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Abstract

Iterative learning control (ILC) yields perfect output-tracking performance at
sampling instances for systems that perform repetitive tasks. The aim of this
article is to develop a framework for a state-tracking ILC that mitigates oscilla-
tory intersample behavior, which is often encountered in output tracking ILC.
As a framework for the analysis, the stability of the iterative domain including

Technology, Eindhoven, The Netherlands the robustness filter and the asymptotic signal is formulated. In addition, as a

Correspondence framework for the design, the design method using frequency response data to
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reduce the modeling effort, the learning filter design based on inversion, and the
specific design procedure of the robustness filter are presented. The designed
method is successfully applied to a motion system and it is shown that the pre-
sented state-tracking ILC provides better intersample behavior than the standard
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1 | INTRODUCTION

Iterative learning control (ILC) can result in a significant improvement in the control performance of systems that perform
repetitive tasks. The tracking error after each trial can be reduced by updating the control input for the next trial utilizing
the error obtained in the previous trial. Consequently, it has been extensively applied to precision machinery, such as
semiconductor lithography systems,'> machine tools,* industrial printers,* mechatronic imaging systems,’ and industrial
robots.®

Controllers including ILC are usually implemented as a discrete-time controller with sample and hold device. There-
fore, the design of ILC also often focuses on on-sample performance. The theory of on-sample behavior of discrete-time
systems, including the monotonic convergence condition for the 2-norm of on-sample tracking performance, has wit-
nessed extensive development. On the other hand, the control performance itself is evaluated in the continuous time
since mechatronic systems evolve in continuous time. High tracking performance on the sampling instances does not
necessarily mean high-tracking performance between the sampling instances.

Frequency domain design is an intuitive approach to achieve fast convergence and robust convergence.” It offers the
advantage of using frequency response function (FRF) measurements to determine the monotonic convergence condition,
thereby reducing modeling effort required. The analysis of frequency domain design motivates the design of learning
filters as exact inverse models of the system to achieve fast convergence and high asymptotic performance. Because this
approach usually focuses on tracking the output rather than the state variables of the controlled system, it is referred to
as an output-tracking ILC in this article.
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The controlled systems with zero-order hold discretization often have unstable zeros or zero near the stability limit,3°
which causes problems when attempting to design an inverse system as a learning filter. One design approach is to exploit
an approximate inverse of the system such as zero-phase-error tracking control'® at the cost of tracking performance;
while another approach is applying stable inversion with preactuation,'! which can achieve on-sample perfect tracking
at the cost of intersample behavior.

Poor intersample behavior is not desirable because the control performance itself is often evaluated in a continuous
time as the functions of mechatronic systems, such as lithography, printing, and milling, evolve continuously. Conse-
quently, to improve intersample behavior multirate ILC'? based on optimization has been developed; however, it requires
ameasurement frequency that is faster than the control frequency. In contrast, in this article, the control and measurement
frequencies are assumed to be the same.

Although the output-tracking ILC with stable inversion can achieve high tracking performance on-sample, poor inter-
sample behavior is often observed due to cancelation of discretization zero near the stability limit. The aim of this article
is to present a concept of state-tracking ILC including its stability and performance analysis and design guidelines to
improve the intersample behavior. In contrast to the output-tracking ILC, the presented state-tracking ILC achieves out-
put tracking as well as state tracking after convergence. Consequently, this state tracking enables improved intersample
behavior similar to multirate feedforward control,'>!* which is a feedforward control strategy aiming for perfect state
tracking.

The main contribution of this article is a state tracking ILC framework that improves the intersample behavior. This
is achieved through the following sub-contributions.

C1 The state-tracking ILC framework based on linear periodically time-varying (LPTV) system analysis is presented. The
key idea of this approach is to achieve perfect state tracking for every n samples to improve the intersample behavior.

C2 Analysis tools for both stability and performance of the state tracking ILC have been developed in Section 3.
To facilitate the use of FRF measurement data, the LPTV system is transformed into a multi-input multi-output
(MIMO) linear time invariant (LTT) system by exploiting lifting techniques. This allows the stability of the ILC to be
determined in the frequency domain.

C3 Design guidelines that exploit FRF measurements for state tracking ILC are derived in Section 4. The pre-
sented guidelines include a learning filter that yields fast convergence and a robustness filter that guarantees
monotonic convergence using a robustness filter. In addition, model variation can be easily taken into account
because robustness filters can be designed while overlaying multiple frequency response data on a plot of stability
conditions.

C4 The effectiveness of the developed method is verified through experiments for both cases involving accurate and
inaccurate models, requiring the use of a robustness filter in Section 5.

This article extends the preliminary results reported in Reference 15 coupled with an iteration domain stability
analysis that includes a robustness filter, which is required in case the model is not sufficiently accurate. In addi-
tion, analogous to the design advantages of output tracking ILC, state-tracking ILC enabled the evaluation of the
stability analysis in the iteration domain employing a nonparametric model, that is, FRF data. This advantage
reduces the modeling effort of the user because the frequency response data are often inexpensive, accurate, and fast
to obtain.

1.1 | Notations

Let P(z) denote a discrete-time, LTI, single-input, single-output (SISO) system, expressed as

P(z) = C(zI — A)"'B+ D, 1

where A € R Be R™! C € R™, and D € R.
Let R denotes the set of rational discrete time transfer matrices. The set of real-rational functions bounded on the unit
circle is denoted as RL . RH,, is the subset of R L, analytic for |z| > 1.

Definition 1 (Discrete-time lifting). Let u[k] € R denote a discrete-time signal that corresponds to u(kT;), where T
denotes the sampling time and k € Z. Further, consider a lifted signal over = € N samples denoted by u[l] = Lu[k] with
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FIGURE 1 Time chart of discrete-time lifting for = = 3 as an example

uflr]
ull] = u[l’r.+ 1] cR*. @
ullt + 7 —1]

where | € Z and L denote the lifting operator, which maps u + u. A time chart is shown in Figure 1. An inverse lifting
operator is expressed as u = £~ 'u. For more details on the definition, see Reference 16. Note that lifting over = sample
multiplies the sampling period by 1/, and inverse lifting over = sample multiplies the sampling period by z.

