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Abstract
The particle filter is a data assimilation method based on importance sampling for state and parameter estimation. We apply a
particle filter in two different quasi-static experiments with models of subsidence caused by a compacting reservoir. The first
model considers uncorrelated model state variables and observations, with observed subsidence resulting from a single source
of strain. In the second model, subsidence is a summation of subsidence contributions from multiple sources which causes
spatial dependencies and correlations in the observed subsidence field. Assimilating these correlated subsidence fields may
triggerweight collapse.With synthetic tests,we show in amodel of subsidencewith 50 independent state variables and spatially
correlated subsidence a minimum of 1013 particles are required to have information in the posterior distribution identical to
that in a model with 50 independent and spatially uncorrelated observations. Spatial correlations cause an information loss
which can be quantified with mutual information. We illustrate how a stronger spatial correlation results in lower information
content in the posterior and we empirically derive the required ensemble size for the importance sampling to remain effective.
We furthermore illustrate how this loss of information is reflected in the log likelihood, and how this depends on the number
of model state variables. Based on these empirical results, we propose criteria to evaluate the required ensemble size in data
assimilation of spatially correlated observation fields.

Keywords Particle method · Ensemble size · Information theory · Weight collapse · Subsidence · Reservoir

1 Introduction

The Geosciences, specifically the fields of meteorology,
oceanography, physical geography, and geophysics, involves
the study of complex and nonlinear processes over a range
of scales using numerical simulators of varying complexity.
Data assimilation is a technique that combines observations
with models to estimate model parameters and variables.
Parameter values remain constant in time, whereas variable
values evolve in time. We use the term state vector for the
quantities to be estimated, so the state vector can contain
both parameters and state variables. The complexity of a
data assimilation system rapidly increaseswith the number of
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model state variables and observations and has implications
for how we predict the physical processes of the system.

One of themethods used in data assimilation is the particle
filter [1] or the particle method [2] for static problems. The
particle method that we use is a static application of the par-
ticle filter and is in essence an importance sampling method.
In the following the particle method refers to importance
sampling in static data assimilation problems. Importance
sampling, filtering and ensemble-based methods have been
applied for subsidence estimation [3, 4]. Other authors [5–
7] have used an ensemble smoother (ES) and an iterative
ensemble smoother to estimate subsurface geomechanical
state variables. An important question in these applications
is whether the ensemble spread is sufficiently large to ensure
the applicability of the method given the system complexity.

In many applications, the ensemble size is chosen based
on trial and error. The particle method, as most other impor-
tance samplingmethods, suffers fromweight collapse, and its
performance exponentially degrades as the dimension of the
state andobservation spaces increases [8–10].Wecanprevent
this weight collapse by increasing the ensemble size. A more
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systematic approach to evaluate the necessary ensemble size
has been proposed by [8] and [9] and tested in a practical
example through the work of [11]. However, analytic deriva-
tions of the ensemble size in these publications are often
based on abstract problems, and the results are not always
easily translated to geoscience problems [1]. Snyder et al.
[8] highlight for example the problem of non-Gaussian prior
and observations, and the nontrivial dependencies between
state variables and observations. In this study, we will extend
the results of [8] to empirical cases with spatially correlated
fields of observations, focusing specifically on the feasibil-
ity of the particle method and its performance. We illustrate
this with an example of subsidence caused by reservoir com-
paction due to a pressure variation, where observations of
subsidence allow us to estimate geomechanical properties
of the reservoir [3, 12]. Spatial correlations exist in nearly
all geophysical fields and appear in a subsidence field when
a single source of subsidence causes a displacement at the
surface over a certain region, e.g., a subsidence bowl with a
width of several kilometers. In general, a deeper source of
subsidence, in the subsurface, creates a subsidence field at the
surface with a larger correlation length, and subsidence from
a shallower source has a shorter correlation length.Moreover,
a spatially correlated subsidence field does not necessarily
imply that the measurement errors are correlated since a
measurement technique can provide independent measure-
ments and hence uncorrelated measurement errors [13]. In a
previous study on the particle filter, [8] derive a theoretical
relationship between the maximum weight, wmax of the par-
ticles and the dimension of the problem for an example of
i.i.d. (independent identically distributed) samples and under
the assumption of a standard normal density for the prior
and the likelihood. In their study, the authors generalize the
results at an asymptotic limit with a linear transformation
from model state space to the observation space represented
by an Id (identity) observation operator. Strategies to assim-
ilate spatially correlated observations for a large number of
observations are developed by [14]. However, to our knowl-
edge, there is no theoretical approach to estimate the criterion
for weight collapse and the required ensemble size in a
spatially correlated field, that is when a variable at one loca-
tion depends on variables at other locations. The objective
of the present study is to evaluate the necessary ensemble
size that ensures the applicability of the particle method
and that avoids weight collapse when 1) the system dimen-
sion increases and 2) when the observed field is spatially
correlated. For this, we use two conceptual models of subsi-
dence: 1) a one-component model and 2) a multi-component
model of subsidence. In the one-component model of subsi-
dence, we use a one-to-one transformation from the model
state variables of the reservoir pressure variation to subsi-
dence which gives i.i.d. subsidence values to represent a
first-order approximation of a compacting reservoir with-

out spatial correlation. The multi-component model, which
includes spatial correlation, is based on the nucleus of strain
approach of [15],which has been used in literature to estimate
geomechanical reservoir properties [3, 16]. The resulting
subsidence shows spatial correlation, as the displacement
field is a superposition of subsidence created by a pressure
variation in different reservoir compartments. Consequently,
the subsidence values are linear combinations of the pressure
variation, and therefore not i.i.d.. To derive the ensemble size
in problemswith spatial correlation, we propose an empirical
quantification of the information in both the prior knowledge
and the posterior estimate using the formalism of mutual
information in information theory.

The paper is organized as follows. In Section 2 we give an
overview of importance sampling and of the previous results
of [8] for weight collapse in high-dimension. In Section 3
we present the subsidence models and in Section 4, using
information theorywith themetric ofmutual information, we
extend the results of [8] to the example of spatially correlated
subsidence. Results in Section 5 illustrate how the ensemble
size must increase with spatially correlated observations to
avoid degradation of the efficiency of the importance sam-
pling. Sections 6 and 7 conclude our study.

2 Importance samplingmethod

In this section, we first give an overview of importance sam-
pling which is at the base of the particle method, and we
introduce the problem of weight collapse.

