100% 100% 100% 100% 100% 100%
Oobelib 100% 0% 0% 0% 100% 100% 100% 0%
PDApp 100% 80% 100% 100% 100% 100% 100% 100%
Spark 100% 60% 40% 60% 100% 100% 100% 100%
Zookeeper 100% 100% 100% 100% 100% 100% 100% 20%

Table 5.1: Overview of 5-folds experiment: model inference success

5.1 Run Time
Figure 5.1 shows how long model inference took for each configuration on each data set. Any run
time under 102 seconds can be considered very low. FlexFringe AIC completed inference very fast
on all data sets, and so did all ProM configurations, with the exception of Hybrid-ILP. DF reports
such small run times forHadoop andNGLClient, itmostly fell of the graph. Thedifferences between
these five configurations were not significant. One PRINS results immediately attracts attention:
W4-NFA appears to be slower than W4-HD1 on the PDApp, Hadoop and NGLClient data set. However,
as reported in table 5.1, W4-HD1 did not run succesfully for PDApp on 2 out of the 5 folds due to a
timeout. The Hadoop and NGLClient run times are so small, that the difference is not significant.
ADB-2 is always slower than any other configuration for the rest of the sets. The differences are large
for PDApp, Spark and Zookeeper.

35
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Figure 5.1: Run times of all data sets

5.2 Complexity of Models
The complexity of the models was measured with the CC and the eCFC. This section shows the
complexity, as well as the model sizes in terms of states and transitions, in table 5.2. The lower
values are bolded, this is done separately for Petri nets and automata.

FlexFringe AIC has the lowest amount of states of any automaton in 7 of the 9 data sets; and it is
not far behind in the Spark data set and wins by default for Oobelib. It also performs consistently
better in terms of the 𝐶𝐶. The 𝑒𝐶𝐹𝐶 for automata is not terribly informative; the results are close to
each other, however PRINS W4-HD1 reports a relatively high 𝑒𝐶𝐹𝐶 on HDFS.

ProM Hybrid-ILP consistently infers small models compared to other configurations. In fact,
CoreSync’s model is extremely small when one considers that the average number of unique events
in its test sets is 153. ProM DF reports similar values for HDFS, Hadoop, Spark and Zookeeper. For
other data sets, DF is firmly in second place. IMfa generally produces smaller models than IM.

Hybrid-ILP and DF generally produce less visually cluttered results (lower 𝐶𝐶), although IM and
IMfa perform better on Zookeeper and Linux, and achieve similar results on HDFS, Hadoop, Spark.
The 𝐶𝐶 scores of IMfa are a fair bit below those of IM, except for Zookeeper, where they are practi-
cally equal.

The 𝑒𝐶𝐹𝐶 is generally low for all ProM configurations except Hybrid-ILP; it has extremely large
spikes compared to theotherProMmethods. IMhas the lowest 𝑒𝐶𝐹𝐶, IMfa eitherhas a slightyhigher
or equal 𝑒𝐶𝐹𝐶. DF also reports low 𝑒𝐶𝐹𝐶 scores; they are slightly higher than IM’s for Zookeeper,
Linux, HDFS and Oobelib.
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Log name Program Run config States Transitions 𝑒𝐶𝐹𝐶 𝐶𝐶
CoreSync FF AIC 500.8 822.4 1.6 323.6

MINT ADB-2 3957.6 4794.0 1.2 838.4
PRINS W4-HD1 7194.0 10853.4 1.5 3661.4

W4-NFA 17341.8 20139.2 1.2 2799.4
ProM DF 51.6 70.6 1.2 21.0

Hybrid-ILP 8.6 8.2 1.2 4.0
IM 547.6 700.2 1.2 402.2
IMfa 419.2 527.8 1.4 347.0

HDFS FF AIC 86.4 164.2 1.9 79.8
MINT ADB-2 55.8 186.2 3.3 132.4
PRINS W4-HD1 537.6 4130.8 6.1 3595.2

W4-NFA 5839.8 9381.8 1.7 3544.0
ProM DF 10.2 24.4 1.4 16.2

Hybrid-ILP 8.0 9.0 2.8 9.0
IM 51.0 64.2 1.2 34.4
IMfa 22.0 29.2 1.3 18.4

Hadoop FF AIC 53.0 54.0 1.0 3.0
MINT ADB-2 139.0 144.8 1.0 7.8
PRINS W4-HD1 65.0 68.0 1.0 5.0

W4-NFA 2149.0 2315.2 1.1 168.2
ProM DF 43.0 49.2 1.1 8.2

Hybrid-ILP 41.0 42.0 1.3 17.0
IM 43.0 47.0 1.1 8.0
IMfa 43.0 47.0 1.1 8.0

Linux FF AIC 348.0 696.4 2.0 350.4
MINT ADB-2 272.8 419.6 1.5 148.8
PRINS W4-HD1 1742.8 5147.2 2.7 3406.4

W4-NFA 1535.4 2401.0 1.6 867.6
ProM DF 115.4 298.2 1.4 184.8

Hybrid-ILP 37.2 22.0 249.1 417.4
IM 219.4 215.2 1.1 110.2
IMfa 181.8 163.2 1.1 85.8

NGLClient FF AIC 91.0 106.0 1.2 17.0
MINT ADB-2 136.6 146.6 1.1 12.0
PRINS W4-HD1 140.6 175.6 1.2 37.0

W4-NFA 508.6 650.6 1.3 144.0
ProM DF 48.8 64.4 1.1 17.6

Hybrid-ILP 18.8 18.0 1.2 12.6
IM 135.8 162.2 1.2 100.4
IMfa 97.6 117.0 1.2 71.0

Oobelib FF AIC 616.2 822.8 1.3 208.6
MINT ADB-2 - - - -
PRINS W4-HD1 - - - -

W4-NFA - - - -
ProM DF 91.0 199.4 1.4 110.4

Hybrid-ILP - - - -
IM 380.8 449.8 1.2 305.8
IMfa 270.6 320.2 1.3 205.2

PDApp FF AIC 404.8 472.2 1.2 69.4
MINT ADB-2 1068.6 1241.6 1.2 175.0
PRINS W4-HD1 3048.2 3423.0 1.1 376.8

W4-NFA 29374.6 33737.2 1.1 4364.6
ProM DF 40.0 68.0 1.3 30.0

Hybrid-ILP 19.0 19.0 12.4 68.6
IM 228.8 291.4 1.2 173.0
IMfa 114.6 143.2 1.2 86.6

Spark FF AIC 39.8 53.2 1.3 15.4
MINT ADB-2 21.7 30.3 1.4 10.7
PRINS W4-HD1 20.0 25.0 1.2 7.0

W4-NFA 1366.0 1826.5 1.3 462.5
ProM DF 17.0 20.0 1.1 5.0

Hybrid-ILP 15.0 14.8 2.3 18.6
IM 24.0 30.0 1.1 10.0
IMfa 24.0 27.0 1.1 7.0

Zookeeper FF AIC 280.8 685.2 2.4 406.4
MINT ADB-2 344.8 574.0 1.7 231.2
PRINS W4-HD1 1785.4 4741.2 2.6 2957.8

W4-NFA 2087.2 4381.4 2.1 2296.2
ProM DF 42.0 172.0 1.6 132.0

Hybrid-ILP 44.0 36.0 93.9 271.0
IM 126.0 157.2 1.2 88.0
IMfa 108.8 136.8 1.4 88.8

Table 5.2: Complexity in terms of number of states, edges, 𝑒𝐶𝐹𝐶 and 𝐶𝐶1
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5.3 Correctness of Models
This section will report the results related to the correctness of the models. This is done in terms of
soundness, 𝐹2-score and balanced accuracy, TBR and alignment-based fitness and perplexity.

5.3.1 Soundness
All Petri net models were checked for soundness, results are shown in 5.3. The inductive miners
infer a soundnet by design, the restwas checkedwith PM4Py. However, for somenets the soundness
computation did not complete within a day. The calculation for PDApp on W4-NFA gave a memory
error.

Log name FF PRINS MINT ProM

AIC W4-HD1 W4-NFA ADB-2 DF Hybrid-ILP IM IMfa

CoreSync ! 1%4f f % ! 2!3% ! !

Hadoop ! ! % ! ! % ! !

HDFS ! 4!1% % ! ! % ! !

Linux ! % % ! ! % ! !

NGLClient ! ! ! ! ! 4!1% ! !

Oobelib ! - - - ! - ! !

PDApp ! % g 1!4% ! % ! !

Spark ! ! % ! ! ! ! !

Zookeeper ! 4%1! % 1!2%1f ! % ! !

Table 5.3: Soundness of generated Petri nets. f= a time out,g= a memory error.

5.3.2 𝐹2­score and Balanced Accuracy
In figure 5.2 all 𝐵𝐴 and 𝐹2-scores can be found. Additionally, the recall, precision, and specificity
are reported in table 5.4. The results for the test data will be discussed in this section per dataset.

CoreSync and PDApp. AIC, ADB-2 and both PRINS configurations report high values for both
the 𝐵𝐴 and the 𝐹2-score. Their 𝐹2-score is always higher than the 𝐵𝐴 for CoreSync, whereas PDApp
reports marginal differences for these four configurations. Table 5.4 shows a precision and speci-
ficity lower than the recall for these configurations on CoreSync. For PDApp, the recall values are
more similar to the specificity and precision. The best performing configuration by ProM is DF,
which reports a 𝐵𝐴 and 𝐹2-score above 0.8, coming fairly close to the former four configurations.
Hybrid-ILP and IM have a large gap between their 𝐵𝐴 and 𝐹2-scores, which is caused by their recall
being much lower than their precision and specificity for CoreSync. The gap for IM on PDApp is
due to a poor specificity of 0.166. It should also be noted that Hybrid-ILP, IM and IMfa report high
variability on their 𝐹2-scores, but not on their 𝐵𝐴, indicating very different recall and/or specificity
results across the different folds.

Hadoop. All configurations perform well on Hadoop, and the 𝐹2-score is slightly higher than
the 𝐵𝐴 for most configurations. DF and Hybrid-ILP show some deviation in their 𝐵𝐴 as well as their
𝐹2-score. Hybrid- ILP performs the worst and DF is in between it and all other configurations.

HDFS. AIC outperforms all other configurations in terms of 𝐵𝐴 and 𝐹2-scores. Fairly large gaps
between 𝐵𝐴 and 𝐹2-score can be seen for the other configurations, indicating some gaps in recall,
precision and specificity. Table 5.4 shows that ADB-2, W4-HD1 and W4-NFA actually have better recall
than AIC, but much lower precision and specificity. DF, IM and IMfa have high recall values as well,
in contrast to Hybrid-ILP, which has a recall of only 0.237. Its 𝐵𝐴 is not as low because of its ex-
cellent specificity value; Hybrid-ILP reports the highest specificity and precision. Once again, IM
reports high standard deviation; in spite of its good average 𝐹2-score, the deviation shows some of
the models performed quite poorly.

Linux. In stark contrast to the previous data set, AIC has a recall of 0 and thus an 𝐹2-score of
0. Its precision is also 0, meaning there were no true positives. It did manage to correctly reject
70% of the negative traces. Interestingly, W4-HD1 outperforms ADB-2 and non-determinised W4-NFA.
This is because W4-HD1 reports much higher precision and specificity than ADB-2. IMfa has a low
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Figure 5.2: Balanced accuracy 𝐵𝐴 and 𝐹2-score

𝐹2-score as well, as its recall is close to 0 and its precision is low. Its specificity is very high. IM has
a better 𝐹2-score as it does manage to recognise about 50% of the positive traces. Hybrid-ILP has
a similar recall to DF and IM, but a higher specificity, resulting in a higher 𝐵𝐴. In this data set, all
configurations have a significant standard deviation.

NGLClient. ADB-2 performs perfectly for this data set. AIC is not far behind, due to its perfect
score on precision and specificity. The PRINS configurations have a higher recall than AIC. W4-NFA
reports a perfect recall score, just like ADB-2, indicating some information got lost during determin-
isation for W4-HD1. Hybrid-ILP lags far behind due to poor recall, but reports a perfect precision and
specificity, indicating there were no false positives. DF performs steadily, with results of around 0.8
for all metrics. IM outperforms IMfa across the board. Again, many sets show a lot of variation in
𝐵𝐴 and 𝐹2-scores.

Oobelib. Only half of the configurations managed to complete inference on this data set. AIC
has the highest 𝐹2-score and 𝐵𝐴 due to very good precision and specificity. However, IM has near
perfect recall and outperforms IMfa by a lot in terms of recall and precision, but not in terms of
specificity. This indicates that the IMfa did poorly on correctly identifying positive traces.

Spark. An important note for this data set is that, W4-HD1 and ADB-2 inferred only 3 out 5models
and W4-NFA 2. Interestingly, W4-HD1, W4-NFA and ADB-2 have identical performance for all metrics.
They also have perfect recall, as does IM. All configurations do well on recall, except IMfa. How-
ever, this configuration does have excellent scores on precision and specificity, whereas all other
configurations score around 0.7. Hybrid-ILP shows a lot of variation for its 𝐵𝐴 and 𝐹2-score.

