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LAYMEN’S SUMMARY

Suppose you have n points on a flat surface and that no more than three of them lie on the
same straight line. How large a group of points can you always find such that at most two
of them lie on a straight line?
This is an example of a problem in discrete geometry. In figure 1, one of these cases is
illustrated, namely the case for 6 points. We can check that the size of the largest group
of points we can make that has at most two points on a straight line is 4. An example of
such a 4 point set is the set A, circled in red. Now the problem wants this number for
any arrangement of n points. This specific arrangement minimises the max number of
points such that at most two of those points lie on a line. In 1991, Füredi proved that you
can always find a subset of size roughly

√
n logn, but this had an upper bound that was

not really tight. That is where the hypergraph container method comes into play. This
method gives a strong upper bound on the problem. In this thesis we will look at this
container method, how it works and how it can be applied to such problems.

Figure 1: Case n = 6

vii





SUMMARY

I N this thesis, we explore the method of hypergraph containers and its applications to
problems in extremal combinatorics and discrete geometry. We start by introducing

containers on triangle-free graphs and use it to give a lower bound on the number of
triangle-free graphs on n vertices. We then generalise to the container algorithm for in-
dependent sets in graphs, which is a version of regular graphs. The proof of this theorem
is an algorithm. We study this algorithm and apply it to the Erdős-Rényi random graph
G(n, p). After this we expand to hypergraphs, specifically 3-uniform hypergraphs. Fi-
nally we look at the application to a problem in discrete geometry:
Given n points in the Euclidean plane R2, with at most three on any line, how large a sub-
set are we guaranteed to find in general position (i.e., with at most two on any line)?
A strong upper bound is obtained by using the hypergraph container method.
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NOTATION

T HROUGHOUT the thesis we will use the following notation.

Definition 0.1 (Asymptotic notation). let f , g be functions from N to R. We use the fol-
lowing asymptotic notation:

• f = o(g ) if limn→∞ f /g = 0,

• f =O(g ) if there exists a constant C > 0 and n0 ∈N such that | f (n)| ≤C g (n) for all
n ≥ n0,

• f = Oϵ(g ) if for every fixed ϵ > 0, there exists a constant C = C (ϵ) > 0 and n0 ∈ N
such that | f (n,ϵ)| ≤C (ϵ) · g (n,ϵ) for all n ≥ n0,

• f =Ω(g ) if g =O( f ), and

• f =Θ(g ) if f =O(g ) and f =Ω(g ).

Definition 0.2. We write f (n) ≪ g (n) if f (n)
g (n) → 0 as n →∞.

Definition 0.3. We write with high probability, or w.h.p., when the probability that the
event under consideration occurs tends to 1 as n →∞. This event should depend on n.
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1
INTRODUCTION

T HE method of (hypergraph) containers is a powerful tool that can help characterise
the typical structure and/or answer extremal questions about families of discrete

objects with a prescribed set of local constraints [1]. These questions arise in extremal
graph theory, additive combinatorics, discrete geometry, coding theory, and Ramsey the-
ory. These problems usually avoid forbidden structures, such as the family of H-free
graphs 1. We might wonder what we can say about the independent sets of such graphs.
This is where the (hypergraph) container method comes into play.

The aim of this thesis is to make this rather technical concept of the hypergraph con-
tainer method more easily accessible. From section 2.2, we will go through chapter 11
of Yufei Zhao’s lecture notes [2]. Here we will build up the needed knowledge for the ap-
plications, and also implement the graph container algorithm in Python 2. We will also
be going through an easy application, which is counting triangle-free graphs on n ver-
tices. Many of the definitions throughout this thesis come from the lecture notes of the
courses Graph Theory [3] and Extremal Combinatorics [4].

In the final chapter, we will go through an application. This application is worked
out in [5] but is quite technical. Here the aim is to get an intuition of how the hypergraph
container method can be applied to this problem.

1H-free graphs are graphs that do not contain H as a subgraph. See definition 2.3.
2https://www.python.org.
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2
PRELIMINARIES

T HE container method works with graphs. In this chapter we will give the necessary
background information from the field of (extremal) graph theory. We will also see

how we can use the bipartite graph K⌊n/2⌋,⌈n/2⌉ to obtain a lower bound for the number
of triangle-free graphs on n edges.

2.1. GRAPHS

L ET us start by defining graphs.

Definition 2.1. A graph G is a pair of sets (V ,E), where V is nonempty and E is a set of
pairs of vertices, that is, E ⊆ {{u, v} : u, v ∈ V ,u ̸= v}. The set V is known as the set of
vertices and the set E is known as the set of edges.

A graph is a nice way to visualise a structure. You could see this as vertices being related
to each other if they are connected by an edge.

Remark 2.2. We call V (G) the set of vertices of the graph G and E(G) the set of edges of
G . In this thesis, we will use E and E(G) interchangeably, similar to V and V (G).

Definition 2.3. Given a graph G = (V ,E), a subgraph of G is a graph H = (V ′,E ′) such

that V ′ ⊆V and E ′ ⊆ E ∩ (V ′
2

)
.

Remark 2.4. With
(V

2

)
we mean all combinations of 2 vertices from the set V . This corre-

spond to the set of all possible edges that can occur in the graph G = (V ,E).

We see that a subgraph is a smaller graph obtained from the original graph. We need to
make sure that for any edge we take from the original graph G , we also take the vertices
that belong to the edge. See the red subgraph in figure 2.1.

Definition 2.5. A complete graph is a graph where E = (V
2

)
and |V | = n. We denote this

graph by Kn .

5
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Figure 2.1: Example of a subgraph.

In a complete graph, every vertex is connected by every other vertex with an edge. In this
way, we obtain a “completed graph” .

Example 2.6. For n = 3, we have the complete graph K3. This is what we call a triangle.
This is shown in figure 2.2.

Figure 2.2: The complete graph K3, also known as a triangle.

Definition 2.7. A triangle free graph is a graph that does not contain K3 as a subgraph.

Example 2.8. An example of a triangle-free graph is the famous Petersen graph. This
graph is illustrated in figure 2.3.

Figure 2.3: The Petersen graph.
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Definition 2.9. Two vertices u, v ∈V in a graph G = (V ,E) are called adjacent if {u, v} ∈ E
and non-adjacent if {u, v} ∉ E . A set of pairwise adjacent vertices in a graph is called
a clique and a set of pairwise non-adjacent vertices is called an independent set (or a
co-clique).

Remark 2.10. A singular vertex is both a clique and an independent set on its own.

Example 2.11. Let G = (V ,E) be the graph with V = {a,b,c} and E = {{a,b}, {b,c}} as in
figure 2.4.

b

a c

Figure 2.4: Cliques and independent sets in a graph.

Then the cliques of G are {a}, {b}, {c}, {a,b} and {b,c}. The independent sets of G are
{a}, {b}, {c} and {a,c}.

Definition 2.12. Let G = (V ,E) a graph and u ∈ V . The set N (u) = {v ∈ V : {u, v} ∈ E }
is known as the neighbourhood of u. The size of this set is known as the degree of the
vertex u, denoted by deg(u) = |N (u)|.
Example 2.13. We see that degree of a vertex v is the number of edges that are connected
to v . This is illustrated in figure 2.5. We see that vertex v has degree 4.

v

Figure 2.5: The degree of vertex v is 4.

Definition 2.14. A graph G = (V ,E) is called bipartite if the vertex set V can be parti-
tioned into two independent subsets A,B . We denote the complete bipartite graph by
Km,n where |A| = m and |B | = n.