Lemma 1 (Lifted system in state space). The input/output of the lifted system of P over v € N samples isy = Ly =
(LPL7Y)(Lu) = Pu. P can be obtained from a state-space model, and is denoted as

AT A™1B A™2B ... B
C D 0 - 0
PZ| ca CB D ... o0|er™. 3)
CA™! | CA™2B CA* 3B --- D,
Proof. This follows from successive substitution of (1).16(Set8-2) "

Definition 2 (Downsampling operator). The downsampling operation over z samples is defined by

Sq : alk]— plk]l, plk] =alzk], ke Z. 4

Assumption 1 (Controlled continuous-time system G.). A system G.(s) = Cg (sI —AGC)‘IBGC to be controlled is a
continuous time, SISO, strictly proper, LTI system given by minimal realization.

The discrete-time system G with G, using a zero-order hold with sampling period T is denoted as

x[k + 1] = Agx[k] + Bgulk],
ylk] = Cgx[k], Q)

where x[k] € R", u[k], y[k] € R. x[k], y[k], and u[k] correspond to x(kT5), y(kTs), and u(kTs), respectively.

2 | PROBLEM FORMULATION

This section presents the formulation of the design requirements of the presented state-tracking ILC framework. First,
in Section 2.1, the output-tracking ILC is briefly introduced. Subsequently, Section 2.2 introduces the multirate inversion
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Output tracking ILC

FIGURE 2 Block diagram of output tracking ILC

technique, which is a key to state-tracking. Further, Section 2.4 presents the design formulation requirements addressed
in this article.

2.1 | Frequency domain design of output tracking ILC

The aim of the general ILC algorithm, including References 7, 17, and 18, is to achieve perfect output tracking at sampling
instances for systems that perform repetitive tasks. It updates the feedforward input over iterations by learning from the
tracking error obtained in the previous iteration. The design aspect offers the advantage of intuitive loop shaping for a
robust design using nonparametric frequency-domain measurements.

The block diagram is shown in Figure 2. The closed-loop system is stabilized by a feedback controller K € RL,. r
denotes the trial-invariant reference, and j € Zx, denotes the trial number. Tracking error ¢; at jth trial expressed as

e; = Sr — GSfj, (6)

where S = (I + GK)~! denotes the sensitivity function of the closed-loop system. The ILC command during iterationj + 1,
fi+1, is typically updated as

fj+1 = Qo(fj" + Loej), (7)

where L, and Q, denote the learning filter L, € RL. and the robustness filter Q, € RL. In addition, noncausal
operation is allowed for L, and Q, because the ILC update is computed offline.
The error propagation is expressed as

eis1 = Qo(1 — GSLo)ej + (1 — Q,)Sr, (®)

which converges monotonically in ||e]|, if

|Qo(e)(1 = G(e”)S(e”)Lo(€))| < 1, Voo ©)

An important aspect of the output-tracking ILC in frequency domain design is that the condition (9) can be verified using
the measured frequency response data of G and S, which is fast, accurate, and inexpensive to obtain. This results in a
reduction of the required design effort.

Using (8) and ey, = lim;_,, ¢j, the asymptotic signals e, are obtained as

_ 1-— Qo
"~ 1-Q(1—GSL,)

Coo Sr. (10)

Equations (8) and (10) motivate the design of L, = (GS)™! to realize fast convergence and Q, = 1 for e,, = 0, respec-
tively. For an even relative order of a continuous plant model, a discretization zero close to z = —1 is generated® in G;
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FIGURE 3 Reference r and its derivative signal 7

hence, GS has the same zero. Consequently, the force update (7) creates an oscillating control input with L, = (GS)7},
which results in poor intersample behavior, as demonstrated in Section 5.

To summarize, the output-tracking ILC possesses two primary favorable properties: (i) the availability of a trial domain
stability condition (9) and (ii) limited design effort requirement using a nonparametric model. However, the primary
disadvantage is that the focus on on-sample output tracking achieved by exploiting the inverse model results in poor
intersample behavior. Thus, these characteristics form the motivation for the problem definition of the state-tracking ILC
design in Section 2.4.

2.2 | Multirate inversion

Multirate inversion is a system inversion technique that achieves state tracking and possesses the potential to achieve
improved intersample tracking performance. This section introduces a multirate feedforward control'*!# using multirate
inversion that achieves perfect state tracking for every n time instances in a nominal condition. By achieving both output
and state tracking, it is possible to improve the intersample behavior, as demonstrated by the example below.

Example 1 (Single mass motion system). Consider a system G, = — with sampling time T = 1 and a continuous time
N

0.5(z+1)

. . . L @12 "

which renders poor intersampling performance when pole-zero cancelation is performed via a single-rate feedforward

controller.

Figure 4 demonstrates tracking error with single-rate and multirate feedforward controllers. To focus on the dif-
ferences resulting from feedforward controllers, feedback controllers are not used. The state reference, state, and state
tracking errors are expressed r, = [r,7]", x 1= [x1,x%]" = [y,y]", and e, :=[ey,ex|" = [r —,i — y]T, respectively. The
single-rate feedforward control achieves perfect output tracking for every sample, whereas the multirate feedforward
control can realize perfect state tracking for every n = 2 sample. Consequently, multirate feedforward control achieves
superior intersample behavior at the cost of on-sample error for odd samples, for example, k = 1,13.

reference, as shown in Figure 3. The discretized system based on zero-order hold is G = with a zero at z = —1,

For the above reasons, for single-rate feedforward control, reference trajectories with discontinuous velocities, such as
the one shown in Figure 3, have been avoided because of the excitation of the discretization zero. On the other hand, mul-
tirate feedforward control can significantly reduce such intersample oscillations by providing higher-order state trajectory
in addition to position trajectory.

