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SUMMARY

Due to recent advances in technology and irreversible societal trends many applications
in control engineering become increasingly complex and interconnected. In addition to
the ubiquity of large-scale systems that can be modeled as a network of interconnected
systems, another challenge relates to imperfect models – for instance due to unknown
parameters or environmental conditions – which are regarded in general as modeling
uncertainties. Introducing uncertainties in parameters of a constrained optimal control
design problem can increase the difficulty of finding an optimal solution. Ignoring un-
certainties, however, can lead to results that may cause significant damages or losses in
real-world applications, such as smart thermal grids and power networks.

A standard practice in robust control design is to consider a so-called worst-case (ro-
bust) approach for the uncertainties of a given system. However, this gives rise to some
limitations and bottlenecks in practical applications, e.g., conservatism and computa-
tional complexity. Nowadays, it is becoming easier to collect a large number of different
types of data subject to modeling uncertainty, thanks to the availability of cheaper and
more pervasive sensors. These sensors are able to measure many different types of vari-
ables. This presents novel challenges and opportunities for control design engineering,
and highlights the necessity of introducing a new paradigm that relies on using available
historical data or the so-called scenarios.

This dissertation aims to develop a rigorous distributed approach to decision mak-
ing using scenario-based techniques for large-scale networks of interconnected uncer-
tain dynamical systems (called agents). A scenario program is a finite-dimensional op-
timization problem in which an objective function is minimized under constraints that
are associated with finitely many, independently and identically distributed (i.i.d.), sce-
narios of a random parameter. Theoretical and practical interest in scenario programs
originates from the fact that these problems are typically efficiently solvable while being
closely related to robust and chance-constrained programs. In the former, the constraint
is enforced for all admissible random parameters, whereas in the latter, the constraint is
enforced up to a given level of probability. However, finding solutions of the resulting
large-scale scenario optimization problem for uncertain networked systems poses sev-
eral difficulties, e.g., computational cost for a central control unit.

The main contribution of this dissertation is the design of a technique to decompose
a large-scale scenario program into small-scale distributed scenario programs for each
agent. Building on existing results in literature, we provide novel guarantees to quantify
the robustness of the resulting solutions in a distributed framework. In this setting, each
agent needs to exchange some information with its neighboring agents that is necessary
due to the statistical learning features of the proposed setup. However, this inter-agent
communication scheme might give rise to some concerns about the agents’ private in-
formation. We therefore present a novel privatized distributed framework, based on the
so-called differential privacy concept, such that each agent can share requested infor-
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viii SUMMARY

mation while preserving its privacy. In addition, a soft communication scheme based on
a set parametrization technique, along with the notion of probabilistically reliable set, is
introduced to reduce the required communication burden. Such a reliability measure is
incorporated into the feasibility guarantees of agent decisions in a probabilistic sense.
The theoretical guarantees of the proposed distributed scenario-based decision making
framework coincide with the centralized counterpart, however the scaling of the results
with the number of agents remains an issue.

Motivated by an application to Smart Thermal Grids (STGs), the second contribution
of this dissertation is the design of a distributed data-driven energy management frame-
work for building climate comfort systems that are interconnected in a grid via Aquifer
Thermal Energy Storage (ATES) systems. The ATES system is considered as a seasonal
storage system that can be a heat source or sink, or a storage for thermal energy. In
STGs, the objective is to keep the energy balance between uncertain thermal energy de-
mand and production units of individual buildings. This requires coordination between
multiple buildings and long-term planning often months in advance in the presence of
two types of uncertainty, namely local (private) and common uncertainty sources. While
the private uncertainty source refers to uncertain thermal energy demand of individual
buildings, the common uncertainty source describes the uncertain common resource
pool (ATES) between neighbors.

The third contribution of this dissertation is the application of our proposed ap-
proach to the problem of reserve scheduling for power networks with renewable gen-
eration based on an AC optimal power flow model. We first formulate such a problem
using stochastic semidefinite programming (SDP) in infinite-dimensional space, which
is in general computationally intractable. Using a novel affine policy, we approximate
the infinite-dimensional SDP as a tractable finite-dimensional SDP, and explicitly quan-
tify the performance of the approximation. We then use the geographical pattern of the
power system to decompose the large-scale system into a multi-area power network. A
consensus form of the Alternating Direction Method of Multipliers (ADMM) is provided
to find a feasible solution for both local and overall multi-area network. Using the pro-
posed distributed data-driven decision making framework, each area can have its own
information about uncertainties to achieve local feasibility certificates, while conform-
ing to the overall feasibility of the multi-area power network under mild conditions.

The fourth contribution of this dissertation is the design of a distributed anomaly
detection strategy for a network of interconnected uncertain nonlinear systems. The
networked system being monitored is modeled as the interconnection of overlapping
agents that share some state components. For each agent, a local threshold is then de-
signed based on the concept of probabilistic set approximation using polynomial su-
perlevel sets. The threshold set is parametrized in a way to bound arbitrarily well the
residuals produced in healthy condition by an observer based residual generator. We
also formulate a second problem to maximize the sensitivity of the obtained thresh-
old set, with respect to the possible signature of faulty events. In order to achieve this,
each agent needs to communicate some information with neighboring agents to mini-
mize their false alarm ratio. Therefore, the proposed privatized distributed framework
together with the so-called soft communication scheme is applied, firstly, to preserve
agents’ privacy, and secondly, to reduce the required communication.
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The proposed contributions aim to bridge the gap between theoretical and practical
challenges in the application of large-scale scenario programs for uncertain networked
systems and bring data-driven decision making strategies closer to actual implementa-
tion in distributed interconnected uncertain systems.





SAMENVATTING

Vanwege recente ontwikkelingen in technologie en maatschappij zijn veel applicaties in
de regeltechniek steeds complexer geworden. Met de opkomst van grootschalige syste-
men, welke gemodelleerd kunnen worden als een netwerk van gekoppelde systemen, is
er een uitdaging in het modeleren van imperfecties, zoals de onzekerheid in de parame-
ters of de omgeving condities. Aan de ene kant kan het bestaan van onzekere parameters
in een begrensd optimaal regelaarontwerp probleem het vinden van een optimale op-
lossing vermoeilijken. Aan de andere kant, het negeren van onzekerheden kan leiden tot
resultaten die significante schade of verliezen aan kunnen brengen in echte applicaties,
zoals bijvoorbeeld smart thermal grids en energienetwerken.

Een standaard methode binnen de robuuste regeltechniek is het uitgaan van het zo-
genaamde worst-case (robuust) aanpak van onzekerheden in een gegeven systeem. In
de praktijk geeft zo’n methode een aantal limitaties, bijvoorbeeld conservatisme en het
uirvoeren van complexe berekeningen. Met dank aan de beschikbaarheid van goedko-
pere en meer universele sensoren wordt het tegenwoordig makkelijker om grote aantal-
len verschillende datatypes te verkrijgen, welke onderhevig zijn aan meetonzekerheden.
Deze sensoren zijn in staat om veel verschillende typen variabelen te meten. Dit resul-
teert in nieuwe uitdagingen en mogelijkheden voor regeltechnici en benadrukt de nood-
zaak van een nieuw paradigma dat gebruik maakt van beschikbare historische data, ook
wel de scenario’s genoemd.

Het doel van deze dissertatie is het ontwikkelen van een rigoureuze gedistribueerde
aanpak voor besluitvorming door middel van scenario gebaseerde technieken voor gro-
otschalige netwerken van gekoppelde onzekere dynamische systemen (agenten genoe-
md). Een scenario programma is een eindigdimensionaal optimalisatie probleem waar-
in een doelfunctie wordt geminimaliseerd onder randvoorwaardes die geassocieerd wor-
dt met een eindig aantal, onafhankelijk en gelijk gedistribueerde scenario’s van een ase-
lecte parameter. Theoretische en praktische interesse in scenario programma’s komt
voort uit het feit dat deze problemen doorgaans efficiënt oplosbaar zijn, terwijl deze
nauw verwant zijn aan de zogenaamde robuuste- en kans-gelimiteerde programma’s.
Bij robuust-gelimiteerde programma’s dekken de randvoorwaardes alle mogelijke ase-
lecte parameters, terwijl bij kans-gelimiteerde programma’s, de randvoorwaarden wor-
den opgelegd tot op een gegeven kans. Echter, het vinden van oplossingen van het re-
sulterende grootschalige optimalisatie probleem voor het onzekere netwerksysteem on-
dervindt meerdere moeilijkheden, zoals bijvoorbeeld rekentijd voor de centrale bestu-
ringseenheid.

De hoofdbijdrage van deze dissertatie is het ontwerp van een techniek om een groot-
schalig scenario programma op te delen in kleinschalige gedistribueerde scenario pro-
gramma’s voor iedere agent. Voortwerkend op bestaande resultaten in de literatuur ge-
ven wij nieuwe garanties die de robuustheid kwantificeren van de gegenereerde oplos-
singen in een gedistribueerd raamwerk. In deze aanpak moet iedere agent informatie
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uitwisselen met naburige agenten. Dit is nodig wegens de statistische leerfuncties van
de voorgestelde aanpak. Echter, het communicatieschema tussen de agenten zou aan-
leiding kunnen geven tot bezorgdheid over de privacy gevoeligheid van de informatie
van de agenten. Daarom presenteren wij een nieuw geprivatiseerd en gedistribueerd fra-
mewerk, gebaseerd op het zo genaamde differentiaal privacy concept zodat elke agent
gevraagde informatie kan delenen dus de privacy wordt gegarandeerd. Daarnaast intro-
duceren wij een soft communicatieschema om de gevraagde communicatielast te ver-
minderen, gebaseerd op een set-parametrisatie techniek en de notie van een probabilis-
tische betrouwbare set. Zo’n betrouwbaarheidsmaatstaf is opgenomen in de haalbaar-
heidsgaranties van de besluitvorming van de agent in probabilistische zin. De theoreti-
sche garanties van het voorgestelde gedistribueerde scenario gebaseerde besluitvorming
raamwerk komt overeen met zijn gecentraliseerde tegenhanger, alhoewel het schalen
van de resultaten met het aantal agenten een probleem blijft.

De tweede bijdrage van deze dissertatie is gemotiveerd door de toepassing in Sm-
art Themeral Grids (STGs) (Slimme Warmte Netwerken). De bijdrage is het ontwerp
van een gedistribueerd data-gedreven energie management raamwerk voor gebouwkli-
maatcomfortsystemen, die in een netwerk aan elkaar zijn gekoppeld via Aquifer The-
meral Energy Storage (ATES) (Aquifer Warmte Energie Opslag) systemen. Het ATES sys-
teem wordt beschouwd als een seizoensgebonden opslagsystem die als een warmte-
bron, koelelement, of een opslag voor thermische energie kan fungeren. Het doel in
de STGs is om de energiebalans tussen de onzekere warmte-energievraag en productie
van individuele gebouwen te waarborgen. Hiervoor is er coördinatie tussen meerdere
gebouwen en lange termijnplanning nodig, vaak van maanden vooruit, met de aan-
wezigheid van twee typen onzekerheden, namelijk lokale (private) en gemeenschap-
pelijke onzekerheidsoorzaken. De private onzekerheidsoorzaak refereert naar de on-
zekere warmte-energievraag van individuele gebouwen en de gemeenschappelijke on-
zekerheidsbron beschrijft de onzekerheid van de gemeenschappelijke energiebronnen
(ATES) tussen buren.

De derde bijdrage van deze dissertatie is de toepassing van onze voorgestelde aan-
pak in een probleem van reserveplanning voor energienetwerken met hernieuwbare op-
wekking gebaseerd op een AC optimale stroomsterkte model. Allereerst formuleren we
het probleem door middel van stochastische semi-definiete programmering (SDP) in
oneindigdimensionale ruimte, dat in het algemeen computationeel onhandelbaar is.
Door gebruik te maken van een nieuwe affiene policy, benaderen we de oneindigdi-
mensionale SDP als een handelbare eindigdimensionale SDP en kwantificeren we ex-
pliciet de prestaties van de benadering. Daarna gebruiken we het geografische patroo-
nen van het energiesysteem om het grootschalige systeem op te delen in een multi-
gebiedsenergienetwerk. Een consensus variant van de Alternating Direction Method of
Multipliers (ADMM) wordt gebruikt om een haalbare oplossing te vinden voor zowel de
lokale als het algemene multi-gebiedsenergienetwerken. Door gebruik te maken van ons
voorgestelde gedistribueerde data-gedreven besluitvorming raamwerk, kan ieder gebied
zijn eigen informatie over de onzekerheden gebruiken om lokale haalbaarheidscertifi-
caten te bewerkstelligen en tevens te voldoen aan de algemene haalbaarheid van het
multi-gebiedsenergienetwerk onder generieke condities.

De vierde bijdragen van deze dissertatie is het ontwerp van een gedistribueerde ano-



SAMENVATTING xiii

malie-detectie strategie voor een netwerk van gekoppelde onzekere niet-lineaire syste-
men. De gemonitorde netwerksystemen worden gemodelleerd als een inter-connectie
van overlappende agenten die enkele toestandscomponenten delen. Voor iedere agent
wordt er een lokale drempelwaarde ontworpen, gebaseerd op het concept van benade-
ringen van de probabilistische set door middel van polynome drempelwaardesets. De
drempelwaardesets worden geparametriseerd op een manier zodat de residuen arbitrair
goed te begrenzen zijn. Deze sets worden in normale operatieomstandigheden gepro-
duceerd door een observer-gebaseerde residugenerator. Daarnaast formuleren wij een
tweede probleem om de gevoeligheid van de verkregen drempelwaardeset te maximali-
seren ten opzichte van de mogelijke karakteristiek van anomalieën. Om dit te bereiken
moet iedere agent enige informatie communiceren met naburige agenten om de valse-
alarm ratio te minimaliseren. Het voorgestelde geprivatiseerde en gedistribueerde fra-
mewerk, samen met het zo genoemde soft communicatieschema is toegepast om, aller-
eerst, de privacy van agenten te behouden en, ten tweede, de benodigde communicatie
te reduceren.

De voorgestelde bijdragen richten op het overbruggen van de kloof tussen theoreti-
sche en praktische uitdagingen in de toepassing van grootschalige scenario programma’s
voor onzekere netwerksystemen, het dichterbij brengen van data-gedreven besluitvor-
ming strategieën en een werkelijke implementatie in gedistribueerde gekoppelde onze-
kere systemen.
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1
INTRODUCTION

The aim of this dissertation is to develop a technique to distributed data-driven deci-
sion making for large-scale networks of interconnected uncertain dynamical systems,
which we refer to as agents. The behavior of each agent is considered to be described
by a mathematical model, that is employed for the control design (i.e., decision making)
process. In the presence of uncertainties, such a model is often considered as a stochas-
tic dynamical system, which is in general hard to control in an optimal fashion. Using
available historical data or so-called scenarios of the uncertainties in each agent, we aim
to provide a distributed control strategy for such a network of interconnected agents by
enforcing several operational constraints up to a certain level of probability.

This introductory chapter presents the research motivation based on an application
to Smart Thermal Grids (STGs) of building climate comfort systems that are intercon-
nected via Aquifer Thermal Energy Storage (ATES). Starting with a brief overview on dif-
ferent types of geothermal energy systems and formulating several questions related to
ATES systems, we provide a brief explanation on the developments and achievements
in the modeling of such a networked system. This yields a foundation for the research
problems to be addressed throughout this dissertation. We further highlight the main
contributions, related to proposed solutions to these problems, along with the outline of
this dissertation. Finally, we conclude this chapter with the list of publications, on which
each chapter is based, together with the author’s related papers and other publications
that are not included in this dissertation.

1.1. RESEARCH MOTIVATION

M OTIVATED by an application to STGs with ATES, this research is supported by the
Dutch organization for scientific research (NWO) under the project ATES STGs.

The main challenge of this research is to first develop a mathematical model for the dy-
namics of a single ATES system integrated into the building climate comfort system, and
then, to develop a mathematical model for possible mutual interactions between ATES
systems in STGs, leading to a network of interconnected ATES systems. We therefore

1
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Figure 1.1: Different types of geothermal energy systems. The Figure is taken from [14].

start with a brief overview of the NWO research project, along with some questions and
answers based on our developments. We then conclude with the statement of several
interesting research problems inspired by this application, and that are addressed as the
main research contributions throughout this dissertation.

1.1.1. RESEARCH PROJECT
Geothermal seasonal energy storage gives rise to an attractive way to reduce greenhouse
gas emissions in cities with moderate climates. Figure 1.1 depicts different types of
geothermal energy systems. These systems take advantage of the high storage capac-
ity of the Earth to temporarily store thermal energy. During summer, the surplus heat of
a building is stored and used to heat the building in the cold winter months, while the
building can be cooled during warm summer months using the winter cold.

The NWO research project, in the scope of which the research in this dissertation, is
focused on a network of buildings that are interconnected via ATES systems. Motivated
by the fact that ATES systems are cost-effective,they have a high adoption potential in
dense urban areas, where many buildings stand side by side on top of a suitable aquifer.
The basic principle of ATES is its use of the subsurface to overcome the seasonal dis-
crepancy between the availability and demand for thermal energy in the built environ-
ment. To proceed further, we break down our research project into the following two
main steps:

B A single ATES system: It is considered as a heat source or sink, or as a storage
for thermal energy demand of building climate comfort system. This functionality
is achieved by injection and extraction of water into and from saturated under-
ground aquifers. An ATES systems are suitable for heating and cooling of utility
buildings such as offices, hospitals, universities and greenhouses.

B A network of interconnected ATES systems: In dense urban environments, the
proximity of hot and cold wells in nearby ATES system installations may lead to
unwanted mutual underground aquifer interactions leading to suboptimal oper-
ation or conservative design choices (such as excessively large, unused permits).
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Such interactions are dynamically time-varying and plagued by uncertainty due to
the absence of detailed underground models and cooperation between operators
regarding the influence of nearby systems.

We next describe both steps in more detail and put forward some fundamental questions
related to each step, and the answers we developed in our research.

SINGLE ATES SYSTEM
Developing a dynamical model for an ATES system, that is suitable in the scope opti-
mal building climate comfort control problems, is one of the important fundamental
milestones of this project. To further investigate this step, the following questions are
considered:

Q1 What kind of mathematical model can describe the slow dynamical behavior of an
ATES system? What are the relevant variables that represent the behavior of the
system?

Q2 How to integrate an ATES system in the building climate comfort system in order
to achieve a desired level of comfort for the building? How to overcome the diffi-
culties that arise from the slow dynamical behavior of an ATES system compared
to an hourly-based performance specification of building climate comfort system?

In order to answer the above questions, we achieved the following results:

A1 In [142], we presented a single energy storage model for both wells of an ATES
system that contains three different operating modes of an ATES system, namely:
charging, discharging and storing, along with a heat pump for cold seasons. This
yields a mixed logical dynamical system model. An agent-based geohydrological
simulation environment (MODFLOW) is also developed.

A1,2 Building upon our model in [142], we developed a complete and sophisticated
building dynamical model integrated with a new ATES model in [137] and [135].
In particular, in [137] a detailed building climate comfort model considering all
operational modes (heating, cooling, silence) in the presence of uncertain outside
weather is developed. In [135], we consider the dynamics of stored thermal energy
over time in each well of an ATES system to be proportional to the volume and
temperature of water. In this work, we present a novel mathematical model for
both the dynamical behavior of volume and the temperature of water in each well
of an ATES system, together with detailed steps for estimating the model param-
eters. However, the overall system dynamics becomes a hybrid nonlinear (signo-
mial) model. Although nonlinear optimization problems with constraints defined
by signomials are normally harder to solve than those defined by only polynomi-
als, signomial optimization problems often provide a much more accurate mathe-
matical representation of real-world nonlinear optimization problems [65]. These
highlight that such a dynamical model is not suitable for the control problem of
large-scale systems with year-long prediction horizons, due to the computational
issues.
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A2 None of the developed ATES models in [135, 137, 142] can be used for the optimal
control purpose of large-scale all-season systems. Therefore, we developed a new
linear model of an ATES system by keeping track of changes in the volume of the
stored water and the amount of thermal energy content in each well separately
in [145]. This yields a more suitable control-oriented, computationally tractable
model, compared to the previous works in [135, 137, 142].

NETWORK OF INTERCONNECTED ATES SYSTEMS
Consider now a single ATES system integrated in a building climate comfort system,
which we refer to as a single agent system. We now aim to extend such a single agent
model into a multi-agent networked system in the presence of uncertainties due to the
absence of detailed underground models. The following questions are raised to com-
plete the modeling of the network of interconnected ATES systems:

Q3 How to model a network of building climate comfort systems to manage the ther-
mal energy balance between production units and demands? What are the re-
quirements in such a setting to represent the main characteristics of STGs, and
also to enable theoretical control studies?

Q4 How to incorporate an ATES system in a network of building climate comfort sys-
tems? How to cope with the differences between slow dynamical ATES systems
and the building climate comfort systems with hourly-based operations? How to
deal with the local uncertain thermal energy demand of each agent? How to deal
with uncertainties due to the absence of detailed underground models in the net-
work of interconnected ATES systems? How to cooperate between agents in order
to prevent the mutual interactions between nearby ATES systems?

The first set of questions are more related to the modeling of a network problem, whereas
the second set of questions are about the integration of ATES systems in the network
problem. The following developments are achieved in order to answer the above ques-
tions:

A3 In [144], we developed an STG model of a network of interconnected building
climate comfort systems in the presence of local uncertain thermal energy de-
mand. This is referred to as the private uncertainty source, since such uncer-
tainties can be due to the occupancy level of the building. We first formulated
a large-scale stochastic mixed-integer (non-convex) problem to balance the local
uncertain thermal energy demands and the conventional production units (boiler,
micro-combined heat and power, etc.). Using available historical data (scenarios)
of the local uncertainty sources and the so-called robust randomized technique in
[98], we then developed a computationally tractable framework and implemented
a model predictive control (MPC) paradigm. A refinement of such a problem and a
distributed framework to address a multi-agent network with private uncertainty
sources is presented in [134].

A4 Building upon our works in [134, 144], we extended such a setting to integrate each
building climate comfort system with an ATES system and allowed them to have
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three different operating modes, namely: heating, cooling, and storing. We mod-
eled the possible mutual interactions between neighboring ATES systems as un-
certain coupling constraints. This yields a network problem with two different un-
certainty sources. A local (private) uncertainty source that represents an uncertain
thermal energy demand for each agent, and a common uncertainty source repre-
senting the uncertain common energy pool (ATES) between neighboring agents.

The above exposition on ATES for STGs motivates generic research objectives revolving
around the modeling and control of uncertain networked systems as considered in this
dissertation. We next elaborate on some concrete research problems Section 1.1.2.

1.1.2. RESEARCH PROBLEMS

Motivated by the application of STGs with ATES systems, the generic research objectives
of this dissertation are related to the following four problems.

Problem 1

B Modeling and controlling an uncertain networked system that repre-
sents an STG of ATES systems
The following aspects need to be addressed:

P1(a) Modeling of single agent system
How to model an individual building with a single ATES system dy-
namics as a seasonal storage system by taking into consideration
the hybrid nature of each building due to the different operating
modes (heating, cooling, and storing)?

P1(b) Modeling of a multi-agent networked system
How to model a network of interconnected buildings via ATES sys-
tems by taking into consideration the time-varying unwanted mu-
tual interactions between neighboring ATES systems?

P1(c) Controlling a multi-agent networked system
How to develop a control framework to achieve certain perfor-
mance, e.g., a desired comfort level of each building, while sat-
isfying some physical limitations and operational constraints and
taking into consideration the time scale discrepancy between the
ATES system dynamics and a single building climate comfort sys-
tem?
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P1(d) Dealing with uncertainties in a networked system
In the presence of uncertainty, (e.g., uncertain thermal energy de-
mand for each building) and/or uncertain coupling constraints,
(e.g., uncertain common energy pool (ATES)), how to achieve (state
or input) constraint satisfaction? It might be of interest to achieve
constraint feasibility up to a certain level of probability which gives
rise to chance-constrained problems that are in general hard to
solve. How to develop a computationally tractable framework
using a scenario-based technique for a stochastic MPC strategy?
What kind of theoretical guarantees can be provided by extend-
ing the existing results in literature, e.g., the scenario approach
[27, 30, 32] and the robust randomized approach [98, 144, 181] to
large-scale uncertain networked systems?

This problem is indeed an aggregation of Q1-Q4 in Section 1.1.1 together with some
questions focused on the control aspects of an uncertain networked system from a cen-
tralized perspective. The resulting problem of centralized control leads to a large-scale
scenario optimization problem. However, finding solutions of the resulting large-scale
scenario optimization problem for uncertain networked systems poses several difficul-
ties, e.g., the computational cost for a central control unit. This highlights the second
problem of interest in this dissertation.

Problem 2

B Developing a distributed data-driven decision making framework for
uncertain networked system
The following aspects need to be addressed:

P2(a) Decomposing the large-scale scenario program
Motivated by the computational complexity issue, such as in [149]
and [138] convex and non-convex scenario programs, how to de-
compose such a large-scale scenario optimization problem into
the small-scale distributed scenario programs? How to deal with
private and common uncertainty sources? Is there a way to decom-
pose scenarios between neighboring agents? Under which condi-
tions can we achieve some theoretical guarantees for the feasibil-
ity of both local and network constraints? What are the limitations
and bottlenecks for the extension of existing guarantees to the net-
worked systems?
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P2(b) Developing a distributed framework for a network of intercon-
nected uncertain systems
How to deal with a network of agents that are dynamically cou-
pled and/or have coupling operating constraints? What sort of dis-
tributed algorithms [22] can be employed?

P2(c) Handling communication burden between neighboring agents
In such a distributed framework, how should agents communicate
with each other in order to achieve certain performance criteria? If
agents are requested to share certain scenarios, how to handle the
communication limitations in such networked systems? What are
the consequences of the limited communications between neigh-
boring agents in terms of their local constraint satisfaction?

Problem 2 is the main research problem that eventually yields a distributed data-
driven decision making framework for uncertain networked systems as the main contri-
bution of this dissertation. It will be shown that such an achievement can be used also
in a general setting depending on the way that each agent interacts with its neighboring
agents.

Building upon the previous problem to develop a distributed data-driven decision
making framework, the next problem addresses the possibility of applying such a frame-
work into the transmission system operators (TSOs) problem. TSOs are entities en-
trusted with transporting energy in the electrical power networks. Two critical issues in
such a energy network, namely safety and reliability, are the most important responsibil-
ity for TSOs. Safety refers to managing any failure on their electrical generation sources,
and reliability is to coordinate the balance between supply of and demand for electric-
ity. Such issues are formulated as an optimal power flow (OPF) management problem
and becoming very challenging when there are some uncertain generation units (wind
power) in power networks.

Problem 3

B Developing a distributed data-driven decision making framework for
optimal power flow (OPF) problem in AC power systems with uncertain
generation
The following aspects need to be addressed:
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P3(a) Formulating the OPF problem using AC model of power network
Is it possible to apply such a framework into the transmission sys-
tem operators (TSOs) problem? How to make a decision about set
points for power grid generators, as well as optimizing OPF steady-
state set points for generators? How accurately can a power net-
work model be considered in these problems, i.e., using an AC
(nonlinear) or DC (linear) model? If using an AC model, how to
deal with the non-convexity of the resulting optimization problem
[82, 149]? How to cope with renewable power generation units?

P3(b) Dealing with the infinite-dimensional optimization problem
In the presence of uncertainty (e.g., uncertain generation and/or
demand), the OPF management equipped with reserve schedul-
ing (RS) problem that leads to be an infinite-dimensional optimiza-
tion problem. How to approximately solve such a intractable prob-
lem? Is the a way to bridge from infinite-dimensional to finite-
dimensional space and characterizing the approximation level?

P3(c) Handling the multi-area AC power network problem
Can we develop a distributed framework for OPF problem using AC
modeling of power networks? How to decompose a large-scale AC
power network into multi-area sub-networks? How to share the re-
quired information in such a setting to cope with renewable power
generation units?

The OPF management problem is one of the most widely studied problems for the
last decades starting from 1962 [34]. There are still ongoing researches to find OPF solu-
tions for the recent power systems challenges such as a market liberalization [8] and/or
a large penetration of uncertain energy sources [132]. Aiming at various application do-
mains for our proposed distributed data-driven decision making framework, requires
different considerations such as the level of detail OPF model formulation that repre-
sents power systems. These highlight the necessity of understanding the general concept
application domains in order to develop a distributed framework to maintain stability of
power system operations.

In the control of large-scale network of interconnected uncertain systems, it is un-
common that a control system operates continuously, uninterrupted based on optimal
scheduled plans. Due to the presence of mechanical and/or electrical hardware (compo-
nents), both actuators and sensors can fail in realistic situations. The task of monitoring
and diagnosis involves generating a diagnostic signal sensitive to the occurrence of spe-
cific anomalies. This task is typically accomplished by designing a filter with all available
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information as inputs, and an output which implements a non-zero mapping from the
faults to the residual. The existing approaches based on filter design [110] or traditional
robust design [44] all consider a centralized unit to process the information. Using a
centralized monitoring system for large-scale networked systems is computationally ex-
pensive, and therefore it is crucial to develop a distributed framework to detect when
failures happen, and to identify as soon as possible which failures have taken place for
safety critical processes. This highlights our motivation to address the next problem.

Problem 4

B Developing a distributed data-driven decision making framework for
anomaly detection of a large-scale nonlinear uncertain system
The following aspects need to be addressed:

P4(a) Decomposing a large-scale nonlinear uncertain system
How to increase the resiliency of uncertain networked systems to
anomalies (faults)? How to endow such systems with smart archi-
tectures capable of monitoring, detecting, isolating and counter-
acting such anomalies and threats?

P4(b) Developing a set-based probabilistic threshold set framework
Can we extend such a classical approach to a data-driven approach
using available historical scenarios of the so-called healthy residu-
als? Such residuals can take values in arbitrary shaped, possibly
non-convex regions. How to develop a threshold set that is built
with arbitrary shape to distinguish healthy residuals from anoma-
lies?

P4(c) Developing a privatized distributed detection framework
How to develop a distributed setting to have multiple thresholds
to process data and eventually yield an appropriate anomaly de-
tection with isolation? Distributed methods require communica-
tion [17, 54, 57, 115, 128, 179, 180], which may be undesirable as
it may lead to leaking privacy-sensitive information. For instance,
consider a large-scale network system where neighboring diagno-
sis nodes are each monitoring different sub-grids with distributed
energy sources and each is managed by its own grid operator. The
two grid operators must exchange data about nodes on their re-
spective boundaries in order to allow for grid balancing, but they
would rather keep private the way that they are allocating energy
supply to their different energy sources and satisfying their energy
demand [62, 155]. How to design a privatized distributed anomaly
detection framework?
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Table 1.1: Classification of the dissertation contents based on the class of networked systems in the proposed
framework for each problem.

Dynamics Constraints Uncertainty Proposed Framework
Discrete time

Coupled Hybrid Input State Coupled Worst Case Stochastic Centralized Distributed
Linear Nonlinear

Problem 1
p p p p p p p p

Chapter 2
Problem 2

p p p p p p p
Chapter 3

Problem 3 (static)
p p p p p p

Chapter 4
Problem 4

p p p p p p
Chapter 5

1.2. OUTLINE AND CONTRIBUTIONS
Based on the above research problems, this dissertation aims to develop a distributed
data-driven decision making framework for uncertain networked systems. The pro-
posed framework should be equipped with computationally efficient distributed algo-
rithms, as the problems of interest are all related to large-scale networked systems. It
should also explore the availability of data (scenarios), which can be used to first learn
some statistical properties of the problem, and then to provide some theoretical guar-
antees on the feasibility of decisions in distributed setting. It is important to note that
data-driven approaches do not necessarily require a statistical model of the uncertain-
ties, although some model of the uncertainties may still be necessary for generating sce-
narios beyond the cardinality available from historical data [26].

The main contribution of this dissertation is motivated by a common issue between
all the proposed problems in Section 1.1.2. From a centralized unit for all aforemen-
tioned problems, the resulting formulation will be a large-scale scenario program which
is computationally demanding. We therefore propose a technique to decompose such a
problem into small-scale distributed scenario programs for each agent. We then quan-
tify the robustness of the resulting solutions for each agent in a distributed framework to
guarantee a priori feasibility of each agent locally and globally under some mild condi-
tions building on existing results in literature, see [27, 30, 32], and the references therein.
The theoretical guarantees of the proposed distributed data-driven decision making co-
incide with the centralized counterpart. This is achieved under the assumption that
neighboring agents can exchange some requested scenarios without any communica-
tion constraints. Such inter-agent communications might however give rise to privacy
concerns.

We next propose a novel privatized communication framework, such that each agent
can share requested information while preserving its privacy. It is important to highlight
that in such a setting, each agent requests a certain number of scenarios from its neigh-
bors, which is called a hard communication scheme. This means that agents are not
flexible to decide about the number of scenarios that should be sent to their neighbors.
In order to relax this restriction, we introduce a soft communication scheme using a
set parametrization technique, together with the notion of probabilistically reliable sets.
Such a reliability measure of the soft communication scheme is incorporated into the
feasibility guarantees of agent decisions in a probabilistic sense.

Table 1.1 presents a classification of the dissertation contents based on the class of
networked systems that can be formed in the proposed framework for each problem.
We now explain the detailed contributions of individual chapters based on their related
problem, as they are presented in Table 1.1.
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CHAPTER 2
This chapter concentrates on the modeling of STGs with ATES systems and the develop-
ment of an optimal control framework to address Problem 1.

ATES as a seasonal storage system has not, to the best of our knowledge, been con-
sidered in STGs. We develop a novel large-scale stochastic hybrid dynamical model to
predict the dynamics of thermal energy imbalance in STGs consisting of building climate
comfort systems with hourly-based operation and ATES as a seasonal energy storage sys-
tem. Based on our previous work in [135] and [142], we extend an ATES system model
to predict the amount of stored water and thermal energy. We first incorporate the ATES
model into a building climate comfort problem, and then formulate a large-scale STG
problem by taking into consideration geographical coupling constraints between ATES
systems. Using an MPC paradigm to achieve a desired level of comfort for buildings, we
formulate a finite-horizon mixed-integer quadratic optimization problem with multiple
chance constraints at each sampling time leading to a non-convex problem, which is
difficult to solve.

We next propose a move-blocking control scheme to enable our stochastic MPC to
handle long prediction horizons and an hourly-based operation of the building climate
comfort systems together with a seasonal variation of desired optimal operation of the
ATES system in a unified framework. The time-scale discrepancy between the ATES sys-
tem dynamics and building climate comfort systems are explicitly accounted for in the
developed MPC-based optimization formulation. Our proposed control strategy offers
a long enough prediction horizon to prevent mutual interactions between ATES systems
with much less computational time compared to a fixed prediction horizon that is sam-
pled densely (i.e., every hour).

We finally develop a computationally tractable framework to approximate a solution
of our proposed MPC formulation based on our previous work in [144]. In particular, we
extend the framework in [144] to cope with multiple chance constraints which provides
a more flexible approximation technique compared to the so-called robust randomized
approach [98, 100], which is only suitable for a single chance constraint. Our framework
is closely related to, albeit different from, the approach of [158].

The contents of this chapter have been accepted to appear in the IEEE Transactions
on Smart Grids [148].

CHAPTER 3
Problem 2 is addressed in this chapter by proposing a decomposition technique for a
large-scale system dynamics model in order to support the distribution of the resulting
centralized scenario problem at each sampling time. Moreover, a novel communication
scheme is introduced to reduce communication burden between the distributed small-
scale problems. The main key ingredients of this chapter are as follows.

We first provide a technique to decompose the large-scale scenario program into
distributed scenario programs that exchange a certain number of scenarios with each
other in order to make local decisions. We show that such a decomposition technique
can be applied to large-scale linear systems with both private (local) and common un-
certainty sources. This yields a flexible and practical plug-and-play distributed scenario
MPC framework.
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We then quantify the level of robustness of the resulting solutions using our proposed
distributed scenario MPC framework, and provide two new a priori probabilistic guar-
antees for the desired level of constraint fulfillment under some mild conditions of both
cases of private and common uncertainty sources.

We finally develop a so-called soft communication scheme between neighboring
agents, based on a set parametrization technique together with the notion of a prob-
abilistically reliable sets, in order to reduce the required communication between each
subproblem. We show how to incorporate the probabilistic reliability notion into exist-
ing results, and provide new guarantees for the desired level of constraint violations.

The contents of this chapter is currently under review for the IEEE Transactions on
Control of Networked Systems [147].

CHAPTER 4

This chapter addresses Problem 3 by developing a distributed framework to manage the
OPF problem using an AC model of power system in the presence of uncertain gener-
ation. In this chapter, we formulate a distributed data-driven reserve scheduling (RS)
problem to cope with high penetration of wind power using an AC power network model.
To the best of our knowledge, such a distributed framework has not been yet addressed
in the related literature and this is the first work in this direction. The summary of the
contributions in this chapter are as follows.

We provide a novel reformulation of the RS problem using an AC OPF model of power
systems with wind power generation, leading to an infinite-dimensional SDP which is
in general computationally intractable. We propose an approximation of the infinite-
dimensional semidefinite program (SDP) with tractable finite-dimensional SDPs using
an affine policy inspired by practical aspects of the problem. We explicitly quantify the
exactness of the approximation, and provide a priori probabilistic feasibility guarantees
to optimally schedule generating units while simultaneously determining the geographi-
cal allocation of the required reserve. We also provide another formulation of the OPF-RS
problem, similarly to [149] with some modifications, and compare the proposed formu-
lations in terms of worst-case computational complexity analysis.

We develop a distributed stochastic framework to carry out multi-area RS using an
AC OPF model of power networks with wind power generation. We provide a technique
to decompose a large-scale finite-dimensional SDP into small-scale problems by explor-
ing the connections between the properties of a power network and chordal graphs. A
noticeable feature of our distributed setup is that each local area of the power system
may have different local accuracy regarding available wind power, and receives a priori
probabilistic feasibility certificates to optimally schedule local generating units together
with local allocation of the required reserve. This is based on the results developed in
Chapter 3 and [146, 147]. We then provide consensus ADMM algorithms for both OPF
and OPF-RS problems in a similar manner to [72, 96], with some modifications to cope
with stochasticity of the formulations.

The contents of this chapter are currently under review for the IEEE Transactions on
Power Systems [150].



1.3. PUBLICATIONS BY THE AUTHOR

1

13

CHAPTER 5
This chapter focuses on the development of a distributed anomaly detection framework
in a privatized setting to address Problem 4.

We provide a general formulation for the dynamics of a large-scale nonlinear un-
certain system together with a decomposition into a number of interconnected subsys-
tems, by extending existing results from [54]. We then introduce a novel fault detec-
tion threshold set design problem, using the concept of probabilistic set approximation
through polynomial superlevel sets [40]. The proposed approach requires communica-
tion between a number of agents, one for each subsystem, and such communication
may involve privacy sensitive measurements. For designing threshold sets, we formulate
a two-stage chance-constrained optimization problem, in which the first step is aimed at
fulfilling a probabilistic robustness constraint, and the second step maximizes the per-
formance of detection with respect to a given class of faults. A computationally tractable
framework is given for the solution of the chance constrained problem, through a data-
driven technique, along with theoretical guarantees.

We next develop a differentially private distributed framework to preserve the pri-
vacy of the exchanged information between neighboring subsystems. This makes use
of a pre-processing scheme to achieve the privacy of control input using output mea-
surements as the database. And, finally, our proposed soft communication scheme in
Chapter 2 is employed to overcome the communication bandwidth constraints, such
that each agent will share a set with all its neighboring agents together with a reliability
of information for the shared set. The reliability measure of neighboring subsystems is
incorporated in the probabilistic guarantees for each subsystem in terms of new level of
local false alarms.

The contents of this chapter are currently under review for the IEEE Transactions on
Automatic Control [141].

CHAPTER 6
This chapter concludes this dissertation with some remarks on the main contributions
and recommendations for directions of future work.

1.3. PUBLICATIONS BY THE AUTHOR
This dissertation is based on several results in previously published or submitted articles
in international journals and conferences. An overview of the publications that each
chapter is based on is provided below.
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Transactions on Smart Grid. [148]
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2
PROBABILISTIC ENERGY

MANAGEMENT FOR BUILDING

CLIMATE COMFORT IN STGS WITH

SEASONAL STORAGE SYSTEMS

This chapter presents an energy management framework for building climate comfort
(BCC) systems interconnected in a grid via aquifer thermal energy storage (ATES) sys-
tems in the presence of two types of uncertainty (private and common). ATES can be
used either as a heat source (hot well) or sink (cold well) depending on the season. We
consider the uncertain thermal energy demand of individual buildings as private un-
certainty source and the uncertain common resource pool (ATES) between neighbors
as common uncertainty source. We develop a large-scale stochastic hybrid dynamical
model to predict the thermal energy imbalance in a network of interconnected BCC
systems together with mutual interactions between their local ATES. We formulate a
finite-horizon mixed-integer quadratic optimization problem with multiple chance con-
straints at each sampling time, which is in general a non-convex problem and hard to
solve. We then provide a computationally tractable framework by extending the so-
called robust randomized approach and offering a less conservative solution for a prob-
lem with multiple chance constraints. A simulation study is provided to compare com-
pletely decoupled, centralized and move-blocking centralized solutions. We also present
a numerical study using a geohydrological simulation environment (MODFLOW) to il-
lustrate the advantages of our proposed framework.
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2.1. INTRODUCTION

G LOBAL energy consumption has significantly increased due to the combined factors
of increasing population and economic growth over the past few decades. This in-

creasing consumption highlights the necessity of employing innovative energy saving
technologies. Smart Thermal Grids (STGs) can play an important role in the future of
the energy sector by ensuring a heating and cooling supply that is more reliable and af-
fordable for thermal energy networks connecting various households, greenhouses and
other buildings, which we refer to as agents. STGs allow for the adaptation to chang-
ing circumstances, such as daily, weekly or seasonal variations in supply and demand by
facilitating each agent with smart thermal storage technologies.

Aquifer thermal energy storage (ATES) is a less well-known sustainable storage sys-
tem that can be used to store large quantities of thermal energy in aquifers. Aquifers are
underground porous formations containing water that are suitable for seasonal thermal
energy storage. It is especially suitable for climate comfort systems of large buildings
such as offices, hospitals, universities, musea and greenhouses, see [71]. Most build-
ings in moderate climates have a heat shortage in winter and a heat surplus in summer.
Where aquifers exist, this temporal discrepancy can be overcome by seasonally storing
and extracting thermal energy into and out of the subsurface, enabling the reduction
of energy usage and CO2 emissions of climate comfort systems in buildings. Figure 2.1
depicts the operating modes of an ATES system for a single building.

2.1.1. RELATED WORKS
There are various studies in literature related to buildings integrated into a smart grid
[125, 165]. Modeling a building heating system connected to a heat pump can be found
in [104], an experimental model with a focus on heating, ventilation, and air condition-
ing (HVAC) systems in [162], using multi-HVAC systems in [156]. Models for building
system dynamics together with HVAC controls are typically linear [173] for obvious com-
putational purposes. For instance resistance and capacitance circuit models, that repre-
sent heat transfer and thermodynamical properties of the building, are commonly used
for building control studies [45, 94, 175]. PID controllers for HVAC systems are widely
used in many commercial buildings [2]. Model predictive control (MPC), on the other
hand, has received a lot of attention [106, 114, 119], since it can handle large-scale dy-
namical systems subject to hard constraints, e.g., equipment limitations. Using demand
response for smart buildings [123], MPC can be used in building climate comfort (BCC)
problems [92, 116]. MPC can overcome BCC problems even in decentralized or dis-
tributed setting and it is shown that has several advantages compared to PID controllers
[114, 119, 163].

STGs have been studied implicitly in the context of micro combined heat and power
systems, see [166], or general smart grids, e.g., see [78] and [79]. Building heat demand
with a dynamical storage tank was considered in [167], whereas in [120] an adaptive-
grid model for dynamic simulation of thermocline thermal energy storage systems was
developed. A deterministic view on STGs was studied by a few researchers [127], [90],
[154]. STGs with uncertain thermal energy demands have been considered in [51], where
a MPC strategy was employed with a heuristic Monte Carlo sampling approach to make
the solution robust. A dynamical model of thermal energy imbalance in STGs with a
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probabilistic view on uncertain thermal energy demands was established in [144], where
a stochastic MPC with a theoretical guarantee on the feasibility of the obtained solution
was developed.

2.1.2. CONTRIBUTIONS

ATES as a seasonal storage system has not, to the best of our knowledge, been considered
in STGs. In [135] and [142], a dynamical model for an ATES system integrated in a BCC
system has been developed. Following these studies, the first results toward developing
an optimal operational framework to control ATES systems in STGs is presented here. In
this framework, uncertain thermal energy demands are considered along with the pos-
sible mutual interactions between ATES systems, which may cause limited performance
and reduced energy savings. The main contributions of this chapter are threefold:

a) We develop a novel large-scale stochastic hybrid dynamical model to predict the
dynamics of thermal energy imbalance in STGs consisting of BCC systems with hourly-
based operation and ATES as a seasonal energy storage system. Based on our previ-
ous work in [135] and [142], we extend an ATES system model to predict the amount of
stored water and thermal energy. We first incorporate the ATES model into a BCC prob-
lem and then, formulate a large-scale STGs problem by taking into consideration the
geographical coupling constraints between ATES systems. Using an MPC paradigm, we
formulate a finite-horizon mixed-integer quadratic optimization problem with multiple
chance constraints at each sampling time leading to a non-convex problem, which is
difficult to solve.

b) We next propose a move-blocking control scheme to enable our stochastic MPC
framework to handle long prediction horizons and an hourly-based operation of the BCC
systems together with a seasonal variation of desired optimal operation of the ATES sys-
tem in a unified framework. In practice, the BCC systems have an hourly-based opera-
tion and typically day-ahead planning compared to the ATES system that is based on a
seasonal operation. Using a fixed prediction horizon length, e.g., least common multi-
ple of these two systems, may turn out to be computationally prohibitive, however also
necessary in order to represent ATES interaction dynamics. The time scale discrepancy
between the ATES system dynamics and BCC systems are explicitly accounted for in the
developed MPC-based optimization formulation. Our proposed control strategy offers
a long enough prediction horizon to prevent mutual interactions between ATES systems
with much less computational time compared to a fixed prediction horizon that is sam-
pled densely (i.e., every hour).

c) We develop a computationally tractable framework to approximate a solution of
our proposed MPC formulation based on our previous work in [144]. In particular, we
extend the framework in [144] to cope with multiple chance constraints which provides
a more flexible approximation technique compared to the so-called robust randomized
approach [98, 100], which is only suitable for a single chance constraint. Our framework
is closely related to, albeit different from, the approach of [158]. In [158], the problem
formulation is convex and consists of an objective function with multiple chance con-
straints, in which the terms in objective and constraints are univariate. In contrast, our
problem formulation is mixed-integer and the objective function consists of separable
additive components.
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Figure 2.1: Operational modes of an ATES system during warm (left) and cold (right) seasons. Figure is taken
from [142].