2.1 Background on importance sampling

The correct description of a physical system can be uncer-
tain when physical processes are not directly observable, for
example, processes happening in the subsurface that can only
be indirectly observed at the surface. Assuming that we know
the probability of a physical process we can approximate
its exact probability density function (pdf), i.e., the target
pdf, by a discrete distribution. Importance sampling strate-
gies give a sample of Ne particles of model state variables,
x , with {x1, x2, ..., xm} sampled from a probability density
p(x) ∼ ∑m

i=1 wiδ(x − xi), which approximates the exact
target density. wi

k is a scalar weighting each particle and δ

the Dirac function. Importance sampling strategies are used
in data assimilation to estimate the probability of a model
variable or a parameter x given the observations y [17–19].
We consider Ne particles obtained with a Monte Carlo sam-
pling of a prior state vector x. Each state in {xi , i = 1, .., Ne},
gives amodel representation to be comparedwith an observa-
tion {yi , i = 1, .., Ny}, Ny being the number of observations.
For the model state vector x, we evaluate the model M(x)

123



Computational Geosciences (2024) 28:91–106 93

and map it to observations y via the observation operatorH:

y = H [M(x)] + ε, (1)

where ε represents the measurement error. To estimate the
probability density function of the state variables x , the par-
ticle method uses a Bayesian approach which provides a
probabilistic approach. Its principle is to use the approxi-
mated probability density function of the state variables, the
prior p(x) which is based on prior knowledge, and to use
system observations to infer the uncertainty in x given y,
i.e., estimate the posterior probability density function p(x|y)
with Bayes’ formula:

p(x|y) = p(y|x)p(x)
∫
p(y|x)p(x)dx , (2)

with p(y|x) the likelihood of the observations, p(x) the
prior on the model state variables and the evidence in the
denominator, being a normalization factor. Using importance
sampling, we use discrete samples of x to generate the prior
p(x). We compare the model predictions M(x) with the
observations y through the likelihood p(y|x). The likelihood
is chosen as a probability density function which represents
the distribution of the uncertainty in data. The posterior dis-
tribution p(x|y) is calculated byweighting each particle with
the likelihoods.

wi = p(y|xi)
∑Ne

j=1 p(y|xi)
(3)

In Eq. 3, the posterior weights are normalized with∑Ne
j=1 wi = 1. The expected value of the posterior distri-

bution is an estimator of the state variable values. We later
use x̂ to refer to the “analysis”, i.e., the posterior quan-
tity in the state space. The quality of the posterior depends
on the ensemble size, Ne as well as the dimension of the
state- and observation spaces [20].Moreover, the uncertainty
in the analysis depends on the uncertainty in p(x) and in
the observations. In Section 4, we introduce the concept of
entropy to quantify the quality of the posterior distribution.
The entropy, H(x), is minimal if a variable xi can be esti-
mated with zero uncertainty from p(x), with the probability
p(xi ) = 1. Conversely, the entropy is maximal and equal to
H(x) = log(Ne), if there is equal probability between Ne

variables, with p(xi ) = 1/Ne.

2.2 Weight collapse in importance sampling

Wedefine the efficacy of importance sampling to estimate the
state vector as the ability to get a posterior distribution repre-
senting the prior and the likelihood as formulated in Bayes’
theorem (Eq. 2). As in any sampling method, the posterior

mean becomes a better estimator of the state vector as the
number of samples and hence the ensemble size increases.
If a given ensemble size is insufficiently large to sample the
prior, we can observe a collapse of the weights in the poste-
rior (Eq. 3). Weight collapse occurs when one single particle
has almost all the weight in the estimation of the posterior
mean. In this case, the maximum weight, wmax of all the
particles converges to one. Collapse occurs sooner when the
dimensions, Nx , and Ny increase unless the ensemble size
increases exponentially as well [9, 10, 21].

Previous results of [8] and [9] give an indication of the
applicability of importance sampling, more specifically the
particle filter, for a given ensemble size at the asymptotic
limit. This asymptotic limit gives the asymptotic condition
for collapse for large ensemble size and large number of
observations.

In the following, we briefly review the asymptotic theory.
For details, we refer the reader to [8] and [9]. The theory of
the asymptotic limit is applicable for a casewith an i.i.d. prior
state vector x and observation error ε, and with an Identity
(Id ) observation operator H. If we assume the prior state
vector, x, and model M(x), in the one-component model
to be i.i.d, we can apply the asymptotic limit to evaluate
the required ensemble size. To compare and understand how
weight collapse occurs in the multi-component model with
spatial correlation, we address the following question:
Can we identify the required ensemble size, and maximum
weight wmax, for which importance sampling is practically
applicable?

To derive a theoretical relationship between the required
ensemble size, Ne, and the dimension Ny , we start with the
assumption of standard normal density for the prior and the
likelihood.

To derive this relationship, [8] approximate the likelihood
of one particle, p(y|xi ), as the product of the likelihoods
over the observation vector, for an Id observation operator
and with i.i.d. prior state variables and observations error ε.

p(y|xi ) =
Ny∏

j=1

f
[
y j − (H · M(xi )) j

]
. (4)

In Eq. 4, for a given observation j , (H · M(xi )) j is themodel
prediction from the particle xi seen at the observation point
j and f is a standard normal density function f ∼ N (0, 1).
The expressionof the likelihood inEq. 4 canbe simplified and
expressed as a Gaussian distribution, N (μ, τ) by defining a
re-scaled mean μ and variance τ . To do this, we define a log
likelihood Vi j using �() = log f () as follows,

Vi j = −�
[
y j − (H · M(xi )) j

]
, (5)

s where, using the expression of the log likelihood Vi j in
Eq. 5, the expression of the likelihood in Eq. 4 can be rewrit-
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ten as a re-scaled likelihood of p(y|xi )

p(y|xi ) = exp (−μ − τ Si ). (6)

Here, μ is a re-scaled mean and the variance is τ . These are
defined as a function of the log likelihood Vi j

μ =
Ny∑

j=1

E(Vi j ) τ 2 = var

⎛

⎝
Ny∑

j=1

Vi j

⎞

⎠ . (7)

An important condition for the expression of the likelihood
in Eq. 6 to be a valid approximation of the Eq. 4 is that the
scale factor Si can be approximated by a standard normal
density Si ∼ N (0, 1). From Eqs. 6 and 7, we express Si as
a function of the log likelihood, μ and τ and later verify its
Gaussianity with the following expression. Si is now

Si =
⎛

⎝
Ny∑

j=1

Vi j − μ

⎞

⎠ τ−1. (8)

Interestingly, [8] emphasize that in the example of a one-
component model, the expression of Si does not directly
depend on the dimension, Nx , of the model state vector to be
estimated.