2.3 | State tracking ILC setup

The key idea of the presented state-tracking ILC is to achieve perfect state tracking every n samples, reminicent to
multirate feedforward control, with the aim to improve the intersample behavior, which constitutes Contribution
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FIGURE 4 Tracking error of single-rate feedforward control (red solid line) and multirate feedforward control (blue solid line).
Single-rate feedforward control achieves perfect output tracking for every samples (red filled circle). On the other hand, multirate
feedforward control achieves perfect state tracking for every n = 2 samples (blue open circle) and it brings better intersampling performance.

State tracking ILC

X e Fily |
O s A G

FIGURE 5 Block diagram of state tracking ILC. The high-frequency dots and low-frequency dots denote high-rate signal sampled by
T, and slow-rate signal sampled by nT;, respectively.

Cl. In this article, perfect state-tracking control is defined as an extension of perfect tracking control (PTC)!0!3
to state variables, where the state reference and the estimated state by the observer match at a specified sample
period. In this definition, the effect of measurement noise, which is trial-varying disturbances, on the observer is not
considered.

To this end, the ILC setup as depicted in Figure 5 is considered. Similar to the standard output-tracking ILC shown
in Figure 2, the state-tracking ILC shown in Figure 5 comprises a memory, an update law, and a Q; filter for robustness.
There are two sampling rates in the signal: (i) Ty drawn as high-frequency dots is the high rate, which is the same as
the rate of the control input and measurement, and (ii) nTs drawn as low-frequency dots is the low rate in the lifted
domain.

A key difference is that the ILC update law that consists of filter L; and Qj is performed in the lifted domain sampled
with sampling time nT to achieve state-tracking, in contrast to the sampling time T in output-tracking ILC. The lines
with dense dots and sparse dots denote signals sampled by T and nTj, respectively. Hence, a downsampling operator Sy
and an inverse lifting operator £~! for n samples are required.
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2.4 | Problem definition and contributions

The problem addressed in this article is the development of analysis tools (Contribution C2) and design guidelines
(Contribution C3) for the presented state-tracking ILC (Contribution C1). Because of the multirate setting, the overall
system is LPTV; therefore, standard frequency-based analysis and design techniques for output tracking ILC cannot be
employed. The developed design guidelines exploit frequency response measurement data similar to well-known tech-
niques for output-tracking ILC. In addition, this article addresses the verification of state-tracking ILC in experiments
using measured frequency response data (Contribution C4).

3 | APPROACH AND ANALYSIS

In this section, a detailed state-tracking ILC approach is presented with the development of the analysis tools for stability
and performance in the iteration domain. This section constitutes Contribution C2.

3.1 | Analysisin a single iteration

This section presents the derivation of the characteristics in a single iteration to analyze the performance and stability in
the iterative domain presented in Section 3.2.

The reference r, in Figure 5 denotes state trajectory to be tracked by the state-tracking ILC with the following
assumption.

Assumption 2 (State trajectory ry). State trajectory r, € R” that satisfies
rlk] = Cor«lk],  Vk, (1)

is predetermined, where r[k] denotes a reference trajectory for the output y[k].

Remark 1. 1t is obtained by solving the continuous time state and output equations and results in the inversion of the
continuous-time numerator polynomials of G.(s), see Reference 14.

The state-tracking error estimated by the state observer O is suppressed by the state-tracking ILC through iterations.
The state tracking error estimate ez ; is obtained from the state trajectory r, and the estimated state %;, as defined in next.

Definition 3 (State tracking error estimate). State tracking error estimate e;; € R" at jth iteration is obtained by

exjlk] = rlk] — [k, (12)

where %; € R" denotes state estimate at jth iteration by state observer O € RL%?

@:oV], (13)
N

where f denotes the input of G, which consists of the ILC and feedback control contributions.

Remark 2. Noncausal operation is allowed for the state observer O, because the state estimation is performed by off-line
calculation. In addition, a bounded state estimate is obtained through a back-and-forth filtering operation.'!
The key idea of state-tracking ILC is to render the transfer characteristic between the lifted control input f at jth
=

iteration and the estimate of the state-tracking error ez into a square system. It facilitates the design of the inverse system
exploited in the learning algorithm in order to achieve perfect state-tracking. Therefore, n-sample lifting of the order of
the plant is performed for the closed-loop system.

The lifted version of the force f;;; over n sample as denoted by ]_”j o € R" is updated from jth state tracking error e ; as

defined in next.
Definition 4 (State-tracking ILC force update).
L= Qs (£ + Liesy ). (14)

—j+1
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where Q; € RLE" and Ly € RLE™ denotes a robustness filter and a learning filter, respectively. Apart from Equation (7),
the robustness and learning filters are MIMO systems. With regard to Q, and Ly, noncausal operations are allowed due to
offline computations.

Next, Lemmas 2 and 3, and Definition 5, which are equations for the lifted domain, are prepared to derive the
state-tracking error estimates in the lifted domain.

Lemma 2 (Lifted state reference r_and lifted reference r). The lifted state reference r_and lifted reference r satisfy

r=>U,®Cg) r.
= Cqr,, (15)

where I, and ® denote the n-by-n identity matrix and the Kronecker tensor product, respectively.

Proof. 1t is obtained directly from the output equation r = Cgr, and Definition 1. (]
Now, the state selection matrix S is defined to select the first-time instance from the lifted state tracking error estimate.

Definition 5 (State selection matrix S). The first sample elements are selected from the lifted signal.

S = [In Onxn(n—l)] € Rnxnz’ (16)

where Opxnn-1) denotes n-by-n(n — 1) matrix of zeros.

Lemma 3 (Relationship between lifting operator and state selection matrix). Let e denote a signal with n X 1 dimension
and sampled by Ts. The following relationship holds.