Zookeeper. Again, it should be noted that Hybrid-ILP only managed to create one model suc-
cessfully. Recall is poor for thismodel, and precision is only 0.5. It does performwell on specificity,
in fact, it is ahead of all other configurations in this regard. AIC performs equally as poorly on recall
as Hybrid-ILP, and IMfa did not do well on this metric either, resulting in low 𝐹2-scores for all three.
DF also did not perform well, however it has more consistent results across all metrics. IM outper-
forms IMfa in terms of recall, causing it to have a higher 𝐹2-score. These two configurations have
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similar 𝐵𝐴 scores, as IM has a poor specificity score. W4-HD1 performs the best across the board,
with W4-NFA close behind. ADB-2 has a satisfactory 𝐹2-score due to its recall.

Log name Program Run config 𝐵𝐴 𝐹2-score Recall Precision Specificity

CoreSync FF AIC 0.918 0.925 0.929 0.909 0.907
MINT ADB-2 0.862 0.939 0.986 0.79 0.738
PRINS W4-HD1 0.894 0.947 0.979 0.836 0.809

W4-NFA 0.903 0.952 0.983 0.848 0.823
ProM DF 0.81 0.833 0.845 0.79 0.775

Hybrid-ILP 0.64 0.456 0.421 0.749 0.86
IM 0.506 0.252 0.236 0.53 0.777
IMfa 0.583 0.596 0.613 0.571 0.553

HDFS FF AIC 0.939 0.951 0.959 0.922 0.919
MINT ADB-2 0.682 0.883 0.993 0.613 0.37
PRINS W4-HD1 0.79 0.919 0.994 0.71 0.585

W4-NFA 0.817 0.926 0.99 0.742 0.643
ProM DF 0.81 0.875 0.911 0.758 0.709

Hybrid-ILP 0.616 0.279 0.237 0.979 0.995
IM 0.631 0.791 0.882 0.582 0.381
IMfa 0.735 0.869 0.941 0.667 0.529

Hadoop FF AIC 1.0 1.0 1.0 1.0 1.0
MINT ADB-2 0.962 0.985 1.0 0.929 0.923
PRINS W4-HD1 0.923 0.97 1.0 0.867 0.846

W4-NFA 0.923 0.97 1.0 0.867 0.846
ProM DF 0.877 0.872 0.877 0.88 0.877

Hybrid-ILP 0.823 0.806 0.8 0.837 0.846
IM 0.962 0.985 1.0 0.929 0.923
IMfa 0.962 0.985 1.0 0.929 0.923

Linux FF AIC 0.35 0.0 0.0 0.0 0.7
MINT ADB-2 0.675 0.778 0.825 0.635 0.525
PRINS W4-HD1 0.812 0.818 0.825 0.805 0.8

W4-NFA 0.763 0.749 0.75 0.768 0.775
ProM DF 0.475 0.402 0.4 0.437 0.55

Hybrid-ILP 0.6 0.476 0.45 0.629 0.75
IM 0.45 0.483 0.525 0.379 0.375
IMfa 0.5 0.084 0.075 0.28 0.925

NGLClient FF AIC 0.938 0.895 0.875 1.0 1.0
MINT ADB-2 1.0 1.0 1.0 1.0 1.0
PRINS W4-HD1 0.862 0.918 0.95 0.809 0.775

W4-NFA 0.888 0.957 1.0 0.818 0.775
ProM DF 0.825 0.804 0.8 0.836 0.85

Hybrid-ILP 0.675 0.399 0.35 1.0 1.0
IM 0.7 0.816 0.875 0.647 0.525
IMfa 0.675 0.741 0.775 0.647 0.575

Oobelib FF AIC 0.884 0.819 0.788 0.975 0.98
ProM DF 0.758 0.732 0.724 0.775 0.792

IM 0.688 0.877 0.98 0.618 0.396
IMfa 0.558 0.347 0.324 0.487 0.792

PDApp FF AIC 0.984 0.974 0.968 0.999 0.999
MINT ADB-2 0.968 0.98 0.987 0.951 0.949
PRINS W4-HD1 0.979 0.985 0.989 0.97 0.97

W4-NFA 0.968 0.974 0.978 0.959 0.958
ProM DF 0.865 0.848 0.839 0.886 0.892

Hybrid-ILP 0.727 0.584 0.541 0.858 0.911
IM 0.505 0.725 0.843 0.494 0.166
IMfa 0.538 0.516 0.525 0.544 0.552

Spark FF AIC 0.877 0.939 0.977 0.816 0.777
MINT ADB-2 0.849 0.943 1.0 0.768 0.698
PRINS W4-HD1 0.849 0.943 1.0 0.768 0.698

W4-NFA 0.849 0.943 1.0 0.768 0.698
DF 0.856 0.94 0.991 0.78 0.721
Hybrid-ILP 0.805 0.841 0.875 0.757 0.735
IM 0.83 0.936 1.0 0.746 0.66
IMfa 0.765 0.604 0.554 0.959 0.977

Zookeeper FF AIC 0.443 0.162 0.143 0.433 0.743
MINT ADB-2 0.607 0.733 0.786 0.581 0.429
PRINS W4-HD1 0.742 0.794 0.828 0.738 0.657

W4-NFA 0.714 0.754 0.771 0.698 0.657
ProM DF 0.486 0.462 0.457 0.492 0.514

Hybrid-ILP 0.5 0.167 0.143 0.5 0.857
IM 0.5 0.674 0.743 0.497 0.257
IMfa 0.514 0.388 0.372 0.514 0.657

Table 5.4: 𝐵𝐴, 𝐹2-score, recall, precision, accuracy and specificity
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Log name FF PRINS MINT ProM

AIC W4-HD1 W4-NFA ADB-2 DF IM IMfa Hybrid-ILP

CoreSync 99.5% 0% 0% 19.9% 100% 93.5% 78.7% 100%
Hadoop 100% 100% 100% 100% 100% 100% 100% 100%
HDFS 100% 80% 0% 100% 100% 100% 100% 100%
Linux 7.5% 0% 0% 95.0% 97.5% 70% 22.5% 97.5%
NGLClient 100% 100% 100% 100% 100% 92.5% 95% 100%
Oobelib 20% - - - 100% 0% 0% -%
PDApp 99.9% 0% 0% 79.9% 100% 0% 0% 80%
Spark 78.1% 100% 0% 100% 100% 100% 100% 100%
Zookeeper 11.4% 0% 0% 34.3% 17.1% 25.7% 14.3% 0%

Table 5.5: Percentage of traces that were aligned without out-of-memory or time-out errors

5.3.3 Fitness
In figure 5.3 all fitness metrics can be found. The ‘percentage of edges travelled’ expresses which
portion of a trace was successfully replayed before encountering an impossible event and getting
stuck in a state. If no green bar is present, the alignment could not be completed in time or ran out
of memory. The percentage of successful alignments can be found in table 5.5. The alignment cost
is also reported in figure 5.4.

The first thing of note is that, as predicted, all state machine inference methods report a TBR
fitness of 1 or close to it. AIConNGLClient andLinux are the only exceptions to this trend. However,
theTBRfitness (𝑓𝑇𝐵𝑅) for thesemethodsdoes not differmuch from the alignment fitness (𝑓𝐴𝐿). Linux,
NGLClient, Oobelib and Zookeeper, show a greater deviation in percentage of travelled edges. The

Figure 5.3: TBR fitness 𝑓𝑇𝐵𝑅, percentage of edges traversed, Alignment-based fitness 𝑓𝐴𝐿
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fitness and alignment costs will be discussed per configuration.
AIC. The 𝑓𝐴𝐿 of the AIC configuration does not drop below 0.95 for any of the data sets. The 𝑓𝐴𝐿

is 0.95 < 𝑓𝐴𝐿 < 0.99 for Linux, NGLClient and Zookeeper and 𝑓𝐴𝐿 > 0.99 for the rest. It should
be noted that few alignments were computed on Linux, Zookeeper and Oobelib. Alignments for
Oobelib completed fully on 1 of the folds, whereas Linux and Zookeeper have a partial result for
one of the folds. The percentage of edges traces can successfully traversed on the AICmodels is also
very high, except for Linux andZookeeper. The cost of the alignments of AIC for CoreSync, Hadoop,
HDFS, Oobelib, PDApp and Spark are low and only Spark hasmajor deviations. 𝑐𝑜𝑠𝑡𝐴𝐿 values of AIC
on NGLClient peak for two of the folds, and relatively low costs for the rest. Zookeeper and Linux
reported only 1 𝑐𝑜𝑠𝑡𝐴𝐿 for AIC, and they were fairly high.

ADB-2. Alignments for ADB-2 were completed to a satisfactory degree for most data sets, except
for CoreSync and Zookeeper. CoreSync alignments almost completed for one fold, whereas a com-
pletion of approximately 85%was achieved for two of the Zookeeper folds. The 𝑓𝐴𝐿 for ADB-2 never
drops below 0.99 and the average traversed edges does not drop below 0.85. The cost of alignment
is low for all data sets, except Zookeeper.

PRINS. Not many alignments were computed for these configurations, mainly due to memory
errors. For W4-NFA the only alignments that could be computed, were for Hadoop and NGLClient.
W4-HD1 completed alignments for thesedata sets and for Spark and80%ofHDFSalignments. W4-NFA
and W4-HD1 have similar fitness scores, but the percentage of travelled edges is higher for W4-HD1 on
Linux andZookeeper. Thepercentageof travelled edges is alwayshigher than0.8. Of the alignments
that were computed, the 𝑓𝐴𝐿 was near 1 or 1, as these configurations as achieved (near) perfect recall
on some of the data sets. The alignment costs are also low for all computed alignments.

DF. The 𝑓𝑇𝐵𝑅 for DF is high, with small dips for CoreSync and NGLClient. However, these lower
fitness values are still around 0.85. Average traversed edges is generally high, except for Linux and
Zookeeper. Almost all alignments for DFwere computed, except for theZookeeper alignments. 𝑓𝐴𝐿 is
around 0.98 formost sets and around 0.88 for CoreSync andNGLClient. The 𝑐𝑜𝑠𝑡𝐴𝐿 is generally high,

Figure 5.4: Alignment cost 𝑐𝑜𝑠𝑡𝐴𝐿
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but low for HDFS and Zookeeper. NGLClient and Spark do have several folds where the alignment
cost is low.

Hybrid-ILP. This configuration reports a high 𝑓𝑇𝐵𝑅 for some sets, but for CoreSync, Linux,
NGLClient and PDApp the 𝑓𝑇𝐵𝑅 hovers around 0.5. The percentage of travelled transitions is
generally mediocre to low, except for Hadoop and Spark. Almost all alignments for Hybrid-ILP
were computed successfully, except for Zookeeper. The 𝑓𝐴𝐿 are lowest for CoreSync, NGLClient
and PDApp. The values are generally close to the 𝑓𝑇𝐵𝑅, but their are major differences for Linux,
PDApp and Spark. The 𝑓𝐴𝐿 is lower for Spark and higher for the other two data sets. The 𝑐𝑜𝑠𝑡𝐴𝐿 is
high for all data sets on almost all folds; only Spark has 2 folds that report a low 𝑐𝑜𝑠𝑡𝐴𝐿.

IM & IMfa. The 𝑓𝑇𝐵𝑅 is very high and very similar for these configurations on all data sets, with
the exception of Oobelib, where IMfa has a lower 𝑓𝑇𝐵𝑅 than IM. The percentage of travelled transi-
tions is generally lower for IMfa: its values a poor for for Linux, Oobelib and PDApp. For CoreSync,
the travelled percentage is a bit higher for IMfa than IM. The computation of alignments was not
successful for PDApp and Oobelib and few alignments were computed for Zookeeper. Addition-
ally, the Linux alignment for IMfa was only done partially for all folds. 𝑓𝐴𝐿 is very high for both
configurations, and always highest for IM. 𝑐𝑜𝑠𝑡𝐴𝐿 is lower for IMfa on NGLClient, equal for Hadoop
and much higher for all other data sets. The cost for IM is low for all sets an bit higher for Linux.
IMfa reports very high 𝑐𝑜𝑠𝑡𝐴𝐿 for Linux and Spark.

5.3.4 Perplexity
This section reports on the perplexity 𝑃𝑃, the results are in table 5.6. A lower score is better, 1 is the
lowest score that can be achieved. The amount of parallelism in Petri nets is also reported in figure
5.5, as supplementary information. The DF configuration does not contain parallelism by design.

Log name FF PRINS MINT ProM

AIC W4-HD1 W4-NFA ADB-2 DF IM IMfa Hybrid-ILP

CoreSync 2.00 2.48 1.93 2.64 1.82 109.81 70.35 2.53
Hadoop 1.06 1.37 1.33 1.11 1.44 1.40 1.40 1.70
HDFS 1.94 6.44 4.49 8.03 2.88 10.48 3.01 3.76
Linux 2.84 3.79 3.44 4.33 7.55 31.45 19.21 23.79
NGLClient 1.32 1.68 1.59 1.49 1.76 38.75 23.61 1.92
Oobelib 1.46 - - - 4.90 169.54 98.99 -
PDApp 1.19 1.54 1.26 2.22 2.88 80.99 41.64 7.20
Spark 1.69 2.97 1.99 1.19 3.02 2.30 2.61 7.46
Zookeeper 3.30 4.73 4.32 5.79 6.02 49.14 34.58 3.97

Table 5.6: Perplexity, lower scores are better.

AIC. In terms of perplexity, AIC either outperforms all other configurations, or reports a low
perplexity that is close to the best perplexity. The AIC perplexity spikes for Linux and Zookeeper,
the same data sets where it reported a low percentage of travelled edges%𝑇𝑟𝑎𝑣. On the Oobelib set,
no other configuration is event close to AIC. For HDFS and Linux there is also a large performance
gap with most other configurations.