2.2. LOWER BOUND ON TRIANGLE-FREE GRAPHS

I MAGINE that we are trying to find the number of triangle-free graphs on n vertices. If
we take K⌊n/2⌋,⌈n/2⌉, where ⌊x⌋ rounds x down to the nearest integer and ⌈x⌉ rounds x
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up to the nearest integer, we have a graph on n vertices. Note that this graph is triangle-
free as a bipartite graph cannot contain a triangle 1. This implies that all subgraphs of
this graph are also triangle-free. This gives us a lower bound for the number of triangle-

free graphs on n vertices, namely 2⌊n/2⌋⌈n/2⌉ = 2⌊n2/4⌋ subgraphs, as we have ⌊n/2⌋ · ⌈n/2⌉
edges. So we have at least 2⌊n2/4⌋ triangle-free graphs. This is illustrated in figure 2.6.
The oldest result in extremal graph theory is the following theorem. This gives an upper
bound on the number of edges in a triangle-free graph G on n edges. The theorem was
proven by Mantel [6] in 1907.

⌊n
2 ⌋ vertices ⌈n

2 ⌉ vertices

Figure 2.6: K⌊n/2⌋,⌈n/2⌉

Theorem 2.15 (Mantel’s Theorem). A triangle-free graph G on n vertices has at most⌊
n2

4

⌋
edges.

Remark 2.16. If we use K⌊n/2⌋,⌈n/2⌉, we obtain equality in Mantel’s theorem, as found in
the lower bound found before using figure 2.6.

Definition 2.17. For events A1, . . . , An , we define the union bound as

P

(
n⋃

i=1
Ai

)
≤

n∑
i=1

P (Ai ) .

We will now try to get an upper bound. One could think of using the union bound to
determine the amount of triangle-free graphs on n vertices, but that would have too
many events. Perhaps we can use Mantel’s theorem to bound over all maximal triangle-
free graphs? This will also be too wasteful. It turns out that the container method is a
more efficient union bound that we can apply to get a better bound [2]. We will prove
this in section 3.1.
Before we can define containers, we first need to explain what hypergraphs are.

Definition 2.18. A hypergraph H is a pair (V ,E), where:

• V is a nonempty set of vertices,

1You cannot split a triangle into 2 independent sets.
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• E is a set of nonempty subsets of V , called hyperedges.

In other words, each edge of a hypergraph is a set of vertices. We say that H is a r -uniform
hypergraph if every hyperedge has exactly r vertices; that is, E ⊆ (V

r

)
.

Example 2.19. Let us look at two examples of hypergraphs. In figure 2.7a we can see a
hypergraph H1 and in figure 2.7b we see a 3-uniform hypergraph H2.

(a) Hypergraph H1 (b) 3-uniform hypergraph H2

Figure 2.7: Example of two hypergraphs

An independent set in a hypergraph is defined similarly as its regular graph counterpart.
Given a hypergraph H , an independent set of H is a set of vertices such that no hyperedge
is fully contained within the independent set.

Definition 2.20. An independent set I ⊆ V in a hypergraph H = (V ,E) is a set such that
∀e ∈ E : e ⊈ I .

We are now in a position to “define” containers. Given a hypergraph H with controlled
degrees 2, we can find containers with the following properties:

• Each container is a subset of vertices of the hypergraph H .

• Every independent set of the hypergraph H is a subset of some container.

• The total amount of containers is relatively small.

• Each container is not too large. In fact, it is not much larger than the maximum
size of an independent set.

2See conditions in theorem 5.2.





3
CONTAINERS FOR TRIANGLE-FREE

GRAPHS

I N this chapter, we will introduce the concept of containers. The container method is a
useful tool in combinatorics. We start with containers for triangle-free graphs to give

an intuition for the container method, and later we will expand to hypergraphs.

3.1. APPLICATION TO TRIANGLE-FREE GRAPHS

A N example of an application of the container method is to count the number of
triangle-free graphs on n vertices. We can model this as a 3-uniform hypergraph.

This goes as follows:
We have the original graph G , where

• |V (G)| = n, and

• a triangle in G is a set of edges {e1,e2,e3} ⊆ E(G).

We now model this as the following hypergraph H :

• V (H) = E(Kn), and

• E(H) = {{e1,e2,e3} ⊆ E(Kn) : e1,e2,e3 form a triangle}.

Here, an independent set of V (H) corresponds to a triangle-free graph in G . See example
3.1.

Example 3.1. Let us see a visual example of how a graph G can be turned into a 3-uniform
hypergraph H that can be used to count the triangle-free graphs in G . In figure 3.1 you
can see how a graph G on the left with five vertices is transformed to the corresponding
hypergraph H on the right. Here the graph has two triangles: a red one and a blue one.
These are coloured just for the visualisation. The dotted lines do not exist in this graph,
but are for reference to understand how they transform to the hypergraph. They visualise
the independent sets within G .

11
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v3

v4

v1 v2

v5

e1

e2e3

e4
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e9

e10

e1

e2
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e7
e8

e9

e10
E1

E2

Figure 3.1: Example of a transformation from a regular graph to a hypergraph.

We will now formulate our first theorem using containers. This theorem is from [2].

Theorem 3.2 (Containers for Triangle-Free Graphs). For every ϵ> 0, there exists a C > 0,
such that for every n ∈N, there is a collection C of graphs on n vertices, with

|C| ≤ nC n3/2

such that

(a) every G ∈ C has at most ( 1
4 +ϵ)n2 edges, and

(b) every triangle-free graph is contained in some G ∈ C.

This theorem tells us that for every n, we can make a collection C of containers such that

the number of containers is smaller than nC n3/2
and every triangle-free graph is con-

tained in one of these containers. Since every G ∈ C has at most
( 1

4 +ϵ
)

n2 edges, the
largest triangle free graph will have this amount of edges too.

Theorem 3.2 is an older theorem, and uses regular graphs instead of hypergraphs. You
can, however, still view this as a result of using hypergraphs:

• The collection C of graphs on n vertices is equal to a collection of vertices from
V (H).

• Every graph G ∈ C has at most
( 1

4 +ϵ
)

n2 edges, thus every subset of a container has
at most

( 1
4 +ϵ

)
n2 points.

• Every triangle-free graph is contained in some G ∈ C. This corresponds to the fact
that every independent set in V (H) is in a container.

Using theorem 3.2, we can prove the following result.

Theorem 3.3 (Erdős, Kleitman, Rothschild, 1973). The number of triangle-free graphs

on n vertices is 2n2/4+o(n2).
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Proof. Let ϵ> 0 be arbitrarily small. Let C be as in theorem 3.2. Then by said theorem,

(a) every G ∈ C has at most ( 1
4 +ϵ)n2 edges,

(b) and every triangle-free graph is contained in some G ∈ C.

Then we have

|C| ·2( 1
4 +ϵ)n2 ≤ 2( 1

4 +ϵ)n2 ·nC n3/2

= 2( 1
4 +ϵ)n2 ·2C n3/2 logn

= 2( 1
4 +ϵ)n2·C n3/2 logn .

And since ϵ> 0 was arbitrarily small, we conclude that the number of triangle-free graphs

on n vertices is 2( 1
4 +o(1))n2 = 2n2/4+o(n2).

We will need the following two definitions to understand the Erdős-Stone-Simonovits
theorem.

Definition 3.4. We write ex(n, H) for the maximum number of edges in a n-vertex graph
G without H as a subgraph.

Definition 3.5. A k-colouring of a graph G = (V ,E) is a labelling f : V → {1,2, . . . ,k}. It is
called a proper k-colouring if for all {x, y} ∈ E , f (x) ̸= f (y). A graph is called k-colourable
if it has a proper k-colouring. The chromatic number χ(G) is the minimum k such that
G is k-colourable.

The following theorem allows you to count not only triangle-free graphs, but any H-free
graph. The Erdős-Stone-Simonovits theorem says that for a non-bipartite graph H ,

ex(n, H) =
(
1− 1

χ(H)−1
+o(1)

)(
n

2

)
, (3.1)

and then the number of H-free graphs on n vertices is equal to 2(1+o(1))ex(n,H). One might
wonder if this theorem gives a better bound on the number of triangle-free graphs than
theorem 3.3.

ex(n,K3) =
(
1− 1

χ(K3)−1
+o(1)

)(
n

2

)

=
(
1− 1

2
+o(1)

)(
n

2

)

=
(

1

2
+o(1)

)(
n

2

)
.