Sije=Se=5Le. a7

Proof. This is obtained from Definitions 1 and 5. Le is the result of lifting of e and is n? x 1 signal sampled by T;/n.
Therefore, since SLe is the first n samples of Le selected, it is an n X 1 signal sampled by T;/n. This is equivalent to Se
and Sye. n

From the aforementioned definitions and lemmas, a fundamental equation for the state-tracking ILC that relates state
tracking error estimate, state trajectory, and ILC force in the lifted domain can be derived as follows.

Lemma 4 (State tracking error estimate ey in lifted domain).

Saezj = Sxr, — foj, (18)

where
S, =S <1,, - GOKSC) € RL™, (19)
Jo 1= SG,S € RL™M, (20)

and G, € RL%! denotes a transfer function from the control input f to the state estimate X; as follows:

NP I IR I A N )
amolf] -o[£] o[t] e

Similar to Remark 2, a noncausal operation is allowed for G, due to offline calculation.

Proof. State tracking error is composed of feedback and ILC contribution. According to Lemmas 2 and 3,

Sde;w- = Sdrx - Sd.)?fj (22)
= Sr, - S%, (23)
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=Sr.-S (GOS];_ + ng) (24)

=s <In - ﬂ) r.=SG,S, (25)

b= Sir = I (26)

.

Remark 3. Equation (18) simplifies the block diagram in Figure 5 into the block diagram in Figure 6. In addition, (18)
has the same structure as (6), where Sy can be interpreted as a sensitivity function from the lifted state reference to the
estimated state tracking error, and J, can be interpreted as a process sensitivity function from the lifted ILC input to the
state estimate.

Definition 4 and Lemma 4 enable the stability analysis in the iteration domain.

3.2 | Stability analysis
This section derives the convergence condition of the state-tracking ILC in the iteration domain. To this end, state tracking
error and ILC force propagation are formulated.

Theorem 1 (State tracking error and force propagation). State tracking error propagation and ILC force propagation are
formulated as

—1 —1
Siesjrn = 1xQs (I = L) 2y Saesy + (I = 1QTs ) Sur @)

f = Qs(In—LJ)f + QsLsSxe, (28)
—j+1 —j

where J, is invertible and T, = zJ,.

The proof follows from Definition 4 and Lemma 4. A proof of the invertibility of J, is presented in Section 4.2.
Convergence is defined next.

Definition 6 (Convergence). System (28) is convergent if and only if for all 7, ]:0 € ¢, there exists an asymptotic signal
f € ¢, such that

-1,

Lo L

A convergence condition of (27) and (28) is given next.

lim sup =0. (29)

J—= 0

Theorem 2 (Convergence condition). Iterations (27) and (28) converge if and only if
p (Qs(e”)Ip = Ly(¢)]x(€))) < 1, Vo € [0, 7], (30)

where p(-) denotes the spectral radius, that is, p(-) = max; | 4;(-)|.

ol T, ;?—i—’

FIGURE 6 Simplified block diagram of state-tracking ILC in lifted domain
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Remark 4. In contrast to Equation (9) for the output-tracking ILC that exhibits the SISO system, this equation for the
state-tracking ILC exhibits an MIMO system. This indicates that the MIMO filter Q; has more design flexibility than Q,,
which is a SISO filter. Its design methodology is presented in Section 4.1.

For proof, see Reference 19, Theorem 6. Monotonic convergence is defined as follows:

Definition 7 (Monotonic convergence). System (28) converges monotonically in the £, norm from f tof with 0 <
—j —00

kw "Ll kw 4

A monotonic convergence condition of (27) and (28) is provided as follows.

y <1, ifand only if
<v

vj. (31)

2 fZ

Theorem 3 (Monotonic convergence condition). Iterations (27) and (28) converge monotonically in the £, norm if and
only if
v = ”QS(I_LSJX)Hﬁw <1 (32)
Note that (32) is equivalent to
5 (Qs () (I-Ls (€”) Jx (€”))) <1, Vw €][0,x], (33)

where ¢ denotes the maximum singular value.
A proof follows from Reference 20, Theorem 2.
From (27) and (28), the asymptotic signals e; ., and f are obtained as
Sdls.co0 =jlilgsdefc,j = (1 = Jx = Qs - Lxe))_leLs) Sxfx,

[ = ,limfj =1 -Q - Lst))_leLsSxfx' (34)
=00

—00

The requirement for Qs to achieve the zero-asymptotic estimated state tracking error is as follows:

Theorem 4 (Requirement in Q, for e = 0). Assume Ly(€®), J(e®) # 0, V. Given that (30) holds, then for all r, €
€2, €0 =0, ifand only if Q; = I,.

For a proof, see Reference 21, Theorem 3.
To conclude, this section presents the state-tracking ILC framework and its convergence condition.

4 | DESIGN OF STATE-TRACKING ILC

This section presents design procedures of the robustness Qs filter and a learning filter L; by using nonparametric fre-
quency response data. In addition, a method of using a non-parametric model for analysis is introduced to reduce the
user’s modeling effort. This section constitutes contribution C3.

4.1 | Robustness Q; filter design for monotonic convergence

When the monotonic convergence condition shown in (33) is not satisfied by Qs = I, it is necessary to design a Qs filter,
which is an MIMO filter. In this section, two designs of Q; filters that guarantee monotonic convergence are presented:
the first method is an intuitive design, but it exhibits conservative performance, whereas the second is a trial-and-error
design that may exhibit high performance.

4.1.1 | Intuitive design

An intuitive design of Q; is a direct design in the n-sample lifted domain, that is, the sampling time nT;. Let g € RLo
and

Qs = QSlln € Rﬁgoxn' (35)
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The advantage of this design is that the convergence condition (33) is simplified to
5 (Qa (€) (In— Ls (¢°) Jc (¢”))) =7 (ga (¢)) & ((In — Ls (¢*) Jx (€°))) <1, Ve €10, 7]. (36)

Consequently, this allows the user to intuitively design Qy; using the Bode plot, as in the case of the SISO output-tracking
ILC.?2 However, it fails to exploit the directions in multivariable systems, which results in a conservative design.