PRINS. The PRINS configurations generally boast a similar performance, but W4-NFA is always a
bit better. On HDFS and Spark, the gap is larger than for the other sets. The perplexity scores for
HDFS, Linux, Spark and Zookeeper are significantly worse for the PRINS configurations than those
of the AIC configuration.

ADB-2. This configuration performs better than the PRINS configurations on Hadoop, NGL-
Client and Spark and comes close to or outperforms AIC on these data sets. For the other sets, its
perplexity is ∼2-4 times higher than that of AIC.

DF. The perplexity scores for this configuration are generally fairly close to those of AIC, but
it has a few outliers. It performs much worse on HDFS, Linux and Zookeeper. The perplexities for
these sets are also higher than those of the PRINS andMINT configurations. It outperforms all other
ProM tools.

IM & IMfa. On CoreSync, Linux, NGLClient, Oobelib, PDApp and Zookeeper, these configura-
tions report very highperplexity scores. These are also the configurations that havehigher amounts
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of transitions causing concurrency and higher average out degrees, seen in figure 5.5. For the other
data sets, IMfa outperforms or comes close to the W4-NFA perplexity scores. IM outperforms IMfa
on the spark set, and both configurations have the same perplexity for Hadoop. IM generally per-
forms the worst. IMfa’s scores overall are much better, but still far off the perplexity scores of other
configurations.

Hybrid-ILP. This configuration has large spikes in the number of parallel edges for Linux,
PDApp, Spark and Zookeeper. The last three of these have a much lower average out degree for
the parallel transitions. The perplexity score for Linux is much higher than the rest of the scores.
Hybrid-ILP performs much worse than the FSM configurations on Linux, PDApp and Spark. For
all other sets, its performance is close to that of the PRINS configurations.

Figure 5.5: Amount of transitions causing concurrency and their average out degree

5.4 Data Composition and Performance
Each test data set was analysed to compute its trace similarity 𝑆 and the normalised entropy 𝐻𝜂(𝐸).
The results of the trace similarity and event entropy for the full data sets can be found in 5.7. The
𝐵𝐴, 𝐹2-score, fitness, perplexity and cyclomatic complexity 𝐶𝐶were plotted against trace similarity,
normalised entropy and number of unique events. The most interesting graphs are shown in this
section, the full results of the analysis can be found in appendix D.

Log 𝑆 𝐻𝜂(𝐸)
CoreSync 0.19 0.410
Hadoop 0.98 0.424
HDFS 0.66 0.209
Linux 0.25 0.232
NGLCLient 0.31 0.520
Oobelib 0.63 0.291
PDApp 0.43 0.285
Spark 0.42 0.030
Zookeeper 0.22 0.214

Table 5.7: Data analysis on full data sets

The graph for𝐵𝐴, 𝐹2-score versus the trace similarity 𝑆, figure 5.6, does not showa specific shape
to either of the lines. However, for AIC, ADB-2, DF, and the PRINS configurations, it does appear that
𝐵𝐴 and 𝐹2 performance becomesmore stable as the trace similarity grows. The perplexity 𝑃𝑃 versus
normalised entropy 𝐻𝜂(𝑒) also does not have a shape that could possibly correspond to a function.
However, the perplexity does spike for all sets around a 𝐻𝜂(𝑒) = 0.25.
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Figure 5.6: 𝐵𝐴, 𝐹2-score versus trace similarity 𝑆

Figure 5.7: Perplexity 𝑃𝑃 versus normalised entropy 𝐻𝜂(𝑒)





6
Discussion

This sectionwill discuss the findings of the experiment conducted in this thesis. Firstly, the perfor-
mance of the metrics on both FSMs and Petri nets will be discussed. Then, the overall correctness
of themodels and the impact of the synthesised negative traces on thesemetricswill be considered.
After this, themodel complexity and inference timewill be examined in context of theperformance.
The analysis of data set characteristics as a possible predictor for performance will then be elabo-
rated upon. Lastly, the limitations of this work will be reported.

6.1 Comparing Apples to Oranges
The first challenge to comparing the various mining and inference tools is to compare the Petri net
output to the finite state machine output. Doing a surface-level comparison proved to be straight-
forward in some regards; the run-time and the 𝐹2-score, 𝐵𝐴, recall, precision and specificity can be
computed in exactly the same way. However, problems start to arise when attempting to compare
the complexity of themodels. And evenmore problems surface when looking deeper into howwell
traces fit the model; a very important part of model analysis as a model that misses one transition
can score low recall, but still fit most of the trace.

These problems stem from characteristics in Petri nets: the time and space complexity of Petri
net problems. Namely, the parallel structures in Petri nets. The considered solutions all ran into
problems:

1. Transform Petri nets into FSMs. This would mean constructing its reachability graph, which
can be infinite. Another option would be the coverability graph, a similar construct that can
handle loops, but thismaynot express everything thePetri net could. Furthermore, the ‘reach-
ability problem’ is thought to be NP-complete [15], and most of the models could indeed not
be converted within reasonable time with PM4Py.

2. Transform FSMs into Petri nets. This still gave issues with the TBR fitness, this was partially
due to the TBR implementation of PM4Py not being able to handle the converted Petri net.
Furthermore, there were time issues while computing alignments as finding an optimal align-
ment can take a long time. It also did not particularly help the perplexity score problem, as
this metric does not express quite the same thing when parallelism is present in the model.
This transformation also does not help the model complexity analysis.

3. Converting metrics to an equivalent metric. This was tried for the TBR fitness, as explained
in section 4.4.6. Indeed, the results proved not to be very informative and possibly not even
useful.

This section will go into the troublesome metrics and their flaws.

6.1.1 Complexity
The complexity comparison seemed straightforward at first, but it did raise some issues. First of
all, an FSM that scored better than others in terms of 𝑒𝐶𝐹𝐶 could be scoring much worse in terms
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of the 𝐶𝐶 than others. In addition to this, is the 𝐶𝐶 useful in any way for Petri nets? Does it express
complexity when they are compared to each other or to the FSMs? Lastly, should a Petri net with
many parallel structures be scored differently?

(a) FlexFringe, AIC, 𝑒𝐶𝐹𝐶 = 1.15, 𝐶𝐶 = 62 (b) MINT, ADB-2, 𝑒𝐶𝐹𝐶 = 1.15, 𝐶𝐶 = 172

Figure 6.1: PDApp fold 5, partial models

Does the 𝑒𝐶𝐹𝐶 adequately show complexity in state machines?
Appendix E shows Sparkmodelswith their 𝐶𝐶 and 𝑒𝐶𝐹𝐶 can be seen for each configuration. For the
Spark data set, the scores feel intuitive on visual inspection. Indeed, the HDFS examples in figures
6.3 and 6.4 also express the visual inferiority of the ADB-2 model to the IM model. However, some
𝑒𝐶𝐹𝐶 values for FSMs are equal while their 𝐶𝐶 is very different. An example of this occurrence is
PDApp for the AIC and ADB-2 configurations. Figure 6.1 shows the most complex portion for both
of these models. On manual inspection, the AIC model is indeed more readable. However, these
models have the same 𝑒𝐶𝐹𝐶 score, indicating that this score is not very accurate when comparing
FSMs to each other. In addition to this, the lowest 𝑒𝐶𝐹𝐶 one can achieve is 1, meaning these two
models have achieve quite a low 𝑒𝐶𝐹𝐶 score, in spite of being complex models. This is not unique
to the PDApp set, there are many FSMs with very large 𝐶𝐶 score, that still perform well in terms of
𝑒𝐶𝐹𝐶. This is because the 𝑒𝐶𝐹𝐶 for FSMs is simply the ratio of edges to states. For example, the
CoreSync models of AIC have a better 𝐶𝐶 than the models inferred by ADB-2. The models ADB-2
creates are extremely large and the discrepancy between states and edges is very large. AIC infers a
more orderly model, as number of states and edges are smaller and the discrepancy is as well. Yet,
their 𝑒𝐶𝐹𝐶 is much better for the ADB-2 model as the ratio between edges and states is lower. In
conclusion, the 𝑒𝐶𝐹𝐶 has issues representing the complexity in a way that enables comparison of
different FSMmodels and does not accurately represent the reality of the FSM complexity.

Figure 6.2: HDFS, fold 1, ProM Hybrid-ILP, 𝑒𝐶𝐹𝐶 = 2.82, 𝐶𝐶 = 9
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Was the 𝐶𝐶 useful for comparing Petri nets to FSMs, or even each other?
The 𝐶𝐶 works partially in terms of comparing Petri nets to each other. This was to be expected as
the computation of the 𝐶𝐶 still adequately expresses how many ‘extra’ arcs go through the model.
However, the 𝐶𝐶 is meant to express the amount of independent paths through the model and par-
allel constructs can greatly increase the amount of possible paths in a model. The 𝐶𝐶 is computed
with the amount of arcs, transitions and places, but these counts do not express parallelism at all.
This is the reason some Petri models with a high 𝑒𝐶𝐹𝐶 still boast a low 𝐶𝐶. An example is the HDFS
Hybrid-ILP model, figure 6.2. It has multiple parallel constructs, resulting in 𝑂𝑅-splits, but it has
the lowest 𝐶𝐶 of them all. Comparing it to 2 other HDFSmodels, figure 6.3 and 6.4, it is certainly the
easiest one to look at. But try to follow the chain of events, and this small model gets very compli-
cated. Thus, the 𝐶𝐶 for Petri nets appears to be purely cosmetic and not representative of the true
complexity of a process model. In addition to this, the 𝐶𝐶 for Petri nets will be lower if the model
has a lot of parallelism.

In the comparison between FSMs and Petri nets, should parallelism be punished more?
As it stands, neither the 𝑒𝐶𝐹𝐶 nor the 𝐶𝐶 pays much attention to the parallel construct. This con-
struct does play a role in the readability of a model. Keeping track of a trace in a model with a lot
of parallelism is much harder, as one needs to remember where in each branch they have left off.
A good example is the HDFS model made by the inductive miner IM, seen in figure 6.3. It branches
from silent transitions to various depths of themodel and contains nested parallel constructs. How-
ever, the model is easy to read, unlike the HDFS spaghetti-bowl by ADB-2, seen in figure 6.4.

Figure 6.3: HDFS, fold 1, ProM IM, 𝑒𝐶𝐹𝐶 = 1.23, 𝐶𝐶 = 36

The answer to this question depends onwhat is valued themost. If it is purely visual readability,
the𝐶𝐶 complexity score reflect thiswell. Expressingparallelismand ease ofmanual tracing through
the model would require a different metric or the 𝑒𝐶𝐹𝐶 could be adjusted to add more than 1 for a
parallel split. However, the issue of comparing FSMs to Petri nets would remain, as the 𝑒𝐶𝐹𝐶 does
not reflect complexity of FSMs well.

6.1.2 Trace Fitness
More in depth trace analysis was done with TBR fitness 𝑓𝑇𝐵𝑅, percentage of traversed edges%𝑡𝑟𝑎𝑣
and 𝑓𝐴𝐿. This turned out to be a worth wile additions, because e.g. the AIC model of Linux performs
very differently in terms of perplexity and 𝑓𝐴𝐿 than its 0.0 recall would suggest. In this particular
example, this was caused by transitions in test set that were not present in the training set. The
𝑓𝐴𝐿 did not cause any problems as it could be run on the converted FSMs without issues. The only
limiting factorwas the time and space required for the alignments. The 𝑓𝑇𝐵𝑅 wasproblematic, which
is something than can be analysed by comparing it to%𝑡𝑟𝑎𝑣.

The 𝑓𝑇𝐵𝑅 only reported 3 values under the 0.9mark for the FSMs. This may not seem surprising,
as the 𝑓𝐴𝐿 is also very high. However, there are two indicators that this fitness does not work for
FSMs. First of all, there is the issue described in section 4.4.6, where the lack of the concept of to-
kens and Petri net constructs results in the fitness for an invalid trace becoming 𝑓𝑇𝐵𝑅,𝐹𝑆𝑀(𝑡𝑖𝑛𝑣𝑎𝑙𝑖𝑑) =
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Figure 6.4: HDFS, fold 1, MINT ADB-2, 𝑒𝐶𝐹𝐶 = 3.52, 𝐶𝐶 = 138

1 − 1
𝑝 . In spite of the high 𝑓𝐴𝐿, one can still see that this definitely happened, with the help of the

%𝑡𝑟𝑎𝑣. The 1 − 1
𝑝 relation tells us that (1) only smaller traces can have a lower 𝑓𝑇𝐵𝑅 and (2) a long

trace with more than 20 compliant events, will still get a high 𝑓𝑇𝐵𝑅.
Of the sets with smaller traces, only AIC NGLClient reports an 𝑓𝑇𝐵𝑅 below 0.9. This does not

disprove (1) as one can see that the percentage of successfully travelled edges %𝑡𝑟𝑎𝑣 is also very
high. Although a low percentage does not say much about the fitness of a trace, a high percentage
does mean most of the trace was successfully replayed. Thus indicating that a large portion of the
model was correct for this trace.

The AIC for Linux clearly shows that (2) happened. Linux’s traces are very long, resulting in a
high fitness. The %𝑡𝑟𝑎𝑣 is very low, indicating the trace replay stopped fairly early in the trace.
The computation of 𝑓𝑇𝐵𝑅 stops when it encounters an invalid trace, and thus there should not be
such a large discrepancy between it and%𝑡𝑟𝑎𝑣. It manages to dip below 0.9 because the amount of
compliant traces until an invalid transition is encountered in the test trace is very low.