Using the second part of the theorem, we conclude that the number of triangle-free
graphs on n vertices is equal to

2(1+o(1))
( 1

2 +o(1)
)(n

2

)
= 2

( 1
2 +o(1)

) n(n−1)
2 = 2

n(n−1)
4 +o(n2).

We see that theorem 3.3 gives a much better bound, showing how important the con-
tainer method is.
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3.2. MANTEL’S THEOREM IN RANDOM GRAPHS

L ET us now see a first problem where the container method can be applied. Theorem
3.8 is not a direct application of the container method, as it was originally proven

without the use of it. It, however, can still be proven using the container method, which
might give a better understanding of how containers can be used.

We first have to define what the random graph G(n, p) is.

Definition 3.6. We call G(n, p) or Gn,p the random graph on n vertices with probability
p. This graph is obtained by independently taking each of the

(n
2

)
pairs of vertices as an

edge with probability p.

In remark 3.9 we will make use of the expectation.

Definition 3.7. The expectation of a random variable X is defined by

E [X ] =
∑

x∈X (Ω)
x ·P (X = x) .

Theorem 3.8. If p ≫ 1/
p

n, then with probability 1−o(1), every triangle-free subgraph
of G(n, p) has at most ( 1

4 +o(1))pn2 edges.

Remark 3.9. The statement is false for p ≪ 1/
p

n. Indeed, we have that the expected
number of triangles [7] is

E
[
number of triangles in G(n, p)

]
= ∑

i< j<k
P

(
triangle {i , j ,k} is present in G(n, p)

)
= (number of triangles in Kn)×P(

each triangle is present
)

=
(

n

3

)
p3

=O(n3p3).

(3.2)

Note that the expected number of edges [7] is equal to

E
[
number of edges in G(n, p)

]
= ∑

i< j
P

(
edge {i , j } is present in G(n, p)

)
= (number of edges in Kn)×P(

each edge is present
)

=
(

n

2

)
p.

(3.3)

Thus, we have w.h.p. n2p
2 edges. As n3p3 ≪ n2p, we can remove one edge of each of the

O(n3p3) triangles to make the graph triangle-free, which is o(n2p) edges.
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Proof. We will prove a weaker result for p ≫ lognp
n

. Let ϵ > 0 be arbitrarily small. Let C
be a set of containers for n-vertex triangle-free graphs satisfying theorem 3.2. For every
G ∈ C, e(G) ≤ ( 1

4 +ϵ
)
n2, so applying the Chernoff bound, theorem 5.0.7 from [2],

P

(
e(G ∩G(n, p)) >

(
1

4
+2ϵ

)
n2p

)
≤ e−Ωϵ(n2p).

Since every triangle-free graph is contained in some G ∈ C, we take a union bound over
C to obtain

P

(
G(n, p) has a triangle-free subgraph with >

(
1

4
+2ϵ

)
n2p edges

)
≤ ∑

G∈C
P

(
e(G ∩G(n, p)) >

(
1

4
+2ϵ

)
n2p

)
≤ |C|e−Ωϵ(n2p)

≤ eOϵ(n3/2 logn−Ωϵ(n2p))

= o(1),

provided that p ≫ lognp
n

.





4
GRAPH CONTAINERS

I N this section we will look at the container method for independent sets in graphs. We
will take a look at the following theorem from [2].

Theorem 4.1 (Container Theorem for Independent Sets in Graphs). For every c > 0,
there exists a δ> 0 such that the following holds.
Let G = (V ,E) be a graph with average degree d and maximum degree at most cd . There
exists a collection C of subsets of V with

|C| ≤
(

|V |
≤ 2δ|V |

d

)
(4.1)

such that

• every independent set I of G is contained in some C ∈ C,

• |C | ≤ (1−δ)|V | for every C ∈ C.

Definition 4.2. A maximal independent set is an independent set that cannot be ex-
tended with another vertex of the graph. In other words, it is not contained in any larger
independent set.

This theorem tells us that if we have a graph with a controlled degree (a constant factor
times the average degree), there is a collection of containers C. Equation 4.1 in the theo-
rem tells us something about the number of containers in the collection C. It shows there
are not too many containers. Here,

( n
≤i

)= (n
0

)+(n
1

)+·· ·+(n
i

)
. The most valuable result are

the two points below. As every independent set I of G is contained in a container C , the
maximal independent set is also. The second point gives an upper bound on the size of
a container. Essentially it tells us we have removed δ|V | vertices from the graph. As the
maximal independent set is contained in this container, it also gives an upper bound on
the size of this set. The theorem is proved using an algorithm from [2] that outputs the
container and also a fingerprint S, related to this container.

17
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Algorithm 4.3 (The Graph Container Algorithm). We input a maximal independent set
I ⊆V . The output is a “fingerprint” S ⊆ I of size smaller than 2δ|V |

d , and a container C ⊇ I
which only depends on S. In the algorithm we will maintain a partition V = A ∪S ∪ X ,
where

• A is the set with available vertices, initially A =V .

• S is the current fingerprint, initially S =;.

• X is the set with the excluded vertices, initially X =;.

We will call the max-degree order of G[A] the ordering of A by the degree of its vertices in
G[A]. We order it by putting the vertex with the largest degree first, and break ties accord-
ing to some arbitrary predetermined ordering of V. In section 4.1, the algorithm breaks
ties by ordering by vertex number in a descending order. Now we state the algorithm.

While |X | < δ|V |:
1. Let v be the first vertex of I ∩ A in the max-degree order on G[A].

2. Add v to S.

3. Add the neighbours of v to X .

4. Add vertices preceding v in the max-degree order on G[A] to X .

5. Remove from A all the new vertices added to S ∪X .

With this algorithm and the fingerprint obtained by it, we get a stronger theorem [2] that
is relevant for some applications.

Theorem 4.4 (Graph Container Theorem with Fingerprints). For every c > 0, there exists
a δ> 0 such that the following holds.
Let G = (V ,E) be a graph with average degree d and maximum degree at most cd . Writing
I for the collection of independent sets of G , there exist functions

S : I → 2V and A : 2V → 2V

(one only needs to define A(·) on sets in the image of S) such that, for every I ∈ I ,

• S(I ) ⊆ I ⊆ S(I )∪ A(S(I )),

• |S(I )| ≤ 2δ|V |
d ,

• |S(I )∪ A(S(I ))| ≤ (1−δ)|V |.
We see that the fingerprint is a subset of the independent set and hence the container
that belongs to the independent set. Somehow, this fingerprint tells us something about
the container it is in. We also see the bounds from theorem 4.1 back in the last 2 bullet
points.
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4.1. IMPLEMENTING THE ALGORITHM

T O better understand this algorithm, the choice was made to implement it into an
existing coding language. This was done by writing the necessary code for Python,

linked in appendix A.1.
The following observations were made:

• The union of the output sets S and A is the container produced by the algorithm,
and I ⊆ S ∪ A.

• We see that if the output set A is empty, the maximal independent set I is a con-
tainer itself.

• Each container is the union of all the maximal independent sets it contains.

• All maximal independent sets with the same fingerprint belong to the same con-
tainer.

• We see that all vertices of S together with their neighbouring vertices cover the
whole graph except for the vertices in A.

• The input maximal independent set I should always be sorted on reversed order
to keep consistency throughout the algorithm.

• If there exists a v ∈V (G) with deg(v) = n −1, then v itself is a container.

To give an illustration of the algorithm, we will look at an example of running the algo-
rithm on G25,0.5.

Example 4.5 (Running the Graph Container Algorithm on G25,0.5). We run the algorithm
on the graph from figure 4.1. The input was the maximal independent set I = {24,15,8,6},
and the output was the fingerprint S = {24,8} and the container S∪ A = {20,5,6,24,8,15}.
It is clear that I ⊆ S ∪ A. The code that generated this example can be found in appendix
A.3.

Let us go through the algorithm step by step now. We run the algorithm on the graph of
figure 4.1. As input, it has the graph G itself and maximal independent set I = {24,15,8,6}.
We use a command from the [8] plugin to find this maximal independent set.