4.1.2 | Less conservative design
Another Qy design method involves designing a SISO filter in the original sampling time, that is, T, followed by the

application of lifting. Let g5, € RL, and
Qs = ﬁ%zﬁ_l. (37)

In general, the directions can be effectively utilized, and a less conservative design may be created, as shown in (38).
5 (Qa (¢) (I~ Ls (¢) 5 (¢))) £7 (Qa (€))7 (1 ~ Ly (¢°) & (¢)). (38)

Equations (36) and (38) indicate that Qg can have a higher bandwidth than Qy, leading to higher state-tracking
performance according to (34).

4.2 | Guideline for the learning filter L, design

This section presents a design guideline for learning filter L, to realize fast convergence. Equation (27) motivates designing
L as an inverse system of J,. However, as J, has no direct feedthrough according to Assumption 1, the inverse system of
Jy is not feasible, and thus, a preview is required to achieve inversion. Theorem 5 proves that one sample preview in the
lifted domain is necessary and sufficient to have direct feedthrough.

Theorem 5 (Direct feedthrough of zJ,). J is given as

Jx :=2Jx =25G,S, (39)

where

[l

A B A B
% i , hence 2zJ, = h % , (40)
Cy. | Onxn CjA;, | C1By,

with full rank Cj B;, .

Proof. Cg = I, is assumed by an ideal observer without loss of generality. G is obtained by n sample lifting of G and
formulated as

Ag Ag_lBG AZ_ZBG .-+ Bg
I 0 0

G=|4s | B o - o | 41)
AT | AG?Be AGTBg -+ 0|

Next, the state selection matrix S selects the first-time instance, and thus SG is obtained as

sc i A% | A'Bg A%?Bg - Bg
1| o 0o - 0

(42)
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Hence, with 1 sample preview, zSG can be obtained as
A | A%'Bg A"2B; --- B
ZSGélG| GlG GZG G]’ (43)
- n n— n—
An ‘AG Bs A"?Bg --- Bg
where [A], Ag‘lBG A'(‘}‘ZBG ---  Bg] is full rank based on the controllable assumption in Assumption 1. Further,
the sensitivity function S and its lifted system are defined as follows:
As | B A. | B
s:2 |22 and 52 (=S5 (44)
Cs | Ds Cs | D
Dg 0 o0
CsB D - 0
where D, = S. s _S s (45)
CsAg_ZBS CSAg_3BS .-+ Dg
where Dy is full rank as D # 0 because S represents a bi-proper system.
Moreover, considering the Sylvester’s rank inequality, C; By = [Ag Ag‘lBG A’é‘zBG -+ BglDy is determined
to be full rank. -

After completing the design zJ, with direct feedthrough, the learning filter L; is designed as Ly = z(zJx)~!. In the case
zJ, is a nonminimum phase system, stable inversion'! can be exploited to obtain bounded signals.

4.3 | Limited design effort for user

State tracking ILC analyzes the LPTV system as explained in Section 3; however, the procedure presented in this section
allows the measured frequency response data to be employed in the procedure, thereby reducing the effort required to
design on part of the user. This is a key step that constitutes Contribution C3. Lifting the measured frequency response
data, when combined with the analysis shown in Contribution C2, enables the design of robustness filters to be as intuitive
as output-tracking ILC in frequency domain design.

The lifted frequency response data are obtained using Lemma 5.

Lemma 5 (Lifted system in FRF). The lifted FRF matrix over n sample P(z) € C™" is obtained as

[ PO@) PN PR e PO
PO PO} PPV - z'PA()
P@)=| PP PV PO - PO, (46)
P=1)(z) P=2)(z) P(=3)(z) e PO(z)
where
O_T—l -
PO (") = 5 Y P(adh) ¢, p=er, 47)
k=0

for0<o <n-1ando € Zs.

For a proof, see Reference 23, Section 6.2.1.

In contrast to the lifting for a parametric model formulated in (3), Lemma 5 enables to compute a frequency response
matrix of J, defined by (20) using the measured frequency response data. Thus, the convergence condition (30) can be
determined by the nonparametric frequency response data, with J, calculated by (20) and the learning filter L calculated
by (3).

The design procedure is summarized in Algorithm 1.
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Algorithm 1. State-tracking ILC design

(a) Identify the frequency response data of Gpgrr and obtain a parametric model G via system identification.

(b) Design a stabilizing feedback controller K and state observer O using G.

(c) Compute the parametric model G, S and lift G,S using (2).

(d) Compute the frequency response data (G,S)rrr using Grrr and apply lifting by (46).

(e) Compute J, using (20) and design the learning filter by Ly = z(zJ,) .

(f) Check the convergence condition using (30) with Qg = I,,. If the convergence condition is not satisfied, satisfy (30)
according to Section 4.1 by updating the model G or designing the robustness Q; filter.

Motor

Inertia

FIGURE 7 Motion setup: A single inertia system

3,000

2,000

1,000

Reference r(t) [count]

| | | | | | |
90.2 —0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Time ¢ [s]

FIGURE 8 Motion reference r(t) for the single iteration with a length of 800 ms

5 | EXPERIMENTAL VALIDATION

ILC experiments are conducted using the experimental setup shown in Figure 7 for the angle reference shown in Figure 8.
The measured frequency response data and a model from input current reference to measured angle are shown in Figure 9.
In this article, the third order is chosen, whereas the choice of the order of the plant model is a design parameter for
the user. Higher-order models with higher accuracy reduce the gain of the convergence condition in (33), allowing for a
higher frequency bandwidth for the robustness filter. This achieves state tracking for higher-order states at the expense
of lengthening the state tracking interval. This section constitutes Contribution C4.