It is important to highlight that two major difficulties arising in stochastic hybrid
MPC, namely recursive feasibility and stability, are not in the scope of this work, and
they are subject of our ongoing research work. Thus, instead of analyzing the closed-loop
asymptotic behavior, in this work we focus on individual stochastic hybrid MPC problem
instances from the optimization point of view and derive probabilistic guarantees for
multiple chance constraints fulfillment.

2.1.3. STRUCTURE

The layout of this chapter is as follows. Section 2.2 describes dynamics of an ATES system
and a BCC system. In Section 2.3, we first formulate an energy management problem in a
single agent, and then, extend it to a network of multiple agents. We present three differ-
ent setups, namely: one with completely decoupled agents, a centralized problem, and
a move-blocking centralized problem formulation. In Section 2.4, we develop a compu-
tationally tractable framework to solve these problems, and Section 2.5 provides a sim-
ulation study with a comparison between these three different settings. In addition, the
numerical results obtained via a geohydrological simulation environment (MODFLOW)
are shown. Section 2.6 concludes this chapter with some remarks.

2.1.4. NOTATION

The following international system of units is used throughout the chapter: Kelvin [K]
and Celsius [°C] are the units of temperature, Meter [m] is the unit of length, Hour [h] is
the unit of time, Kilogram [kg] is the unit of mass, Watt [W] is the unit of power, Joule [J],
kiloWatt-hour [kWh], and MegaWatt-hour [MWh] are the units of energy.

R,R+ denote the real and positive real numbers, andN,N+ the natural and positive
natural numbers, respectively. We operate within n-dimensional space Rn composed
by column vectors u, v ∈Rn . The Cartesian product over n sets X1, · · · ,Xn is given by:∏n

i=1Xi = X1 × ·· · ×Xn = {(x1, · · · , xn) : xi ∈ Xi }. The cardinality of a set A is shown by
|A| = A.

Given a metric space ∆, and P a probability measure defined over ∆, its Borel σ-
algebra is denoted byB(∆). Throughout the chapter, measurability always refers to Borel
measurability. In a probability space (∆,B(∆),P), we denote the N -Cartesian product set
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of ∆ by ∆N with the respective product measure by PN .

2.2. SYSTEM DYNAMICS MODELING
In this section, we first develop a mathematical model for an ATES system dynamics as
a single seasonal storage system. We then describe the steady-state dynamical model
for a building to capture its thermal energy demand profile during heating and cooling
modes based on our previous work in [137]. We finally present the BCC system where we
introduce the so-called thermal energy imbalance dynamics. Using the thermal energy
imbalance dynamics of a BCC system, we integrate an ATES system into the building
thermal energy production unit which consists of a boiler, a chiller, a heat pump, a heat
exchanger and storage tanks as the heating and cooling modes equipment.

2.2.1. SEASONAL STORAGE SYSTEMS
Consider an ATES system consisting of warm and cold wells to store warm water during
warm season and cold water during cold season, respectively. Each well can be described
as a single thermal energy storage where the amount of stored energy is proportional
to the temperature difference between stored water and aquifer ambient water. Stored
thermal energy from the last season is going to be used for the current season and so
forth. Depending on the season, the operating mode (heating or cooling) of an ATES
system changes, by reversing the direction of water flow between wells as it is shown in
Figure 2.1.

During a cold season, for heating purposes, the direction of water is from the warm
well to the cold well through a heat exchanger to extract the stored thermal energy from
the water. The return water is cooled down and stored in the cold well. This procedure is
opposite during a warm season for cooling purposes of the BCC system. An ATES system
can be characterized by some physically meaningful parameters. The most relevant fea-
tures that can describe the status of an ATES system for the purpose of optimal control is
the stored volume of water together with the thermal energy content in each well. A free
manipulated variable in this setting is the pump flow rate that is used to circulate water
from one well to the other through a heat exchanger.

We therefore define the states that can describe the ATES system dynamics to be the
volume of water, Vh

a,k [m3], Vc
a,k [m3], and the thermal energy content, Sh

a,k [Wh],Sc
a,k [Wh],

of warm and cold wells. The superscripts "h" and "c" refer to the heating and cooling
operating modes of an ATES system, respectively, and the subscript "a" denotes the ATES
system variables. Consider the following first-order difference equations as ATES system
model dynamics:

Vh
a,k+1 = Vh

a,k −τ(uh
a,k −uc

a,k ) , (2.1a)

Vc
a,k+1 = Vc

a,k +τ(uh
a,k −uc

a,k ) , (2.1b)

Sh
a,k+1 = ηa,k Sh

a,k − (hh
a,k −hc

a,k ) , (2.1c)

Sc
a,k+1 = ηa,k Sc

a,k + (ch
a,k − cc

a,k ) , (2.1d)

where ηa,k ∈ (0,1) is a lumped coefficient of thermal energy losses in aquifers, uh
a,k and

uc
a,k [m3h−1] are control variables corresponding to the pump flow rate of ATES system
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during heating and cooling modes at each sampling time k = 1,2, · · · , respectively, with
τ [h] as the sampling period. The variable uh

a,k circulates water from warm well to cold
well, whereas uc

a,k takes water from cold well and injects into warm well of ATES system,
during heating modes and cooling modes of the BCC system, respectively. The variables
hh

a,k [Wh],ch
a,k [Wh] denote the thermal energy that is extracted from warm well and in-

jected into cold well of ATES system during heating mode of BCC system, respectively.
The variables cc

a,k [Wh],hc
a,k [Wh] are the thermal energy that is extracted from cold well

and injected into warm well of ATES system during cooling mode of BCC system, respec-
tively. These variable are defined by:{

hh
a,k =αh,k τuh

a,k

ch
a,k =αc,k τuh

a,k

,

{
cc

a,k =αc,k τuc
a,k

hc
a,k =αh,k τuc

a,k

, (2.2)

where αh,k = ρw cpw (Th
a,k −Tamb

a,k ), and αc,k = ρw cpw (Tamb
a,k −Tc

a,k ) are the thermal power

coefficients of warm and cold wells, respectively. The parameters ρw [kgm−3] and cpw

[Jkg−1K−1] are density and specific heat capacity of water, respectively. Th
a,k [K], Tc

a,k [K],

and Tamb
a,k [K] denote the temperature of water inside warm well, cold well and the am-

bient aquifer, respectively. We also define ha,k [Wh], and ca,k [Wh] to be the amount of
thermal energy that can be delivered to the building during heating and cooling modes,
respectively, as follows: {

ha,k =αk τuh
a,k

ca,k =αk τuc
a,k

, (2.3)

where αk =αh,k +αc,k is the total thermal power coefficient. In previous work [135], we
have also developed a control-oriented model for the integrated ATES into BCC system
where we consider the dynamical behavior of the volume and temperature of water in
each well of ATES system.

It is important to note that the amount of cold energy content, Sc
a,k , in the cold well

is a function of the temperature difference between the temperature of the stored wa-
ter in the cold well and the ambient aquifer temperature, Tc

a,k −Tamb
a,k , which leads to

have an unusual negative signed for the energy content in the cold well. Without loss
of generality to avoid any further technical issue, we neglect the negative sign in the
proposed model (2.1) by simply considering the temperature difference between the
ambient aquifer temperature and the temperature of the stored water in the cold well,
Tamb

a,k −Tc
a,k . It is also considered to have no energy flow between wells in an ATES system

through the aquifers based on the operator’s experience and historical information.
Let us now discuss the dynamics of ATES system in (2.1). Equations (2.1a) to (2.1d)

describe the evolution of water volume and the thermal energy content in warm and
cold wells, respectively. During cold seasons, for the heating purpose of BCC system,
the amount τuh

a,k of volume of warm water from the warm well is extracted to provide

amount ha,k of thermal energy, and meanwhile, the amount ch
a,k of thermal energy is

stored in the cold well of ATES system. As for the cooling purpose of BCC system during
warm seasons, the amount τuc

a,k of volume of cold water from the cold well is extracted
to provide amount ca,k of thermal energy, while the amount hc

a,k of thermal energy is
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Vh
a,k Sh

a,k

Vc
a,k Sc

a,k

uh
a,kuc

a,k

hh
a,k

cc
a,k

hc
a,k

ch
a,k

Figure 2.2: Operational block diagram of ATES system showing the relation between an ATES system variables.
Operating modes during cold and warm seasons are shown via red color and blue color, respectively.

injected in the warm well of ATES system. The operations of the ATES system are visu-
alized in Figure 2.2, which represents the relation between the variables of ATES system.
Operating modes during cold and warm seasons are shown via red color and blue color,
respectively. The following assumption is made due to the existing operational practice,
and it is not restrictive for our proposed model.

Assumption 1 There is either no operation or only one operating mode active in ATES
systems, which leads to either both control variables being zero or only one control variable
being nonzero at any time instant:

uh
a,k uc

a,k = 0, k = 1,2, · · · .

The dynamics of ATES system in (2.1) can be also written in a more compact format
for each agent i ∈ {1, · · · , N }:

xa
i ,k+1 = aa

i ,k xa
i ,k +ba

i ,k ua
i ,k , (2.4)

where xa
i ,k =

[
Vh

a,k Vc
a,k Sh

a,k Sc
a,k

]> ∈ R4 and ua
i ,k =

[
uh

a,k uc
a,k

]> ∈ R2 denote the

state and the control vectors, respectively, and aa
i ,k ,ba

i ,k can be obtained via (2.1). Note
that there are some operational constraints on the ATES control variable as well,

umin
a ≤ uh

a,k ≤ umax
a , (2.5a)

umin
a ≤ uc

a,k ≤ umax
a , (2.5b)

where umin
a ,umax

a represent the minimum and maximum pump flow rate of ATES system,
respectively.

The proposed model for an ATES system in (2.4) is a linear time-varying discrete-time
system, due to the variation of the temperatures in both wells and the ambient aquifer
(2.2). In Section 2.2.3, we will integrate (2.4) into a BCC system dynamics.

2.2.2. THERMAL ENERGY DEMAND PROFILE
A dynamical model of building thermal energy demand was developed in our previous
work [137] to determine the thermal energy demand of a building at each sampling time
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k, considering the desired indoor air temperature and the outside weather conditions.
We refer to the BCC system that determines the level of thermal energy demand QB

d,k
[Wh] at each sampling time k via

QB
d,k = fB(pB

s ,TB
des,k ,ϑk ) , (2.6)

where pB
s corresponds to a parameter vector of the building characteristics, TB

des,k [°C] is

the desired indoor air temperature of the building, and ϑk = [TB
o,k , Io,k ,vo,k ,Qp,k ,Qe,k ] ∈

R5 is a vector of uncertain variables that contains the outside air temperature, the solar
radiation, the wind velocity, the thermal energy produced due to occupancy by peo-
ple, and electrical devices, and lighting inside the building, respectively. This yields the
building thermal energy demand that takes into account the overall building effects, e.g.,
zones, walls, humans and non-human thermal energy sources with the outside uncer-
tain weather conditions. Since we are mainly interested in capturing the variation of
thermal energy demand w.r.t. the outside air temperature TB

o,k , the uncertain variable

ϑk , is assigned to TB
o,k , and the rest of the variables are fixed to their nominal (forecast)

values at each sampling time k.
The operating modes (heating or cooling) of BCC system are determined based on

the sign of QB
d,k at each sampling time k. The variable QB

d,k with positive and negative
signs, represents the thermal energy demand during heating mode and the building sur-
plus thermal energy during cooling mode, respectively. QB

d,k is zero represents the com-
fort mode of building, and thus, in such a case no heating or cooling is requested. We
also distinguish between the thermal energy demand of building during heating mode
hd,k , and cooling mode cd,k , using the relation: QB

d,k = hd,k − cd,k .
The following technical assumption is necessary for the measurability of the uncer-

tainty.

Assumption 2 The mapping from the uncertain variable ϑk to the thermal energy de-
mand QB

d,k is a measurable function (2.6), so that QB
d,k can be viewed as a random vari-

able on the same probability space as ϑk . Moreover, the thermal energy demand at each
sampling time k can be either zero (no thermal energy demand) or only for heating hd,k

(cooling cd,k ) mode of the BCC system, which leads to:

hd,k cd,k = 0 , k = 1,2, · · · .

Figure 2.3 shows the thermal energy demand profile of a building for the last five
years with respect to the outside registered weather data in The Netherlands. The top
panel in Figure 2.3 depicts QB

d,k as the result of (2.6), whereas the middle and bottom
panels show the thermal energy demand during heating mode hd ,k and the thermal en-
ergy surplus during cooling mode cd ,k , respectively.

2.2.3. BUILDING CLIMATE COMFORT SYSTEMS
Consider a single agent (i.e., building) i ∈ {1, · · · , N } that is facilitated with a boiler, a heat
pump, a storage tank for the heating mode, and a chiller, a storage tank for the cool-
ing mode together with an ATES system that is available for both operating modes (see
Figure 2.4). We now focus on the modeling of energy balance for the BCC system.
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Figure 2.3: Thermal energy demand profile of a building during 2010-2015 with respect to the outside regis-
tered weather data in The Netherlands [5]. The black line shows QB

d,k , the red line is related to the thermal

energy demand during heating mode hd,k and the blue line corresponds to the thermal energy surplus during
cooling mode cd,k .

Define two vectors of control variables during heating and cooling modes in each
agent i at each sampling time k, to be

uh
i ,k =

[
hboi,k him,k

]> ∈R2 , uc
i ,k =

[
cchi,k cim,k

]> ∈R2 .

The variables hboi,k , cchi,k , him,k , and cim,k denote the production of boiler, chiller, the
imported energies from external parties during heating and cooling modes, respectively.
We consider boiler and chiller operating limits that constrain their production within a
certain bound for cost effective maintenance of such equipment. Define vboi,k ∈ {0,1}
and vchi,k ∈ {0,1} to be two binary variables to decide about the ON/OFF status of the
boiler and chiller, respectively. Consider now to the following conditional situations:

boiler :

{
vboi,k = 1 if hmin

boi ≤ hboi,k ≤ hmax
boi

vboi,k = 0 otherwise
, (2.7a)

chiller :

{
vchi,k = 1 if cmin

chi ≤ cchi,k ≤ cmax
chi

vchi,k = 0 otherwise
, (2.7b)

where hmin
boi , hmax

boi , cmin
chi , cmax

chi denote the minimum and maximum capacity of thermal
energy production of boiler and chiller, respectively.

We define two variables to capture the thermal energy imbalance errors during heat-
ing mode xh

i ,k ∈R, and an imbalance error of the cooling mode xc
i ,k ∈R. They are related

to the difference between the level of the storage tank with the forecasted thermal energy
demand, hf

d,k , c f
d,k , during heating and cooling modes, respectively, which are formally
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defined using the following relations:

xh
i ,k = hs,k −hf

d,k , (2.8a)

xc
i ,k = cs,k − c f

d,k . (2.8b)

Herein, hs,k , and cs,k represent the level of storage tank during heating and cooling modes,
respectively, and obey the following dynamics:

hs,k+1 = ηh
s,k xh

i ,k +ηh
s,k

(
hboi,k +him,k +αhp,k ha,k

)
, (2.9)

cs,k+1 = ηc
s,k xc

i ,k +ηc
s,k

(
cchi,k + cim,k + ca,k

)
, (2.10)

where αhp,k = COPk (COPk −1)−1 is related to the effect of the heat pump during heating
mode and COPk stands for the coefficient of performance of heat pump at each sam-
pling time k. The parameters ηh

s,k ,ηc
s,k ∈ (0,1) denote the thermal loss coefficients due

to inefficiency of storage tank during heating and cooling modes, respectively. The vari-
ables ha,k and ca,k are defined in (2.3) and are related to the ATES system model. It is
important to note that ha,k and ca,k are dependent on the pump flow rates uh

a,k and uc
a,k

of the ATES system during heating and cooling modes of the BCC system, respectively.
We now substitute hs,k , and cs,k as in (2.9) into (2.8) to derive the dynamical behavior of
the thermal energy imbalance xh

i ,k and xc
i ,k that are given by

xh
i ,k+1 = ah

i ,k xh
i ,k +bh

i uh
i ,k +ba,h

i ,k ua
i ,k + ch

i ,k wh
i ,k , (2.11a)

xc
i ,k+1 = ac

i ,k xc
i ,k +bc

i uc
i ,k +ba,c

i ,k ua
i ,k + cc

i ,k wc
i ,k , (2.11b)

where ah
i ,k = ηh

s,k , ac
i ,k = ηc

s,k , bh
i ,k =

[
ηh

s,k ηh
s,k

]
, bc

i ,k =
[
ηc

s,k ηc
s,k

]
, ba,h

i ,k =
[
η̃h

s,k 0
]

,

ba,c
i ,k =

[
0 ηc

s,k αk τ
]

, ch
i = −1, cc

i = −1, and η̃h
s,k = ηh

s,kαhp,k αk τ. The variables wh
i ,k =

hf
d,k+1 and wc

i ,k = c f
d,k+1 refer to the forecast of thermal energy demand during heating

and cooling modes in the next time step, respectively. The only uncertain variable in
each agent i at each sampling time k is considered to be the deviation of actual thermal
energy demand from its forecast value as defined in Section 2.2.2, and therefore, wh

i ,k
and wc

i ,k represent uncertain parameters.
Consider now the system dynamics for each agent i by concatenating the thermal

energy imbalance errors during heating and cooling modes (2.11) together with the state
vector of the ATES system (2.4) as follows:

xi ,k+1 = ai ,k xi ,k +bi ,k ui ,k + ci ,k wi ,k , (2.12)

where xi ,k =
[

xh>
i ,k xc>

i ,k xa>
i ,k

]> ∈ R6 and ui ,k =
[

uh>
i ,k uc>

i ,k ua>
i ,k

]> ∈ R6 denote the

state and the control vectors, respectively, and wi ,k =
[

wh
i ,k wc

i ,k

]> ∈Wi ,k ⊆R2 is the

uncertainty vector such that Wi ,k is an unknown uncertainty set. The system matrices
ai ,k ,bi ,k ,ci ,k can be readily derived from their definitions and we omit them in the in-
terest of space.

The proposed model for a BCC system in (2.12) is a stochastic hybrid linear time-
varying discrete-time system. It is important to note that the hybrid nature of (2.12) is
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Figure 2.4: Heating and cooling operating modes of BCC system with an ATES system during warm (left) and
cold (right) seasons.

due to the fact that each equipment (boiler and chiller) can be either ON or OFF as in
(2.7) depending on heating and cooling modes of the building. This possibility therefore
changes the proposed thermal energy imbalance error dynamics (2.11).

In order to provide a desired thermal comfort for each BCC system in the following
section, we will develop a control framework based on the MPC paradigm where (2.12)
is used to predict the thermal energy imbalance error dynamics together with the ATES
system dynamics for each agent i ∈ {1, · · · , N }, and then, extend this to a network of in-
terconnected BCC systems. Moreover, we will provide a solution method to overcome
an important challenge of the network of BCC systems due to the spatial distribution
of ATES systems. An important remark is that the variations of system parameters in
the proposed dynamical model (2.12) evolve on a much slower time-scale compared
to the system dynamics and, therefore, we consider the system dynamics (2.12) to be
time-invariant in the following parts. It is worth mentioning that our proposed control
technique in this chapter can be easily extended to cope with time-varying parameters
by considering them as multiplicative uncertainty sources, see e.g., [146, 147].

2.3. ENERGY MANAGEMENT PROBLEM

In this section, we formulate an optimization problem for heating and cooling modes of
the BCC system integrated with ATES which we refer to as a single agent energy man-
agement problem. We then extend the single agent problem to a network with multiple
agents that can be producers and consumers of thermal energy in an STG setting. In
such a setting, there might be some unwanted overlap (mutual interactions) between the
stored water in the wells of neighboring ATES systems (see Figure 2.5) through aquifers.
Such an unwanted mutual interactions between warm and cold wells, clearly, reduce the
energy efficiency of the ATES systems. The goal of the agents is to match the local con-
sumption and production and to avoid mutual interactions between their ATES systems
in the network and thereby improve energy efficiency.
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2.3.1. ENERGY BALANCE IN SINGLE AGENT SYSTEM

Consider an MPC problem with a finite prediction horizon Nh for agent i ∈ {1, · · · , N },
and introduce the subscript t in our notation to characterize the value of the planning
quantities for a given time t ∈ T , where the set of predicted time steps is denoted by
T := {k,k+1, · · · ,k+Nh−1}. Using the subscript t |k, we refer to the t time step prediction
of variables at the simulation time step k.

Define vi ,t |k = [
vboi,t |k vchi,t |k

]> ∈ {0,1}2 as a vector of binary variables to decide
about the ON/OFF status of boiler and chiller in each agent i ∈ {1, · · · , N }. We also take

into account the startup cost of boiler and chiller using csu
i ,t |k =

[
csu

boi,t |k csu
chi,t |k

]>
and

add csu
i ,t |k into the control decision variables ui ,t |k =

[
uh>

i ,t |k uc>
i ,t |k ua>

i ,t |k csu>
i ,t |k

]> ∈R8

for each agent i at each time step t |k.

The goal of each agent i is to map the local thermal energy supply of production
units to the local thermal energy demand of BCC system. Our goal thus is to formulate
an optimization problem to find the control input ui ,t |k for each agent i such that the
thermal energy imbalance errors stay as a small as possible at minimal production cost
and to satisfy physical constraints of heating and cooling modes equipment at each sam-
pling time k. We therefore associate a quadratic cost function with each agent i at each
prediction time step k as follows:

Ji (xi ,t |k ,ui ,t |k ) = x>
i ,t |k Qi xi ,t |k +u>

i ,t |k Ri ui ,t |k , (2.13)

where Qi = diag
([

qh
i qc

i 01×4
]) ∈ R6×6 is a weighting matrix coefficient of thermal

energy imbalance errors, Ri = diag(ri ) ∈R8×8 indicates a diagonal matrix with the cost
vector ri on its diagonal, and ri is defined as

ri =
[
rboi r h

im rchi r c
im r h

a r c
a 1 1

]> ∈R8 ,

where rboi (rchi) represents the cost of natural gas that is used by boiler (chiller), r h
im (r c

im)
denotes the cost of imported thermal energy from an external party during heating (cool-
ing) mode, and r h

a (r c
a ) corresponds to the pumping electricity cost of ATES system to ex-

tract the required thermal energy during heating (cooling) modes. The other entries of
ri represent the start-up costs. The proposed cost function consists of two main parts
which leads to the regulation of imbalance errors to zero at minimal production cost
together with minimum energy balance error of ATES system in each agent i . The rea-
son for introducing a cost function in this form is that from a computational perspec-
tive quadratic cost functions are motivated by convexity and differentiability arguments.
Note that the cost function Ji (·) is a random variable due to the uncertain state variables,
and thus, we consider E [Ji (·)] to obtain a deterministic cost function.

We are now in a position to formulate a finite-horizon stochastic hybrid control prob-
lem as the local energy management problem for each agent i ∈ {1, · · · , N } using the fol-
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lowing chance-constrained mixed-integer optimization problem:

minimize
{ui ,t |k ,vi ,t |k }t∈T

∑
t∈T

E
[

Ji (xi ,t |k ,ui ,t |k )
]

(2.14a)

subject to c su
i ,t |k ≥Λsu(vi ,t |k − vi ,t−1|k ) ,c su

i ,t |k ≥ 0,∀t ∈ T (2.14b)

vboi,t |k hmin
boi ≤ hboi,t |k ≤ hmax

boi vboi,t |k ,∀t ∈ T (2.14c)

vchi,t |k cmin
chi ≤ cchi,t |k ≤ cmax

chi vchi,t |k ,∀t ∈ T (2.14d)

hmin
im ≤ him,t |k ≤ hmax

im ,∀t ∈ T (2.14e)

cmin
im ≤ cim,t |k ≤ cmax

im ,∀t ∈ T (2.14f)

umin
a ≤ uh

a,t |k ≤ umax
a ,∀t ∈ T (2.14g)

umin
a ≤ uc

a,t |k ≤ umax
a ,∀t ∈ T (2.14h)

P
{

xi ,t+1|k ≥ 0
∣∣xi ,t |k , ∀t ∈ T }≥ 1−εi , {wi ,t |k }t∈T ∈Wi , (2.14i)

whereΛsu is a diagonal matrix including the startup costs of boiler and chiller on the di-
agonal, hmin

im , hmax
im , cmin

im , cmax
im are the minimum and maximum capacity of thermal en-

ergy production for each external party during heating and cooling modes, respectively.
εi ∈ (0,1) is the admissible constraint violation parameter. Note that Wi represents the
Cartesian product of Wi ,t |k for all t ∈ T .

In order of appearance, the constraints have the following meaning. The constraint
(2.14b) captures the status change of boiler and chiller (from OFF to ON). Note that the
status change from ON to OFF never appears in the cost function due to the positivity
constraint of c su

i ,t |k ≥ 0. (2.14c), (2.14d), (2.14e), (2.14f), (2.14g), (2.14h) impose box con-
straints (capacity limitations) on their variables. In the given lower and upper bounds
of both constraints (2.14c) and (2.14d), there are multiplications with binary variables
which enforce the status change of boiler and chiller, respectively. Constraint (2.14i) en-
sures probabilistically feasible trajectories of the thermal energy imbalance errors for in
each agent w.r.t all possible realization of the uncertain variables wh

i ,t |k and wc
i ,t |k for all

predicted time step t ∈ T .
To extend the proposed formulation (2.14) to the energy management problem of

smart thermal grids, we need to introduce the notation, x i := {xi ,t+1|k }t∈T ∈Rnx , ui :=
{ui ,t |k }t∈T ∈Rnu , v i := {vi ,t |k }t∈T ∈Rnv , and w i := {wi ,t |k }t∈T ∈Rnw , where nx := 6Nh ,
nu := 9Nh , nv := 2Nh , and nw := 2Nh . Given the initial value of the state xi ,k , one can
eliminate the state variables from the dynamics (2.12) of each agent i :

x i = Ai xi ,k +Bi ui +Ci w i , (2.15)

where the exact form of Ai , Bi and Ci matrices are omitted in the interest of space and
can be found in [21, Section 9.5]. We can now rewrite the total cost function over the
prediction horizon in a more compact form as follows:

Ji (x i ,ui ) = x>
i Q i x i +u>

i R i ui ,

where Q i and R i are two block-diagonal matrices with Qi and Ri on the diagonal for each
agent i . Note that the sum

∑
(·) and the expectation E[·] in the cost function (2.14a) are
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linear operators and thus, we can change their order without loss of generality. Consider
now the reformulation of (2.14) in a more compact form as follows:

min
ui ,v i

Vi (x i ,ui ) = Ew i

[Ji (x i ,ui )
]

(2.16a)

s.t. Ei ui +Fi v i +Pi ≤ 0, ∀w i ∈Wi (2.16b)

Pw i

[
Ai xi ,k +Bi ui +Ci w i ≥ 0

]≥ 1−εi , (2.16c)

where Ei , Fi , Pi are matrices that are built by concatenating all constraints in (2.14).
The index of Ew i ,Pw i denotes the dependency of the state trajectory x i on the string of
random scenarios w i for each agent i . The following technical assumption is adopted.

Assumption 3 The variable w i is defined on (Wi ,B(Wi ),Pw i ), where Wi ⊆ Rnw , B(·)
denotes a Borel σ-algebra, and Pw i is a probability measure defined over Wi .

It is worth to mention that for our study we only need a finite number of instances of
w i , and we do not require the probability space Wi and the probability measure Pw i to
be known explicitly. The availability of a number of scenarios from the sample space Wi

is enough which will become concrete in later parts of the chapter. Such samples can be
for instance obtained from historical data.

The proposed optimization problem (2.16) is a finite-horizon, chance-constrained
mixed-integer quadratic program, whose stages are coupled by binary variables (2.14b),
and dynamics of the imbalance error (2.14i) for each agent i at each sampling time k. It is
important to note that the proposed problem (2.16) is in general a non-convex problem
and hard to solve. In the following section, we will develop a tractable framework to
obtain a probabilistically feasible solution for each agent i . We refer to the proposed
optimization problem (2.16) as a single agent problem, and whenever all agents solve
this problem separately in a receding horizon fashion without any coupling constraints,
it is referred to as the decoupled solution (DS) in the subsequent parts. We next extend
the proposed single agent optimization problem (2.16) into an STG setting.

2.3.2. ATES IN SMART THERMAL GRIDS
Consider a regional thermal grid consisting of N agents with heterogeneous parameters
as it was developed in the previous part. Such an STG setting however can lead to un-
wanted mutual interactions between ATES systems as it is illustrated in Figure 2.5. We
therefore need to introduce a proper coupling constraint between neighboring agents
that makes use of the following assumption.

Assumption 4 It is considered that each well of an ATES system to be a growing reservoir
with respect to the horizontal axis (see black solid line in Figure 2.4). We therefore assume
to have a cylindrical reservoir with a fixed height ` [m] (filter screen length) and a growing
radius r h

a,k ,r c
a,k [m] (thermal radius) for each well of an ATES system.

Using the volume of stored water in each well of ATES system, one can determine the
thermal radius using

r h
a,k =

(
cpw Vh

a,k

caq π`

)0.5

, r c
a,k =

(
cpw Vc

a,k

caq π`

)0.5

, (2.17)
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Figure 2.5: Three-agent ATES system in an STG. Each agent has a single ATES system which consists of a warm
and a cold well. Horizontal cross sections of warm and cold wells are shown with red and blue circles. The
black dashed lines represent the unwanted mutual interactions between ATES systems.

where caq = (1−np )csand +np cpw is the aquifer heat capacity. csand [Jkg−1K−1] relates to
the sand specific heat capacity, and np [−] is the porosity of aquifer. Let us now denote
the set of neighbors of agent i by

Ni ⊆ {1,2, · · · , N }\{i } .

We impose a limitation on the thermal radius of warm well r h
a,k and cold well r c

a,k of ATES
system in each agent i , based on the corresponding wells of its neighbor j ∈Ni :

(r h
a,k )i + (r c

a,k ) j ≤ di j , j ∈Ni , (2.18)

where di j is a given distance between agent i and its neighbor j ∈Ni . This constraint
prevents overlapping between the growing domains of warm and cold wells of ATES sys-
tems in an STG setting. Due to the nonlinear transformation in (2.17), we propose the
following reformulation of this constraint to simplify the problem:

(Vh
a,k )i + (Vc

a,k ) j ≤ Vi j − δ̄i j ,k , (2.19)

where Vi j = caqπ` (di j )2/cpw denotes the total volume of common resource pool be-
tween agent i and its neighbor j ∈ Ni . The variable δ̄i j ,k = 2caqπ` (r̄ h

a,k )i (r̄ c
a,k ) j /cpw

represents a time-varying parameter that captures the mismatch between the linear and
nonlinear constraint relations. The following corollary is a direct result of the above re-
formulation.

Corollary 1 If (r̄ h
a,k )i and (r̄ c

a,k ) j represent the current thermal radius of warm and cold
wells of ATES system in agent i and j , respectively, then constraints (2.18) and (2.19) are
equivalent.
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The proof is provided in Appendix A. ä

Definition 1 We define δi j ,k to be a common uncertainty source between each agent i and
its neighboring agent j ∈Ni , using the following model:

δi j ,k := δ̄i j ,k (1±0.1ζ) , (2.20)

where ζ is a random variable defined on some probability space, δ̄i j ,k is constructed by

using two given possible (r̄ h
a,k )i , (r̄ c

a,k ) j realizations that can be obtained using historical
data in the DS framework. Since the mapping (2.20) from ζ to δi j ,k is measurable, one can
view δi j ,k as a random variable on the same probability space as ζ.

2.3.3. PROBLEM FORMULATION IN MULTI-AGENT NETWORK

We now formulate the energy management problem for ATES systems in STGs as follows:

min
{ui ,v i }N

i=1

N∑
i=1

Vi (x i ,ui ) (2.21a)

s.t. Ei ui +Fi v i +Pi ≤ 0, (2.21b)

Pw i

[
Ai xi ,k +Bi ui +Ci w i ≥ 0

]≥ 1−εi , ∀w i ∈Wi , (2.21c)

Pδi j

[
Hi x i +H j x j ≤ V̄i j −δi j

]≥ 1− ε̄i j , ,∀δi j ∈∆i j , (2.21d)

∀ j ∈Ni , ∀i ∈ {1,2, · · · , N } ,

where Hi , H j are coefficient matrices of appropriate dimensions, V̄i j ∈RNh is the upper-
bound on the total common resource pool, δi j is a vector of common uncertainty vari-
ables, and ε̄i j ∈ (0,1) denotes the level of admissible coupling constraint violation for
each agent i and ∀ j ∈Ni . V̄i j can be expressed as V̄i j = 1Nh

⊗
Vi j , using the Kronecker

product. Notice that the index of Pδi j denotes the dependency of the state trajectories

on the string of random common scenarios δi j = {δi j ,t |k }t∈T ⊆RNh=:nδ .

Assumption 5 The variable δi j is considered to be a random vector on some probability
space (∆i j ,B(∆i j ),Pδi j ), where ∆i j ⊆Rnδ , B(·) denotes a Borel σ-algebra, and Pδi j is a
probability measure defined over ∆i j .

Assumption 6 The variables w i ∈Rnw andδi j ∈Rnδ are two vectors of independent ran-
dom scenarios from two disjoint probability spaces Wi and ∆i j , respectively.

We refer to the proposed optimization problem (2.21) as a multi-agent network prob-
lem, and whenever the proposed problem (2.21) is solved in a receding horizon fashion,
it is mentioned as the centralized solution (CS) in the following parts. The feasible set of
(2.21) is in general non-convex and hard to determine explicitly due to the presence of
chance constraints (2.21c), (2.21d). In what follows, we will develop a tractable frame-
work to obtain probabilistically feasible solutions for all agents.
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2.3.4. MOVE-BLOCKING SCHEME
The proposed system dynamics in (2.12) for each agent i consists of a BCC system dy-
namics (2.6) with typically an hourly-based operation, and an ATES system (2.4) that is
based on a seasonal variation of desired optimal operation. This leads to a control prob-
lem that is sensitive w.r.t. the prediction horizon length, e.g., (2.16) and (2.21). Using a
fixed prediction horizon length, e.g., least common multiple of these two systems, may
turn out to be computationally prohibitive, however, also necessary in order to represent
ATES interaction dynamics. We therefore aim to formulate a move-blocking strategy to
reduce the number of control variables.

Consider T = {k,k +1, · · · ,k +Nh −1} to be the set of sampling time instances within
the full prediction horizon, and Tu = {τ1,τ2, · · · ,τTu } ⊆Nh to be the set of sampling in-
stances at which the control input is updated with Tu = |Tu |. We introduce a new vector
of multi-rate decision variables ũi ∈RNu Tu which are related to the original ones by:

ui =Ψũi , (2.22)

where Ψ = [
Ψ1 Ψ2 · · · ΨTu

] ∈RNu Nh×Nu Tu is a linear mapping matrix. For all m ∈
{1, · · · ,Tu}, we construct

Ψm =
[
ψ>

1,m ψ>
2,m · · · ψ>

Nh ,m

]> ∈RNu Nh×Nu , (2.23)

where ψl ,m ∈RNu×Nu for all l ∈ {1,2, · · · , Nh} is defined as

ψl ,m =
{

1 if k + l −1 = τm

0 otherwise
, (2.24)

where 1 ∈RNu×Nu represents an identity matrix.
We reformulate the optimization problem (2.21) using the proposed move-blocking

scheme (2.24), and whenever the reformulation of (2.21) is solved in a receding horizon
fashion, it is referred to as the move-blocking centralized solution (MCS).

2.4. COMPUTATIONALLY TRACTABLE FRAMEWORK
In this section, we provide a framework to approximately solve the chance-constrained
optimization problem (2.21), which is in general difficult to solve. To this end, we em-
ploy a data-driven approach to approximate the chance constraints using some available
samples of uncertainties. We first extract at random some instances of the uncertainties
(scenarios), where the scenarios are independent and identically distributed (i.i.d.) and,
then, find the optimal solution of the problem with only the constraints associated with
the extracted scenarios.

An important requirement of such a technique is to have a convex problem w.r.t
the decision variables, which is not the case in our formulation (2.21). To tackle such
a mixed-integer chance-constrained problem, one can use a worst-case mixed-integer
reformulation technique as it was initially introduced in [109]. Due to the large-scale
network problem (2.21), such a reformulation leads to enormous cost of computation
and it is indeed an intractable approach. Following the so-called robust randomized
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technique [98], the reformulation is done in a way to provide a feasible solution for all
scenarios of the uncertainty realizations in a probabilistic sense.

The idea of robust randomized approach is the following. First, an auxiliary chance-
constrained optimization problem is formulated to determine a probabilistic bounded
set of random variables. This yields a bounded set of uncertainty that is a subset of the
uncertainty space and contains a portion of the probability mass of the uncertainty with
high confidence level. Then, a robust version of the initial problem subject to the uncer-
tainty confined in the obtained set is solved. We here extend this framework in order to
be able to handle a problem with multiple chance constraints based on the idea of the
robust randomized approach [98].

Consider y i = (ui , v i ) ∈ R(nu+nv )=ny , y = col(y i )N
i=1, where col(·) is an operator to

stack elements. Define w = col(w i )N
i=1 ⊆W to be the private uncertainty sources for a

network of agents, δi = col(δ j ) j∈Ni
⊆∆i to be the common uncertainty sources for each

agent, and δ = col(δi )N
i=1 ⊆ ∆ to be the common uncertainty sources for a multi-agent

network, where

W :=
N∏

i=1
Wi , ∆i := ∏

j∈Ni

∆i j , ∆ :=
N∏

i=1
∆i .

Consider now the proposed optimization problem in (2.21) in a more compact format:

min
y

N∑
i=1

Vi (x i ,ui ) (2.25a)

s.t. Pw

[
y ∈

N∏
i=1

Yi (w i )

]
≥ 1−ε , ∀w ∈W (2.25b)

Pδ

[
y ∈

N∏
i=1

⋂
j∈Ni

Y̆i j (δi j )

]
≥ 1− ε̄ , ∀δ ∈∆ (2.25c)

where ε := ∑N
i=1 εi ∈ (0,1), ε̄ := ∑N

i=1

∑
j∈Ni

ε̄i j ∈ (0,1). Yi (w i ) ∈Rny and Yi j (δi j ) ∈Rny

are defined1 by

Yi (w i ) := {
y i ∈Rny : Ei ui +Fi v i +Pi ≤ 0, , Ai xi ,k +Bi ui +Ci w i ≥ 0

}
,

Yi j (δi j ) :=
{(

y i , y j

)
∈R2ny : Hi x i +H j x j ≤ V̄i j −δi j

}
.

It is important to note that Y̆i j (δi j ) ∈ R2ny Ni represents the cylindrical extension2 of
Yi j (δi j ). In the subsequent parts, we refer to the constraint (2.25b) as the agents’ pri-
vate chance constraints, and to the constraint (2.25c) as the agents’ common chance
constraints. The proposed formulation (2.25) is a mixed-integer quadratic optimization
problem with multiple chance constraints, due to the binary variables {v i }N

i=1 and the

1Both sets have a dependency on the initial value of the state xi ,k for each agent i at each sampling time k.
Given xi ,k , we here highlight the dependency of these sets on the uncertainties w i and δi j for each agent i
at each sampling time k.

2Cylindrical extension replicates the membership degrees from the existing dimensions into the new dimen-
sions [178, Section 4].
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chance constraints (2.25b), (2.25c). The index of Pw and Pδ denote the dependency on
the string of random scenarios w ∈W and δ ∈∆, respectively.

Building upon our previous work in [144], we extend the so-called robust random-
ized approach in [98, 100] to be able to handle a problem with multiple chance con-
straints. Problem (2.25) is a stochastic program with multiple chance constraints, where
Pw and Pδ denote two different probability measures related to the private and com-
mon uncertainty sources, respectively. In summary, one can reformulate the chance
constraints in (2.25) using a worst-case chance constraint defined by

max
η∈NMCP

P
[

fη(y , ·)]≥ 1− ε̃ , (2.26)

where ε̃= minη∈NMCP
{εη}, fη(y , ·) denotes the η-th chance constraint function, andNMCP

is the set of indices of chance constraint functions formulated in (2.25). However, this
procedure clearly leads to a considerable amount of conservatism, due to the fact that
it requires the solution to satisfy all constraints with the highest probability 1− ε̃. We
instead employ the robust randomized approach for each chance constraint function
fk (y , ·),k ∈NMCP, separately. Our framework is also related to, albeit different from the
approach of [158], since the feasible set in (2.25) is non-convex. Moreover, the problem
formulation in [158] consists of an objective function with multiple chance constraints,
in which the terms in objective and constraints are univariate w.r.t. the decision vari-
ables. In contrast, the objective function in our problem formulation (2.25) consists of
separable additive components and constraint functions are also separable w.r.t. (2.25b),
(2.25c) between each agent i = 1, · · · , N and ∀ j ∈Ni .

DefineBi , B̄i j to be two bounded sets of private and common uncertainty sources for
each agent i , respectively. Bi , B̄i j are assumed to be axis-aligned hyper-rectangular sets
[98, Proposition 1]. This is not restrictive and any convex set with convex volume could
have been chosen instead as in [139]. We parametrizeBi (γ) := [γ,γ] byγ= (γ,γ) ∈R2nw ,

and B̄i j (λ) := [λ,λ] byλ= (λ,λ) ∈R2nδ , and consider the following chance-constrained
optimization problem:

min
γ

∥∥∥γ−γ
∥∥∥

1

s.t. P
{

w i ∈Wi
∣∣ w i ∈ [γ,γ]

}
≥ 1−εi

, (2.27a)

min
λ

∥∥∥λ−λ
∥∥∥

1

s.t. P
{
δi j ∈∆i j

∣∣ δi j ∈ [λ,λ]
}
≥ 1− ε̄i j

. (2.27b)

Following the so-called scenario approach in [27], one can determine the number of
required uncertainty scenarios to formulate a tractable problem, using Ns = 2

ε (ξ+ ln 1
ν ),

where ξ is the dimension of decision vector, ε, 1−ν are the level of violation, and the
confidence level, respectively. We determine Nsi by substituting ξ= 2nw , ε= εi , ν= βi ,
and determine N̄si j by substituting ξ= 2nδ, ε= ε̄i j , ν= β̄i j , for all agent i ∈ {1,2, · · · , N }.

We next define Si = {w (1)
i , · · · , w

(Nsi )

i } ⊂Wi , S̄i j = {δ(1)
i j , · · · ,δ

(N̄si j )

i j } ⊂ ∆i j and formu-
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late a tractable version of (2.27a) and (2.27b) bymin
γ

∥∥∥γ−γ
∥∥∥

1

s.t. w i ∈ [γ,γ] , w i ∈Si

, (2.28a)

min
λ

∥∥∥λ−λ
∥∥∥

1

s.t. δi j ∈ [λ,λ] , δi j ∈ S̄i j

. (2.28b)

The optimal solutions (γ∗ ,λ∗) of the proposed tractable problem are probabilistically
feasible for the chance-constrained problems, [30, Theorem 1]. Moreover, γ∗, and λ∗

also characterize our desired probabilistic bounded sets B∗
i and B̄∗

i j , respectively. Note

that Si and S̄i j are two collections of random scenarios that are i.i.d.
After determining B∗

i and B̄∗
i j for all agents i ∈ {1, · · · , N }, we are now able to reformu-

late the robust counterpart of the original problem (2.25) via:

min
y

∑N
i=1Vi (x i ,ui ) (2.29a)

s.t. y ∈
N∏

i=1

⋂
w i∈(B∗

i

⋂Wi )
Yi (w i ) , (2.29b)

y ∈
N∏

i=1

⋂
j∈Ni

⋂
δi j ∈(B̄∗

i j

⋂
∆i j )

Y̆i j (δi j ) . (2.29c)

Note that the aforementioned problem is not a randomized program, and instead, the
constraints have to be satisfied for all values of the private uncertainty in (B∗

i

⋂Wi ), and

common uncertainty in (B̄∗
i j

⋂
∆i j ). The proposed problem (2.29) is a robust mixed-

integer quadratic program. In [12], it was shown that robust problems are tractable [144,
Proposition 1], and remain in the same class as the original problems, e.g., robust mixed-
integer programs remain mixed-integer programs, for a certain class of uncertainty sets,
such as in our problem (2.29), where the uncertainty is bounded in a convex set. The fol-
lowing theorem quantifies the robustness of solution obtained by (2.29) w.r.t. the initial
problem (2.25).

Theorem 1 Let εi , ε̄i j ∈ (0,1) and βi , β̄i j ∈ (0,1) for all j ∈ Ni , for each i ∈ {1, · · · , N }
be chosen such that ε = ∑N

i=1 εi ∈ (0,1) ,β = ∑N
i=1βi ∈ (0,1) , ε̄i = ∑

j∈Ni
ε̄i j ∈ (0,1) , β̄i =∑

j∈Ni
β̄i j ∈ (0,1) and ε̄ = ∑N

i=1 ε̄i ∈ (0,1) , β̄ = ∑N
i=1 β̄i ∈ (0,1). Determine B∗

i and B̄∗
i j by

constructing Si , S̄i j and solving (2.28) for all j ∈ Ni , for each i ∈ {1, · · · , N }. If y∗
s is a

feasible solution of the problem (2.29), then y∗
s is also a feasible solution for the chance

constraints (2.25b) and (2.25c), with the confidence levels of 1−β and 1− β̄, respectively.