Interestingly, the DF does not have such problems using the 𝑃𝑀4𝑃𝑦 implementation. Even
though this model also does not utilize Petri net structures and only has 1 token in its net. This
hints at a possibility of using the standard implementation, if the Petri net implementation was
changed or the Petri net conversion could be done differently without changing the meaning of
the FSM.

It is clear that the 𝑓𝑇𝐵𝑅 cannot be used as is. If the implementation of it could get fixed for the
silent and duplicate transitions, it could become a viable option. The advantage of 𝑓𝑇𝐵𝑅 is that its
computation is much less space and time consuming than 𝑓𝐴𝐿. The TBR fitness cannot be supple-
mented with %𝑡𝑟𝑎𝑣 as this does not give the extra information needed. Furthermore, the %𝑡𝑟𝑎𝑣
does not add anything to the comparison that the recall metric does not as %𝑡𝑟𝑎𝑣 also does not
take the rest of the trace into account and does not express whether a trace ended anywhere near
an accept state. The 𝑓𝐴𝐿 is more suited to analyse both Petri nets and FSMs as it does not rely on the
notion of tokens, which are nonexistent in FSMs. The 𝑓𝐴𝐿 is a great addition to analysis, provided it
manages to complete its alignments.

6.1.3 Perplexity
Perplexity was successfully computed for both FSMs and Petri nets. There are two differences be-
tween these model types that require attention: parallel constructs and silent transitions 𝜏. The
parallelism difference is solved by effectively making a partial reachability graph with only the
markings that occur for the test traces. For the 𝜏 transition, two decisions were made:

• The probability assigned to 𝜏 is computed in the same way as the symbols for other proba-
bilities. Another option would have been to assign a very small probability, as for the unseen
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event. However, this penalises a valid path too much and results in comically high perplexi-
ties.

• 𝜏 transitions are not considered as the same symbol. This decision was taken as 𝑡𝑎𝑢 is techni-
cally not a symbol at all. In addition to this, if 𝑡𝑎𝑢 transitions are considered the same symbol,
the perplexity of a model can become very low, in spite of the huge amount of paths that can
be traced through the model.

These choices were made as they were the most logical. This problem is not specific to Petri net
to FSM comparison; these choices are the same if one were to compare an NFA with 𝜀 transitions
to a DFA. The validity of these choices could be investigated further by computing perplexities
for an NFA model with 𝜀 transitions and its corresponding DFA. This would make it easier to judge
whether the penalties lead to an appropriate perplexity for theNFA. However, it will still be amatter
of choice and not a definitive answer.

Generally, the reportedperplexity values seem in linewith the amount of parallelism in the ProM
models. Hybrid-ILP reports some perplexities close to those of the FSMs, even though its perfor-
mance on recall and %𝑡𝑟𝑎𝑣 is consistently low (except on Hadoop and Spark). This may be due
to the models with a small 𝐶𝐶 it creates and/or the choice of the unseen event probability 𝑝𝑢𝑛𝑠𝑒𝑒𝑛.
When the 𝐶𝐶 of a Petri net model is small, it means not many states and transitions have multiple
outgoing arcs. Thismeans the probabilities betweenmarkingswill be high, resulting in a lower per-
plexity. Additionally, if the alphabet of a model is small, this means the 𝑝𝑢𝑛𝑠𝑒𝑒𝑛 can be quite large
in comparison to that of other models. For example, one of the Hybrid-ILP CoreSync models has
an alphabet size of only 7. This may have resulted in a choice of 𝑝𝑢𝑛𝑠𝑒𝑒𝑛 that is not high enough to
properly penalise traces that cannot be replayed.

Still, the perplexity scores do all represent what they ought to: how perplexed a model is by
a specific trace. The 𝑃𝑃 score of Hybrid-ILP may be too optimistic if its recall and other scores
are considered. However, in CoreSync, for example, many traces are short and can be represented
by the small Hybrid-ILP model, so its low scores are not completely undeserved. In conclusion,
the models need additional metrics to judge them properly, but perplexity is a valuable addition
that can be computed fast. The small computation time is a big advantage, as many other Petri net
computations can take an extremely long time.

6.2 Correctness of Models
Howwell models were able to perform, wasmeasured with soundness, recall, precision, specificity,
𝐹2-score, 𝐵𝐴, trace fitness and perplexity. This section will go into the causes for the differences
in performance for specific metrics. In terms of general performance, 𝐵𝐴 and 𝐹2-scores, the FSMs
generally outperform the ProM configurations. Hybrid-ILP ranks at the bottom, while ADB-2 con-
sistently performs well.

6.2.1 Soundness
An important facet of model correctness for Petri nets is soundness. The only ProM configuration
that performed badly in this regard, is Hybrid-ILP. This is because the IM and IMfa configurations
guarantee soundness and DFmodels are also soundbydesign. BothPRINS configurations and ADB-2
also produced ‘unsound’ models, as far as FSMs can be unsound. The dead state in a deterministic
machine is a state that is not accepting, and has only outgoing transitions to itself. In terms of DFAs
and FSMs, this does not make the machine invalid. The notion is more important for Petri nets
as unsound models can, for example, introduce unbounded behaviour, thus creating an additional
hindrance to Petri net analysis. An example can be seen in figure 6.5, where repetition of event 204
causes a buildup of tokens in the red place.

Figure 6.5: CoreSync, fold 1, ProM Hybrid-ILP, unsound; red state is unbounded
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6.2.2 Overfitting and Generalisation in FSMs
Overfitting happens when a model fits only the training data and cannot handle new, slightly dif-
ferent data. To counter this, steps can be taken to generalise a model. This means the model allows
more behaviour. Whether a models allows for too much behaviour, can be checked with negative
traces and the specificity. A clue to possible overfitting is a model that has low recall on sets with
traces that are not similar to each other and a high specificity. In addition to this, the model needs
to have a good or perfect recall on the training data. This sub-section is geared towards the FSMs,
as the ProM algorithms that were used, all have some ‘overfitting’ ingrained. They do not have the
concept of state merging and only add directly-follows relations from the log. The only ProM con-
figurations, IM and IMfa, that can generalise, only do this when they fail to find a cut. They do try
to use a fall-trough that will not introduce too much behaviour, but can resort to using the flower
model. Their recall and specificity results will be discussed in the next sub-section.

A configuration that possibly overfits is AIC. For all data sets, it has perfect recall on the training
data (table C.1). Its recall on most data sets is good, except for Linux and Zookeeper. However, the
specificity for these data sets is still satisfactory. This may be due to overfitting. Further investi-
gation of the Linux and Zookeeper test and training data shows none of the traces in the test fold
were exactly the same as the training traces. The third worst recall for AIC is on Oobelib, which in-
troduces around 70% new traces, but this recall is still 0.79. The large performance difference may
be due to a combination of factors in the data characteristics. In addition to introducing all new
traces in the test set, Linux and Zookeeper also have a trace similarity of 𝑆 < 0.25 whereas Oobelib
has a similarity of 0.66. Other sets with low similarity also have a low percentage of new traces in-
troduced. It should be noted that a different trace does not necessarily mean new transitions or
bigrams were introduced. From these results, it can be concluded that AIC overfits on the training
data, and does not manage to generalise well if the traces are not similar and the test data consist
of traces that are not seen during training.

ADB-2 and the PRINS configurations do not seem to overfit. Their specificity fluctuates and is
generally not high. The gap between the train and test data recall for Linux and Zookeeper is not
large. Furthermore, these configurations have a much better recall than AIC on these two sets, indi-
cating that they handle new traces better. Thismay be due to the classifier inMINT. Candidate pairs
for state merging are checked with the classifier for consistency as well. This classifier expresses
whether one event is likely to happen after the other event. Therefore, even if the trace was not
seen during training, the bigrams of the trace may have. Another reason could be that the configu-
rations overgeneralise and allow for too much behaviour, thus causing the low specificity. W4-HD1
and W4-NFA perform similar on recall and specificity. ADB-2 also has similar recall scores, but scores
lower on specificity. This tells us three things. Firstly, the hybrid determinisation for W4-HD1 re-
tained most information and behaviour of its W4-NFA model. Secondly, PRINS’ method of stitching
ADB-2 component models together results in a similar ability to recognise valid traces. Lastly, ADB-2
generalises the model more than the PRINS configurations. The fact that PRINS generalises less
than the ADB-2 configuration, despite using it internally, is most likely caused by to how it stitches
its component models together. PRINS uses MINT to make models for each component in the data
set and then effectively creates a tree-like structure where each trace is a branch, as seen in figure
6.6. This structure is not entirely unlike a prefix tree, except for whole traces. This means in most
cases it will be bigger than a prefix tree and fit most traces. Unlike a prefix tree, it does not have
perfect recall on the training set. The way PRINS stitches, it ought to append each part of the com-
ponent models corresponding to all partitions of a trace and thus achieve perfect recall. The fact
that is does not, must be due to ADB-2 componentmodels that did perfectly fit to its component log.
This can and does happen, as seen in table C.1, where the ADB-2 training set recall is either similar
to or a bit ahead of PRINS’s.

Generalisation and Synthesised Traces
When analysing generalisation, one must keep the reliability of the synthesised negative traces in
mind. Generalisation is effectively a question of howmuch additional, slightly different behaviour
a model should allow. If the software logs are known to be complete, i.e. they contain all possible
behaviour, generalisation is not necessary or desirable. Unfortunately, it is not known if the log are
in fact complete, so the configurationsmust generalise properly to be able to recognise new, slightly
different data. The negative traceswere synthesised bymaking very smallmutations until the result
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Figure 6.6: NGLClient, fold 5, PRINS W4-NFA

was a trace that was not in the full data set. It is not know with certainty that these sequences of
events are in fact impossible in the software. Due to this, amodel that generalised in such away that
it accepts negative traces with small mutations, cannot definitively be labelled as overgeneralised
or ‘bad’.

6.2.3 Recall and Specificity for ProM Models
The inductive miners do not consistently report good recall or specificity. The poor specificity
scores for the IM miner can easily be explained. If the IM algorithm cannot find a cut, it will use
one of the fall through. Each fall-though introduces some additional behaviour; IM tries to use
the fall-throughs that add the least behaviour first. In the worst case scenario, the flower model is
produced for a sub logs, whichwill allow any sequence of that sub-alphabet. Thatmay explainwhy
so much extra behaviour appears to be allowed in most IM models. The same can be said for the
IMfa configuration, which has the same fall-throughs. Interestingly, IM reports better much recall
than IMfa in some sets, whereas IMfa reports much higher specificity in some sets. This is due to
the frequency filtering in IMfa. As explained previously, IM may suffer from not finding cuts and
using a fall-through. If the frequency filtering is applied successfully, IMfa may find a cut where
IM does not. This could also explain why IMfa has more problems with the Linux and Zookeeper
data sets; IM probably used a fall-through that allows extra behaviour, or even the flower model, on
some of the sub-traces.

Hybrid-ILP consistently reports low recall and a high specificity. This can be due to the filtering.
On the one hand, the filtering may have been to aggressive. This may explain why Hybrid-ILP does
not perform aswell as others onHadoop. On the other hand, many of the logs have dissimilar traces
and are noisy. This can lead to overly restrictive constraints for the ILP. If the filtering worked well,
it should solve this. But from these poor results, it can be concluded that Hybrid-ILP cannot deal
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with noisy logs or with new traces.
The DF configuration has a stable performance overall. The threshold of 0.8 effectively a guar-

antees that at least 80% of the training data will fit on the model [25]. The specificity scores for this
configuration are fairly similar to its recall scores. Its scores relatively low on Hadoop, compared to
the other configurations. Upon closer inspection, DF only performs a bit worse on 2 of the 5 folds
(recall = 0.692). These are exactly the same folds that have a non-zero percentage of traces in the
test set that are not in the training set. Indeed, the configuration also has trouble with the other
sets that introduce many new traces in the test data: Linux and Zookeeper. This is not surprising;
DF creates a directly follows graph for the data and then filters the traces to create a new graph. This
leads to adequate performancewhen a log is (almost) complete, but it will struggle to recognise new
traces.

Performance Deviation Across Folds
There is a noticeable difference in the error bars of the FSMmodels and the ProMmodels. The ProM
models have more deviation across folds, except for IM and IMfa on Hadoop. The Hadoop set has
a trace similarity of 𝑆 = 0.98 across all traces, so all traces are almost identical. This is most likely
due to the aforementioned characteristic of all used ProM models: they only add directly-follows
relations they see in the trainingdata. Themodelsmade for each fold candiffer a lot fromeachother
depending on which traces were seen. If there are many infrequent traces, the filters for IMfa, DF
and Hybrid-ILP.

6.2.4 Precision
The tendency to classify traces as positive was also measured with the precision. A lower score
means a configuration tends to classify a lot of traces as positive that are in fact negative. AIC gen-
erally does not have the tendency to recognise too many traces as positive. It only performs poorly
on this metric on Zookeeper and Linux. This is not due to it reporting a lot of false positives, but
due to it recognising few true positives for these sets. The reason for this was already discussed in
the previous sub-sections. ADB-2 also performs much worse on Zookeeper and Linux, but for the
opposite reason: it hasmore false positives. The PRINS configurations outperform ADB-2 for all sets
because it reports less false positives. DF reports similar values across recall, precision and speci-
ficity because the amounts of misclassified traces are similar for positive and negative traces. This
also happens for both Inductive miners on some sets. Hybrid-ILP often reports good precision as
it has a low amount of false positives and a low amount of true positives.