Using the expression of the re-scaled likelihood (Eq. 6)
and with the approximation Si ∼ N (0, 1), we can now con-
nect the maximum weight, wmax, to the dimension Ny , and
to the ensemble size Ne, in the case of standard normal dis-
tribution for the likelihood and the prior. With this, we find

E[1/wmax] − 1 ≈
√
4

5

√
log Ne

Ny
. (9)

In this expression, the maximum weight, wmax, is related to
Si through Eq. 3. [8] use the convergence properties of a
wmax → 1 and Si ∼ N (0, 1) for large Ne and Ny to derive
the asymptotic expression (Eq. 9). Equation 9 is valid for
a Gaussian prior and likelihood under the assumption of Si
converging to a Gaussian distribution.

An important result of [8] is that from Eq. 4 and from the
expression of the log likelihood in Eq. 5, the likelihood only
depends on the dimension Ny , meaning that the observation
dimension, rather than the state dimension, control theweight
collapse. The approximation in Eqs. 6 and 7 are valid only if
the prior distribution of state variables is close to a Gaussian
distribution.

3 Subsidencemodels

Subsidence can occur as a consequence of reservoir com-
paction, which is a decrease in reservoir thickness due to

a pressure variation, as a result of, for example, gas pro-
duction. When reservoirs are compartmentalized by faults
or in the case of different rock compositions, the reservoir
may compact more strongly in certain areas. We discretize
the reservoir into 5.5km×5.5km×240m cuboid-shaped ele-
ments, with a constant reservoir thickness of 240m (Table 1).
In the following, wewill use the term compartment to refer to
reservoir elements. These could be geological reservoir com-
partments, or volumeswithin the reservoir that have the same
reservoir property. As a simplification, we first simulate the
compaction of each compartment, without the created subsi-
dence affecting the surface above other compartments. This
is illustrated in Fig. 1a with the “one-component model”. In
contrast to the one-componentmodel, Fig. 1b shows spatially
correlated subsidence created from the cumulative effect of
the compaction in all compartments. To create this spatially
correlated subsidence, we use the “multi-componentmodel”,
in the sense that the resulting subsidence is a linear combi-
nation of all pressure variations. A commonly used model
for subsidence as a result of pressure variation is the nucleus
of strain approach of [15, 22, 23]. The nucleus of strain rep-
resents a compaction of a reservoir compartment as a point
source of pressure variation, �P . The analytical solution of
the vertical displacement at the surface (z = 0) created by a
single nucleus of strain is

uz(r , 0) = −Cm(1 − ν)V�P

π

D
(
r2 + D2

)3/2 , (10)

where r is the horizontal distance between an observation
point at the surface and the vertical of a nucleus of strain at a
depth D and with the compaction coefficient of the reservoir,
Cm , the Poisson ratio ν and the volume V of the reservoir,
the pressure variation �P . In the data assimilation experi-
ment with this subsidence model the pressure variation �P
for each compartment, x = {�Pi , i = 1, .., Nx } are the
unknown variables that are being estimated. These variables
form the state vector.

3.1 One-component model of subsidence

The one-component model gives a first approximation of
the subsidence caused by the pressure variation (and asso-
ciated reservoir compaction) and does not take into account
the spatial correlation in the subsidence field. To build this
model, we start with a 1D geometrical approximation of sub-
sidence (Fig. 1a), and we create adjacent and independent
compartments a the reservoir depth with Eq. 10. This gives
a discretization of 1D columns of subsurface with the reser-
voir layer and a 5.5km × 5.5km resolution for subsidence at
the Earth’s surface (Fig. 1). Because we don’t include spatial
correlation in the one-component model, an observer at one
point only sees the compaction in the reservoir compartment
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directly below (Fig. 1), resulting in the horizontal distance r
of the nucleus of strain to the observation point, r = 0, such
as that we have a vertical displacement uz(r = 0, 0).

In this case, the model M represents a mapping from
a pressure variation of the reservoir to a vertical displace-
ment of the surface with a one-to-one relationship between
pressure variation state variables and subsidence. The model
state variables are independent hence the the subsidence val-
ues associated with each compartment are also independent,
resulting in an uncorrelated subsidence field. The number
of columns gives the model resolution, which in our case
defines the dimension of the state and the observation space.
This model is similar to the example in [8] with an Id obser-
vation operator, H = Id .

3.2 Multi-component model of subsidence

The one-component model of subsidence computes a local
displacement caused by a single nucleus and the resulting
subsidence field does not include the response from the entire
compacting reservoir. As an alternative, the nucleus of strain
approach is able tomodel an arbitrarily shaped reservoir [22–
24] by linearly adding the effect of each nucleus k to the total
displacement field

uz(r , 0) =
Nx∑

k=1

uz,k . (11)

The geometry of the multi-component model is similar to
the one-component model of subsidence with a nucleus of
strain in the center of each reservoir compartment. We com-
pute the subsidence (Eq. 10) by calculating the influence of
the nucleus of strain over the volume,V , of the reservoir com-
partment [25]. The differencewith the one-componentmodel
is that the surface displacement uz at one location j in space
arises from all sources of strain in all reservoir compartments
(Fig. 1b). Therefore,M transforms pressure variation to sub-
sidence and creates a spatially correlated subsidence field at
the surface. The spatial correlation in the multi-component
model thus implies that the modelM (x) j , computed for an
observation point j from the state vector x can be written as

(M(x)) j =
Nx∑

k=1

m jkxk, (12)

where m jk is the jkth element of the model matrix. Recall
that the multi-component model integrates the responses of
all compartments, and thus is not a one-to-one transforma-
tion from the pressure variation to the subsidence (i.e., it is a
non-injective transformation), and, in this case, an observa-
tion j is linearly dependent to all k = 1, ...Nx components
of the state vector. As described in Eq. 1, the observation
operator remains H = Id as in the one-component model,
assuming that the measurement method is the same. In the
following, we use these two models of subsidence to investi-

Fig. 1 Models of subsidence. (a) One-component model of subsidence
and (b) the multi-component model of subsidence with spatial corre-
lation. 3D models are built with an ensemble of 1D columns. While

the one-component model simulates subsidence only for the surface
directly above the compartment, the multi-component model computes
the deformation field as an integrated response from all compartments
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Table 1 Pressure variation, compartment size and thickness of the
multi-component model

�P dx dy dh

Nucleus of strain -0.35MPa 0.05◦ 0.05◦ 240m

gate the effect of spatial correlation in weight collapse. The
pressure variation, the compartment size, and the thickness
are modeled after the Groningen gas reservoir, in the Nether-
lands (Table 1). The mechanical properties are also taken
from this reservoir (Table 2).