The proof is provided in Appendix A. ä
The interpretation of Theorem 1 is as follows. The obtained solutions via (2.29) for

all agents i = 1, · · · , N have feasibility guarantees with 1−εi and 1− ε̄i j probabilities for
the private and common uncertain sources w i and δi j with high confidence levels 1−βi
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and 1 − β̄i j , respectively. To keep the robustness level of the solutions for the whole
network problem, these choices have to follow a certain design rule. It is important to
mention that in order to maintain the violation level for the whole network the violation
level of individual agent needs to decrease which may lead to very conservative results
for each agent, since the number of required samples needs to increase in the proposed
formulation (2.28).

Remark 1 We also approximate the objective function empirically for each agent i fol-
lowing the approach in [138]. Ew i [Ji (·)] can be approximated by averaging the value of
its argument for some number of different scenarios, which plays a tuning parameter role.
Using Ns0

i
as the tuning parameter, consider Ns0

i
number of different scenarios of w i to

build S0
i = {w (1)

i , · · · , w
(N

s0
i

)

i } ⊂Wi for each agent i = 1, · · · , N . Then one can approximate
the cost function empirically as follows:

∑N
i=1Vi (x i (w i ),ui ) =∑N

i=1Ew i∈Wi
[Ji (x i (w i ),ui )] ≈

∑N
i=1

1

Ns0
i

∑
w i∈S0

i
Ji (x i (w i ),ui ) .

It is worth mentioning that one can employ scenario removal algorithms to improve the
objective value, leading to a tradeoff between feasibility and optimality, see e.g., [31, 109].

Remark 2 A tractable decoupled solution (DS) formulation for (2.16) can be achieved by
removing the robust coupling constraint (2.29c) from (2.29). Since there is no longer a
coupling constraint, each agent i can therefore solve its problem independently.

The solution of (2.29) is {u∗
i ,k|k , v∗

i ,k|k , · · · ,u∗
i ,k+Nh−1|k , v∗

i ,k+Nh−1|k }N
i=1, which is the op-

timal input sequence. Based on an MPC paradigm, the current input at time step k is
implemented in the system dynamics (2.12) using the first element of optimal solutions
as {ui ,k , vi ,k }N

i=1 := {u∗
i ,k|k , v∗

i ,k|k }N
i=1 and we proceed in a receding horizon fashion. This

means (2.29) is solved at each time step k by using the current measurement of the state
{xi ,k }N

i=1. It is important to highlight that the feasibility guarantees in Theorem 1 are in-
dependent from the sampling rate of the real continuous-time system. It is however very
important to have a discrete-time system model that can predict the real system behav-
ior as precisely as possible. Once such a suitable discrete-time system model is devel-
oped, one can use our proposed tractable frameworks (DS, CS, and MCS), and instead
of analyzing the closed-loop asymptotic behavior, achieve the fulfillment of multiple
chance constraints from an optimization point of view and have a-priori probabilistic
feasibility guarantees via Theorem 1.

2.5. NUMERICAL STUDY
In this section, we present a simulated case study for a three-agent ATES system in an
STG, as it is shown in Figure 2.5. We determine the thermal energy demands of three
buildings, that had been equipped with ATES systems, modeled using realistic parame-
ters and the actual registered weather data in the city center of Utrecht, The Netherlands,
where these buildings are located. We refer interested readers to [5, Appendix A] for the
complete detailed parameters of this case study.
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Figure 2.6: A-posteriori feasibility validation of the obtained results via DDS, CS, and MCS formulations for the
imbalance error dynamics in the first building of the three-agent ATES-STG example. Figure 3(a) focuses on a
randomly chosen five-day period to allow a better comparison, whereas Figure 3(b) presents the complete one
year results.

2.5.1. SIMULATION SETUP

We simulate three problem formulations, namely: DS (decoupled solution), CS (cen-
tralized solution), and MCS (move-blocking centralized solution), using the proposed
tractable framework (2.29). The simulation time is one year from June 2010 to June 2011
with hourly-based sampling time. The prediction horizon for DS and CS is a day-ahead
(24 hours), whereas for MCS is a whole season (3 months). The multi-rate control actions
in MCS are considered to be hourly-based during first day, daily-based in the first week,
weekly-based within the first month, and monthly-based for the rest of the season. We
also simulate a deterministic DS (DDS) for comparison purposes, where the uncertain
elements (w i ) are fixed to their forecast value for each agent i = 1,2,3. In order to gen-
erate scenarios from the private uncertainty sources, we use a discrete normal stochas-
tic process, where the thermal energy demand of each building varies within 10% of its
actual value at each sampling time. A similar technique is used for the common uncer-
tainty sources. The simulation environment was MATLAB with YALMIP as the interface
[86] and Gurobi as a solver.

2.5.2. SIMULATION RESULTS

Figure 2.6 and Figure 2.7 (a) depict a-posteriori feasibility validation of the private chance
constraint of agent 1 and the common chance constraint between agent 1 and agent 2. A-
posteriori feasibility validation of the results in this section refer to the single simulation
study and not to the a-posteriori probability of the constraint feasibility, which can be
achieved using Monte-Carlo (MC) approach. It is important to note that the results ob-
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Figure 2.7: A-posteriori feasibility validation of the obtained results via DS, CS, and MCS formulations for the
common coupling constraint between the first and second building of the three-agent ATES-STG example is
presented in Figure 4(a). Figure 4(b) shows the ATES system state trajectories (volume of the stored water in
the warm and cold wells of the first building) in the three-agent ATES-STG example.

tained for the other two buildings are very similar, and therefore we focus on the results
of the first building (agent 1). To illustrate the functionality of our proposed framework
to deal with the private chance constraint, in Figure 2.6, we present the a-posteriori fea-
sibility validation of the obtained results via DDS, CS, and MCS formulations. Figure 2.6
(a) shows the obtained results for the last five days in March 2011, and Figure 2.6 (b)
shows the results for one year simulation from June 2010 until June 2011. In Figure 2.6
the "red" color denotes the solution of DDS, "black" color shows the solution of CS, and
"blue" presents the solution of MCS.

Figure 2.6 (a) focuses on a randomly chosen five-day period to allow a better com-
parison between the results of DDS, CS, and MCS. It is clearly shown that the obtained
results via CS and MCS, provide a feasible (nonnegative) trajectory of the thermal en-
ergy imbalance error during heating mode, whereas the solution of DDS, leads to some
violations throughout the simulation time. Notice that all three proposed approaches,
namely DS, CS, and MCS, achieved the feasibility of the private chance constraint in a
probabilistic sense as it is guaranteed in Theorem 1. We present the results obtained via
DDS to highlight such an achievement, whereas the results obtained via DS is omitted to
demonstrate the other achievements.

In Figure 2.6 (b), the complete one year results of DDS, CS, and MCS are shown. Two
important observations are as follows: the obtained results of CS and MCS have very
small number of violations, much less than our desired level of violations, throughout
the simulation time. This yields a less conservative approach compared to the classical
robust control approach (see [21, Ch.14]). As the second observation, in the results of CS
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and MCS one can see some instances of a large non-zero imbalance error, which is ex-
pected: By taking into account the coupling constraints between agents, the solutions of
agents are going to extract the stored thermal energy from their ATES systems to prevent
the mutual interactions between their ATES systems as in Figure 2.7 (a). Interestingly,
the results of MCS show that agent 1 starts to extract the stored thermal energy from its
ATES system sooner due to its longer prediction horizon, compared to CS.

Figure 2.7 (a) shows the evaluation of our proposed reformulation for the coupling
constraint in (2.19) together with the a-posteriori feasibility validation of the common
chance constraint between agent 1 and agent 2. We plot the obtained r̃h,1 + r̃c,2 using
DS, CS, and MCS formulations. As it is clearly shown DS results are violating the coupling
constraint which leads to overlap between the stored water in warm well of ATES system
in agent 1 and the stored water in cold well of ATES system in agent 2. This is due to the
fact that there are no coupling constraints in the DS framework and each agent works
without any information from neighboring agents. It is important to highlight that the
results obtained via DDS and DS are the same in terms of the ATES system dynamical
behavior. This is due to the fact that the cost parameter associated with the ATES system
pump is the same in both DDS and DS formulations, and thus ATES systems participate
in the agent energy management in the same way, regardless of the private chance con-
straints. We also present the evolution of the stored water volume in each well of the
ATES system for agent 1 using the obtained results via DS, CS, and MCS formulations in
Figure 2.7 (b) to illustrate the impact of the different formulations.

It is worth to mention that Figure 2.6 and Figure 2.7 illustrate all main contributions:
1) having a probabilistically feasible solution for each agent w.r.t. the private uncertainty
sources as it is encoded via (2.25b), 2) respecting the common resource pool between
neighboring agents in STGs as it is formulated in (2.25c) (the first and second outcomes
are the direct results of our theoretical guarantee in Theorem 1), and 3) prediction using
a longer horizon yields an anticipatory control decision that improves the operation of
an ATES system. This is a direct consequence of our proposed move-blocking scheme in
(2.24).

Figure 2.8 summarizes the results in terms of average thermal efficiency that we ob-
tained by integrating our control strategy, DS and CS, into Python to build a live-link
with MODFLOW, a more realistic aquifer simulation environment3 [64]. Figure 2.8 is
presented to highlight the impact of considering the proposed coupling constraints, as
it is formulated in (2.25c), versus the decoupled setting. The impact of our control strat-
egy, DS (red) and CS (blue), on average thermal energy efficiency [15] in each building
illustrates that we can store and retrieve the same amount of thermal energy in ATES
systems, in a more efficient way due to information exchange between the agents to pre-
vent the mutual interactions between wells using the results of MCS and CS compared
to DS.

3MODFLOW is a modular hydrologic model, and it is considered an international standard for aquifer simula-
tion and predicting groundwater conditions and interactions.
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Figure 2.8: Impact of DS and CS on average thermal efficiency.

2.6. CONCLUSIONS
This chapter proposed a stochastic MPC framework for an energy management problem
in STGs consisting of ATES systems integrated into BCC systems. We developed a large-
scale stochastic hybrid model to capture thermal energy imbalance errors in an ATES-
STG. In such a framework, we formalized two important practical concerns, namely:
1) the balance between extraction and injection of energy from and into the aquifers
within a certain period of time; 2) the unwanted mutual interaction between ATES sys-
tems in STGs. Using our developed model, we formulated a finite-horizon mixed-integer
quadratic optimization problem with multiple chance constraints. To solve such a prob-
lem, we proposed a tractable formulation based on the so-called robust randomized ap-
proach. In particular, we extended this approach to handle a problem with multiple
chance constraints. We simulated our proposed framework using a three-agent ATES-
STG example which confirmed the expected performance improvements.
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DISTRIBUTED STOCHASTIC MPC

FOR LARGE-SCALE SYSTEMS WITH

PRIVATE AND COMMON

UNCERTAINTY SOURCES

In this chapter, we present a distributed stochastic model predictive control (SMPC) ap-
proach for large-scale linear systems with private and common uncertainties in a plug-
and-play framework. Typical SMPC approaches for such problems involve formulating
a large-scale finite-horizon chance-constrained optimization problem at each sampling
time, which is in general non-convex and difficult to solve. Using an approximation, the
so-called scenario approach, we formulate a large-scale scenario program and provide a
theoretical guarantee to quantify the robustness of the obtained solution. However, such
a reformulation leads to a computational tractability issue, due to the large number of
required scenarios. We present two novel ideas in this chapter to address this issue. We
first provide a technique to decompose the large-scale scenario program into distributed
scenario programs that exchange a certain number of scenarios with each other in order
to compute local decisions. We show the exactness of the decomposition with a-priori
probabilistic guarantees for the desired level of constraint fulfillment for both the cases
of private and common uncertainty sources. As our second contribution, we develop
an inter-agent soft communication scheme based on a set parametrization technique
together with the notion of probabilistically reliable sets to reduce the required com-
munication between the subproblems. We show how to incorporate the probabilistic
reliability notion into existing results and provide new guarantees for the desired level of
constraint violations. Two different simulation studies of both private and common un-
certainty sources are presented to illustrate the advantages of the proposed framework.
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3.1. INTRODUCTION

S TOCHASTIC model predictive control (SMPC) has attracted significant attention in the
recent control literature, due to its ability to provide an alternative, often less conser-

vative way to handle uncertain systems. SMPC takes into account the stochastic charac-
teristics of the uncertainties and thereby the system constraints are treated in a proba-
bilistic sense, i.e. using chance constraints [75, 103]. SMPC computes an optimal con-
trol sequence that minimizes a given objective function subject to the uncertain system
dynamics model and chance constraints in a receding horizon fashion [122]. Chance
constraints enable SMPC to offer an alternative approach to achieve a less conservative
solution compared to robust model predictive control (MPC) [9], since it directly incor-
porates the tradeoff between constraint feasibility and control performance.

Distributed MPC has been an active research area in the past decades, due to its ap-
plicability in different domains such as power networks [169], chemical plants [138], pro-
cess control [176], and building automation [93]. For such large-scale dynamic systems
with state and input constraints, distributed MPC is an attractive control scheme. In
distributed MPC one replaces large-scale optimization problems stemming from cen-
tralized MPC with several smaller-scale problems that can be solved in parallel. These
problems make use of information from other subsystems to formulate finite-horizon
optimal control problems. In the presence of uncertainties, however, the main chal-
lenge in the formulation of distributed MPC is how the controllers should exchange in-
formation through a communication scheme among subsystems (see, e.g., [81], and ref-
erences therein). This highlights the necessity of developing distributed control strate-
gies to cope with the uncertainties in subsystems while at the same time minimizing
information exchange through a communication framework.

3.1.1. RELATED WORKS
In order to handle uncertainties in distributed MPC, some approaches are based on ro-
bust MPC [38, 126]. Assuming that the uncertainty is bounded, a robust optimization
problem is solved at each sampling time, leading to a control law that satisfies the con-
straints for all admissible values of the uncertainty. The resulting solution using such
an approach tends to be conservative in many cases. Tube-based MPC, see for example
[33] and the references therein, was considered in a plug-and-play (PnP) decentralized
setup in [129], and it has been recently extended to distributed control systems [41] for
a collection of linear stochastic subsystems with independent dynamics. While in [41]
coupled chance constraints were considered separately at each sampling time, in this
chapter we consider a chance constraint on the feasibility of trajectories of dynamically
coupled subsystems. Our approach is motivated by [129] to reduce the conservativeness
of the control design. Other representative approaches for SMPC of a single stochastic
system include affine parametrization of the control policy [68], the randomized (sce-
nario) approach [28, 89, 121, 159], and the combined randomized and robust approach
[98, 144, 181]. None of these approaches, to the best of our knowledge, have been con-
sidered in a distributed control setting.

This chapter aims to develop a systematic approach to distributed SMPC using the
scenario MPC technique. Scenario MPC approximates SMPC via the so-called scenario
(sample) approach [27, 30], and if the underlying optimization problem is convex with
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respect to the decision variables, finite sample guarantees can be provided. Following
such an approach, the computation time for a realistic large-scale system of interest be-
comes prohibitive, due to the fact that the number of samples to be extracted tends to
be high, and consequently leads to a large number of constraints in the resulting opti-
mization problem. To overcome the computational burden caused by the large number
of constraints, in [85, 88] a heuristic sample-based approach was used in an iterative
distributed fashion via dual decomposition such that all subsystems collaboratively op-
timize a global performance index. In another interesting work [29], a multi-agent con-
sensus algorithm was presented to achieve consensus on a common value of the deci-
sion vector subject to random constraints such that a probabilistic bound on the tails of
the consensus violation was also established. However, in most of the aforementioned
references the aim to reduce communication among subsystems, which we refer to as
agents, has not been addressed.

3.1.2. CONTRIBUTIONS
Our work in this chapter differs from the above references in two important aspects
which have not been, to the best of our knowledge, considered in literature. A decompo-
sition technique based on the large-scale system dynamics is employed to distribute the
resulting centralized scenario optimization problem at each sampling time and a novel
communication scheme is introduced to reduce the communication between the small-
scale problems. We first propose a technique to decompose the large-scale (centralized)
scenario optimization problem into small-scale scenario programs such that they can
be solved in parallel at the cost of exchanging a certain number of scenarios with each
other in order to compute local decisions. We then provide new a-priori probabilistic
guarantees to quantify the robustness of the resulting solution and show the theoreti-
cal links to the existing centralized guarantees. To reduce the communications between
agents required by our proposed framework, we finally develop a new set-based com-
munication setup together with the notion of probabilistically reliable information. We
then incorporate the probabilistic reliability notion into existing results and provide new
guarantees for the desired level of constraint violations. The main contributions of this
chapter are as follows:

B We provide a technique to decompose the large-scale scenario program into dis-
tributed scenario programs that exchange a certain number of scenarios with each
other in order to compute local decisions. We show that such a decomposition
technique can be applied to large-scale linear systems with both private (local)
and common uncertainty sources. This yields a flexible and practical plug-and-
play distributed scenario MPC framework.

B We quantify the level of robustness of resulting solutions using our proposed dis-
tributed scenario MPC framework and provide two new a-priori probabilistic guar-
antees for the desired level of constraint fulfillment under some mild conditions
for both cases of private and common uncertainty sources.

B We develop an inter-agent soft communication scheme based on a set parametriza-
tion technique together with the notion of probabilistically reliable set to reduce
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the required communication between each subproblem. We show how to incor-
porate the probabilistic reliability notion into existing results and provide new
guarantees for the desired level of constraint violations.

It is important to highlight that two major difficulties arising in SMPC, namely recur-
sive feasibility [87] and stability, are not in the scope of this chapter, and they are subject
of our ongoing research work. Thus, instead of analyzing the closed-loop asymptotic
behavior, in this chapter we focus on individual SMPC problem instances from the opti-
mization point of view and derive probabilistic guarantees for constraint fulfillment in a
distributed setting.

3.1.3. STRUCTURE
The structure of this chapter is as follows. Section 3.2 describes a mathematical model
of the control system dynamics. We first formulate an SMPC problem for a large-scale
linear system with uncertain parameters and additive disturbances, then provide a refor-
mulation, namely the centralized scenario MPC. A theoretical study on the connections
of these two control problems based on the existing results is provided. In Section 3.3,
we propose a decomposition technique to distributed scenario MPC and show that such
a decomposition technique can be applied to both cases of private and common uncer-
tainty sources. We then analyze the robustness of the obtained solution compared to the
centralized scenario MPC formulated in the previous section. Section 3.4 introduces two
types of inter-agent communication schemes between each subproblem, namely hard
and soft communications, and then proceeds to quantify the robustness of the proposed
schemes. Section 3.5 provides a summary of our developments to establish a practical
plug-and-play distributed SMPC framework that considers network changes by agents
which want to join or leave the network. Section 3.6 presents two different simulation
studies to illustrate the functionality of our theoretical achievements, whereas in Sec-
tion 3.7, we conclude this chapter with some remarks.

3.1.4. NOTATIONS
R,R+ denote the real and positive real numbers, and N,N+ the natural and positive
natural numbers, respectively. We operate within the n-dimensional space Rn com-
posed of column vectors u, v ∈ Rn . The Cartesian product over n sets X1, · · · ,Xn is
given by:

∏n
i=1Xi = X1 × ·· · ×Xn = {(x1, · · · , xn) : xi ∈ Xi }. The cardinality of a set A is

denoted by |A| = A. We denote a block-diagonal matrix with blocks Xi , i ∈ {1, · · · ,n},
by diagi∈{1,··· ,n}(Xi ), and a vector consisting of stacked sub vectors xi , i ∈ {1, · · · ,n}, by
coli∈{1,··· ,n}(xi ).

Given a metric space∆, its Borelσ-algebra is denoted byB(∆). Throughout the chap-
ter, measurability always refers to Borel measurability. In a probability space (∆,B(∆),P),
we denote the N -Cartesian product set of ∆ by ∆N and the respective product measure
by PN .

3.2. PROBLEM STATEMENT
This section provides an overview of the control problem statement. We first describe
the dynamics of a large-scale uncertain linear system together with input and state con-
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straint sets and the control objective. We then formulate a centralized SMPC for such
a large-scale control system problem. Finally, a tractable reformulation based on the
scenario MPC [157] together with theoretical connections are provided.

Consider a discrete-time uncertain linear system with additive disturbance in a com-
pact form as follows:

xk+1 = A(δk )xk +B(δk )uk +C (δk )wk , (3.1)

with a given initial condition x0 ∈ Rn . Here k ∈ T := {0,1, · · · ,T − 1} denotes the time
instance, xk ∈ X ⊂Rn and uk ∈ U ⊂Rm correspond to the state and control input, re-
spectively, and wk ∈Rp represents an additive disturbance. The system matrices A(δk ) ∈
Rn×n and B(δk ) ∈Rn×m as well as C (δk ) ∈Rn×p are random, since they are known func-
tions of an uncertain variable δk that influences the system parameters at each time step
k.

Assumption 7 Random variables w := {wk }k∈T and δ := {δk }k∈T are defined on proba-
bility spaces (W ,B(W),Pw ) and (∆,B(∆),Pδ), respectively. w and δ are two independent
random processes, where Pw and Pδ are two different probability measures defined over
W and ∆, respectively, and B(·) denotes a Borel σ-algebra. The support sets W and ∆

of w and δ, respectively, together with their probability measures Pw and Pδ are entirely
generic. In fact, W , ∆ and Pw , Pδ do not need to be known explicitly. Instead, the only re-
quirement is availability of a "sufficient number" of samples, which will become concrete
in later parts of the chapter. Such samples can be for instance obtained by a model learned
from available historical data [117].

The system in (3.1) is subject to constraints on the system state trajectories and con-
trol input. Consider the state and control input constraint sets to be compact convex in
the following form

X := {x ∈Rn : G x ≤ g } , U := {u ∈Rm : H u ≤ h} , (3.2)

where G ∈ Rq×n , g ∈ Rq , H ∈ Rr×m , and h ∈ Rr . Keeping the state inside a feasible set
X ⊂Rn for the entire prediction horizon may be too conservative and result in loss of
performance. In particular, this is the case when the best performance is achieved close
to the boundary of X , and thus, constraint violations will be unavoidable due to the
fact that the system parameters in (3.1) are imperfect and uncertain. To tackle such a
problem, we will consider chance constraints on the state trajectories to avoid violation
of the state variable constraints probabilistically even if the disturbance w or uncertainty
δ has unbounded support. Notice that a robust problem formulation [9] cannot cope
with problems having an unbounded disturbance set.

In order to find a stabilizing full-information controller that leads to admissible con-
trol inputs u := {uk }k∈T and satisfies the state constraints, we follow the traditional MPC
approach. The design relies on the standard assumption of the existence of a suitable
pre-stabilizing control law, see, e.g., [129, Proposition 1]. To cope with the state predic-
tion under uncertainty and disturbance, we employ a parametrized feedback policy [68]
and split the control input: uk = K xk+vk with vk ∈Rm as a free correction input variable
to compensate for disturbances.
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The control objective is to minimize a cumulative quadratic stage cost of a finite hori-
zon cost J (·) :Rn ×Rm →R that is defined as follows:

J (x ,u) = E
[

T−1∑
k=0

(
x>

k Qxk +u>
k Ruk

)+x>
T P xT

]
, (3.3)

with Q ∈ Rn×n
º0 , and R ∈ Rm×m

Â0 . Consider x := {xk }k∈T , (A,Q
1
2 ) to be detectable and P to

be the solution of the discrete-time Lyapunov equation:

E[ Acl (δk )>PAcl (δk ) ]+Q +K >RK −P ¹ 0, (3.4)

for the closed-loop system with Acl (δk ) = A(δk )+B(δk )K . Each stage cost term is taken
in expectation E[·], since the argument xk is a random variable. Using v = {vk }k∈T , con-
sider now the following stochastic control problem:

min
v∈RTm

J (x ,u) (3.5a)

s.t. xk+1 = A(δk )xk +B(δk )uk +C (δk )wk , (3.5b)

P[ xk+` ∈X , ` ∈N+ ] ≥ 1−ε , (3.5c)

uk = K xk + vk ∈U , ∀k ∈ T , (3.5d)

where x0 is initialized based on the measured current state, and ε ∈ (0,1) is the admis-
sible state constraint violation parameter of the large-scale system (3.1). The objective
function is assumed to be a quadratic function; however, this is not a restriction and
any generic convex function can be chosen instead. It is important to mention that the
parameters of constraint sets, X , U , and the objective function J (·) can be time-varying
with respect to the sampling time k ∈ T . For the clarity of our problem formulation,
we assume time-invariance. The state trajectory xk+` ,∀` ∈N+, has a dependency on
the random variables w and δ, and thus, the chance constraint can be interpreted as
follows: the probability of violating the state constraint at the future time step ` ∈N+
is restricted to ε, given that the state of the system in (3.1) is measurable at each time
step k ∈ T . It is important to highlight that in the proposed chance constraint (3.5c), the
future time step index ` ∈N+ is bounded by the finite value of the prediction horizon
T and this holds for all the following proposed formulations. Even though U and X are
compact convex sets, due to the chance constraint on the state trajectory, the feasible
set of the optimization problem in (3.5) is a non-convex set, in general.

Remark 3 Instead of the chance constraint on the state trajectory of form (3.5c), one can
also bound the average rate of state constraint violations [157]. Moreover, one can also
define the cost function (3.5a) as a desired quantile of the sum of discounted stage costs
("value-at-risk"), instead of the sum of expected values. Instead of a state feedback law, one
can also consider a nonlinear disturbance parametrization feedback policy over the pre-
diction horizon, similar to [144], using the scenario approximation. Such a parametriza-
tion does not affect the convexity of the resulting optimization [121].

To handle the chance constraint (3.5c), we recall a scenario-based approximation
[157]. wk and δk at each sampling time k ∈ T are not necessarily independent and iden-
tically distributed (i.i.d.). In particular, they may have time-varying distributions and/or
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be correlated in time. We assume that a "sufficient number" of i.i.d. samples of the dis-
turbance w ∈W and δ ∈ ∆ can be obtained either empirically or by a random number
generator. We denote the sets of given finite samples (scenarios) of uncertain variables
with Sw := {w (1), · · · , w (Ns )} ∈WNs and Sδ := {δ(1), · · · ,δ(Ns )} ∈∆Ns , respectively.

Following the approach in [138], we approximate the expected value of the objective
function empirically by averaging the value of its argument for some number of differ-
ent scenarios, which plays a tuning parameter role. Using Ns̄ as the tuning parameter,
consider Ns̄ number of different scenarios of w and δ to build

S̄w ,δ =
{

(w (i ),δ(i )) : w (i ) ∈W , δ(i ) ∈∆ , i = 1, · · · , Ns̄

}
,

which has the cardinality |S̄w ,δ| = Ns̄ . We then approximate the cost function empirically
as follows:

J (x ,u) = E(w ,δ)

[
T−1∑
k=0

V (xk (wk ,δk ),uk )

]
≈ 1

Ns̄

∑
(w (i ),δ(i ))∈S̄w ,δ

T−1∑
k=0

V (xk (w (i )
k ,δ(i )

k ),uk ) ,

where

V (xk (w,δk ),uk ) = (
xk (wk ,δk )>Qxk (wk ,δk )+u>

k Ruk
)+xT (wk ,δk )>P xT (wk ,δk ) .

Notice that xk (wk ,δk ) indicates the dependency of the state variables on the random
variables.

We are now in a position to formulate an approximated version of the proposed
stochastic control problem in (3.5) using the following finite horizon scenario program:

min
v∈RTm

J (x ,u) (3.6a)

s.t. x(i )
k+1 = A(δ(i )

k )x(i )
k +B(δ(i )

k )u(i )
k +C (δ(i )

k )w (i )
k , (3.6b)

x(i )
k+` ∈X , ` ∈N+ , ∀w (i ) ∈Sw , ∀δ(i ) ∈Sδ , (3.6c)

u(i )
k = K x(i )

k + vk ∈U , ∀k ∈ T , (3.6d)

where superscript (i ) indicates a particular sample realization. The solution of (3.6) is
the optimal control input sequence v∗ = {v∗

k , · · · , v∗
k+T−1}. Based on the MPC paradigm,

the current input is implemented as uk := K xk + v∗
k and we proceed in a receding hori-

zon fashion. This means that the problem (3.6) is solved at each time step k by using the
current measurement of the state xk . Note that new scenarios are needed to be gener-
ated at each sampling time k ∈ T . It is worth to mention that while the constraint (3.6d)
is probabilistic for all prediction time step, at the initial time step k = 0 is deterministic
and the superscript (i ) can be dropped as there is only one measured current state xk .
This holds for all the following proposed formulations.

The key features of the proposed optimization problem (3.6) are as follows: 1) there
is no need to know the probability measures Pw and Pδ explicitly, only the capability of
obtaining random scenarios is enough, 2) formal results to quantify the level of approx-
imations are available. In particular, the results follow the so-called scenario approach
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[30], which allows to bound a-priori the violation probability of the obtained solution via
(3.6).

In the following theorem, we restate the explicit theoretical bound of [30, Theorem
1], which measures the finite scenarios behavior of (3.6).

Theorem 2 Let ε ,β ∈ (0,1) and Ns ≥N(ε,β,Tm), where

N(ε,β,Tm) := min

{
N ∈N

∣∣∣Tm−1∑
i=0

(
N

i

)
εi (1−ε)N−i ≤β

}
.

If the optimizer of problem (3.6) v∗ ∈RTm is applied to the discrete-time dynamical sys-
tem (3.1) for a finite horizon of length T , then, with at least confidence 1−β, the original
constraint (3.5c) is satisfied for all k ∈ T with probability more than 1−ε.

It was shown in [30] that the above bound is tight. The interpretation of Theorem 2 is
as follows: when applying v∗ in a finite horizon control problem, the probability of con-
straint violation of the state trajectory remains below ε with confidence 1−β:

PNs
[Sw ∈WNs ,Sδ ∈∆Ns : Vio(v∗) ≤ ε]≥ 1−β ,

with

Vio(v∗) :=P[
w ∈W ,δ ∈∆ : xk+` = Acl (δk )xk +B(δk )v∗

k +C (δk )wk ∉X , ` ∈N+
∣∣xk = x0

]
,

where Acl (δk ) = A(δk )+B(δk )K . It is worth mentioning that the proposed constraint
on the control input in (3.6d) is also met in a probabilistic sense, due to the feedback
parametrization and the nature of the scenario approach that appears in the proposed
optimization problem (3.6).

Remark 4 One can obtain an explicit expression for the desired number of scenarios Ns

as in [3], where it is shown that given ε,β ∈ (0,1) and e the Euler constant, then Ns ≥
e

e−1
1
ε

(
Tm + ln 1

β

)
. It is important to note that Ns is used to construct the sets of scenarios,

Sw , Sδ to obtain a probabilistic guarantee for the desired level of feasibility, while the
number of scenarios Ns̄ is just a tuning variable to approximate the objective function
empirically.

We formulated a large-scale SMPC (3.5) together with a tractable reformulation based
on the proposed centralized scenario MPC (3.6). Figure 3.1 shows a pictorial representa-
tion of (3.6) as a large-scale network of interconnected agents to summarize this section.
It is worth mentioning that such a large-scale SMPC (3.5) is initially proposed in [148]
for a network of interconnected buildings in smart thermal grids. In the following sec-
tion, we will provide a distributed framework to solve the proposed problem in (3.6) by
decomposing the large-scale system dynamics (3.1).

3.3. DISTRIBUTED SCENARIO MPC
In this section, we describe a decomposition technique to partition the large-scale sys-
tem dynamics in (3.1). By taking into consideration two possible uncertainty sources,
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Figure 3.1: Centralized scenario MPC that corresponds to the problem (3.6). The measurement variable yi is
the full state information xi which is sent to the centralized controllers for all agents i ∈N .

namely private (local) and common uncertainties, for the resulting network of inter-
connected subsystems (agents), we provide the theoretical links to the results that we
provided in the previous section.

Consider a partitioning of the system dynamics (3.1) through a decomposition into N
subsystems and let N = {1,2, · · · , N } be the set of subsystem indices. The state variables
xk , control input signals uk and the additive disturbance wk can be considered as xk =
coli∈N (xi ,k ), uk = coli∈N (ui ,k ) and wk = coli∈N (wi ,k ), respectively, where xi ,k ∈ Rni ,
ui ,k ∈ Rmi , wi ,k ∈ Rpi , and

∑
i∈N ni = n,

∑
i∈N mi = m,

∑
i∈N pi = p. The following

assumption is important in order to be able to partition the system parameters.

Assumption 8 The control input and the additive disturbance of the subsystems are de-
coupled, e.g., ui ,k and wi ,k only affect subsystem i ∈N for all k ∈ T . Consider the state
and control input constraint sets X and U of large-scale system dynamics (3.1) as defined
in (3.2) to be X =∏

i∈N Xi , and U =∏
i∈N Ui such that Xi and Ui for all subsystem i ∈N

are given in the following form:

Xi := { x ∈Rmi : Gi x ≤ gi } , Ui := {u ∈Rpi : Hi u ≤ hi } , (3.7)

where G = diagi∈N (Gi ), H = diagi∈N (Hi ), g = coli∈N (gi ) and h = coli∈N (hi ).

It is important to note that under Assumption 8 and the condition (3.7), there is no
coupling constraints between each subsystem i ∈N and its neighboring subsystems j ∈
Ni . Instead, in this chapter, we focus on the subsystem i ∈N that is dynamically coupled
with all its neighboring subsystems j ∈Ni as it is presented in (3.9).

We refer to the additive disturbance wi ,k as a private (local) uncertainty source of
each subsystem i ∈N , since it is assumed that it affects only the subsystem i ∈N . The
uncertain variable δk is considered as a common uncertainty source between all sub-
systems i ∈ N . Observe the fact that every common uncertain phenomenon can be
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considered as a local uncertain variable, e.g., the outside weather condition for neigh-
boring buildings. Therefore, we also consider to have δk = coli∈N (δi ,k ) and refer to both
random variables wi ,k and δi ,k as a local uncertainty sources.

We are now able to decompose the large-scale system matrices

B(δk ) = diagi∈N (Bi (δi ,k )) ∈Rn×m , C (δk ) = diagi∈N (Ci (δi ,k )) ∈Rn×p ,

and consider A(δk ) ∈Rn×n in the following form:

A(δk ) =

 A11(δ1,k ) · · · A1N (δ1,k )
...

. . .
...

AN 1(δN ,k ) · · · AN N (δN ,k )

 ,

where Ai j (δi ,k ) ∈ Rni×n j , Bi (δi ,k ) ∈ Rni×mi , and Ci (δi ,k ) ∈ Rni×pi . Define the set of
neighboring subsystems of subsystem i as follows:

Ni =
{

j ∈N \{i }
∣∣ Ai j (δi ,k ) 6= 0

}
, (3.8)

where 0 denotes a matrix of all zeros with proper dimension. Note that if subsystems
are decoupled, they remain decoupled regardless of the uncertainties δi ,k for all i ∈N .
Consider now a large-scale network that consists of N interconnected subsystems, and
each subsystem can be described by an uncertain discrete-time linear time-invariant
system with additive disturbance of the form{

xi ,k+1 = Ai i (δi ,k )xi ,k +Bi (δi ,k )ui ,k +qi ,k

qi ,k =∑
j∈Ni

Ai j (δi ,k )x j ,k +Ci (δi ,k )wi ,k
. (3.9)

Following Assumption 8, one can consider a linear feedback gain matrix Ki for each sub-
system i ∈N such that K = diagi∈N (Ki ). Using Ki in each subsystem, we assume that
there exists Pi for each subsystem i ∈N such that P = diagi∈N (Pi ) preserves the condi-
tion in (3.4). Consider now the objective function of each subsystem i ∈N in the follow-
ing form:

Ji (x i ,ui ) := E
[

T−1∑
k=0

(
x>

i ,kQi xi ,k +u>
k Ri ui ,k

)
+x>

i ,T Pi xi ,T

]
,

where Qi ∈ Rni×ni
º0 , Ri ∈ Rmi×mi

Â0 such that Q = diagi∈N (Qi ), and R = diagi∈N (Ri ). Note
that x i = colk∈T (xi ,k ) and ui = colk∈T (ui ,k ) such that x = coli∈N (x i ) and u = coli∈N (ui ).

Using v i = colk∈T (vi ,k ) such that v = coli∈N (v i ), we decompose the proposed for-
mulation in (3.6) into the following finite horizon scenario program for each subsystem
i ∈N :

min
v i∈RTmi

Ji (x i ,ui ) (3.10a)

s.t. x(i )
i ,k+1 = Ai i (δ(i )

i ,k )x(i )
i ,k +Bi (δ(i )

i ,k )u(i )
i ,k +q(i )

i ,k , (3.10b)

x(i )
i ,k+` ∈Xi , ` ∈N+ , ∀w (i )

i ∈Sw i , ∀δi
(i ) ∈Sδi

(3.10c)

u(i )
i ,k = Ki x(i )

i ,k + vi ,k ∈Ui , ∀k ∈ T , (3.10d)
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where w i = colk∈T (wi ,k ) ∈Wi and δi = colk∈T (δi ,k ) ∈ ∆i such that W = ∏
i∈N Wi and

∆ = ∏
i∈N ∆i . The sets Sw i := {w (1)

i , · · · , w
(Nsi )

i } ∈WNsi
i and Sδi := {δ(1)

i , · · · ,δ
(Nsi )

i } ∈ ∆Nsi
i

denote sets of given finite samples (scenarios) of disturbance and uncertainties in each
subsystem i ∈N , such that Sw =∏

i∈N Sw i and Sδ =
∏

i∈N Sδi . Note that we use indices
in parenthesis to refer to each scenario of the random variables, e.g., (i ), whereas indices
without parenthesis refer to each subsystem i ∈N .

Remark 5 The proposed constraint (3.10c) represents an approximation of the following
chance constraint on the state of each subsystem i ∈N :

P[ xi ,k+` ∈Xi , ` ∈N+ ] ≥ 1−εi , (3.11)

where εi ∈ (0,1) is the admissible state constraint violation parameter of each subsystem
(3.9). One can also consider αi = 1−εi as the desired level of state feasibility parameter of
each subsystem (3.9).

In the following proposition, we provide a connection between the proposed opti-
mization problem in (3.10) and the optimization problem in (3.6).

Proposition 1 Given Assumption 8 and the block-diagonal structure for the state-feedback
controller K = diagi∈N (Ki ) for the large-scale system dynamics (3.1), the optimization
problem in (3.10) is an exact decomposition of the optimization problem in (3.6).

The proof is provided in Appendix B. ä
The following theorem can be considered as the main result of this section to quan-

tify the robustness of the solutions obtained by (3.10).

Theorem 3 Let εi ,βi ∈ (0,1) be chosen such that ε=∑
i∈N εi ∈ (0,1), β=∑

i∈N βi ∈ (0,1),
and Nsi ≥ N(εi ,βi ,Tmi ) for all subsystem i ∈ N . If v∗ = coli∈N (v∗

i ), the collection of
the optimizers of problem (3.10) for all subsystem i ∈ N , is applied to the discrete-time
dynamical system (3.1) for a finite horizon of length T , then, with at least confidence 1−β,
the original constraint (3.5c) is satisfied for all k ∈ T with probability more than 1−ε.

The proof is provided in Appendix B. ä
The interpretation of Theorem 3 is as follows. In the proposed distributed scenario

program (3.10), each subsystem i ∈N can have a desired level of constraint violation εi

and a desired level of confidence level 1−βi . To keep the robustness level of the collec-
tion of solutions in a probabilistic sense (3.5c) for the discrete-time dynamical system
(3.1), these choices have to follow a certain design rule, e.g. ε = ∑

i∈N εi ∈ (0,1) and
β=∑

i∈N βi ∈ (0,1). This yields a fixed ε , β for the large-scale system (3.1) and the indi-
vidual εi , βi for each subsystem i ∈M. It is important to mention that in order to main-
tain the violation level for the large-scale system with many partitions, i.e. |N | = N ↑ ,
the violation level of individual agents needs to decrease, i.e. εi ↓ , which may lead to
conservative results for each subsystem, since the number of required samples needs to
increase, i.e. Nsi ↑. Addressing such a limitation is subject of ongoing research work.
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Figure 3.2: Distributed scenario MPC which corresponds to the problem (3.10). The measurement variable yi
is the full state information xi which is sent to the centralized controllers for all agent i ∈N .

An important key feature of the proposed distributed scenario program in (3.10)
compared to the optimization problem in (3.6) is as follows. Using the proposed dis-
tributed framework, we decompose a large-scale scenario program (3.6) with Ns num-
ber of scenarios into N small-scale scenario programs (3.10) with Nsi number of scenar-
ios. This yields a significant reduction in the computation time complexity of scenario
programs compared to (3.6) by using the proposed distributed scenario program (3.10).
Using the subsystem dynamics in (3.9), agent i ∈N substitutes q (i )

i ,k in the proposed sce-
nario optimization problem (3.10) with the following relation:

q (i )
i ,k =∑

j∈Ni
Ai j (δ(i )

i ,k )x(i )
j ,k +Ci (δ(i )

i ,k )w (i )
i ,k ,

where δ(i )
i ,k and w (i )

i ,k are the local scenarios of random variables that are available in each

subsystem by definition w (i )
i ∈Sw i and δ(i )

i ∈Sδi , and taking into consideration that the

interaction dynamics model Ai j (δ(i )
i ,k ) by each neighboring agent j ∈Ni is also available

for agent i ∈N . Hence, the only information that subsystem i ∈N needs is an Nsi num-

ber of samples of the state variable x (i )
j = colk∈T (x(i )

j ,k ) ∈X j :=X T
j from all its neighboring

subsystems j ∈Ni at each sampling time k ∈ T .
It is important to note that even though the proposed distributed scenario optimiza-

tion problem in (3.10) yields a reduction of computation time complexity, it however
requires more communication between each subsystem, since at each sampling time
k ∈ T all neighboring agents j ∈Ni of the agent i ∈N should send a set of scenarios of

the state variable Sx j := {x (1)
j , · · · , x

(Nsi )

j } ∈XNsi
j to the agent i ∈N .

To summarize this section, we present a network of agents that are dynamically cou-
pled with their own local scenario MPC in Figure 3.2. In the next section, we will pro-
pose a novel inter-agent information exchange scheme to provide a more flexible and
less conservative framework to exchange information between agents.
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Figure 3.3: Pictorial representation of the proposed inter-agent soft communication scheme. Sx j is the set of

Ñsi scenarios, B j is the parametrized set used in the optimization problem (3.12), and B̃ j is the solution of the
optimization problem (3.12). The measurement variables yi and y j are the full state information xi and x j ,
respectively, which are sent to the controllers.

3.4. INFORMATION EXCHANGE SCHEME
In this section, we first describe the information exchange between agents and then pro-
pose a set-based information exchange scheme which will be referred to as a soft com-
munication protocol later in this section. We finally provide the theoretical results to
quantify robustness of the proposed information exchange scheme between neighbor-
ing agents.

When the proposed distributed framework (3.10) is applied to the large-scale sce-
nario program (3.6), all neighboring agent j ∈Ni of the agent i ∈N should send a set of

scenarios of the state variable Sx j := {x (1)
j , · · · , x

(Nsi )

j } ∈ XNsi
j to agent i at each sampling

time k ∈ T . It is of interest to address the issue of how an agent j ∈ Ni can send the
contents of Sx j to the agent i ∈N . We propose the following two schemes:

1) Following our proposed setup in (3.10) to achieve a probabilistic guarantee for the
obtained solution, agent i ∈ N requests from its neighboring agents to send the com-
plete set of data Sx j , element by element such that the number of required samples Nsi ,
is chosen according to Theorem 3 in order to have a given probabilistic guarantee for
the optimizer v∗

i . We refer to this scheme as a hard communication protocol between
agents. Its advantage is that it is simple and transmits exactly the contents of Sx j , but
due to possibly high values of Nsi , it may turn out to be too costly in terms of required
communication bandwidth.

2) To address this shortcoming, we propose another scheme, where agent j ∈ Ni

sends instead a suitable parametrization of a set that contains all the possible values of
data with a desired level of probability (the level of reliability) α̃ j . By considering a simple
family of sets, for instance boxes in Rn j , communication cost can be kept down at rea-
sonable levels. We refer to this scheme as a soft communication protocol between agents
(see Figure 3.3). Such a scheme may be understood as a cascaded scenario scheme sim-
ilar to the one in [99], where a sufficient number of scenarios was determined in order to
establish probabilistic feasibility for two cascaded scenario programs subject to a similar
source of uncertainty. Our soft communication setting however differs from [99], since
each agent is subject to its own uncertainty source. We aim to incorporate the reliability
notion of such a soft communication scheme into the feasibility bound of each agent,
in addition to determining the number of required scenarios that can be obtained as a
corollary of our results presented so far.
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We now describe the soft communication protocol in more detail. The neighboring
agent j ∈ Ni has to first generate Ñsi samples of x j in order to build the set Sx j . It is

important to notice that in the soft communication protocol the number Ñsi of sam-
ples generated by agent j may be different than the one needed by agent i , which is Nsi ,
as will be remarked later. Let us then introduce B j ⊂ Rn j as a bounded set contain-
ing all the elements of Sx j . We assume for simplicity that B j is an axis-aligned hyper-
rectangular set [98]. This is not a restrictive assumption and any convex set, e.g. ellip-
soids and polytopes, could have been chosen instead as described in [148]. We can de-
fine B j := [−b j ,b j ] as an interval, where the vector b j ∈Rn j defines the hyper-rectangle
bounds.

Consider now the following optimization problem that aims to determine the set B j

with minimal volume by minimizing ‖b j ‖1:
min

b j ∈Rn j
‖b j ‖1

s.t. x (l )
j ∈ [−b j ,b j ] , ∀x (l )

j ∈Sx j

l = 1, · · · , Ñsi

, (3.12)

where Ñsi is the number of samples x j ∈ Sx j that neighboring agent j has to take into

account in order to determine B j . If we denote by B̃ j = [−b̃ j , b̃ j ] the optimal solution of
(3.12) computed by the neighbor agent j , then for implementing the soft communica-
tion protocol, agent j needs to communicate only the vector b̃ j along with the level of
reliability α̃ j to the agent i .