The sampling time for the controller is set as Ts = 6 ms, and intersample data are obtained by every 0.5 ms. This
indicates that the output-tracking ILC aims to track outputs every 6 ms, and the state-tracking ILC aims to track states
every 18 ms. Learning gain « is exploited to mitigate the amplification of the trial-varying disturbance® by replacing (7)
and (14) as

fi+1 = Qo(fi + aLoe;) and (48)
‘ij+1 = Qs(ij + aLges)), (49)

95U8017 SUOWIWOD SAIIa1D 3|qeal|dde au Ag peussnob afe sepoile O ‘oSN Jo o 1o} ARIg1T 8UlUQ 8|1/ UO (SUONIPUOO-PUR-SWLB)/W0D A8 | 1M Aelq 1pul|uo//sdny) SUonIpuoD pue se | 841 89S *[£20z/70/8z] Uo Ariqiqauliuo A8|1im ‘Wed N Ad TTS9'0UI/Z00T OT/I0p/Wod Ao im Akelqipul|uo//sdny woiy pepeojumod */ ‘€202 ‘6EZT660T



4022 OHNISHI ET AL.
WILEY

Magnitude [dB]

0 T T T T T T TN T T
5 0 -
=
o —180 m————— |
3
=
= 270 |- -
-360 Lol Lol L1l
10° 10! 102

Frequency [Hz]

FIGURE 9 Frequency response data (blue solid line), well-identified continuous time model (red solid line), and discrete time model
(black dashed line). Due to the accurate model, the monotonic convergence condition is satisfied without the design of the Q-filter, as shown
in Figure 10.

respectively. The learning gain « is set to 0.3 in the following experiment. This value of 0.3 is set to accommodate quan-
tization noise, which is trial-varying disturbances, in order to achieve tracking performance close to that of encoder
quantization.

The experiments are conducted using two examples: one wherein the system is accurately identified such that
monotonic convergence can be guaranteed with Q; = I, and another wherein the Qs filter has to be designed. A feed-
back controller that guarantees the stability of the closed-loop system is designed. In the following experiments, a
proportional-differential (PD) controller with the gain crossover frequency 5.6 Hz, 30.1° phase margin, and 8.69 dB gain
margin is used. The observer is designed using the third-order plant model with a Butterworth-type pole placement with
40 Hz bandwidth. The bandwidth of the observer is a design parameter determined by the accuracy of the model and the
amount of measurement noise.

The following experimental results conclude that the presented state-tracking ILC outperforms the standard
output-tracking ILC.

5.1 | Case 1: Performance with accurately identified model

This section compares the experimental results of the output and state tracking ILCs using the accurately identified model
shown in Figure 9. Further, the differences in the characteristics of output and state tracking are clarified. Figure 10 shows
that the monotonic convergence condition is satisfied for both the output-tracking ILC and the state-tracking ILC without
designing the robustness filter, that is, Q, = 1, Qs = I,. It follows that, by (10) and Theorem 4, perfect tracking and perfect
state tracking can be achieved under the condition of no trial-varying disturbances, respectively.

Figure 11 shows the norm comparison of the two methods and further demonstrates that the presented state-tracking
ILC exhibits better performance compared to the output-tracking ILC. Figure 12 shows the tracking error comparison
at the best iterations. Although the output-tracking ILC shown in Figure 12A yields a small on-sample error, a large
intersample tracking error is observed. The intersample behavior is excited at the timing of the change in acceleration of
the reference trajectory shown in Figure 8. Since L, = (SG)~! has an unstable pole due to discretization, stable inversion
is applied, and thus the waveform of the intersample error propagates backward in time. In contrast, the state-tracking
ILC shown in Figure 12B yields a small intersample tracking error. Although intersample error occurs at the timing of
acceleration changes, unlike the output-tracking ILC, the errors are not propagated. In particular, a small tracking error
at every n = 3 sample is observed because the state-tracking ILC aims to realize perfect state tracking at every n sampling
instance.
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FIGURE 10 Convergence conditions calculated by (9) and (33), using the accurate model shown in Figure 9. Since the gain is less than
0 dB in all frequencies, both satisfy the monotonic convergence condition. (A) Output tracking ILC. (B) State tracking ILC

2
[lell3

Iteration

FIGURE 11 Experimental results with well-identified model. State tracking ILC (blue solid line with open circle) outperforms output
tracking ILC (red solid line with filled circle). Comparing the best trials, the state-tracking ILC had 12 times better tracking performance.

5.2 | Case 2: Performance with inaccurately identified model

This section presents an experimental comparison of output and state tracking ILCs using the inaccurately identified
model shown in Figure 13. Further, the difference in results owing to the robustness filter design method has been
clarified.

Figure 14 indicates that in the absence of robustness filters the convergence condition is not satisfied. Therefore,
to satisfy the monotonic convergence condition, robustness filters with the maximum bandwidth are designed for the
three conditions of output and state tracking ILCs. Compared to the intuitive design Qs, the less conservative design
Qs effectively utilizes the directions in multivariable system and thus satisfies the convergence condition with higher
bandwidth robustness filter.

Figure 15 shows the norm comparison of the three methods, demonstrating that the presented state tracking ILC with
less-conservative robustness filter design exhibits better performance compared to the output-tracking ILC. However,
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FIGURE 12 Tracking error comparison of the best iteration. The presented state-tracking ILC outperforms the output-tracking ILC in
intersample behavior (blue solid line). The output-tracking ILC achieves a small tracking error at every T; (red filled circle) at the cost of
oscillating intersample behavior. The state-tracking ILC achieves a small tracking error at every nT (black open circle), and the oscillating
intersample behavior is not observed. It is achieved by the concept of the state-tracking of the presented ILC. (A) Output tracking ILC at
iteration 29. (B) State tracking ILC at iteration 32
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FIGURE 13 Frequency response data (blue solid line), inaccurately identified continuous time model (red solid line), and discrete
time model (black dashed line). The offset in gain brings about the need for the Q; filter shown in Figure 14.

owing to the robustness filter with lower bandwidths, the intuitive design method resulted in larger tracking errors than
the others. This is because the robustness filter in intuitive design is designed directly in the lifted domain with a low
sampling period.