In the following we estimate the pressure variation in each
of the compartments using observations of subsidence, defin-
ing the state vector with {xk, k = 1, .., Nx }, Nx being the
number of compartments and thus the state space dimension.
We set the number of observations Ny , equal to the number
of state variables to test the particle method with the two
models of subsidence at the asymptotic limit (Section 2.2)
and the agreement with the theoretical derivation of weight
collapse from [8].

3.3 Synthetic experiments for subsidencemodels

With synthetic data assimilation experiments, we can assess
the efficacy of the particle method to estimate an unknown
quantity. The state vector x of dimension Nx represents the
unknown pressure variation, �P , that we want to estimate
for each grid cell of the reservoir. A pressure variation �P
in the reservoir creates reservoir compaction and subsidence.
We simulate this by applying the forwardmodel operator,M,
and with data assimilation we update the distribution of the
state variables �P given subsidence observations y. Both
state and observation vectors x and y have values spatially
distributed over a regular grid and have the same dimen-
sion Nx = Ny . The pressure variation and therefore the
subsidence can vary in time, usually involving a dynami-
cal forward modelM. In the study, we test the method over
one-time step considering a quasi-static case. To do this we
define a "true" value of state variables, xtruth and sample
values from this truth to generate synthetic observations for
assimilation ỹ, {ỹi , i = 1, .., Ny}with Eq. 1.We use the nota-
tion ỹ to define synthetic observations and avoid confusion
with the vector observations, y, in Eq. 1. The observation

Table 2 Reservoir properties

Parameter Symbol Value Unit

Depth D 2800 m

Thickness h 240 m

Poisson ratio ν 0.32 -

Compaction coefficient Cm 1 × 10−10 Pa−1

operator H maps the true state vector xtruth to the synthetic
observations ỹ and Gaussian noise, ε, is linearly added to
simulate imperfect observations:

ỹ = H
[
M(xtruth)

]
+ ε. (13)

We use the observation operator H, applied to the for-
wardmodeling operatorM, to compute themodel prediction
of subsidence from the pressure variation. Note that in the
example with synthetic experiments, we use H = Id , how-
ever H could differ given the origin of the empirical data,
e.g., leveling or InSAR techniques. We compare the out-
come of synthetic experiments with the "true" values of state
variables and subsidence estimates as an indication of the
efficacy of the importance sampling. We expect a different
required ensemble size, Ne, larger for the multi-component
model than for the one-component model. To understand
this, let’s assume that the one-component model requires Ne

Monte Carlo samples to solve Ny independent equations of
1 variable each. One particle is then a vector of Ny values
and we solve a system of Ny independent equations, which
is relatively straightforward. Now if the Ny equations each
contain linear combinations of all Ny variables, as it is in the
multi-component model, the equations are no longer inde-
pendent and it becomes more difficult to solve this problem
with Ny samples. Therefore, we expect the ensemble size
Ne, to increase when the subsidence in one location depends
on pressure variations in other locations, as is the case in the
multi-component model.

4 Entropy andmutual information

We investigate weight collapse in data assimilation problems
with spatially correlated observations using the information
theory of Shannon [26] which is commonly applied in prob-
ability theory in the field of dynamical systems [27]. The
measure of entropy quantifies the uncertainty, and thus the
information about an unknown quantity. Yustres et al. [28–
31] demonstrate the use of information theory and of mutual
information in Bayesian estimation problems. Nearing et al.
[32] further use entropy and mutual information to evaluate
the efficiency of a data assimilation method. For a particle
method, sources of uncertainty are model error, imperfect
data, and the approximation in the importance sampling
algorithm which all propagate into the posterior distribu-
tion. The importance sampling algorithm assumes that we
can adequately sample the prior. However, if the sampling
is inadequate, for example, because of non-independent or
insufficient samples, weight collapse can occur. In this case,
the expected mean of the posterior is no longer a good repre-
sentation of the true posterior (Eq. 2). This implies a loss of
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information in the posterior estimate. To evaluate the propa-
gation of information from prior and likelihood to posterior,
we use the metric of entropy and mutual information as
defined in [33] and [34]. Mutual information describes how
much information two arguments have in common, similar
to a correlation between two random variables normally dis-
tributed. For example, it can give the common information
between the random variable x contained in the distribution
p(x), representing the model state variables and the data for
assimilation y, with distribution p(y) (Fig. 2). Using mutual
information in data assimilation problems allows us to eval-
uate how the information before assimilation is conserved in
the posterior. For a state variable x sampled from a discrete
distribution p(x), the entropy H(x) of p(x), can be inter-
preted as ”can we know x given p(x)” and is expressed by

H(x) = −
∑

i

p(xi ) log (p(xi )) . (14)

Let us introduce random variables x , y, and z. In assimi-
lation problems, we have samples of the model predictions,
x and we have the observation vector y for the assimilation
(Eq. 1). In the case of a synthetic experiment the analysis can
be compared with the truth. However, in realistic data assim-
ilation problems, we don’t know the truth, and therefore, to
test the performance of the data assimilation, we compare
the analysis with independent observations, which we refer
to as validation data. Let us assume that z is a vector of val-
idation data of dimension Ny . By construction, observation
vectors y and z are sampled from the same density, N (0, 1),
and the same observation model (Eq. 1). We assume them
to be independent. H(x) is the entropy in the model and it
measures the uncertainty on the model predictions x. Sim-
ilarly, for the entropy in a data set, we can compute H(y),
from observations {yi , i = 1, ..., Ny} with Eq. 14.

We can now compute the mutual information I (z; x)
between p(z) and p(x)

I (z; x) =
∑

z

∑

x

p(x, z) log
(

p(z, x)
p(z)p(x)

)

. (15)

InEq. 15, the prior distribution p(x), of themodel predictions
M(x), is compared with the validation data z, using the joint
probabilities p(z, x).