Definition 2 A set B̃ j is called α̃ j−reliable if

P
[

x j ∈X j : x j ∉ [−b̃ j , b̃ j ]
]≤ 1− α̃ j , (3.13)

and we refer to α̃ j as the level of reliability of the set B̃ j .

We now provide the following theorem to determine α̃ j as the level of reliability of
the set B̃ j .

Theorem 4 Fix β̃ j ∈ (0,1) and let

α̃ j = Ñsi −n j

√√√√√ β̃ j(Ñsi
n j

) . (3.14)

We then have

PÑsi

{
{x1

j , · · · , x
Ñsi
j } ∈XÑsi

j : P
[

x j ∈X j : x j ∉ [−b̃ j , b̃ j ]
]≤ 1− α̃ j

}
≥ 1− β̃ j .

The proof is provided in Appendix B. ä
Theorem 4 implies that given an hypothetical new sample x j ∈X j , agent j ∈Ni has

a confidence of at least 1− β̃ j that the probability of x j ∈ B̃ j = [−b̃ j , b̃ j ] is at least α̃ j .
Therefore, one can rely on B̃ j up to α̃ j probability. The number of samples Ñs j in the
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proposed formulation (3.12) is a design parameter chosen by the neighboring agent j ∈
Ni . In Figure 3.3 the number of red dots refers to the difference between Ns j and Ñs j .
We however remark that one can also set a given α̃ j as the desired level of reliability and
obtain from (3.14) the required number of samples Ñsi .

When an agent i ∈N and its neighbor j ∈Ni adopt the soft communication scheme,
there is an important effect on the probabilistic feasibility of agent i , following Remark 5.
Such a scheme introduces some level of stochasticity on the probabilistic feasibility of
agent i , due to the fact that the neighboring information is only probabilistically reli-
able. This will affect the local probabilistic robustness guarantee of feasibility as it was
discussed in Theorem 3 and consequently in Theorem 2. To accommodate the level of
reliability of neighboring information, we need to marginalize a joint cumulative dis-
tribution function (cdf) probability of x i and the generic sample x j ∈ X j appearing in
Theorem 4. We thus have the following theorem, which can be regarded as the main
theoretical result of this section.

Theorem 5 Given α̃ j ∈ (0,1) for all j ∈ Ni and a fixed αi = 1− εi ∈ (0,1), the state tra-
jectory of a generic agent i ∈M is probabilistically ᾱi –feasible for all w i ∈Wi , δi ∈ ∆i ,
i.e.,

P
[
xi ,k+` ∈Xi , ` ∈N+

]≥ ᾱi , (3.15)

where ᾱi = 1− 1−αi
α̃i

such that α̃i =∏
j∈Ni

(α̃ j ).

The proof is provided in Appendix B. ä
Following the statement of Theorem 5, it is straightforward to observe that if for all

neighboring agents j ∈ Ni , α̃ j → 1 then ᾱi → αi . This means that if the level of reli-
ability of the neighboring information is one, i.e. P

[
x j ∈ B̃ j : ∀ j ∈ Ni

] = 1, then, the
state feasibility of agent i will have the same probabilistic level of robustness as the hard
communication scheme, i.e. P

[
x i ∈ Xi

] ≥ αi = 1− εi . Combining this result with the
statement of Theorem 3, the proposed soft communication scheme introduces some
level of stochasticity on the feasibility of the large-scale system as in (3.5c). In particu-
lar, εi ∈ (0,1) the level of constraint violation in each agent i ∈N will increase, since it
is proportional with the inverse of

∏
j∈Ni

(α̃ j ) ∈ (0,1), and therefore, ε = ∑
i∈N εi ∈ (0,1)

will also increase. After receiving the parametrization of B̃ j and the level of reliability α̃ j ,
agent i ∈N should immunize itself against all possible variation of x j ∈ B̃ j by taking the
worst-case of B̃ j , similar to the worst-case reformulation proposed in [144, Proposition
1]. It is important to notice that in this way, we decoupled the sample generation of agent
j ∈Ni from agent i ∈N .

We summarize this section by mentioning that Figure 3.3 depicts a conceptual repre-
sentation of the proposed soft communication scheme between two neighboring agents.
In the next section, we provide an operational framework that uses our developments in
preceding sections in a more practical framework namely plug-and-play (PnP) opera-
tions.

3.5. PLUG-AND-PLAY OPERATIONAL FRAMEWORK
We summarize our proposed distributed scenario MPC in Algorithm 1 such that agents
communicate with each other by using our proposed soft inter-agent communication
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Algorithm 1 Distributed Scenario MPC

1: Decompose the large-scale dynamical system (3.1) into N agents as the proposed form in (3.9)
2: Determine the index set of neighboring agents Ni for each agent i ∈N
3: For each agent i ∈N do
4: fix initial state xi ,0 ∈Xi , εi ∈ (0,1), and βi ∈ (0,1) such that

ε=∑
i∈N εi ∈ (0,1) , β=∑

i∈N βi ∈ (0,1)

5: initialize B̃ j for all neighboring agents j ∈Ni
6: determine Ns̄i ∈ (0,+∞) to approximate the objective function, and Nsi following

Theorem 3 to approximate the chance constraint (3.11) in an equivalent sense
7: generate Ns̄i , Nsi scenarios of w i , δi to determine the sets of S̄(w i ,δi ) and Sw i , Sδi
8: solve the proposed optimization problem in (3.10) by taking into account the worst-

case of B̃ j and determine v∗
i

9: generate Ñsi scenarios of x i using the dynamical system of agent i in form of (3.9)
and v∗

i together with Sw i , Sδi

10: determine set B̃i by solving the optimization problem (3.12)
11: send the set B̃i to all neighboring agents j ∈Ni
12: receive the sets B̃ j from all neighboring agents j ∈Ni
13: apply the first input of solution u∗

i ,k = Ki xi ,k + v∗
i ,k into the uncertain subsystem (3.9)

14: measure the state and substitute it as the initial state of the next step xi ,0
15: set k ← k +1
16: goto Step (7)
17: End for

Algorithm 2 Plug-and-Play Operation

Plug-in Operation
1: Add the number of new subsystems into the previous number of subsystems, e.g.

one additional agent N ← N +1 such that |N | = N +1
2: Update the index set of neighboring agents Ni for each agent i ∈N
3: Goto Step (3) of Algorithm 1

Plug-out Operation
4: Remove the number of new subsystems from the previous number of subsystems,

e.g. one exclusion agent N ← N −1 such that |N | = N −1
5: Update the index set of neighboring agents Ni for each agent i ∈N
6: Goto Step (3) of Algorithm 1
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scheme. Note that in case of the hard communication scheme, each agent needs to gen-
erate Nsi scenarios and send exactly all of them to all its neighboring agents j ∈Ni . In
other words, the following changes have to be made in Algorithm 1. Ñsi will be substi-
tuted by Nsi in Step 9 and Step 10 will be removed. Steps 11 and 12 will send and receive
exactly Nsi samples, respectively.

In Algorithm 1 it is assumed that the feedback control gain matrices Ki for all agent
i ∈ N are given (3.4), and the coupling terms Ai j (δi ,k ) are known between each agent
i ∈ N and its neighboring agents j ∈ Ni . It is important to note that Step 5 of Algo-
rithm 1, initializes B̃ j for all neighboring agents j ∈Ni to be used for the initial iteration
in Step 8, and then, at each iteration all agent i ∈N will send and receive B̃ j from all its
neighboring agents j ∈Ni as in Steps 11 and 12, respectively.

We also summarize the steps that are needed for plug-in and plug-out operations of
each agent i ∈N in Algorithm 2. Note that in a plugged-in or plugged-out operation all
agents i ∈ N have to update their εi with βi to respect the condition in Theorem 3 as
in (4) to achieve the desired level of constraint feasibility for the large-scale system (3.1).
One can also redesign Ki to potentially improve the local control performance of each
agent i ∈N .

3.6. NUMERICAL STUDY
This section presents two case studies to illustrate the functionality of our proposed
framework to deal with private and common uncertainty sources in networked control
problems. The simulation environment for both cases was MATLAB with YALMIP as the
interface [86] and Gurobi as the solver.

We simulate four problem formulations, a centralized SMPC (CSMPC) using (3.6), a
distributed SMPC (DSMPC) via the distributed scenario program in (3.10), and DSMPC
with the proposed soft communication scheme with 0.85−reliability (DSMPCS−0.85) as
described in Definition 2 and DSMPCS−0.50, both following Algorithm 1 in a closed-
loop control system framework. For comparison purposes, we also present the results
obtained via decoupled SMPC (DeSMPC), where the impact of coupling neighboring dy-
namics in (3.9) are relaxed.

In Figure 3.5, Figure 3.6 and Figure 3.7, we evaluate our proposed framework in terms
of a-posteriori feasibility validation of the obtained results in both case studies. The
"red" line represents the results obtained via DeSMPC, the "blue" line shows the results
obtained via CSMPC, the "magenta" presents the results obtained by using DSMPC, the
"dark green" and "light green" lines show the results obtained via DSMPCS−0.85 and
DSMPCS−0.50, respectively. The "black" lines indicate the bounds of the three dynami-
cally coupled systems.

3.6.1. THREE-ROOM CASE STUDY

We simulate a three-room building climate comfort system shown in Figure 3.4 such that
the temperature of rooms are dynamically coupled without any common constraints.
The outside weather temperature and the related looses, e.g. through windows, is con-
sidered as the private uncertainty.

Consider now a three-room building system dynamics: xk+1 = A(δk )xk +B(δk )uk +
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Figure 3.4: An example of three-room building climate comfort system. x1,k , x2,k and x3,k are states of the
building that are related to the temperature dynamics of rooms. The temperature dynamics are influenced by
the outside weather temperature (wk ) shown by ‘red’ arrows and the possible losses (δk ) through windows, and
etc., of the rooms which are represented via ‘orange’ arrows. Moreover, the ‘blue’ arrows denotes the impact of
the neighboring rooms on each other.

C (δk )wk , where

A =
0.2 0.3 0

0.2 0.1 0.1
0.2 0 0.4

 , B =
0.01 0 0

0 0.01 0
0 0 0.01

 , C =
0.02 0 0

0 0.02 0
0 0 0.02

 ,

such that A(δk ) = A+δk and B(δk ) = B +δk as well as C (δk ) =C +δk . The system matri-
ces are a simplified model of a three-room building such that the states xi ,k for i = 1,2,3,
denote the temperature of rooms. The uncertain variable δk ∈R represents the model-
ing errors, losses through windows, and wk ∈R can be realized as the outside weather
temperatures.

To generate random scenarios from the additive disturbance, we built a discrete nor-
mal process such that one day hourly-based forecasted (nominal) outside weather tem-
perature is used which varies within 10% of its nominal scenario at each sampling time.
As for the uncertainty δk , we generate a random variable from a normal distribution with
a mean value 0, variance 1 and a maximal magnitude of 0.01 at each sampling time.

The initial state variables are [21 19 23]> and the objective is to keep the temperature
of rooms within our desired lower [20.5 18.5 22.5]> and [21.5 19.5 23.5]> upper bounds
at the minimum control input uk . The control input uk is also constrained to be within
−1.5 [kWh] and 1.5 [kWh] for all three rooms, due to actuator saturation. The initializa-
tion of the B̃ j for all neighboring agents j ∈N〉 as in Step 5 in Algorithm 1 can be done
for instance by assuming the initial temperature of the neighboring rooms are known for
all rooms.

In Figure 3.5, the dynamically coupled state trajectories for all three rooms are shown.
One can clearly see in Figure 3.5 that the dynamically coupled state trajectories are fea-
sible in a probabilistic sense, since the agent operations are within the lower and upper
bounds compared to DeSMPC that violates the constraints completely; the obtained so-
lution via DeSMPC is completely outside of the feasible areas after the first sampling
time and thus, we just keep the other results for our discussions. This is a direct result
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Figure 3.5: A-posteriori feasibility validation of the obtained results. The "red", "blue", "magenta", "dark
green", and "light green" lines are related to the obtained results via DeSMPC, CSMPC, DSMPC, DSMPCS−0.85,
and DSMPCS−0.50, respectively. The "black" lines are related to the upper bound values. The top, middle, and
down plots are related to the temperatures of room 1,2, and 3, respectively.

of Theorem 3 such that the obtained solutions via our proposed formulations have to be
probabilistically feasible, that can be clearly seen in Figure 3.5, since the trajectories are
on the lower bounds.

3.6.2. THREE-BUILDING (ATES SYSTEMS) CASE STUDY

We next simulate the thermal energy demands of three buildings modeled using real-
istic parameters and the actual registered weather data in the city center of Utrecht,
The Netherlands, where these buildings are located and these had been equipped with
aquifer thermal energy storage (ATES) systems [148]. An ATES system consists of two
wells (warm and cold water wells) and it is considered as a heat source or sink, or as
a storage for thermal energy that operates in a seasonal mode. A large-scale network
of interconnected buildings, that are constrained via the state variables of ATES systems,
which are the volume of water and the thermal energy content of each well, was modeled
in [148]. To prevent overlap of nearby systems there are constraints on a growing thermal
radius, r h

i ,k [m], r c
i ,k [m], of each well of an ATES system with its neighboring agents, e.g.

r h
i ,k + r c

j ,k ≤ di j for each agent i ∈N and its neighboring agent j ∈Ni . In [148, Corollary

1], it was shown that such a constraint on the growing thermal radius can be replaced
with a constraint on the state variables (volume of water) of the ATES systems. We refer
interested readers to [148] for the detailed explanations on this case study.

It is important to note that based on the decomposition technique in Section 3.3, the
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subsystem i ∈N is assumed to be dynamically coupled with all its neighboring subsys-
tems j ∈Ni , and the feasible set are assumed to be decoupled as defined in (3.7). This
leads to an issue for applying Algorithm 1 to this case study due to the aforementioned
coupling constraints. To overcome this difficulty, it is assumed that variations in the pre-
dicted actions of each agent i ∈N at each sampling time k ∈ T are bounded within the
samples that are sent to the neighboring agents j ∈Ni . Such an assumption is inspired
by practical reasons, since the ATES system dynamics are very slow as reported in [148].
In this way, the coupling constraints can be considered as the local (decoupled) uncer-
tain constraints such that the neighboring actions are given as the uncertainty source.
We are then able to apply Algorithm 1 to this case study as well.

A simulation study is carried out for one year based on actual weather conditions
from March 2011-March 2012 in a weekly-based time steps with three months predic-
tion horizon to meet the coupling constraints between ATES systems. We introduce ad-
ditive disturbance and uncertainty sources into the deterministic first-order dynamical
model of [142, 148]. It has been reported in [135] that the ambient temperature of water
in aquifers is changing over the long life-time usage of ATES systems. We capture such
a behavior by introducing an additive unknown (disturbance) source of energy which
yields a time correlation function via the initial value of energy content variable of an
ATES system. In addition to this, the system parameters of an ATES system are a func-
tion of the stored water temperature in each well, e.g. see [148, Figure 4]. We therefore
introduce a small level of perturbation as an uncertainty in the parameters of the ATES
system dynamics.

To generate random scenarios from the additive disturbance, we built a discrete nor-
mal process such that the nominal scenario is 10% of the amplitude of the energy con-
tent in a deterministic ATES system model and varies within 5% of its nominal scenario
at each sampling time. As for the uncertainty δk , we generate a random variable from
a Gaussian distribution with a mean value 0, variance 0.3 and a maximal magnitude of
0.03 at each sampling time.

In Figure 3.6, we show a-posteriori feasibility validation of the coupling constraints
between each agent i = 1,2,3, and neighboring agents, e.g. r h

1,k +r c
2,k ≤ 65, r h

2,k +r c
3,k ≤ 70,

and r h
3,k + r c

1,k ≤ 70. Figure 3.7 focuses on the critical time periods in Figure 3.6, where
neighboring agents are injecting thermal energies with different pump flow rates. Fig-
ure 3.7(a) shows the results from mid-May to mid-August 2011, Figure 3.7(b) presents
the results of December 2011 to February 2012, and Figure 3.7(c) depicts the results of
mid-April to mid-July 2011.

As a first desired achievement, one can clearly see in Figure 3.6 that the constraints
are feasible in a probabilistic sense, since the agent operations are quite close to the
upper bounds in the critical time periods compared to DeSMPC that violates the con-
straints. Strictly speaking, using our proposed framework one can achieve the maximum
usage of the aquifer (subsurface) to store thermal energy without affecting the neighbor-
ing thermal storage. This is a direct result of Theorem 3 such that the obtained solutions
via our proposed formulations have to be probabilistically feasible, that can be clearly
seen in Figure 3.7, since the trajectories are on the upper bounds.

It is worth to mention that both Figure 3.5 and Figure 3.7 illustrate our other two main
contributions more precisely: 1) the obtained results via CSMPC (blue line) and DSMPC
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Figure 3.6: A-posteriori validation of the obtained results. The "red", "blue", "magenta", "solid green", and
"dashed green" lines are related to the obtained results via DeSMPC, CSMPC, DSMPC, DSMPCS−0.85, and
DSMPCS−0.50, respectively. The "black" lines are related to the upper bound values.
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Figure 3.7: Zoom-in of the critical time periods in Figure 3.6.
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(magenta line) are practically equivalent throughout the simulation studies; this is due
to Proposition 1 and Theorem 3. Actually, the solutions via DSMPC are slightly more con-
servative compared to the results via CSMPC, and this is a direct consequence of Theo-
rem 3. In fact the level of violation in CSMPC is considered to be ε= 0.05 and leading to
εi = 0.0167 for all agents, which is more restrictive. 2) the proposed soft communication
scheme yields less conservative solutions as explicitly derived in Theorem 5, and can
be clearly seen in Figure 3.5 and Figure 3.7 with the obtained results via DSMPCS−0.85
(dark green) and DSMPCS−0.50 (light green). Following Theorem 5 the new violation
level using DSMPCS−0.85 is ε̄i = 0.0231, and using DSMPCS−0.50 is ε̄i = 0.0668. It is
important to notice that the violation level of global chance constraint will increase to
ε̄= 0.0702 and ε̄= 0.2004 using DSMPCS−0.85 and DSMPCS−0.50, respectively.

3.7. CONCLUSIONS
In this chapter, we presented a rigorous approach to distributed stochastic model pre-
dictive control (SMPC) using the scenario-based approximation for large-scale linear
systems with private and common uncertainty sources. We extended the existing re-
sults to quantify the robustness of the resulting solutions for both cases of private and
common uncertainties in a distributed framework. We then provided a novel inter-agent
soft communication scheme to minimize the amount of information exchange between
each subsystem. Using a set-based parametrization technique, we introduced a relia-
bility notion and quantified the level of feasibility of the obtained solutions via the dis-
tributed SMPC integrated with the so-called soft communication scheme in a proba-
bilistic sense. The theoretical guarantees of the proposed distributed SMPC framework
coincide with its centralized counterpart.
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DISTRIBUTED STOCHASTIC

RESERVE SCHEDULING IN AC
POWER SYSTEMS WITH UNCERTAIN

GENERATION

This chapter presents a framework to carry out multi-area stochastic reserve scheduling
(RS) based on an AC optimal power flow (OPF) model with high penetration of wind
power using distributed consensus and the alternating direction method of multipli-
ers (ADMM). We first formulate the OPF-RS problem using semidefinite programming
(SDP) in infinite-dimensional space, which is in general computationally intractable.
Using a novel affine policy, we develop an approximation of the infinite-dimensional
SDP as a tractable finite-dimensional SDP, and explicitly quantify the performance of
the approximation. To this end, we adopt the recent developments in randomized op-
timization that allow a priori probabilistic feasibility guarantees to optimally schedule
power generating units while simultaneously determining the geographical allocation
of the required reserve. We then use the geographical patterns of the power system to
decompose the large-scale system into a multi-area power network, and provide a con-
sensus ADMM algorithm to find a feasible solution for both local and overall multi-area
network. Using our distributed stochastic framework, each area can use its own wind
information to achieve local feasibility certificates, while ensuring overall feasibility of
the multi-area power network under mild conditions. We provide numerical compar-
isons with a new benchmark formulation, the so-called converted DC (CDC) power flow
model, using Monte Carlo simulations for two different IEEE case studies.
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4.1. INTRODUCTION

P OWER transmission system operators (TSOs) aim to find an economic operating point
to satisfy the power demand and network constraints by solving an optimal power

flow (OPF) problem. TSOs have to deal with increasing degrees of uncertainty due to
high penetration of wind power generation. While wind power has clear environmen-
tal advantages, it is a highly variable and not fully controllable resource. This imposes
novel challenges and tasks for TSOs to avoid blackouts, outages, etc., and highlights the
necessity of introducing a new paradigm to existing TSO functionalities.

The reserve scheduling (RS) task of TSOs deals with day-ahead scheduling of the re-
serve power to accommodate possible mismatches between forecasted and actual wind
power. Stochastic variants of the RS problem, where violations are allowed with a small
probability to achieve better performance, have received a lot of attention in the past few
years, see [100, 118, 171, 174] and the references therein. A stochastic RS problem is typi-
cally formulated using a lossless DC model based on the assumption of constant voltage
magnitudes and small voltage angles, while ignoring the active power losses [7]. It is
worth mentioning that these assumptions do not hold in general and may lead to sub-
optimality or even infeasibility when implemented on real-world systems, especially for
networks under a high degree of stress [164]. Using an AC representation of the power
network enables the stochastic RS formulation to accurately model the effect of large de-
viations of wind power from its forecasted value, and to offer a-priori suitable reserves
such that both active and reactive power, and complex-valued voltage are globally opti-
mal. Due to the non-convexity of the OPF problem, identifying such an optimal operat-
ing point of a power system may not be straightforward. In [82], different reformulations
and relaxations of the AC OPF problem were presented and their connections were dis-
cussed. By means of semidefinite programming (SDP), in [82] a convex relaxation was
provided under the existence of a rank-one SDP solution to guarantee the recovery of a
globally optimal solution of the power network.

4.1.1. RELATED WORKS
The RS problem incorporating an OPF formulation has been introduced in [149], where a
chance-constrained OPF problem was formulated. With some modifications, motivated
by practical aspects of the problem, the authors in [149] provided a theoretical guarantee
that the OPF-RS problem yields a rank-one feasible solution. Using a heuristic Monte
Carlo sampling approach, they showed that the resulting optimization problem involves
an OPF problem for each wind power profile. Our work in this chapter is motivated
by [149] to first rigorously provide theoretical guarantees for the feasibility of physical
constraints, and then, develop a distributed reserve scheduling framework for the AC
model of power network, which is, to best of our knowledge, has not been addressed in
the related works.

Dealing with a chance-constrained AC OPF problem has recently received a lot of
attention in literature, see e.g., [35, 46, 56, 130, 170, 172]. In [172] a Monte Carlo sampling
approach from both the set of decision variables and uncertain parameters has been
employed such that for each random decision variable an AC OPF problem including
all random uncertain parameters is solved to determine the feasibility of the decision
variable. This procedure is repeated for all random decision variables such that the final
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decision is the one that is feasible and has a better cost value. Choosing an appropriate
distribution for decision variables together with large computational time are drawbacks
of such an algorithm.

Another interesting approach based on partial linearization methods, see e.g. [46],
[56] and the references therein, has been adopted in [130]. In [130], the full AC power flow
model for the forecasted operating point is formulated, and then, a linearization around
this point is done to model the impact of uncertainty by assuming that the forecast errors
are small. The analytical chance constraint reformulation is derived by considering a
specific distribution for uncertainty, e.g. Gaussian. We note that such an approach fails
whenever the distribution of uncertainty is unknown (see, e.g., [131] to handle partially
unknown distributions).

While preparing the final version of this work, [35] and [170] independently gave an
approach to solve the RS problem using a chance-constrained AC OPF problem in each
single hour, based on the results in [171]. The OPF-RS formulation in [35] is similar to
[149] with some modifications, whereas in [170] the formulation is weaker compared
to [149], since the condition to distribute reserves among generators is relaxed. Even
though the authors in [149] presented a complete day-ahead OPF-RS formulation with
up- and down spinning reserves, the results in the aforementioned references are lim-
ited either to be heuristic or to a single hourly-based RS with the relaxed conditions. The
major barrier for representing OPF-RS problems as an SDP is the necessity of defining a
square SDP matrix variable, which makes the cardinality of scalar variables of the OPF-
RS problem quadratic with respect to the number of buses in the power network. This
may yield a very large-scale SDP problem for realistic large-scale power networks of in-
terest.

4.1.2. CONTRIBUTIONS

Our work in this chapter differs from the aforesaid references in two important aspects.
We first formulate the AC OPF problem by considering the uncertain wind power gener-
ation. Using a similar convexification to [82], we incorporate the stochastic RS into the
convexified AC OPF formulation. This results in a large-scale SDP in infinite-dimensional
space. We then provide a systematical approach to move from infinite to semi-infinite
and then to finite-dimensional space using a novel affine policy. Such a policy differs
from the existing one in the literature, see, e.g., [35, 149, 170, 171] and references therein,
in technical and practical aspects, and significantly reduces the worst-case computa-
tional complexity (WCCC). Theoretical results for the exactness of the approximation
and a priori feasibility certificates are provided by adopting the recent developments in
randomized optimization that do not require any prior knowledge of uncertainty bounds
or distributions. The proposed policy enjoys the property of operational rule of the so-
called automatic generation regulator (AGR) concept in power system. Affine policies
have been also used for the OPF problem using DC model of power system, e.g., [70],
and most recently, in [177] for the AGR actions (up- and downspinning reserves).

We next introduce a decomposition technique by leveraging the geographical pat-
terns in power systems to decompose the high-dimensional SDP into small-scale SDPs
related to each area of a multi-area power network. We employ recent results in graph
theory to break down the large-scale positive-semidefinite (PSD) constraints into small-



4

68 4. DISTRIBUTED STOCHASTIC RS IN AC POWER SYSTEMS WITH WIND

sized constraints. Such a technique has been also considered in [182] for state estimation
problem in power systems. We then provide a distributed consensus framework using
the alternating direction method of multipliers (ADMM), similarly to [72, 77, 96, 111],
with some modifications for the AC OPF problem in power system. We extend such a
distributed framework to handle the stochastic RS problem using the AC OPF model
of a multi-area network which has not, to the best of our knowledge, been considered
in literature. We highlight that such an extension is possible using the proposed affine
policy which overcomes the difficulty of having defined a square SDP matrix variable
for all possible wind trajectories, see, e.g., [35, 132, 149, 170, 171]. We also note that in
our proposed distributed stochastic framework, each area of the power system can have
its own measurements of wind power, while having feasibility guarantees for both local
and overall multi-area power network under mild conditions. Two different simulation
results using IEEE benchmark case studies are provided to illustrate the functionality
of our developments. We also provide a new benchmark formulation for stochastic RS
using DC model of power system, namely converted DC (CDC) to demonstrate more
realistic comparisons. The main contributions of this work are twofold:

a) We provide a novel reformulation of the RS problem using the AC OPF model
of power systems with wind power generation, leading to an infinite-dimensional SDP
which is in general computationally intractable. We propose an approximation bridge
from infinite-dimensional SDP to tractable finite-dimensional SDP using an affine pol-
icy inspired by practical aspects of the problem. We explicitly quantify the exactness of
the approximation and provide a priori probabilistic feasibility guarantees to optimally
schedule generating units while simultaneously determining the geographical allocation
of the required reserve. We also provide another formulation of the OPF-RS problem,
similarly to [149] with some modifications, and compare them in term of WCCC analy-
sis.

b) We develop a distributed stochastic framework to carry out a multi-area RS us-
ing an the AC OPF model of power networks with wind power generation. We provide
a technique to decompose a large-scale finite-dimensional SDP into small-scale prob-
lems by exploring the connections between the properties of a power network and the
so-called chordal graphs. A noticeable feature of our distributed setup is that each local
area of power system can have a freedom on their local accuracy of the wind power in-
formation and receive a priori probabilistic feasibility certificates to optimally schedule
local generating units together with local allocation of the required reserve, and under
certain mild conditions for overall power network. This is based on the recent results in
[146, 147]. We then provide consensus ADMM algorithms to both OPF and OPF-RS prob-
lems in similar manner to [72, 96] with some modifications to cope with stochasticity of
the formulations.

4.1.3. STRUCTURE

The layout of this chapter is as follows. Section 4.2 formulates the RS problem using
the AC OPF model of power systems by including the uncertain wind power generation,
whereas, in Section 4.3, we provide a computationally tractable reformulation to solve
the resulting large-scale SDP in infinite-dimensional space. In Section 4.4, we extend
the results to a multi-area power network and propose a distributed framework to solve
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such problems. Section 4.5 provides two different simulation results using IEEE case
studies, whereas Section 4.6 concludes this chapter with remarks.

4.1.4. NOTATIONS

R,R+ denote the set of real and positive real numbers, S, S+ denote the set of symmetric
and positive-semidefinite matrices, respectively. C denotes the set of complex numbers.
Vectors are denoted by lowercase-bold letters a ∈Rn , and uppercase letters are reserved
for matrices A ∈Rn×n . A>, A∗, and AH are used for the transpose, complex conjugate
and conjugate transpose of a matrix, respectively. The notations a and a are used to
denote the minimum and maximum allowed values, respectively. The cardinality of a
set A is denoted by |A|. The Frobenius norm of a matrix A is equal to the square root of

the matrix trace of A AH, i.e., ‖A‖F =
√

Tr
(

A AH
)
.

4.2. PROBLEM FORMULATION
This section describes the AC OPF problem that aims to find a feasible operating point of
the power system by minimizing the cost of the generation units over the optimization
horizon including wind power generation. We apply a relaxation technique to convexify
this problem, and then, extend the resulting formulation to include the stochastic RS
problem.

4.2.1. AC OPF PROBLEM

Consider a power system with a set of buses N , a set of lines L⊆N ×N and a set of gen-
erator buses G ⊆N such that |N | = Nb and |G| = NG . The set of wind power generation
buses is denoted by F ⊆N such that |F | = Nw , and G⋂F =; which means there is no
wind power at generator buses1. The set T forms a day-ahead hourly-based horizon of
the RS optimization problem and in this work |T | = 24. The vectors p ∈RNb ,q ∈RNb and
s ∈CNb denote real, reactive and apparent power, respectively. Superscripts G ,D, w are
also used to indicate generated, demanded and wind power, respectively.

Define the decision variables to be the generator dispatch pG
t ,qG

t ∈RNG and the com-
plex bus voltages vt ∈CNb for each time step t ∈ T . For the sake of brevity, a tilde denotes
a set of variables over all time steps, e.g., ã := {at }t∈T . Using the rectangular voltage no-
tation: xt := [Re(vt )> Im(vt )>]> ∈R2Nb , we follow [82, Lemma 1] to determine the data-
matrices Yk ,Y ∗

k ,Ylm ,Y ∗
lm , Mk . The cost function is the cost of real power generation,

expressed as a second-order polynomial [113], see (4.1a) below, where the coefficient
vectors cqu,cli ∈ RNG+ correspond to the quadratic and linear cost coefficients, respec-
tively, and [cqu] represents a diagonal matrix with entries cqu. We now formulate the AC
OPF problem by taking into account the effect of wind power generation as follows:

minimize
x̃,p̃G ,q̃G

∑
t∈T

(cli)>pG
t + (pG

t )>[cqu]pG
t (4.1a)

subject to:

1This is considered to streamline the presentation and it is not restrictive for our proposed framework.



4

70 4. DISTRIBUTED STOCHASTIC RS IN AC POWER SYSTEMS WITH WIND

a) Power generation limits ∀k ∈G,∀t ∈ T :

pG
k ≤ pG

k,t ≤ pG
k ,

qG
k ≤ qG

k,t ≤ qG
k .

(4.1b)

b) Power balance at every bus ∀k ∈N ,∀t ∈ T :

x>t Yk xt = pG
k,t −pD

k,t +pw
k,t ,

x>t Y ∗
k xt = qG

k,t −qD
k,t ,

(4.1c)

where pw
t := {pw

k,t }k∈F is the wind power, and sD
t := {sD

k,t }k∈N is the demanded

power such that sD
k,t = pD

k,t + j qD
k,t .

c) Bus voltage limits ∀k ∈N ,∀t ∈ T :

|vk |2 ≤ x>t Mk xt ≤ |vk |2 . (4.1d)

d) Lineflow limits ∀(l ,m) ∈L,∀t ∈ T :(
x>t Ylm xt

)2 + (
x>t Y ∗

lm xt
)2 ≤ |slm |2 ,

which can be reformulated using the Schur-complement [23] to form a linear ma-
trix inequality constraint, such that the fourth-order dependence on the voltage
vector is reduced to quadratic terms: −|slm |2 x>t Yl m xt x>t Y ∗

lm xt

x>t Ylm xt −1 0
x>t Y ∗

lm xt 0 −1

¹ 0. (4.1e)

e) Reference bus constraint ∀t ∈ T :

x>t Erefxt = 0, (4.1f)

where Eref ∈R2Nb×2Nb is a diagonal matrix from the standard basis vector eNb+iref ∈
R2Nb , and iref denotes the reference bus.

Remark 6 The power balance constraints (4.1c) can be used to reformulate the real and
reactive generator dispatch in terms of the voltage vector as follows ∀k ∈N ,∀t ∈ T :

pG
k,t = x>t Yk xt +pD

k,t −pw
k,t , (4.2a)

qG
k,t = x>t Y ∗

k xt +qD
k,t . (4.2b)

Using this reformulation, one can substitute for pG
k,t and qG

k,t in (4.1b) to have∀k ∈N ,∀t ∈
T :

pG
k ≤ x>t Yk xt +pD

k,t −pw
k,t ≤ pG

k , (4.3a)

qG
k ≤ x>t Y ∗

k xt +qD
k,t ≤ qG

k , (4.3b)
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where the lower and upper generation limits have been also extended to N using pG
k =

pG
k = 0,∀k ∈N \G.

Remark 7 Following Remark 6, one can reformulate the cost function (4.1a) using the
voltage vector xt :

f x
G (xt ,pw

t ,pD
t ) := ∑

k∈G
c li

k

(
x>t Yk xt +pD

k,t −pw
k,t

)+ cqu
k

((
x>t Yk xt +pD

k,t −pw
k,t

))2
. (4.4)

It is important to note that this function is of order four with respect to xt , but it can be
also made quadratic2. To streamline the presentation, these steps are skipped.

Using x̃, we reformulate the problem (4.1) in a more compact form:

OPF(p̃w ) :

{
minimize

x̃

∑
t∈T f x

G (xt ,pw
t ,pD

t )

subject to (4.1d), (4.1e), (4.1f), (4.3)
.

OPF(p̃w ) is a quadratically constrained quadratic program (QCQP) in x̃, and a non-convex
optimization problem, since the data matrices Yk ,Y ∗

k ,Ylm ,Y ∗
l m are indefinite [82], which

is in fact an NP-hard problem [83] and hard to solve.

4.2.2. CONVEXIFIED AC OPF PROBLEM

We can reformulate OPF(p̃w ) as an equivalent problem in a matrix variable Wt := xt x>t ∈
S2Nb using a semi-definite reformulation (SDR) technique, see, e.g., [82, 91] and the ref-
erences therein. Wt represents the operating state of the network at time step t , and
therefore, it is called the state matrix. We define W ⊂ S2Nb as the set of feasible operating
states constraints, such that Wt ∈W , using the following characteristics:

W(pw ,sD ) :=
{

W ∈ S2Nb

∣∣∣ Tr(ErefW ) = 0,

pG
k ≤ Tr(YkW )+pD

k −pw
k ≤ pG

k , ∀k ∈N ,

qG
k ≤ Tr

(
Y ∗

k W
)+qD

k ≤ qG
k , ∀k ∈N ,

|vk |2 ≤ Tr(MkW ) ≤ |vk |2, ∀k ∈N , ∀(l ,m) ∈L , −|sl m |2 Tr(YlmW ) Tr
(
Y ∗

lmW
)

Tr(YlmW ) −1 0
Tr

(
Y ∗

lmW
)

0 −1

¹ 0

}
.

(4.5)

2The cost function can be made linear with the use of the epigraph notation (see also [23, Section 4.1.3]). The
resulting inequality constraint can be converted to an LMI using the Schur complement (see also [23, Section
A.5.5]), which yields a quadratic function of x.



4

72 4. DISTRIBUTED STOCHASTIC RS IN AC POWER SYSTEMS WITH WIND

Consider now the following formulation as an equivalent optimization problem to OPF(p̃w ):

minimize
W̃

∑
t∈T

fG (Wt ,pw
t ,pD

t ) (4.6a)

subject to Wt ∈W(pw
t ,sD

t ), ∀t ∈ T , (4.6b)

Wt º 0, ∀t ∈ T , (4.6c)

rank(Wt ) = 1, ∀t ∈ T , (4.6d)

where fG is defined by (4.4) and Wt = xt x>t . Constraints (4.6c) and (4.6d) are introduced
to guarantee the exactness of SDR, and consequently, OPF(p̃w ) and (4.6) are equivalent.

The optimization problem (4.6) is non-convex, due to the presence of rank-one con-
straint (4.6d). Removing (4.6d) relaxes the problem to an SDP. It has been shown in [82]
and later in [97] that the rank-one constraint can be dropped without affecting the so-
lution for most power networks. In [149, Proposition 1], the authors showed that when
the convex relaxation of the AC OPF problem has solutions with rank at most two, then,
forcing any arbitrary selected entry of the diagonal of the matrix Wt to be zero results
in a rank-one optimal solution. This condition is practically motivated since the voltage
angle of one of the buses (the reference bus) is often fixed at zero in practice. We denote
by C-OPF(p̃w ) the convexified version of OPF(p̃w ) problem in W̃ , i.e., Problem (4.6) with
the rank-one constraint (4.6d) removed.

In the following proposition, we restate the results in [149, Proposition 1] to highlight
that our developments, in the following parts, buildup on this result and therefore the
obtained solutions for the state variables using our proposed approach is the rank-one
feasible solution.

Proposition 2 If the C-OPF(p̃w ) problem has solutions with rank at most two, then, forc-
ing any arbitrary selected entry of the diagonal of matrix Wt to be zero results in a rank-one
solution W ∗

t . Moreover, the corresponding value of the objective function of the proposed
optimization is identical to that of the original OPF(p̃w ) problem.

It is important to note that the optimality of the obtained solutions using our proposed
approach is not in the scope of this chapter and it is subject of our ongoing research
work. Instead, in this chapter we focus on feasibility and derive probabilistic guarantees
for constraint fulfillment in a distributed setting.

4.2.3. CONVEXIFIED AC OPF RESERVE SCHEDULING PROBLEM
Consider a power network where a TSO aims to solve a day-ahead AC OPF problem to
determine an optimal generator dispatch for the forecasted wind power trajectory such
that: 1) the equipment in the power system remains safe and 2) the power balance (4.1c)
in the power network is achieved. As a novel feature in our proposed formulation C-
OPF(p̃w ) has a dependency on p̃w , and thus, it solves the AC OPF problem while taking
into account the actual wind power trajectory p̃w . We here define the difference between
a generic actual wind power realization and the forecasted wind power as the mismatch

wind power at each time step, e.g. pm
t = pw

t −pw, f
t . Due to the fact that p̃m := {pm

t }t∈T is
a random variable, the following technical assumption is necessary in order to proceed
to the next steps.
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Assumption 9 The variable p̃m is defined on some probability space (P ,B(P),P), where
B(·) denotes a Borel σ-algebra, and P is a probability measure defined over P .

As a top priority of TSOs is to ensure the feasibility and validity of the power network,
we formulate the following problem:

minimize
W̃ f ,W̃

∑
t∈T

fG (W f
t ,pw, f

t ,pD
t ) (4.7a)

subject to W f
t ∈W(pw, f

t ,sD
t ), ∀t ∈ T , (4.7b)

Wt ∈W(pw
t ,sD

t ), ∀p̃m ∈P , ∀t ∈ T , (4.7c)

W f
t º 0, Wt º 0 ∀t ∈ T , (4.7d)

where p̃w, f denotes the forecasted wind power trajectory, p̃w is a generic wind power
trajectory, W̃ f is related to the state of the network in the case of forecasted wind power,
and W̃ is a generic network state for a generic wind power trajectory. Constraints (4.7b)
and (4.7c) ensure feasibility for every network state, while constraints (4.7d) enforce PS-
Dness of the forecasted network state and the generic network state for all possible wind
power trajectories.

As a second task of the TSO, the power balance of the power network has to be
achieved to ensure demand satisfaction even in the presence of uncertain wind power
generation. To address this issue, the TSO employs reserve power scheduling, using the
fact that a mismatch between actual wind power and forecasted wind power can be mit-
igated by the controllable generators [118]. We can thus express

rk,t := pG
k,t −pG , f

k,t , (4.8)

where rt = {rk,t }k∈G ∈RNG denotes the amount of reserve requirement in the power net-
work. Following Remark 6, we have:

pG
k,t = Tr

(
YkWt

)+pD
k,t −pw

k,t ,

pG , f
k,t = Tr

(
YkW f

t

)
+pD

k,t −pw, f
k,t ,

and one can substitute these equations in (4.8) to obtain the reserve power in terms of

the network states Wt and W f
t as follows:

rk,t :=Tr
(
Yk

(
Wt −W f

t

))− (pw
k,t −pw, f

k,t )

=Tr
(
Yk

(
Wt −W f

t

))−pm
k,t ,

=Tr
(
Yk

(
Wt −W f

t

))
,

(4.9)

where the term pm
k,t is dropped since it is assumed that there is no wind power at gen-

erator buses. The elements of rt = {rk,t }k∈NG can be positive and negative to represent
the up- and downspinning reserve powers, respectively, such that they are deployed for a
power deficit and surplus to bring balance to the network and satisfy the demand [113].
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The mismatches between the demanded power and uncertain generation (wind) in-
duce frequency deviations and activate the primary and secondary frequency controller
(Automatic Generation Regulation (AGR)). The existence of an ideal primary frequency
control functionality compensating for any fast time scale power deviation is assumed.
Here, we focus only on the steady state behavior of the AGR reserve mechanism [171], we
also define two vectors dus

t ,dds
t ∈RNG to distribute the amount of up- or downspinning

reserve powers among the available generators for each hour t ∈ T . To obtain the opti-
mal control strategies for AGR, we consider the following equality constraint, ∀pm

t ∈P ,
∀k ∈G and ∀t ∈ T :

rk,t =Tr
(
Yk

(
Wt −W f

t

))
=−d us

k,t min
(
pm

t ,0
)−d ds

k,t max
(
pm

t ,0
)

.
(4.10)

In order to always negate the wind power mismatch using the reserve power and bring
balance to the power network, we enforce the sum of the distribution vectors to be equal
to one using the following constraint ∀t ∈ T :∑

k∈G
d us

k,t = 1 ,
∑

k∈G
d ds

k,t = 1. (4.11)

We also distinguish between up- and downspinning reserve powers using rus
t ,rds

t ∈RNG

such that ∀t ∈ T :

−rds
t ≤ rt ≤ rus

t , (4.12a)

0 ≤ rus
t , 0 ≤ rds

t , (4.12b)

where rus
t and rds

t are enforced to be positive as they only appear in the reserve cost func-
tion. We now consider corresponding linear up- and downspinning cost coefficients
cus,cds ∈RNG+ yielding the total reserve cost:

fR (rus
t ,rds

t ) := (cus)>rus
t + (cds)>rds

t .

Using Ξ := {
W̃ f ,W̃ , d̃us, d̃ds, r̃us, r̃ds

}
as the set of decision variables, and combining

our previous discussions with the optimization problem (4.7), we are now in the position
to formulate C-OPF(p̃w ) with RS problem as follows:

C-OPF-RS :

min
Ξ

∑
t∈T

(
fG (W f

t ,pw, f
t )+ fR (rus

t ,rds
t )

)
s.t. (4.7b), (4.7c), (4.7d), (4.10), (4.11), (4.12)

.

Notice that one needs to substitute rt in (4.12a) with (4.9).
C-OPF-RS is an uncertain infinite-dimensional SDP in the sense that the dimension

of the decision spaces as well as the number of constraints are both infinite, due to the
unknown and unbounded set P . It is therefore computationally intractable and in gen-
eral difficult to solve. In the following section, we develop an approximation technique
to provide a tractable finite-dimensional SDP optimization problem.
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4.3. PROPOSED TRACTABLE REFORMULATION

In this section, we propose two different reformulations for C-OPF-RS problem, and
study conditions under which one can provide a finite approximation. We approach
this goal in two different ways. We first develop a novel affine policy to translate the
problem into semi-infinite-dimensional space, and then provide a finite approximation
to the semi-infinite SDP using randomization technique. As a second approach, we di-
rectly employ a randomized technique to provide a finite approximation for the C-OPF-
RS problem. The solution of each of these methods comes with a priori probabilistic per-
formance certificates. We finally provide the WCCC analysis for both proposed methods.

4.3.1. INFINITE TO SEMI-INFINITE PROGRAM: AFFINE POLICY

Consider the proposed equality constraint (4.10), ∀pm
t ∈P , ∀k ∈G and ∀t ∈ T :

Tr
(
Yk

(
Wt −W f

t

))=−d us
k,t min

(
pm

t ,0
)−d ds

k,t max
(
pm

t ,0
)

.

Since the uncertain set P is unknown and unbounded, it is straightforward to see that
the dimension of the decision spaces for the variable Wt as well as the number of con-
straints are both infinite. To overcome this difficulty, we propose an affine policy to re-
strict the decision space using a conic combination of the generic network state Wt in
C-OPF-RS. Observe that in (4.10), the network state variable Wt for every realization of
the uncertainty in each time step, can be represented as a linear combination of the net-

work forecasted state W f
t and the up- and downspinning reserve distributions. This is

also practically inspired by the AGR mechanism.