6.2.5 Alignment Fitness
Unfortunately, the alignment fitness took a long time to compute. This seems strange, as the align-
ment fitness for some of the sets that took a while to compute was near 1. And if a trace almost
aligns, one would expect it to compute faster. Some computations, especially those of ProM mod-
els, terminated with memory errors as well. This resulted in partial computations for some sets or
no results at all. This can have a big impact on the average score. For example, AIC 𝑓𝐴𝐿 for Linux
is near 1, but only 7.5% of alignments were computed. Only 3 of the 8 traces were aligned, for one
fold only. This is not a reliable result and cannot be used for analysis. All alignments with less than
75% completion will not be discussed in this sub-section.

Although the ProM models did not always perform well on the general metrics, some did well
on alignments. For IM and IMfa satisfactory alignment completion was reached for Coresync,
Hadoop, HDFS, NGLClient and Spark. It performed excellently on these sets and did not report
high alignment costs, thus the reason for the low recalls on CoreSync, HDFS and NGLClient was
due to minor deviations of the test log from the model. DF completed almost all alignments, except
for Zookeeper’s. It performs very well, its lowest 𝑓𝐴𝐿 are around 0.85 for CoreSync, NGLClient
and PDApp. Its alignment cost is always among the highest. Hybrid-ILP also completed all of
its alignments except Zookeeper. It reports score over 0.8 for Hadoop, HDFS, Linux and Spark.
Apparently, the deviations of the logs to the model on other sets were large, with the 𝑓𝐴𝐿 on some
of CoreSync’s fold even falling below 0.3. Which makes sense, as many of its CoreSync models can
only recognise one trace with 5 events. Unsurprisingly, it also reports the higher alignment cost
on almost all sets.
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AIC did not complete its alignments for Linux, Oobelib and Zookeeper. Unfortunately, these
were also the sets with lower recall, so it would have been interesting to know their alignment fit-
ness. Recall and%𝑡𝑟𝑎𝑣 is near 1 for the other sets, so it is not surprising that their alignments are
near 1 as well. Only NGLClient reported an alignment around 0.8 on two folds, with a higher align-
ment cost. The PRINS configurations did not manage to complete many alignments. For W4-NFA,
this was most likely due to memory errors because the huge models it produced. Only Hadoop
and NGLClient completed for W4-NFA, and this is because the recall was 1 for these sets. W4-HD1
completed Hadoop, NGLClient, HDFS and Spark. The only lower fitness values it reports was on
the same fold of NGLClient as AIC, but no obvious difference between that fold and the other ones
could be found. ADB-2 did not complete its alignments for CoreSync and Zookeeper. Again, all
alignments that were computed are near 1 and the alignment costs are low.

Although alignment fitness is a suitable metric, it would appear that the most interesting align-
ments could not be computed within the time limit. This is a problem for proper analysis, as all
FSM results that were completed were obvious by looking at their high recall and%𝑡𝑟𝑎𝑣.

6.2.6 Perplexity
The perplexity reported is generally highest for the inductive miners. This makes sense, as the
models have many parallel structures and are much larger than Hybrid-ILP. In fact, all data sets
where the IM and IMfa perplexities are 𝑃𝑃 > 15 are also the only Petri net models with over a 100
states and transitions.

The influence of the choice of 𝑝𝑢𝑛𝑠𝑒𝑒𝑛 can be seen in the AIC perplexities for Zookeeper and
Linux. These perplexities are the highest peaks for AIC, which is due to the penalty given when a
trace does not end in a sink. On the other hand, the low perplexities for Hybrid-ILP do not nec-
essarily reflect good models, but are likely caused by the extremely small models it makes due to
filteringor its ILPconstraints. Hybrid-ILPmodels forCoreSyncandHDFShave fewer than20places
and transitions, a low cyclomatic number and only 2-3 transitions causing parallelism. If there is
fewer possible transitions from a markings, the probability for each transition will be higher and
the perplexity lower. Since notmany traces get to the end in the Hybrid-ILPmodels, a lower 𝑝𝑢𝑛𝑠𝑒𝑒𝑛
may lead to more representative perplexities. It is difficult to make this judgement for IM and IMfa,
since the model size and amount of parallelism makes it impossible to approximate the size of its
transition graph.

The 𝑃𝑃 for IM and IMfa configurations is affected a lot by the choice to not consider 𝜏 transitions
as an equal symbol. However, not doing this can result in very low perplexities as many of the 𝜏
transitions introduce parallelism, as can be seen in figure 6.3. Therefore, considering them as an
equal symbol will often result in it receiving a probability of 1.

It is interesting that AIC beats the PRINS and ADB-2 configurations, as it does not always perform
better in othermetrics. In fact, even for thedata setswith theworst recall, AICoutperforms theother
FSM configurations. Perplexity scores for DF spike on the data sets where it reports a cyclomatic
number over 100, whereas the other data sets have a 𝐶𝐶 < 30.

6.2.7 Conclusion
The configurations performed well on different metrics. To conclude this section, each perfor-
mance metric discussed so far will be listed, with its top performers:

• Soundness: all configurations did well, except for Hybrid-ILP, which only made about 30%
sound models.

• Recall: Overall recall is the highest for ADB-2 and the PRINS configurations. If Linux and
Zookeeper are not considered, AIC performs excellent as well. Much like AIC, the IM and DF
only perform poorly on 2 data sets.

• Specificity: AIC and Hybrid-ILP. All other configurations, except IM, are also > 0.7.

• Precision: The top 6 configurations are all close together. The bottom two are IMfa and IM.

• Balanced Accuracy 𝐵𝐴: the PRINS configurations, ADB-2 and AIC.

• 𝐹2-score: ADB-2 and the PRINS configurations.
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• Generalisation: ADB-2.

• Alignment fitness 𝑓𝐴𝐿: Everyone is a winner, except for Hybrid-ILP. Many alignments did not
complete though, and it is possible that these were the low fitness values.

• Perplexity 𝑃𝑃: AIC. The worst are Hybrid-ILP, IM and IMfa.

6.3 Model Complexity and Performance
Undoubtedly, Hybrid-ILP is the king of small models. But, there is a problem. Hybrid-ILP performs
much worse in almost every other way. In fact, the trade-off is most certainly not worth it. This is
also true for IM and IMfa. With the exception of Hadoop, HDFS and Spark, they create large Petri
netswith a high𝐶𝐶. In reality, thesemodelswill be evenharder to readdue to the parallel structures.
They do not perform consistently well on other metrics, except for the alignment fitness, although
their alignments were not fully completed.

DF has no parallelism, and the lowest overall 𝐶𝐶. It performs neither the best nor the worst on
anything. Due to its filtering method, it does not really generalise. W4-NFA is meant to be deter-
minised and was added as to compare it to W4-HD1 and ensure PRINS would return results even if
determinisation took too long. It is obvious from its number states, transitions and 𝐶𝐶, that this
should never be used over W4-HD1 and needs determinisation. However, since so little information
is lost compared to ADB-2, it may still be interesting to create a different determinisation for it.

As for using W4-HD1 over ADB-2, in terms of complexity this is not an attractive option. Itmanages
to makes a smaller of similar sized models for Hadoop, NGLClient and Spark, but for the other sets,
the amount of states canballoon to 10 times as high as the ADB-2 state count. The small performance
increase on some metrics is not worth it. This may also explain why W4-HD1 outperforms ADB-2
sometimes; a larger model has more room to model a lot of very specific behaviour. In terms of
complexity and performance, ADB-2 is the better choice.

AIC models generally have less states than ADB-2, and a lower 𝐶𝐶 as well. ADB-2 is much better
in terms of complexity on Zookeeper and Linux, which are also the sets that AIC performs badly
on. The ADB-2 Spark model is also smaller, but the AIC model is not large either. ADB-2 performs
better in every way, except on perplexity and specificity. Overall, ADB-2 models are 1.2 times larger.
However, its peaks extreme: the CoreSync model has on average 3958 states and a 𝐶𝐶 = 838. It is 8
times as big as the AIC model. The ADB-2 model for PDApp is also 2.5 times larger.

For data sets that are not like Linux and Zookeeper, AIC and DF are the better choices in terms
of complexity and performance. However, ADB-2 has good and steady performance across all met-
rics. Its models are generally small, but for CoreSync and PDApp its complexity becomes extreme,
whereas AIC does not have such massive peaks.

6.4 Inference Time and Performance
All ProM configurations and AIC were extremely speedy if inference was completed. Hybrid-ILP
did not create all models for Oobelib and Zookeeper. PRINS and ADB-2 could also not complete
inference on Oobelib. The determinisation for W4-HD1 also timed out for PDApp. The inference for
Spark was incomplete for some configurations, but this was due to memory errors, not a timeout.

AIC runs fast and outperforms the ProM configurations. The question that remains is whether
the performance of PRINS and ADB-2 is worth the extra time inference takes. On average, inference
time for W4-NFA was around 20 times that of AIC, W4-HD1 40 times and ADB-2 is 120 times as slow.
PRINS was created to mitigate the long inference time ADB-2, and it succeeds at that. Improving
the hybrid determinisation run time can greatly increase the run time of PRINS. The performance
of W4-HD1 is on par with that of ADB-2, so in terms of run time, W4-HD1 is the better choice. However,
AIC is so much faster, while making smaller models, that in some cases the performance decrease
may be worth it. DF was also extremely fast and has a steady performance for most sets.

6.5 Data Set Characteristics Influence
The analysis that was done for the influence of data set characteristics (trace similarities, nor-
malised event entropy and unique events) on performance did not yield any definitive results. Al-
though FSM inference appears to be more stable when the trace similarity is higher, there is no
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definitive proof that one metric in fact causes the other. To make matters worse, there are not
enough data points for certain ranges of characteristics values.

There can be two different reasons for the lack of discernible shapes in the graphs. Firstly, there
may just not be a correlation between any of the metrics that were investigated. The other cause
could be the data sets themselves. The data sets are diverse in many different ways. It is possible
that there are toomany variables involved to do an analysis targeted at one characteristic. Possibly,
it is necessary to have data sets where all variables are known and/or can be controlled.

6.6 Limitations
This section goes into theproblems and limitations thatwere encounteredduring this research. The
over-arcing theme is that the research was more broad than initially thought, thus some elements
could not be investigated as much as desired or were entirely left out.

6.6.1 Parameter Tweaking
Several configurations had parameters to choose: the noise threshold for IMfa, the filters for
Hybrid-ILP, the noise filter for DF, the merge score in ADB-2 and PRINS’ 𝐻𝐷𝑢 parameter. And these
are only the parameters of the methods. For example, FlexFringe also implements other algorithms
besides AIC and MINT can be run with a different classifier instead of AdaBoost. These parameters
can make a difference in performance for certain sets. For example, DF filters noise in the Hadoop
data set, but this data does not contain noise and does not need filtering. If the threshold had been
properly tweaked, its performance may be on par with the rest of the configurations. Another
example is the choice of AdaBoost and its merge parameter. This configuration was chosen as it
had the best performance overall in the comparison by Walkinshaw et al. [53]. However, it was
outperformed on some of their data sets by other parameter values.

6.6.2 Time and Memory
Some of the models and measurements on the models could not complete due to the time con-
straints. This work created models for 5 data folds on 9 data sets, which limited the time that could
be spent on each model inference and each metric measurement. Most of the measurement com-
putation time went into the alignments and the soundness.

Additionally, both inference and measurements suffered from memory errors due to too little
RAM. All computations were done on a laptop with 16GB, but this was not enough for MINT infer-
ence, alignments and soundness computations. For much of the time that inference and measure-
ments were running, the laptop was not able to be used by any other processes.

6.6.3 ProM CLI
It was not feasible to manually run each fold for each data set in ProM’s graphical user interface.
Aside fromhowmuch trouble it would be to turn on aminer 180 times, the user interface is prone to
freezes if a large computation is run. To avoid this, ProMwas run from its Command Line Interface.
ProM CLI has a long startup time, so all mining was done in one run. This was a problem as miners
needed a timeout. The script to run theminers was in Java, but the inner workings of ProM code do
not always allow for a safe and reliable timeout. However, this all paled in comparison to the biggest
issue. There is notmuch documentation and it was difficult to find out how to call the desiredminer
and set its parameters properly.

6.6.4 Data Sets
As discussed earlier, the lack of reliable negative traces holds proper investigation of generalisation
back. Any further research would benefit greatly from a data set with verifiable negative traces,
even if they are not used for training. For the purposes of investigating data set characteristics, it is
necessary to have sets that are more uniform on several characteristics. With these varied sets, it is
impossible to know if one characteristic truly influence anything, if a bunch of other characteristics
differ a lot as well. However, for the purposes of a general analysis of performance, the variety was
very useful.
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Conclusion

This thesis set out to answer the question of how one would choose between ProM process min-
ers, FlexFringe, MINT and PRINS to evaluate software traces. To choose between these tools, it is
necessary to be able to compare Petri nets with FSMs. This comparison proved more difficult then
expected. The parallel structures in Petri nets made for high computation times and high memory
usage during mining and analysis. Nonetheless, suitable performance metrics were identified for
Petri nets andFSMs. Analysiswith thesemetrics didnot yield anoverallwinner; the choice depends
on the needs of the user and on the data.