First, we initialise by making sets and calculating the average degree we will need later
in the algorithm.

• Create A,S,V .

• Calculate the average degree d .

• Calculate δ 1.

• Create the max-degree order as G[A].

1Here we used that δ< 1/4c(c +1), obtained from [9]. In the algorithm we implemented this as δ= 1/4c(c +1) ·
0.999 with c = m/d with m the maximum degree
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Figure 4.1: Algorithm applied to G25,0.5 with maximal independent set {24,15,8,6}.

We are going to run the algorithm on G(25,0.5), with independent set I = {24,15,8,6}.
The max-degree order on G[A] is

G[A] : {24,19,13,12,7,11,4,22,21,16,10,9,8,6,0,20,18,23,14,1,17,2,3,15,5}.

We have the following constants:

• Average degree d = 11.68,

• δ= 0.732650576444924.

We now have the following partition which we will add vertices from and to throughout
the algorithm.

• A = {24,19,13,12,7,11,4,22,21,16,10,9,8,6,0,20,18,23,14,1,17,2,3,15,5},

• S = {},

• X = {}.

We now start the first iteration of our algorithm. We know that |X | = 0 and δ|V | ≈ 18,316,
so we start the loop. We start by creating the intersection on G[A], which is

I ∩ A = {24,8,6,15}. (4.2)

The steps are executed as follows:
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1. The first vertex with highest degree in I ∩ A is v = 24.

2. We add this v to S.

3. Now we add all neighbours of v to X , which are

N (v) = {1,2,3,4,7,9,10,11,12,13,14,16,19,21,22}. (4.3)

4. The vertices preceding v from G[A] are now added to X . There are none left to add
as they have already been added in the previous step.

5. From A, we remove all these new vertices from S∪X . Then, our sets look as follows:

• A = {8,6,0,20,18,23,17,15,5},

• S = {24},

• X = {1,2,3,4,7,9,10,11,12,13,14,16,19,21,22}.

This concludes the first iteration of the algorithm.
We continue with the second iteration of our algorithm. We now have |X | = 15 andδ|V | ≈
18.316, so we continue the loop. We again calculate the intersection, which is equal to

I ∩ A = {8,6,15}.

We now go through the same steps again:

1. The first vertex in I ∪ A is v = 8.

2. We add v to S.

3. We add the neighbours of v to X , which are

{0,1,2,4,7,10,14,17,18,19,22,23}. (4.4)

4. We add the vertices preceding v from G[A] to X . There are again none to add.

5. From A, we remove all these new vertices from S∪X . Our sets now look as follows:

• A : {6,20,15,5},

• S : {24,8},

• X : {0,1,2,3,4,7,9,10,11,12,13,14,16,17,18,19,21,22,23}.

We then move on to the third iteration. We see that |X | = 20 and δ|V | ≈ 18.316, so |X |≮
δ|V |. We conclude that we terminate the algorithm. The algorithm now outputs

• the fingerprint S = {24,8},

• the container S ∪ A = {20,5,6,24,8,15},

• and I = {24,15,8,6} to check if it is contained in the container.
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This example used one of the many maximal independent sets I . To better understand
that the fingerprints are unique, in table 4.1 we see every maximal independent set I
and the output of the algorithm. We used [10] to find all of these maximal independent
sets. We see here that independent sets with the same fingerprint belong to the same
container. We see that this algorithm “proves” the theorem as it meets the output condi-
tions. We have δ≈ 0.733 and d = 11.68.

• The amount of unique containers in table 4.1 is |C| = 66 and this is clearly less than(
|V |

≤ 2δ|V |
d

)
≈

(
25

≤ 3.138

)
=

(
25

0

)
+

(
25

1

)
+

(
25

2

)
+

(
25

3

)
= 2626.

• Every independent set is contained in some C ∈ C as every independent set is a
subset of some maximal independent set I which is contained in a container.

• The last statement in the theorem says that each container C is smaller than (1−
δ)|V | ≈ 6.675. This is also satisfied since the largest container has 6 points.
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Table 4.1: All maximal independent sets and their outputs.

Maximal independent set I Fingerprint S Container S ∪ A
{6,4,1,0} {0,4,6} {0,1,4,6,23,15}
{7,6,3} {6,7} {3,6,7}
{9,5,3,0} {0,9} {0,9,3,5}
{9,8,5,3} {8,9} {3,20,5,8,9}
{10,1,0} {0,10} {0,1,23,10,15}
{10,9,0} {9,10} {0,20,9,10,14}
{11,6,1} {11,6} {1,11,6,15}
{11,9,8,5} {9,11} {17,2,5,8,9,11}
{13,10,1} {10,13} {1,10,13,15}
{13,10,7} {13,7} {3,21,5,7,10,13}
{13,12,1} {12,13} {1,3,8,12,13}
{13,12,8,3} {12,13} {1,3,8,12,13}
{14,6,4,1} {4,6,14} {1,4,6,14}
{15,8,6,3} {8} {3,20,5,6,8,15}
{15,13,10} {10,13} {1,10,13,15}
{16,14,6} {16,6} {16,0,6,14,15}
{16,15,5,0} {16,0} {16,0,5,15}
{16,15,6,0} {16,6} {16,0,6,14,15}
{16,15,10,0} {16,0,10} {16,0,10,15}
{16,15,11,5,2} {16,2,11} {16,2,5,11,15}
{16,15,11,8,5} {16,8,11} {16,5,6,8,11,15}
{16,15,11,8,6} {16,8,11} {16,5,6,8,11,15}
{17,7,5,3,2} {17,7} {17,2,3,5,7}
{17,11,9,5,2} {9,11} {17,2,5,8,9,11}
{17,14,9,5,3,2} {9,14} {17,2,3,5,9,14}
{17,15,4,2} {17,4} {17,2,4,15}
{17,15,5,3,2} {17} {17,2,3,5,15}
{17,15,11,5,2} {17,11} {17,2,5,11,15}
{18,16,14,5,2} {16,18} {16,18,2,5,14}
{18,17,14,4,2,1} {18,4,14} {1,18,17,4,2,14}
{18,17,14,5,3,2} {17,18,14} {17,18,2,3,5,14}
{19,2,1} {1,19} {1,2,19}
{19,9,5,3,2} {9,19} {2,19,3,5,9}
{19,12,1} {19,12} {1,19,3,23,12}
{19,15,5,3,2} {2,19} {2,19,3,5,15}
{19,16,15,5,2} {16,19} {16,2,19,5,15}
{20,9,8,5} {8,9} {3,20,5,8,9}
{20,12,8} {8,12} {8,3,12,20}
{20,14,10,9} {9,10} {0,20,9,10,14}
{20,16,15,8,5} {16,8} {16,20,5,6,8,15}
{20,16,15,10} {16,10,20} {16,18,20,10,14,15}
{20,17,14,9,5} {9,20} {17,20,5,9,14}