As mentioned in Section 3.2, the state and the observation
spaces have the same dimension, Nx = Ny , thus the vector
of the model prediction has the dimension of Nx . A more
practical computation of themutual information [35], written
as a function of the entropy and the joint entropy H(z, x) is

I (z; x) = H(x) + H(z) − H(z, x). (16)

Also Eq. 16 can be applied to estimate the mutual infor-
mation I (z; y). I (z; x) and I (z; y) now give an indication

Fig. 2 Venn diagram to illustrate the metric of entropy before assim-
ilation. (a) The colored area in the circle represents the entropy of a
distribution (e.g., entropy H(x) of the prior distribution p(x)). In this
drawing, the intersection of the entropy of prior and data visualizes
the mutual information I(x; y). The remaining area of entropy (e.g.,
H(x |y)) represents the reduced uncertainty on the variable x given the
knowledge brought by the variable y. (b) Joint probability gives an intu-
itive approach tomutual information as a measure of similarity between
probability distributions. In the example with discrete Gaussian distri-
butions for the prior and the data, if the joint probability shows a strong
correlation then themutual information increases as the joint probability
increases (Eq. 15)

of the information content in the model variable x and the
assimilated data y, which can be used to evaluate a certain
data-assimilation setup. By quantifying the propagation of
information content before and after assimilation we can
relate weight collapse to the importance sampling perfor-
mance and therefore evaluate the required ensemble size
given the model complexity.

To evaluate how the information content before assimi-
lation propagates to the posterior we define the differential
information Idi f f and the data assimilation efficiency EDA

[33]. The differential information is the difference between
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the mutual information in the posterior and in the prior and
is expressed as Idi f f = I (z; x̂)− I (z; x). This quantity can
be negative if the particle method corrupts the prior informa-
tion available before assimilation (e.g., in the model or in the
observations). To describe how the information from both the
prior and observations is conserved in the posterior distribu-
tion, we define the data assimilation efficiency EDA. EDA is
the ratio of the posterior mutual information I (z; x̂) and the
total information in model and observations I (z; x, y),

EDA = I (z; x̂)
I (z; x, y) (17)

The posterior mutual information represents the mutual
information between the distribution of the validation data
p(z) and the analysis estimate, evaluated from the poste-
rior weighted ensemble p(x̂). The total information in model
and observation I (z; x, y) represents the information avail-
able before assimilation and is expressed as a function of
the mutual information I (z; x̂) and of the mutual conditional
information I (z; y|x):

I (z; x, y) = I (z; x) + I (z; y|x). (18)

I (z; y|x) is the information that z and y have in common
conditioned on the prior p(x) and can be calculated as follows
in order to derive EDA:

I (z; y|x) =
∑

x

∑

y

∑

z

p(x, y, z) log
(
p(y|z, x)
p(y|x)

)

. (19)

ThePosterior quantity ofmutual information computed in the
same manner as that of the prior information in Eq. 16. The
entropy of the posterior distribution p(x|y) is proportional
to the weights wi log(wi ), and can be derived in the discrete
case with the approximation of

p(x|y) =
Ne∑

i=1

wiδ(x − xi )

and the expression of the updated weights in Eq. 3. A max-
imum entropy represents a maximum uncertainty on the
analysis x̂ , and likewise, a decreasing entropy suggests a
decreasing uncertainty. Quantities of mutual information are
empirically estimated with histogram estimation methods.
Algorithm 1 gives a pseudo algorithm to evaluate the prior
information before assimilation I (z; x) (Eq. 16) and the
posterior information I (z; x̂). Other quantities of mutual
information are computed in the same manner.

Algorithm 1 Derivation of the mutual information in syn-
thetic experiments.
1) Prior information I (z; x)
→ Sample Nx = 50 state variables of pressure variation xi
→ Compute subsidence at Ny = 50 observation points xi = M(xi )
→ Generate a synthetic observation vector of dimension Ny =
50 with ỹi = H [M(xtruthi )

] + ε and the validation data z̃i =
H [M(xtruthi )

] + ε.
for n = 1 : nbin do

Create histograms of x and z̃, nbin being the number of bins
Compute the probability of p(x), p(z̃)
Evaluate the entropy of H(x), H(z̃)

end for
→ Compute the mutual information I (z̃; x) with Eq. 16.
1) Posterior information I (z̃; x̂)
for n = 1 : nbin do

Create the histogram of x given the weight vector from the assim-
ilation and get p(x̂) per bin.
end for
→ Compute I (z̃; x̂) in the manner of Eq. 16.

5 Subsidence state estimation

5.1 Weight collapse and asymptotic limit
for subsidencemodels

We observe a stronger weight collapse in the case of spatial
correlation in the observation field. Figure 3 illustrates the
weight collapse in the posterior distribution in the subsidence
models of this study. The histograms show the distribution
of the maximum weight wmax, for both the one-component
and the multi-component models of subsidence and for a
model dimension of Nx = [10, 30, 100]. The experiment is
repeated 1000 times for a consistent estimation. The maxi-
mum weight can be used as an indicator of the importance
sampling performance. It shows that themethod performance
can rapidly decrease with spatially correlated observations
if the ensemble size is inadequate. To evaluate weight col-
lapse in the case of spatial correlation and an increasing
dimension of the state, Nx , and observations spaces, Ny , we
test the particle method at the asymptotic limit (Eq. 9). We
perform experiments with both the one-component and the
multi-componentmodelswith a large number of observations
Ny = [600, 800, 1000, 1200, 1400, 1600, 1800, 2000]. In
each experiment, we assimilate synthetic observations
of subsidence into ensembles with Ne = Nn

y with
n = [0.75, 0.875, 1.0, 1.25]. Not surprisingly, the results
of the one-component model (Fig. 4a and b) show a good
accordance between simulations and the theoretical predic-
tion of E[1/wmax] from Eq. 9. Connecting the maximum
weight wmax, to the ensemble size Ne, and the number
of state variables Nx , through a linear relationship. A lin-
ear interpolation of the results suggests that the line of
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Fig. 3 Maximum weight wmax for the one-component model of subsi-
dence (a) and for the multi-component model of subsidence with spatial
correlation (b) from simulations with, Nx=[10, 30, 100] state variables
and an ensemble size Ne = 1000. Histograms of wmax are computed
over 1000 simulations

E[1/wmax]−1 = −0.008+1.0721
√
log(Ne)/Ny describes

the variability of the maximum weight which exponentially
depends on Ne. The particle method in the one-component
model of subsidence shows good agreement with the results
of [8]. However, it clearly appears that the particle method
in the multi-component model does not fit the theoreti-
cal prediction of Eq. 9. The main difference between the
one-component model and the multi-component model is
reflected by the negative log likelihood (Eq. 5) that results
from the summation in the model operatorM (Eq. 12). If we
assume a Gaussian density for the expression of the negative
log likelihood in the one-component model

Vi j ∝ 1

2

[
yi − (H [M(xi )]) j

]2

σ 2 , (20)

this becomes

Vi j ∝ 1

2

[
y j − M(x)i j

]2

σ 2 . (21)

In the case of spatial correlation, the expression of the neg-
ative log likelihood differs as we take into account the linear
combinations of state variables (Eq. 12). Because of themap-
ping from the model input to the model output reflected by
M, the log likelihood depends on the state space dimension
Nx (Eq. 22) in the case of spatial correlation. This can be
explained by the fact that in the case of spatial correlation,
we consider the differences between the vector observation
y j with the model computed from all model state variables.