How can Petri nets and automata output be compared?
At first glance, Petri nets and FSMs can easily be compared in terms of run times and classicmetrics
like recall, specificity and 𝐹-score. However, issues arose when comparing model complexity and
when trying to do a deeper analysis of trace fitness. Thisworkdid not identify a suitable complexity
metric for both Petri nets and FSMs that truly expresses the number of paths through a model. The
biggest disconnect in comparing complexity of a Petri net and an FSM is caused by the parallel
structures of a Petri net. This structure can expressmany different paths, yet look visually pleasing.
However, if onewere to follow a trace through amodel, this structure can bemore complicated than
a spaghetti-likemodel. Neither the 𝑒𝐶𝐹𝐶 nor the 𝐶𝐶 punishes parallel structures and the 𝑒𝐶𝐹𝐶 does
not express complexity in FSMs well.

The trace fitness could be compared by transforming the FSMs into Petri nets and using Token-
based replay and alignment-based fitness. The TBR fitness did not workwell, as it relies tomuch on
the notion of tokens, which do not exist in FSMs. Furthermore, the implementation of the algorithm
did not work properly for the converted FSMs as it had problems finding a path. Alignment-based
fitness works with a converted FSM and does not use any constructs that are not in FSMs. The
alignment-based fitness analysis was only held back by the large amount of time and memory it
took to complete the alignments. The computations were incomplete for the larger models (PRINS,
MINT, Inductive Miner).

The Perplexity metric was computed on Petri nets by following a trace and using the travelled
markings to determine the amount of outward transitions in its reachability graph. Choosing silent
transition 𝜏 to always have probability of 1

|𝑁| , where |𝑁| is the total number of outwards transitions
of amarking, yielded results thatwere in linewith the amount of parallel structures in the Petri nets.

Can the programs produce a model in feasible time and memory?
FlexFringe, ProM’s Inductive Miners and the Directly Follows miner all produce results in a small
amount of time. They did not time-out or run out of memory on any of the data sets. Moreover, the
highest inference time for these configurationswas 40 seconds. These configurations do not report
the best overall performance, but for data sets with over 20, 000 log entries, they are significantly
faster than PRINS and MINT. Furthermore, the PRINS and MINT timed out on Oobelib and only
returned partial results for Spark due to running out of memory. Hybrid-ILP also timed out on
Oobelib, and returned only one out of five models for Zookeeper.

59
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How accurate and correct are the produced models?
First of all, Hybrid-ILP did not do well in terms of soundness. It mined 36 models, and only 11 of
them were sound. FSMs do not have a real notion of soundness, but it was computed anyway. This
tells us that FlexFringe does not make models with dead states and few of the MINT models have
dead states.

MINT and PRINS are excellent at recognising the true positives. FlexFringe and the Inductive
Miner are as well, but both fail on two of the data sets. For FlexFringe, this is due to it producing
a perfect fit to the training data, and not generalising much. When a new data is introduced and
the traces are not similar, FlexFringe has issues recognising true positives. This also happens for
the Inductive Miner, but its fall-throughs can allow extra behaviour, enabling the miner to achieve
a better recall. The Inductive Miner variant IMfa was outperformed in terms of recall by the base
miner on some sets as it utilises less fall-throughs due to filtering. The Directly Followsminer failed
for the same sets as FlexFringe: Zookeeper and Linux. This was also due to it notmodelling any new
behaviour. For the ProMminers, this is by design. ProMminers apply frequency filtering to reduce
the model size and complexity, and generalisation in Inductive Miners is due to fall-throughs. This
is different for state merging algorithms, which can introduce new behaviour due to the choice of
merge scoring.

True negatives and false positives were measured using synthesised negative traces. These
traces have small mutations and could not be verified as truly negative. This interfered with the
reliability of the specificity and precision, and by extension the balanced accuracy and 𝐹2-score.
Although all configurations reported adequate specificity, there is no decisive results on how good
models are at rejectingnegative traces. The specificity for InductiveMiner does alignwith intuition:
it can achieve poor specificity due to its fall-through structures allowing toomuch behaviour. From
the results that were reported, the ProM and FlexFringe configurations fit to the training data, and
MINT and PRINS generalise more. The best balanced accuracy and 𝐹2-scores were achieved by
MINT and PRINS.

Most alignments that did complete, were the ones that reported a high fitness. The only lower
fitness values were the few sound Hybrid-ILP models. The computation was successful because
these models were very small. Intuitively, it takes more time and memory to compute an alignment
on a trace that does not align well, so it is possible that some of the fitness values that would differ-
entiate the configurations more are missing. As it stands now, all configurations achieve excellent
fitness, except Hybrid-ILP.

Perplexities were all computed successfully, in a short amount of time. Due to the parallelism
in the Petri nets, they generally report worse scores, with the exception of the Directly Follows
miner as it does not model parallelism. FlexFringe reports the best perplexities and beats MINT
and PRINS. The perplexity of Hybrid-ILPmodels are deceptively low for its small models with little
parallelism. Thismay be due to the probability of unseen events being too high, thus not penalising
traces that do not finish in an end place enough. The MINT, PRINS and Directly Follows miner all
reported good perplexities. The perplexities of the Inductive Miners spike for models with a lot of
parallelism.

How complex are the models?
Although complexity was difficult to compare, Petri nets with parallelism that were near the FSMs
in size, must be much more complicated. More than half of the Inductive Miner’s models are equal
to or larger in size than the FlexFringe models. The results of the Directly Follows miner are easier
to compare, as there is no parallelism. This miner makes the smallest models with the lowest 𝐶𝐶
overall. FlexFringe generally outperforms PRINS andMINT by quite a margin. PRINSmodels are so
much larger than MINT models, one has to wonder if it is worth it. The computation time was a bit
lower for PRINS, but in the time frame given, it timed out on the same amount of models as MINT.
In addition to this, it does not outperform MINT by enough to justify such large models. MINT has
extreme peaks on a few data sets in terms of states and transitions compared to FlexFringe and the
Directly Follows miner.

Do data set characteristics have influence on performance?
No definitive proof of a correlation between any of the investigated data set characteristics and the
performance for each configuration could be found. This could either be due to a lack of correlation
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or because the data sets themselves are not suitable for such an analysis as there are too many
variables in their characteristics.

Which Configuration Should Be Chosen?
The answer to the main question of this work is not simple. It depends on the data, the purpose
of the model and the hardware available. If the data set is known not to be complete and new
behaviour must be modeled, PRINS and MINT are more suitable. However, this comes at the cost
of very long inference time and larger models. Therefore, if the data set contains many log entries,
it may be wise to choose FlexFringe or the Inductive Miner. The IMfa should be chosen over the
base miner if a data set is both (almost) complete and contains much infrequent behaviour. The
Directly Follows is also a good contender as it is fast, creates small models and has overall good
performance. However, this miner cannot truly introduce new behaviour as its output is purely
based on the directly-follows relations in the data.

Time and memory are a big factor. This is where MINT and PRINS show some flaws. FlexFringe
and all ProM configurations (save for Hybrid-ILP), had no issues with time-outs or running out of
memory. MINT and PRINS returned with memory errors on one data set and ran out of time on
another. If time, space and model complexity are important, FlexFringe and the Directly Follows
miner are more suited to the task. They are fast, produce small models, have the best overall per-
plexity and give a good overall performance. The only exception for this were the 2 data sets were
all traces had low similarities and the test sets introduced many new traces.

As for complexity and readability, FlexFringe and theDirectly Followsminer are the right choice.
The smaller Hybrid-ILP models do not work well and the Inductive Miners make relatively large
models, with a lot of parallelism. Furthermore, if one would like to analyse their model further,
computation times will be large for any model with parallelism. However, if the main concern is a
visually appealing and ordered model, the Inductive Miners do achieve that.

PRINS is a method to speed up inference methods like MINT, while still providing the perks of
MINT. It retains the excellent performance of MINT, but the models it creates are generally much
larger and inference time can still be quite long. However, the PRINS configuration without deter-
minisation shows that perhaps a change in how determinisation and state merging is performed,
will mitigate the model size problem.

In conclusion, PRINS andMINT perform very well across all correctness metrics. They are more
suited to recognise new behaviour than the ProM models. However, the inference takes a lot of
time and space and can result in large models. FlexFringe and the Directly Follows miner provide
a good trade-off for time and performance, but do not perform well when logs are incomplete and
dissimilar to a high degree. Because most models mined by the Hybrid-ILP miner were not sound,
using this miner is not advisable. The Inductive Miners are suitable for more complete software
logs, but can produce very large models for logs with many events. In addition to this, the user
needs to decide whether parallelism is acceptable and desirable for their use case.

Future Work
This research was meant as an exploratory work into the comparison of FSMs and Petri nets and
how well they perform on real-life data. Certain aspects relating to the comparison methods were
more complicated then expected or not possible with the used data sets and amount of inference
methods. The parallelism in Petri nets is what caused most problems in terms of comparison and
unfinished computation. Petri net analysis would greatly benefit from more research in to faster
algorithms to compute or approximate metrics such as alignments.

Complexity Metrics
The current complexity metrics can only be used as a purely cosmetic indicator of how confusing
the FSM and Petri net models look. The metric is superficial and does not represent true complex-
ity in terms the amount of paths a model introduces. This is mainly caused by the parallelism in
Petri nets. Although these parallel models are more visually pleasing, tracing paths through them
is difficult, especially when parallel structures are nested. Parallelism causes high space and time
complexities on Petri net problems, so ametric that expresses this structure properly could be ben-
eficial. The amount of transitions inside a parallel structure influences the amount of paths that are
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introduced. The paths can be expressed through a reachability graph, but the computation is often
infeasible. Solving this without creating a reachability graph may prove challenging.

Token­Based Replay Fitness
This metric might work, if the implementation did not run into problems. The problem appeared to
be the silent transitions connecting the start and accept states the the Petri net start and end place
and the many duplicate transitions. It would be necessary to look deeper into why the converted
FSMs could not be plugged into PM4Py’s TBR function to fix the bug. Another option would be to
find a different way to create an equivalent Petri net. Even if this problem is fixed, it may still be
possible that the TBR fitness does not work well for the reasons described in section 4.4.6.

Perplexity
The perplexity was calculated with three assumptions: the unseen probability is 1

alphabet size , the 𝜏
probability is computed as other symbols and multiple 𝜏 transitions are not considered the same
symbol. This is a problem that is also applicable to a comparison of a DFA to an NFA with 𝜖 transi-
tions. It would be beneficial to look into these choices further. Since each NFA can be translated to
an equivalent DFA, it would bemuch easier to do such research on two equivalentmachines instead
of the many different models that were generated for this work.

Data Set Characteristics as Performance Predictor
The data in this work was too varied to provide a definitive answer to the last research objective. It
ought to be investigated with data sets where only one characteristic changes, or the effect of the
change on other characteristics is know. If there is a correlation between data set characteristics
and performance, it may help decide which tool to choose for the data set.

Compare FSMs to Probabilistic Miners
There was a large disconnect between the intention of state merging in FSMs and filtering in the
process miners. The intention of the used process miners appears to be to achieve a perfect fit
to the training data. They do not intentionally generalise to recognise new behaviour. However,
there are miners designed to be more suitable for incomplete software logs. One example is the
Inductive miner for incomplete logs. This may make for a more interesting comparison in terms of
generalisation.