4

24 4. GRAPH CONTAINERS

{20,18,12,1} {12,20} {1,18,12,20}
{20,18,14,10,1} {10,20} {1,18,20,10,14,15}
{20,18,16,14,5} {16,20} {16,18,20,5,14,15}
{20,18,16,14,10} {16,10,20} {16,18,20,10,14,15}
{20,18,17,14,1} {18,20} {1,18,17,20,5,14}
{20,18,17,14,5} {18,20} {1,18,17,20,5,14}
{21,7,5,3,2} {21,7} {2,3,21,5,7}
{21,13,7,5,3} {13,7} {3,21,5,7,10,13}
{21,15,5,3,2} {2,21} {2,3,21,5,15}
{21,15,13,8,5,3} {21,13} {3,21,5,8,13,15}
{21,20,15,8,5} {8,21} {3,20,21,5,8,15}
{22,10,7} {22,7} {17,2,21,22,7,10}
{22,12,1} {12,22} {1,12,22}
{22,14,10,1} {10,22} {1,22,9,10,14}
{22,14,10,9} {10,22} {1,22,9,10,14}
{22,17,7,2} {22,7} {17,2,21,22,7,10}
{22,17,11,2,1} {11,22} {1,17,2,22,9,11}
{22,17,11,9,2} {11,22} {1,17,2,22,9,11}
{22,17,14,4,2,1} {4,22} {1,17,2,4,22,14}
{22,17,14,9,2} {9,22} {17,2,22,9,14}
{22,21,7,2} {22,7} {17,2,21,22,7,10}
{23,14,6,3} {6,23} {3,6,23,14,15}
{23,14,6,4} {4,6,23} {4,6,23,14,15}
{23,15,6,3,0} {0,6} {0,1,3,6,23,15}
{23,15,6,4,0} {0,4,6} {0,1,4,6,23,15}
{23,15,10,0} {0,10} {0,1,23,10,15}
{23,17,15,4} {4,23} {17,4,23,14,15}
{23,17,15,5,3} {23} {17,3,5,23,14,15}
{23,18,12,3} {18,12} {1,18,3,23,12}
{23,18,14,10} {10,18} {1,18,23,10,14}
{23,18,17,14,4} {18,4,23} {17,18,4,23,14}
{23,18,17,14,5,3} {18,23} {17,18,3,5,23,14}
{23,19,12,3} {19,12} {1,19,3,23,12}
{23,19,15,5,3} {19,23} {19,3,5,23,15}
{23,21,15,5,3,0} {0,21} {0,3,21,5,23,15}
{24,15,8,6} {24,8} {20,5,6,24,8,15}
{24,20,15,8,5} {24,8} {20,5,6,24,8,15}
{24,20,17,15,5} {24,20} {17,18,20,5,24,15}
{24,20,18,17,5} {24,20} {17,18,20,5,24,15}
{24,23,15,5,0} {24,0} {0,5,23,24,15}
{24,23,15,6,0} {24,6} {0,6,23,24,15}
{24,23,17,15,5} {24,23} {17,5,23,24,15}
{24,23,18,17,5} {24,18} {17,18,5,23,24}
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W E have seen theorem 4.1 for graphs, but now now want to extend to hypergraphs.
In particular, we will be looking at 3-uniform hypergraphs.

Remark 5.1. Given an r -uniform hypergraph H and 1 ≤ l < r , we write

∆l (H) = max
A⊆V (H):|A|=l

(
the number of edges containing A

)
.

With this we can formulate the container theorem [2] for 3-uniform hypergraphs.

Theorem 5.2 (Container Theorem for 3-uniform Hypergraphs). For every c > 0 there
exists a δ> 0 such that the following holds.
Let H be a 3-uniform hypergraph with average degree d ≥ δ−1 and

∆1(H) ≤ cd and ∆2(H) ≤ c
p

d .

Then there exists a collection C of subsets of V (H) with

|C| ≤
(

v(H)

≤ v(H)/
p

d

)

such that

• every independent set of H is contained in some C ∈ C,

• |C | ≤ (1−δ)v(H) for every C ∈ C.

Let us try to understand how the theorem works. The input of the theorem is a 3-uniform
hypergraph H with average degree d . There are 2 conditions for the theorem:

• The first condition, ∆1(H) ≤ cd , means that ∆1, which is the maximum number of
edges containing a 1-vertex subset of v(H) = |V (H)|, equal to the maximum degree
of any vertex. So we require the maximum degree to be smaller than a constant
multiplied by the average degree.

25
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Figure 5.1: Example of a hypergraph H with ∆2 = 3

• The second condition, ∆2 ≤ c
p

d , requires ∆2, which is the maximum number of
edges containing a two-vertex subset of v(H) to be smaller than a constant mul-
tiplied with the square root of the average degree. This ∆2 is equal to the largest
“shared” degree of two vertices. This is illustrated in figure 5.1. Here A is the set
with two vertices as l = 2, and the hyperedges e1,e2,e3 all have one vertex outside
of A, and A is contained within all three of the hyperedges. We repeat this for the
other options of two vertex sets as ∆2 is the max of these, but these options will
have either zero or one hyperedge containing A. We see that here ∆2 = 3 with the
A as in figure 5.1, as there are three outgoing edges from A, which is the maximum.

The output of the theorem gives us a collection C of subsets of v(H), which are the con-
tainers. Every independent set will be in one of such containers. And then

|C| ≤
(

v(H)

≤ v(H)/
p

d

)

gives us a bound of the number of containers. |C | ≤ (1−δ)v(H) gives us the same bound
on the size of the containers again, hence also a bound on the maximal independent set.
This is a valuable result that we can use to prove problems.

We will again prove this with an algorithm from [2] that has an independent set I ⊆ v(H)
as input and gives a fingerprint S ⊆ I and a container C ⊃ I .

Algorithm 5.3 (Container Algorithm for 3-uniform Hypergraphs). Throughout the algo-
rithm, we will maintain

• a fingerprint S, initially S =;.
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• a 3-uniform hypergraph A, intitally A = H ,

• a graph G of “forbidden” pairs on V (H), initially G =;.

The algorithm:
While |S| ≤ v(H)p

d
−1:

• Let u be the first vertex in I in the max-degree order on A.

• Add u to S.

• Add {x, y} to E(G) whenever {u, x, y} ∈ E(H).

• Remove from V (A) the vertex u as well as all vertices proceeding u in the max-
degree order on A.

• Remove from V (A) every vertex whose degree in G is larger than c
p

d .

• Remove from E(A) every edge that contains an edge of G .

We will see that after the algorithm terminates we either

• have removed many vertices from V (A),

• or have a final graph G with at least Ω(
p

dn) edges and maximum degree O(
p

d),
so that we can apply the graph container lemma (algorithm 4.3 from theorem 4.1)
to G .

The most important part to note here is that this algorithm reduces the hypergraph to
a regular graph to which the graph container algorithm can be applied. This algorithm
has also been implemented in Python, but visualisation is hard for hypergraphs. For
now, this is left as future work. See chapter 7.
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APPLYING CONTAINERS TO A

PROBLEM IN DISCRETE GEOMETRY

W E will now try to apply the container method to a problem. Erdős posed the follow-
ing problem in [11]:

Given n points in the Euclidean plane R2, with at most three on any line, how large a sub-
set are we guaranteed to find in general position (i.e., with at most two on any line)?

We will start with an intuitive approach for a problem that approaches the threshold of
the Erdős problem from the other direction. Instead of trying to find the largest subset
with at most two on a line we try to find the smallest set such that every subset of this

size contains three points on a line as in theorem 6.1, ignoring the set size n
5
6 +o(1).

Note that for n ≤ 5 there are no cases in which a subset smaller than n itself guarantees
three points on a line. For n = 6 to n = 13 structures are found. These are drawn in figure
6.1. The structures indicate that every subset of size s = ⌈

n5/6
⌉

contains three points on
a line. These structures are not unique, as illustrated in figure 6.1d and figure 6.1e.

Füredi proved [12] that you can always find a subset of size Ω
(√

n logn
)
. He also gave

a construction in which the largest set has size o(n). We can obtain a stronger upper
bound using the method of hypergraph containers.

Theorem 6.1. There exists a set S ⊂R2 of size n, containing no four points on a line, such

that every subset of S of size n
5
6 +o(1) contains three points on a line.

29
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(a) Case n = 6, s = 5 (b) Case n = 7, s = 5

(c) Case n = 8, s = 6 (d) Case n = 9, s = 7

(e) Case n = 9, s = 7 (f) Case n = 10, s = 7

(g) Case n = 11, s = 8 (h) Case n = 12, s = 8

(i) Case n = 13, s = 9

Figure 6.1: Cases n ∈ {6,7,8,9,10,11,12,13}
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6.1. APPLYING THE CONTAINER METHOD

T O prove theorem 6.1 we will be modelling the problem as hypergraphs. Indeed, we
see that we can make a 3-uniform hypergraph H. We say that the edge {x, y, z} exists

if and only if x, y, z are 3 points that lie on a line. If we have an independent set in H, it
means that we have no occurrence of 3 points on a straight line within that set of points.
We are now in a position to apply the hypergraph container method.