Motivated by this observation, we propose a novel parametrization of the generic
network state that encodes this restriction implicitly. Define Ŵt (pm

t ) ∈ S2Nb to be the
parametrized generic network state p̃m ∈P ,∀t ∈ T in the following form:

Ŵt (pm
t ) :=W f

t +W us
t max(−pm

t ,0)+W ds
t max(pm

t ,0) , (4.13)

where W us
t ,W ds

t ∈ S2Nb are the coefficient matrix variables for every t ∈ T . The parametriza-
tion of the network state as a conic combination of PSD matrices is, to the best of our
knowledge, a novel way to make the problem more manageable.

Using the proposed conic parametrization, the generic network state is decomposed
into a deterministic component and two components that scale with the positive or neg-
ative uncertainty. It is worth mentioning that both max(pm

t ,0) and max(−pm
t ,0) are al-

ways non-negative and never simultaneously non-zero such that the change in network
state is determined by either W ds

t or W us
t in case of either a wind power surplus or deficit,

respectively. The following theorem can be considered as the main result of this section
to approximate C-OPF-RS in semi-infinite-dimensional space.

Theorem 6 Given the proposed affine policy in (4.13), an exact approximation of the C-
OPF-RS problem can be formulated using the following optimization problem by defining
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Ξ̂ := {
W̃ f ,W̃ us,W̃ ds, r̃us, r̃ds

}
as the new set of decision variables:

P-OPF-RS :



min
Ξ̂

∑
t∈T

(
fG (W f

t ,pw, f
t )+ fR (rus

t ,rds
t )

)
s.t. W f

t ∈W(pw, f
t ,sD

t )

Ŵt (pm
t ) ∈W(pw, f

t +pm
t ,sD

t )

W f
t º 0, W us

t º 0, W ds
t º 0

−rds
t ≤ rt ≤ rus

t , 0 ≤ rus
t , 0 ≤ rds

t∑
k∈G Tr

(
YkW us

t

)= 1∑
k∈G Tr

(
YkW ds

t

)=−1

∀p̃m ∈P , ∀t ∈ T

,

where rt = {rk,t }k∈G should be replaced with

rk,t =−Tr
(
YkW us

t

)
min(pm

t ,0)+Tr
(
YkW ds

t

)
max(pm

t ,0) .

Proof. The proof is provided in Appendix C. ä
The interpretation of Theorem 6 is as follows. Due to the fact that the formulation

in C-OPF-RS follows a linear decision rule concept as a consequence of the AGR mech-
anism, C-OPF-RS and P-OPF-RS are equivalent formulations using the proposed affine
policy (4.13). It is however very important to realize that P-OPF-RS is always a restricted
(approximation) version of a general formulation of C-OPF-RS, where, e.g., the consid-
eration of AGR mechanism as in (4.10) has been included in a more general manner. In
such a general setup formulation, one can quantify the gap between the objective values
as a function of the difference between optimizers of the both problems (for more details
on such a bound in a general problem formulation see [108, Theorem 3.3]).

Remark 8 The distribution vectors of reserve power, d̃us, d̃ds are encoded in W̃ us,W̃ ds, re-
spectively, through the equality constraints3, and therefore, these can be determined a-
posteriori using the following relations ∀k ∈G,∀t ∈ T :

d us
k,t = Tr

(
YkW us

t

)
, d ds

k,t =−Tr
(
YkW ds

t

)
.

One can also define d̃us, d̃ds as two additional decision vector and replace the two equality
constraints in P-OPF-RS with the following constraints:

d us
k,t = Tr

(
YkW us

t

)
, d ds

k,t = Tr
(
YkW ds

t

)
, (4.14)∑

k∈G d us
k,t = 1 ,

∑
k∈G d ds

k,t =−1. (4.15)

3 These equality constraints cause numerical issues in the solver. Using a common practice in optimization
(see, e.g., [1]), we implement these constraints by introducing a slack variable u ∈ R2+ and rewriting each
equality constraint f (a) = b in the form of b −u1 ≤ f (x) ≤ b +u2. By adding L1-norm of slack variables as a
penalty function into the objective function, u is minimized, essentially pushing f (a) to be equal to b. It is
important to highlight that using such a practical way to implement these equality constraints does not lead
to any kind of relaxations, since they have been evaluated afterwords by checking the optimized value of the
slack variables to confirm that they are sufficiently small.
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The P-OPF-RS problem is a semi-infinite-dimensional SDP due to the uncountable
number of constraints corresponding to the uncertainty set P , which is indeed an un-
bounded and unknown uncertainty set. In the following section, we adopt a randomiza-
tion technique to approximate the P-OPF-RS problem and obtain a finite-dimensional
SDP. We will also provide a performance guarantee for the feasibility of constraints in a
probabilistic sense with a high level of confidence.

4.3.2. SEMI-INFINITE TO FINITE PROGRAM: RANDOMIZED APPROACH
We develop a finite approximation to the semi-infinite SDP in P-OPF-RS problem that
is in general hard to solve and known to be computationally intractable [10]. To over-
come this difficulty, we employ the recent developments in the area of randomized op-
timization, leading to a priori probabilistic guarantees for the feasibility of the obtained
solutions.

Recall the randomization technique by assuming to have a ‘sufficient number’ of in-
dependent and identically distributed (i.i.d.) samples of the string of wind power mis-
match realizations p̃m = {pm

t }t∈T , which can be obtained either empirically or by a ran-
dom scenario generator. Notice that pm

t at each sampling time t is not necessarily i.i.d.,
and in particular, it may have time-varying distributions and/or be correlated in time.
We denote S := {p̃m,1, · · · , p̃m,Ns } ∈ PNs as a set of given finite multi-extraction samples
(scenarios) from P . Consider now a tractable version of P-OPF-RS using the following
finite-dimensional SDP optimization problem:

SP-OPF-RS :

minimize
Ξ̂∈X̂

f (Ξ̂)

subject to ĝ (Ξ̂, p̃m,i ) ≤ 0 , ∀p̃m,i ∈S
,

where ĝ (·) is the uncertain constraint function of P-OPF-RS, and all other constraints for
P-OPF-RS are used to construct X̂ , a deterministic feasible set for the P-OPF-RS problem.

The key features of the proposed tractable optimization problem (SP-OPF-RS) are as
follows:

• there is no need to know the probability measure P explicitly, only the capability
of obtaining random scenarios is enough.

• formal results to quantify the robustness of the obtained approximations are avail-
able. In particular the results follow the so-called scenario approach [30], which
allow to bound a-priori the violation probability of the obtained solution via SP-
OPF-RS.

In the following theorem, we restate the explicit theoretical bound of [30, Theorem
1] which measures the finite scenario behavior of SCP.

Theorem 7 Let ε ∈ (0,1), β ∈ (0,1) and Ns ≥N(ε,β,d), such that

N(ε,β,d) := min

{
N ∈N

∣∣∣ d−1∑
i=0

(
N

i

)
εi (1−ε)N−i ≤β

}
.
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where d is the number of decision variables in P-OPF-RS problem. If the optimizer (Ξ̂∗)
of SP-OPF-RS is applied to P-OPF-RS, then the original uncertain constraint function ĝ (·)
in P-OPF-RS is satisfied with probability 1−ε and with confidence level higher than 1−β.

It was shown in [30] that the above bound is tight. The interpretation of Theorem 7
is as follows: when applying Ξ̂∗ in P-OPF-RS problem, the probability of constraint vio-
lation remains below ε with confidence 1−β:

PNs
[S ∈PNs : Vio(Ξ̂∗) ≤ ε]≥ 1−β ,

with

Vio(Ξ̂∗) :=P[
p̃m ∈P : ĝ (Ξ̂∗, p̃m) > 0

]
.

Remark 9 Following the discussion in [35] about the practical controllable variables in
power systems, one can determine the dimension of the control variable for the C-OPF-RS
as well as the P-OPF-RS problem using the real generator power, voltage magnitudes and
the up- and downspinning vectors for every time step. This leads to d in Theorem 7 to be
given by 4T NG for both problem formulations in C-OPF-RS and P-OPF-RS.

Remark 10 One can obtain an explicit expression for the desired number of scenarios Ns

as in [3], where it is shown that given ε,β ∈ (0,1) then Ns ≥ e
e−1

1
ε

(
d + ln 1

β

)
. It is important

to mention that Ns is used to construct the sets of scenarios S .

Using the randomization technique explained above, we next provide an approxima-
tion technique to directly translate the infinite-dimensional SDP of the C-OPF-RS prob-
lem into a finite-dimensional SDP.

4.3.3. INFINITE TO FINITE PROGRAM: DIRECT APPROACH
Rather than using the affine policy (4.13) proposed in (Section 4.3.1) to obtain P-OPF-RS,
and then, approximating P as in (Section 4.3.2) to obtain SP-OPF-RS, one can also apply
directly to the C-OPF-RS problem the randomization technique explained in (Section
4.3.2) to formulate a finite-dimensional SDP. A slightly different idea has been also con-
sidered in [149] using an ad-hoc manner. To this end, we recall S := {p̃m,1, · · · , p̃m,Ns } ∈
PNs as a set of given finite scenarios and reformulate an approximated version of C-OPF-
RS using the following optimization problem:

SC-OPF-RS :

minimize
Ξ̄∈X

f (Ξ̄)

subject to g (Ξ̄, p̃m,i ) ≤ 0 , ∀p̃m,i ∈S
,

where Ξ̄ is the set of decision variables of SC-OPF-RS. It is important to note that Ξ̄ is
not the same set of optimizers (Ξ) of C-OPF-RS problem. The difference arises due to
the equality constraints in (4.10) that lead to a new network state variable W̃ for each
p̃m,i ∈S , and therefore,

Ξ̄ := {
W̃ f ,W̃ 1,W̃ 2, · · · ,W̃ Ns , d̃us, d̃ds, r̃us, r̃ds} .
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Table 4.1: WCCC Analysis.

SC-OPF-RS O(
T 9.5N 6.5

b N 6.5
G log(1/α)

)
SP-OPF-RS O(

T 6N 4
b N 4

G log(1/α)
)

The SC-OPF-RS problem is a finite-dimensional large-scale SDP, due to the fact that
instead of a forecast and a generic network state, the set of decision variables now has
extra Ns number of matrix variables (network states for all scenarios) in every time step,
and each of the state matrices is also subject to PSD constraints. The minimum number
of scenarios Ns to guarantee reasonable violation is typically quite large (see Remark 10).
The resulting problem has therefore a high number of computationally expensive PSD
constraints such that it is indeed computationally demanding. It is worth mentioning
that the SP-OPF-RS problem contains only a forecast and a generic up- and down spin-
ning network state subject to PSD constraints due to the proposed affine policy, and
therefore, is computationally completely tractable.

To illustrate the advantages of SP-OPF-RS compared with SC-OPF-RS, we now ana-
lyze the WCCC for both problem formulations. If the resulting SDP is solved using an
interior point method, the analysis in [24] states that the number of iterations needed
to approximate the optimal solution with a given accuracy α is O(

n1/2 log(1/α)
)
, where

n is the dimension of the decision variable. In [112], the number of floating point oper-
ations needed per iterations is characterized4 using O(

m2n2 +mn3 +m3)
)
, where m is

the number of constraints. The total WCCC to find anα-solution (i.e. the objective value
of the α-solution is at most α > 0 above the optimum) is then given by the worst-case
number of iterations multiplied by the computational cost per one iteration:

O(
(m2n2 +mn3 +m3)n1/2 log(1/α)

)
.

In Table 4.1 the problem dimensions and the resulting WCCCs are given, where Ns is
assumed to be O(T NG ) for both formulations. It can be seen that the SP-OPF-RS prob-
lem has much lower order of WCCC. This increase in WCCC can be explained by the Ns

repetitions of the state matrices. It is important to note that in the SP-OPF-RS problem
formulation, we only have three PSD constraints per time step, whereas in the SC-OPF-
RS problem formulation, there are Ns +1 number of PSD constraints per time step.

4.4. DISTRIBUTED FRAMEWORK
This section provides a distributed framework to solve stochastic RS using the AC OPF
model of power systems. We first describe the procedures that yield a decomposition
of power systems into the multi-area power networks in terms of the objective function
together with the feasible sets. Next, a distributed consensus algorithm to solve multi-

4This concerns the WCCC for a problem with dense data-matrices, i.e. no assumption on the structure of
the problem. Modern solvers, such as MOSEK [6], can achieve lower complexities by using sparsity in the
problem structure. Whether or not this is the case for our problem, is outside the scope of this work. For
all IPM solvers, computational complexity scales logarithmically with 1/α, and polynomially with m and n,
regardless of whether they make use of the problem structure or not.
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area AC OPF problem is introduced. We finally present an equivalent multi-area ver-
sion of SP-OPF-RS (MASP-OPF-RS) together with a distributed consensus setup using
the ADMM algorithm.

4.4.1. MULTI-AREA DECOMPOSITION
We explain the proposed decomposition procedures using the C-OPF(p̃w ) problem in
(Section 4.2.2) for each time step t ∈ T to simplify the notations:

minimize
W ∈S2Nb

fG (W,pw ,pD ) (4.16a)

subject to W ∈W(pw ,sD ) , (4.16b)

W º 0. (4.16c)

Problem (4.16) cannot be directly decomposed, since the objective function, feasible set,
and the PSD constraint are defined for a single matrix variable W that comprises for
the whole power system. To approach the multi-area decomposition goal, we need to
describe the division of a power network into sub-networks which we refer to as control
areas.

Divide a power network into several control areas, and collect the indices in A :=
{1, . . . , Na}. Define Na ⊂ N to be the subset of buses corresponding to a control area
a ∈A. Every bus belongs to exactly one control area, such that Na ∩Nb =; for all a,b ∈
A, a 6= b, and

⋃
a∈ANa = N . Consider now Ba as the set of neighboring control area

indices that are connected to area a, such that for all a ∈A:

Ba := {
b ∈A | ∃i ∈Na ,∃ j ∈Nb , (i , j ) ∈L,

}
.

The lines that interconnect the areas are called tie-lines. These lines are collected into a
tie-line set Ta ⊂L for all a ∈A:

Ta := {
(i , j ) ∈L | i ∈Na , j 6∈Na

}
.

We now define the extended bus set N+
a to expand the bus sets in each control area by

including the endpoints of the tie-lines connected to that area for every a ∈A as follows:

N+
a :=Na ∪

{
j ∈N | ∃i ∈Na , (i , j ) ∈ Ta

}
.

We now provide an illustrative example for a multi-area 4-bus power network to clarify
the above notations.

Example. Two control areas are considered in Figure 4.1a for a 4-bus power network
that are denoted by A = {a,b}. Their corresponding bus sets are given by Na = {1,2} and
Nb = {3,4} , shown by the shaded regions. They are connected through a single tie-line
(2,3), and therefore, Ta = {(2,3)} , Tb = {(3,2)}. This leads to the extended bus sets as N+

a =
{1,2,3} and N+

b = {2,3,4} , depicted by the dashed lines. Finally the set of neighboring
control areas are Ba = {b} and Bb = {a}.

We are now ready to decompose the matrix variable W into sub-matrices corre-
sponding to the extended control areas. Consider Wa ∈ S2|N +

a | as the network state of
area a which is constructed by extracting a sub-matrix from W using only the rows and
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1
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3

4

1

2

4

3

a b

(a) The layout of 4-bus network partitioned in
two areas, where dashed lines indicate the ex-
tended areas.

Wa

Wb
W

(b) Matrix variable and sub-matrices. The en-
tries that overlap [Wa ]ab and [Wb ]ba are half-
shaded.

Figure 4.1: A 4-bus example of a multi-area power network with two control areas.

columns that correspond to the buses in N+
a . Denote the intersection of the extended

bus sets by Eab := N+
a ∩N+

b for every neighboring area b ∈ Ba . Consider now [Wa]ab

as the sub-matrix extracted from Wa with its rows and columns corresponding to the
buses in Eab , and likewise [Wb]ab the extraction from Wb that corresponds to the same
buses. Note that the order of the subscript does not change the shared bus set between
extended control areas, and therefore [Wa]ab and [Wa]ba refer to the same extraction
from Wa .

Example (cont’d). Figure 4.1b depicts the original 8×8 state matrix for a 4-bus power
network. The sub-matrices corresponding to the areas are two 6× 6 matrices, shown by
the magenta and green shaded and half-shaded entries. The sub-matrices have overlap
on 16 entries, which are half-shaded. These entries correspond to the buses that are the
endpoints of tie-lines (e.g., bus 2 and 3).

We can now define the local feasibility set denoted with Wa(pw ,sD ) for all a ∈A:

Wa(pw ,sD ) :=
{

Wa ∈ S2|N +
a |

∣∣∣ Tr([Eref]aWa) = 0, (4.17a)

pG
k ≤ Tr([Yk ]aWa)+pD

k −C w
k pw

k ≤ pG
k , ∀k ∈Na , (4.17b)

qG
k ≤ Tr

(
([Y ∗

k ]aWa
)+qD

k ≤ qG
k , ∀k ∈Na , (4.17c)

|vk |2 ≤ Tr([Mk ]aWa) ≤ |vk |2 , ∀k ∈N+
a , (4.17d) −|slm |2 Tr([Yl m]aWa) Tr
(
[Y ∗

l m]aWa
)

Tr([Ylm]aWa) −1 0
Tr

(
[Y ∗

lm]aWa
)

0 −1

¹ 0, (4.17e)

∀(l ,m) ∈ (N+
a ×N+

a )∩L
}

,

where the data-matrices, Yk ,Y ∗
k ,Ylm ,Y ∗

l m , Mk , for each area a ∈A are obtained via ex-
tracting the columns and rows corresponding to the buses in N+

a . These partitions of
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the data-matrices are denoted with [·]a in Wa(pw ,sD ) for all a ∈A.

Remark 11 The power injection constraints, (4.17b) and (4.17c), are only imposed on the
buses in the area, and not on the extended area, since the power injection limits cannot be
enforced on the neighboring buses N+

a \Na . This is due to the fact that the neighboring
buses have lines that connect to buses in Na , the tie-line(s) in Ta , and also have lines
that connect to buses in Nb . It is therefore impossible to define the injected power in the
neighboring bus using the state matrix of area a. In other words, there is no limit on the
power injection at the other end of a tie-line for each control area, allowing power to flow
from and to the neighboring control areas. The line flow limits (4.17e) are enforced for the
intersection of buses in the extended area and the set of all lines, which are equivalent to
the set of lines in an area including the tie-lines.

An important constraint that still requires a proper decomposition to allow a dis-
tributed solution of the problem is the PSD constraint of the full state matrix W in (4.16c).
Our goal is to decompose the centralized PSD constraint (4.16c) by only imposing PSD-
ness on the local state matrix Wa for each area a ∈A. Such a solution will be a partially
filled matrix W̄ , with only those entries filled that correspond to at least one of the sub-
matrices, and all other entries will be undetermined, e.g., the white cells of the matrix
variables in Figure 4.1b. Various algorithms are available for matrix completion, the a-
posteriori filling of the undetermined entries.

We approach this goal by use of the chordal theorem [58] that guarantees the com-
pleted matrix to be PSD if and only if specific sub-matrices are PSD. The chordal the-
orem states that one can reconstruct the PSD Hermitian5 matrix using only the entries
that correspond to the nodes in the maximal cliques6 of a chordal graph7. The chordal
theorem can thus be used to prove the equivalence between the PSDness of a matrix and
the PSDness of its sub-matrices.

We now explain how one can decompose such a PSD constraint of the full state ma-
trix W in (4.16c). Consider a graph G over N , with its edges corresponding to the set of
extended buses {N+

a } for all areas a ∈A. This means that every bus in N+
a is connected

to all other buses in N+
a with a single edge to form a maximal clique. This graph is then

chordal [182, Proposition 1] and all maximal cliques of G are captured by the subsets
{N+

a }, under the following assumptions.

Assumption 10 Graph G with all control areas as its nodes and the tie-lines between the
areas as its edges is a tree, i.e., an acyclic connected graph.

Assumption 11 Every control area a ∈A has at least one bus that does not have overlap,
i.e., does not have a tie-line connected to it.

5A symmetric matrix is a real-valued Hermitian matrix, i.e. S ⊂H, thus the chordal theorem also holds for
symmetric matrices.

6A clique is a subset of nodes that together form a complete graph, i.e. the number of edges between any two
nodes in a clique is equal to one. A clique is maximal if it is not a subset of any other cliques in the graph
[168].

7A graph is chordal if every cycle of length greater than three has a chord (an edge between non-consecutive
vertices in the cycle) [168].
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Assumption 10 prevents multi-area power networks to have cyclic interconnections be-
tween their control areas. This can be achieved due to the fact that power networks are
usually spread out geographically and mostly not intertwined. The typical number of
tie-lines between power networks tends to be low. Assumption 11 will hold for almost
every real-world power system, as there tend to be much more buses than tie-lines in
multi-area power networks.

The decomposition is valid if and only if these two assumptions hold, thus imposing
PSD constraints on the sub-matrices corresponding to the extended areas, the original
matrix will also be PSD, and can be completed from the local results. This enables one
to split the single PSD constraint (4.16c) on W into |A| smaller PSD constraints.

Remark 12 The proposed decomposition of PSD constraint is based on the geographical
(spatial) layout of the power network, rather than the sparsity in the data matrices. In
the latter case, the smallest possible sub-matrices can be found, whereas in the former
case, the sub-matrices correspond to the bus sets of the extended control areas used in this
decomposition, and can be quite substantial.

To decompose the problem (4.16), we define the local cost function f a
G (Wa ,pw ,pD )

as follows:

f a
G (Wa ,pw ,pD ) := ∑

k∈Ga

c li
k

(
Tr([Yk ]aWa)+pD

k −pw
k

)+ cqu
k

((
Tr([Yk ]aWa)+pD

k −pw
k

))2
,

whereGa corresponds to the generator buses in the control area a ∈A. We are now ready
to formulate a multi-area AC OPF problem as follows:

minimize
{Wa }a∈A,

{W̄ab }a∈A,b∈Ba

∑
a∈A

f a
G (Wa ,pw ,pD ) (4.18a)

subject to Wa ∈Wa(pw ,sD ), ∀a ∈A, (4.18b)

[Wa]ab = W̄ab , ∀a ∈A,∀b ∈Ba , (4.18c)

Wa º 0, ∀a ∈A. (4.18d)

where W̄ab ∈ S2|Eab | is an auxiliary matrix variable introduced for every pair of neighbor-
ing areas a and b. The following proposition is a direct result of [95, Theorem 1].

Proposition 3 The optimal objective value of the decomposed Problem (4.18) is equal to
the optimal objective of the centralized Problem (4.16).

The proposed multi-area AC OPF problem formulation is a general consensus prob-
lem with coupling only through the equality constraints (4.18c). It has a set of local
variables and constraints, which are separable between the control areas, and shared
variables between two areas via the auxiliary variables W̄ab ,∀a ∈ A,b ∈ Ba . The lo-
cal variables are related to the shared variables implicitly through the coupling con-
straints (4.18c).
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4.4.2. DISTRIBUTED MULTI-AREA AC OPF PROBLEM VIA ADMM
Consider the multi-area AC OPF problem (4.18) as a general consensus problem. To solve
the general consensus problem in a distributed setting, we employ the ADMM algorithm
[22]. It has been proven that ADMM for this type of problem converges linearly [160]. We
follow a similar approach as in [182] to solve the multi-area AC OPF problem (4.18) in a
distributed manner.

Define the augmented Lagrangian function as follows:

L({Wa}, {W̄ab}, {Λab}) := ∑
a∈A

(
f a

G (Wa ,pw ,pD )+ IWa (Wa) +

∑
b∈Ba

(µ
2

∥∥∥[Wa]ab −W̄ab +
Λab

µ

∥∥∥2

F
+ 1

2µ

∥∥∥Λab

∥∥∥2

F

))
,

where IWa (Wa) : S2|N +
a | → {0,+∞} is a convex indicator function for constraints (4.18b)

and (4.18d) that maps to infinity if one of the constraints is violated, and to zero other-
wise. Step size µ is a fixed constant, and multipliersΛab ∈ S2|Eab | are introduced for every
coupling constraint. Note that unlike W̄ab and W̄ba , the multipliersΛab andΛba cannot
be used interchangeably, since they correspond to different constraints. The indicator
function makes sure all constraints (4.18b) and (4.18d) are satisfied, and the squared
norm penalty term forces constraint (4.18c) to be satisfied. We now describe the steps of
the ADMM algorithm as follows:

(1) UPDATE PRIMAL VARIABLES

The multipliers and auxiliary variables are fixed at their value of the previous iteration.
Consider the following minimization problem for all a ∈A:

W (k+1)
a = argmin

Wa

{
f a

G (Wa ,pw ,pD )+ IWa (Wa)+ ∑
b∈Ba

µ
2

∥∥∥∥∥[Wa]ab −W̄ (k)
ab +

Λ(k)
ab

µ

∥∥∥∥∥
2

F

}
,

(4.19)

Since the minimization is only in Wa , all terms of Λab drop out. This results in |A| sepa-
rate SDPs.

(2) UPDATE AUXILIARY VARIABLES

The resulting sub-matrices W (k+1)
a for all a ∈A are used to update the auxiliary variables.

The multipliers again are fixed at their previous value. Note that each area only needs
to communicate the part of its local state matrix that has overlap with its neighboring
area to update the auxiliary variables. If the multipliers Λab are initialized with zero
∀a ∈A,∀b ∈Ba , [22, Section 7.1], the update of the auxiliary variable simplifies to taking
the average ∀a ∈A,∀b ∈Ba :

W̄ (k+1)
ab = 1

2

(
[W (k+1)

a ]ab + [W (k+1)
b ]ba

)
. (4.20)
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Algorithm 3 Distributed Multi-Area AC OPF Algorithm

1: Initialize: k = 0,Λ(0)
ab = 0,W̄ (0)

ab = 0,∀b ∈Ba , ∀a ∈A
2: while not converged do
3: for all a ∈A do
4: Update W (k+1)

a using (4.19)
5: Broadcast [W (k+1)

a ]ab to all b ∈Ba

6: Receive [W (k+1)
b ]ba from all b ∈Ba

7: Update W̄ (k+1)
ab using (4.20) for all b ∈Ba

8: Update Λ(k+1)
ab using (4.21) for all b ∈Ba

9: k = k +1
10: end for
11: end while

(3) UPDATE MULTIPLIER VARIABLES

The multipliers are updated as follows ∀a ∈A,∀b ∈Ba :

Λ(k+1)
ab =Λ(k)

ab +µ
(
[W (k+1)

a ]ab −W̄ (k+1)
ab

)
=Λ(k)

ab + µ

2

(
[W (k+1)

a ]ab − [W (k+1)
b ]ba

)
. (4.21)

Notice that no information exchange is needed for the update of the multiplier, since
the parts of the state matrix of neighboring areas have already been communicated in
the update of the auxiliary variables.

In Algorithm 3, we summarize the proposed distributed consensus framework using
ADMM algorithm to illustrate the calculation and communication steps in each control
area a ∈A. A single control area needs to solve a small-scale SDP in Algorithm 3 at each
iteration that can be considered as the highest computational cost in the proposed al-
gorithm. In Algorithms 3 and 3, only the parts of the local state matrix that have overlap
with the neighbors are shared, using only simple operations, e.g., matrix addition, sub-
traction and scaling. As an advantage of our proposed framework, all control areas in a
power network are able to reach consensus by exchanging only the relevant part of the
local state matrix with their neighboring areas.

We define the consensus on the shared variables W̄ab (as the convergence criteria) of
the proposed ADMM algorithm as follows:

η(k) = ∑
a∈A

∑
b∈Ba

‖[W (k)
a ]ab −W̄ (k)

ab ‖2
F .

If the residual sequence
{
η(k)

}+∞
k=1 is sufficiently small, all control areas of the power net-

work have reached consensus on the shared variables W̄ab . We assume that the Slater’s
constraint qualification [161] holds for the proposed problem formulations meaning
that their feasible set has a non-empty interior, and it thus admits at least one strictly
feasible solution. We can now provide convergence of Algorithm 3. A similar conver-
gence analysis of ADMM for sparse SDPs and for decomposable SDPs can be found in
[96] and [72].
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Theorem 8 Assume that Slater’s condition [161] holds for the multi-area AC OPF problem
(4.18), and consider the iterative steps given in Algorithm 3. Then the following statements
hold:

• The residual sequence {η(k)}+∞k=0 tends to 0 in a non-increasing way as k goes to +∞,
and consequently, for all b ∈Ba , and each a ∈A:

[W (+∞)
a ]ab = [W (+∞)

b ]ba = W̄ (+∞)
ab .

• The sequence {W (k)
a }∀a∈A generated by Algorithm 3 converges to an optimal solution

{W ∗
a }∀a∈A of the multi-area AC OPF problem (4.18) as k tends to +∞.

Proof. The theorem follows from [66] that studies the convergence of a standard ADMM
problem. The details are omitted for brevity. ä

Remark 13 The proposed algorithm uses a Gauss-Siedel update on the primal variables
and the auxiliary variables, after which the multiplier variables are updated [22]. Since
either the primal or the auxiliary variables are fixed in the Gauss-Siedel steps, the prob-
lem can be distributed for all the areas. The main advantage to distribute a large-scale
AC OPF problem is the ability of finding local solutions for each control area based on the
information received in the previous iteration. Such calculations can therefore be carried
out in parallel. Although an actual parallel implementation is outside the scope of this
work, it is important to mention that the proposed algorithm is amenable to such an im-
plementation. ADMM algorithms typically need a large number of iterations to converge
to high accuracy, so the local problems need to be solved many times before finding a good
enough solution. Thus, the ADMM approach without parallelization might not be the
quickest method to solve the AC OPF problem. Such a distributed framework is advanta-
geous especially when the global AC OPF problem is too large and cannot be solved within
polynomial time due to the curse of dimensionality or memory limitations and computa-
tional constraints.

In the following part, we extend the proposed distributed multi-area AC OPF algo-
rithm to solve the stochastic RS problem.

4.4.3. DISTRIBUTED MULTI-AREA SP-OPF-RS PROBLEM VIA ADMM
It is now of interest to include wind power realizations into the multi-area AC OPF prob-
lem (4.18), i.e., extend the deterministic multi-area AC OPF problem to a stochastic RS
problem. It is very important to highlight that this extension is possible only using the
proposed formulation (SP-OPF-RS) in Section 4.3.2, whereas this extension is not possi-
ble using the other formulation (SC-OPF-RS) in Section 4.3.3 due to the curse of dimen-
sionality and computational burden.

Our goal now is to decompose the SP-OPF-RS problem. Given Assumption 10 and
Assumption 11, we approach this goal by imposing the following technical assumption.

Assumption 12 The set of scenarios of wind trajectories S , as defined in Section 4.3.2, is
given to all control areas of the power network.
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The condition in Assumption 12 is enforced due to the fact that the uncertainty source
P is a common uncertainty source between all control areas, and therefore, the set of
scenarios S has to be common between all control areas. We relax this condition later in
this section.

Consider the following affine policy for the local network state of each area ∀a ∈A ,
∀p̃m ∈S , and ∀t ∈ T :

Ŵa,t (pm
t ) :=W f

a,t +max(−pm
t ,0)W us

a,t +max(pm
t ,0)W ds

a,t ,

where W f
a,t ,W us

a,t ,W ds
a,t ∈ S2|N +

a | are related to the sub-matrices from W f
t ,W us

t ,W ds
t using

only the rows and columns corresponding to the buses in N+
a . Define the local reserve

cost per each time step t ∈ T for all a ∈A as follows:

f a
R (rus

a,t ,rds
a,t ) := ∑

k∈Ga

cusCG
k rus

a,t +cdsCG
k rds

a,t ,

where CG
k is a connection matrix for the generators such that the (i , j )-th entry is one if

generator j is located at the bus i and zero otherwise. Consider Ξma := {Ξa}∀a∈A where

Ξa = {
W̃ f

a ,W̃ us
a ,W̃ ds

a , r̃us
a , r̃ds

a , d̃us
a , d̃ds

a

}
is the set of local decision variables for each control

area a ∈ A, and define Θ := { ˜̄W f
ab , ˜̄W us

ab , ˜̄W ds
ab , ˜̄dus

a , ˜̄dds
a

}
∀b∈Ba ,∀a∈A to be the set of auxil-

iary variables. We are now in the position to formulate a multi-area SP-OPF-RS problem
(MASP-OPF-RS) as follows:

min
Ξma,Θ

∑
a∈A

∑
t∈T

(
f a

G (W f
a,t ,pw, f

t )+ f a
R (rus

a,t ,rds
a,t )

)
s.t. W f

a,t ∈Wa(pw, f
t ,sD

t ) (4.22a)

Ŵa,t (pm
t ) ∈Wa(pw, f

t +pm
t ,sD

t ) (4.22b)

W f
a,t º 0, W us

a,t º 0, W ds
a,t º 0 (4.22c)

− rds
a,t ≤ ra,t ≤ rus

a,t , 0 ≤ rus
a,t , 0 ≤ rds

a,t (4.22d)

Tr
(
[Yk ]aW us

a,t

)=CG
k dus

a,t , ∀k ∈Ga (4.22e)

Tr
(
[Yk ]aW ds

a,t

)
=CG

k dds
a,t , ∀k ∈Ga (4.22f)

1>dus
a,t = 1, 1>dds

a,t =−1 (4.22g)

[W f
a,t ]ab = W̄ f

ab,t , ∀b ∈Ba (4.22h)

[W us
a,t ]ab = W̄ us

ab,t , ∀b ∈Ba (4.22i)

[W ds
a,t ]ab = W̄ ds

ab,t , ∀b ∈Ba (4.22j)

dus
a,t = d̄us

t , dds
a,t = d̄ds

t (4.22k)

∀p̃m ∈S , ∀t ∈ T , ∀a ∈A (4.22l)

where ra,t should be replaced with

CG
k ra,t =−Tr

(
[Yk ]aW us

a,t

)
min(pm

t ,0)+Tr
(
[Yk ]aW ds

a,t

)
max(pm

t ,0) , ∀k ∈Ga .
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As a direct consequence of Proposition 3, we have the following.

Proposition 4 The optimal objective function value of the proposed MASP-OPF-RS prob-
lem is equal to the optimal objective function value of the SP-OPF-RS problem.

Remark 14 The distribution of up- and down spinning reserve power in the power system
is enforced through two equality constraints in the SP-OPF-RS problem formulation. One
can reformulate them in terms of each control area a ∈A at each time step t ∈ T as follows:∑

a∈A

∑
k∈Ga

Tr
(
[Yk ]aW us

a,t

)= 1,
∑

a∈A

∑
k∈Ga

Tr
(
[Yk ]aW ds

a,t

)
=−1.

The decomposition of such equality constraints however is not straightforward. We there-
fore follow the proposed reformulation (4.14) in Remark 8.

We now tackle the condition in Assumption 12 to provide a more flexible multi-area
formulation of the MASP-OPF-RS problem. Define εa ∈ (0,1) and 1−βa ∈ (0,1) to be the
local level of constraint violation and the local level of confidence for each control area
a ∈ A , respectively. Each control area can now build its own set of scenarios of wind
power trajectories Sa := {p̃m,1, · · · , p̃m,Nsa } such that Nsa ≥ N(εa ,βa ,da) , where da is the
number of decision variables in the control area a ∈ A , as it is defined in Theorem 7.
Using ∀p̃m ∈Sa instead of ∀p̃m ∈S in Equation (4.22l), we develop a more flexible multi-
area formulation of the MASP-OPF-RS problem and relax Assumption 12. To quantify
the robustness of the obtained solution via MASP-OPF-RS with Sa ,∀a ∈A, consider the
following theorem which is the main result of this section.

Theorem 9 Let εa , βa ∈ (0,1) ,∀a ∈ A be chosen such that ε = ∑
a∈A εa ∈ (0,1) and β =∑

a∈Aβa ∈ (0,1). If Ξ∗
ma := {Ξ∗

a}∀a∈A is a feasible solution of the MASP-OPF-RS problem
with scenario set Sa for each a ∈A, then Ξ∗

ma is also a feasible solution of the P-OPF-RS
problem with probability higher than 1−ε and with confidence level of at least 1−β.

Proof. Based on an important observation that each control area a ∈A can consider a
common uncertainty sourceS as a local (private) source of uncertainty and build its own
(local) set of scenarios Sa , the proof follows the similar steps as [146, 147, Theorem 2],
that studies the quantification of the feasibility error with private and common uncer-
tainty sources in a distributed setup using randomization technique, with some minor
modifications. We provide a complete proof in Appendix C. ä

The following corollary is a direct result of Theorem 9. Decompose the P-OPF-RS
problem using the proposed approach in Section 4.4.1 into the multi-area P-OPF-RS
problem (MAP-OPF-RS). This reformulation is straightforward and therefore it is omit-
ted for the sake of brevity.

Corollary 2 The local optimal solution Ξ∗
a for all a ∈A obtained via the MASP-OPF-RS

problem is a feasible solution for the MAP-OPF-RS problem with probability higher than
1−εa and with confidence level of 1−βa .

We now continue by developing a distributed framework for the proposed formu-

lation of the MASP-OPF-RS problem in (4.22). Define Λ f
ab,t ,Λus

ab,t ,Λds
ab ∈ S2|Eab | for all



4.4. DISTRIBUTED FRAMEWORK

4

89

b ∈Ba , for each a ∈A at each time step t ∈ T as the multipliers for the first three consen-
sus constraints, (4.22h), (4.22i), (4.22j), andλus

a,t ,λds
a,t ∈RNG for all a ∈A at each time step

t ∈ T for the last two consensus constraints (4.22k). We then collect all the multipliers in
Γ. One can denote the local objective function for each control area a ∈A as:

f a(Ξa) := f a
G

(
W f

a,t ,pw, f
t

)+ f a
R (rus

a,t ,rds
a,t )+ IWa (Ξa) ,

where IWa (Ξa) is a convex indicator function for all constraints except the consensus
constraints. Consider now the augmented Lagrangian of the MASP-OPF-RS problem as
follows:

L(Ξma,Θ,Γ) = ∑
a∈A

∑
t∈T

{
f a(Ξa)+ µ

2

∥∥∥dus
a,t − d̄us

t + λus
a,t

µ

∥∥∥2

2
+ µ

2

∥∥∥dds
a,t − d̄ds

t + λds
a,t

µ

∥∥∥2

2

+ ∑
b∈Ba

(
µ

2

∥∥∥[W f
a,t ]ab −W̄ f

ab,t +
Λ

f
ab,t

µ

∥∥∥2

F

+ µ

2

∥∥∥[W us
a,t ]ab −W̄ us

ab,t +
Λus

ab,t

µ

∥∥∥2

F

+ µ

2

∥∥∥[W ds
a,t ]ab −W̄ ds

ab,t +
Λds

ab,t

µ

∥∥∥2

F
+ f (Γ)

)}
,

where f (Γ) indicates terms that are related to the multipliers Γ. We can now use ADMM
algorithm to solve MASP-OPF-RS. The steps are comparable with the steps described in
Section 4.4.2, i.e. update primal, update auxiliary variables and update multipliers. We
now describe the steps of the ADMM algorithm as follows:

(1) UPDATE PRIMAL VARIABLES

The multipliers and auxiliary variables are fixed at their value of the previous iteration.
Consider the following minimization problem for all a ∈A:

Ξ(k+1)
a = argmin

Ξa

∑
t∈T

{
f a(Ξa)+ µ

2

∥∥∥dus
a,t − d̄us

t + λus
a,t

µ

∥∥∥2

2
+ µ

2

∥∥∥dds
a,t − d̄ds

t + λds
a,t

µ

∥∥∥2

2

+ ∑
b∈Ba

(
µ

2

∥∥∥[W f
a,t ]ab −W̄ f

ab,t +
Λ

f
ab,t

µ

∥∥∥2

F

+ µ

2

∥∥∥[W us
a,t ]ab −W̄ us

ab,t +
Λus

ab,t

µ

∥∥∥2

F

+ µ

2

∥∥∥[W ds
a,t ]ab −W̄ ds

ab,t +
Λds

ab,t

µ

∥∥∥2

F

)}
,

(4.23)

where f (Γ) is omitted, since the minimization is only in Ξa. This results in |A| num-
ber of small-scale SDPs in parallel, which can be considered the most computationally
expensive step.
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(2) UPDATE AUXILIARY VARIABLES

The resulting Ξ(k+1)
a for all a ∈ A are used to update the auxiliary variables. The mul-

tipliers again are fixed at their previous value. Note that each area only needs to com-
municate the part of its local variables that have overlap with its neighboring area to
update the auxiliary variables. If the multipliers are initialized with zero ∀a ∈A,∀b ∈Ba ,
[22, Section 7.1], the update of the auxiliary variable simplifies to taking the average
∀a ∈A,∀b ∈Ba :

W̄ f ,(k+1)
ab,t = 1

2

(
[W f ,(k+1)

a,t ]ab + [W f ,(k+1)
b,t ]ba

)
,

W̄ us,(k+1)
ab,t = 1

2

(
[W us,(k+1)

a,t ]ab + [W us,(k+1)
b,t ]ba

)
,

W̄ ds,(k+1)
ab,t = 1

2

(
[W ds,(k+1)

a,t ]ab + [W ds,(k+1)
b,t ]ba

)
,

d̄us,(k+1)
t = 1

|A|
∑

a∈Adus,(k+1)
a,t ,

d̄ds,(k+1)
t = 1

|A|
∑

a∈Adds,(k+1)
a,t .

(4.24)

(3) UPDATE MULTIPLIER VARIABLES

The multipliers are updated as follows ∀a ∈A,∀b ∈Ba :

Λ
f ,(k+1)
ab,t =Λ f ,(k)

ab,t +µ
(
[W f ,(k+1)

a,t ]ab −W̄ f ,(k+1)
ab,t

)
,

Λus,(k+1)
ab,t =Λus,(k)

ab,t +µ
(
[W us,(k+1)

a,t ]ab −W̄ f ,(k+1)
ab,t

)
,

Λds,(k+1)
ab,t =Λds,(k)

ab,t +µ
(
[W ds,(k+1)

a,t ]ab −W̄ f ,(k+1)
ab,t

)
,

λus,(k+1)
a,t =λus,(k)

a,t +µ
(
dus,(k+1)

a,t − d̄us,(k+1)
t

)
,

λds,(k+1)
a,t =λds,(k)

a,t +µ
(
dds,(k+1)

a,t − d̄us,(k+1)
t

)
.

(4.25)

Notice that no information exchange is needed for the update of the multiplier, since
the parts of the state matrix of neighboring areas have already been communicated in
the update of the auxiliary variables.

Algorithm 4 summarizes the proposed distributed stochastic framework using a con-
sensus ADMM algorithm to solve the MASP-OPF-RS problem. Consider the energy se-

quence
{
ξ(k)

}+∞
k=1 as a measure for convergence of Algorithm 4 as follows:

ξ(k) = ∑
a∈A

∑
t∈T

{∥∥∥dus
a,t − d̄us

t

∥∥∥2

2
+

∥∥∥dds
a,t − d̄ds

t

∥∥∥2

2
+

∑
b∈Ba

(
‖[W f ,(k)

a,t ]ab −W̄ f ,(k)
ab,t ‖2

F+ (4.26)

‖[W us,(k)
a,t ]ab −W̄ us,(k)

ab,t ‖2
F+

‖[W ds,(k)
a,t ]ab −W̄ ds,(k)

ab,t ‖2
F

)}
.
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Algorithm 4 Distributed Stochastic MASP-OPF-RS

1: Initialize: k = 0,Γ(0) = 0,Θ(0) = 0,∀b ∈Ba , ∀a ∈A
2: Fix εa ∈ (0,1) and βa ∈ (0,1) , ∀a ∈A such that

ε=∑
a∈A εa ∈ (0,1) , β=∑

a∈Aβa ∈ (0,1)

3: Build the set of local scenarios Sa , ∀a ∈A
4: while not converged do
5: for all a ∈A do
6: Update Ξ(k+1)

a using (4.23)
7: Broadcast [Ξ(k+1)

a ]ab to all b ∈Ba

8: Receive [Ξ(k+1)
a ]ba from all b ∈Ba

9: Update Θ(k+1) using (4.24) for all b ∈Ba

10: Update Γ(k+1) using (4.25) for all b ∈Ba

11: k = k +1
12: end for
13: end while

If ξ(k) is sufficiently small, all control areas of the power network have reached consensus
on Θ.

The following theorem is a direct result of Theorem 8 to provide the convergence
property of Algorithm 4.

Theorem 10 Assume that Slater’s condition [161] holds for the MASP-OPF-RS problem
(4.22), and consider the iterative steps given in Algorithm 4. Then the following statements
hold:

• The residual sequence {ξ(k)}+∞k=0 tends to 0 in a non-increasing way as k goes to +∞,
and therefore, we have ∀b ∈Ba and for each a ∈A at each time step t ∈ T :

[W f ,(+∞)
a,t ]ab = [W f ,(+∞)

b,t ]ba = W̄ f ,(+∞)
ab ,

[W us,(+∞)
a,t ]ab = [W us,(+∞)

b,t ]ba = W̄ us,(+∞)
ab ,

[W ds,(+∞)
a,t ]ab = [W ds,(+∞)

b,t ]ba = W̄ ds,(+∞)
ab ,

and ∀a ∈A at each time step t ∈ T :

dus,+∞
a,t = d̄us,+∞

t , dds,+∞
a,t = d̄ds,+∞

t .

• The sequence {Ξ(k)
a }∀a∈A generated by Algorithm 4 converges to an optimal solution

{Ξ∗
a}∀a∈A of the MASP-OPF-RS problem (4.22) as k tends to +∞.

Proof. The theorem follows from [66] that studies the convergence of a standard ADMM
problem. The details are omitted for brevity. ä
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4.5. NUMERICAL STUDY
In this section, we carry out numerical simulation studies to illustrate the performance
of the proposed formulations and distributed framework. After a short description of
the simulation setup, we present the simulation results in two different parts. We first
provide a simulation study for the IEEE 30-bus power system using the proposed formu-
lation in the SP-OPF-RS problem and compare it with the stochastic RS problem using a
DC model of power network. We also develop a new benchmark formulation, namely
a converted DC (CDC) approach to have a more sophisticated comparison [151]. As
the second part of simulation results, we construct a realistic multi-area case study, and
then, solve the MASP-OPF-RS problem using the proposed distributed consensus frame-
work in Section 4.4. We also provide a comparison using the SP-OPF-RS problem.