PRINS determinisation
Comparing ADB-2 with the two PRINS configurations, the performance is on par. It does compute
either in a similar time or faster than ADB-2. The big drawback is that it creates extremely large
models. This may be mitigated by applying a different determinisation or state merging method.
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A
Model inference tool settings

A.1 FlexFrings run settings
run command for Flexfringe

1 .\flexfringe.exe ­­ini ini/batch­aic.ini  path/to/input.csv ­­output_dir path/to/output

.ini file for Flexfringe
1 [default]
2 heuristic­name = aic
3 data­name = aic_data
4 state_count = 0
5 symbol_count = 0
6 satdfabound = 2000
7 largestblue = 1
8 printwhite = 1
9 printblue = 1

10 correction = 1

A.2 ProM run settings
Batch file to initiate prom with argument -f path/to/script.txt

1 @GOTO start
2

3 :add
4 @set X=%X%;%1
5 @GOTO :eof
6

7 :start
8 @set X=.\dist\ProM­Framework­6.11.121.jar
9 @set X=%X%;.\dist\ProM­Contexts­6.11.67.jar

10 @set X=%X%;.\dist\ProM­Models­6.10.43.jar
11 @set X=%X%;.\dist\ProM­Plugins­6.9.75.jar
12

13 @for /R .\lib %%I IN (”*.jar”) DO @call :add .\lib\%%~nI.jar
14

15 @jre8\bin\java^
16 ­Xmx10G^
17 ­da^
18 ­classpath ”%X%”^
19 ­Djava.library.path=.//lib^
20 ­Djava.system.class.loader=org.processmining.framework.util.ProMClassLoader^
21 ­Djava.util.Arrays.useLegacyMergeSort=true^
22 org.processmining.contexts.cli.CLI %1 %2
23

24 set X=
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Script file for running ProM
1 // Code examples by:
2 // https://github.com/DStekel3/ProM­CommandLine­Scripts
3 // https://dirksmetric.wordpress.com/2015/03/11/tutorial­automating­process­mining­

with­proms­command­line­interface/
4 // https://www.win.tue.nl/~hverbeek/pdc2020/miners/
5 import java.io.File;
6 import org.apache.commons.lang3.ArrayUtils;
7

8 import java.io.FileWriter;
9 import java.io.BufferedWriter;

10 import java.io.IOException;
11 import org.apache.commons.io.output.NullOutputStream;
12

13 import java.util.Arrays;
14

15 import org.apache.commons.io.FileUtils;
16

17

18 xesPath = ”C:\\path\\to\\input\\folder\\”;
19 outputPath = ”C:\\path\\to\\output\\folder\\”;
20

21 xesFile = ”C:\\path\\to\\xes\\file.xes”;
22

23 String fileName = xesFile.getName().split””(\\.);[0]
24

25 FileWriter writer = new FileWriter(”path/to/runtime/file.txt”);
26 BufferedWriter bw = new BufferedWriter(writer);
27

28 // Read XES file
29 org.deckfour.xes.model.XLog log = open_xes_log_file(xesFile);
30

31 // INDUCTIVE
32 print(”Start inductive miner”);
33 long start = System.nanoTime();
34 // Calling parameters for miners
35 org.processmining.plugins.InductiveMiner.mining.MiningParametersIM parameters = new org.

processmining.plugins.InductiveMiner.mining.MiningParametersIM();
36

37 ind_net = mine_petri_net_with_inductive_miner_with_parameters(log, parameters);
38

39 long end = System.nanoTime();
40 long t = end ­ start;
41 bw.write(fileName + ” inductive ” + t);
42 bw.newLine();
43

44 // Saving net
45 File net_file = new File(outputPath+ fileName + ”_inductive.pnml”);
46 pnml_export_petri_net_(ind_net[0], net_file);
47

48 bw.close();
49 // Close ProM CLI
50 exit();



B
Pseudo code

B.1 Perplexity for Petri nets
Perplexity for Petri nets

1 // net: is a PM4Py Petri net object
2 // im, fm: the initial and final marking of the net
3 // test_data: set of test traces
4 // Returns perplexity on the test data
5 // TBR output of PM4Py was modified to return:
6 // A list of travelled markings, a marking is a list of places in that marking.
7

8 import modified_token_replay as token_replay
9

10 PERPLEXITY_PETRI_NET(net, im, fm, test_data):
11 alphabet_size = count_unique_transitions(net) // Get alphabet size of net
12 normalisation = 1 / (1 + (1 / alphabet_size)) // Normalisation factor
13 unseen = (1 / alphabet_size) * normalisation // Probability of unseen event
14

15 symbols_seen = 0
16 result = 0
17

18 // Get our perplexity per trace, add each to result
19 for t_log in test_data:
20

21 followed_markings, activated_transitions, is_fit = token_replay.apply(t_log, net, im,
fm, parameters={ ’stop_immediately_unfit’:1})

22

23 prob_log = 0
24

25 for marking in followed_markings:
26 // If there is no followed path left, and the trace is not fit,
27 // We are stuck, penalise with unseen and break.
28 // If the trace is fit, no penalty is needed and we can break
29 if length(followed_path) == 0:
30 if not is_fit:
31 prob_log = prob_log + math.log2(unseen)
32 break
33

34 possible_transitions = []
35 current_transition = followed_path.pop(0)
36

37 for place in marking:
38 // Loop through outgoing arcs of a place and add their target transitions
39 for out_arc in place.out_arcs:
40 possible_transitions.append(out_arc.target)
41

42 // If the transition is in the possible transitions,
43 // We move forward with it and add its probability
44 if current_transition in possible_transitions:
45 // Count number of times the transition occurs as out transition
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46 curr_trans_occurrence = possible_transitions.count(current_transition)
47 total_out_edges = length(possible_transitions)
48 // If the transition is a tau (None), its occurrence is 1
49 if current_transition is None:
50 curr_trans_occurrence = 1
51

52 symbols_seen = symbols_seen + 1
53 probability = (curr_trans_occurrences / total_out_edges ) * normalisation
54 prob_log = prob_log + math.log2(probability)
55

56 // If we got stuck, add unseen probability and break
57 if current_transition not in possible_transitions:
58 prob_log = prob_log + math.log2(unseen)
59 break
60

61 result = result + prob_log
62

63 result = result / symbols_seen
64

65 return math.pow(2, ­result)

B.2 Token­based replay for graphs
Token-based fitness for graphs

1 // Computes TBR fitness with number of produced, consumed and missing tokens.
2 GET_TBR_FITNESS(p, c, m):
3 r = p + m ­ c
4 return 0.5 * (1 ­ (r / p)) + 0.5 * (1 ­ (m / c))
5

6 // A path is a sequence of transition labels
7 // Returns TRUE if path complies to model, False otherwise
8 // Returns token based fitness
9 TOKEN_REPLAY_GRAPH(graph, path):

10 p = 0
11 c = 0
12 m = 0
13 queue = [graph.root]
14 while len(path) > 0:
15 // If we begin a loop, we must be in a state. This means we traversed a transition.
16 // Therefore, a token was consumed by the previous traveled transition,
17 // and the transition always has 1 edge to the state, so it produced 1 token.
18 p = p + 1
19 c = c + 1
20 transition = path.pop(0)
21 new_queue = []
22

23 while len(queue) > 0:
24 node = queue.pop(0)
25 for each outgoing_transition of node:
26 if outgoing_transition == transition
27 add to new_queue
28

29 if len(new_queue) == 0: // Path is stuck
30 m = m + 1
31 return False, GET_TBR_FITNESS()
32

33

34 queue = new_queue.copy()
35

36 if len(path) == 0 and len(queue) != 0: // End of path was reached
37 if any node in queue is accept_states:
38 return True, 1
39 else
40 m = m + 1
41 return False, GET_TBR_FITNESS



C
Full results

This appendix contains one table with the recall of the FSM on their training data and 2 large tables
containing all other results.

Log name FF PRINS MINT

AIC W4-HD1 W4-NFA ADB-2

CoreSync 1.0 0.98 0.98 0.99
Hadoop 1.0 1.00 1.00 1.00
HDFS 1.0 1.00 0.99 1.00
Linux 1.0 0.76 0.79 0.87
NGLClient 1.0 0.98 0.97 0.97
Oobelib 1.0 - - -
PDApp 1.0 0.99 0.99 0.99
Spark 1.0 1.00 1.00 1.00
Zookeeper 1.0 0.77 0.79 0.85

Table C.1: Recall of FSMmodels on their training data set, to detect overfitting
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C
.Fullresults

Log
name

Pro-
gram

Run
config

Run
time Sound States Trans-

itions BA
𝑓2-

score Recall Prec-
ision

Accu-
racy

Specif-
icity

TBR
fitness

Perpl-
exity

Align
fitness

Align
cost 𝑒𝐶𝐹𝐶 AVG

%𝑡𝑟𝑎𝑣 𝐶𝐶 #Tr-
aces

#Eve-
nts |𝑇| 𝑆 𝐻𝜂(𝐸)

CoreSync FF AIC 17.853 1.0 500.8 822.4 0.918 0.925 0.929 0.909 0.918 0.907 0.986 1.996 0.993 1869.46 1.641 0.958 323.6 283.0 153.2 21.34 0.19 0.478
MINT ADB-2 4106.746 0.0 3957.6 4794.0 0.862 0.939 0.986 0.79 0.862 0.738 0.997 2.636 0.999 108.383 1.211 0.991 838.4 283.0 153.2 21.34 0.19 0.478
PRINS W4-HD1 2062.462 0.0 7194.0 10853.4 0.894 0.947 0.979 0.836 0.894 0.809 0.997 2.479 - - 1.493 0.989 3661.4 283.0 153.2 21.34 0.19 0.478

W4-NFA 254.023 -42.0 17341.8 20139.2 0.903 0.952 0.983 0.848 0.903 0.823 0.997 1.93 - - 1.162 0.988 2799.4 283.0 153.2 21.34 0.19 0.478
ProM DF 0.128 1.0 51.6 70.6 0.81 0.833 0.845 0.79 0.81 0.775 0.885 1.819 0.871 144149.41 1.155 0.847 21.0 283.0 153.2 21.34 0.19 0.478

Hybrid-ILP 2.709 0.4 8.6 8.2 0.64 0.456 0.421 0.749 0.64 0.86 0.465 2.527 0.441 213005.534 1.173 0.428 4.0 283.0 153.2 21.34 0.19 0.478
IM 2.576 1.0 547.6 700.2 0.506 0.252 0.236 0.53 0.506 0.777 0.938 109.809 0.999 235.549 1.234 0.754 402.2 283.0 153.2 21.34 0.19 0.478
IMfa 1.784 1.0 419.2 527.8 0.583 0.596 0.613 0.571 0.583 0.553 0.981 70.345 0.988 1756.336 1.4 0.804 347.0 283.0 153.2 21.34 0.19 0.478

HDFS FF AIC 0.509 1.0 86.4 164.2 0.939 0.951 0.959 0.922 0.939 0.919 0.995 1.935 0.996 832.0 1.895 0.98 79.8 200.0 14.4 18.72 0.662 0.249
MINT ADB-2 210.368 1.0 55.8 186.2 0.682 0.883 0.993 0.613 0.682 0.37 0.999 8.028 0.999 82.0 3.34 0.998 132.4 200.0 14.4 18.72 0.662 0.249
PRINS W4-HD1 8.847 0.8 537.6 4130.8 0.79 0.919 0.994 0.71 0.79 0.585 0.999 6.445 1.0 77.0 6.121 0.997 3595.2 200.0 14.4 18.72 0.662 0.249

W4-NFA 6.544 0.0 5839.8 9381.8 0.817 0.926 0.99 0.742 0.816 0.643 0.999 4.485 - - 1.688 0.996 3544.0 200.0 14.4 18.72 0.662 0.249
ProM DF 0.114 1.0 10.2 24.4 0.81 0.875 0.911 0.758 0.81 0.709 0.983 2.882 0.98 3841.0 1.41 0.919 16.2 200.0 14.4 18.72 0.662 0.249

Hybrid-ILP 0.417 0.0 8.0 9.0 0.616 0.279 0.237 0.979 0.616 0.995 0.876 3.761 0.843 29932.0 2.824 0.37 9.0 200.0 14.4 18.72 0.662 0.249
IM 0.398 1.0 51.0 64.2 0.631 0.791 0.882 0.582 0.631 0.381 0.999 10.478 1.0 143.742 1.23 0.962 34.4 200.0 14.4 18.72 0.662 0.249
IMfa 0.144 1.0 22.0 29.2 0.735 0.869 0.941 0.667 0.735 0.529 0.993 3.008 0.953 8950.186 1.325 0.897 18.4 200.0 14.4 18.72 0.662 0.249

Hadoop FF AIC 0.084 1.0 53.0 54.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.06 1.0 2.0 1.019 1.0 3.0 13.0 41.0 52.6 0.984 0.531
MINT ADB-2 1.813 1.0 139.0 144.8 0.962 0.985 1.0 0.929 0.962 0.923 1.0 1.111 1.0 2.0 1.041 1.0 7.8 13.0 41.0 52.6 0.984 0.531
PRINS W4-HD1 4.023 1.0 65.0 68.0 0.923 0.97 1.0 0.867 0.923 0.846 1.0 1.369 1.0 2.0 1.045 1.0 5.0 13.0 41.0 52.6 0.984 0.531

W4-NFA 3.745 0.0 2149.0 2315.2 0.923 0.97 1.0 0.867 0.923 0.846 1.0 1.335 1.0 2.0 1.077 1.0 168.2 13.0 41.0 52.6 0.984 0.531
ProM DF 0.08 1.0 43.0 49.2 0.877 0.872 0.877 0.88 0.877 0.877 0.99 1.438 0.998 1847.154 1.067 0.918 8.2 13.0 41.0 52.6 0.984 0.531

Hybrid-ILP 0.462 0.0 41.0 42.0 0.823 0.806 0.8 0.837 0.823 0.846 0.984 1.697 0.993 5848.154 1.301 0.747 17.0 13.0 41.0 52.6 0.984 0.531
IM 0.245 1.0 43.0 47.0 0.962 0.985 1.0 0.929 0.962 0.923 1.0 1.396 1.0 12.938 1.1 1.0 8.0 13.0 41.0 52.6 0.984 0.531
IMfa 0.043 1.0 43.0 47.0 0.962 0.985 1.0 0.929 0.962 0.923 1.0 1.396 1.0 12.938 1.1 1.0 8.0 13.0 41.0 52.6 0.984 0.531

Linux FF AIC 15.056 1.0 348.0 696.4 0.35 0.0 0.0 0.0 0.35 0.7 0.92 2.838 0.961 50002.0 2.0 0.24 350.4 8.0 108.2 273.56 0.238 0.277
MINT ADB-2 235.033 1.0 272.8 419.6 0.675 0.778 0.825 0.635 0.675 0.525 0.991 4.326 0.999 4323.428 1.536 0.881 148.8 8.0 108.2 273.56 0.238 0.277
PRINS W4-HD1 163.188 0.0 1742.8 5147.2 0.812 0.818 0.825 0.805 0.812 0.8 0.994 3.79 - - 2.651 0.881 3406.4 8.0 108.2 273.56 0.238 0.277