The idea is that the container method gives us a collection of containers such that we
know both the size and the number of containers. The most important part here is the
size of the containers. The method gives us an upper bound on the size of a container,
and as every independent set is contained in a container, also the maximal independent
set is. Here we note that the maximal independent set in the hypergraph H corresponds
to the maximal subset with no 3 points on a line in the discrete geometry problem. This
means that any set larger than this will have 3 points on a line, which is exactly what we
are looking for.





7
CONCLUSION AND DISCUSSION

I N this thesis we learnt about the (hypergraph) container method. We learnt how it
works and also how it can be applied to problems. We began by exploring triangle-free

graphs and the application of the container method to count the number of triangle-free
graphs on n vertices. After this we looked at the graph container theorem for indepen-
dent sets in graphs. This algorithms proof consists of an algorithm. We looked into this
algorithm and implemented it on the Erdős–Rényi random model G(n, p). In chapter 5
we extended this theorem to hypergraphs, specifically 3-uniform hypergraphs. With this
knowledge we looked at an application in discrete geometry. We started with an intuitive
approach and later tried to understand how the container theorem for 3-uniform hyper-
graphs can be applied to this problem. There is still much more to work on. This the-
sis focusses a lot on the intuition behind applying the (hypergraph) container method,
but avoids a lot of technical details. For example, the proof of the problem in chapter
6. There are also a lot more applications of the method, in various mathematical areas
like extremal graph theory, additive combinatorics, discrete geometry, coding theory,
and Ramsey theory. Lastly, the container theorem for 3-uniform hypergraphs also has a
proof by algorithm. This algorithm has been implemented in Python, but in this thesis
we did not look into it much. This is because it is very hard to visualise hypergraphs.
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A
CODE

I N this appendix one can find the code of the algorithm that was implemented in sec-
tion 4. We use the NetworkX library [8] to visualise the output.

A.1. THE GRAPH CONTAINER ALGORITHM

T HIS is the code written using a custom class random_graph and
random_3uniform_hypergraph. There already exists an Erdős-Rényi model within

the NetworkX library, but that does not work for hypergraphs. The regular graph con-
tainer algorithm is implemented using this model in A.2.

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue May 6 14:08:58 2025
4

5 @author: joachim
6 """
7 import numpy as np
8 import random as rd
9 from itertools import combinations

10 import networkx as nx
11 import matplotlib.pyplot as plt
12

13

14 class random_graph(object):
15 V: list
16 E: list
17 A: dict
18

19 def __init__(self,n: int,p: float=1) -> None:
20 self.n = n

37
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21 self.V = list()
22 self.E = list()
23 self.A = dict()
24 for i in range(n):
25 self.V.append(i)
26 self.A[i] = list()
27 for i,j in combinations(self.V,2):
28 p2 = rd.random()
29 if p2 < p:
30

31 self.E.append((i,j))
32 self.A[i].append(j)
33 self.A[j].append(i)
34 def add_edge(self,edge):
35 self.E.append(edge)
36 self.A[edge[0]].append(edge[1])
37 self.A[edge[1]].append(edge[0])
38

39 class random_3uniform_hypergraph(object):
40 V: list
41 E: list
42 A: dict
43

44 def __init__(self,n: int,p: float=1) -> None:
45 self.n = n
46 self.V = list()
47 self.E = list()
48 self.A = dict()
49 for i in range(n):
50 self.V.append(i)
51 self.A[i] = set()
52 for i,j,k in combinations(self.V,3):
53 p2 = rd.random()
54 if p2 < p:
55

56 self.E.append((i,j,k))
57 self.A[i].add(j)
58 self.A[i].add(k)
59 self.A[j].add(i)
60 self.A[j].add(k)
61 self.A[k].add(i)
62 self.A[k].add(j)
63 def remove_edge(self,edge):
64 self.E.remove(edge)
65
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66 # def sort_degree(G):
67 # return {k: v for k, v in sorted(G.A.items(),key=lambda item:

len(item[1]),reverse=True)},→
68

69 def sort_degree(G):
70 degrees = {k: len(G.A[k]) for k in sorted(G.A,reverse=True)}
71 return {k:v for k, v in sorted(degrees.items(),key=lambda item:

item[1],reverse=True)},→
72

73

74 def avg_degree(G):
75 return sum(len(k) for k in G.A.values())/len(G.A.values())
76

77 def find_indepset(H):
78 G = nx.empty_graph(H.n)
79 for x,y,z in H.E:
80 G.add_edges_from(combinations([x,y,z],2))
81 return sorted(nx.maximal_independent_set(G),reverse=True)
82

83 def draw_indepset(S,I,G):
84 G2 = nx.empty_graph(G.n)
85 G2.add_edges_from(G.E)
86 pos = nx.circular_layout(G2)
87 nx.draw_networkx(G2,pos=pos)
88 nx.draw_networkx_nodes(G2,pos=pos,nodelist=I,node_color='red', ⌋

label='I'),→
89 nx.draw_networkx_nodes(G2,pos=pos,nodelist=S,node_color='green', ⌋

label='S'),→
90 plt.legend()
91

92

93

94 def graph_container_algorithm(I,G,draw=True):
95 # Sort A on max-degree
96 A = sort_degree(G)
97 print("Running algorithm on $G(",n,",",p,")$, with independent

set $I=",I,"$"),→
98 # print("$G[A]:", A,"$")
99 # Initialise

100 d = avg_degree(G)
101 # print("Average degree:",d)
102 c = list(A.values())[0]/d
103 delta = 1/4*c*(c+1)*0.999
104 # print("$\delta=",delta,"$")
105 S = set()
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106 X = set()
107 # The algorithm itself
108 iteration = 1
109 while len(X) < delta*len(G.V):
110 # print("Iteration",iteration)
111 # print("$|X|=",len(X),",\delta|V|=",delta*len(G.V),"$")
112 # Step 1: intersection of I and A in max-degree order on

G[A],→
113 union = {k:A[k] for k in [x for x in I if x in A.keys()]}
114 unionsorted = {k:v for k,v in sorted(union.items(),key=lambda

item: item[1], reverse=True)},→
115 # print("$I \cap A=",unionsorted,"$")
116 # print("$A:",A,"$")
117 # print("$S:",S,"$")
118 # print("$X:",X,"$")
119 # Step 2: add v to S
120 try:
121 v = list(unionsorted.keys())[0]
122 # print("v:",v)
123 except: break
124 S.add(v)
125 # Step 3: Add the neighbours of v to X
126 removed = set(G.A[v])
127 # print("Step 3:",removed)
128 for i in removed:
129 X.add(i)
130 # Step 4: Add vertices preceding v in the max-degree order on

G[A] to X,→
131 step4 = list()
132 idx = list(A.keys()).index(v)
133 for i in list(A.keys())[:idx]:
134 # idx = list(A.keys()).index(v)
135 # for i in list(A.keys())[:idx]:
136 X.add(i)
137 removed.add(i)
138 step4.append(i)
139 # print("Step 4:",step4)
140 # Step 5: Remove all vertices added to S and X from A
141 # print("Step 5:",removed)
142 removed.add(v)
143 for i in removed:
144 for k in list(A.keys()):
145 if k == i:
146 del A[k]
147 iteration += 1
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148 # print("$A:",A,"$")
149 # print("$S:",S,"$")
150 # print("$X:",X,"$")
151 if draw==True:
152 G2 = nx.empty_graph(G.n)
153 G2.add_edges_from(G.E)
154 pos = nx.circular_layout(G2)
155 nx.draw_networkx(G2,pos=pos)
156 nx.draw_networkx_nodes(G,pos=pos,nodelist=A, ⌋

node_color='red',label='A'),→
157 nx.draw_networkx_nodes(G,pos=pos,nodelist=S, ⌋

node_color='green',label='S'),→
158 nx.draw_networkx_nodes(G,pos=pos,nodelist=X, ⌋

node_color='blue',label='X'),→
159 plt.legend()
160 if len(S) > np.ceil(2*delta*len(G.V)/d):
161 print('oh no!!')
162 SvA = S.union(A)
163 print("S:" ,S)
164 print("SvA ",SvA)
165 print("I:",I)
166