4.5.1. SIMULATION SETUP

We fix ε = 10−2 and β = 10−5 to obtain the number of required scenarios of wind power
trajectories at each hour Ns = 541 as in Remark 10. To generate trajectories for the wind
power, we follow the approach of [117] together with a data-set corresponding to the
hourly aggregated wind power production of Germany over the period 2006-2011. The
nominal load power is obtained from MATPOWER 8 [183], and multiplied with a time-
varying load profile similar to [151].

We perform Monte Carlo simulations to check the violation probability of the solu-
tions a posteriori for both parts of simulation results. Power flows of the network are
simulated for 10000 new wind power trajectories using MATPOWER, where the power
and voltage magnitude of generators and all the loads are fixed without imposing any
constraints. The wind power is implemented as a negative load on the wind-bus. Af-
terward, the resulting power flows and voltage magnitudes are evaluated by means of
counting the number of violated constraints.

To solve all proposed formulations, we use Matlab together with YALMIP [86] as an
interface and MOSEK [6] as a solver. All optimizations are run on a MacBook Pro with a
2,4 GHz Intel Core i5 processor and 8 GB of RAM.

4.5.2. SIMULATION RESULTS: PART ONE

We carried out a simulation study using the 30-bus IEEE benchmark power system [37],
where only a single wind-bus infeed at bus 10 is considered. After obtaining a solution,
the scheduled generator power (the generator power based on the forecast wind trajec-

tory) and the voltage magnitudes are extracted from W̃ f = {W f
t }t∈T for all time steps

using the following relations ∀k ∈G,∀t ∈ T :

pG
k,t = Tr

(
YkW f

t

)
+pD

k,t −pw
k,t , (4.27a)

qG
k,t = Tr

(
Y ∗

k W f
t

)
+qD

k,t , (4.27b)

|vk,t | =
√

W f
t (k,k)+W f

t (Nb +k, Nb +k) . (4.27c)

8MATPOWER is a non-commercial software for solving power flow problems using successive quadratic pro-
gramming.
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A DC model of the power network is used to solve the OPF-RS problem as a bench-
mark approach for comparison purposes. A detailed description of the DC model can
be obtained from [100] and [171]. The solution of the benchmark program is the real

generator power and distribution vectors for every hour,
{

pG ,dc
t ,dus,dc

t ,dds,dc
t

}
. One also

needs the reactive generator power and generator voltage magnitudes in order to have a
more realistic comparison. In [149], the nominal value of such variables were extracted
from the MATPOWER test case for all time steps and scenarios. This is called the nomi-
nal DC solution. This will result in large violations, since the reactive generator power is
not adapted to the time-varying demand.

We here develop a novel benchmark approach, namely converted DC (CDC), to have
a more sophisticated comparison by solving the following program:

min
W̃

∑
t∈T

∑
k∈G

(
pG ,dc

k,t −
(
Tr(YkWt )+pD

k,t −pw, f
k,t

))2

s.t. Wt ∈W(pw, f
t ,sD

t ), ∀t ∈ T ,

Wt º 0, ∀t ∈ T .

(4.28)

The solution to this program is a feasible (AC) network state W̃ = {Wt }t∈T where the real
generator power is as close as possible to the obtained real generator power from the
DC solution. The distribution vectors used in simulation will be equal to those obtained
from the original solution of the DC framework. A schematic overview of the optimiza-
tion and simulation process to obtain and validate both the benchmark and proposed
formulations is given in Figure 4.2.

The relative line loadings for all hours and scenarios are shown as box plots per line
in Figure 4.3 for DC, CDC, and SP-OPF-RS solutions. The relative line loading is defined
as the apparent power flow over a line divided by the line rating ∀(l ,m) ∈L:

|srel
l m | := |slm |

|slm | ,

such that a loading higher than 100% corresponds to a violation of the lineflow limit.
The DC benchmark results (Figure 4.3a) shows the biggest violations, followed by the
CDC benchmark results (Figure 4.3b). For both benchmark results, line 10, 30, 31, and
35 are violated since the line loadings are overloaded as it is clearly shown in Figure 4.3a-
b. The SP-OPF-RS solutions (Figure 4.3c) shows almost no violations for all hours and
scenarios.

To further assess the performance of these results, the number of violating9 network
states is counted for each hour, and divided by the total number of scenarios to be an
empirical measure of the probability on constraint violation per hour (see Figure 4.4).
As expected, the DC solution shows a very high level of violation during the peak hours,
t ≥ 8. Although the CDC solution improves the chance of lineflow limit violation, the
theoretical limit at the peak hours is still not respected. It is important to notice that the
empirical chance of constraint violation for the SP-OPF-RS results are much below the
theoretical limit (5%) with 0.05% at t = 13 being the highest empirical probability.

9A network state is violating if at least one of the line limits is not satisfied.
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VE

Solve

VE

Solve

p̃G d̃us, d̃ds

Solve
(4.28)

Eq.
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W̃ f

Simulation
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|ṽ|
p̃G, |ṽ|
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d̃us, d̃ds

Simulation

Figure 4.2: Schematic overview of optimization and simulation process for the DC, CDC benchmarks, and the
SP-OPF-RS.

Figure 4.3: Relative line loading for all hours and scenarios per line for the IEEE 30-bus benchmark case study.
The red line represents the median value, edges of each box correspond to the 25th and 75th percentiles, the
whiskers extend to 99% coverage, and the red marks denote the data outliers. The upper plots (a) and (b) show
the Benchmark results, and the lower plot (c) shows the SP-OPF-RS solutions.
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Figure 4.4: Empirical violation level of lineflow limit for different formulations for the IEEE 30-bus benchmark
case study.

We next examine the bus voltage magnitudes. It is observed that the DC, and the SP-
OPF-RS solutions are always within the limits for all hours and scenarios. However, for
the CDC formulation the bus voltage limits show a violation of 100% for all hours. This
can be explained by the fact that in the DC framework, the bus voltages are assumed
to be constant at nominal value. When we implement the obtained solution in the AC
framework, it can be seen that this assumption does not hold. We can thus conclude that
for both the DC formulations, the empirical chance of constraint violation is much above
the theoretical limits once the solution is implemented in the AC power flow simulations.
The a-priori probabilistic guarantees are deemed valid for the SP-OPF-RS solutions.

4.5.3. SIMULATION RESULTS: PART TWO

We construct a two-area power network using two identical IEEE 14-bus power networks
[37], and then connect a tie-line between bus 5 of the first network and bus 10 of the
second network to create a realistic case study, resulting in an overall 28-bus power net-
work with two control areas. The extended control areas are obtained by adding the
endpoints of the tie-lines to the areas such that the buses are grouped in two overlap-
ping sets as shown in Figure 4.5. We formulate the MASP-OPF-RS problem (4.22) and
then use Algorithm 4 to solve the problem in a distributed consensus framework using
ADMM algorithm and coordinate the local solutions of the control areas towards conver-
gence. Algorithm 4 is run until the residual sequence ξ(k) is sufficiently small, i.e. below
10−2 for each hour, and then, the solutions of current iterates (k) are used as the optimal
solutions. This happens after 158 iterations. The step size µ is selected using a heuristic
approach and it is fixed to 100 which results in good performance, while convergence is
fast enough (see Figure 4.6). We also formulate the SP-OPF-RS problem for the 28-bus
power network and solve it in a centralized fashion for comparison purposes.

The resulting dispatch and distribution vectors are extracted from the final iterates.
The generator dispatch is compared with the centralized solution in Figure 4.7. The dis-
tributed solution is almost the same as the centralized solution. The distribution vectors
are displayed in Figure 4.8. It can be seen that the results are quite similar for the cen-
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Figure 4.5: Pictorial overview of the decomposed IEEE 28-bus power system case study. Triangles, circles, and a
star indicate the generator buses, load buses and the wind bus, respectively. The size of each symbol indicates
the respective generator capacity or load power. The different colors of the buses indicate the different control
areas of the power network, and the shaded areas depict the extended control areas.

0 5 10 15 20 25 30 35 40 45 50

iterations

10
-1

10
0

10
1

10
2

re
s
id

u
a
ls

Effect of µ  on multi area ADMM convergence

µ = 50

µ = 100

µ = 125

Figure 4.6: Effect of varying µ on the convergence of ADMM algorithm. The algorithm converges for large
enough step-size, the convergence is very similar.
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(a) centralized

(b) distributed

Figure 4.7: Generator dispatch per hour for centralized and distributed solutions for the 28-bus test case. The
grey shaded area corresponds to the total demand per hour. The numbers correspond to the generator buses,
and the lowest part of each bar (green) indicates the wind power per hour.
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(a) centralized

(b) distributed

Figure 4.8: Graphical display of up- and downspinning reserve distribution vectors per generator and hour for
centralized and distributed solutions for the 28-bus test case. Darker cells correspond to higher contribution
to the reserve power.
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Figure 4.9: Relative bus voltages and line loading for all hours and scenarios per line for the 28-bus test case.
The red line represents the median value, edges of each box correspond to the 25th and 75th percentiles, the
whiskers extend to 99% coverage, and the red marks denote the data outliers.

tralized and distributed results. The upspinning reserve is completely provided by the
generator with the lowest cost which is generator number 8. The downspinning reserve
is distributed over the first and second generator for the distributed solution, but in the
centralized approach it is mostly provided by generator 8. For both the centralized and
distributed solutions, the reserve is distributed over more generators during the peak
hours, because the dispatch of the generators is higher in those hours, so less reserve
power is available per generator.

We next simulate the resulting solutions with a new set of 10000 wind trajectories to
compare the violation levels. The relative voltage magnitudes per bus, defined as ∀k ∈
N :

|v rel
k | :=

|vk |− |vk |
|vk |− |vk |

,

such that a relative voltage magnitude below 0% corresponds to a bus voltage which is
below the lower limit, and a relative voltage magnitude greater than 100% indicates a vi-
olation of the upper limit. There is no violation of the voltage magnitude limits for any
of the results for all time steps and scenarios as shown in Figure 4.9a as predicted by our
analysis of the developed methods. The relative line loadings for all hours and trajec-
tories are shown as box plots per line in Figure 4.9b. The number of violating network
states divided by the total number of simulations returns an empirical measure of the
violation probability. Both the centralized and distributed solutions have a very low vi-
olations probability: at most 0.02% and 0.06% at the peak hours, respectively. We can
conclude that the probabilistic guarantees are valid for the distributed solution.
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4.6. CONCLUSIONS
We developed a framework to carry out a multi-area RS using an AC OPF model with
wind power generation by distributed consensus using ADMM. The OPF-RS problem is
formulated as a large-scale SDP in infinite-dimensional space, and then a novel affine
policy is proposed to provide an approximation for the infinite-dimensional SDP by a
finite-dimensional SDP together with explicitly quantified performance of the approxi-
mation. The proposed methodology bridges the gap between the DC and AC OPF model
of power systems for RS and furnishes the TSOs with a tuning knob associated with the
level of affordable probabilistic security.

Using the geographical patterns of the power system, a technique to decompose the
large-scale system into a multi-area power network is provided. The consensus ADMM
algorithm is then proposed to find a feasible solution for both local and overall multi-
area network such that at every iteration, each area of power network solves a small-scale
SDP problem, and then communicates some information to its neighbors to achieve
consensus. By deriving a Lyapunov-type non-increasing function, it is shown that the
proposed algorithm converges as long as Slater’s condition holds. Using our distributed
stochastic framework, each area can have its own wind information to achieve local fea-
sibility certificates, while preserving overall feasibility of the multi-area power network
under mild conditions.

Our theoretical developments have been demonstrated in simulation studies using
IEEE benchmark power systems. The violation levels for the decomposed and central-
ized solutions are checked using power flow simulations to validate our decomposition
method which allows for distributed solving of OPF-RS type problems.
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PRIVATIZED DISTRIBUTED

ANOMALY DETECTION FOR

LARGE-SCALE NONLINEAR

UNCERTAIN SYSTEMS

In this chapter we design a privatized distributed anomaly detection framework for large-
scale uncertain nonlinear systems. By decomposing such a system into a number of in-
terconnected subsystems, we first design a Local Detector (LD) according to a proven
model-based residual approach using a polynomial levelset approximation technique
in a probabilistic sense. The resulting LD is equipped with a threshold set that is guaran-
teed probabilistically to contain the smallest volume of healthy residuals in an arbitrary
shape. In addition, the obtained threshold is designed to be highly sensitive to the given
signature of anomalies. In this setup, neighboring subsystems should exchange some
information about overlapping variables, due to the statistical learning feature of the
proposed approach. This might give rise to local privacy concerns of each subsystem.
We next present a privatized soft communication scheme between neighboring subsys-
tems, firstly, to preserve their privacy, and secondly to reduce the communication bur-
den. We provide theoretical guarantees to achieve a desired level of privacy, along with a
reliability measure of the received information to incorporate into a false alarm ratio of
the threshold set design. Simulation studies are provided to illustrate the functionality
of our theoretical developments.
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5.1. INTRODUCTION

F AULT diagnosis and security for large-scale nonlinear systems, such as critical infras-
tructures or interconnected Cyber Physical Systems (CPS) has received increasing

attention in recent years [76]. Indeed, one way to increase the resiliency of such sys-
tems to faults or deliberate cyber attacks is to endow them with architectures capable
of monitoring, detecting, isolating and counteracting such anomalies and threats. Ad-
vanced model-based fault diagnosis methods have emerged in important industrial sec-
tors, such as aerospace, as fundamental tools for guaranteeing high operational readi-
ness levels and reducing unneeded maintenance costs [44]. A key problem to be solved
for widespread industrial adoption is the development of robust methods providing sat-
isfactory, and easy-to-tune performance in terms of the so-called false alarm ratio (FAR)
and missed detection ratio (MDR).

In traditional model-based approaches a time-varying residual is produced, along
with a threshold for anomaly detection. Typical threshold designs for model-based de-
tectors are known to be plagued by high conservativeness, which leads to poor detection
performance. Ideally, a model-based anomaly detection solution should be robust with
respect to the unavoidable model and measurement uncertainties, thus having a zero or
low FAR. At the same time, it should have good fault detection properties, which trans-
lates into a negligible MDR. For general nonlinear systems, it is customary to assume the
existence of a known, static or dynamic deterministic upper bound on the uncertainties’
magnitude, thus allowing to obtain a zero FAR by design [44]. Such a powerful property
often comes at the cost of conservative thresholds, which lead to high MDR. Two key
reasons stand behind this: the inability of traditional robust deterministic thresholds,
such as norm-based or limit-checking, to tightly bound the arbitrarily shaped, possibly
non-convex regions to which healthy residuals belong; and the need to account also for
large, but possibly rare, values taken by the uncertainties.

5.1.1. RELATED WORKS
For large-scale systems, centralized monitoring and diagnosing architectures are rarely
feasible, in contrast with distributed or decentralized ones. Decentralized solutions do
not require communication between Local Detectors (LDs) which may lead to unaccept-
able performance. Distributed methods, which instead do require communication, are
then preferable [17, 54, 57, 115, 128, 179, 180]. An unexplored issue in the distributed
setting indeed arises from the need of communication between neighboring nodes. In
the case where such LDs may be operated by different, possibly competing entities,
mutual communication may be opposed as it may lead to leaking privacy-sensitive in-
formation. We may consider as an example a smart grid where neighboring diagnosis
nodes are each monitoring different subgrids with distributed energy sources and each
is managed by its own grid operator. The two grid operators must exchange data about
nodes on their respective boundaries in order to allow for grid balancing, but they would
rather keep private the way that they are allocating energy supply to their different en-
ergy sources and satisfying their energy demand [62, 155]. This highlights the necessity
of developing techniques for privatized distributed anomaly detection in large-scale sys-
tems.

A powerful and mathematically rigorous concept for dealing with privacy problems is
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differential privacy. This concept emerged in the computer science community [48, 49],
but recently found applications in control systems as well, see for instance [61–63]. It
assumes that each piece of user data whose privacy must be protected is contained in a
separate record in a database. A trusted party, called curator, maintains such database
and answers queries posed by possibly adversarial, external parties. Differential privacy
aims at modifying the query output to guarantee that no adversary can guess whether a
single record is present or has been altered, either by combining the results from several
queries, or using side-channel information. In the previous smart grid example, the role
of user data is taken by the local input applied to a subgrid, while the query corresponds
to the physical phenomena of translating a given input to the boundary nodes’ values
that are then communicated to adversarial neighbors.

A first goal of this work is to introduce a class of novel, adaptive, parameterized
threshold sets to reduce the conservatism of the existing thresholds [44, 54, 128, 180] by
relaxing the deterministic robust zero-FAR condition, in favor of a more flexible, proba-
bilistic one. Through a set-based approach to threshold design, the probability of false
alarms will be defined as a user-tunable design parameter, and the detection with re-
spect to a given class of faults will be simultaneously maximized. The use of probabilis-
tic thresholds in model-based fault diagnosis has been investigated previously in the
literature (see [44] and the references cited therein), and recently the important case of
nonlinear uncertain systems has been considered [18, 107]. The use of sets in fault diag-
nosis has been inspired by the corpus of works on set-membership system identification
[105], which initially addressed the inverse problem of finding, at each time step, the set
of system parameters that could be able to explain current measurements, and compare
it to a nominal one [13, 69]. Other works considered instead the direct problem of de-
scribing the admissible values of the residual in healthy condition using a set [50], with
[102] being a notable example in the field of active fault diagnosis.

The second goal of this work is to present the application of a differential privacy
mechanism to the proposed distributed anomaly detection framework. In particular,
differential privacy will be employed to pre-process data before transmission. Under
certain conditions, this leads to privatization of the local control input, by considering
the output measurements as an available database to neighboring LDs. This goal will
also aim at reducing communication among neighboring LDs, by proposing a soft com-
munication scheme based on a set parametrization technique together with the notion
of probabilistically reliable sets. New guarantees for the robustness level of LD in a prob-
abilistic sense will be provided, by taking into consideration the level of probabilistic
reliability of neighboring LDs.

5.1.2. CONTRIBUTIONS

The novelty of this work is three-fold and, to the best of the authors knowledge, not
addressed in other related works: 1) a set-based threshold design for the LD threshold
problem in nonlinear uncertain systems, with the goal of simultaneously guaranteeing
robustness to uncertainties in a probabilistic sense, and maximizing detection of a given
class of faults; 2) a differentially private communication scheme in a distributed anomaly
detection setting, leading to a privacy guarantee for the control input of each subsystem;
3) a soft communication scheme based on a set parametrization technique, together
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with a reliability notion of the neighboring LDs expressed in a probabilistic sense. In
particular, the main contributions of the present chapter can be further detailed as fol-
lows:

a) The introduction of a general formulation for the dynamics of a large-scale non-
linear uncertain system, and its decomposition into a number of interconnected subsys-
tems, by extending existing results from [54].

b) A formal definition of a novel fault detection threshold set design problem, using
the concept of probabilistic set approximation through polynomial superlevel sets [40];
The proposed approach will require communication between a number of agents, one
for each subsystem, and such communication may involve privacy sensitive measure-
ments.

c) The formulation of a cascaded framework for designing threshold sets, through a
two-stage chance-constrained optimization problem, in which the first step is aimed at
fulfilling a probabilistic robustness constraint, and the second step maximizes the per-
formance of detection with respect to a given class of faults;

d) The introduction of a computationally tractable framework for the solution of the
chance-constrained cascade problem, through a randomization technique where the re-
sults of the so-called scenario approach are extended to the cascade setting, and a theo-
retical guarantee for the desired level of approximation is given.

e) A differentially private distributed framework to preserve the privacy of the ex-
changed information between neighboring subsystems. A pre-processing scheme is pro-
posed to achieve the privacy of the local control inputs using output measurements as
the database.

f) A soft communication scheme between neighboring subsystems to overcome the
communication bandwidth constraints using a set parametrization technique. Each
subsystem shares a set with all its neighboring subsystems together with a reliability of
information for the shared set. The reliability measure of neighboring subsystems is in-
corporated in the probabilistic guarantees for each subsystem in terms of new levels of
local false alarms.

5.1.3. STRUCTURE

The structure of this chapter is as follows. Section 5.2 describes an arbitrary nonlinear
uncertain system, and its decomposition into a number of interconnected subsystems
together with its faults, and provides the formal definition of the proposed threshold set
design problem. The proposed framework, a set-based probabilistic threshold design,
is described in Section 5.3, where a cascaded chance-constrained optimization problem
is formulated, and then the theoretical results for approximately solving such a prob-
lem based on the randomization technique is provided. Section 5.4 presents a privacy
preserving mechanism drawing on the concept of differential privacy, and a new com-
munication scheme will be introduced. Two different simulation studies are provided
in Section 5.5 to illustrate the effectiveness of our proposed privatized setting and dis-
tributed fault detection framework. Some final remarks will be given in Section 5.6.
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5.2. PROBLEM STATEMENT
Consider a large-scale nonlinear dynamical system S , which can be thought as originat-
ing from the interconnection of N smaller subsystems SI , I = 1, . . . , N . The rationale for
this setting is to allow each subsystem to be monitored by a dedicated agent LI , called
Local Detector (LD). This leads to a distributed fault detection architecture that will avoid
the limitations of centralized solutions, as anticipated in the previous section. Based
on the existing approach for model-based distributed fault diagnosis literature, see e.g.,
[54], such a framework requires each agent to use locally available information, com-
ing from measurements on its subsystem, and information from neighboring agents to
compute a dynamical residual. Each agent will compare such local residual to a corre-
sponding local detection threshold, the crossing of which will lead to local detection of
a fault or a cyber-attack (anomaly). In the following parts, the detailed problem formu-
lation will be presented.

Remark 15 It is assumed that the system S , and thus all the subsystems SI into which it
can be decomposed, are cyber-physical entities that can be subjected to faults or cyber-
attacks. This drives the need for monitoring. In contrast, the agents LI which are in
charge of such monitoring are assumed to be cyber-only entities, that will not be them-
selves subjected to cyber-attacks1, except for the indirect effect of attacks directed at their
corresponding subsystem SI .

5.2.1. LARGE-SCALE SYSTEM DYNAMICS
Consider the nonlinear uncertain discrete-time system S to have the following form{

xk+1 = g (xk ,uk , wk , fk )

yk = xk + vk
, (5.1)

where xk ∈Rn , uk ∈Rm and yk ∈Rn are the state, the input and the output of the sys-
tem at discrete time index k, respectively. The full state information at each time step k
is available, albeit corrupted by a measurement uncertainty vk ∈Rn . This can be eas-
ily extended to input-output systems similarly to [53]. The variable wk ∈ Rp , instead,
represents unavoidable modeling uncertainties affecting Eq. (5.1), while fk ∈ F ⊆ Rq

represents a parametrization of anomalies, such as faults and malicious cyber-attacks.
Such formulation is purposely as general as possible, and comprises the cases where wk

and fk affect the overall dynamics g : Rn×Rm×Rp ×Rq →Rn as additive or multiplica-
tive terms, or where these affect one or more parameters that appear in the definition of
g . For instance, if S models an electrical circuit, wk could correspond to parametric un-
certainties in the electrical resistance of individual conductors or components, fk could
describe eventual open circuit or ground faults, and vk represents the uncertainty in the
measurements provided by a number of voltmeters connected to the circuit. In this re-
spect, the functional dependence of g on fk , together with its domain set F, describe
the class of the possible dynamic anomalies occurring in S . The only assumption we

1While this assumption may be criticized with an argument similar to Giovenale’s "Quis custodiet ipsos cus-
todes?" (literally, "Who will guard the guards themselves?"), we believe that the case where the LD themselves
may fail or be attacked can be addressed as a straightforward extension of the approach presented in this
chapter, but its inclusion will impair clarity.
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will adopt on the functional dependence of g on wk and fk is that wk = 0 and fk = 0
corresponds to the nominal and normal behavior of S , that is in the absence of uncer-
tainties and anomalies. The following two technical assumptions are also needed for the
upcoming analysis.

Assumption 13 No anomaly acts on the system before the anomaly occurrence time k f ,
that is fk = 0, for 0 ≤ k < k f . Moreover, the variables xk and uk remain bounded before
and after the occurrence of an anomaly, i.e., there exist some stability regions S := Sx×Su ⊂
Rn ×Rm such that (xk ,uk ) ∈ S, for all k.

Assumption 14 The variables wk and vk are random variables defined on some proba-
bility spaces (W,B(W),PW), and (V,B(V),PV), respectively, where W⊆Rp , V⊆Rn , B(·)
denotes a Borel σ-algebra, and PW, PV are a probability measure defined over W, V, re-
spectively. Furthermore, wk and vk are not correlated and are independent from xk , uk

and fk , for all k.

Furthermore, g will be assumed to be differentiable and Lipschitz with respect to
u. It is important to note that, as in [40], we do not require the sample spaces W, V
and the probability measures PW, PV to be known explicitly, as it will be explained in
Section 5.3. A distinctive, practical advantage of the proposed framework is that its im-
plementation requires only the availability of a finite number of samples from the un-
certain variables, which can for instance be obtained from historical data. Finally, we
introduce the digraph G = (N ,E) to represent the structure of S similarly to [54], where

N := {x(1)
k , . . . , x(n)

k }∪ {u(1)
k , . . . , u(m)

k }∪ {w (1)
k , . . . , w (p)

k }∪ { f (1)
k , . . . , f (q)

k } is the node set and
E is the edge set. The fact that the edge e = (a,b) ∈ E means that the variable a influ-
ences the dynamics of the variable b, with a, b ∈N . In general, we do not expect that the
dynamics of every state component x(i )

k depends on all the components of all the other
variables. This means that the graph G will not be complete in general.

5.2.2. SUBSYSTEM DYNAMICS
Consider each subsystem SI for all I ∈ {1, . . . , N } to be characterized by a local state
xI ,k ∈RnI , a local input uI ,k ∈RmI and a local output yI ,k ∈RnI such that each of them
is composed of a suitable subset of components from xk , uk and yk . It is assumed that
each I -th subsystem is defined by means of an nI -tuple II , called extraction index tuple
[54], containing indices to the components of xk making up xI ,k . Formally, this can be

written as xI ,k := col(x(i )
k : i = I ( j )

I , j = 1, . . . ,nI ), and similarly for yI ,k and v I ,k . The local
input uI ,k is instead built with all the components of uk affecting at least one compo-

nent of xI ,k , that is uI ,k := col(u( j )
k : (u( j )

k , x(i )
k ) ∈ E , i ∈ II , j ∈ {1, . . . ,m}). Similarly, we can

build w I ,k := col(w ( j )
k : (w ( j )

k , x(i )
k ) ∈ E , i ∈ II , j ∈ {1, . . . , p}) and f I ,k := col( f ( j )

k : ( f ( j )
k , x(i )

k ) ∈
E , i ∈ II , j ∈ {1, . . . , q}). The local input uI ,k is built with all the components of uk that
structurally affect at least one component of xI ,k+1, and similarly for building the local
w I ,k and f I ,k .

Definition 3 A variable c structurally affects a variable a = b(c,d) through a multi-input

function b, and is written c
b−→ a, if there exists at least a pair of distinct values c̄ and c̄ ′

and a value d̄ such that ā = b(c̄, d̄) is distinct from ā′ = b(c̄ ′, d̄).
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Figure 5.1: The proposed distributed anomaly detection architecture. On the left side, the decomposition
of the original system SI is shown, where I = 1,2,3: thin black lines represent causal dependency between
variables. On the right, the communication and the acquisition of measurements by the agents LI is depicted,
where I ∈ {1,2,3}.

It is important to stress that here we have a structural knowledge of the effect of wk

and fk on each component of g . This does not preclude the capability for our problem
formulation to capture the case where the uncertainty, or the anomaly, are non para-
metric and arbitrary. For instance, we could assume in this case the dynamics to be
decomposable as g (xk ,uk , wk , fk ) = g?(xk ,uk )+wk + fk , where g? represents the nom-
inal and normal dynamics, and wk and fk are arbitrarily varying signals, but respecting
Assumption 13 and Assumption 14. We now formally define a system decomposition D
similarly to [54].

Definition 4 A decomposition D of dimension N of the large-scale system S is a set D,
{S1, ...,SN } made of N subsystems, defined through a set {I1, . . . ,IN } of extraction index
tuples, such that for each I ∈ {1, . . . , N } the following conditions hold: (a) the subdigraph
of G induced by II must be weakly connected, that is, each component of xI ,k must act on

or must be acted on by at least another component of xI ,k , (b) II 6= ; , (c) 1 ≤ I ( j )
I ≤ n, for

each j ∈ {1, . . . ,nI } , (d) II ∩IJ =;, ∀I 6= J : I , J ∈ {1, . . . , N } , and (e)
N⋃

I=1
II = {1, ...,n} .

The set D contains non-overlapping subsystems in contrast to [54]. This is imposed
via conditions (d) and (e) in Definition 4 that require the decomposition of the state xk

into local states xI ,k to be disjoint and cover all the components of xk . We defined the
output yk in (5.1) such that the same disjointness and covering condition translates to
the local output variables yI ,k and their associated measurement uncertainties v I ,k . Due
to the generality of the g dynamics function, that may functionally depend on wk and
fk , it may not have a disjointness property for all the local w I ,k and f I ,k , although still the
covering condition will hold. This means that the same component of the uncertainty
wk or of the anomaly parameter fk may influence more than one subsystem. We can
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proceed further and describe the dynamics of the generic subsystem SI as{
xI ,k+1 = g I (xI ,k ,uI ,k , xNI ,k , w I ,k , f I ,k )

yI ,k = xI ,k + v I ,k
, (5.2)

where the local dynamical function g I : RnI ×RmI ×RnNI ×RpI ×RqI → RnI can be
simply obtained by taking in the right order the components of g that are contained in
the index tuple II . Since, as in general we cannot assume that all the resulting subsys-
tems SI are decentralized, i.e., their dynamics depend not only on the local state xI , we
introduced the interconnection variable xNI ,k similarly to [54].

Definition 5 The interconnection variable xNI ,k ∈RnNI of the subsystem SI is the vector

xNI ,k := col(x( j )
k : (x( j )

k , x(i )
I ,k ) ∈ E , i ∈ {1, . . . ,nI }, j ∈ {1, . . . ,n}).

The role of xNI ,k is to describe the functional dependence of the local dynamics g I

on state components from other subsystems, which we will call neighboring subsystems
or simply neighbors. The set of all the neighbors of SI will be denoted by NI . Note that
since Assumption 13 holds for the original system S , it will also continue to do so for
every subsystem. We can introduce a stability region SI for each one, where the local
state xI and input uI are assumed to always belong. We can also easily build the sets VI ,
WI , FI and VNI of, respectively: the local measurement and modeling uncertainties,
the local fault parameters, and the measurement uncertainties for the interconnection
variable.

5.2.3. RESIDUAL GENERATOR
In the considered distributed setting, an agentLI shall compute a local dynamic residual
r I ,k and compare it to a local dynamic detection threshold for the purpose of detecting
anomalies. The residual shall be defined as r I ,k := yI ,k − ŷI ,k , and can be computed as
the output estimation error of the following nonlinear observer:{

x̂I ,k+1 = g I (yI ,k ,uI ,k , yNI ,k ,0,0)+Λ(ŷI ,k − yI ,k )

ŷI ,k = x̂I ,k
(5.3)

where x̂I , ŷI ∈RnI are, respectively, the local state and output estimates, yNI ,k ∈RnNI

are the measurements of the interconnection variables xNI ,k , Λ, diag(λi , i = 1. . .nI ) is
a diagonal matrix, andλi with |λi | < 1 denotes a filtering parameter chosen to guarantee
the stability of the estimator. It can be seen that the estimator in (5.3) is defined using
only quantities that are supposed to be available at run-time to the agentLI , namely: the
nominal local dynamics g I , the local outputs yI ,k and inputs uI ,k , and the measurements
yNI ,k of the interconnection variables of the neighboring agents LJ , with J ∈ NI . The
local use of yNI ,k requires some form of regular communication between neighboring
agents, and the resulting privacy implications will be addressed in Section 5.4.

By using Equations (5.1) and (5.3), we can write the residual dynamics as

r I ,k+1 = Λr I ,k +δI ,k , (5.4)
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where we introduced the total uncertainty δI ,k , which is a stochastic process represent-
ing the uncertain part of the residual dynamics:

δI ,k := g I (xI ,k ,uI ,k , xNI ,k , w I ,k , f I ,k ) − g (yI ,k ,uI ,k , yNI ,k ,0,0)+ v I ,k+1 (5.5)

= g I (yI ,k − v I ,k ,uI ,k , yNI ,k − vNI ,k , w I ,k , f I ,k ) − g (yI ,k ,uI ,k , yNI ,k ,0,0)+ v I ,k+1 .

Thanks to Assumption 13 and Assumption 14, it follows that δI ,k is a random variable
on a probability space (∆I ,k ,B(∆I ,k ),P∆I ,k ), where ∆I ,k is a time-varying set defined as
follows.

Definition 6 The time-varying total uncertainty set ∆I ,k ⊂RnI at time index k is defined
as

∆I ,k := {δI ,k |w I ,k ∈WI , f I ,k ∈FI , v I ,k ∈VI , v I ,k+1 ∈VI , vNI ,k ∈VNI } ,

where δI ,k is computed according to (5.5).

We will introduce also the following definition, as a special case of Definition 6 which
is of interest for the time instants k < k f during which the subsystem SI is in normal
operation.

Definition 7 The time-varying normal total uncertainty set ∆0
I ,k ⊂RnI at time index k is

defined as

∆0
I ,k := {δI ,k |w I ,k ∈WI , f I ,k ∈ {0}, v I ,k ∈VI , v I ,k+1 ∈VI , vNI ,k ∈VNI } ,

where δI ,k is computed according to (5.5).

The role of ∆I ,k and ∆0
I ,k is to quantify the range of possible values that the total un-

certainty δI ,k can take, respectively, in an arbitrary condition during which an anomaly
may be present, and a normal condition where an anomaly is not. As it will be shown in
the next subsection and the remainder of the present one, ∆0

I ,k will have a central role in
deriving a probabilistically robust detection threshold, while∆I ,k will be instrumental in
improving detectability.

We can now introduce a compact notation for the residual generator described by
Equations (5.3) to (5.5), through a mapping function ΣI : RnI ×RnI →RnI defined as

r I ,k+1 :=ΣI (r I ,k ,δI ,k ) . (5.6)

The mapping from the uncertain variable δI ,k ∈ ∆I ,k to the residual variables r I ,k+1 is
measurable, so that the residual signal r I ,k+1 can be viewed as a random variable on the
same probability space as δI ,k .

Given these preliminaries, it is now possible to write the following two fundamental
definitions (see Figure 5.2).

Definition 8 The time-varying residual set RI ,k+1 at time index k + 1 is defined as the
image of the set ∆I ,k through ΣI , that is

RI ,k+1 :=ΣI (r I ,k ,∆I ,k ) = {r I ,k+1 |r I ,k+1 =ΣI (r I ,k ,δI ), δI ∈∆I ,k }.
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rI,k+1 = ⌃I(rI,k, �I,k)
rI,k

�I,k

�I,k
rI,k+1

RI,k+1

FI
fI,k

(yI,k, uI,k, yNI ,k)

eq. (5)
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vI,k
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Figure 5.2: The residual set RI ,k+1 can be thought of as the set obtained by computing the output ΣI while
letting δI ,k vary over its domain ∆I ,k and fixing the residual rI ,k to its actual value. The domain ∆I ,k in turn
is computed through (5.5) by letting vI ,k , wI ,k , fI ,k and vNI ,k vary over their respective domains, and fixing
the local output and input yI ,k and uI ,k , as well as the interconnection variables measurement yNI ,k , to their

actual values. The healthy residual set R0
I ,k+1 can be obtained similarly, but by fixing the value fI ,k = 0.

Definition 9 The time-varying normal residual set R0
I ,k+1 at time index k +1 is defined

as the image of the set ∆0
I ,k through ΣI , that is

R0
I ,k+1 :=ΣI (r I ,k ,∆0

I ,k ) = {r I ,k+1 |r I ,k+1 =ΣI (r I ,k ,δI ), δI ∈∆0
I ,k }.

For ease of notation, when there is no ambiguity, in the rest of the chapter we will
drop the index I to denote that a quantity refers to the generic subsystem SI or the
generic agent LI . The index N will be retained to indicate the neighbor set of the generic
subsystem or agent.

5.2.4. ANOMALY DETECTION THRESHOLD DESIGN PROBLEM
After building a residual generator, an important problem in anomaly detection is to de-
sign a threshold with suitable robustness and detection performance guarantees. Tradi-
tional solutions to the deterministic robust threshold design problem (see [55] for a sur-
vey) seek a threshold that bounds all possible values of the normal residual rk+1 ∈R0

k+1,
thus guaranteeing zero false alarm ratio (FAR) by design. In the norm-based approach,
a scalar threshold τ bounding ‖rk+1‖ is sought, whereas in the limit checking approach

a vector is found such that its j –th component τ( j ) bounds |r ( j )
k+1|. In order to minimize

the missed detection ratio (MDR), such thresholds should be made as small as possible,
a goal which we may express as:

(I)

{
min
τ∈R

τ

s.t. ‖r‖ ≤ τ
, (II)

 min
τ( j )∈R

τ( j )

s.t. |r ( j )| ≤ τ( j )
, (5.7)

where the constraints should hold for all r ∈R0
k+1 and problem (II) should be solved for

each j = 1, · · · ,nI independently. If we interpret the thresholds resulting from (I) and (II)
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in a set-theoretic framework, it is easy to see that they lead, respectively, to the smallest
ball and axis-aligned box inRn containing the healthy residual setR0

k+1, see Figure 5.3(a)
and Figure 5.3(b). Such solutions are clearly conservative, for two reasons. First, they
use simple and convex manifolds to bound the set R0

k+1, which in general can have an
arbitrary shape and be non–convex, because of the assumed nonlinearity of the system
dynamics g . Secondly, bounding the entire set R0

k+1 does indeed lead to a deterministic
guarantee on the FAR, but ignores the fact that in real applications some values of rk+1

may have a negligible probability of being produced, and as such they could be excluded
in the threshold design procedure, without practical consequences.

It is the stated objective of the present chapter to address both aforesaid sources of
conservatism. First, we will introduce an adaptive, parametrized set-based threshold,
which could approximate arbitrarily well the shape of the set R0

k+1. Then, we will relax
the deterministic, hard constraints of problems (I) and (II) with a probabilistic guaran-
tee, thus reaching a desired level of FAR. We finally propose a threshold design frame-
work, which at the same time aims to reduce the MDR.

In order to formalize the above ideas, we first define Tk ⊆Rn as an adaptive thresh-
old set at time index k for anomaly detection, and then introduce the following novel
concept.

Definition 10 An anomaly set F′ ⊆ F is said to be detectable by an adaptive threshold
set Tk+1 and a residual generator Σ if ∀ fk ∈F′, ∃rk+1 ∈Rk+1 and δk ∈∆k such that rk+1 ∉
Tk+1, with rk+1 =Σ(rk ,δk ).

Definition 11 Given the residual generator function Σ in (5.6) and a fixed α ∈ [0,1], an
adaptive threshold set Tk is said to be probabilistically α–robust with respect to the ran-
dom total uncertainty δk ∈∆0

k , if

V(Tk+1) :=P [rk+1 ∉Tk+1
∣∣rk+1 ∈R0

k+1

]< 1−α , (5.8)

where V(Tk+1) is the violation probability (FAR) of the normal residuals rk+1 ∈R0
k+1.

We now describe the adaptive threshold setTk , using a generalized indicator function
1T(r,θk ) :RnI ×RtI 7→R parametrized by a time varying vector θk ∈RtI , as follows:

Tk := {r ∈RnI |1T(r,θk ) ≥ c} . (5.9)

This yields a c–superlevel set [23] of 1T , for any value of c, as the adaptive threshold set
Tk , while Definition 11 leads to an expected FAR better then 1−α.

Remark 16 A fundamental point in Definition 11 is that the probabilistic condition (5.8)
is expressed in terms of the future normal residual belonging to the future threshold set.
While at a given time the actual residual rk is a computable deterministic quantity, its fu-
ture value rk+1 is a random variable due to the fact that it linearly depends on the random
variable δk . It thus makes sense to consider the probability, measured with respect to the
probability space on which δk is defined, that in normal conditions rk+1 will belong to the
set Tk+1. The latter is a deterministic set that shall be computed at the current time, as will
be highlighted in the next sections. We stress again the fact that Definition 11 does not re-
quire Tk+1 to be a (proper) subset of R0

k+1, but only that Tk+1 approximates it in the given
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Figure 5.3: A pictorial, intuitive comparison of different robust threshold and residual evaluation approaches.
Representative normal values r 0 of the residual are drawn as filled black circles, while rare ones r̃ 0 are drawn
as empty circles. For convenience, in all cases the evaluation condition is represented as membership in a set
drawn with a tick line. a) Norm based. b) Limit checking. c) The proposed, probabilistic set-based approach.

probabilistic sense. This distinction will be the key in designing the solution proposed in
Section 5.3.

5.3. DISTRIBUTED PROBABILISTIC THRESHOLD SET DESIGN
This section presents a probabilistic framework that will allow to design a local threshold
set for each agent LI , in a distributed way. First, an optimization problem will be formu-
lated in order to minimize the FAR in the probabilistic sense of Definition 11. Then,
a second optimization problem will be introduced to maximize detectability, that is to
minimize the MDR with respect to a given set of anomalies. Finally, a unified approach
will be proposed to handle minimization of both FAR and of MDR by means of a two-
stage program in a cascaded setting. Such a problem formulation leads to a two-stage
chance-constrained optimization problem, that is in general non-convex and hard to
solve. Therefore, a computationally tractable methodology will be provided, which ap-
proximates such a problem via a randomization technique. It is important to highlight
that existing theoretical results on such an randomization technique will be extended in
order to cope with the proposed cascaded formulation.

5.3.1. SET-BASED THRESHOLD DESIGN
In the proposed approach, we will assume the indicator function 1T(r,θk ) to be a poly-
nomial function of given degree d , with θ containing the polynomial coefficients in a
arbitrary order. Denoting by πξ(r ) a vector of monomials of degree up to ξ := dd/2e2, we
can conveniently define 1T(r,θk ) := πξ(r )>G(θk )πξ(r ), where G(θk ) is a matrix depend-
ing on the coefficients contained in θk , which is the quantity to be determined during
the proposed design procedure.

We first formulate a chance-constrained optimization problem to obtain the mini-
mum volume threshold set Tk that fulfills Definition 11 for a user-specified α:{

min
θ

vol(Tk )

s.t. V(Tk ) < 1−α ,
(5.10)

2d·e is the ceiling operator which returns the smallest integer greater than or equal to its argument.



5.3. DISTRIBUTED PROBABILISTIC THRESHOLD SET DESIGN

5

113

where vol(Tk ) := ∫
Tk

dr is the volume or Lebesgue measure of Tk . The rationale for seek-
ing the minimum volume set is to minimize the threshold conservativeness, that is to
maximize detectability. Note that the inequality defined in (5.10) can be simply also
considered as less than equal without affecting our developments in the following parts.
The following proposition and remark provide a formal description of such intuitive mo-
tivation.

Proposition 5 (Detectability) A necessary condition for the anomaly F′ ⊂ F to be de-
tectable is that ∃k ≥ k f such that RF′

k+1∩Tk+1 6= ;, where Tk+1 denotes the complement of
set Tk+1.

Proof. The proof is straightforward and is based on Assumption 13, Definition 8 and
Definition 10. The details are omitted for brevity. ä
Remark 17 The condition in Proposition 5 is necessary but is not sufficient in general, as
it still allows for RF′

k+1 ∩Tk+1 6= ;. This means that at least one of the possible realiza-
tions of the random variable δk can cause the faulty residual rk+1 to be inside Tk+1, thus
preventing detection. Since at time k the next residual rk+1 is a random variable, the prob-
ability of such an event can in theory be computed by integrating the probability density
function (pdf) of the faulty rk+1 over the threshold set Tk+1. As we do not require in this
work any specific assumption on δk and thus on the pdf of rk+1, then minimizing the vol-
ume of Tk+1 turns out to be a reasonable heuristic in order to minimize the integral of the
pdf of rk+1 on it. A more rigorous investigation of this problem will be presented in the
next subsection.

The proposed optimization problem (5.10) is in general non-convex and hard to
solve, due to the numerical complexity arising from the minimum volume objective, and
the probabilistic constraint. Following [59] and [39], we restrict the range of our indica-
tor function to be non-negative which yields 1T to be a polynomial sum-of-squares (SoS)
and G(θk ) to be a symmetric Gram matrix. We are now able to bound the objective func-
tion using the relation:

vol(Tk ) =
∫
Tk

dr =
∫
B

1T(r,θk )dr ≤ trace(G(θk )M),

where B ∈Rn is an arbitrary compact set so that Tk ⊆ B and M := c−1
∫
Bπξ(r )πξ(r )>dr

denotes the matrix of moments of the Lebesgue measure on B in basis πξ(r ). We can
reformulate (5.10) as follows:

min
θ,γ

γ (5.11a)

s.t. G(θ) º 0 , (5.11b)

trace(G(θ)M) ≤ γ , (5.11c)

P
[

1T(r 0
k+1,θ) ≥ c

]≥α . (5.11d)

Constraint (5.11b) imposes the positive semidefiniteness of G(θk ) in order to constrain
1Tk

to be SoS. We also introduced the auxiliary variable γ to allow us to upper bound the
objective function, using epigraphical reformulation [11], as in constraint (5.11c). As it is
explained in Remark 16, the probabilistic constraint in (5.11d) is measured with respect
to the underlying random variable δk ∈∆0

k .
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5.3.2. MAXIMIZATION OF ANOMALY DETECTABILITY

To maximize the probability of a successful detection at each time step k, we propose to
design Tk to be not only as small as possible, but also as much distant as possible from
RF′

k , in the sense that is described next. We assume the availability3 of a description

of the set RF′
k through a polynomial SoS generalized indicator function 1RF′ (r,ψk ) :=

πξ(r )>G(ψk )πξ(r ) with the same degree d and the same monomial basis πξ(r ) as 1T . By

denoting withψ∗ the value ofψk so that 1RF′ (r,ψ∗) ≥ c for all r ∈RF′
k , we can formulate

an optimization problem for maximizing the distance between the threshold set T and
the abnormal residual set RF′

k :

{
max
θ

∥∥1T(r,θ)−1RF′ (r,ψ∗)
∥∥
∞

s.t. ‖θ‖∞ ≤ c̄ ,
(5.12)

where c̄ is a given constant parameter. The objective function aims at maximizing the
Chebyshev distance between 1Tk

and 1
RF′

k
, which is also known as the polynomial height

[184]. Since both of them share the same monomial basis vector πξ(r ), this leads to the
maximization of the distance ‖G(θ)−G(ψ∗)‖∞ between their Gram matrices [184]. No-
tice that the second constraint in (5.12) is added to ensure that the solutions remain
bounded.