Vi j ∝ 1

2

[
y j − ∑Nx

k=1m jk .xik
]2

σ 2 . (22)

To assess how theweight collapse in the assimilationwith the
multi-component model (Eq. 22) differs from the theoretical
prediction of weight collapse in Eq. 9, we test the approx-
imation of the observation likelihood in Eq. 6 against the
probability distribution of the term Si in Eq 8. The term Si is
the scale factor that allows us to express the re-scaled likeli-
hood (Eq. 4) as aGaussian distribution. Themain assumption
to re-scale this likelihood is that Si follows a standard normal
density, Si ∼ N (0, 1).

The histograms in Fig. 4 show the distributions of Si in the
one-component and the multi-component model. The distri-
bution of Si in themulti-component model shows a skewness
compared to the result for the one-component model, which
approaches a standard normal distribution. Distributions of
Si provide evidence of the effect of state variables depen-
dency in Eq. 22 [11].

The histograms in Fig. 4 show the result of Si for a
single simulation. To confirm the deviation to a standard
normal density in the distribution of Si , we perform the
K-S (Kolmogorov-Smirnov) tests over 1000 simulations
(Table 3).

The analytical cdf (cumulative density function) of the
standard normal distribution and the cdf of sampled distri-
butions from the standard normal density, N (0, 1) are first
compared to evaluate the spread around the analytical solu-
tion (Fig. 4e and f), due to the sampling. For a dimension
Nx = Ny = 1000 and the ensemble size of Ne = 1000, we
compute the value of Si (Eq. 8), and compare to the analyt-
ical and sampled cdf. We choose the values of Nx , Ny , and
Ne to perform simulations of Si at the asymptotic limit, in a
regime where Eq. 9 is valid.

Results in Fig. 4e and f, show a very good overlap of
the cdf for the one-component model for both the sampled
distributions and the Si distributions. K-S tests confirm the
main assumption that Si is approximately normal in the case
of the one-component model of subsidence.

The K-S test for the multi-component model exhibits a
skewness in the cdf of Si , corresponding with the devi-
ation from a standard normal density in the histogram
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Fig. 4 Results at the asymptotic limit for the one-component model of
subsidence and the multi-component model. Verification of the con-
dition for collapse ((a), (b)). The dashed line gives the theoretical
prediction of Eq. 9 and the solid line gives the best fit to the simu-
lations given Nx and Ne. The histograms of the distribution of the scale

factor Si from the re-scaled likelihood in Eq. 8 ((c), (d)). In (e) and
(f), Kolmogorov-Smirnov (K-S) tests of the distribution of Si show the
cumulative probability distributions over 1000 simulations with 1) a
sampled standard normal density N (0, 1), 2) the subsidence model and
in dashed line the analytical cumulative probability of a density N (0, 1)

Table 3 K-S test results of the Si distribution in the one-component and
the multi-component model. Si distributions are compared to Gaussian
distributions and average over 1000 simulations

KS statistic p-value

Gaussian 0.032 0.66

Si : one-component 0.034 0.60

Si : multi-component 0.095 0.015

(Fig. 4d). We have computed the K-S test statistic and
the p-values between two distributions for the cases: Gaus-
sian/Gaussian,Gaussian/Si one-component, andGaussian/Si
multi-component. The result is an average of the compari-
son of the Si distribution against 1000Gaussian distributions:
Results show a lower p-value for themulti-component model
than for the one-component model, confirming the devia-
tion from the Gaussian distribution. Most of the p-values are
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below the threshold of 0.05 usually taken as resemblance
criterion. This implies that the Gaussian approximation of Si
is not valid in the multi-component model. Results with the
multi-component model thus suggest that Si can not always
be approximated by a standard normal distribution when the
observations are spatially correlated and consequently when
the log likelihood explicitly depends on the state dimension,
Nx in Eq. 22. Implications of non-Gaussian Si are that 1)
the re-scale likelihood in Eq. 6 is not a valid approximation
and 2) the relationship between the maximumweight and the
required ensemble size is not linear (Figs. 4a and b). With
these empirical results, we highlight a limit of the analyt-
ical derivation of the required ensemble size in a spatially
correlated data assimilation problem.

5.2 Entropy andmutual information for subsidence
models

With H(z) being the uncertainty about a set of observa-
tions, with the metric of mutual information we evaluate
the information content in the model, I (z; x)/H(z), and in
the data I (z; y)/H(z) that resolves the uncertainty on z. We
apply the same methodology for both the one-component
and the multi-component model. With synthetic data assim-
ilation experiments, we compute the entropy and the mutual
informationwith a histogrammethod. The histogrammethod
requires a sufficient sample size to evaluate the probability of
the sample into bins. The sample size in this simulation is the
number of model predictions, Nx , and the number of obser-
vations Ny , respectively for I (z; x)/H(z) and I (z; y)/H(z).
The binwidth is chosen such that the histogram covers the
range of the values of subsidence (e.g., for both model pre-
dictions and synthetic observations). For our experiments
with the dimension of Nx = Ny = 50, sensitivity tests on
the robustness of the histogram method led us to choose a
bin resolution of 0.5mm to create histograms of subsidence.
Table 4 shows themutual information for the one-component
and the multi-component model before the assimilation. The
information content in both the model and in the data is 0.76.
The one-component and the multi-component model have a
similar information content before assimilation, which is not
surprising, as both have been sampled from the same, Gaus-
sian distribution. We chose a relatively small Nx = Ny of
50, which is sufficient to make sure that we avoid ensem-

Table 4 Prior information content in model and in data with a bin
resolution of subsidence of 0.5mm and 40 bins for Nx = Ny = 50