W4-NFA 78.765 0.0 1535.4 2401.0 0.763 0.749 0.75 0.768 0.763 0.775 0.984 3.445 - - 1.572 0.812 867.6 8.0 108.2 273.56 0.238 0.277
ProM DF 0.092 1.0 115.4 298.2 0.475 0.402 0.4 0.437 0.475 0.55 0.92 7.552 0.976 36893.857 1.442 0.549 184.8 8.0 108.2 273.56 0.238 0.277

Hybrid-ILP 9.025 0.0 37.2 22.0 0.6 0.476 0.45 0.629 0.6 0.75 0.665 23.794 0.873 235502.0 249.054 0.505 417.4 8.0 108.2 273.56 0.238 0.277
IM 0.49 1.0 219.4 215.2 0.45 0.483 0.525 0.379 0.45 0.375 0.976 31.447 0.993 9132.64 1.133 0.79 110.2 8.0 108.2 273.56 0.238 0.277
IMfa 0.241 1.0 181.8 163.2 0.5 0.084 0.075 0.28 0.5 0.925 0.926 19.212 0.942 52851.625 1.124 0.313 85.8 8.0 108.2 273.56 0.238 0.277

Table C.2: All results, 5-folds aggregated: part 1.
#Traces and all columns after were calculated on test folds.
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Log
name

Pro-
gram

Run
config

Run
time Sound States Trans-

itions BA
𝑓2-

score Recall Prec-
ision

Accu-
racy

Specif-
icity

TBR
fitness

Perpl-
exity

Align
fitness

Align
cost 𝑒𝐶𝐹𝐶 AVG

%𝑡𝑟𝑎𝑣 𝐶𝐶 #Tr-
aces

#Eve-
nts |𝑇| 𝑆 𝐻𝜂(𝐸)

NGLClient FF AIC 0.116 1.0 91.0 106.0 0.938 0.895 0.875 1.0 0.938 1.0 0.952 1.318 0.937 45752.0 1.161 0.926 17.0 8.0 44.8 21.28 0.272 0.666
MINT ADB-2 1.62 1.0 136.6 146.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.493 1.0 2.0 1.073 1.0 12.0 8.0 44.8 21.28 0.272 0.666
PRINS W4-HD1 4.538 1.0 140.6 175.6 0.862 0.918 0.95 0.809 0.862 0.775 0.993 1.681 0.977 4002.0 1.243 0.98 37.0 8.0 44.8 21.28 0.272 0.666

W4-NFA 4.169 1.0 508.6 650.6 0.888 0.957 1.0 0.818 0.888 0.775 1.0 1.589 1.0 2.0 1.278 1.0 144.0 8.0 44.8 21.28 0.272 0.666
ProM DF 0.076 1.0 48.8 64.4 0.825 0.804 0.8 0.836 0.825 0.85 0.844 1.761 0.889 44251.0 1.138 0.852 17.6 8.0 44.8 21.28 0.272 0.666

Hybrid-ILP 0.619 0.8 18.8 18.0 0.675 0.399 0.35 1.0 0.675 1.0 0.542 1.917 0.484 163502.0 1.233 0.407 12.6 8.0 44.8 21.28 0.272 0.666
IM 0.336 1.0 135.8 162.2 0.7 0.816 0.875 0.647 0.7 0.525 0.988 38.75 0.98 9551.921 1.21 0.935 100.4 8.0 44.8 21.28 0.272 0.666
IMfa 0.082 1.0 97.6 117.0 0.675 0.741 0.775 0.647 0.675 0.575 0.962 23.612 0.971 5249.393 1.205 0.871 71.0 8.0 44.8 21.28 0.272 0.666

Oobelib FF AIC 19.195 1.0 616.2 822.8 0.884 0.819 0.788 0.975 0.884 0.98 0.99 1.455 0.997 3602.0 1.334 0.863 208.6 50.0 117.4 226.2 0.612 0.34
MINT ADB-2 - - - - - - - - - - - - - - - - - 50.0 117.4 226.2 0.612 0.34
PRINS W4-HD1 - - - - - - - - - - - - - - - - - 50.0 117.4 226.2 0.612 0.34

W4-NFA - - - - - - - - - - - - - - - - - 50.0 117.4 226.2 0.612 0.34
ProM DF 1.022 1.0 91.0 199.4 0.758 0.732 0.724 0.775 0.758 0.792 0.935 4.899 0.984 32321.0 1.373 0.809 110.4 50.0 117.4 226.2 0.612 0.34

Hybrid-ILP - - - - - - - - - - - - - - - - - 50.0 117.4 226.2 0.612 0.34
IM 8.997 1.0 380.8 449.8 0.688 0.877 0.98 0.618 0.688 0.396 0.998 169.539 - - 1.229 0.982 305.8 50.0 117.4 226.2 0.612 0.34
IMfa 6.135 1.0 270.6 320.2 0.558 0.347 0.324 0.487 0.558 0.792 0.781 98.992 - - 1.26 0.254 205.2 50.0 117.4 226.2 0.612 0.34

PDApp FF AIC 3.037 1.0 404.8 472.2 0.984 0.974 0.968 0.999 0.983 0.999 0.996 1.186 0.994 2691.94 1.166 0.984 69.4 157.0 60.0 60.24 0.43 0.334
MINT ADB-2 683.899 0.2 1068.6 1241.6 0.968 0.98 0.987 0.951 0.968 0.949 0.999 2.221 0.999 481.238 1.187 0.993 175.0 157.0 60.0 60.24 0.43 0.334
PRINS W4-HD1 236.718 0.0 3048.25 3423.0 0.979 0.985 0.989 0.97 0.98 0.97 1.0 1.538 - - 1.122 0.996 376.75 157.0 60.0 60.24 0.43 0.334

W4-NFA 1196.317 -42.0 29374.6 33737.2 0.968 0.974 0.978 0.959 0.968 0.958 0.998 1.257 - - 1.15 0.99 4364.6 157.0 60.0 60.24 0.43 0.334
ProM DF 0.133 1.0 40.0 68.0 0.865 0.848 0.839 0.886 0.866 0.892 0.948 2.88 0.956 64739.854 1.259 0.873 30.0 157.0 60.0 60.24 0.43 0.334

Hybrid-ILP 1.059 0.0 19.0 19.0 0.727 0.584 0.541 0.858 0.726 0.911 0.479 7.203 0.685 305973.337 12.395 0.573 68.6 157.0 60.0 60.24 0.43 0.334
IM 1.756 1.0 228.8 291.4 0.505 0.725 0.843 0.494 0.505 0.166 0.982 80.993 - - 1.239 0.991 173.0 157.0 60.0 60.24 0.43 0.334
IMfa 0.645 1.0 114.6 143.2 0.538 0.516 0.525 0.544 0.538 0.552 0.957 41.641 - - 1.225 0.28 86.6 157.0 60.0 60.24 0.43 0.334

Spark FF AIC 3.913 1.0 39.8 53.2 0.877 0.939 0.977 0.816 0.877 0.777 1.0 1.687 1.0 643.026 1.258 0.992 15.4 43.0 17.4 309.96 0.43 0.038
MINT ADB-2 2580.216 1.0 21.667 30.333 0.849 0.943 1.0 0.768 0.849 0.698 1.0 1.187 1.0 2.0 1.38 1.0 10.667 43.0 17.4 309.96 0.43 0.038
PRINS W4-HD1 1560.157 1.0 20.0 25.0 0.849 0.943 1.0 0.768 0.849 0.698 1.0 2.972 1.0 2.0 1.238 1.0 7.0 43.0 17.4 309.96 0.43 0.038

W4-NFA 872.06 0.0 1366.0 1826.5 0.849 0.943 1.0 0.768 0.849 0.698 1.0 1.987 - - 1.337 1.0 462.5 43.0 17.4 309.96 0.43 0.038
ProM DF 0.086 1.0 17.0 20.0 0.856 0.94 0.991 0.78 0.856 0.721 0.999 3.022 0.999 4466.116 1.081 0.991 5.0 43.0 17.4 309.96 0.43 0.038

Hybrid-ILP 2.23 1.0 15.0 14.8 0.805 0.841 0.875 0.757 0.805 0.735 0.993 7.463 0.894 827397.349 2.314 0.881 18.6 43.0 17.4 309.96 0.43 0.038
IM 0.532 1.0 24.0 30.0 0.83 0.936 1.0 0.746 0.83 0.66 1.0 2.301 1.0 294.865 1.13 1.0 10.0 43.0 17.4 309.96 0.43 0.038
IMfa 0.283 1.0 24.0 27.0 0.765 0.604 0.554 0.959 0.765 0.977 0.978 2.608 0.974 73922.316 1.078 0.59 7.0 43.0 17.4 309.96 0.43 0.038

Zookeeper FF AIC 32.754 1.0 280.8 685.2 0.443 0.162 0.143 0.433 0.443 0.743 0.966 3.301 0.952 37502.0 2.424 0.399 406.4 7.0 36.8 715.18 0.194 0.235
MINT ADB-2 2863.829 0.333 344.75 574.0 0.607 0.733 0.786 0.581 0.607 0.429 0.992 5.794 0.996 5002.0 1.676 0.85 231.25 7.0 36.8 715.18 0.194 0.235
PRINS W4-HD1 78.362 0.2 1785.4 4741.2 0.742 0.794 0.828 0.738 0.743 0.657 0.994 4.734 - - 2.61 0.905 2957.8 7.0 36.8 715.18 0.194 0.235

W4-NFA 69.275 0.0 2087.2 4381.4 0.714 0.754 0.771 0.698 0.714 0.657 0.99 4.318 - - 2.113 0.824 2296.2 7.0 36.8 715.18 0.194 0.235
ProM DF 0.338 1.0 42.0 172.0 0.486 0.462 0.457 0.492 0.486 0.514 0.981 6.021 0.994 5001.0 1.607 0.656 132.0 7.0 36.8 715.18 0.194 0.235

Hybrid-ILP 247.842 0.0 44.0 36.0 0.5 0.167 0.143 0.5 0.5 0.857 0.9 3.972 - - 93.862 0.182 271.0 7.0 36.8 715.18 0.194 0.235
IM 2.095 1.0 126.0 157.2 0.5 0.674 0.743 0.497 0.5 0.257 0.995 49.141 1.0 152.775 1.21 0.893 88.0 7.0 36.8 715.18 0.194 0.235
IMfa 1.435 1.0 108.8 136.8 0.514 0.388 0.372 0.514 0.514 0.657 0.948 34.575 0.995 2613.25 1.357 0.6 88.8 7.0 36.8 715.18 0.194 0.235

Table C.3: All results, 5-folds aggregated: part 2.
#Traces and all columns after were calculated on test folds.





D
Data Composition and Performance

This appendix contains graphswith𝐵𝐴, 𝐹2-score, fitness (𝑓𝐴𝐿, 𝑓𝑇𝐵𝑅), perplexity and cyclomatic com-
plexity 𝐶𝐶 were plotted against trace similarity, normalised entropy and number of unique events.
These graphs are done per run configuration.

Figure D.1: 𝐵𝐴, 𝐹2-score vs trace similarity 𝑆
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Figure D.2: 𝐵𝐴, 𝐹2-score vs normalised entropy 𝐻𝜂(𝑒)

Figure D.3: 𝐵𝐴, 𝐹2-score vs unique events #𝐸𝑣𝑒𝑛𝑡𝑠
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Figure D.4: Align and TBR fitness 𝑓𝐴𝐿 , 𝑓𝑇𝐵𝑅 vs trace similarity 𝑆

Figure D.5: Align and TBR fitness 𝑓𝐴𝐿 , 𝑓𝑇𝐵𝑅 vs normalised entropy 𝐻𝜂(𝑒)
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Figure D.6: Align and TBR fitness 𝑓𝐴𝐿 , 𝑓𝑇𝐵𝑅 vs unique events #𝐸𝑣𝑒𝑛𝑡𝑠

Figure D.7: Perplexity vs trace similarity 𝑆
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Figure D.8: Perplexity vs normalised entropy 𝐻𝜂(𝑒)

Figure D.9: Perplexity vs unique events #𝐸𝑣𝑒𝑛𝑡𝑠
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Figure D.10: Cyclomatic Complexity 𝐶𝐶 vs trace similarity 𝑆

Figure D.11: Cyclomatic Complexity 𝐶𝐶 vs normalised entropy 𝐻𝜂(𝑒)
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Figure D.12: Cyclomatic Complexity 𝐶𝐶 vs unique events #𝐸𝑣𝑒𝑛𝑡𝑠





E
Generated Models

(a) ProM, DF, 𝑒𝐶𝐹𝐶 = 1.08, 𝐶𝐶 = 5.0

(b) ProM, Hybrid-ILP, 𝑒𝐶𝐹𝐶 = 2.74, 𝐶𝐶 = 24

(c) ProM, IM, 𝑒𝐶𝐹𝐶 = 1.13, 𝐶𝐶 = 10.0

(d) ProM, IMfa, 𝑒𝐶𝐹𝐶 = 1.08, 𝐶𝐶 = 7.0

Figure E.1: Spark fold 1 Petri net models
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(a) FlexFringe, AIC,
𝑒𝐶𝐹𝐶 = 1.13, 𝐶𝐶 = 6.0

(b) MINT, ADB-2,
𝑒𝐶𝐹𝐶 = 1.33, 𝐶𝐶 = 9.0

(c) PRINS, W4-HD1,
𝑒𝐶𝐹𝐶 = 1.24, 𝐶𝐶 = 7.0

Figure E.2: Spark fold 1 FSMmodels
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