We next propose a cascade of the two optimization problems (5.11) and (5.12), which
is in general hard to solve due to the chance constraint (5.11d).

5.3.3. CASCADED PROBLEM FORMULATION SCHEME

In order to attain our stated goal of obtaining a probabilistically α–robust threshold set,
that also maximizes detection of the anomaly f ∈F′ in the sense of Definition 10 as for-
mulated in (5.12), we propose a cascade of two chance-constrained optimization prob-
lems as follows: 

min
θ,γ

γ

s.t. G(θ) º 0, trace(G(θ)M) ≤ γ
P

[
1T(r 0

k+1,θ) ≥ c
]≥α

, (5.13a)


max
θ

‖G(θ)−G(ψ∗)‖∞
s.t. G(θ) º 0, trace(G(θ)M) ≤ γ∗

P
[

1T(r 0
k+1,θ) ≥ c

]≥α , (5.13b)

where the quantity γ∗ is the optimal cost obtained by solving the first stage (5.13a), while
(5.13) has to be solved sequentially in a lexicographic (multi-objective) sense [101]. Note
that the unnecessary constraint in (5.12) is dropped due to the introduced bound in
(5.13b).

3A simple way to obtain such a set is to solve a problem analogous to (5.11), where the constraint (5.11d) is

imposed deterministically on all elements of RF′
k .
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Remark 18 The first problem (5.13a) aims at determining the minimum volume thresh-
old set Tk+1 subject to the probabilistic α–robust constraint, but in doing so is ignoring
any information on the abnormal residual set RF′

k+1. This could possibly lead to unsatis-

factory detection properties due to a large intersection Tk+1∩RF′
k+1. The goal of the second

stage problem (5.13b) is then to find a new parameter θ, leading to a new threshold set
Tk+1 with the same robustness guarantee and a volume which is not worse than the one
resulting from the solution of problem (5.13a), but which is as distant as possible from the
set RF′

k+1.

The proposed optimization problem (5.13) is however non-convex and hard to solve
due to chance constraints being in general difficult to enforce. In the following part,
we provide a computationally tractable approach based on randomization technique
together with a rigorous theoretical analysis of its properties.

5.3.4. COMPUTATIONALLY TRACTABLE METHODOLOGY
Chance-constrained optimization problems are known to be non-convex and hard to
solve. However, these problems received increasing attention due to recent develop-
ments towards computationally tractable approaches. In particular, randomization tech-
niques allow to approximate chance constraints in an equivalent sense without impos-
ing any restriction on the probability distribution and geometric information of uncer-
tain variables. The basic idea is very simple: chance constraints are substituted with
finitely many hard constraints that correspond to samples from the uncertainty realiza-
tions. Using this approach, we are now able to formulate the following tractable opti-
mization problem as a counterpart of the one in (5.13):

min
θ,γ

γ

s.t. G(θ) º 0, trace(G(θ)M) ≤ γ ,

1T(r 0,i
k+1,θ) ≥ c , i = 1, · · · , Ns ,

(5.14a)


max
θ

‖G(θ)−G(ψ∗)‖∞
s.t. θ º 0, trace(G(θ)M) ≤ γ∗ ,

1T(r 0,i
k+1,θ) ≥ c , i = 1, · · · , Ns ,

(5.14b)

where r 0,i
k+1 = Σ(rk ,δi

k ), and δi
k ∈ ∆0

k are samples of the random variable δk . We assume
to be able to generate Ns samples based on the knowledge of Σ(·), and availability of the
uncertainty samples from ∆0

k , following Definition 7. It is important to mention that the
same samples have to be used in both problems (5.14a) and (5.14b). Otherwise, the sec-
ond problem (5.14b) may lead to infeasible results, since the optimal solution γ∗ of the
first problem (5.14a), that is used in the second problem (5.14b), depends on different
samples.

Remark 19 The requirement that each agent LI is able to generate samples of its own
uncertainties, which occur in the definition of δI according to (5.5), may be fulfilled by as-
suming a local knowledge of their probability density function (pdf). Should this knowl-
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edge be not available, samples can still be obtained using historical data recorded in nor-
mal conditions from system (5.2).

The link between the chance-constrained program and the quality of its approxima-
tion is the number of samples Ns that should be considered in order to reach a given level
of confidence. This has been rigorously investigated in the scenario approach, a power-
ful randomized method developed recently (see [30] and the references therein). The
crucial requirement to invoke these results is the convexity of the optimization problem
in the decision variables, but unfortunately in the present case this does not hold due to
the use of the Chebyshev distance in the objective (5.14b). It is, however, easy to show
that (5.14b) can be transformed into a number of different convex programs. As it has
been shown in [107, Lemma 4.3], the set of the solutions of (5.14b) is equivalent to the
union of the solution sets of ξ different convex programs, where we recall that 2ξ is the
degree of 1T(r,θ).

Due to the cascaded structure of the optimization formulation (5.14), it is not straight-
forward to use the theoretical results in [30]. In [30], the existence and uniqueness of the
tractable program solution is assumed. This was later relaxed by applying a tie-break
rule (e.g., lexicographic rule) and selecting among the optimal solutions the one with
the best Euclidean distance [30, Section 2.1.5]. This is, however, not true in general for
differently structured problems, such as the cascade formulation in (5.14), since in [30]
a single tractable optimization program was considered. More specifically, a tie-break
rule can be employed if the non–unique optimal solutions are obtained regardless of the
number Ns of samples of the uncertain variable. As it is explained in the above remark,
this cannot be guaranteed here in (5.14) due to the fact that the optimal solution γ∗ is a
random variable and depends on Ns . The following theorem extends the result obtained
in [30] to the present setting.

Theorem 11 Given d the degree of polynomial function of 1T(r,θk ), consider υ := [θ,γ]> ∈
R` to be the augmented vector of all the decision variables of (5.14). Let β ∈ [0,1] and
Ns ≥Ns (α,β,`), where

Ns (α,β,`) = min

{
Ns ∈N

∣∣∣d
`−1∑
i=0

(
Ns

i

)
(1−α)iαNs−i ≤β

}
,

Then, the optimizer υ∗ := [θ∗b ,γ∗]> of the randomized cascade convex program (5.14) is
a feasible solution of the chance-constrained cascaded optimization problem (5.13) with
confidence level (1−β), in the average.

Proof. The proof is provided in Appendix D. ä
The interpretation of Theorem 11 is as follows. Applying the results in [30, Theo-

rem 1] leads to computing the number Ns of samples as a function of the total degrees
of freedom of problem (5.14a) and of the confidence level with which it is desired to ap-
proximate (5.13a). Solving (5.14a) then yields an optimal solution (θ∗a ,γ∗), the last term
of which is used as a fixed constraint for solving (5.14b). Reference [30, Theorem 1] yields
a theoretical guarantee for feasibility of solution (θ∗a ,γ∗), however here we compute θ∗b
which might not be feasible for (5.13a) together with γ∗. It is important that the same Ns

is used for both (5.14a) and (5.14b): otherwise, there are no guarantees that the program
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(5.14b), which is based on the solution of (5.14a), is feasible. This is due to γ∗a being a
random variable and depending on the specific value of Ns .

Following the proposed optimization problem in (5.14), for the generic agent LI ,
generating samples of the normal residual r 0

I requires the availability of samples of δI .
According to Definition 7 together with (5.5), it emerges that for computing samples δi

I
the agent LI must know the current measured value yNI ,k of the interconnection vari-
ables, as well as samples of candidate values for the true interconnection variables that
are compatible with their measurement uncertainties. Such samples will be denoted as
xi
NI ,k = yNI ,k − v i

NI ,k , with i indicating the i –th sample, and their generation necessi-
tates in turn the ability to generate samples of the uncertainties vNI ,k . This requires that
neighboring agents LJ , with J ∈NI , compute such samples and communicate them to
LI along with the measurement of their part of the interconnection variable yNI ,k . Such
communication may expose private information of neighbors, such as their actual mea-
surement or a possibly high number of samples of their measurement uncertainty, which
could be used to estimate the probability density function (pdf) of such uncertainty. In
the following section, we propose a solution to this issue.

5.4. PRIVATIZED DISTRIBUTED ANOMALY DETECTION
The proposed distributed fault detection scheme outlined in the previous section re-
quires neighboring agents to communicate to each other a number of samples of their
interconnection variables. While such communication may seem perfectly acceptable,
there can be practical situations where it could lead to privacy concerns. We may con-
sider as an example a smart grid where SI and SN represent different subgrids with
distributed energy sources and each managed by its own grid operator. The two grid
operators must exchange data about nodes on their respective boundaries in order to
allow for grid balancing, but they would rather keep private the way that they are allo-
cating energy supply to their different energy sources and satisfying their energy demand
[62, 155]. That is, they prefer to keep their local input u private.

In this section we develop a mechanism for each agent to preserve its privacy, draw-
ing on the concept of ε−differential privacy. We first introduce the concept of differential
privacy and then present some existing results from the literature. Afterwards we ac-
commodate such a mechanism into our proposed problem setting of Section 5.2, which
yields a new framework that we refer to as differentially private distributed anomaly de-
tection. We finally provide a so-called soft communication scheme to cope with network
communication bandwidth limitation together with a novel theoretical guarantee to ac-
commodate the privatized inter-agent information exchange scheme for our proposed
probabilistic threshold design technique of Section 5.3.

5.4.1. THE CONCEPT OF DIFFERENTIAL PRIVACY

Differential privacy (DP) "addresses the paradox of learning nothing about an individ-
ual while learning useful information about a population" [49]. The initial concern that
drove its development is in fact protecting the privacy of human individuals, for instance
when personal health data is collected and used in medical studies [36].

As a preliminary notion, we need to introduce the concepts of database and of query.
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Definition 12 A database D of length n is a set D = {d1,d2, · · · ,dn} taking values in D,
where D is the universe of all possible databases.

Definition 13 A query q is a mapping q : D → Rnq , where nq is the size of the result
provided by the query.

In DP, it is assumed that data contained in a database D can be accessed only through
the results of queries, which are answered by the subject holding D , called curator. Pro-
tecting the privacy of an element di in D can thus be obtained by making the results of
any query run on D insensitive enough to the single di . This can also be expressed by
ensuring that two adjacent databases [63] are nearly indistinguishable from the answers
to a query.

Definition 14 Two databases D = {d1, · · · ,dn} and D ′ = {d ′
1, · · · ,d ′

n} are said to be adja-
cent, and it is written as adj(D,D ′), if there exists i ∈ {1, · · · ,n} such that d j = d ′

j for all
j 6= i .

This is enforced by introducing so-called mechanisms, which are randomized map-
pings from the universe D to some subset inRnq , and letting the curator use the mecha-
nism in lieu of the query. A mechanism that acts on a database is said to be differentially
private if it complies with the following definition from [48].

Definition 15 Given ε ≥ 0 as the desired level of privacy, a randomized mechanism M
preserves ε−differential privacy if for all R⊂ range(M) and all adjacent databases D and
D ′ in D, it holds that

P [M(D) ∈R] ≤ eεP
[
M(D ′) ∈R]

. (5.15)

Remark 20 A smaller ε implies higher level of privacy. By using differential privacy, one
can hide information at the individual level, no matter what side information others may
have. Definition 15 shows that DP is based on randomization, but is independent on the
contents of databases, as long as they belong to D and are adjacent.

A popular mechanism in the DP literature is the so-called Laplace mechanism, that
introduces a Laplacian additive noise dependent on the query `p−sensitivity, the latter
being defined as follows, similarly to [63, Definition 10].

Definition 16 For any query q : D → Rnq , the `p−sensitivity of q under the adjacency
relation, adj(·, ·), is defined as

σ := max{‖q(D)−q(D ′)‖p : D,D ′ ∈D s.t. adj(D,D ′)} .

It is worth to mention that `p−sensitivity of q does not depend on a specific database
D . We now recall the following results from [61, Theorem 9] on the Laplacian mecha-
nism.

Proposition 6 Consider a query q : D→Rnq whose `2−sensitivity is σ. Define the ran-
domized mechanism M as M(D) = q(D)+ν, where ν ∈ Rnq is a random vector whose
probability density function is given by pν(ν) ∝ exp(−ε‖ν‖/σ). Then the randomized
mechanism M preserves ε−differential privacy.
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5.4.2. PRIVACY-PRESERVING FRAMEWORK

The proposed privacy-preserving framework for distributed fault detection will be now
presented. To simplify the notation and formulation, we will assume without loss of gen-
erality the case of a given agent L having a single neighbor LN, connected through an
interconnection variable xN ∈RnN . We will also drop the time indices to simplify our
notation whenever possible. Following the scheme developed in Section 5.3, the neigh-
bor LN should send to L at each time index its last interconnection variable measure-
ment yN, along with a set of samplesVN = {v1

N
, . . . , v Ns

N
} of its measurement uncertainty.

With such data L can build the following set of candidate values for the variable xN as
follows:

XN = {x1
N, . . . , xNs

N
} := {yN}ªVN , (5.16)

where ª is defined as AªB := {a −b |a ∈A,b ∈B}.
From the DP viewpoint, agent LN is the curator of a database that contains the last

local input uN,k−1, and at time k is answering a query from L by providing the following
set

DN := {yN}∪XN . (5.17)

A desired goal of LN is to replace such an answer with a mechanism that guarantees
the privacy of uN. It is important to mention that all elements of DN are related to yN
through (5.16), and therefore, DN contains no more useful information than yN itself.
Due to this fact, for the privacy analysis, we will consider the query to be only the output
signal yN by taking into account that the DP mechanism preserves privacy after any kind
of functional composition [49, Proposition 2.1]. Consider now that the query submitted
by L to LN yields the output signal yN, and let us design a DP mechanism for it.

In the remainder of this section, we will first design a DP mechanism where the con-
trol input variables uN represent the database that LN wants to privatize. The output
signal will thus be considered as the query submitted by the neighboring agents L (see
Figure 5.4a). We then develop another DP mechanism where the output signal yN of
LN is considered to be the database that we want to privatize, which leads to the query
submitted by the neighboring agents L (see Figure 5.4b) being an identity. To this end,
we provide a theoretical link between the two proposed DP mechanisms such that un-
der some mild conditions, one can use the second DP mechanism where the database
is the output signal yN of LN with identity query to achieve the same desired goal of
privatizing the control input variables uN.

CONTROL INPUT AS DATABASE

Before proceeding further, we need an extended definition of adjacency.

Definition 17 Two control actions uN, u′
N

∈U⊂RmN are two adjacent control inputs at
time step k−1 if and only if ‖uN−u′

N
‖0 ≤ 1, and it is written adj(uN, u′

N
). Such a distance

between databases is referred to as the Hamming distance, i.e., the number of rows on
which they differ. The set U is a compact set over which the input sequence {uN,k }∞k=0 can
take values.
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Consider now that two adjacent control inputs belong to a bounded set U such that:

max
i∈{1, ...,mN}

|(uN)(i ) − (u′
N)(i )| ≤ 2ζ , (5.18)

where ζ≥ 0 is a positive constant number which depends on the set U. Since the query
q(·) answered by LN is actually the output of the generic subsystem SN, the constant σ
that appears in Definition 16 can be computed as

σN = max
uN ,u′

N
∈U

adj(uN ,u′
N

)
ψN∈Ψ

‖gN(ψN,uN)− gN(ψN,u′
N)‖p , (5.19)

where gN(ψN,k−1,uN,k−1) := yN,k represents a compact notation for SN dynamics in
(5.2). The new quantity ψN ∈Ψ represents the other variables, apart from the input uN,
which influence SN, and is defined as ψN := col(x, xN, w, f ), with Ψ := Sx ×SxN ×W×
F. The bound σN can be seen as a bound on the global `p−sensitivity of the mapping
function gN(ψN,uN) with respect to the control input uN at each time step k for all
p ≥ 1. The following assumption is needed to compute σN .

Assumption 15 The nonlinear function gN(ψN,uN) of the generic subsystemSN is mea-
surable and differentiable in uN such that at each sampling time k

∂gN(ψN,uN)

∂uN
6= 0 ,∀uN ∈U ,ψN ∈Ψ ,

and there exists a constant L for all time step k, uN, u′
N

∈U and ψN ∈Ψ such that:

‖gN(ψN,uN)− gN(ψN,u′
N)‖ ≤ L‖ϕN−ϕ′

N‖ = L‖uN−u′
N‖ , (5.20)

where ϕN and ϕ′
N

are two vectors obtained by concatenating ψN with uN and u′
N

, re-
spectively. We refer to L as the Lipschitz constant of the nonlinear function gN(ψN,uN) of
the generic subsystem SN.

Remark 21 An essential factor is the differentiability of gN(ψN,uN) in order to derive the
sensitivity of the output signal with respect to the small variations (adjacent relations) of
input control signals. The key assumption is the Lipschitz condition (5.20). An approx-
imation of the Lipschitz constant L at time step k can be calculated from (5.2) using the
available values of ψN ∈ Ψ with drawing a sufficiently high number of samples of the
uncertainties vN and wN, following a Monte Carlo approach.

Proposition 7 The global`2−sensitivity of the output of the generic subsystemSN is bounded
by σN ≤ 2ζL .

Proof. Based on Definition 17 and (5.18) together with Assumption 15, the proof is straight-
forward by making use of the following relations (5.19) and (5.20), from which we can
derive the inequality

σN ≤ max
uN ,u′

N
∈U

adj(uN ,u′
N

)

L‖uN−u′
N‖

= max
uN ,u′

N
∈U

adj(uN ,u′
N

)

L max
i∈{1, ...,mN}

|(uN)(i ) − (u′
N)(i )| ≤ 2ζL .
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Figure 5.4: Two DP mechanisms with different databases and queries. (a) is a randomized mechanism Mu (uN)
to preserve εu−differential privacy of input control signals. (b) is a randomized mechanism My (yN) to pre-
serve εy−differential privacy of output control signals. With (b) the εu−differential privacy of input control
signals in (a) is guaranteed under certain mild conditions (see Theorem 12).

The proof is completed. ä
We are now ready to state the problem to be addressed in the present section.

Problem 1 Find a randomized mechanism Mu such that it preserves εu−differential pri-
vacy for the neighboring agentLN under the adjacency relation described in Definition 17.

Proposition 8 The mechanism Mu(uN) = gN(ψN,uN)+ νuN
, where uN is the control

input signal and νuN
∈RnN is a noisy vector drawn from a probability density function

that is proportional to exp(−εu‖νuN
‖/2ζL), is εu−differentially private.

Proof. The proof is the direct result of combining Proposition 7 with Proposition 6. ä
Remark 22 Since the query is the output signal of SN, following Proposition 8, the ran-
dom mechanism is introduced by adding a random noise into the output signal, see Fig-
ure 5.4(a). It is worth mentioning that one can also add such a random variable into the
input signal of SN by considering the query to be an identity mapping and consequently
determining σ. We however note that such an option is not considered here, because per-
turbation of control input signals may lead to instability of the generic nonlinear subsys-
tem SN.

OUTPUT SIGNAL AS DATABASE

We now investigate the possibility of privatizing the input control signals by just consid-
ering the output signals as a database with an identical mapping query, see Figure 5.4(b).
To approach this goal we introduce the following definition to establish an adjacency re-
lationship between two output signals.

Definition 18 Two output signals yN, y ′
N

∈ Y ⊂ RnN are adjacent if and only if ‖yN −
y ′
N
‖0 ≤ 1, and it is written as adj(yN, y ′

N
). The set Y is a compact set over which the

output sequence {yN,k }∞k=0 can take values, and since two output signals belong to Y, we
can have:

max
i∈{1, ...,nN}

|(yN)(i ) − (y ′
N)(i )| ≤ 2ξ ,

where ξ≥ 0 is a positive constant number which depends on the set Y.
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Since the query is an identity mapping, a bound σN on the global `2− sensitivity of
such a query can be obtained from:

σN = max
yN ,y ′

N
∈Y

adj(yN , y ′
N

)

‖yN− y ′
N‖ ≤ 2ξ . (5.21)

The following proposition provides a randomized mechanism My such that it pre-
serves εy−differential privacy for the agent LN under the adjacency relation of Defini-
tion 18.

Proposition 9 The mechanism My (yN) = yN +νyN , where yN is the output signal and
νyN ∈RnN is a noisy vector drawn from a probability density function that is proportional
to exp(−εy‖νyN‖/2ξ), is εy−differentially private.

Proof. The proof is the direct result of combining Proposition 7 with Proposition 6. ä

Theorem 12 Let Mu(uN) and My (yN) be the two randomized mechanisms introduced in
Propositions 8 and Proposition 9 for a generic nonlinear system dynamics SN such that
they preserve εu and εy level of differential privacy with εy = εu

ξ
ζL , respectively. Given ζ in

Remark 5.18 and ξ in Definition 18 with L in Assumption 15, if ξ≤ ζL, then,

P[Mu(uN) ∈Ru]

P[Mu(u′
N

) ∈Ru]
= P[My (yN) ∈Ry ]

P[My (y ′
N

) ∈Ry ]
≤ eεy ≤ eεu .

Proof. The proof is provided in Appendix D. ä
It is important to highlight that Theorem 12 is the first result, to the best of our knowl-

edge, towards privatizing a desired database, e.g. the control input actions, using an-
other database, e.g. the output signals of a generic nonlinear system dynamics SN. The-
orem 12 provides a theoretical link between two randomized mechanisms Mu(uN) in
Proposition 8 and My (yN) in Proposition 9. Strictly speaking, one can consider the out-
put signals of a generic dynamical system SN as a database to develop a randomized
mechanism My (yN) such that it preserves εy−differential privacy together with achiev-
ing the εu−differential privacy of the input control signals as the main desired privacy

goal by considering that εy = ξεu
ζL and ξ≤ ζL.

5.4.3. PRIVATIZED INTER-AGENT INFORMATION EXCHANGE SCHEME
In the previous section, we have shown how to preserve the privacy of the agent LN

input, assuming the query it answers to the agent L is just its output yN. We can now
easily show that the same approach trivially extends to the original problem where the
query result is the set DN, which is built by taking the actual output and a number of
candidate samples for the agent state, see (5.16) and (5.17). A mechanism can be built
such that the query output is modified to D̃N := {ỹN}∪ X̃N, as it is shown in Figure 5.5,
where

X̃N := {ỹN}ªVN = {x̃1
N, . . . , x̃Ns

N
} . (5.22)
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Figure 5.5: A pictorial representation of the proposed privacy-preserving inter-agent soft communication
scheme. The application of the privacy mechanism M to the output yN yields the privatized output ỹN , from
which then the privatized set D̃N is obtained by subtracting the measurement noise sample set VN . Further-
more, the soft communication protocol enables that only a description of a set B̃N is sent to agent L, instead
of all the privatized samples d̃i .

Now, it is of interest to address the issue of how agent LN is going to send to L the con-
tents of D̃N. We propose the following two schemes:

a) For our proposed probabilistic threshold set design Tk , agent L requests from
neighboring agents to send the complete privatized inter-agent data, element by ele-
ment. It is important to mention that the number of required samples of xN, Ns , is cho-
sen according to Theorem 11 in order to have a given probabilistic guarantee for Tk . We
refer to this scheme as a hard communication protocol between agents. Its advantage
is that it is simple and transmits exactly the contents of D̃N, but due to possibly high
values of Ns it may turn out to be too costly in terms of the required communication
bandwidth.

b) To address this shortcoming, we propose an alternative scheme, where instead
LN sends a suitable parametrization of a set that contains all the possible values of its
privatized data with a desired level of probability α̃N. By considering a simple family of
sets, such as for instance boxes in RnN , communication cost can be kept at reasonable
levels. We refer to this scheme as a soft communication protocol between agents (see
Figure 5.5).

We are now going to detail the soft communication protocol. The neighboring agent
LN has to first generate Ñs samples of xN and take its last privatized measurement ỹN
in order to build the database D̃N. It is important to notice that, in the soft communi-
cation protocol, the number Ñs of samples generated by LN may be different from that
needed by L, which is Ns , as will be explained later. More precisely, LN must apply the
mechanism M(yN) to yN to obtain the privatized output signals ỹN, then generate Ñs

samples of x̃N to build the privatized database D̃N, and send to neighboring agent L.
For sake of simplicity, we denote d̃i ∈ D̃N as an element of the privatized database D̃N.

Let us then introduceBN ⊂RnN as a bounded set containing all the elements of D̃N.
We assume for simplicity that BN is an axis-aligned hyper-rectangular set. This is not a
restrictive assumption and any convex set could have been chosen instead as in [148].
We can so define BN as the Cartesian product of nN intervals of the type [−b(i )

N
,b(i )

N
],

where i = 1, . . . ,nN and the vector bN ∈ RnN defines the hyper-rectangle bounds. For
convenience, we will introduce the shorthand notation BN = [−bN,bN].
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Consider now the following optimization problem that aims to determine the set BN

with minimal volume: 
min

bN
‖bN‖1

s.t. d̃i ∈ [−bN,bN] , ∀d̃i ∈ D̃N

i = 1, · · · , Ñs +1

, (5.23)

where Ñs + 1 is the number of privatized data elements4 d̃i ∈ D̃N ⊆ RnN that neigh-
boring agent LN has to take in account in order to determine BN. If we denote by
B̃N = [−b̃N, b̃N] the optimal solution of (5.23) computed by the neighbor agent LN,
then for implementing the soft communication protocol the latter needs to communi-
cate to agent L only the vector b̃N along with the probability of violation (the level of
reliability) α̃N. The level of reliability α̃N can be determined as a direct application of
the scenario approach theory in [27], leading to the following result.

Theorem 13 Fix β̃N ∈ (0,1) and let

α̃N = Ñs+1−nN

√√√√ β̃N(Ñs+1
nN

) . (5.24)

We then have

PÑs+1
{

{d̃1, · · · , d̃Ñs+1} ∈ D̃ Ñs+1
N

: P
{
d̃ ∈ D̃N : d̃ ∉ [−b̃N, b̃N]

}≥ 1− α̃N

}
≤ β̃N. (5.25)

Proof. Equation (5.24) is a direct result of the scenario approach theory in [27], if β̃N is
chosen such that (

Ñs +1

nN

)
α̃

Ñs+1−nN

N
≤ β̃N .

Considering the worst-case equality in the above relation and some algebraic manipula-
tions, one can obtain the above assertion. ä

Theorem 13 implies that given an hypothetical new privatized sample d̃ , we have a
confidence of at least 1− β̃N that the probability of it belonging to B̃N = [−b̃N, b̃N] is at
least α̃N. In other words, the optimal set B̃N is an α̃N−probabilistic approximation of
the set D̃N. Therefore, one can rely on B̃N up to α̃N probability.

Remark 23 The number of samples Ñs in the proposed formulation (5.23) is a design pa-
rameter chosen by the neighboring agent LN. We however remark that one can also set a
given α̃N as the desired level of reliability and obtain from (5.24) the required number of
samples Ñs .

Remark 24 After receiving the parametrization of B̃N and the level of reliability α̃N,
agent L can then obtain the samples needed for computing its threshold by locally gener-
ating Ns +1 samples, drawing them uniformly from inside B̃N. Then it should designate,

4We should remember that D̃N , contains Ñs elements corresponding to the generated samples of x̃N plus one
element corresponding to the privatized measurement ỹN .
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using an arbitrary policy, one of them as the value to use for the interconnection variable
measurement yN. The remaining Ns ones would be used as values of the samples for xN.
In this way, we decoupled the sample generation of LN from the one of L, preserving also
the privacy of the former. We however note that the proposed soft communication protocol
introduces some level of stochasticity on the probabilistic threshold design of agent L, due
to the fact that the neighboring information is probabilistically reliable. In the following
section, we characterize the threshold set probabilistic robustness as in Definition 11, and
provide a new level of probability for the threshold design in order to accommodate this
new situation.

5.4.4. PRIVATIZED DISTRIBUTED PROBABILISTIC THRESHOLD SET
When an agent L and its neighbor LN adopt the soft communication scheme we pro-
posed in the previous section, there is an important effect on the local probabilistic
threshold set T computed by agent L. Such a scheme introduces an additional level of
stochasticity, as the set B̃N which is a probabilistic approximation, is communicated in-
stead of the Ns samples that would have been sent in the hard communication scheme.
This will affect the local threshold set probabilistic robustness guarantee, as explained
in the following theorem. To accommodate the level of reliability of neighboring infor-
mation, we need to marginalize the joint cumulative distribution function probability of
the residual value at time step k + 1 and the generic privatized sample d̃ appearing in
Theorem 13.

Theorem 14 Given α̃N ∈ (0,1] and a fixed α ∈ (0,1], then following Definition 11, the
adaptive threshold set Tk is probabilistically ᾱ–robust with respect to the random total
uncertainty δk ∈∆0

k , i.e.,

P [rk+1 ∈Tk+1] ≥ ᾱ , (5.26)

where ᾱ= 1− 1−α
α̃N

, and for all rk+1 ∈R0
k+1.

Proof. The proof is provided in Appendix D. ä
Theorem 14 provides a new level of the robustness for the threshold set Tk for each

agent L. It is straightforward to observe that if α̃N → 1 then ᾱ→ α. This means that if
the level of reliability of the neighboring information is one, P

[
d̃ ∈ B̃N

] = 1, then, the
designed threshold set will have the same level of probabilistic robustness as the hard
communication scheme, P [rk+1 ∈Tk+1 ] ≥ α. It is important to note that the proposed
steps for the probabilistic threshold set design that we presented in Section 5.3 are di-
rectly applicable to the results that we obtained in Theorem 14. This is due to the fact
that the proposed scheme in Section 5.3 is independent from whether the hard or the
soft communication scheme is used between neighboring agents.

5.5. NUMERICAL STUDY
In this section, we present the results of two numerical studies to illustrate the effective-
ness of our proposed approach. First, we will introduce a minimal example with two
subsystems, where in the absence of any privacy mechanism, one LD is able to detect
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Figure 5.6: The structural graph of the 4-tank system chosen for this study, which is decomposed into two
subsystems.

changes in the input of the other subsystem, while the same is not possible in the pres-
ence of a mechanism based on Proposition 8 and Proposition 9. Second, we will illustrate
an implementation of the proposed distributed probabilistic anomaly detection scheme
in the presence of a privacy-preserving communication mechanism.

5.5.1. PRIVACY PRESERVATION

Consider a water distribution network, whose structure is depicted in Figure 5.6, com-
prised of: 4 tanks, where levels are represented by state variables x(1) to x(4); 5 pipes,
named according to the structural graph edges labels; one source, not depicted, that can
deliver water to either tank 1 or 2 via pipes 1 or 2, according to the position of a valve
controlled by the input u(1); and one point of delivery connected to tank 4.

The tank network example in Figure 5.6 is decomposed into two subsystems: S1,
which can be thought of as a water resupply subnetwork, and S2, which is a customer of
S1 and acts as a water distribution subnetwork. The operator of S1 can switch the valve
commanded by u(1) in order to provide water to S2 either through the route 1 → 3 → 4,
or 2 → 3 → 4. The two routes are supposed to lead to different operating costs and hence
to different pricing policies that S1 charges to S2.

It is important to note that in this example, we do not consider anomalies, and the
information on which route S1 is operating at a given moment is considered a private
information, and finally, the role of S2 is only to distribute water to end users, which
are assumed to tap into tank 4. The subsystems dynamics can then be described via the
following equations:

S1 :


x(1)
+ = g (1)

1 (x1,u1, xN1 ) = x(1)+ T
A1

[
(1−u1)φs,1 −φ1,3

]
x(2)
+ = g (2)

1 (x1,u1, xN1 ) = x(2)+ T
A2

[
u1φs,2 −φ2,3

]
x(3)
+ = g (3)

1 (x1,u1, xN1 ) = x(3)+ T
A3

[
φ1,3 +φ2,3 −φ3,4

] ,

S2 :
{

x(4)
+ = g (1)

2 (x2, xN2 , w2) = x(4)+ T
A4

[
φ3,4 −w2

]
,

where g I denotes the local dynamics of SI (see Eq. (5.2)), Ai denotes the cross-section
of the i –th tank, T the sampling interval, u1 = u(1) ∈ {0, 1} denotes the position of a valve
that can either connect tank 1, when u(1) = 0, or tank 2, when u(1) = 1, to a constant pres-
sure water source serving S1, which is equivalent to an infinite tank at a constant level
xs . The symbol φa,b denotes the flow from tank a to tank b along the pipe connecting
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them defined as:

φs,1 = max

(
0,sign(xs −x(1))

√
2g |xs −x(1)|c1

)
,

φs,2 = max

(
0,sign(xs −x(2))

√
2g |xs −x(2)|c2

)
,

φ1,3 = sign(x(1) −x(3))
√

2g |x(1) −x(3)|c3 ,

φ2,3 = sign(x(2) −x(3))
√

2g |x(2) −x(3)|c4 ,

φ3,4 = sign(x(3) −x(4))
√

2g |x(3) −x(4)|c5 ,

where c j is the cross section of the j –th pipe and g the gravitational acceleration. Finally,
the variable w2(t ) is an unknown external signal representing the time-varying demand
of users of the water network. It is assumed that each subsystem is endowed with a local

detector (LD) LI , which can measure the local states: x1 = [
x(1) x(2) x(3)

]>
for S1 and

x2 =
[
x(4)

]
forS2. Furthermore,L1 shall send toL2 measurements of the interconnection

variable yN2 =
[
x(3)

]
, while L2 shall send to L1 measurements of yN1 =

[
x(4)

]
.

We now propose an approach through which L2 can breach the privacy of S1 by re-
constructing the current value of its local input u(1), and show how our proposed mech-
anism can be used to preserve privacy by adding a Laplacian noise to yN2 measurements
before their communication. It is assumed thatL2 knows a model ofS1 dynamics, which
in general can be different from the actual one due to its uncertain knowledge of S1 pa-
rameters and/or structure. In the present case we will assume that the uncertainties are
only in the parameters. Having said this, L2 can therefore breach S1 privacy by using
such model and yN2 measurements to test the hypothesis “H : u(1) is equal to 0” against
the hypothesis “H′ : u(1) is equal to 1”. This means that L2 can reconstruct through
which route S1 is supplying water and possibly check pricing fairness of S1. To this pur-
pose, L2 will implement the following two different estimators:

Ŝ1 :

{
x̂1,+ = ĝ1(x̂1,0, xN1 )+Λ(ŷN2 − yN2 )

ŷN2 = x̂(3)
1

, (5.27)

Ŝ ′
1 :

{
x̂ ′

1,+ = ĝ1(x̂ ′
1,1, xN1 )+Λ(ŷ ′

N2
− yN2 )

ŷ ′
N2

= x̂ ′(3)
1

, (5.28)

where ĝ1 represents the uncertain S1 dynamics model employed by L2 and yN2 is the
measurement of the interconnection variable x(3) sent by L1 to L2. The variables x̂1 and
x̂ ′

1,+ and, respectively, ŷN2 and ŷ ′
N2

are estimates of S1 states and of the interconnection
variable computed by L2 under the two hypotheses. By comparing the absolute value
of the scalar residuals r := yN2 − ŷN2 and r ′ := yN2 − ŷ ′

N2
to a fixed scalar threshold τ,

the two hypotheses can be tested. Although the estimators in Eq. (5.27) and the use
of residuals and thresholds resembles the anomaly detection approach introduced in
Section 5.2, here we are not implementing a distributed anomaly detection scheme but
just proposing similar techniques for breaching the privacy of one subsystem.

Given the tank cross sections as 1, 1, 5 and 2m2, and the pipe cross sections equal to
0.25, 0.25, 0.2, 0.5 and 0.2m2, it can be seen that the two water supply routes on which
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Figure 5.7: Third tank estimated level and residual computed by L2 for testing hypothesis H′, when no privacy
mechanism is applied to communication from L1 to L2.
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Figure 5.8: Third tank estimated level and residual computed by L2 for testing hypothesis H′, when Laplacian
privacy mechanism is applied to communication from L1 to L2.
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τ/max(M(D))

case 0.01 0.05 0.1 0.25 0.5 0.75 0.95 eε

no privacy 3 1701 1627 621 161 3.53 1.04
privacy 1.15 1.08 1.03 1.01 1.00 1.00 1.00 1.65

Table 5.1: Numerical evaluation of Privacy Probability Ratio. Numerical estimation of the PPR is computed
using samples from the simulation, for several test sets R. Each set corresponds to one threshold τ, that here
is reported as normalized on the maximum value of the range of the mechanism M . Bold values denote cases
where the differential privacy condition PPR ≤ eε does not hold.

S1 can operate differ only in the cross section of the pipe feeding the third tank, being 0.2
in one case and 0.5m2 in the other. The unknown user demand w2 is assumed to follow
the expression 0.6+0.25∗sin(2π/Td t )+wd , where Td = 1 hour is the demand periodicity
and wd is a random number obtained by sampling every 15 s from a normal distribution
with zero mean and variance equal to 0.25. The sampling time is T = 0.1 s and S1 water
supply policy is to use the first route during the first half of every hour, and the second
in the second half. Finally, the model used by L2 is affected by a random parametric
uncertainty with a maximum magnitude equal to 2% of the nominal values.

Figure 5.7 shows the estimated level for tank 3 and the residual for the hypothesis H′,
when no privacy mechanism is in place. As it can be noticed, any static threshold τ in
the range 0.01 to 0.03 will lead to a successful testing of this hypothesis. Similar results
can be obtained for the hypothesis H. We can cast this in the DP setting by defining
the adjacent databases D := {0} and D ′ := {1} such that u1 will belong at any time to
only one of them, and considering the query result to be the residual r ′ produced under
hypothesis H′. The DP condition in Definition 15 can then be checked by defining the
test set R := [0 τ].

In order to introduce the mechanism described in Proposition 8, we first need to
compute the query sensitivity introduced in Definition 16. For the present case, this is
equal to σ= max(|r (t )− r ′(t )|) = 0.075, where the max is evaluated over the steps of the
numerical simulation. Figure 5.8 shows the simulation results when a Laplacian noise
corresponding to a privacy level of ε= 0.5 is added by L1 to the interconnection variable
yN2 before transmission to L2.

Table 5.1 reports numerical results obtained by checking condition (5.15) in the case
of no privacy mechanism, which is equivalent to an identity mechanism M , and in the
case where we introduce a Laplacian noise mechanism. To make evaluation of the con-
dition more clear, we tabulate here the numerical evaluation on simulation data of the
Privacy Probability Ratio (PPR), which is defined to be PPR := P[M(D)∈R]/P[M(D ′)∈R], and
accordingly the privacy is preserved if PPR ≤ eε. As it can be clearly seen from Table 5.1,
the privacy condition (5.15) is satisfied for all of the considered test sets R. This means
that L2 is not able, by comparing the residual r ′ to any static threshold τ, to decide
whether the hypothesis H′ is true or false. Indeed, both hypotheses values have simi-
lar probabilities, as the PPR is close to 1.
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Figure 5.9: The structural graph of the 22-tank system chosen for the numerical study. It will be decomposed
into two subsystems: one comprising node 1 and all the nodes to its left; the other comprising the remaining
nodes on its right. The interconnection between the two susbsytems is represented by the two edges (1,3) and
(1,5), corresponding to two pipes.

5.5.2. PRIVATIZED DISTRIBUTED ANOMALY DETECTION
The system under study will be a multi-tank system (see [54] for details on modeling such
a system), whose structural graph contains 22 nodes, each representing a state variable
corresponding to the level of a tank, while edges represent pipes interconnecting such
tanks (Figure 5.9). The graph has been obtained by application of the Barabási-Albert
model [4], which leads to scale-free networks. After labeling the nodes according to their
degree, in descending order, the following two subsystems have been obtained by defin-
ing the extraction index tuples:{

I1 = (1,2,6,8,9,13,16,17,19,21,22) ∈R11

I2 = (3,4,5,7,10,11,12,14,15,18,20) ∈R11 .

Finally, in order to make the interconnection between the two resulting subsystems asym-
metric and thus more interesting, an edge between nodes 1 and 3 has been added, on top
of the edges produced by the Barabási-Albert algorithm.

The actual tank cross sections have been chosen equal to 1m2, while pipe cross sec-
tions are equal to 0.2m2. Drains with the same section as interconnecting pipes have
been assumed to be connected to terminal nodes (i.e. nodes with unitary degree). A
single source pump, with a sinusoidal time profile with a frequency of 0.1Hz, has been
instead connected to tank no. 1. All tank levels are assumed to be measured, with a
Gaussian measurement uncertainty with zero mean and a standard deviation equal to
0.05m. When building the LD estimators, a Gaussian parametric uncertainty is intro-
duced, having zero mean and a variance equal to 5% and 7.5%, respectively, of the tanks
and pipe cross sections. The privacy mechanism M has been generated using the follow-
ing values: ε= 0.1, ζ= 0.01, Ñs = 16. Finally, each LD will generate Ns = 512 samples for
computing their threshold sets, using a fourth-order polynomial as indicator function.

The fault that is presented in the current study represents a clogging in the pipe be-
tween tanks 1 and 3, reducing its flow to 50% of its nominal value. The reason we have
chosen this kind of fault is that it affects exactly each subsystem interconnection vari-
ables, and as such may be hidden, that is made undetectable, by the introduction of the
privacy mechanism. The following figures will present the results obtained by simulating
such fault occurring at time T f = 250s. In order to make it possible to represent graphi-
cally the 11-dimensional residuals and threshold sets for the two LDs, we have chosen to
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Figure 5.10: Projection of the residual and the threshold set of agent L1 on component no. 1, as a function of
time.

consider only their projection on the multitank components no. 1, and on no. 3 and no.
5, respectively. As only the components no. 1 and 3 will be affected by the fault, this is
not going to hide any information, with component no. 5 presented only for reference.

In Figure 5.10, the residual and the threshold set of the first agent, projected on the
component corresponding to tank no. 1, are depicted. As in this case we are considering
only one dimension, the residual can be plotted as a curve, and the threshold set pro-
jection, being a time-varying interval, can be represented by plotting two more curves
corresponding to its bounds. Detection is successfully achieved shortly after the fault
time.

In Figure 5.11, we instead depict the residual and threshold set for the second agent.
As in this case we want to present their behaviour along the components corresponding
to tanks no. 3 and 5, a time-sequence of two-dimensional plots are given. Here we can
notice that occasionally the residual value can fall outside the threshold set, e.g., in sub-
figures (d)-(e), as we may expect given the current probabilistic approach in designing
the threshold set. After the fault time the residual is consistently outside the threshold
set, see sub-figures (f)-(g)-(d), thus allowing for detection.

5.6. CONCLUSIONS
In this chapter, we developed a rigorous technique for designing a distributed anomaly
detection framework for a large-scale uncertain nonlinear system. After decomposing
such a system into a network of interconnected uncertain subsystems, our develop-
ments consist of three novel contributions. For each subsystem, we first provided a
threshold design technique using the polynomial levelset approximation to determine
a set that contains minimum volume of healthy residuals in a probabilistic sense. Such
a threshold set is then reshaped to be highly sensitive to the class of given anomalies.
We then equipped each subsystem with a privatized setup based on the differential pri-
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Figure 5.11: Projection of the residual and the threshold set of agent L2 on component no. 3 and 5, at various
instants in time. At each sampling period, the healthy residuals and the threshold set are shown with block
dots and blue line, respectively, and the actual residual is presented via red cross symbol.
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vacy concept to pre-process the overlapping variables before sending to its neighboring
subsystems. We finally developed a soft communication scheme and furnished each
subsystem with a tuning knob associated with the reliability level of sending neighbors
information to reduce the required communication burden.



6
CONCLUSIONS AND

RECOMMENDATIONS

This chapter provides a summary of the scientific and technical achievements for each
chapter, along with several suggestions and recommendations on some open problems
as future research directions.

6.1. CONCLUSIONS

T HE main contribution of the work presented in this dissertation is a distributed frame-
work for decision making using scenario-based techniques in large-scale networks

of interconnected uncertain dynamical systems. To achieve this goal, the following re-
sults were developed:

B Decomposition of a large-scale scenario program into small-scale distributed
scenario programs for each agent
We addressed two different decomposition techniques in terms of the way in which
agents interact with other: 1) Dynamically coupled uncertain systems with only lo-
cal constraints, and 2) Uncertain systems linked only by coupling constraints. The
former refers to the case where agent dynamics influence each other with a causal
dependency, while their feasible sets are completely decoupled. In the latter case,
the agents’ dynamics are independent and their feasible sets are considered to be
coupled. Such dependencies lead to different distributed techniques, and there-
fore different developments, e.g., plug-and-play framework and consensus ADMM
algorithm.

B Theoretical guarantees to quantify the robustness of the resulting solutions in a
distributed framework
We extended the existing results in literature to cope with multi-agent networked
systems subject to local (private) and common uncertainty sources. The proposed

135
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setting furnishes each agent with a tuning knob associated with the level of con-
straint satisfaction in a probabilistic sense. The theoretical guarantees of the pro-
posed distributed data-driven decision making approach coincide with the cen-
tralized counterpart under some mid conditions. i.e., a certain number of scenar-
ios from the neighboring agent should be received.