Figure 16 shows the tracking error comparison at the best iterations. The output-tracking ILC in Figure 16A demon-
strates a behavior similar to the Q, = 1 condition shown in Section 5.1. Although the error on-sample is small, a large
intersample tracking error is observed. Further, owing to the robustness filter with lower bandwidths, the intuitive
design shown in Figure 16B yields a large tracking error. In addition, the less conservative robustness filter design
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FIGURE 14 Convergence conditions with inaccurately identified model calculated by (9) and (33). The comparison between (B) and
(C) shows that there is a trade-off between intuitive design and high bandwidth in state-tracking ILC. (A) Output tracking ILC. Whereas

1 — GSL, (black solid line) does not satisfy the monotonic convergence condition, Q,(1 — GSL,) (blue dashed line) does with the inclusion of
Q, (pink solid line). (B) State tracking ILC, intuitive design (Qy;). Whereas o(I — LyJ,) (black solid line) does not satisfy the monotonic
convergence condition, 6(Qq (I — LyJy)) (blue dashed line) does with the inclusion of 5(Qy; ) (pink solid line). Since o(Qy (I — LyJy)) is equal to
o(Qg1)o(I — LgJy) (red dashed line), it allows for intuitive Q-filter design. (C) State tracking ILC, less conservative design (Q,). Whereas

o(I — LyJ,) (black solid line) does not satisfy the monotonic convergence condition, (blue dashed line) does with the inclusion of Qy, (pink solid
line). By using directions in multivariable system, Q,, can have a higher bandwidth than Q, which leads to a higher tracking performance.

llell3

Iteration

FIGURE 15 Experimental results with inaccurately identified model. State tracking ILC with less conservative Q, (blue solid line with
open circle) outperforms output tracking ILC (red solid line with filled circle) and state tracking ILC with intuitive design Qg (pink solid line
with open circle). In the comparison of the best trials, the state-tracking ILC with less conservative Qy, has 1.8 times better tracking
performance than the output tracking ILC.
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FIGURE 16 Tracking error comparison of the best iteration. The presented state-tracking ILC with less conservative Qy, filter design
outperforms the output-tracking ILC in intersample behavior (blue solid line). The tracking error for each sampling period T is shown by
(red filled circle), and the tracking error for each 3T is shown by (black open circle). The intuitive Qg design resulted in low tracking
performance due to the low bandwidth of the robustness filter. The trend in (A) and (C) is the same as in Figure 12: Oscillatory intersample
behavior is observed for the output-tracking ILC, while the state-tracking ILC with less-conservative design shows an improved tracking
performance. (A) Output tracking ILC at iteration 36 with Q,. (B) State tracking ILC at iteration 24 with intuitively designed Qy;. (C) State
tracking ILC at iteration 39 with less conservative Qy,

in state-tracking ILC, shown in Figure 16C, exhibits better performance than other design methods, including both
on-sample and intersample tracking errors.

6 | CONCLUSION

The developed ILC framework enables the improvement in intersample behavior by incorporating the idea of
state-tracking in design. Based on an LPTV stability analysis, convergence conditions are derived that guarantee con-
vergence and monotonic convergence. The accurate and inexpensive nonparametric frequency response data can
be exploited to verify the convergence conditions. Additionally, the design of a robustness filter that guarantees
monotonic convergence conditions even with inaccurate models is presented, demonstrating the effectiveness of the
proposed method in practical conditions. Application of the design framework to a motion system and the experimen-
tal validation demonstrate the superior tracking performance and improved intersample behavior over the traditional
output-tracking ILC.

Ongoing research focuses on an integrated optimization of observer design and robustness filters. Future research
focuses on applications to higher-order systems, including MIMO systems.

ACKNOWLEDGMENTS
This work is part of the research programme VIDI with project number 15698, which is (partly) financed by the
Netherlands Organisation for Scientific Research (NWO), and is supported by JSPS KAKENHI Grant Number 21K01012.

95U8017 SUOWIWOD SAIIa1D 3|qeal|dde au Ag peussnob afe sepoile O ‘oSN Jo o 1o} ARIg1T 8UlUQ 8|1/ UO (SUONIPUOO-PUR-SWLB)/W0D A8 | 1M Aelq 1pul|uo//sdny) SUonIpuoD pue se | 841 89S *[£20z/70/8z] Uo Ariqiqauliuo A8|1im ‘Wed N Ad TTS9'0UI/Z00T OT/I0p/Wod Ao im Akelqipul|uo//sdny woiy pepeojumod */ ‘€202 ‘6EZT660T



OHNISHI ET AL. 4027
WILEY—*Z

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest for this article.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Wataru Ohnishi 2 https://orcid.org/0000-0002-4221-9305