167 # print("Testing if theorem holds:")
168 # print(len(S), "<=", np.ceil(2*delta*len(G.V)/d))
169 # print(len(SvA), "<=" , (1-delta)*len(G.V))
170 # print(print("Iteration",iteration))
171 # print("$|X|=",len(X),",\delta|V|=",delta*len(G.V),"$")
172 return set(A.keys()),S,X
173

174

175 def hypergraph_container_algorithm(I,H,draw=True):
176 # Sort A on max-degree
177 c = sort_degree(H)[0]
178 S = set()
179 d = avg_degree(H)
180 A = H
181 G = random_graph(H.n,0)
182 while len(S) < H.n/np.sqrt(d)-1:
183 # Step 1:let u be the first vertex in I\cupA in the

max-degree order on A,→
184 union = {k:A.A[k] for k in [x for x in I if x in A.A.keys()]}
185 unionsorted = {k:v for k,v in sorted(union.items(),key=lambda

item: item[1], reverse=True)},→
186 try: u = list(unionsorted.keys())[0]
187 except: break
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188 # Step 2: add u to S
189 S.add(u)
190 # Step 3: add xy to E(G) whenever uxy in E(H)
191 for x,y in combinations(H.V,2):
192 if (u,x,y) in H.E:
193 G.add_edge((x,y))
194 # Step 4: remove from V(A) the vertex u as well as all

vertices proceeding,→
195 # u in the max_degree order on A
196 maxdegreeorder = sort_degree(A)
197 idx = list(maxdegreeorder.keys()).index(u)
198 for i in list(maxdegreeorder.keys())[:idx]:
199 A.V.remove(i)
200 A.A.pop(i)
201 A.V.remove(u)
202 A.A.pop(u)
203 # Step 5: remove from V(A) every vertex whose degree in G is

larger than c*sqrt(d),→
204 for k in A.V:
205 if len(G.A[k]) > c*np.sqrt(d):
206 A.V.remove(k)
207 A.A.pop(k)
208 # Step 6: remove from E(A) every edge that contains an edge

of G.,→
209 for x,y in G.E:
210 for edge in A.E:
211 if x in edge and y in edge:
212 A.remove_edge(edge)
213 return S,A,G
214

215

216 n = 10
217 p = 0.7
218 latex = 'n'
219 # n = int(input("n: "))
220 # p = float(input("p: "))
221 # latex = input("Print latex code? (y/n)")
222

223 RG = random_graph(n,p)
224 G = nx.empty_graph(RG.n)
225 G.add_edges_from(RG.E)
226 I = sorted(nx.maximal_independent_set(G),reverse=True)
227 G = RG
228 A,S,X = graph_container_algorithm(I,G)
229
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230 # H = random_3uniform_hypergraph(n,p)
231 # I = find_indepset(H)
232 # S,A,G = hypergraph_container_algorithm(I,H)
233 # print(I,S,A)
234

235 # print(S.intersection(I) == S)
236

237 #print(nx.to_latex_raw(G))
238

239

240 if latex == 'y':
241 G2 = nx.empty_graph(G.n)
242 G2.add_edges_from(G.E)
243 pos = nx.circular_layout(G2)
244 node_color = dict()
245 for i in A:
246 node_color[i] = 'red'
247 for i in S:
248 node_color[i] = 'green'
249 for i in X:
250 node_color[i] = 'blue'
251 latex_code =

nx.to_latex_raw(G2,pos,node_options=node_color,tikz_options=
'[scale=4,every node/.append style={circle}]')

,→
,→

252 print(latex_code)

A.2. THE GRAPH CONTAINER ALGORITHM USING THE ERDŐS-
RÉNYI GRAPH

I N this section we look at the code implemented using the Erdős-Eényi model. This is
standard within the NetworkX library so it might be easier to understand. It does not

contain the hypergraph container algorithm, as this library does not work with hyper-
graphs.

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue May 6 14:08:58 2025
4

5 @author: joachim
6 """
7 import numpy as np
8 import networkx as nx
9 import matplotlib.pyplot as plt

10

11
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12 def sort_degree(G):
13 degrees = dict(G.degree(sorted(G.nodes,reverse=True)))
14 return {k:v for k, v in sorted(degrees.items(),key=lambda item:

item[1],reverse=True)},→
15

16 def find_max_indep_set(G):
17 return sorted(nx.maximal_independent_set(G),reverse=True)
18

19 def avg_degree(G):
20 degrees = dict(G.degree(G.nodes))
21 return sum(degrees.values())/len(degrees)
22

23 def draw_indepset(S,I,G):
24 pos = nx.circular_layout(G)
25 nx.draw_networkx(G,pos=pos)
26 nx.draw_networkx_nodes(G,pos=pos,nodelist=I,node_color='red', ⌋

label='I'),→
27 nx.draw_networkx_nodes(G,pos=pos,nodelist=S,node_color='green', ⌋

label='S'),→
28 plt.legend()
29

30 def container_algorithm(I,G,draw=True):
31 # Sort A on max-degree
32 A = sort_degree(G)
33 # Initialise
34 d = avg_degree(G)
35 c = list(A.values())[0]/d
36 delta = 1/4*c*(c+1)*0.99
37 print(delta)
38 # Initialise
39 S = set()
40 X = set()
41 # The algorithm itself
42 while len(X) < delta*len(G.nodes):
43 # Step 1: intersection of I and A in max-degree order on

G[A],→
44 union = {k:A[k] for k in [x for x in I if x in A.keys()]}
45 unionsorted = {k:v for k,v in sorted(union.items(),key=lambda

item: item[1], reverse=True)},→
46 # Step 2: add v to S
47 try:v = list(unionsorted.keys())[0]
48 except: break
49 S.add(v)
50 # Step 3: Add the neighbours of v to X
51 removed = set(G.neighbors(v))
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52 for i in removed:
53 X.add(i)
54 # Step 4: Add vertices preceding v in the max-degree order on

G[A] to X,→
55 idx = list(A.keys()).index(v)
56 for i in list(A.keys())[:idx]:
57 X.add(i)
58 removed.add(i)
59 # Step 5: Remove all vertices added to S and X from A
60 removed.add(v)
61 for i in removed:
62 for k in list(A.keys()):
63 if k == i:
64 del A[k]
65 if draw == True:
66 pos = nx.circular_layout(G)
67 nx.draw_networkx(G,pos=pos)
68 nx.draw_networkx_nodes(G,pos=pos,nodelist=A, ⌋

node_color='red',label='A'),→
69 nx.draw_networkx_nodes(G,pos=pos,nodelist=S, ⌋

node_color='green',label='S'),→
70 nx.draw_networkx_nodes(G,pos=pos,nodelist=X, ⌋

node_color='blue',label='X'),→
71 plt.legend()
72 return set(A.keys()),S,X
73

74 n = 25
75 p = 0.5
76 G = nx.erdos_renyi_graph(n,p)
77 I = find_max_indep_set(G)
78 # print(d <= 2*delta*len(G.nodes))
79 A,S,X = container_algorithm(I,G)
80

81 # print(S.intersection(I) == S)
82 print("S: ",S)
83 print("SvA: ",S.union(A))
84 print("I: ",I)
85 # nx.to_latex_raw(G)
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A.3. EXAMPLE 4.5

T HIS section contains the code that has been used to generate example 4.5.