B Soft communication scheme between neighboring agents to reduce the com-
munication burden
In the proposed distributed setting, each agent requests a certain number of sce-
narios from its neighbors, which is called a hard communication scheme. This
means that agents are not flexible to decide about the number of scenarios that
should be sent to their neighbors. We relaxed such a restriction by introducing a
soft communication scheme using a set parametrization technique, together with
the notion of probabilistically reliable sets. Such a reliability measure of the soft
communication scheme is incorporated into the feasibility guarantees of agent
decisions in a probabilistic sense.

B Distributed framework to share requested information while preserving privacy
of individual agent
In the proposed distributed setup, the inter-agent soft communication scheme
might give rise to some concerns about the agents’ private information, e.g., lo-
cal control inputs. We therefore present a novel privatized distributed framework,
based on the so-called differential privacy concept, such that each agent can share
requested information while preserving its privacy. We then equipped each agent
with a privatized setup to pre-process the requested information (scenarios) be-
fore sending to its neighboring agents.

In the following, we briefly summarize the highlights of each chapter.

CHAPTER 2
This chapter proposed an energy management framework in STGs consisting of ATES
systems integrated into BCC systems using a stochastic MPC paradigm. We developed
a large-scale stochastic hybrid model to capture thermal energy imbalance errors in an
ATES-STG. We formalized two important practical concerns by developing dynamical
models to capture: a) the balance between extraction and injection of energy from and
into the aquifers within a certain period of time, and b) the unwanted mutual inter-
action between ATES systems in STGs. Using our developed model, we formulated a
finite-horizon mixed-integer quadratic optimization problem with multiple chance con-
straints. To solve such a difficult problem, we proposed a tractable formulation based on
the so-called robust randomized approach. In particular, we extended this approach to
handle a problem with multiple chance constraints.

CHAPTER 3
This chapter presented an approach to distributed stochastic MPC using the scenario-
based approximation for large-scale linear systems with private and common uncer-
tainty sources. We extended the existing results to quantify the robustness of the re-
sulting solutions for both cases of private and common uncertainties in a distributed
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framework. We then provided a novel inter-agent soft communication scheme to mini-
mize the amount of information exchange between each subsystem. Using a set-based
parametrization technique, we introduced a reliability notion and quantified the level of
feasibility of the obtained solutions via the distributed stochastic MPC integrated with
the so-called soft communication scheme in a probabilistic sense. The theoretical guar-
antees of the proposed distributed stochastic MPC framework coincide with its central-
ized counterpart.

CHAPTER 4

In this chapter, we developed a framework to solve a multi-area reserve scheduling (RS)
problem using an AC optimal power flow (OPF) model with wind power generation by
distributed consensus using ADMM. The OPF-RS problem is formulated as a large-scale
semidefinite program (SDP) in infinite-dimensional space, and then a novel affine policy
is proposed to provide an approximation for the infinite-dimensional SDP by a finite-
dimensional SDP together with explicitly quantified performance of the approximation.
The proposed methodology bridges the gap between the DC and AC OPF model of power
systems for RS and furnishes the TSOs with a tuning knob associated with the level of
affordable probabilistic security.

Using the geographical patterns of the power system, a technique to decompose
the large-scale system into a multi-area power network is provided. We then proposed
the consensus ADMM algorithm to find a feasible solution for both local and overall
multi-area network such that at every iteration, each area of the power network solves
a small-scale SDP problem, and then communicates some information to its neighbors
to achieve consensus. By deriving a Lyapunov-type non-increasing function, it is shown
that the proposed algorithm converges as long as Slater’s condition holds. Using our dis-
tributed stochastic framework, each area can have its own wind information to achieve
local feasibility certificates, while preserving overall feasibility of the multi-area power
network under mild conditions.

CHAPTER 5

This chapter developed a rigorous technique for designing a distributed anomaly detec-
tion framework for a large-scale uncertain nonlinear system. After decomposing such
a system into a network of interconnected uncertain subsystems, our developments
consist of three novel contributions. For each subsystem, we first provided a thresh-
old design technique using the polynomial level-set approximation to determine a set
that contains the minimum volume of healthy residuals in a probabilistic sense. Such a
threshold set is then reshaped to be highly sensitive to the class of given anomalies. We
then equipped each subsystem with a privatized setup based on the differential privacy
concept to pre-process the overlapping variables before sending them to its neighbor-
ing subsystems. We finally developed a soft communication scheme and furnished each
subsystem with a tuning knob associated with the reliability level of sending neighbors
information to reduce the required communication burden.
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6.2. RECOMMENDATIONS FOR FUTURE RESEARCH

In this section, we present open research problems that still have to be tackled along
with some additional directions for future research in each chapter. In the following, we
discuss two interesting open research problems related to our main contributions in this
dissertation.

O1a Scaling of the proposed distributed framework with the number of
agents: The scaling of the proposed distributed control approach with
the number of agents remains an issue, and this can be considered as a
direction for future work. In particular, in the proposed distributed sce-
nario program, each agent i ∈N can have a desired level of constraint vi-
olation εi and a desired confidence level 1−βi . To ensure a certain ro-
bustness level of the collection of solutions in a probabilistic sense, these
choices have to follow a certain design rule, e.g. ε = ∑

i∈N εi ∈ (0,1) and
β=∑

i∈N βi ∈ (0,1). This yields a fixed ε , β for the large-scale scenario pro-
gram and the individual εi , βi for each agent i ∈N . In order to maintain
the violation level for the large-scale scenario program with many agents,
i.e., |N | = N ↑ , the violation level of individual agents needs to decrease,
i.e., εi ↓ , which may lead to conservative results for each agent, since the
number of required samples needs to increase, i.e., Nsi ↑.

O1b Analyzing the quality of the proposed distributed scenario-based solu-
tions in term of optimum value (distributed performance bound): Fol-
lowing the discussion in [25, Remark 1], even a small probability of con-
straint violation can significantly change the optimum value function of
the robust counterpart problem. In [74], the authors derived an upper
bound for the worst-case violation of the scenario program. In addition,
they studied the relation between the robust/chance-constrained program
and the worst-case violation of the scenario program in terms of their op-
timum value functions. To this end, it is an interesting research direction
to investigate and analyze the statistical properties of optimum function
value of the proposed distributed data-driven decision framework to pro-
vide a distributed performance bound by exploiting the results of [74].

We now present some interesting open problems for each chapter that ought to be
considered as future research lines.
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Chapter 2

O2a Refining ATES Model (from an application point of view): Refin-
ing the proposed model of ATES system (2.1) in order to be able
to predict more realistic situations, such as depletion of the stored
warm/cold water in the wells, or new wells being installed. These
situations may happen in reality, where water extraction is contin-
ued with the aquifer ambient temperature, leading to the thermal
energy content of an ATES system becoming proportional to the
difference between the temperatures of aquifer ambient and the
return water from building. In [136], we developed such a model
and currently the possibility of integration of such a development
into STGs is under investigation.

O2b Developing Two-Layer Distributed Framework (from a theoret-
ical point of view): Developing a distributed setting to solve the
tractable formulation (2.29). This could be achieved by a two-layer
distributed framework. In the higher layer a distributed coordi-
nation problem of ATES systems is formulated, using for instance
ADMM algorithm, to respect coupling constraints between neigh-
boring agents. In the lower layer, agents (buildings) have their lo-
cal climate comfort control problem independently. We proposed
a distributed stochastic MPC setting in [146, 147] and plan to ex-
tend this framework to cope with such a large-scale mixed-integer
stochastic program, e.g., (2.29).

Chapter 3

O3a Analyzing the recursive feasibility and stability of the closed-loop
distributed systems: It is important to point out that the discus-
sion on scenario optimization throughout this dissertation was
limited to constraint satisfaction probability. An important future
work is to enhance the proposed framework with formal guaran-
tees on the recursive feasibility and stability of the closed-loop. The
main challenge is to design appropriate terminal cost-to-go func-
tions for each agent, along with invariant sets that comply with the
network structure. This could be achieved in a similar way as in [42]
by extending to stochastic settings using the results in [52]. The re-
sults in [84] can be also considered for this research direction.
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O3b Extension to stochastic hybrid systems: The results in this chapter
are based on a network of interconnected uncertain linear systems,
which can be readily extended to a network of interconnected un-
certain hybrid systems as a direct consequence of Theorem 1. This
is due to the fact that the control problem of stochastic hybrid sys-
tems can be formulated using stochastic mixed-integer programs
at each sampling time in a receding horizon fashion, and thus the
proposed robust randomized approach for multiple chance con-
strained optimization problem in Chapter 1 can be adopted.

Chapter 4

O4a Extension to unit commitment (UC) problem: The UC problem is
one of the main tasks of the Transmission System Operator (TSO)
with the objective to compute a binary vector that corresponds to
the "on-off" status of the generating units, and the dispatch, which
is the amount of power that each generator should produce to sat-
isfy a given demand level. Solving the UC and RS problems in a
unified framework is a challenging problem, even considering a
DC model of power systems. This can be potentially addressed
by adding the UC formulation into the proposed problem of this
chapter, similarly to [132, Chapter 3] and the recent work in [47].
By exploiting the results in [47], where an approach to efficiently
address OPF-UC problem based on sparsity-exploiting techniques
(Lasserre relaxations [80]) is introduced, it could be possible to fit
this formulation into the proposed distributed OPF-RS framework.

O4b Integrating the OPF management problem into the STG frame-
work: The main goal of STGs is to reduce global energy consump-
tion, along with reduction in global greenhouse gas emission. Since
buildings in STGs are physically connected to the power network,
it is an interesting research objective to understand their coupling,
and develop a distributed framework for STGs while maintaining
stability of the power system. This idea would enable us to save
significant amounts of energy by efficient usage of distributed en-
ergy resources of the buildings and achieve a more stable power
network [60].
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Chapter 5

O5a Extension to anomaly isolation and an active fault tolerant con-
trol framework: The conducted research in this chapter focused
on a set-based threshold design technique for anomaly detection
in a distributed setting. This can be readily extended to an anomaly
isolation setup by enhancing the proposed framework with multi-
ple different anomaly classes. An interesting future research direc-
tion is to develop a framework to automatically detect anomalies
and take corrective action. This is known as fault-tolerant control
(FTC) systems. This can be achieved by modifying the control input
to improve the detectability and isolability of potential anomalies.
However, an important challenge is to coordinate controller mod-
ification policies, which involves discretely switching among con-
trollers designed for different classes of potential anomalies. Such
an extension could be built by combining the work in [124] with the
proposed framework in this chapter.

O5b Developing an FDI framework using a nonparametric Gaussian
process: The method developed in this chapter relied on the avail-
ability of a mathematical model of the uncertain nonlinear system,
in order to compare the output of the real system with the out-
put of the faultless system model to generate the residual signal
for fault detection purpose. Using such a parametric model of the
system for accurate detection is difficult, due to the fact that mod-
eling is hard in practice, and therefore, the prediction capability of
these models will be limited. To overcome the aforementioned lim-
itations, nonparametric Gaussian process (GP) regression models
may be a promising technique [153] by integrating with efficient
learning algorithms [43].
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PROOF OF COROLLARY 1
The proof is straightforward by just substituting the corresponding relationships, we
have

(Vh
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)2 ≤ (di j )2 ,

(r̄ h
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a,k ) j ≤ di j .

The proof is completed by noting that the thermal radius is positive: (r̄ h
a,k )i ≥ 0, (r̄ c

a,k )i ≥
0, ∀i ∈ {1, · · · , N }. ä

PROOF OF THEOREM 1
Define Viop (y∗

s ), and Vioc (y∗
s ) to be the violation probabilities of the private and com-

mon chance constraints as in (2.25b), and (2.25c), respectively, as follows:

Viop (y∗
s ) =Pw

[
w ∈W : y∗

s ∉
N∏

i=1
Yi (w i ) , y∗

s ∈Y
]

,

Vioc (y∗
s ) =Pδ

[
δ ∈∆ : y∗

s ∉
N∏

i=1

⋂
j∈Ni

Y̆i j (δi j ) , y∗
s ∈Y

]
,
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where Y is the feasible region of the problem (2.29), and it can be characterized via

Y :=
y ∈Rny N : y ∈

 N∏
i=1

⋂
w i∈{B∗

i

⋂Wi }
Yi (w i )

⋂  N∏
i=1

⋂
j∈Ni

⋂
δi j ∈{B̄∗

i j

⋂
∆i j }

Y̆i j (δi j )


 .

It is important to note that both definitions of Viop (y∗
s ) and Vioc (y∗

s ) have to be condi-
tional probabilitiesPw , [(·)|∀δ ∈∆], andPδ [(·)|∀w ∈W], respectively. We however equiv-
alently considered them in the above form, due to the independency of both random

process following Assumption 6. Define B∗ =
N∏

i=1
B∗

i , and consider now:

y∗ ∈
N∏

i=1

⋂
w i∈{B∗

i

⋂Wi }
Yi (w i ) ⇔ y∗ ∈ ⋂

w∈{B∗⋂W}

N∏
i=1

Yi (w i ) .

We also define B̄∗ =
N∏

i=1
B̄∗

i and B̄∗
i = ∏

j∈Ni

B̄∗
i j , and clearly, we can have:

y∗ ∈
N∏

i=1

⋂
j∈Ni

⋂
δi j ∈{B̄∗

i j

⋂
∆i j }

Y̆i j (δi j ) ⇔

y∗ ∈
N∏

i=1

⋂
δi∈{B̄∗

i

⋂
∆i }

⋂
j∈Ni

Y̆i j (δi j ) ⇔

y∗ ∈ ⋂
δ∈{B̄∗⋂

∆}

N∏
i=1

⋂
j∈Ni

Y̆i j (δi j ) .

Therefore, 
if w ∈ {B∗⋂W} then y∗ ∈

N∏
i=1

Yi (w i )

if δ ∈ {B̄∗⋂
∆} then y∗ ∈

N∏
i=1

⋂
j∈Ni

Y̆i j (δi j )
.

This yields the following relations:

Viop (y∗
s ) ≤Pw

[
w ∈W : w ∉B∗]= Vio(B∗) ,

Vioc (y∗
s ) ≤Pδ

[
δ ∈∆ :δ ∉ B̄∗]= Vio(B̄∗) ,

It is then sufficient to show that for Ns = max
i=1,··· ,N

Nsi , and N̄s = max
i=1,··· ,N

max
j∈N j

N̄si j :

P
Ns
w

[
S ∈WNs : Vio(B∗) ≥ ε

]
≤β , (A.1a)

P
N̄s
δ

[
S̄ ∈∆N̄s : Vio(B̄∗) ≥ ε̄

]
≤ β̄ , (A.1b)

where S =∏N
i=1Si , and S̄ =∏N

i=1

∏
j∈Ni

S̄i j . To this end, we now break down the proof in

the following steps to show (A.1a) and (A.1b):
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a) Common chance constraint violation:

Vioc (y∗
s ) ≤ Vio(B̄∗) =Pδ

[
δ ∈∆ :δ ∉ B̄∗]

=Pδ
[
δ ∈∆ :δ ∉

N∏
i=1

∏
j∈Ni

B̄∗
i j

]

=Pδ
[
δ ∈∆ : ∃i ∈ {1, · · · , N },δi ∉

∏
j∈Ni

B̄∗
i j

]

=Pδ
[

N⋃
i=1

{
δi ∈∆i :δi ∉

∏
j∈Ni

B̄∗
i j

}]

≤
N∑

i=1
Pδi

[
δi ∈∆i : ∃ j ∈Ni , δi j ∉ B̄∗

i j

]
=

N∑
i=1
Pδi

[ ⋃
j∈Ni

{
δi j ∈∆i j :δi j ∉ B̄∗

i j

}]

≤
N∑

i=1

∑
j∈Ni

Pδi j

[
δi j ∈∆i j :δi j ∉ B̄∗

i j

]

=
N∑

i=1

∑
j∈Ni

Vio(B̄∗
i j ) .

This implies that Vio(y∗
s ) ≤

N∑
i=1

∑
j∈Ni

Vio(B̄∗
i j ), and thus, we have

P
N̄s
δ

[
S̄ ∈∆N̄s : Vio(y∗

s ) ≥ ε̄
]
≤PN̄s

δ

[
S̄ ∈∆N̄s :

N∑
i=1

∑
j∈Ni

Vio(B̄∗
i j ) ≥

N∑
i=1

∑
j∈Ni

ε̄i j

]

=PN̄s
δ

[
N⋃

i=1

{
S̄i ∈∆N̄si

i :
∑

j∈Ni

Vio(B̄∗
i j ) ≥ ∑

j∈Ni

ε̄i j

}]

≤
N∑

i=1
P

N̄si
δi

[
S̄i ∈∆N̄si

i :
∑

j∈Ni

Vio(B̄∗
i j ) ≥ ∑

j∈Ni

ε̄i j

]

=
N∑

i=1
P

N̄si
δi

[ ⋃
j∈Ni

{
S̄i j ∈∆

N̄si j

i j : Vio(B̄∗
i j ) ≥ ε̄i j

}]

≤
N∑

i=1

∑
j∈Ni

P
N̄si j

δi j

[
S̄i j ∈∆

N̄si j

i j : Vio(B̄∗
i j ) ≥ ε̄i j

]

≤
N∑

i=1

∑
j∈Ni

βi j =β .
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b) Private chance constraint violation:

Viop (y∗
s ) ≤ Vio(B∗) =Pw

[
w ∈W : w ∉B∗]

=Pw

[
w ∈W : w ∉

N∏
i=1

B∗
i

]
=Pw

[
w ∈W : ∃i ∈ {1, · · · , N } , w i ∉B∗

i

]
=Pw

[
N⋃

i=1

{
w i ∈Wi : w i ∉B∗

i

}]

≤
N∑

i=1
Pw i

[
w i ∈Wi : w i ∉B∗

i

]
=

N∑
i=1

Vio(B∗
i ) .

The last statement implies that Viop (y∗
s ) ≤

N∑
i=1

Vio(B∗
i ), and thus, we have

P
Ns
w

[S ∈WNs : Viop (y∗
s ) ≥ ε] ≤PNs

w

[
S ∈WNs :

N∑
i=1

Vio(B∗
i ) ≥

N∑
i=1

εi

]
=PNs

w

[
N⋃

i=1

{
Si ∈WNsi

i : Vio(B∗
i ) ≥ εi

}]

≤
N∑

i=1
P

Nsi
w i

[
Si ∈WNsi

i : Vio(B∗
i ) ≥ εi

]
≤

N∑
i=1

βi =β .

The obtained bounds in the above procedure are the desired assertions as it is stated in
the theorem. It is important to mention that we use the existing results in [30] to deter-
mine Nsi and N̄si j and solve the tractable problems (2.28a) and (2.28b) for each agent
i = 1, · · · , N , ∀ j ∈Ni , respectively. We thus have the following probabilistic guarantees:

P
Nsi
w i

[
Si ∈WNsi

i : Vio(B∗
i ) ≥ εi

]
≤βi ,

P
N̄si j

δi j

[
S̄i j ∈∆

N̄si j

i j : Vio(B̄∗
i j ) ≥ ε̄i j

]
≤βi j .

The interpretation of the derivation of these bounds (A.1) is as follows. The probability of
all violation probabilities Vio(B∗

i ) being simultaneously bounded by the corresponding

εi is at least 1−β, and Vio(B̄∗
i j ) being simultaneously bounded by the corresponding ε̄i j

is at least 1− β̄. The proof is completed by noting that the feasible set Y of (2.29) has a
non-empty interior: {

∃ρ ∈R+ , ȳ ∈Y : ‖y − ȳ‖ ≤ ρ, ∀y ∈Rny
}
⊂Y ,
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and since the problem (2.29) has a non-empty interior feasible set, it admits at least one
feasible solution y∗

s . ä
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PROOF OF PROPOSITION 1
Given Assumption 8 and following the proposed structure of decomposition Section 3.3,
any optimizer of each subsystem v∗

i yields a feasible pair of the state and control input

variables of its subsystem {x∗
i ,u∗

i } ∈Xi ×Ui such that Xi =X T
i , and Xi =UT

i . Therefore,
the collection of the optimizers v∗ = coli∈N (v∗

i ) will yield the collection of feasible pairs
of the state and control input variables of their subsystem:{

x∗ = coli∈N (x∗
i ) ,u∗ = coli∈N (u∗

i )
} ∈X×U ,

where X := X T = ∏
i∈N Xi and U := UT = ∏

i∈N Ui , which eventually yields a feasible
point for the optimization problem in (3.6). It is straightforward to use the above relation
and to show that any optimizer of the optimization problem in (3.6) v∗ also yields a
feasible solution for the proposed optimization problem in (3.10). We then have to show
that both optimization problems will have the same performance index in terms of their
objective function values. Due to the proposed decomposition technique, it is easy to
see that the objective function in (3.6) can be formulated as additive components such
that each component represents the objective function of each subsystem i ∈ N , and
thus: J (x∗,u∗) =∑

i∈N Ji (x∗
i ,u∗

i ) . The proof is completed. ä

PROOF OF THEOREM 3
Define ξi ,k := (wi ,k ,δi ,k , {x j ,k } j∈Ni

) to be a concatenated uncertain variable for each ag-
ent i ∈N such that ξi := {ξi ,k }k∈T is defined on probability space (Ξi ,B(Ξi ),Pξi

), where
Pξi

is a probability measure defined over Ξi :=Wi ×∆i ×∏
j∈Ni

X j and B(·) denotes a
Borelσ-algebra. Following this definition, it is straightforward to consider ξ= coli∈N (ξi )
andΞ=∏

i∈N Ξi . Consider also the sample setSξi
=Sw i ×Sδi ×

∏
j∈Ni

Sx j for each agent
i ∈N such that Sξ =

∏
i∈N Sξi

.
Consider now v∗ to be the optimizer of the centralized scenario MPC problem (3.6)

and define Vio(v∗) to be the violation probability of the chance constraint (3.5c) as fol-
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lows:

Vio(v∗) :=Pξ
[
ξ ∈Ξ : g (v∗,ξ) ∉X]

, (B.1a)

where g (v∗,ξ) represents the predicted state trajectory of large-scale system dynamics
(3.1) in a more compact form. In particular, the violation probability can be precisely
written as Vio(v∗) := P[ w ∈W ,δ ∈ ∆ : xk+` = Acl (δk )xk +B(δk )v∗

k +C (δk )wk ∉ X , ` ∈
N+

∣∣xk = x0 ] , where Acl (δk ) = A(δk )+B(δk )K . Following Theorem 2, we have

P
Ns
ξ

[Sξ ∈ΞNs : Vio(v∗) ≤ ε]≥ 1−β . (B.1b)

Given Proposition 1, the problem (3.10) is an exact decomposition of the problem (3.6).
This yields the following equivalence relations:

v∗ := coli∈N (v∗
i ) , X :=∏

i∈N Xi , (B.2)

where v∗ is the optimizer of the problem (3.6) with v∗
i as the optimizer of each agent

i ∈N obtained via the problem (3.10). To this end, it is necessary to prove that the above
statements (B.1) still hold under the aforementioned relations (B.2). We now break down
the proof into two steps. We first show the results for each agent i ∈N , and then extend
into the large-scale scenario MPC problem (3.6).

1) Define Vio(v∗
i ) to be the violation probability of each agent i ∈ N fo the chance

constraint (3.11) as follows:

Vio(v∗
i ) :=Pξi

[
ξi ∈Ξi : gi (v∗

i ,ξi ) ∉Xi
]

, (B.3)

where gi (v∗
i ,ξi ) corresponds to the predicted state trajectory of subsystem dynamics

(3.9) for each agent i ∈ N . Applying the existing results in Theorem 2 for each agent
i ∈N , we have

P
Nsi
ξi

[
Sξi

∈ΞNsi
i : Vio(v∗

i ) ≤ εi

]
≥ 1−βi . (B.4)

2) Following the relations (B.2), it is easy to rewrite Vio(v∗) in the following form:

Vio(v∗) =Pξ
[
ξ ∈Ξ : g (v∗,ξ) ∉ ∏

i∈N
Xi

]
.

It is then sufficient to show that for Ns = maxi∈M Nsi :

P
Ns
ξ

[Sξ ∈ΞNs : Vio(v∗) ≥ ε]≤β . (B.5)

where ε=∑
i∈N εi ∈ (0,1) and β=∑

i∈N βi ∈ (0,1). Hence

Vio(v∗) =Pξ
[
ξ ∈Ξ : g (v∗,ξ) ∉ ∏

i∈N
Xi

]
=Pξ

[
ξ ∈Ξ : ∃ i ∈N , g (v∗

i ,ξi ) ∉Xi
]

=Pξ
[ ⋃

i∈N

{
ξi ∈Ξi : g (v∗

i ,ξi ) ∉Xi
}]

≤ ∑
i∈N

Pξi

[
ξi ∈Ξi : g (v∗

i ,ξi ) ∉Xi
]

= ∑
i∈N

Vio(v∗
i ) .
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The last statement implies that Vio(v∗) ≤∑
i∈N Vio(v∗

i ), and thus, we have

P
Ns
ξ

[Sξ ∈ΞNs : Vio(v∗) ≥ ε]≤PNs
ξ

[
Sξ ∈ΞNs :

∑
i∈N

Vio(v∗
i ) ≥ ∑

i∈N
εi

]

=PNs
ξ

[ ⋃
i∈N

{
Sξi

∈ΞNsi
i : Vio(v∗

i ) ≥ εi

}]
≤ ∑

i∈N
P

Nsi
ξi

[
Sξi

∈ΞNsi
i : Vio(v∗

i ) ≥ εi

]
≤ ∑

i∈N
βi =β .

The obtained bounds in the above procedure are the desired assertions as it is stated in
the theorem. The proof is completed by noting that the feasible set X = ∏

i∈N Xi of the
problem (3.6) and (3.10) has a non-empty interior, and it thus admits at least one feasible
solution v∗ = coli∈N (v∗

i ). ä

PROOF OF THEOREM 4
Equation (3.15) is a direct result of the scenario approach theory in [27], if β̃ j is chosen
such that (

Ñsi

n j

)
α̃

Ñsi −n j

j ≤ β̃ j . (B.6)

Considering the worst-case equality in the above relation and some algebraic manipula-
tions, one can obtain the above assertion. The proof is completed. ä

PROOF OF THEOREM 5
The proof consists of two main steps. We first provide an analytical expression for the
robustness of the solution in agent i by taking into account the effect of just one neigh-
boring agent j ∈N j , and then extend the obtained results for the case when the agent i
interacts with more neighboring agents, e.g. for all j ∈N j .

Following Remark 5, we have the following updated situation:

αi ≤P
[

x i ∈Xi , x j ∈ B̃ j
]

,

which is a joint probability of x i ∈Xi and x j ∈ B̃ j . Such a joint probability can be equiv-
alently written as a joint cumulative distribution function (CDF):

αi ≤P
[

x i ∈Xi , x j ∈ B̃ j
]

=
∫
Xi

∫
B̃ j

p(x i , x j )dx i dx j

= Fx i , x j (Xi , B̃ j ) ,

(B.7)
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where p(x i , x j ) is the joint probability density function (PDF) of x i and x j . Our goal is
to calculate:

P [ x i ∈Xi ] =
∫
Xi

p(x i )dx i = Fx i (Xi ) ,

where p(x i ) is the PDF of x i . To transform the joint CDF into the marginal CDF of x i ,
one can take the limit of the joint CDF as B̃ j approachesRn j :

P [ x i ∈Xi ] = Fx i (Xi )

= lim
B̃ j →Rn j

Fx i , x j (Xi , B̃ j )

= lim
B̃ j →Rn j

Fx i |x j (Xi | B̃ j )Fx j (B̃ j )

= Fx i (Xi ) lim
B̃ j →Rn j

Fx j (B̃ j ) ,

(B.8)

where the last equality is due to the fact that x i and x j are conditionally independent.
To determine lim

B̃ j →Rn j
Fx j (B̃ j ), one can calculate:

lim
B̃ j →Rn j

Fx j (B̃ j ) =
∫
R

n j

p(x j )dx j

=
∫

R
n j \B̃ j

p(x j )dx j +
∫
B̃ j

p(x j )dx j

=P[
x j ∉ B̃ j

]+P[
x j ∈ B̃ j

]
= (1− α̃ j )+ α̃ j = 1 ,

(B.9)

where p(x j ) is the PDF of x j , and the last equality is a direct result of Theorem 4. We now
put all the steps together as follows:

αi ≤P
[

x i ∈Xi , x j ∈ B̃ j
]

= Fx i , x j (Xi , B̃ j )

≤ Fx i (Xi ) lim
B̃ j →Rn j

Fx j (B̃ j )

=P [ x i ∈Xi ]

 ∫
R

n j \B̃ j

p(x j )dx j +
∫
B̃ j

p(x j )dx j


≤

∫
R

n j \B̃ j

p(x j )dx j +P [ x i ∈Xi ]
∫
B̃ j

p(x j )dx j

= (1− α̃ j )+ α̃ j P [ x i ∈Xi ] ,

where the first inequality and equality is due to (B.7), the second inequality is due to
(B.8), the second and last equality is due to (B.9), and the last inequality is considering
the worst-case situation, e.g. P

[
x i ∈Xi

∣∣x j ∉ B̃ j
]= 1.
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By rearranging the last equation in above result:

αi − (1− α̃ j )

α̃ j
= 1− 1−αi

α̃ j
= ᾱi ≤P [ x i ∈Xi ] . (B.10)

This completes the proof of first part. We now need to show the effect of having more
than one neighboring agent. To this end, the most straightforward step, in order to ex-
tend the current results, is to use the fact that all neighboring agents are independent
from each other. We therefore can apply the previous results for a new situation where
the agent i with the probabilistic level of feasibility ᾱi have another neighboring agent
ν ∈Ni with α̃ν the level of reliability of B̃ν. By using Equation (B.10), we have the follow-
ing relations for j ,ν ∈Ni

1− 1− ᾱi

α̃ν
= 1−

1−
(
1− 1−αi

α̃ j

)
α̃ν

= 1− 1−αi

α̃ j α̃ν
≤P [ x i ∈Xi ] .

By continuing the similar arguments for all neighboring agents, one can obtain ᾱi =
1− 1−αi

α̃i
≤ P [ x i ∈Xi ] such that α̃i = α̃1 · · · α̃ j α̃ν · · · α̃|Ni | =

∏
j∈Ni

(α̃ j ). The proof is com-
pleted. ä
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PROOF OF THEOREM 6
P-OPF-RS problem is an inner approximation version of C-OPF-RS problem [67, Defi-
nition 12.2.13], which is exact if we show that the gap between their objective function
values is zero. This can be shown using the fact that the difference between optimizers
Ξ∗ of C-OPF-RS and the projection of Ξ∗ onto the feasible set of P-OPF-RS is zero, since
C-OPF-RS and P-OPF-RS have clearly similar objective functions.

In order to show the difference between the optimizersΞ∗ and the optimizer Ξ̂∗ (the
projection of Ξ∗ onto the feasible set of P-OPF-RS), we need to establish equivalence
between constraints of both problems using the proposed policy in (4.13). It is important
to notice that the proposed affine policy (4.13) is obtained by algebraic manipulation of
the reserve power definition in (4.10).

By comparing C-OPF-RS and P-OPF-RS, it is clear that the first and second con-
straints in P-OPF-RS are the same as (4.7b) and (4.7c), respectively, where Wt is replaced
by Ŵt (pm

t ), following the proposed affine policy in (4.13). As for the constraint (4.7d), we
use the following equivalent constraints using a conic combination concept1 of matrix
variables, called coefficient matrices:

Ŵt (pm
t ) º 0 ←→ W f

t º 0, W us
t º 0, W ds

t º 0 .

Imposing PSD constraints on the coefficient matrices is equivalent to imposing a PSD
constraint on the proposed policy for the network state in (4.13), since

max(pm
t ,0) ≥ 0 , max(−pm

t ,0) ≥ 0 ,∀pm
t ∈P ,

together with the fact that any conic combination of PSD matrices is a PSD matrix [23,
Section 2.2.5], thus the approximated network state Ŵt (pm

t ) is guaranteed to be PSD.

1A conic combination is a linear combination with only non-negative coefficients, see also [23, Section 2.1.5].
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We now examine the definition of reserve power in (4.8) expressed with the new
parametrization Ŵt (pm

t ):

rk,t = pG
k,t −pG , f

k,t

= Tr
(
Yk

(
Ŵ (pm

t )−W f
t

))
= Tr

(
Yk

(
max(−pm

t ,0)W us
t +max(pm

t ,0)W ds
t

))
=−Tr

(
YkW us

t

)
min(pm

t ,0)+Tr
(
YkW ds

t

)
max(pm

t ,0) ,

where the last equation is similar to the above assertion by using the linearity of the trace
operator and the fact that ∀α ∈R ,max(−α,0) =−min(α,0).

The last two constraints are similar to the constraints (4.11) to ensure that the re-
serve powers will always be the exact opposite of the mismatch power. By summing the
previous result over all generators k ∈G:

∑
k∈G rk,t =−

=1︷ ︸︸ ︷∑
k∈G Tr

(
YkW us

t

)
min(pm

t ,0) +
=−1︷ ︸︸ ︷∑

k∈G Tr
(
YkW ds

t

)
max(pm

t ,0),

=−min(pm
t ,0)−max(pm

t ,0)

=−pm
t .

The proof is completed by noting that W̃ us and W̃ ds are related to changes in the network
state by the distribution of up- and downspinning reserve power, respectively. Moreover,
the proposed equality constraints are feasible due to fact that Yk is indefinite ∀k ∈G. ä

PROOF OF THEOREM 9
Consider Ξ̂∗ to be the optimizer of the SP-OPF-RS problem and define Vio(Ξ̂∗) to be the
violation probability of the P-OPF-RS constraints as follows:

Vio(Ξ̂∗) :=P[
p̃m ∈P : Ξ̂∗ ∉ X̃ (p̃m)

]
, (C.1a)

where X̃ (p̃m) is the uncertain feasible region of the P-OPF-RS problem, and it can be
characterized via its constraints. Following Theorem 7, we have

PNs
[S ∈PNs : Vio(Ξ̂∗) ≤ ε]≥ 1−β . (C.1b)

Given Assumption 10 and Assumption 11 together with Proposition 4, the MASP-OPF-RS
problem is an exact decomposition of the SP-OPF-RS problem. This yields the following
equivalence relations: {

Ξ̂∗ :=Ξ∗
ma = {Ξ∗

a}∀a∈A
X̃ (p̃m) :=∏

a∈A X̃a(p̃m)
, (C.2)

where Ξ∗
ma = {Ξ∗

a}∀a∈A is the set of optimizers of the MASP-OPF-RS problem with Ξ∗
a as

the optimizer of each control area a ∈ A. Moreover, X̃a(p̃m) represents the uncertain
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feasible set of each control area a ∈A and it can be characterized using constraints of
the MASP-OPF-RS problem for each control area a ∈ A. To this end, it is necessary to
prove that the above statements (C.1) are still hold under the aforementioned relations
(C.2). We now break down the proof into two steps. We first show the results for each
control area a ∈A, and then extend into a multi-area power system problem.

1) Define Vio(Ξ∗
a) to be the violation probability of each control area a ∈ A for the

P-OPF-RS problem as follows:

Vio(Ξ∗
a) :=P[

p̃m ∈P : Ξ∗
a ∉ X̃a(p̃m)

]
. (C.3)

Applying the existing results in Theorem 7 for each control area a ∈A, we have

PNsa
[Sa ∈PNsa : Vio(Ξ∗

a) ≤ εa
]≥ 1−βa . (C.4)

2) Following the relations (C.2), it is easy to rewrite Vio(Ξ̂∗) in the following form:

Vio(Ξ̂∗) = Vio(Ξ∗
ma) =P

[
p̃m ∈P : Ξ∗

ma ∉
∏

a∈A
X̃a(p̃m)

]
,

It is then sufficient to show that for Ns = maxa∈A Nsa :

PNs
[
S ∈PNs : Vio(Ξ∗

ma) ≥ ε
]
≤β , (C.5)

where ε=∑
a∈A εa ∈ (0,1) and β=∑

a∈Aβa ∈ (0,1). Hence

Vio(Ξ̂∗) = Vio(Ξ∗
ma) =P

[
p̃m ∈P : Ξ∗

ma ∉
∏

a∈A
X̃a(p̃m)

]
=P[

p̃m ∈P : ∃a ∈A ,Ξ∗
a ∉ X̃a(p̃m)

]
=P

[ ⋃
a∈A

{
p̃m ∈P : Ξ∗

a ∉ X̃a(p̃m)
}]

≤ ∑
a∈A

P
[

p̃m ∈P : Ξ∗
a ∉ X̃a(p̃m)

]
= ∑

a∈A
Vio(Ξ∗

a) .

The last statement implies that Vio(Ξ∗
ma) ≤∑

a∈AVio(Ξ∗
a), and thus, we have

PNs
[S ∈PNs : Vio(Ξ∗

ma) ≥ ε] ≤PNs

[
S ∈PNs :

∑
a∈A

Vio(Ξ∗
a) ≥ ∑

a∈A
εa

]

=PNs

[ ⋃
a∈A

{Sa ∈PNsa : Vio(Ξ∗
a) ≥ εa

}]
≤ ∑

a∈A
PNsa

[Sa ∈PNsa : Vio(Ξ∗
a) ≥ εa

]
≤ ∑

a∈A
βa =β .
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The obtained bounds in the above procedure are the desired assertions as it is stated in
the theorem. The proof is completed by noting that the feasible set X̃ (p̃m) =∏

a∈A X̃a(p̃m)
of the MASP-OPF-RS has a non-empty interior, and it thus admits at least one feasible
solution Ξ∗

ma = {Ξ∗
a}∀a∈A. ä
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PROOF OF THEOREM 11
Due to the non-convexity introduced by the Chebyshev distance, we have to recast the
second stage problem (5.14b) into ξ sub-programs. By denoting with Ψ j the feasible
solution set of the j –th subproblem it is clear that the optimizer of (5.14b) can be found

in
⋃ξ

j=1Ψ j [107]. For clarity the proof will be broken down into three steps: a) application

of the scenario approach of [30] to each individual sub-program; b) extension to the ξ
sub-programs; c) theoretical conditions for the optimizer υ∗ := [θ∗b ,γ∗]> to be a feasible
solution of (5.13). Let us now denote with T(θ∗b ) the threshold set Tk obtained when 1Tk

is parameterized by a given θ∗b , and recall that V(T(θ∗b )) is the violation probability as in
Definition 11.

a) Applying the existing results in [30] to each sub-program, we have ∀ j ∈ {1, · · · ,ξ}:

PNs
[
V(T(θ∗b j

)) ≤ 1−α
]
≤
`−1∑
i=0

(
Ns

i

)
(1−α)iαNs−i .

b) Considering that V(T(θ∗b )) ⊆ ⋃ξ
j=1V(T(θ∗b j

)), we can readily extend the aforesaid

results to ξ sub-programs as follows:

PNs
[V(T(θ∗b )) ≤ 1−α]≤PN

s

[⋃ξ
j=1V(T(θ∗b j

)) ≤ 1−α
]

≤∑ξ

j=1P
Ns

[
V(T(θ∗b j

)) ≤ 1−α
]

< ξ
∑`−1

i=0

(
Ns

i

)
(1−α)iαNs−i ≤β.

Notice that the obtained bound is the desired assertion as it is stated in the the-
orem. However, the most important part of the proof is to extend this result to the
cascade setup of the present optimization problem in (5.14).
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c) In order to proceed let us first define another indicator function 1{·} : [0,1] 7→ {0,1}
that indicates whether the inequality in its argument, which is a function of a ran-
dom variable, holds or not. We now have to provide a new bound for the following
Ns -fold product conditional probability PNs

[V(T(θ∗b )) ≤ 1−α∣∣γ∗]
which is a ran-

dom variable with respect to γ∗ due to the fact that γ∗ is an optimal solution of the
first step optimization problem and it depends on specific random samples. To
this end consider the following Ns -fold product conditional expectation problem:

ENs
[

1{V(T(θ∗b ))≤1−α}

∣∣∣γ∗]
= 1 ·PNs

[
V(T(θ∗b )) ≤ 1−α

∣∣∣γ∗]
+0 ·PNs

[
V(T(θ∗b )) ≤ 1−α

∣∣∣γ∗]
= PNs

[
V(T(θ∗b )) ≤ 1−α

∣∣∣γ∗]
.

The best approximation of PNs
[V(T(θ∗b )) ≤ 1−α|γ∗]

is given by

ENs
[

1{V(T(θ∗b ))≤1−α}

∣∣γ∗]
,

which is a function of random variable γ∗. The best here means that one cannot do
any better than this due to the fact thatPNs

[V(T(θ∗b )) ≤ 1−α|γ∗]
is itself a function

of random variable γ∗. Finally, we calculate the above quantity by the law of the
unconscious [73] as follows:

ENs
[
ENs

[
1{V(T(θ∗b ))≤1−α}

∣∣∣γ∗]]
=∑

ν
ENs

[
1{V(T(θ∗b ))≤1−α}

∣∣∣γ∗ = ν
]
PNs

[
γ∗ = ν]

= ENs
[

1{V(T(θ∗b ))≤1−α}

]
=PNs

[V(T(θ∗b )) ≤ 1−α]
,

where the last equation is due to the partition theorem.

The proof is completed by noting that the final expression is already bounded in part (b)
of the proof. ä

PROOF OF THEOREM 12

Following Proposition 8 together with Proposition 9, let puN
and pu′

N
denote the proba-

bility density function of Mu(uN) and Mu(u′
N

), respectively, and let pyN and py ′
N

denote

the probability density function of My (yN) and My (y ′
N

), respectively. We now compare
puN

and pu′
N

at some arbitrary point z ∈RnN in order to show the first inequality in the
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above assertion as follows:

puN
(z)

pu′
N

(z)
=

exp
(−εu ‖gN(ψN ,uN)−z‖

2ζL

)
exp

(
−εu ‖gN(ψN ,u′

N
)−z‖

2ζL

)

=
exp

(−εu ‖yN−z‖
2ζL

)
exp

(
−εu ‖y ′

N
−z‖

2ζL

)

=
exp

(−εy ‖yN−z‖
2ξ

)
exp

(
−εy ‖y ′

N
−z‖

2ξ

) = pyN (z)

py ′
N

(z)

where the second equality follows from choosing εy = ξεu
ζL . Observe that εy ≤ εu holds for

ξ≤ ζL. The rest of the proof follows the same steps as in [49, Theorem 3.6]:

pyN (z)

py ′
N

(z)
=

exp
(−εy ‖yN−z‖

2ξ

)
exp

(
−εy ‖y ′

N
−z‖

2ξ

)
= exp

(−εy (‖yN− z‖−‖y ′
N
− z‖)

2ξ

)

≤ exp

(
εy (‖y ′

N
− yN‖)

2ξ

)
≤ exp

(
εy

)
≤ exp(εu) ,

where the first inequality follows from the inverse triangle inequality, the second follows
from the definition of sensitivity and the last is due to ξ≤ ζL.

PROOF OF THEOREM 14
Following Definition 11, we have the following updated situation:

α≤P[
rk+1 ∈Tk+1 , d̃ ∈ B̃N

]
,

which is a joint probability of rk+1 ∈ Tk+1 and d̃ ∈ B̃N. Such a joint probability can be
equivalently written as a joint cumulative distribution function (CDF):

α≤P[
rk+1 ∈Tk+1 , d̃ ∈ B̃N

]
=

∫
Tk+1

∫
B̃N

p(rk+1 , d̃)drk+1 dd̃

= Frk+1 , d̃ (Tk+1 , B̃N) ,

(D.1)
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where Frk+1 , d̃ (Tk+1 , B̃N) and p(rk+1 , d̃) are a joint CDF and a joint probability density

function (PDF) of rk+1 and d̃ , respectively. Our goal is to calculate:

P [rk+1 ∈Tk+1 ] =
∫
Tk+1

p(rk+1)drk+1

= Frk+1 (Tk+1) ,

where p(rk+1) is the PDF of rk+1. In order to transform the joint CDF into the marginal
CDF of rk+1, one can take the limit of the joint CDF as B̃N approachesRnN :

P[rk+1 ∈Tk+1 ] = Frk+1 (Tk+1)

= lim
B̃N→RnN

Frk+1 , d̃ (Tk+1 , B̃N)

= lim
B̃N→RnN

Frk+1 | d̃ (Tk+1 | B̃N)Fd̃ (B̃N)

= Frk+1 (Tk+1) lim
B̃N→RnN

Fd̃ (B̃N) ,

(D.2)

where the last equality is due to the independency of rk+1 and d̃ . In order to determine
lim

B̃N→RnN
Fd̃ (B̃N), one can calculate:

lim
B̃N→RnN

Fd̃ (B̃N) =
∫

RnN

p(d̃)dd̃

=
∫

RnN \B̃N

p(d̃)dd̃ +
∫

B̃N

p(d̃)dd̃

=P[
d̃ ∉ B̃N

]+P[
d̃ ∈ B̃N

]
= (1− α̃N)+ α̃N

= 1 ,

(D.3)

where p(d̃) is the PDF of d̃ , and the last equality is a direct result of Th. 13. We now put
all the steps together as follows:

α≤P[
rk+1 ∈Tk+1 , d̃ ∈ B̃N

]
= Frk+1 , d̃ (Tk+1 , B̃N)

≤ Frk+1 (Tk+1) lim
B̃N→RnN

Fd̃ (B̃N)

=P [rk+1 ∈Tk+1 ]

 ∫
RnN \B̃N

p(d̃)dd̃ +
∫

B̃N

p(d̃)dd̃


≤

∫
RnN \B̃N

p(d̃)dd̃ +P [rk+1 ∈Tk+1 ]
∫

B̃N

p(d̃)dd̃

= (1− α̃N)+ α̃N P [rk+1 ∈Tk+1 ] ,
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where the first inequality and equality is due to (D.1), the second inequality is due to
(D.2), the second and last equality is due to (D.3), and the last inequality is due to the
fact that P [rk+1 ∈Tk+1 ] ≤ 1. Rearranging the last equation results in:

α− (1− α̃N)

α̃N
= 1− 1−α

α̃N
= ᾱ≤P [rk+1 ∈Tk+1 ] .

The proof is completed by noting that the final equation is our desired assertion. ä
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