One-component Multi-component

I(z; x)/H(z) 0.76 0.76

I(z; y)/H(z) 0.76 0.77

wmax (Ne = 103) 0.71 0.94

ble collapse. This ensemble size is used to reproduce the
results of entropy andmutual information with the histogram
estimation and we keep the same Nx = Ny of 50 in this
study to compare results. The importance sampling experi-
ments are performed for an ensemble size Ne = 1000. As
expected from histograms of wmax in Fig. 3, the weight col-
lapse is stronger in the multi-component model than in the
one-component model (Table 4) as the dimension increases.
This suggests that the importance sampling itself is the main
cause of information loss in the posterior in case of weight
collapse. The posterior entropy, H(x̂) in Fig. 5, which rep-
resents the uncertainty on the vector of state variables x,
after the assimilation in the posterior distribution p(x|y), is
computed for the dimensions Nx = [10, 30, 100]. Compar-
ing Fig. 5 with Fig. 3, we observe that the posterior entropy
decreases as the maximum weight increases. Comparison of
Fig. 5b with Fig. 5a shows that the posterior entropy con-
verges faster to zero in the case of a model with correlation
than in the case of the one-component model. Similarly to the

Fig. 5 Posterior entropy for the one-component model and b the multi-
component model of subsidence for the dimension Nx=[10, 30, 100]
and 1000 ensemblemembers. Histograms of entropy (Eq. 14) applied to
theweighted posterior probability distribution. The entropy is computed
and averaged over 1000 simulations
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maximumposterior weight in Fig. 3, the entropy decreases as
the dimension increases, highlighting that both the maximal
weight and the posterior entropy indicate weight collapse.

5.3 Information content and efficiency

In the following, to evaluate the ability of the data assimila-
tion algorithm to conserve information in the posterior, we
use the definitions of the data assimilation efficiency EDA

(Eq. 17), and of differential information Idi f f . According
to the results of the information content before assimilation
(Table 4), we compute EDA and Idi f f with the binwidth of
0.5mm and the dimensions Nx = Ny = 50 for an increas-
ing ensemble size Ne. Figure 6 shows results of Idi f f for
the one-component and the multi-component model. Results
clearly show a negative Idi f f for a small ensemble size, in
agreement with a stronger weight collapse. In the example
of the one-component model, Idi f f < 0 for ensemble size
Ne < 103 and a maximum weight wmax ∼ 0.7. Differen-
tial information increases as a function of the ensemble size
Ne, for both the one-component and the multi-component
model. As expected, the ensemble size of Ne = 100 and
Ne = 1000 are not large enough to avoid weight collapse
in the one-component model and give a negative differen-
tial information Idi f f . In this example, the information in
the posterior distribution is less than in the prior. We refer to
this as corrupted informationwith negative differential infor-
mation. Idi f f becomes positive for larger ensemble sizes,

Fig. 6 The differential information Idi f f , indicates the ability of the
posterior to conserve the prior information content. The best-fit line of
the differential information with the multi-component model is given
by Idi f f = 0.018 log10(Ne) − 0.17

reflecting an increasing information content in the posterior
and a respectively decreasing weight collapse.

Results of the differential information with the one-
component model show good agreement with the estimation
of the required ensemble size of [8] and are used as a perfor-
mance benchmark for our study. Transposing this approach
to the multi-component model, Fig. 6 shows that with an
ensemble size of Ne = 107, the particle method still corrupts
the prior information, with Idi f f < 0 and the maximum
weight approaching max wi = 0.8 (Fig. 7).

To evaluate the ensemble size which preserves the prior
information and then ensures the applicability of importance
sampling in the multi-component model, we compare the
efficiency EDA with the maximum weight and the differ-

Fig. 7 Efficiency EDA of the particle method for the one-component
model and the multi-component model of subsidence for a dimension
Nx = 50, and with an increasing ensemble size Ne. The best fit of EDA
with the multi-component model is given by EDA = 0.022 log10(Ne)+
0.56
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ential information Idi f f . The efficiency EDA as illustrated
in Fig. 7 measures the quality of the posterior given the
information content in the prior model and the assimilated
observations. Comparison of EDA with the differential infor-
mation (Fig. 6), shows that the information in the posterior
(EDA ∼ 0.75) is at least equal to the prior information
(Table 4) for a positive Idi f f . An efficiency EDA larger than
the prior information implies that the particle method con-
serves the prior information content. With the example of the
one-component model with Ne = 100, the particle method
does not conserve the prior information with an efficiency of
EDA = 0.6 less than the mutual information before assim-
ilation I (z; x)/H(z) = 0.76 (Table 4). For an increasing
ensemble size Ne > 104, the particle method now con-
serves the prior information (EDA > 0.75) and does not
corrupt the information in the posterior (Idi f f > 0). This
result shows that the required ensemble size should be of
Ne > 104,which is consistentwith the previous results of [8].
For equivalent ensemble sizes and equal prior information
content, the efficiency in the multi-component model is less
than in the one-component model. This result confirms that
the importance sampling algorithm causes the loss is infor-
mation when the observations are spatially correlated. For an
increasing ensemble size, the efficiency becomes larger than
one (Fig. 7a) despite the normalization. This may come from
the uncertainty in the histogrammethod for the calculation of
the mutual information. This could be reduced using a state
dimension larger than Nx = Ny = 50 (i.e., model prediction
or data).

Using the differential information and the efficiency EDA

we can evaluate theminimum required efficiency of a particle
method. We consider an acceptable performance in the one-
component model for a EDA at least equal to either the prior
information in the model or in the observation. Using this
approach, the differential information has a positive value
at Ne = 104 with the efficiency of EDA = 0.85, which is
larger than the prior information content in the model and
in the data (Table 4). This then suggests EDA = 0.85 as the
minimum required efficiency corresponding to Idi f f > 0.07
for an ensemble size of Ne = 104.

In the multi-component model, linear interpolation in
Fig. 7a gives an equivalent performance of EDA ∼ 0.85 with
an ensemble size larger than Ne > 1013. An ensemble size
of Ne > 1013 is thus required in the example of the multi-
component model to have the same performance as that in
a one-component model with an ensemble size Ne = 104.
Likewise, the results of Idi f f in Fig. 6 suggest that we need
an ensemble size larger than Ne > 109 to lift the differential
information to a positive value. For Idi f f to reach ∼ 0.07,
the required ensemble size should be larger than Ne > 1013

(Table 5).