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sun Jun 29 15:59:03 2025
4

5 @author: joachim
6 """
7 import numpy as np
8 import tabulate as tb
9

10 from graph_container_algorithm import
random_graph,sort_degree,avg_degree,→

11

12

13 def graph_container_algorithm(I,G):
14 # Sort A on max-degree
15 A = sort_degree(G)
16 print("Running algorithm on $G(25,0.5)$, with independent set

$I=",I,"$"),→
17 print("$G[A]:", A,"$")
18 # Initialise
19 d = avg_degree(G)
20 print("Average degree:",d)
21 c = list(A.values())[0]/d
22 delta = 1/4*c*(c+1)*0.999
23 print("$\delta=",delta,"$")
24 S = set()
25 X = set()
26 # The algorithm itself
27 iteration = 1
28 while len(X) < delta*len(G.V):
29 print("Iteration",iteration)
30 print("$|X|=",len(X),",\delta|V|=",delta*len(G.V),"$")
31 # Step 1: intersection of I and A in max-degree order on

G[A],→
32 union = {k:A[k] for k in [x for x in I if x in A.keys()]}
33 unionsorted = {k:v for k,v in sorted(union.items(),key=lambda

item: item[1], reverse=True)},→
34 print("$I \cap A=",unionsorted,"$")
35 print("$A:",A,"$")
36 print("$S:",S,"$")
37 print("$X:",X,"$")
38 # Step 2: add v to S
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39 try:
40 v = list(unionsorted.keys())[0]
41 print("v:",v)
42 except: break
43 S.add(v)
44 # Step 3: Add the neighbours of v to X
45 removed = set(G.A[v])
46 print("Step 3:",removed)
47 for i in removed:
48 X.add(i)
49 # Step 4: Add vertices preceding v in the max-degree order on

G[A] to X,→
50 step4 = list()
51 idx = list(A.keys()).index(v)
52 for i in list(A.keys())[:idx]:
53 # idx = list(A.keys()).index(v)
54 # for i in list(A.keys())[:idx]:
55 X.add(i)
56 removed.add(i)
57 step4.append(i)
58 print("Step 4:",step4)
59 # Step 5: Remove all vertices added to S and X from A
60 print("Step 5:",removed)
61 removed.add(v)
62 for i in removed:
63 for k in list(A.keys()):
64 if k == i:
65 del A[k]
66 iteration += 1
67 print("$A:",A,"$")
68 print("$S:",S,"$")
69 print("$X:",X,"$")
70 if len(S) > np.ceil(2*delta*len(G.V)/d):
71 print('oh no!!')
72 SvA = S.union(A)
73 print("S:" ,S)
74 print("SvA ",SvA)
75 print("I:",I)
76

77 # print("Testing if theorem holds:")
78 # print(len(S), "<=", np.ceil(2*delta*len(G.V)/d))
79 # print(len(SvA), "<=" , (1-delta)*len(G.V))
80 # print(print("Iteration",iteration))
81 # print("$|X|=",len(X),",\delta|V|=",delta*len(G.V),"$")
82 return I,S,SvA
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83

84 G = random_graph(25,0)
85

86

87 for i in [
88 (0,2), (0,7), (0,8), (0,11), (0,12), (0,13),(0,14), (0,17),
89 (0,18), (0,19),(0,20), (0,22), (1,3), (1,5),(1,7), (1,8),
90 (1,9), (1,15),(1,16), (1,21), (1,23), (1,24),(2,6), (2,8),
91 (2,10), (2,12),(2,13), (2,20), (2,23), (2,24),(3,4), (3,10),
92 (3,11), (3,16),(3,20), (3,22), (3,24), (4,5),(4,7), (4,8),
93 (4,9), (4,10),(4,11), (4,12), (4,13), (4,16),(4,19), (4,20),
94 (4,21),(4,24),(5,6), (5,10), (5,12), (5,22),(6,9), (6,10),
95 (6,12), (6,13),(6,17),(6,18), (6,19), (6,20),(6,21), (6,22),
96 (7,8), (7,9),(7,11), (7,12), (7,14),(7,15),(7,16), (7,18),
97 (7,19), (7,20),(7,23), (7,24), (8,10), (8,14),(8,17), (8,18),
98 (8,19), (8,22),(8,23), (9,12), (9,13), (9,15),(9,16), (9,18),
99 (9,21), (9,23),(9,24), (10,11), (10,12), (10,17),(10,19),

100 (10,21),(10,24), (11,12),(11,13), (11,14), (11,18), (11,19),
101 (11,20), (11,21), (11,23), (11,24),(12,14), (12,15), (12,16),
102 (12,17),(12,21), (12,24), (13,14), (13,16),(13,17), (13,18),
103 (13,19), (13,20),(13,22), (13,23), (13,24), (14,15),(14,19),
104 (14,21), (14,24), (15,18),(15,22), (16,17), (16,21), (16,22),
105 (16,23), (16,24), (17,19), (17,21),(18,19), (18,21), (18,22),
106 (19,20),(19,21), (19,22), (19,24), (20,22),(20,23), (21,24),
107 (22,23), (22,24)]:
108 G.add_edge(i)
109

110

111 MaxIndepSets = [[6, 4, 1, 0], [7, 6, 3], [9, 5, 3, 0], [9, 8, 5, 3],
112 [10, 1, 0], [10, 9, 0], [11, 6, 1], [11, 9, 8, 5],
113 [13, 10, 1], [13, 10, 7], [13, 12, 1], [13, 12, 8, 3],
114 [14, 6, 4, 1], [15, 8, 6, 3], [15, 13, 10], [16, 14, 6],
115 [16, 15, 5, 0], [16, 15, 6, 0], [16, 15, 10, 0], [16, 15, 11, 5, 2],
116 [16, 15, 11, 8, 5], [16, 15, 11, 8, 6], [17, 7, 5, 3, 2],
117 [17, 11, 9, 5, 2], [17, 14, 9, 5, 3, 2], [17, 15, 4, 2],
118 [17, 15, 5, 3, 2], [17, 15, 11, 5, 2],[18, 16, 14, 5, 2],
119 [18, 17, 14, 4, 2, 1], [18, 17, 14, 5, 3, 2], [19, 2, 1],
120 [19, 9, 5, 3, 2], [19, 12, 1], [19, 15, 5, 3, 2], [19, 16, 15, 5, 2],
121 [20, 9, 8, 5], [20, 12, 8],[20, 14, 10, 9], [20, 16, 15, 8, 5],
122 [20, 16, 15, 10], [20, 17, 14, 9, 5], [20, 18, 12, 1],
123 [20, 18, 14, 10, 1],[20, 18, 16, 14, 5], [20, 18, 16, 14, 10],
124 [20, 18, 17, 14, 1], [20, 18, 17, 14, 5],[21, 7, 5, 3, 2],
125 [21, 13, 7, 5, 3], [21, 15, 5, 3, 2], [21, 15, 13, 8, 5, 3],
126 [21, 20, 15, 8, 5], [22, 10, 7], [22, 12, 1], [22, 14, 10, 1],
127 [22, 14, 10, 9], [22, 17, 7, 2], [22, 17, 11, 2, 1],
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128 [22, 17, 11, 9, 2],[22, 17, 14, 4, 2, 1], [22, 17, 14, 9, 2],
129 [22, 21, 7, 2], [23, 14, 6, 3],[23, 14, 6, 4], [23, 15, 6, 3, 0],
130 [23, 15, 6, 4, 0], [23, 15, 10, 0],[23, 17, 15, 4],
131 [23, 17, 15, 5, 3], [23, 18, 12, 3], [23, 18, 14, 10],
132 [23, 18, 17, 14, 4],[23, 18, 17, 14, 5, 3], [23, 19, 12, 3],
133 [23, 19, 15, 5, 3],[23, 21, 15, 5, 3, 0], [24, 15, 8, 6],
134 [24, 20, 15, 8, 5],[24, 20, 17, 15, 5],[24, 20, 18, 17, 5],
135 [24, 23, 15, 5, 0],[24, 23, 15, 6, 0], [24, 23, 17, 15, 5],
136 [24, 23, 18, 17, 5]]
137

138 table = list()
139 containers = list()
140

141 for i in MaxIndepSets:
142 I,S,SvA = graph_container_algorithm(i,G)
143 table.append([set(I),S,SvA])
144 if SvA not in containers:
145 containers.append(SvA)
146

147 headers = ('I','S','S v A')
148 tabled = tb.tabulate(table,tablefmt='fancy_grid',headers=headers) #

Change fancy_grid to latex for latex output,→
149 print(tabled)
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