REFERENCES

1. vander Meulen SH, Tousain RL, Bosgra OH. Fixed structure feedforward controller design exploiting iterative trials: application to a wafer
stage and a desktop printer. J Dyn Syst Measur Control Trans ASME. 2008;130(5):051006. doi:10.1115/1.2957626
2. Mishra S, Coaplen J, Tomizuka M. Precision positioning of wafer scanners segmented iterative learning control for nonrepetitive
disturbances. IEEE Control Syst Mag. 2007;27(4):20-25.
3. Hayashi T, Fujimoto H, Isaoka Y, Terada Y. Projection-based iterative learning control for ball-screw-driven stage with consideration of
rolling friction compensation. IEEJ J Ind Appl. 2020;9(2):132-139. d0i:10.1541/ieejjia.9.132
4. Oomen T. Advanced motion control for precision mechatronics: control, identification, and learning of complex systems. IEEJ J Ind Appl.
2018;7(2):127-140.
5. Csencsics E, Ito S, Schlarp J, Schitter G. System integration and control for 3D scanning laser metrology. IEEJJ Ind Appl. 2019;8(2):207-217.
doi:10.1541/ieejjia.8.207
6. Wallén J, Norrl6f M, Gunnarsson S. A framework for analysis of observer-based ILC. Asian J Control. 2011;13(1):3-14. doi:10.1002/asjc.261
7. Oomen T. Learning for advanced motion control. Proceedings of the International Workshop on Advanced Motion Control; 2020;
Kristiansand, Norway.
8. Astrom K, Hagander P, Sternby J. Zeros of sampled systems. Automatica. 1984;20(1):31-38.
9. Hagiwara T, Yuasa T, Araki M. Stability of the limiting zeros of sampled-data systems with zero-and first-order holds. Int J Control.
1993;58(6):1325-1346.
10. Tomizuka M. Zero phase error tracking algorithm for digital control. J Dyn Syst Meas Control. 1987;109:65-68.
11. van Zundert J, Oomen T. On inversion-based approaches for feedforward and ILC. Mechatronics. 2018;50(September):282-291. doi:10.
1016/j.mechatronics.2017.09.010
12. Oomen T, van de Wijdeven J, Bosgra O. Suppressing intersample behavior in iterative learning control. Automatica. 2009;45(4):981-988.
doi:10.1016/J. AUTOMATICA.2008.10.022
13. Fujimoto H, Hori Y, Kawamura A. Perfect tracking control based on multirate feedforward control with generalized sampling periods.
IEEE Trans Ind Electron. 2001;48(3):636-644.
14. Ohnishi W, Beauduin T, Fujimoto H. Preactuated multirate feedforward control for independent stable inversion of unstable intrinsic and
discretization zeros. IEEE/ASME Trans Mechatron. 2019;24(2):863-871. doi:10.1109/TMECH.2019.2896237
15. Ohnishi W, Strijbosch N, Oomen T. Multirate state tracking for improving intersample behavior in iterative learning control. Proceedings
of the IEEE International Conference on Mechatronics; 2021; Chiba, Japan.
16. Chen T, Francis BA. Optimal Sampled-Data Control Systems. Springer; 1995.
17. Bristow DA, Tharayil M, Alleyne AG. A survey of iterative learning control. IEEE Control Syst Mag. 2006;26(3):96-114. do0i:10.1109/MCS.
2006.1636313
18. Moore KL. Iterative learning control for deterministic systems. In: Grimble MJ, Johnson MA, eds. Advances in Industrial Control. Springer;
1993:23-36.
19. Norrl6f M, Gunnarsson S. Time and frequency domain convergence properties in iterative learning control. Int J Control.
2002;75(14):1114-1126. doi:10.1080/00207170210159122
20. Oomen T, Rojas CR. Sparse iterative learning control with application to a wafer stage: achieving performance, resource efficiency, and
task flexibility. Mechatronics. 2017;47:134-147. d0i:10.1016/j.mechatronics.2017.09.004
21. Blanken L, Oomen T. Multivariable iterative learning control design procedures: from decentralized to centralized, illustrated on an
industrial printer. IEEE Trans Control Syst Technol. 2020;28(4):1534-1541. d0i:10.1109/TCST.2019.2903021
22. Strijbosch N, Oomen T, Blanken L. Frequency domain design of iterative learning control and repetitive control for complex motion
systems. Proceedings of the IEEJ International Workshop on Sensing, Actuation, Motion Control, and Optimization; 2018; Tokyo, Japan.
23. Bittanti S, Colaneri P. Periodic Systems: Filtering and Control. Springer; 2009.

How to cite this article: Ohnishi W, Strijbosch N, Oomen T. State-tracking iterative learning control in
frequency domain design for improved intersample behavior. Int J Robust Nonlinear Control.
2023;33(7):4009-4027. doi: 10.1002/rnc.6511

95U8017 SUOWIWOD SAIIa1D 3|qeal|dde au Ag peussnob afe sepoile O ‘oSN Jo o 1o} ARIg1T 8UlUQ 8|1/ UO (SUONIPUOO-PUR-SWLB)/W0D A8 | 1M Aelq 1pul|uo//sdny) SUonIpuoD pue se | 841 89S *[£20z/70/8z] Uo Ariqiqauliuo A8|1im ‘Wed N Ad TTS9'0UI/Z00T OT/I0p/Wod Ao im Akelqipul|uo//sdny woiy pepeojumod */ ‘€202 ‘6EZT660T


https://orcid.org/0000-0002-4221-9305
https://orcid.org/0000-0002-4221-9305
info:doi/10.1115/1.2957626
info:doi/10.1541/ieejjia.9.132
info:doi/10.1541/ieejjia.8.207
info:doi/10.1002/asjc.261
info:doi/10.1016/j.mechatronics.2017.09.010
info:doi/10.1016/j.mechatronics.2017.09.010
info:doi/10.1016/J.AUTOMATICA.2008.10.022
info:doi/10.1109/TMECH.2019.2896237
info:doi/10.1109/MCS.2006.1636313
info:doi/10.1109/MCS.2006.1636313
info:doi/10.1080/00207170210159122
info:doi/10.1016/j.mechatronics.2017.09.004
info:doi/10.1109/TCST.2019.2903021

	State-tracking iterative learning control in frequency domain design for improved intersample behavior 
	1 INTRODUCTION
	1.1 Notations

	2 PROBLEM FORMULATION
	2.1 Frequency domain design of output tracking ILC
	2.2 Multirate inversion
	2.3 State tracking ILC setup
	2.4 Problem definition and contributions

	3 APPROACH AND ANALYSIS
	3.1 Analysis in a single iteration
	3.2 Stability analysis

	4 DESIGN OF STATE-TRACKING ILC
	4.1 Robustness [[math]] filter design for monotonic convergence
	4.1.1 Intuitive design
	4.1.2 Less conservative design

	4.2 Guideline for the learning filter [[math]] design
	4.3 Limited design effort for user

	5 EXPERIMENTAL VALIDATION
	5.1 Case 1: Performance with accurately identified model
	5.2 Case 2: Performance with inaccurately identified model

	6 CONCLUSION

	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