Table 5 Required ensemble size Ne to ensure the particle method
applicability in the models of subsidence based on the differential
information and the data assimilation efficiency EDA. Experiments are
performed with a bin resolution of subsidence of 0.5mm and 40 bins
for dimensions Nx = Ny = 50

One-component Multi-component

Idi f f > 0 Ne > 103 Ne > 109

Idi f f > 0.07 Ne > 104 Ne > 1013

EDA > 0.85 Ne > 104 Ne > 1013

6 Discussion

Setting an adequate ensemble size can prevent weight col-
lapse in importance sampling methods in high-dimensional
problems. Spatial correlation in the observed field increases
the model complexity and requires importance sampling
strategies with a large ensemble size. In this study, we show
an example with a transformation frommodel input to model
output involving non i.i.d. model predicted subsidencewhich
requires increasing ensemble sizes to ensure the applicability
of importance sampling.

As in most data-assimilation systems, the observables
sample a spatially correlated field. In data assimilation meth-
ods, these non-injective transformations from the state space
to the observation space are associated with spatial correla-
tions, and, depending on the strength of the correlations, the
tendency for weight collapse varies. Thus, data-assimilation
practitioners can expect a possible deviation from the asymp-
totic results of weight collapse as derived by [8]. Our
empirical results can help derive the required ensemble size,
showing that information theory, specifically the metric of
mutual information can give empirical criteria to ensure
a minimum importance sampling efficiency. Results of a
so-calledmulti-componentmodel at the asymptotic limit pro-
vide insights to understand the deviation from the results of
the importance sampling with the one-component model. In
the first part of this study we highlight that in the case of
spatial correlation in subsidence, the approximation of the
likelihood and the distribution of the scale factor Si deviates
from a standard normal probability distribution. The devi-
ation remains small, however, the log likelihood explicitly
depends on the dimension of the state space, Nx . This could
explain why the particle method in the multi-component
model suffers from a stronger weight collapse than in the
one-component model. In the results of [11] with exam-
ples of nonlinear models, we observe a similar deviation at
the asymptotic limit in our multi-component model, with a
reservoir model that has a varying strength of compaction.
Evaluating the required ensemble size Ne can be very difficult
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given model complexity and this complicates the definition
of a generalized methodology to evaluate Ne. We propose
criteria to evaluate the required ensemble size in problems
of realistic complexity, involving high dimension and spatial
correlation.

Information theory gives a means to quantify the infor-
mation in the model and in the data. It shows how this
information is propagated in the posterior distribution [32].
The quality of the data assimilation estimate is often assessed
with the variance of the posterior distribution or the effec-
tive sample size [36, 37]. However, the posterior variance
can be biased because of weight collapse causing a nar-
row and non-representative posterior distribution. In data
assimilation, a common procedure to reduce the observation
dimension and increase the posterior variance is by apply-
ing localization [31, 38, 39]. A consequence of localization
could be that the information of a dataset is optimized by
not taking into account the redundant information. In our
approach, we evaluate the bias caused by weight collapse by
assessing the method performance using mutual information
through the quantities of differential information and data
assimilation efficiency. The differential information Idi f f
and the data assimilation efficiency EDA reveal that weight
collapse corrupts the information in the posterior distribu-
tion, highlighting that the algorithm itself is the main cause
of information loss in importance sampling.

To compute the metric of mutual information we used the
histogram method and set the sample size of model predic-
tions and the data to Nx = Ny = 50 to test the sensitivity
of the particle method to the ensemble size Ne. In this study,
we choose the number of state variables, of observations of
Nx = Ny = 50 to have the same spread and binwidth in the
histogram, since we want to compare results with a space
for an ensemble size between Ne = 100 to Ne = 107.
Increases Nx and Ny for the histogram method would result
in ensemble collapse or would require an unpractical ensem-
ble size. The one-component model of subsidence provides
a means to compare the empirical results of mutual informa-
tion with the theoretical background on weight collapse in
the particle method [8–10, 21]. Results of mutual informa-
tion show good agreement with previous results of [8]. The
samemethodologywithmutual information could be applied
to larger datasets or a time series of data in filtering and
ensemble smoother methods. Weight collapse also occurs in
those methods [40]. From the result of the efficiency of the
data assimilation, EDA we derive by linear interpolation the
required ensemble size in the multi-component model. It has
been shown that the ensemble size must scale exponentially
with the dimensions Ny and Nx [8, 9, 21]. As spatial corre-
lation depends on the data-assimilation system, we may also
expect a deviation from the linear interpolation proposed in
this study. For example, EDA in the linear model slightly
levels off, and this may suggest that the interpolated values

of the required ensemble size in the multi-component model
are slightly underestimated. Our approach is also of interest
to either assess the method performance (e.g., information
loss, ensemble size) or even to optimize the data assimilation
before assimilation by evaluating the information content in
the prior and in the data. Other criteria to ensure the applica-
bility of importance sampling, are the maximum weight or
an effective sample size of the prior ensemble. This could be
a threshold to choose the ensemble size and set a minimum
level for the required data assimilation efficacy.

However, taken alone it is not clear howwe should choose
these values. Using a positive differential information Idi f f
and a minimum data assimilation efficiency EDA, we can
only obtain a first impression of what is the relevant amount
of information that the posterior should contain in a specific
problem.

7 Conclusion

With an example of subsidence models, we show that the
main cause of performance loss in the particle method comes
from the sampling strategy. By choosing a larger ensemble
size,we can effectively preventweight collapse. The required
ensemble size in a problem with spatial correlation can
be underestimated if evaluated based on non-representative
transformation from the state to observation space. In this
study, we propose two criteria based on the information the-
ory: the differential information and the data assimilation
efficiency using the metric of mutual information. This can
be used to empirically derive the required ensemble size in
the case of spatial correlation in the observed field. For this,
we relate the weight collapse and the performance of impor-
tance sampling to the information content before and after
assimilation. We find that in the one-component model of
subsidence, the particle method requires an ensemble size
larger than Ne > 104 for a dimension Nx = Ny = 50 to
propagate the information available before assimilation and
to obtain positive differential information. Our results show
good agreement with an earlier study of [8] and provides
an empirical method to measure the applicability of a data
assimilation method through the differential information and
the relative (i.e., relative to the prior information) criterion of
the data assimilation efficiency, to choose the ensemble size.
This approach could be further used to track the information
content in other data assimilation problems and to optimize
the prior information content.
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